Sample records for cell separation techniques

  1. Separation of cells from the rat anterior pituitary gland

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Hatfield, J. Michael

    1983-01-01

    Various techniques for separating the hormone-producing cell types from the rat anterior pituitary gland are examined. The purity, viability, and responsiveness of the separated cells depend on the physiological state of the donor, the tissue dissociation procedures, the staining technique used for identification of cell type, and the cell separation technique. The chamber-gradient setup and operation, the characteristics of the gradient materials, and the separated cell analysis of velocity sedimentation techniques (in particular Staput and Celsep) are described. Consideration is given to the various types of materials used in density gradient centrifugation and the operation of a gradient generating device. The use of electrophoresis to separate rat pituitary cells is discussed.

  2. Cell partition in two phase polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.

  3. Separating biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Technique utilizing electric field to promote biological cell separation from suspending medium in zero gravity increases speed, reduces sedimentation, and improves efficiency of separation in normal gravity.

  4. Separation and sorting of cells in microsystems using physical principles

    NASA Astrophysics Data System (ADS)

    Lee, Gi-Hun; Kim, Sung-Hwan; Ahn, Kihoon; Lee, Sang-Hoon; Park, Joong Yull

    2016-01-01

    In the last decade, microfabrication techniques have been combined with microfluidics and applied to cell biology. Utilizing such new techniques, various cell studies have been performed for the research of stem cells, immune cells, cancer, neurons, etc. Among the various biological applications of microtechnology-based platforms, cell separation technology has been highly regarded in biological and clinical fields for sorting different types of cells, finding circulating tumor cells (CTCs), and blood cell separation, amongst other things. Many cell separation methods have been created using various physical principles. Representatively, these include hydrodynamic, acoustic, dielectrophoretic, magnetic, optical, and filtering methods. In this review, each of these methods will be introduced, and their physical principles and sample applications described. Each physical principle has its own advantages and disadvantages. The engineers who design the systems and the biologists who use them should understand the pros and cons of each method or principle, to broaden the use of microsystems for cell separation. Continuous development of microsystems for cell separation will lead to new opportunities for diagnosing CTCs and cancer metastasis, as well as other elements in the bloodstream.

  5. Fundamentals of affinity cell separations.

    PubMed

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).

    PubMed

    Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il

    2011-03-21

    Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications. This journal is © The Royal Society of Chemistry 2011

  7. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  8. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-09

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.

  9. Investigation of foam flotation and phase partitioning techniques

    NASA Technical Reports Server (NTRS)

    Currin, B. L.

    1985-01-01

    The present status of foam flotation as a separation process is evaluated and limitations for cells and proteins are determined. Possible applications of foam flotation to separations in microgravity are discussed. Application of the fluid mechanical aspects of foam separation techniques is made to phase partitioning in order to investigate the viscous drag forces that may effect the partitioning of cells in a two phase poly(ethylene glycol) and dextran system.

  10. Design of polymeric immunomicrospheres for cell labelling and cell separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Margel, S.

    1978-01-01

    Synthesis of several classes of hydrophylic microspheres applied to cell labeling and cell separation is described. Five classes of cross-linked microspheres with functional groups such as carboxyl, hydroxyl, amide and/or pyridine groups were synthesized. These functional groups were used to bind covalently antibodies and other proteins to the surface of the microspheres. To optimize the derivatisation technique, polyglutaraldehyde immunomicrospheres were prepared and utilized. Specific populations of human and murine lymphocytes were labelled with microspheres synthesized by the emulsion of the ionizing radiation technique. The labelling of the cells by means of microspheres containing an iron core produced successful separation of B from T lymphocytes by means of a magnetic field.

  11. Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based microfluidic device.

    PubMed

    Didar, Tohid Fatanat; Li, Kebin; Veres, Teodor; Tabrizian, Maryam

    2013-07-01

    Despite the advances made in the field of regenerative medicine, the progress in cutting-edge technologies for separating target therapeutic cells are still at early stage of development. These cells are often rare, such as stem cells or progenitor cells that their overall properties should be maintained during the separation process for their subsequent application in regenerative medicine. This work, presents separation of oligodendrocyte progenitor cells (OPCs) from rat brain primary cultures using an integrated thermoplastic elastomeric (TPE)- based multilayer microfluidic device fabricated using hot-embossing technology. OPCs are frequently used in recovery, repair and regeneration of central nervous system after injuries. Indeed, their ability to differentiate in vitro into myelinating oligodendrocytes, are extremely important for myelin repair. OPCs form 5-10% of the glial cells population. The traditional macroscale techniques for OPCs separation require pre-processing of cells and/or multiple time consuming steps with low efficiency leading very often to alteration of their properties. The proposed methodology implies to separate OPCs based on their smaller size compared to other cells from the brain tissue mixture. Using aforementioned microfluidic chip embedded with a 5 μm membrane pore size and micropumping system, a separation efficiency more than 99% was achieved. This microchip was able to operate at flow rates up to 100 μl/min, capable of separating OPCs from a confluent 75 cm(2) cell culture flask in less than 10 min, which provides us with a high-throughput and highly efficient separation expected from any cell sorting techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Separation of cancer cells from white blood cells by pinched flow fractionation.

    PubMed

    Pødenphant, Marie; Ashley, Neil; Koprowska, Kamila; Mir, Kalim U; Zalkovskij, Maksim; Bilenberg, Brian; Bodmer, Walter; Kristensen, Anders; Marie, Rodolphe

    2015-12-21

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation is challenged by the size overlap between cancer cells and the 10(6) times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells.

  13. Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.

    PubMed

    Yaremko, M L; Kelemen, P R; Kutza, C; Barker, D; Westbrook, C A

    1996-01-01

    Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible.

  14. Label-free cell separation and sorting in microfluidic systems

    PubMed Central

    Gossett, Daniel R.; Weaver, Westbrook M.; Mach, Albert J.; Hur, Soojung Claire; Tse, Henry Tat Kwong; Lee, Wonhee; Amini, Hamed

    2010-01-01

    Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible. Figure A wide range of microfluidic technologies have been developed to separate and sort cells by taking advantage of differences in their intrinsic biophysical properties PMID:20419490

  15. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics.

    PubMed

    Sarkar, Aniruddh; Hou, Han Wei; Mahan, Alison E; Han, Jongyoon; Alter, Galit

    2016-03-30

    Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary 'bind-elute' separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets-cells or proteins-bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients.

  16. Affinity adsorption of cells to surfaces and strategies for cell detachment.

    PubMed

    Hubble, John

    2007-01-01

    The use of bio-specific interactions for the separation and recovery of bio-molecules is now widely established and in many cases the technique has successfully crossed the divide between bench and process scale operation. Although the major specificity advantage of affinity-based separations also applies to systems intended for cell fractionation, developments in this area have been slower. Many of the problems encountered result from attempts to take techniques developed for molecular systems and, with only minor modification to the conditions used, apply them for the separation of cells. This approach tends to ignore or at least trivialise the problems, which arise from the heterogeneous nature of a cell suspension and the multivalent nature of the cell/surface interaction. To develop viable separation processes on a larger scale, effective contacting strategies are required in separators that also allow detachment or recovery protocols that overcome the enhanced binding strength generated by multivalent interactions. The effects of interaction valency on interaction strength needs to be assessed and approaches developed to allow effective detachment and recovery of adsorbed cells without compromising cell viability. This article considers the influence of operating conditions on cell attachment and the extent to which multivalent interactions determine the strength of cell binding and subsequent detachment.

  17. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes

    NASA Astrophysics Data System (ADS)

    Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk

    2017-04-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressure node in terms of throughput.

  18. Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.

    PubMed Central

    Yaremko, M. L.; Kelemen, P. R.; Kutza, C.; Barker, D.; Westbrook, C. A.

    1996-01-01

    Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible. Images Figure 1 Figure 2 Figure 3 PMID:8546231

  19. Lipid-Based Immuno-Magnetic Separation of Archaea from a Mixed Community

    NASA Astrophysics Data System (ADS)

    Frickle, C. M.; Bailey, J.; Lloyd, K. G.; Shumaker, A.; Flood, B.

    2014-12-01

    Despite advancing techniques in microbiology, an estimated 98% of all microbial species on Earth have yet to be isolated in pure culture. Natural samples, once transferred to the lab, are commonly overgrown by "weed" species whose metabolic advantages enable them to monopolize available resources. Developing new methods for the isolation of thus-far uncultivable microorganisms would allow us to better understand their ecology, physiology and genetic potential. Physically separating target organisms from a mixed community is one approach that may allow enrichment and growth of the desired strain. Here we report on a novel method that uses known physiological variations between taxa, in this case membrane lipids, to segregate the desired organisms while keeping them alive and viable for reproduction. Magnetic antibodies bound to the molecule squalene, which is found in the cell membranes of certain archaea, but not bacteria, enable separation of archaea from bacteria in mixed samples. Viability of cells was tested by growing the separated fractions in batch culture. Efficacy and optimization of the antibody separation technique are being evaluated using qPCR and cell counts. Future work will apply this new separation technique to natural samples.

  20. Microfluidic immunomagnetic cell separation from whole blood.

    PubMed

    Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Puiu, Poenar Daniel

    2016-02-01

    Immunomagnetic-based separation has become a viable technique for the separation of cells and biomolecules. Here we report on the design and analysis of a simple and efficient microfluidic device for high throughput and high efficiency capture of cells tagged with magnetic particles. This is made possible by using a microfluidic chip integrated with customized arrays of permanent magnets capable of creating large magnetic field gradients, which determine the effective capturing of the tagged cells. This method is based on manipulating the cells which are under the influence of a combination of magnetic and fluid dynamic forces in a fluid under laminar flow through a microfluidic chip. A finite element analysis (FEA) model is developed to analyze the cell separation process and predict its behavior, which is validated subsequently by the experimental results. The magnetic field gradients created by various arrangements of magnetic arrays have been simulated using FEA and the influence of these field gradients on cell separation has been studied with the design of our microfluidic chip. The proof-of-concept for the proposed technique is demonstrated by capturing white blood cells (WBCs) from whole human blood. CD45-conjugated magnetic particles were added into whole blood samples to label WBCs and the mixture was flown through our microfluidic device to separate the labeled cells. After the separation process, the remaining WBCs in the elute were counted to determine the capture efficiency, and it was found that more than 99.9% WBCs have been successfully separated from whole blood. The proposed design can be used for positive selection as well as for negative enrichment of rare cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cell separation technique in dilectrophoretic chip with bulk electrode

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Tay, Francis E. H.; Xu, Guolin; Yu, Liming

    2006-01-01

    This paper presents a new technique for separation of two cell populations in a dielectrophoretic chip with bulk silicon electrode. A characteristic of the dielectrophoretic chip is its "sandwich" structure: glass/silicon/glass that generates a unique definition of the microfluidic channel with conductive walls (silicon) and isolating floor and ceiling (glass). The structure confers the opportunity to use the electrodes not only to generate a gradient of the electric field but also to generate a gradient of velocity of the fluid inside the channel. This interesting combination gives rise to a new solution for dielectrophoretic separation of two cell populations. The separation method consists of four steps. First, the microchannel is field with the cells mixture. Second, the cells are trapped in different locations of the microfluidic channel, the cell population which exhibits positive dielectrophoresis is trapped in the area where the distance between the electrodes is the minimum whilst, the other population that exhibit negative dielectrophoresis is trapped where the distance between electrodes is the maximum. In the next step, increasing the flow in the microchannel will result in an increased hydrodynamic force that sweeps the cells trapped by positive dielectrophoresis out of the chip. In the last step, the electric field is removed and the second population is sweep out and collected at the outlet. The device was tested for separation of dead yeast cells from live yeast cells. The paper presents analytical aspects of the separation method a comparative study between different electrode profiles and experimental results.

  2. Efficiency and Impact of Positive and Negative Magnetic Separation on Monocyte Derived Dendritic Cell Generation.

    PubMed

    Kowalewicz-Kulbat, Magdalena; Ograczyk, Elżbieta; Włodarczyk, Marcin; Krawczyk, Krzysztof; Fol, Marek

    2016-06-01

    The immunomagnetic separation technique is the basis of monocyte isolation and further generation of monocyte-derived dendritic cells. To compare the efficiency of monocyte positive and negative separation, concentration of beads, and their impact on generated dendritic cells. Monocytes were obtained using monoclonal antibody-coated magnetic beads followed the Ficoll-Paque gradient separation of mononuclear cell fraction from the peripheral blood of 6 healthy volunteers. CD14 expression was analyzed by flow cytometry. Both types of magnetic separation including recommended and reduced concentrations of beads did not affect the yield and the purity of monocytes and their surface CD14 expression. However, DCs originated from the "positively" separated monocytes had noticeable higher expression of CD80.

  3. A New Cell Separation Method Based on Antibody-Immobilized Nanoneedle Arrays for the Detection of Intracellular Markers.

    PubMed

    Kawamura, Ryuzo; Miyazaki, Minami; Shimizu, Keita; Matsumoto, Yuta; Silberberg, Yaron R; Sathuluri, Ramachandra Rao; Iijima, Masumi; Kuroda, Shun'ichi; Iwata, Futoshi; Kobayashi, Takeshi; Nakamura, Chikashi

    2017-11-08

    Focusing on intracellular targets, we propose a new cell separation technique based on a nanoneedle array (NNA) device, which allows simultaneous insertion of multiple needles into multiple cells. The device is designed to target and lift ("fish") individual cells from a mixed population of cells on a substrate using an antibody-functionalized NNA. The mechanics underlying this approach were validated by force analysis using an atomic force microscope. Accurate high-throughput separation was achieved using one-to-one contacts between the nanoneedles and the cells by preparing a single-cell array in which the positions of the cells were aligned with 10,000 nanoneedles in the NNA. Cell-type-specific separation was realized by controlling the adhesion force so that the cells could be detached in cell-type-independent manner. Separation of nestin-expressing neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) was demonstrated using the proposed technology, and successful differentiation to neuronal cells was confirmed.

  4. Antibody enhancement of free-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Cohly, H. H. P.; Morrison, Dennis R.; Atassi, M. Zouhair

    1988-01-01

    Specific T cell clones and antibodies (ABs) were developed to study the efficiency of purifying closely associated T cells using Continuous Flow Electrophoresis System. Enhanced separation is accomplished by tagging cells first with ABs directed against the antigenic determinants on the cell surface and then with ABs against the Fc portion of the first AB. This second AB protrudes sufficiently beyond the cell membrane and glycocalyx to become the major overall cell surface potential determinant and thus causes a reduction of electrophoretic mobility. This project was divided into three phases. Phase one included development of specific T cell clones and separation of these specific clones. Phase two extends these principles to the separation of T cells from spleen cells and immunized lymph node cells. Phase three applies this double antibody technique to the separation of T cytotoxic cells from bone marrow.

  5. Candidate space processing techniques for biomaterials other than preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1976-01-01

    The advantages of performing the partition and countercurrent distribution (CCD) of cells in phase separated aqueous polymer systems under reduced gravity were assessed. Other possible applications considered for the space processing program include the freezing front separation of cells, adsorption of cells at the air-water interface, and the macrophage electrophoretic mobility test for cancer.

  6. Free flow electrophoresis in space shuttle program (biotex)

    NASA Astrophysics Data System (ADS)

    Hannig, Kurt; Bauer, Johann

    In the space shuttle program free flow electrophoresis will be applied for separation of proteins, biopolymers and cells. Proteins are to be separated according to the ``Feldsprung-Gradienten'' procedure by Prof. H. Wagner, University of Saarbruecken, biopolymers are to be separated by the isotachophoresis technique by Prof. Schmitz, University of Muenster and we intend to separate cells in order to increase the efficiency of recovery of hybrid cells after electrofusion performed under microgravity in collaboration with Prof. U. Zimmermann, University of Wuerzburg. There are supposed two ways for reaching this goal: Enrichment of cells before electrofusion may enhance the probability that the cells of interest are immortalized. Separation of cells after electrofusion may help to clone the hybrid cells of interest. Under microgravity, the combination of improved electrophoresis with higher electrofusion rates may provide new possibilities for immortalization of cells. This may be a new way to obtain cellular products, which are physiologically glycosylated.

  7. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.

  8. Fractionation of Exosomes and DNA using Size-Based Separation at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wunsch, Benjamin; Smith, Joshua; Wang, Chao; Gifford, Stacey; Brink, Markus; Bruce, Robert; Solovitzky, Gustavo; Austin, Robert; Astier, Yann

    Exosomes, a key target of ``liquid biopsies'', are nano-vesicles found in nearly all biological fluids. Exosomes are secreted by eukaryotic and prokaryotic cells alike, and contain information about their originating cells, including surface proteins, cytoplasmic proteins, and nucleic acids. One challenge in studying exosome morphology is the difficulty of sorting exosomes by size and surface markers. Common separation techniques for exosomes include ultracentrifugation and ultrafiltration, for preparation of large volume samples, but these techniques often show contamination and significant heterogeneity between preparations. To date, deterministic lateral displacement (DLD) pillar arrays in silicon have proven an efficient technology to sort, separate, and enrich micron-scale particles including human parasites, eukaryotic cells, blood cells, and circulating tumor cells in blood; however, the DLD technology has never been translated to the true nanoscale, where it could function on bio-colloids such as exosomes. We have fabricated nanoscale DLD (nanoDLD) arrays capable of rapidly sorting colloids down to 20 nm in continuous flow, and demonstrated size sorting of individual exosome vesicles and dsDNA polymers, opening the potential for on-chip biomolecule separation and diagnosti

  9. Microfluidic devices for label-free separation of cells through transient interaction with asymmetric receptor patterns

    NASA Astrophysics Data System (ADS)

    Bose, S.; Singh, R.; Hollatz, M. H.; Lee, C.-H.; Karp, J.; Karnik, R.

    2012-02-01

    Cell sorting serves an important role in clinical diagnosis and biological research. Most of the existing microscale sorting techniques are either non-specific to antigen type or rely on capturing cells making sample recovery difficult. We demonstrate a simple; yet effective technique for isolating cells in an antigen specific manner by using transient interactions of the cell surface antigens with asymmetric receptor patterned surface. Using microfluidic devices incorporating P-selectin patterns we demonstrate separation of HL60 cells from K562 cells. We achieved a sorting purity above 90% and efficiency greater than 85% with this system. We also present a mathematical model incorporating flow mediated and adhesion mediated transport of cells in the microchannel that can be used to predict the performance of these devices. Lastly, we demonstrate the clinical significance of the method by demonstrating single step separation of neutrophils from whole blood. When whole blood is introduced in the device, the granulocyte population gets separated exclusively yielding neutrophils of high purity (<10% RBC contamination). To our knowledge, this is the first ever demonstration of continuous label free sorting of neutrophils from whole blood. We believe this technology will be useful in developing point-of-care diagnostic devices and also for a host of cell sorting applications.

  10. Single cell Enrichment with High Throughput Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Pakjesm Pourfard, Pedram

    Microfluidics is a rapidly growing field of biomedical engineering with numerous applications such as diagnostic testing, therapeutics, and research preparation. Cell enrichment for automated diagnostic is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as, Shear migration, Lift force, Dean force, and many other label-free techniques, are advantageous since they don't require costly labeling or sample preparation. However, current passive techniques for enrichment had limited adoption in clinical and cell biology research applications. They generally require low flow rate and low cell volume fraction for high efficiency. The Control increment filtration, T-shaped microfluidic device, and spiral-shaped microfluidic devices will be studied for single-cell separation from aggregates. Control increment filtration works like the tangential filter; however, cells are separated based off of same amount of flow rate passing through large space gaps. Main microchannel of T-Shaped is connected to two perpendicular side channels. Based off Shear-modulated inertial migration, this device will enable selective enrichment of cells. The spiral shaped microfluidic device depends on different Dean and lift forces acting on cells to separate them based off different sizes. The spiral geometry of the microchannel will enable dominant inertial forces and the Dean Rotation force to cause larger cells to migrate to the inner side of the microchannel. Because manipulation of microchannel dimensions correlates to the degree of cell separation, versatility in design exists. Cell mixture samples will contain cells of different sizes and therefore design strategies could be utilized to maximize the effectiveness of single-cell separation.

  11. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.

    PubMed

    Lee, Myung Gwon; Shin, Joong Ho; Bae, Chae Yun; Choi, Sungyoung; Park, Je-Kyun

    2013-07-02

    We report a contraction-expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ~45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 10(8) cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.

  12. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis.

    PubMed

    Alazzam, Anas; Mathew, Bobby; Alhammadi, Falah

    2017-03-01

    We describe the design, microfabrication, and testing of a microfluidic device for the separation of cancer cells based on dielectrophoresis. Cancer cells, specifically green fluorescent protein-labeled MDA-MB-231, are successfully separated from a heterogeneous mixture of the same and normal blood cells. MDA-MB-231 cancer cells are separated with an accuracy that enables precise detection and counting of circulating tumor cells present among normal blood cells. The separation is performed using a set of planar interdigitated transducer electrodes that are deposited on the surface of a glass wafer and slightly protrude into the separation microchannel at one side. The device includes two parts, namely, a glass wafer and polydimethylsiloxane element. The device is fabricated using standard microfabrication techniques. All experiments are conducted with low conductivity sucrose-dextrose isotonic medium. The variation in response between MDA-MB-231 cancer cells and normal cells to a certain band of alternating-current frequencies is used for continuous separation of cells. The fabrication of the microfluidic device, preparation of cells and medium, and flow conditions are detailed. The proposed microdevice can be used to detect and separate malignant cells from heterogeneous mixture of cells for the purpose of early screening for cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection.

    PubMed

    Leijdekkers, A G M; Sanders, M G; Schols, H A; Gruppen, H

    2011-12-23

    Analysis of complex mixtures of plant cell wall derived oligosaccharides is still challenging and multiple analytical techniques are often required for separation and characterization of these mixtures. In this work it is demonstrated that hydrophilic interaction chromatography coupled with evaporative light scattering and mass spectrometry detection (HILIC-ELSD-MS(n)) is a valuable tool for identification of a wide range of neutral and acidic cell wall derived oligosaccharides. The separation potential for acidic oligosaccharides observed with HILIC is much better compared to other existing techniques, like capillary electrophoresis, reversed phase and porous-graphitized carbon chromatography. Important structural information, such as presence of methyl esters and acetyl groups, is retained during analysis. Separation of acidic oligosaccharides with equal charge yet with different degrees of polymerization can be obtained. The efficient coupling of HILIC with ELSD and MS(n)-detection enables characterization and quantification of many different oligosaccharide structures present in complex mixtures. This makes HILIC-ELSD-MS(n) a versatile and powerful additional technique in plant cell wall analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Numerical simulation of dielectrophoretic separation of live/dead cells using a three-dimensional nonuniform AC electric field in micro-fabricated devices.

    PubMed

    Tada, Shigeru

    2015-01-01

    The analysis of cell separation has many important biological and medical applications. Dielectrophoresis (DEP) is one of the most effective and widely used techniques for separating and identifying biological species. In the present study, a DEP flow channel, a device that exploits the differences in the dielectric properties of cells in cell separation, was numerically simulated and its cell-separation performance examined. The samples of cells used in the simulation were modeled as human leukocyte (B cell) live and dead cells. The cell-separation analysis was carried out for a flow channel equipped with a planar electrode on the channel's top face and a pair of interdigitated counter electrodes on the bottom. This yielded a three-dimensional (3D) nonuniform AC electric field in the entire space of the flow channel. To investigate the optimal separation conditions for mixtures of live and dead cells, the strength of the applied electric field was varied. With appropriately selected conditions, the device was predicted to be very effective at separating dead cells from live cells. The major advantage of the proposed method is that a large volume of sample can be processed rapidly because of a large spacing of the channel height.

  15. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  16. Isolation and Characterization of Rat Pituitary Endothelial Cells

    PubMed Central

    Chaturvedi, Kirti; Sarkar, Dipak K.

    2010-01-01

    Most previous studies that determined the effect of estradiol on angiogenesis used endothelial cells from nonpituitary sources. Because pituitary tumor tissue receives its blood supply via portal and arterial circulation, it is important to use pituitary-derived endothelial cells in studying pituitary angiogenesis. We have developed a magnetic separation technique to isolate endothelial cells from pituitary tissues and have characterized these cells in primary cultures. Endothelial cells of the pituitary showed the existence of endothelial cell marker, CD31, and of von Willebrand factor protein. These cells in cultures also showed immunore-activity of estrogen receptors alpha and beta. The angiogenic factors, vascular endothelial growth factor and basic fibroblast growth factor, significantly increased proliferation and migration of the pituitary-derived endothelial cells in primary cultures. These results suggest that a magnetic separation technique can be used for enrichment of pituitary-derived endothelial cells for determination of cellular mechanisms governing the vascularization in the pituitary. PMID:17028416

  17. Sample detection and analysis techniques for electrophoretic separation

    NASA Technical Reports Server (NTRS)

    Falb, R. D.; Hughes, K. E.; Powell, T. R.

    1975-01-01

    Methods for detecting and analyzing biological agents suitable for space flight operations were studied primarily by literature searches which were conducted of cell separation techniques. Detection methods discussed include: photometrometric, electric, radiometric, micrometry, ultrasonic, microscopic, and photographic. A bibliography, and a directory of vendors are included along with an index of commercial hardware.

  18. A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fibrin influences INS-1 cells insulin secretion.

    PubMed

    Sabra, Georges; Vermette, Patrick

    2013-02-01

    The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVEC) co-cultured in fibrin over INS-1 cell insulin secretion. For this purpose, a three-dimensional (3D) cell culture chamber was designed, built using micro-fabrication techniques and validated. The co-culture was successfully carried out and the effect on INS-1 cell insulin secretion was investigated. After 48 and 72 h, INS-1 cells co-cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS-1 cells cultured alone or co-cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered. Copyright © 2012 Wiley Periodicals, Inc.

  19. Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques.

    PubMed

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki

    2014-05-07

    Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process.

  20. Kidney cell electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1979-01-01

    A kidney cell electrophoresis technique is described in four parts: (1) the development and testing of electrophoresis solutions; (2) optimization of freezing and thawing; (3) procedures for evaluation of separated kidney cells; and (4) electrophoretic mobility characteristics of kidney cells.

  1. Counterflow Dielectrophoresis for Trypanosome Enrichment and Detection in Blood

    NASA Astrophysics Data System (ADS)

    Menachery, Anoop; Kremer, Clemens; Wong, Pui E.; Carlsson, Allan; Neale, Steven L.; Barrett, Michael P.; Cooper, Jonathan M.

    2012-10-01

    Human African trypanosomiasis or sleeping sickness is a deadly disease endemic in sub-Saharan Africa, caused by single-celled protozoan parasites. Although it has been targeted for elimination by 2020, this will only be realized if diagnosis can be improved to enable identification and treatment of afflicted patients. Existing techniques of detection are restricted by their limited field-applicability, sensitivity and capacity for automation. Microfluidic-based technologies offer the potential for highly sensitive automated devices that could achieve detection at the lowest levels of parasitemia and consequently help in the elimination programme. In this work we implement an electrokinetic technique for the separation of trypanosomes from both mouse and human blood. This technique utilises differences in polarisability between the blood cells and trypanosomes to achieve separation through opposed bi-directional movement (cell counterflow). We combine this enrichment technique with an automated image analysis detection algorithm, negating the need for a human operator.

  2. A miniaturized multipurpose platform for rapid, label-free, and simultaneous separation, patterning, and in vitro culture of primary and rare cells.

    PubMed

    Didar, Tohid Fatanat; Bowey, Kristen; Almazan, Guillermina; Tabrizian, Maryam

    2014-02-01

    Given that current cell isolation techniques are expensive, time consuming, yield low isolation purities, and/or alter target cell properties, a versatile, cost effective, and easy-to-operate microchip with the capability to simultaneously separate, capture, pattern, and culture rare and primary cells in vitro is developed. The platform is based on target cell adhesion onto the micro-fabricated interfaces produced by microcontact printing of cell-specific antibodies. Results show over 95% separation efficiency in less than 10 min for the separation of oligodendrocyte progenitor cells (OPCs) and cardiomyocytes from rat brain and heart mixtures, respectively. Target cell attachment and single cell spreading can be precisely controlled on the basis of the designed patterns. Both cell types can maintain their biofunctionality. Indeed, isolated OPCs can proliferate and differentiate into mature oligodendrocytes, while isolated cardiomyocytes retain their contractile properties on the separation platform. Successful separation of two dissimilar cell types present in varying concentrations in their respective cell mixtures and the demonstration of their integrity after separation open new avenues for time and cost-effective sorting of various cell types using the developed miniaturized platform. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Production of monozygotic twin calves using the blastomere separation technique and Well of the Well culture system.

    PubMed

    Tagawa, M; Matoba, S; Narita, M; Saito, N; Nagai, T; Imai, K

    2008-03-15

    The present study was conducted to establish a simple and efficient method of producing monozygotic twin calves using the blastomere separation technique. To produce monozygotic twin embryos from zona-free two- and eight-cell embryos, blastomeres were separated mechanically by pipetting to form two demi-embryos; each single blastomere from the two-cell embryo and tetra-blastomeres from the eight-cell embryo were cultured in vitro using the Well of the Well culture system (WOW). This culture system supported the successful arrangement of blastomeres, resulting in their subsequent aggregation to form a demi-embryo developing to the blastocyst stage without a zona pellucida. There was no significant difference in the development to the blastocyst stage between blastomeres separated from eight-cell (72.0%) and two-cell (62.0%) embryos. The production rates of the monozygotic pair blastocysts and transferable paired blastocysts for demi-embryos obtained from eight-cell embryos (64.0 and 45.0%, respectively) were higher than those for demi-embryos obtained from two-cell embryos (49.0 and 31.0%, P<0.05). The separated demi-embryos obtained from eight-cell embryos produced by IVM/IVF of oocytes collected by ovum pick-up (OPU) from elite cows and cultured in wells tended to have a higher pregnancy rate (78.9% vs. 57.1%) and similar monozygotic twinning rate (40.0% vs. 33.3%) compared with monozygotic twin blastocysts obtained by the conventional bisection of in vivo derived blastocysts. In conclusion, producing twins by separation of blastomeres in OPU-IVF embryos, followed by the WOW culture system, yielded viable monozygotic demi-embryos, resulting in high rates of pregnancy and twinning rates after embryo transfer.

  4. Characterization and Separation of Cancer Cells with a Wicking Fiber Device.

    PubMed

    Tabbaa, Suzanne M; Sharp, Julia L; Burg, Karen J L

    2017-12-01

    Current cancer diagnostic methods lack the ability to quickly, simply, efficiently, and inexpensively screen cancer cells from a mixed population of cancer and normal cells. Methods based on biomarkers are unreliable due to complexity of cancer cells, plasticity of markers, and lack of common tumorigenic markers. Diagnostics are time intensive, require multiple tests, and provide limited information. In this study, we developed a novel wicking fiber device that separates cancer and normal cell types. To the best of our knowledge, no previous work has used vertical wicking of cells through fibers to identify and isolate cancer cells. The device separated mouse mammary tumor cells from a cellular mixture containing normal mouse mammary cells. Further investigation showed the device separated and isolated human cancer cells from a heterogeneous mixture of normal and cancerous human cells. We report a simple, inexpensive, and rapid technique that has potential to identify and isolate cancer cells from large volumes of liquid samples that can be translated to on-site clinic diagnosis.

  5. Immunomagnetic cell separation, imaging, and analysis using Captivate ferrofluids

    NASA Astrophysics Data System (ADS)

    Jones, Laurie; Beechem, Joseph M.

    2002-05-01

    We have developed applications of CaptivateTM ferrofluids, paramagnetic particles (approximately 200 nm diameter), for isolating and analyzing cell populations in combination with fluorescence-based techniques. Using a microscope-mounted magnetic yoke and sample insertion chamber, fluorescent images of magnetically captured cells were obtained in culture media, buffer, or whole blood, while non-magnetically labeled cells sedimented to the bottom of the chamber. We combined this immunomagnetic cell separation and imaging technique with fluorescent staining, spectroscopy, and analysis to evaluate cell surface receptor-containing subpopulations, live/dead cell ratios, apoptotic/dead cell ratios, etc. The acquired images were analyzed using multi-color parameters, as produced by nucleic acid staining, esterase activity, or antibody labeling. In addition, the immunomagnetically separated cell fractions were assessed through microplate analysis using the CyQUANT Cell Proliferation Assay. These methods should provide an inexpensive alternative to some flow cytometric measurements. The binding capacities of the streptavidin- labled Captivate ferrofluid (SA-FF) particles were determined to be 8.8 nmol biotin/mg SA-FF, using biotin-4- fluorescein, and > 106 cells/mg SA-FF, using several cell types labeled with biotinylated probes. For goat anti- mouse IgG-labeled ferrofluids (GAM-FF), binding capacities were established to be approximately 0.2 - 7.5 nmol protein/mg GAM-FF using fluorescent conjugates of antibodies, protein G, and protein A.

  6. Deformability and size-based cancer cell separation using an integrated microfluidic device.

    PubMed

    Pang, Long; Shen, Shaofei; Ma, Chao; Ma, Tongtong; Zhang, Rui; Tian, Chang; Zhao, Lei; Liu, Wenming; Wang, Jinyi

    2015-11-07

    Cell sorting by filtration techniques offers a label-free approach for cell separation on the basis of size and deformability. However, filtration is always limited by the unpredictable variation of the filter hydrodynamic resistance due to cell accumulation and clogging in the microstructures. In this study, we present a new integrated microfluidic device for cell separation based on the cell size and deformability by combining the microstructure-constricted filtration and pneumatic microvalves. Using this device, the cell populations sorted by the microstructures can be easily released in real time for subsequent analysis. Moreover, the periodical sort and release of cells greatly avoided cell accumulation and clogging and improved the selectivity. Separation of cancer cells (MCF-7, MDA-MB-231 and MDA231-LM2) with different deformability showed that the mixture of the less flexible cells (MCF-7) and the flexible cells (MDA-MB-231 and MDA231-LM2) can be well separated with more than 75% purity. Moreover, the device can be used to separate cancer cells from the blood samples with more than 90% cell recovery and more than 80% purity. Compared with the current filtration methods, the device provides a new approach for cancer cell separation with high collection recovery and purity, and also, possesses practical potential to be applied as a sample preparation platform for fundamental studies and clinical applications.

  7. From the rat to the beta cell: a fast and effective technique of separation of Langerhans islets and direct purification of pancreatic beta cells.

    PubMed

    Tamagno, Gianluca; Vigolo, Simonetta; Olivieri, Massimiliano; Martini, Chiara; De Carlo, Eugenio

    2014-01-01

    Isolated Langerhans islets represent a useful model for the study of the endocrine pancreas. The possibility to purify pancreatic beta cells from a mixed Langerhans islet cell population may lead towards a dedicated focus on beta cell research. We describe an effective and rapid immunomagnetic technique for the direct purification of beta cells from isolated Langerhans islets of rat. After the sacrifice of the rat, the Langerhans islets were separated by ductal injection of the pancreas with collagenase, altered to a mixed Langerhans islet cell population and incubated with conditioned immunomagnetic beads targeted to the beta cell surface. The beads were previously coated with a specific antibody against the surface of the beta cell, namely K14D10. The suspension of mixed Langerhans islet cells and immunomagnetic K14D10-conditioned beads was pelleted by a magnetic particle concentrator to isolate the bead-bound cells, which were finally suspended in a culture medium. The purified cells were immunoreactive for insulin and no glucagon-positive cells were detected at immunocytochemistry. Real Time PCR confirmed the purification of the pancreatic beta cells. This immunomagnetic technique allows a rapid, effective and consistent purification of beta cells from isolated Langerhans islets in a direct manner by conditioning the immunomagnetic beads only. This technique is easy, fast and reproducible. It promises to be a reliable method for providing purified beta cells for in vitro research.

  8. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip

    PubMed Central

    Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia

    2013-01-01

    Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis. PMID:24404011

  9. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip.

    PubMed

    Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia

    2013-01-01

    Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.

  10. Ultrafine polybenzimidazole (PBI) fibers. [separators for alkaline batteries and dfuel cells

    NASA Technical Reports Server (NTRS)

    Chenevey, E. C.

    1979-01-01

    Mats were made from ultrafine polybenzimidazole (PBI) fibers to provide an alternate to the use of asbestos as separators in fuel cells and alkaline batteries. To minimize distortion during mat drying, a process to provide a dry fibrid was developed. Two fibrid types were developed: one coarse, making mats for battery separators; the other fine, making low permeability matrices for fuel cells. Eventually, it was demonstrated that suitable mat fabrication techniques yielded fuel cell separators from the coarser alkaline battery fibrids. The stability of PBI mats to 45% KOH at 123 C can be increased by heat treatment at high temperatures. Weight loss data to 1000 hours exposure show the alkali resistance of the mats to be superior to that of asbestos.

  11. Quantitative Magnetic Separation of Particles and Cells using Gradient Magnetic Ratcheting

    PubMed Central

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-01-01

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting (MACS), are robust but perform coarse, qualitative separations based on surface antigen expression. We report a quantitative magnetic separation technology using high-force magnetic ratcheting over arrays of magnetically soft micro-pillars with gradient spacing, and use the system to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micro-pillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic-field. Particles with higher IOC separate and equilibrate along the miro-pillar array at larger pitches. We develop a semi-analytical model that predicts behavior for particles and cells. Using the system, LNCaP cells were separated based on the bound quantity of 1μm anti-EpCAM particles as a metric for expression. The ratcheting cytometry system was able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof of concept, EpCAM-labeled cells from patient blood were isolated with 74% purity, demonstrating potential towards a quantitative magnetic separation instrument. PMID:26890496

  12. Magnetic separation techniques in sample preparation for biological analysis: a review.

    PubMed

    He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke

    2014-12-01

    Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Separation of concanavalin A-induced human suppressor and helper T cells by the autologous erythrocyte rosette technique.

    PubMed

    Sakane, T; Honda, M; Taniguchi, Y; Kotani, H

    1981-08-01

    Very few normal human peripheral blood T cells are capable of binding autologous erythrocytes to form rosettes, whereas in the T cell population activated by concanavalin A (Con A) the autorosette levels are markedly enhanced. Fractionation of the Con A-activated T cells with autologous erythrocytes into autorosetting and nonrosetting cells demonstrates that suppressor, but not helper, activity resides in the autorosetting population, whereas the reverse is true of the nonrosetting population. Both these activities are found to be Con A dependent. The Con A-induced human suppressor cells can be identified and separated from the Con A-induced human helper cells by the autorosette technique. Studies on the surface properties of autorosetting and nonrosetting T cells indicate that there is little correlation between the activated suppressor and helper T cell subsets defined by autorosette technique and either those defined by monoclonal antibodies (which are able to distinguish these subsets in the resting but not activated T cells) or those defined by Fc receptors. Since the autorosetting T cell population (which acts as suppressor cells) bears receptors for peanut agglutinin, the nature of Con A-induced human suppressor cells appears to be analogous to that of Con A-induced murine suppressor cells.

  14. The rotating spectrometer: Biotechnology for cell separations

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1991-01-01

    An instrument for biochemical studies, called the rotating spectrometer, separates previously inseparable cell cultures. The rotating spectrometer is intended for use in pharmacological studies which require fractional splitting of heterogeneous cell cultures based on cell morphology and swimming behavior. As a method to separate and concentrate cells in free solution, the rotating method requires active organism participation and can effectively split the large class of organisms known to form spontaneous patterns. Examples include the biochemical star, an organism called Tetrahymena pyriformis. Following focusing in a rotating frame, the separation is accomplished using different radial dependencies of concentrated algal and protozoan species. The focusing itself appears as concentric rings and arises from the coupling between swimming direction and Coriolis forces. A dense cut is taken at varying radii, and extraction is replenished at an inlet. Unlike standard separation and concentrating techniques such as filtration or centrifugation, the instrument is able to separate motile from immotile fractions. For a single pass, typical split efficiencies can reach 200 to 300 percent compared to the inlet concentration.

  15. The rotating spectrometer: New biotechnology for cell separations

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Matsos, Helen C.

    1990-01-01

    An instrument for biochemical studies, called the rotating spectrometer, separates previously inseparable cell cultures. The rotating spectrometer is intended for use in pharmacological studies which require fractional splitting of heterogeneous cell cultures based on cell morphology and swimming behavior. As a method to separate and concentrate cells in free solution, the rotating method requires active organism participation and can effectively split the large class of organisms known to form spontaneous patterns. Examples include the biochemical star, an organism called Tetrahymena pyriformis. Following focusing in a rotated frame, the separation is accomplished using different radial dependencies of concentrated algal and protozoan species. The focusing itself appears as concentric rings and arises from the coupling between swimming direction and Coriolis forces. A dense cut is taken at varying radii and extraction is replenished at an inlet. Unlike standard separation and concentrating techniques such as filtration or centrifugation, the instrument is able to separate motile from immotile fractions. For a single pass, typical split efficiencies can reach 200 to 300 percent compared to the inlet concentration.

  16. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.

    PubMed

    Bhagat, Ali Asgar S; Hou, Han Wei; Li, Leon D; Lim, Chwee Teck; Han, Jongyoon

    2011-06-07

    Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ∼10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.

  17. Detection of Sickle Cell Hemoglobin in Haiti by Genotyping and Hemoglobin Solubility Tests

    PubMed Central

    Carter, Tamar E.; von Fricken, Michael; Romain, Jean R.; Memnon, Gladys; St. Victor, Yves; Schick, Laura; Okech, Bernard A.; Mulligan, Connie J.

    2014-01-01

    Sickle cell disease is a growing global health concern because infants born with the disorder in developing countries are now surviving longer with little access to diagnostic and management options. In Haiti, the current state of sickle cell disease/trait in the population is unclear. To inform future screening efforts in Haiti, we assayed sickle hemoglobin mutations using traditional hemoglobin solubility tests (HST) and add-on techniques, which incorporated spectrophotometry and insoluble hemoglobin separation. We also generated genotype data as a metric for HST performance. We found 19 of 202 individuals screened with HST were positive for sickle hemoglobin, five of whom did not carry the HbS allele. We show that spectrophotometry and insoluble hemoglobin separation add-on techniques could resolve false positives associated with the traditional HST approach, with some limitations. We also discuss the incorporation of insoluble hemoglobin separation observation with HST in suboptimal screening settings like Haiti. PMID:24957539

  18. STS-42 Phase Partitioning Experiment (PPE) closeup taken onboard OV-103

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Phase Partitioning Experiment (PPE), an International Microgravity Laboratory 1 (IML-1) experiment, is documented in a closeup taken onboard Discovery, Orbiter Vehicle (OV) 103. Phase partitioning is a very effective technique used by biochemists and cell biologists to obtain fairly pure cells. Cells are separated and collected in a mixture of two immiscible liquids (fluids that tend not to mix) by their surface characteristics. In the PPE, investigators feel they will be able to separate closely related cells because cell density and convection flows are not factors in the phase partitioning process in space. They also hope to study other factors that influence the process. Phase partitioning is used to separate biological materials such as bone marrow cells for cancer treatment.

  19. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    PubMed

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  20. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    PubMed

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Continuous high throughput molecular adhesion based cell sorting using ridged microchannels

    NASA Astrophysics Data System (ADS)

    Tasadduq, Bushra; Wang, Gonghao; Alexeev, Alexander; Sarioglu, Ali Fatih; Sulchek, Todd

    2016-11-01

    Cell molecular interactions govern important physiological processes such as stem cell homing, inflammation and cancer metastasis. But due to a lack of effective separation technologies selective to these interactions it is challenging to specifically sort cells. Other label free separation techniques based on size, stiffness and shape do not provide enough specificity to cell type, and correlation to clinical condition. We propose a novel microfluidic device capable of high throughput molecule dependent separation of cells by flowing them through a microchannel decorated with molecule specific coated ridges. The unique aspect of this sorting design is the use of optimized gap size which is small enough to lightly squeeze the cells while flowing under the ridged part of the channel to increase the surface area for interaction between the ligand on cell surface and coated receptor molecule but large enough so that biomechanical markers, stiffness and viscoelasticity, do not dominate the cell separation mechanism. We are able to separate Jurkat cells based on its expression of PSGL-1ligand using ridged channel coated with P selectin at a flow rate of 0.045ml/min and achieve 2-fold and 5-fold enrichment of PSGL-1 positive and negative Jurkat cells respectively.

  2. Enrichment of human bone marrow aspirates for low-density mononuclear cells using a haemonetics discontinuous blood cell separator.

    PubMed

    Raijmakers, R; de Witte, T; Koekman, E; Wessels, J; Haanen, C

    1986-01-01

    Isopycnic density floatation centrifugation has been proven to be a suitable technique to enrich bone marrow aspirates for clonogenic cells on a small scale. We have tested a Haemonetics semicontinuous blood cell separator in order to process large volumes of bone marrow with minimal bone marrow manipulation. The efficacy of isopycnic density floatation was tested in a one and a two-step procedure. Both procedures showed a recovery of about 20% of the nucleated cells and 1-2% of the erythrocytes. The enrichment of clonogenic cells in the one-step procedure appeared superior to the two-step enrichment, first separating buffy coat cells. The recovery of clonogenic cells was 70 and 50%, respectively. Repopulation capacity of the low-density cell fraction containing the clonogenic cells was excellent after autologous reinfusion (6 cases) and allogeneic bone marrow transplantation (3 cases). Fast enrichment of large volumes of bone marrow aspirates with low-density cells containing the clonogenic cells by isopycnic density floatation centrifugation can be done safely using a Haemonetics blood cell separator.

  3. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries

    PubMed Central

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-01-01

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte–separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4–400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3–38.1 mN∙m−1. It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations. PMID:26343636

  4. Detailed results of ASTP experiment MA-011. [biological processing facility in space

    NASA Technical Reports Server (NTRS)

    Seaman, G. V. F.; Allen, R. E.; Barlow, G. H.; Bier, M.

    1976-01-01

    This experiment was developed in order to conduct engineering and operational tests of electrokinetic equipment in a micro-gravity environment. The experimental hardware in general functioned as planned and electrophoretic separations were obtained in space. The results indicated the development of satisfactory sample collection, return, and preservation techniques. The application of a near-zero zeta potential interior wall coating to the experimental columns, confirmation of biocompatibility of all appropriate hardware components, and use of a sterile operating environment provided a significant step forward in the development of a biological processing facility in space. A separation of a test of aldehyde-fixed rabbit, human, and horse red blood cells was obtained. Human kidney cells were separated into several components and viable cells returned to earth. The isotachophoretic separation of red cells was also demonstrated. Problems associated with the hardware led to a lack of success in the attempt to separate subpopulations of human lymphocytes.

  5. Hollow silica microspheres for buoyancy-assisted separation of infectious pathogens from stool.

    PubMed

    Weigum, Shannon E; Xiang, Lichen; Osta, Erica; Li, Linying; López, Gabriel P

    2016-09-30

    Separation of cells and microorganisms from complex biological mixtures is a critical first step in many analytical applications ranging from clinical diagnostics to environmental monitoring for food and waterborne contaminants. Yet, existing techniques for cell separation are plagued by high reagent and/or instrumentation costs that limit their use in many remote or resource-poor settings, such as field clinics or developing countries. We developed an innovative approach to isolate infectious pathogens from biological fluids using buoyant hollow silica microspheres that function as "molecular buoys" for affinity-based target capture and separation by floatation. In this process, antibody functionalized glass microspheres are mixed with a complex biological sample, such as stool. When mixing is stopped, the target-bound, low-density microspheres float to the air/liquid surface, which simultaneously isolates and concentrates the target analytes from the sample matrix. The microspheres are highly tunable in terms of size, density, and surface functionality for targeting diverse analytes with separation times of ≤2min in viscous solutions. We have applied the molecular buoy technique for isolation of a protozoan parasite that causes diarrheal illness, Cryptosporidium, directly from stool with separation efficiencies over 90% and low non-specific binding. This low-cost method for phenotypic cell/pathogen separation from complex mixtures is expected to have widespread use in clinical diagnostics as well as basic research. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. New polymers for low-gravity purification of cells by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1983-01-01

    A potentially powerful technique for separating different biological cell types is based on the partitioning of these cells between the immiscible aqueous phases formed by solution of certain polymers in water. This process is gravity-limited because cells sediment rather than associate with the phase most favored on the basis of cell-phase interactions. In the present contract we have been involved in the synthesis of new polymers both to aid in understanding the partitioning process and to improve the quality of separations. The prime driving force behind the design of these polymers is to produce materials which will aid in space experiments to separate important cell types and to study the partitioning process in the absence of gravity (i.e., in an equilibrium state).

  7. Purification of biomaterials by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  8. Whole cell entrapment techniques.

    PubMed

    Trelles, Jorge A; Rivero, Cintia W

    2013-01-01

    Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others. Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation and bioprocess scale-up feasibility. Cell entrapment is the most widely used technique for whole cell immobilization. This technique-in which the cells are included within a rigid network-is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100 % in most cases).

  9. Heterogeneity in the growth hormone pituitary gland system of rats and humans: Implications to microgravity based research

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R.; Hayes, C.; Lanham, J. W.; Cleveland, C.; Todd, P.; Morrison, Dennis R.

    1988-01-01

    The cell separation techniques of velocity sedimentation, flow cytometry and continuous flow electrophoresis were used to obtain enriched populations of growth hormone (GH) cells. The goal was to isolate a GH cell subpopulation which releases GH molecules which are very high in biological activity, it was important to use a method which was effective in processing large numbers of cells over a short time span. The techniques based on sedimentation are limited by cell density overlaps and streaming. While flow cytometry is useful in the analytical mode for objectively establishing cell purity, the numbers of cells which can be processed in the sort mode are so small as to make this approach ineffective in terms of the long term goals. It was shown that continuous flow electrophoresis systems (CFES) can separate GH cells from other cell types on the basis of differences in surface charge. The bioreactive producers appear to be more electrophoretically mobile than the low producers. Current ground based CFES efforts are hampered by cell clumping in low ionic strength buffers and poor cell recoveries from the CFES device.

  10. Cell separation in immunoaffinity partition in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1989-01-01

    Two methods for immunoaffinity partitioning are described. One technique involves the covalent coupling of poly (ethylene glycol) (PEG) to immunoglobulin G antibody preparations. In the second method PEG-modified Protein A is used to complex with cells and unmodified antibody. The effects of PEG molecular weight, the degree of modification, and varying phase system composition on antibody activity and its affinity for the upper phase are studied. It is observed that both methods resulted in effective cell separation.

  11. Advanced Method for Isolation of Mouse Hepatocytes, Liver Sinusoidal Endothelial Cells, and Kupffer Cells.

    PubMed

    Liu, Jia; Huang, Xuan; Werner, Melanie; Broering, Ruth; Yang, Dongliang; Lu, Mengji

    2017-01-01

    Separation of pure cell populations from the liver is a prerequisite to study the role of hepatic parenchymal and non-parenchymal cells in liver physiology, pathophysiology, and immunology. Traditional methods for hepatic cell separation usually purify only single cell types from liver specimens. Here, we describe an efficient method that can simultaneously purify populations of hepatocytes (HCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs) from a single mouse liver specimen. A liberase-based perfusion technique in combination with a low-speed centrifugation and magnetic-activated cell sorting (MACS) led to the isolation and purification of HCs, KCs, and LSECs with high yields and purity.

  12. Separation technologies for stem cell bioprocessing.

    PubMed

    Diogo, Maria Margarida; da Silva, Cláudia Lobato; Cabral, Joaquim M S

    2012-11-01

    Stem cells have been the focus of an intense research due to their potential in Regenerative Medicine, drug discovery, toxicology studies, as well as for fundamental studies on developmental biology and human disease mechanisms. To fully accomplish this potential, the successful application of separation processes for the isolation and purification of stem cells and stem cell-derived cells is a crucial issue. Although separation methods have been used over the past decades for the isolation and enrichment of hematopoietic stem/progenitor cells for transplantation in hemato-oncological settings, recent achievements in the stem cell field have created new challenges including the need for novel scalable separation processes with a higher resolution and more cost-effective. Important examples are the need for high-resolution methods for the separation of heterogeneous populations of multipotent adult stem cells to study their differential biological features and clinical utility, as well as for the depletion of tumorigenic cells after pluripotent stem cell differentiation. Focusing on these challenges, this review presents a critical assessment of separation processes that have been used in the stem cell field, as well as their current and potential applications. The techniques are grouped according to the fundamental principles that govern cell separation, which are defined by the main physical, biophysical, and affinity properties of cells. A special emphasis is given to novel and promising approaches such as affinity-based methods that take advantage of the use of new ligands (e.g., aptamers, lectins), as well as to novel biophysical-based methods requiring no cell labeling and integrated with microscale technologies. Copyright © 2012 Wiley Periodicals, Inc.

  13. Novel photon management for thin-film photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Rajesh

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  14. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa.

    PubMed

    Patra, Partha; Natarajan, K A

    2006-06-15

    Selective separation of pyrite and galena from mixture of the two minerals was achieved through interaction with cells and metabolic products from a culture of Paenibacillus polymyxa. Adsorption of cells and metabolic products onto minerals and electrokinetic studies of minerals after interaction with cells and metabolic products were carried out to examine the resulting surface modification on the mineral surfaces. Flocculation and flotation techniques were successfully applied in the selective separation of minerals after bacterial interaction. The effect of varying conditions for production of extracellular polysaccharides and protein provided an insight into the possible mechanism involved in microbially induced flocculation and flotation of pyrite and galena.

  15. A quartz nanopillar hemocytometer for high-yield separation and counting of CD4+ T lymphocytes

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Seol, Jin-Kyeong; Wu, Yu; Ji, Seungmuk; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Seung-Yong; Lim, Hyuneui; Fan, Rong; Lee, Sang-Kwon

    2012-03-01

    We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting.We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11338d

  16. A Demonstration of the Molecular Basis of Sickle-Cell Anemia.

    ERIC Educational Resources Information Center

    Fox, Marty; Gaynor, John J.

    1996-01-01

    Describes a demonstration that permits the separation of different hemoglobin molecules within two to three hours. Introduces students to the powerful technique of gel electrophoresis and illustrates the molecular basis of sickle-cell anemia. (JRH)

  17. Hybrid microfluidics combined with active and passive approaches for continuous cell separation.

    PubMed

    Yan, Sheng; Zhang, Jun; Yuan, Dan; Li, Weihua

    2017-01-01

    Microfluidics, which is classified as either active or passive, is capable of separating cells of interest from a complex and heterogeneous sample. Active methods utilise external fields such as electric, magnetic, acoustic, and optical to drive cells for separation, while passive methods utilise channel structures, intrinsic hydrodynamic forces, and steric hindrances to manipulate cells. However, when processing complex biological samples such as whole blood with rare cells, separation with a single module microfluidic device is difficult. Hybrid microfluidics is an emerging technique, which utilises active and passive methods whilst fulfilling higher requirements for stable performance, versatility, and convenience, including (i) the ability to process multi-target cells, (ii) enhanced ability for multiplexed separation, (iii) higher sensitivity, and (iv) tunability for a wider operational range. This review introduces the fundamental physics and typical formats for subclasses of hybrid microfluidic devices based on their different physical fields; presents current examples of cell sorting to highlight the advantage and usefulness of hybrid microfluidics on biomedicine, and then discusses the challenges and perspective of future development and the promising direction of research in this field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Biochemistry of Cells.

    ERIC Educational Resources Information Center

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    While other lab exercises allow the student to isolate and study one component of the cell, the purpose of this lab is to break down the cell into several components and perform simultaneous assays to determine the constituents. Centrifugation is used as a separation technique. Provides procedure and expected results. (LZ)

  19. Method of preparing porous, rigid ceramic separators for an electrochemical cell

    DOEpatents

    Bandyopadhyay, Gautam; Dusek, Joseph T.

    1981-01-01

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200.degree. C. for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide and magnesium-aluminum oxide have advantageously been used to form separators by this method.

  20. Separation of red blood cells in deep deterministic lateral displacement devices

    NASA Astrophysics Data System (ADS)

    Kabacaoglu, Gokberk; Biros, George

    2017-11-01

    Microfluidic cell separation techniques are of great interest since they help rapid medical diagnoses and tests. Deterministic lateral displacement (DLD) is one of them. A DLD device consists of arrays of pillars. Main flow and alignment of the pillars define two different directions. Size-based separation of rigid spherical particles is possible as they follow one of these directions depending on their sizes. However, the separation of non-spherical deformable particles such as red blood cells (RBCs) is more complicated than that due to their intricate dynamics. We study the separation of RBCs in DLD using an in-house integral equation solver. We systematically investigate the effects of the interior fluid viscosity and the membrane elasticity of an RBC on its behavior. These mechanical properties of a cell determine its deformability, which can be altered by several diseases. We particularly consider deep devices in which an RBC can show rich dynamics such as tank-treading and tumbling. It turns out that strong hydrodynamic lift force moves the tank-treading cells along the pillars and downward force leads the tumbling ones to move with the flow. Thereby, deformability-based separation of RBCs is possible.

  1. Issues on the production and electrochemical separation of oxygen from carbon dioxide

    NASA Technical Reports Server (NTRS)

    Kaloupis, P.; Sridhar, K. R.

    1991-01-01

    There is considerable interest in in-situ propellant manufacturing on the moon and Mars. One of the concepts of oxygen production that is being actively pursued is the processing of atmospheric carbon dioxide on Mars to produce oxygen by means of thermal decomposition and electrochemical separation. The key component of such a production facility is the electrochemical separation cell that filters out the oxygen from the gas mixture of carbon dioxide, carbon monoxide, and oxygen. Efficient design of the separation cell and the selection of electrolyte and electrode materials of superior performance for the cell would translate to significant reduction in the power requirement and the mass of the production facility. The objective is to develop the technology required to produce the cells in-house and test various electrolyte and electrode materials systematically until the optimal combination is found. An effective technique was developed for the fabrication of disk shaped cells. Zirconia and Ceria cells were made in-house. Complete modules of the electrochemical cell and housings were designed, fabricated, and tested.

  2. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.

    PubMed

    Coakley, W T; Whitworth, G; Grundy, M A; Gould, R K; Allman, R

    1994-04-01

    Cells or particles suspended in a sonic standing wave field experience forces which concentrate them at positions separated by half a wavelength. The aims of the study were: (1) To optimise conditions and test theoretical predictions for ultrasonic concentration and separation of particles or cells. (2) To investigate the scale-up of experimental systems. (3) To establish the maximum acoustic pressure to which a suspension might be exposed without inducing order-disrupting cavitation. (4) To compare the efficiencies of techniques for harvesting concentrated particles. The primary outcomes were: (1) To design of an acoustic pressure distribution within cylindrical containers which led to uniformly repeating sound pressure patterns throughout the containers in the standing wave mode, concentrated suspended eukaryotic cells or latex beads in clumps on the axis of wide containers, and provided uniform response of all particle clumps to acoustic harvesting regimes. Theory for the behaviour (e.g. movement to different preferred sites) of particles as a function of specific gravity and compressibility in containers of different lateral dimensions was extended and was confirmed experimentally. Convective streaming in the container was identified as a variable requiring control in the manipulation of particles of 1 micron or smaller size. (2) Consideration of scale-up from the model 10 ml volume led to the conclusion that flow systems in intermediate volume containers have more promise than scaled up batch systems. (3) The maximum acoustic pressures applicable to a suspension without inducing order-disrupting cavitation or excessive conductive streaming at 1 MHz and 3 MHz induce a force equivalent to a centrifugal field of about 10(3) g. (4) The most efficient technique for harvesting concentrated particles was the introduction of a frequency increment between two transducers to form a slowly sweeping pseudo-standing wave. The attractive inter-droplet ultrasonic standing wave force was employed to enhance the rate of aqueous biphasic cell separation and harvesting. The results help clarify the particle size, concentration, density and compressibility for which standing wave separation techniques can contribute either on a process engineering scale or on the scale of the manipulation of small particles for industrial and medical diagnostic procedures.

  3. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells.

    PubMed

    García-Cañaveras, Juan Carlos; López, Silvia; Castell, José Vicente; Donato, M Teresa; Lahoz, Agustín

    2016-02-01

    MS-based metabolite profiling of adherent mammalian cells comprises several challenging steps such as metabolism quenching, cell detachment, cell disruption, metabolome extraction, and metabolite measurement. In LC-MS, the final metabolome coverage is strongly determined by the separation technique and the MS conditions used. Human liver-derived cell line HepG2 was chosen as adherent mammalian cell model to evaluate the performance of several commonly used procedures in both sample processing and LC-MS analysis. In a first phase, metabolite extraction and sample analysis were optimized in a combined manner. To this end, the extraction abilities of five different solvents (or combinations) were assessed by comparing the number and the levels of the metabolites comprised in each extract. Three different chromatographic methods were selected for metabolites separation. A HILIC-based method which was set to specifically separate polar metabolites and two RP-based methods focused on lipidome and wide-ranging metabolite detection, respectively. With regard to metabolite measurement, a Q-ToF instrument operating in both ESI (+) and ESI (-) was used for unbiased extract analysis. Once metabolite extraction and analysis conditions were set up, the influence of cell harvesting on metabolome coverage was also evaluated. Therefore, different protocols for cell detachment (trypsinization or scraping) and metabolism quenching were compared. This study confirmed the inconvenience of trypsinization as a harvesting technique, and the importance of using complementary extraction solvents to extend metabolome coverage, minimizing interferences and maximizing detection, thanks to the use of dedicated analytical conditions through the combination of HILIC and RP separations. The proposed workflow allowed the detection of over 300 identified metabolites from highly polar compounds to a wide range of lipids.

  4. DIELECTROPHORESIS-BASED MICROFLUIDIC SEPARATION AND DETECTION SYSTEMS

    PubMed Central

    Yang, Jun; Vykoukal, Jody; Noshari, Jamileh; Becker, Frederick; Gascoyne, Peter; Krulevitch, Peter; Fuller, Chris; Ackler, Harold; Hamilton, Julie; Boser, Bernhard; Eldredge, Adam; Hitchens, Duncan; Andrews, Craig

    2009-01-01

    Diagnosis and treatment of human diseases frequently requires isolation and detection of certain cell types from a complex mixture. Compared with traditional separation and detection techniques, microfluidic approaches promise to yield easy-to-use diagnostic instruments tolerant of a wide range of operating environments and capable of accomplishing automated analyses. These approaches will enable diagnostic advances to be disseminated from sophisticated clinical laboratories to the point-of-care. Applications will include the separation and differential analysis of blood cell subpopulations for host-based detection of blood cell changes caused by disease, infection, or exposure to toxins, and the separation and analysis of surface-sensitized, custom dielectric beads for chemical, biological, and biomolecular targets. Here we report a new particle separation and analysis microsystem that uses dielectrophoretic field-flow fractionation (DEP-FFF). The system consists of a microfluidic chip with integrated sample injector, a DEP-FFF separator, and an AC impedance sensor. We show the design of a miniaturized impedance sensor integrated circuit (IC) with improved sensitivity, a new packaging approach for micro-flumes that features a slide-together compression package and novel microfluidic interconnects, and the design, control, integration and packaging of a fieldable prototype. Illustrative applications will be shown, including the separation of different sized beads and different cell types, blood cell differential analysis, and impedance sensing results for beads, spores and cells. PMID:22025905

  5. Polyacrylonitrile Separator for High-Performance Aluminum Batteries with Improved Interface Stability.

    PubMed

    Elia, Giuseppe Antonio; Ducros, Jean-Baptiste; Sotta, Dane; Delhorbe, Virginie; Brun, Agnès; Marquardt, Krystan; Hahn, Robert

    2017-11-08

    Herein we report, for the first time, an overall evaluation of commercially available battery separators to be used for aluminum batteries, revealing that most of them are not stable in the highly reactive 1-ethyl-3-methylimidazolium chloride:aluminum trichloride (EMIMCl:AlCl 3 ) electrolyte conventionally employed in rechargeable aluminum batteries. Subsequently, a novel highly stable polyacrylonitrile (PAN) separator obtained by the electrospinning technique for application in high-performance aluminum batteries has been prepared. The developed PAN separator has been fully characterized in terms of morphology, thermal stability, and air permeability, revealing its suitability as a separator for battery applications. Furthermore, extremely good compatibility and improved aluminum interface stability in the highly reactive EMIMCl:AlCl 3 electrolyte were discovered. The use of the PAN separator strongly affects the aluminum dissolution/deposition process, leading to a quite homogeneous deposition compared to that of a glass fiber separator. Finally, the applicability of the PAN separator has been demonstrated in aluminum/graphite cells. The electrochemical tests evidence the full compatibility of the PAN separator in aluminum cells. Furthermore, the aluminum/graphite cells employing the PAN separator are characterized by a slightly higher delivered capacity compared to those employing glass fiber separators, confirming the superior characteristics of the PAN separator as a more reliable separator for the emerging aluminum battery technology.

  6. Addressing of LnCaP Cell Using Magnetic Particles Assisted Impedimetric Microelectrode.

    PubMed

    Nguyen, Dung Thi Xuan; Tran, Trong Binh; Nguyen, Phuong-Diem; Min, Junhong

    2016-03-01

    In this study, we provide a facile, effective technique for a simple isolation and enrichment of low metastatic prostate tumor cell LNCaP using biocompatible, magnetic particles asissted impedimetric sensing system. Hydrophobic cell membrane anchors (BAM) were generated onto magnetic particles which diameters vary from 50 nm to 5 μm and were used to capture LNCaP cells from the suspension. Finally, magnetic particle-LNCaP complex were addressed onto the surface of the interdigitated microelectrode (IDM). Cell viability was monitored by our laboratory developed-technique Electrical Cell Substrate Impedance Sensing (ECIS). The results reavealed that 50 nm-magnetic particles showed best performance in terms of cell separation and cell viability. This technique provides a simple and efficient method for the direct addressing of LNCaP cell on the surface and enhances better understanding of cell behavior for cancer management in the near future.

  7. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  8. Fluorescence exclusion: A simple versatile technique to calculate cell volumes and local heights (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thouvenin, Olivier; Fink, Mathias; Boccara, A. Claude

    2017-02-01

    Understanding volume regulation during mitosis is technically challenging. Indeed, a very sensitive non invasive imaging over time scales ranging from seconds to hours and over large fields is required. Therefore, Quantitative Phase Imaging (QPI) would be a perfect tool for such a project. However, because of asymmetric protein segregation during mitosis, an efficient separation of the refractive index and the height in the phase signal is required. Even though many strategies to make such a separation have been developed, they usually are difficult to implement, have poor sensitivity, or cannot be performed in living cells, or in a single shot. In this paper, we will discuss the use of a new technique called fluorescence exclusion to perform volume measurements. By coupling such technique with a simultaneous phase measurement, we were also able to recover the refractive index inside the cells. Fluorescence exclusion is a versatile and powerful technique that allows the volume measurement of many types of cells. A fluorescent dye, which cannot penetrate inside the cells, is mixed with the external medium in a confined environment. Therefore, the fluorescent signal depends on the inverse of the object's height. We could demonstrate both experimentally and theoretically that fluorescence exclusion can accurately measure cell volumes, even for cells much higher than the depth of focus of the objective. A local accurate height and RI measurement can also be obtained for smaller cells. We will also discuss the way to optimize the confinement of the observation chamber, either mechanically or optically.

  9. Morphology-based optical separation of subpopulations from a heterogeneous murine breast cancer cell line.

    PubMed

    Tamura, Masato; Sugiura, Shinji; Takagi, Toshiyuki; Satoh, Taku; Sumaru, Kimio; Kanamori, Toshiyuki; Okada, Tomoko; Matsui, Hirofumi

    2017-01-01

    Understanding tumor heterogeneity is an urgent and unmet need in cancer research. In this study, we used a morphology-based optical cell separation process to classify a heterogeneous cancer cell population into characteristic subpopulations. To classify the cell subpopulations, we assessed their morphology in hydrogel, a three-dimensional culture environment that induces morphological changes according to the characteristics of the cells (i.e., growth, migration, and invasion). We encapsulated the murine breast cancer cell line 4T1E, as a heterogeneous population that includes highly metastatic cells, in click-crosslinkable and photodegradable gelatin hydrogels, which we developed previously. We observed morphological changes within 3 days of encapsulating the cells in the hydrogel. We separated the 4T1E cell population into colony- and granular-type cells by optical separation, in which local UV-induced degradation of the photodegradable hydrogel around the target cells enabled us to collect those cells. The obtained colony- and granular-type cells were evaluated in vitro by using a spheroid assay and in vivo by means of a tumor growth and metastasis assay. The spheroid assay showed that the colony-type cells formed compact spheroids in 2 days, whereas the granular-type cells did not form spheroids. The tumor growth assay in mice revealed that the granular-type cells exhibited lower tumor growth and a different metastasis behavior compared with the colony-type cells. These results suggest that morphology-based optical cell separation is a useful technique to classify a heterogeneous cancer cell population according to its cellular characteristics.

  10. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    PubMed

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  11. Microfluidic size separation of cells and particles using a swinging bucket centrifuge

    PubMed Central

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-01-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency. PMID:26487900

  12. Pore size engineering applied to starved electrochemical cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Thaller, L. H.

    1982-01-01

    To maximize performance in starved, multiplate cells, the cell design should rely on techniques which widen the volume tolerance characteristics. These involve engineering capillary pressure differences between the components of an electrochemical cell and using these forces to promote redistribution of electrolyte to the desired optimum values. This can be implemented in practice by prescribing pore size distributions for porous back-up plates, reservoirs, and electrodes. In addition, electrolyte volume management can be controlled by incorporating different pore size distributions into the separator. In a nickel/hydrogen cell, the separator must contain pores similar in size to the small pores of both the nickel and hydrogen electrodes in order to maintain an optimum conductive path for the electrolyte. The pore size distributions of all components should overlap in such a way as to prevent drying of the separator and/or flooding of the hydrogen electrode.

  13. Hydrodynamic Assists Magnetophoreses Rare Cancer cells Separation in Microchannel Simulation and Experimental Verifications

    NASA Astrophysics Data System (ADS)

    Saeed, O.; Duru, L.; Yulin, D.

    2018-05-01

    A proposed microfluidic design has been fabricated and simulated using COMSOL Multiphysics software, based on two physical models included in this design. The device’s ability to create a narrow stream of the core sample by controlling the sheath flow rates Qs1 and Qs2 in both peripheral channels was investigated. The main target of this paper is to study the possibility of combing the hydrodynamic and magnetic techniques, in order to achieve a high rate of cancer cells separation from a cell mixture and/or buffer sample. The study has been conducted in two stages, firstly, the effects of the sheath flow rates (Qs1 and Qs2) on the sample stream focusing were studied, to find the proposed device effectiveness optimal conditions and its capability in cell focusing, and then the magnetic mechanism has been utilized to finalize the pre-labelled cells separation process.

  14. Method of preparing porous, rigid ceramic separators for an electrochemical cell. [Patent application

    DOEpatents

    Bandyopadhyay, G.; Dusek, J.T.

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.

  15. [Identification of Env-specific monoclonal antibodies from Chinese HIV-1 infected person by magnetic beads separating B cells and single cell RT-PCR cloning].

    PubMed

    Huang, Xiang-Ying; Yu, Shuang-Qing; Cheng, Zhan; Ye, Jing-Rong; Xu, Ke; Feng, Xia; Zeng, Yi

    2013-04-01

    To establish a simple and practical method for screening of Env-specific monoclonal antibodies from HIV-1 infected individuals. Human B cells were purified by negative sorting from PBMCs and memory B cells were further enriched using anti-CD27 microbeads. Gp120 antigen labbled with biotin was incubated with memory B cells to specifically bind IgG on cells membrane. The memory B cells expressing the Env-specific antibody were harvested by magnetic beads separating, counted and diluted to the level of single cell in each PCR well that loading with catch buffer containing RNase inhibitor to get RNAs. The antibody genes were amplified by single cell RT-PCR and nested PCR, cloned into eukaryotic expression vectors and transfected into 293T cells. The binding activity of recombinant antibodies to Env were tested by ELISA. Three monocolonal Env-specific antibodies were isolated from one HIV-1 infected individual. We can obtain Env-specific antibody by biotin labbled antigen, magnetic beads separating technique coupled with single cell RT-PCR and expression cloning.

  16. Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing

    PubMed Central

    Chiu, Yun-Yen; Huang, Chen-Kang

    2016-01-01

    A microfluidic chip is proposed to separate microparticles using cross-flow filtration enhanced with hydrodynamic focusing. By exploiting a buffer flow from the side, the microparticles in the sample flow are pushed on one side of the microchannels, lining up to pass through the filters. Meanwhile a larger pressure gradient in the filters is obtained to enhance separation efficiency. Compared with the traditional cross-flow filtration, our proposed mechanism has the buffer flow to create a moving virtual boundary for the sample flow to actively push all the particles to reach the filters for separation. It further allows higher flow rates. The device only requires soft lithograph fabrication to create microchannels and a novel pressurized bonding technique to make high-aspect-ratio filtration structures. A mixture of polystyrene microparticles with 2.7 μm and 10.6 μm diameters are successfully separated. 96.2 ± 2.8% of the large particle are recovered with a purity of 97.9 ± 0.5%, while 97.5 ± 0.4% of the small particle are depleted with a purity of 99.2 ± 0.4% at a sample throughput of 10 μl/min. The experiment is also conducted to show the feasibility of this mechanism to separate biological cells with the sample solutions of spiked PC3 cells in whole blood. By virtue of its high separation efficiency, our device offers a label-free separation technique and potential integration with other components, thereby serving as a promising tool for continuous cell filtration and analysis applications. PMID:26858812

  17. Selenium Metabolism in Cancer Cells: The Combined Application of XAS and XFM Techniques to the Problem of Selenium Speciation in Biological Systems

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Finney, Lydia; Vogt, Stefan; Witting, Paul K.; Harris, Hugh H.

    2013-01-01

    Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed. PMID:23698165

  18. Automated processing of human bone marrow can result in a population of mononuclear cells capable of achieving engraftment following transplantation.

    PubMed

    Areman, E M; Cullis, H; Spitzer, T; Sacher, R A

    1991-10-01

    A concentrate of mononuclear bone marrow cells is often desired for ex vivo treatment with pharmacologic agents, monoclonal antibodies, cytokines, and other agents prior to transplantation. A method has been developed for automated separation of mononuclear cells from large volumes of harvested bone marrow. A programmable instrument originally designed for clinical ex vivo cell separation and the plasma-pheresis of patients and blood donors was adapted to permit rapid preparation, in a closed sterile system, of a bone marrow product enriched with mononuclear cells. A mean (+/- SEM) of 53 +/- 30 percent of the original mononuclear cells was recovered in a volume of 125 +/- 42 mL containing 82 +/- 12 percent mononuclear cells. This technique removed 95 +/- 9 percent of the red cells in the original marrow. No density gradient materials or sedimenting agents were employed in this process. Of 36 marrows processed by this technique, 19 autologous (6 of which were purged with 4-hydroperoxycyclophosphamide) and 7 allogeneic marrows have been transplanted, with all evaluable patients achieving a neutrophil count of 0.5 x 10(9) per L in a mean (+/- SEM) of 21 +/- 6 days.

  19. Biosorption for the separation of radionuclides from drainage and process waters of the uranium mining industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glombitza, F.; Eckardt, L.; Hummel, A.

    1995-12-31

    Biosorption means the storage of substances at the cell envelope. Different microbial biomasses were tested for the separation of radionuclides from mining waters. Results of a pilot plant demonstrate the ability of these techniques for water cleaning processes. An effluent concentration of lower than 1 mg/l (in most cases 0.1 mg/1) could be realized in a pilot plant by using pure cells of a methylotrophic strain of bacteria as well as using of a fungal mycelia.

  20. Highly efficient organic solar cells with improved vertical donor-acceptor compositional gradient via an inverted off-center spinning method

    DOE PAGES

    Huang, Jiang; Carpenter, Joshua H.; Li, Chang -Zhi; ...

    2015-12-02

    A novel, yet simple solution fabrication technique to address the trade-off between photocurrent and fill factor in thick bulk heterojunction organic solar cells is described. Lastly, the inverted off-center spinning technique promotes a vertical gradient of the donor–acceptor phase-separated morphology, enabling devices with near 100% internal quantum efficiency and a high power conversion efficiency of 10.95%.

  1. Optical trapping for complex fluid microfluidics

    NASA Astrophysics Data System (ADS)

    Vestad, Tor; Oakey, John; Marr, David W. M.

    2004-10-01

    Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.

  2. Hoechst fluorescence intensity can be used to separate viable bromodeoxyuridine-labeled cells from viable non-bromodeoxyuridine-labeled cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.

    2000-01-01

    BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.

  3. Continuous-flow separation of live and dead yeasts using reservoir-based dielectrophoresis (rDEP)

    NASA Astrophysics Data System (ADS)

    Patel, Saurin; Showers, Daniel; Vedantam, Pallavi; Tzeng, Tzuen-Rong; Qian, Shizhi; Xuan, Xiangchun

    2012-11-01

    Separating live and dead cells is critical to the diagnosis of early stage diseases and to the efficacy test of drug screening etc. We develop a novel microfluidic approach to continuous separation of yeast cells by viability inside a reservoir. It exploits the cell dielectrophoresis that is induced by the inherent electric field gradient at the reservoir-microchannel junction to selectively trap dead yeasts and continuously sort them from live ones. We term this approach reservoir-based dielectrophoresis (rDEP). The transporting, focusing, and trapping of live and dead yeast cells at the reservoir-microchannel junction are studied separately by varying the DC-biased AC electric fields. These phenomena can all be reasonably predicted by a 2D numerical model. We find that the AC to DC field ratio for live yeast trapping is higher than that for dead cells because the former experiences a weaker rDEP while having a larger electrokinetic mobility. It is this difference in the AC to DC field ratio that enables the viability-based yeast cell separation. The rDEP approach has unique advantages over existing DEP-based techniques such as the occupation of zero channel space and the elimination of in-channel mechanical or electrical parts. NSF

  4. Assessment of Carbon- and Metal-Based Nanoparticle DNA Damage with Microfluidic Electrophoretic Separation Technology.

    PubMed

    Schrand, Amanda M; Powell, Thomas; Robertson, Tiffany; Hussain, Saber M

    2015-02-01

    In this study, we examined the feasibility of extracting DNA from whole cell lysates exposed to nanoparticles using two different methodologies for evaluation of fragmentation with microfluidic electrophoretic separation. Human lung macrophages were exposed to five different carbon- and metal-based nanoparticles at two different time points (2 h, 24 h) and two different doses (5 µg/ml, 100 µg/ml). The primary difference in the banding patterns after 2 h of nanoparticle exposure is more DNA fragmentation at the higher NP concentration when examining cells exposed to nanoparticles of the same composition. However, higher doses of carbon and silver nanoparticles at both short and long dosing periods can contribute to erroneous or incomplete data with this technique. Also comparing DNA isolation methodologies, we recommend the centrifugation extraction technique, which provides more consistent banding patterns in the control samples compared to the spooling technique. Here we demonstrate that multi-walled carbon nanotubes, 15 nm silver nanoparticles and the positive control cadmium oxide cause similar DNA fragmentation at the short time point of 2 h with the centrifugation extraction technique. Therefore, the results of these studies contribute to elucidating the relationship between nanoparticle physicochemical properties and DNA fragmentation results while providing the pros and cons of altering the DNA isolation methodology. Overall, this technique provides a high throughput way to analyze subcellular alterations in DNA profiles of cells exposed to nanomaterials to aid in understanding the consequences of exposure and mechanistic effects. Future studies in microfluidic electrophoretic separation technologies should be investigated to determine the utility of protein or other assays applicable to cellular systems exposed to nanoparticles.

  5. THE SEPARATION OF DIFFERENT CELL CLASSES FROM LYMPHOID ORGANS

    PubMed Central

    Shortman, Ken; Seligman, Kathrin

    1969-01-01

    1. Mammalian erythrocytes swell as the pH of the isotonic suspending medium is lowered, as a direct consequence of the specialized permeability properties of the erythrocyte membrane. Lymphocytes and granulocytes from a variety of sources did not exhibit this property. 2. The behaviour of mouse bone marrow erythroid cells at various stages of differentiation was studied by using a change in buoyant density with pH as an index of swelling. The ability to swell with a pH drop was acquired while the cell was still nucleated. All non-nucleated cells showed swelling. Most small erythroblasts shared this property, whereas most large erythroblasts did not. 3. The density shift with pH was used to provide a purification scheme specific for erythroid cells. The bone marrow cells were first centrifuged to equilibrium in an isotonic albumin density gradient at neutral pH. Regions of the gradient containing the erythroid cells were collected, and the cells were recovered and redistributed in an albumin gradient at acid pH. The erythroid cells showed a specific density shift which removed them from contaminants. Preparations containing 90–97% erythroblasts were obtained by this technique. 4. Differentiation within the erythroid series was accompanied by a general increase in cell buoyant density at neutral pH. This density increase may have been a discontinuous process, since erythroid cells appeared to form a number of density peaks. 5. The pH shift technique, in association with established density distribution and sedimentation velocity procedures, provides a range of cell separation techniques for biological or biochemical studies of erythroid cell differentiation in the complex cell mixtures in bone marrow or spleen. PMID:5801428

  6. Micro and nanotechnology for biological and biomedical applications.

    PubMed

    Lim, Chwee Teck; Han, Jongyoon; Guck, Jochen; Espinosa, Horacio

    2010-10-01

    This special issue contains some of the current state-of-the-art development and use of micro and nanotechnological tools, devices and techniques for both biological and biomedical research and applications. These include nanoparticles for bioimaging and biosensing, optical and biophotonic techniques for probing diseases at the nanoscale, micro and nano-fabricated tools for elucidating molecular mechanisms of mechanotransduction in cell and molecular biology and cell separation microdevices and techniques for isolating and enriching targeted cells for disease detection and diagnosis. Although some of these works are still at the research stage, there is no doubt that some of the important outcomes will eventually see actual biomedical applications in the not too distant future.

  7. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator.

    PubMed

    Zhang, Jianjun; Liu, Zhihong; Kong, Qingshan; Zhang, Chuanjian; Pang, Shuping; Yue, Liping; Wang, Xuejiang; Yao, Jianhua; Cui, Guanglei

    2013-01-01

    A renewable and superior thermal-resistant cellulose-based composite nonwoven was explored as lithium-ion battery separator via an electrospinning technique followed by a dip-coating process. It was demonstrated that such nanofibrous composite nonwoven possessed good electrolyte wettability, excellent heat tolerance, and high ionic conductivity. The cells using the composite separator displayed better rate capability and enhanced capacity retention, when compared to those of commercialized polypropylene separator under the same conditions. These fascinating characteristics would endow this renewable composite nonwoven a promising separator for high-power lithium-ion battery.

  8. Recovery of motile sperm using the migration-sedimentation technique in an in-vitro fertilization-embryo transfer programme.

    PubMed

    Lucena, E; Lucena, C; Gómez, M; Ortiz, J A; Ruiz, J; Arango, A; Diaz, C; Beuerman, C

    1989-02-01

    Sperm washing techniques, based on the swim-up principle used before inseminating the human oocyte in in-vitro fertilization and embryo transfer programmes (IVF-ET), usually require prior centrifugation which causes damage to the sperm cell. A technique is described for separating sperm at laboratory temperature based on sperm migration--sedimentation principles, using two concentric tubes and recovering 70-90% forward-moving cells. A group of 17 patients is presented who were managed with this method. The results were 85% fertilization rate, 4% polyspermia and six clinical pregnancies.

  9. Cell bioprocessing in space - Applications of analytical cytology

    NASA Technical Reports Server (NTRS)

    Todd, P.; Hymer, W. C.; Goolsby, C. L.; Hatfield, J. M.; Morrison, D. R.

    1988-01-01

    Cell bioprocessing experiments in space are reviewed and the development of on-board cell analytical cytology techniques that can serve such experiments is discussed. Methods and results of experiments involving the cultivation and separation of eukaryotic cells in space are presented. It is suggested that an advanced cytometer should be developed for the quantitative analysis of large numbers of specimens of suspended eukaryotic cells and bioparticles in experiments on the Space Station.

  10. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology 1

    PubMed Central

    Edwards, Gerald E.; Black, Clanton C.

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given. The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C4-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO2 enters a leaf about 85% is fixed by the C4-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells. A technique also is given for the isolation of mesophyll cells from spinach leaves. Images PMID:16657571

  11. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology.

    PubMed

    Edwards, G E; Black, C C

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given.The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C(4)-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO(2) enters a leaf about 85% is fixed by the C(4)-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells.A technique also is given for the isolation of mesophyll cells from spinach leaves.

  12. Magnetic Separator Enhances Treatment Possibilities

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Since the earliest missions in space, NASA specialists have performed experiments in low gravity. Protein crystal growth, cell and tissue cultures, and separation technologies such as electrophoresis and magnetophoresis have been studied on Apollo 14, Apollo 16, STS-107, and many other missions. Electrophoresis and magnetophoresis, respectively, are processes that separate substances based on the electrical charge and magnetic field of a molecule or particle. Electrophoresis has been studied on over a dozen space shuttle flights, leading to developments in electrokinetics, which analyzes the effects of electric fields on mass transport (atoms, molecules, and particles) in fluids. Further studies in microgravity will continue to improve these techniques, which researchers use to extract cells for various medical treatments and research.

  13. Detection of melanoma cells suspended in mononuclear cells and blood plasma using photoacoustic generation

    NASA Astrophysics Data System (ADS)

    Spradling, Emily M.; Viator, John A.

    2009-02-01

    Melanoma is the deadliest form of skin cancer. Although the initial malignant cells are removed, it is impossible to determine whether or not the cancer has metastasized until a secondary tumor forms that is large enough to detect with conventional imaging. Photoacoustic detection of circulating melanoma cells in the bloodstream has shown promise for early detection of metastasis that may aid in treatment of this aggressive cancer. When blood is irradiated with energy from an Nd:YAG laser at 532 nm, photoacoustic signals are created and melanoma cells can be differentiated from the surrounding cells based on waveforms produced by an oscilloscope. Before this can be used as a diagnostic technique, however, we needed to investigate several parameters. Specifically, the current technique involves the in vitro separation of blood through centrifugation to isolate and test only the white blood cell layer. Using this method, we have detected a single cultured melanoma cell among a suspension of white blood cells. However, the process could be made simpler if the plasma layer were used for detection instead of the white blood cell layer. This layer is easier to obtain after blood separation, the optical difference between plasma and melanoma cells is more pronounced in this layer than in the white blood cell layer, and the possibility that any stray red blood cells could distort the results is eliminated. Using the photoacoustic apparatus, we detected no melanoma cells within the plasma of whole blood samples spiked with cultured melanoma cells.

  14. The role of particle-to-cell interactions in dictating nanoparticle aided magnetophoretic separation of microalgal cells.

    PubMed

    Toh, Pey Yi; Ng, Bee Wah; Ahmad, Abdul Latif; Chieh, Derek Chan Juinn; Lim, JitKang

    2014-11-07

    Successful application of a magnetophoretic separation technique for harvesting biological cells often relies on the need to tag the cells with magnetic nanoparticles. This study investigates the underlying principle behind the attachment of iron oxide nanoparticles (IONPs) onto microalgal cells, Chlorella sp. and Nannochloropsis sp., in both freshwater and seawater, by taking into account the contributions of various colloidal forces involved. The complex interplay between van der Waals (vdW), electrostatic (ES) and Lewis acid-base interactions (AB) in dictating IONP attachment was studied under the framework of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. Our results showed that ES interaction plays an important role in determining the net interaction between the Chlorella sp. cells and IONPs in freshwater, while the AB and vdW interactions play a more dominant role in dictating the net particle-to-cell interaction in high ionic strength media (≥100 mM NaCl), such as seawater. XDLVO predicted effective attachment between cells and surface functionalized IONPs (SF-IONPs) with an estimated secondary minimum of -3.12 kT in freshwater. This prediction is in accordance with the experimental observation in which 98.89% of cells can be magnetophoretically separated from freshwater with SF-IONPs. We have observed successful magnetophoretic separation of microalgal cells from freshwater and/or seawater for all the cases as long as XDLVO analysis predicts particle attachment. For both the conditions, no pH adjustment is required for particle-to-cell attachment.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpita, N.C.

    We have just completed the second year of a three-year project entitled Biosynthesis assembly of cell wall polysaccharides in cereal grasses.'' We made significant progress on two aspects of cell wall synthesis in grasses and greatly refined gas-liquid and high- performance liquid chromatographic techniques necessary to identify the products of synthesis in vitro and in vivo. First, Dr. David Gibeaut, a post-doctoral associate, devised a convenient procedure for the enrichment of Golgi membranes by flotation centrifugation following initial downward rate-zonal separation. Based on comparison of the IDPase marker enzyme, flotation centrifugation enriched the Golgi apparatus almost 7-fold after the initialmore » downward separation. This system is now used in our studies of the synthesis in vitro of the mixed-linkage {beta}-D-glucan. Second, Gibeaut and I have devised a simple technique to feed radioactive sugars into intact growing seedlings and follow incorporation of radioactivity into and turnover from specific cell wall polysaccharides. The project has also provided a few spin-off projects that have been productive as well. First, in collaboration with the group of Prof. Peter Kaufman, University of Michigan, we examined changes in cell wall structure concomitant with reaction to gravistimulation in the gravisensing oat pulvinus. Second, Dr. Gibeaut developed a simple clean-up procedure for partially methylated alditol derivatives to remove a large amount of undesirable interfering compounds that confound separation of the derivatives by gas-liquid chromatography. 5 refs.« less

  16. Antimicrobial peptide from mucus of Andrias davidianus: screening and purification by magnetic cell membrane separation technique.

    PubMed

    Pei, Jinjin; Jiang, Lei

    2017-07-01

    Andrias davidianus, the Chinese giant salamander, has been used in traditional Chinese medicine for many decades. However, no antimicrobial peptides (AMPs) have been described from A. davidianus until now. Here we describe a novel AMP (andricin 01) isolated from the mucus of A. davidianus. The peptide was recovered using an innovative magnetic cell membrane separation technique and was characterised using mass spectrometry and circular dichroism (CD) spectroscopy. Andricin 01 is comprised of ten amino acid residues with a total molecular mass of 955.1 Da. CD spectrum analysis gave results similar to the archetypal random coil spectrum, consistent with the three-dimensional rendering calculated by current bioinformatics tools. Andricin 01 was found to be inhibitory both to Gram-negative and Gram-positive bacteria. Furthermore, the peptide at the minimal bacterial concentration did not show cell cytotoxicity against human hepatocytes or renal cells and did not show haemolytic activity against red blood cells, indicating that is potentially safe and effective for human use. Andricin 01 shows promise as a novel antibacterial that may provide an insight into the development of new drugs. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  17. Extracting archaeal populations from iron oxidizing systems

    NASA Astrophysics Data System (ADS)

    Whitmore, L. M.; Hutchison, J.; Chrisler, W.; Jay, Z.; Moran, J.; Inskeep, W.; Kreuzer, H.

    2013-12-01

    Unique environments in Yellowstone National Park offer exceptional conditions for studying microorganisms in extreme and constrained systems. However, samples from some extreme systems often contain inorganic components that pose complications during microbial and molecular analysis. Several archaeal species are found in acidic, geothermal ferric-oxyhydroxide mats; these species have been shown to adhere to mineral surfaces in flocculated colonies. For optimal microbial analysis, (microscopy, flow cytometry, genomic extractions, proteomic analysis, stable isotope analysis, and others), improved techniques are needed to better facilitate cell detachment and separation from mineral surfaces. As a requirement, these techniques must preserve cell structure while simultaneously minimizing organic carryover to downstream analysis. Several methods have been developed for removing sediments from mixed prokaryotic populations, including ultra-centrifugation, nycodenz gradient, sucrose cushions, and cell straining. In this study we conduct a comparative analysis of mechanisms used to detach archaeal cell populations from the mineral interface. Specifically, we evaluated mechanical and chemical approaches for cell separation and homogenization. Methods were compared using confocal microscopy, flow cytometry analyses, and real-time PCR detection. The methodology and approaches identified will be used to optimize biomass collection from environmental specimens or isolates grown with solid phases.

  18. Platelet-rich plasma differs according to preparation method and human variability.

    PubMed

    Mazzocca, Augustus D; McCarthy, Mary Beth R; Chowaniec, David M; Cote, Mark P; Romeo, Anthony A; Bradley, James P; Arciero, Robert A; Beitzel, Knut

    2012-02-15

    Varying concentrations of blood components in platelet-rich plasma preparations may contribute to the variable results seen in recently published clinical studies. The purposes of this investigation were (1) to quantify the level of platelets, growth factors, red blood cells, and white blood cells in so-called one-step (clinically used commercial devices) and two-step separation systems and (2) to determine the influence of three separate blood draws on the resulting components of platelet-rich plasma. Three different platelet-rich plasma (PRP) separation methods (on blood samples from eight subjects with a mean age [and standard deviation] of 31.6 ± 10.9 years) were used: two single-spin processes (PRPLP and PRPHP) and a double-spin process (PRPDS) were evaluated for concentrations of platelets, red and white blood cells, and growth factors. Additionally, the effect of three repetitive blood draws on platelet-rich plasma components was evaluated. The content and concentrations of platelets, white blood cells, and growth factors for each method of separation differed significantly. All separation techniques resulted in a significant increase in platelet concentration compared with native blood. Platelet and white blood-cell concentrations of the PRPHP procedure were significantly higher than platelet and white blood-cell concentrations produced by the so-called single-step PRPLP and the so-called two-step PRPDS procedures, although significant differences between PRPLP and PRPDS were not observed. Comparing the results of the three blood draws with regard to the reliability of platelet number and cell counts, wide variations of intra-individual numbers were observed. Single-step procedures are capable of producing sufficient amounts of platelets for clinical usage. Within the evaluated procedures, platelet numbers and numbers of white blood cells differ significantly. The intra-individual results of platelet-rich plasma separations showed wide variations in platelet and cell numbers as well as levels of growth factors regardless of separation method.

  19. Magnetic separations in biotechnology.

    PubMed

    Borlido, L; Azevedo, A M; Roque, A C A; Aires-Barros, M R

    2013-12-01

    Magnetic separations are probably one of the most versatile separation processes in biotechnology as they are able to purify cells, viruses, proteins and nucleic acids directly from crude samples. The fast and gentle process in combination with its easy scale-up and automation provide unique advantages over other separation techniques. In the midst of this process are the magnetic adsorbents tailored for the envisioned target and whose complex synthesis spans over multiple fields of science. In this context, this article reviews both the synthesis and tailoring of magnetic adsorbents for bioseparations as well as their ultimate application. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection.

    PubMed

    Chylewska, Agnieszka; Ogryzek, M; Makowski, Mariusz

    2017-10-23

    New analytical and molecular methods for microorganisms are being developed on various features of identification i.e. selectivity, specificity, sensitivity, rapidity and discrimination of the viable cell. The presented review was established following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis. This contribution also focuses on the development of analytical and biological methods in the analysis of microorganisms, with special attention paid to bio-samples containing microbes (blood, urine, lymph, wastewater). First, the paper discusses microbes characterization, their structure, surface, properties, size and then it describes pivotal points in the bacteria, viruses and fungi separation procedure obtained by researchers in the last 30 years. According to the above, detection techniques can be classified into three categories, which were, in our opinion, examined and modified most intensively during this period: electrophoretic, nucleic-acid-based, and immunological methods. The review covers also the progress, limitations and challenges of these approaches and emphasizes the advantages of new separative techniques in selective fractionating of microorganisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells

    PubMed Central

    Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-01-01

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine1. Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models. PMID:27077489

  2. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells.

    PubMed

    Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-03-30

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.

  3. Comparison of segmentation algorithms for fluorescence microscopy images of cells.

    PubMed

    Dima, Alden A; Elliott, John T; Filliben, James J; Halter, Michael; Peskin, Adele; Bernal, Javier; Kociolek, Marcin; Brady, Mary C; Tang, Hai C; Plant, Anne L

    2011-07-01

    The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.

  4. A novel bio-safe phase separation process for preparing open-pore biodegradable polycaprolactone microparticles.

    PubMed

    Salerno, Aurelio; Domingo, Concepción

    2014-09-01

    Open-pore biodegradable microparticles are object of considerable interest for biomedical applications, particularly as cell and drug delivery carriers in tissue engineering and health care treatments. Furthermore, the engineering of microparticles with well definite size distribution and pore architecture by bio-safe fabrication routes is crucial to avoid the use of toxic compounds potentially harmful to cells and biological tissues. To achieve this important issue, in the present study a straightforward and bio-safe approach for fabricating porous biodegradable microparticles with controlled morphological and structural features down to the nanometer scale is developed. In particular, ethyl lactate is used as a non-toxic solvent for polycaprolactone particles fabrication via a thermal induced phase separation technique. The used approach allows achieving open-pore particles with mean particle size in the 150-250 μm range and a 3.5-7.9 m(2)/g specific surface area. Finally, the combination of thermal induced phase separation and porogen leaching techniques is employed for the first time to obtain multi-scaled porous microparticles with large external and internal pore sizes and potential improved characteristics for cell culture and tissue engineering. Samples were characterized to assess their thermal properties, morphology and crystalline structure features and textural properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Microfluidics for cell-based high throughput screening platforms - A review.

    PubMed

    Du, Guansheng; Fang, Qun; den Toonder, Jaap M J

    2016-01-15

    In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that solute is drawn into the cell from reservoirs at both ends of the cell leading to a large mass build up. As a consequence, any initially induced mass flux will vanish after short times. This effect was not captured by the infinite channel model and hence numerical and experimental results deviated significantly. The revised model including finite cell lengths and reservoir volumes allowed quantitative predictions of the time history of the concentration profile throughout the system. This latter model accurately describes the fluxes observed for both oscillatory flow modes in experiments using single protein species. Based on the results obtained from research funded under NASA grant NAG-8-1080.S, we conclude that binary separations are not possible using purely oscillatory flow modes because of end effects associated with the cos((omega)t) mode. Our research shows, however, that a combination of cos(2(omega)t) and steady flow should lead to efficient separation free of end effects. This possibility is currently under investigation.

  7. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.

  8. FogBank: a single cell segmentation across multiple cell lines and image modalities.

    PubMed

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary

    2014-12-30

    Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.

  9. Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kai-Jian; Qin, S.-J., E-mail: shuijie.qin@gmail.com; Bai, Zhong-Chen

    2013-11-21

    A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid andmore » a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.« less

  10. Separation of lymphocytes by electrophoresis under terrestrial conditions and at zero gravity, phase 3

    NASA Technical Reports Server (NTRS)

    Rubin, A. L.; Stenzel, K. H.; Cheigh, J. S.; Seaman, G. V. F.; Novogrodsky, A.

    1977-01-01

    Electrophoretic mobilities (EPM) of peripheral lymphocytes were studied from normal subjects, chronic hemodialysis patients and kidney transplant recipients. A technique to separate B lymphocytes and null cells from non-T lymphocyte preparation was developed. The experiments were designed to determine which subpopulation of the non-T lymphocytes is primarily affected and shows a decreased EPM in chronic hemodialysis patients and kidney transplant recipients.

  11. Membrane bioreactors' potential for ethanol and biogas production: a review.

    PubMed

    Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J

    2013-01-01

    Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.

  12. Some observations of separated flow on finite wings

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Ngo, H. T.; De Seife, R. C.

    1982-01-01

    Wind tunnel test results for aspects of flow over airfoils exhibiting single and multiple trailing edge stall 'mushroom' cells are reported. Rectangular wings with aspect ratios of 4.0 and 9.0 were tested at Reynolds numbers of 480,000 and 257,000, respectively. Surface flow patterns were visualized by means of a fluorescent oil flow technique, separated flow was observed with a tuft wand and a water probe, spanwise flow was studied with hot-wire anemometry, smoke flow and an Ar laser illuminated the centerplane flow, and photographs were made of the oil flow patterns. Swirl patterns on partially and fully stalled wings suggested vortex flow attachments in those regions, and a saddle point on the fully stalled AR=4.0 wing indicated a secondary vortex flow at the forward region of the separation bubble. The separation wake decayed downstream, while the tip vortex interacted with the separation bubble on the fully stalled wing. Three mushroom cells were observed on the AR=9.0 wing.

  13. Microcapsule-based techniques for improving the safety of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Baginska, Marta

    Lithium-ion batteries are vital energy storage devices due to their high specific energy density, lack of memory effect, and long cycle life. While they are predominantly used in small consumer electronics, new strategies for improving battery safety and lifetime are critical to the successful implementation of high-capacity, fast-charging materials required for advanced Li-ion battery applications. Currently, the presence of a volatile, combustible electrolyte and an oxidizing agent (Lithium oxide cathodes) make the Li-ion cell susceptible to fire and explosions. Thermal overheating, electrical overcharging, or mechanical damage can trigger thermal runaway, and if left unchecked, combustion of battery materials. To improve battery safety, autonomic, thermally-induced shutdown of Li-ion batteries is demonstrated by depositing thermoresponsive polymer microspheres onto battery anodes. When the internal temperature of the cell reaches a critical value, the microspheres melt and conformally coat the anode and/or separator with an ion insulating barrier, halting Li-ion transport and shutting down the cell permanently. Charge and discharge capacity is measured for Li-ion coin cells containing microsphere-coated anodes or separators as a function of capsule coverage. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and re-solidification of polyethylene (PE) into the anode and polymer film formation at the anode/separator interface. As an extension of this autonomic shutdown approach, a particle-based separator capable of performing autonomic shutdown, but which reduces the shorting hazard posed by current bi- and tri-polymer commercial separators, is presented. This dual-particle separator is composed of hollow glass microspheres acting as a physical spacer between electrodes, and PE microspheres to impart autonomic shutdown functionality. An oil-immersion technique is developed to simulate an overheating condition while the cell is cycling. Experimental protocols are developed to assess the performance of the separator in terms of its ability to perform autonomic shutdown and examine tested battery materials using scanning electron microscopy. Another approach to improving battery functionality is via the microencapsulation of battery additives. Currently, additives are added directly into a battery electrolyte, and while they typically perform their function given a sufficient loading, these additives often do so at the expense of battery performance. Microencapsulation allows for a high loading of additives to be incorporated into the cell and their release triggered only when and where they are needed. In this work, microencapsulation techniques are developed to successfully encapsulate 3-hexylthiophene, a stabilizing agent for high-voltage cathodes in Li-ion batteries and conductive polymer precursor, as well as the flame retardant Tris(2-choloroethyl phosphate) (TCP). Microcapsules containing 3-hexylthiophene are coated onto model battery electrodes and immersed in electrolyte. The microcapsule shell wall insulates the 3-hexylthiophene until the microcapsules are mechanically crushed and electropolymerization of the released core to form poly(3-ht) occurs under cyclic voltammetry. In addition, TCP was encapsulated using in situ polymerization. TCP-containing microcapsules are stable in electrolyte at room temperature, but are thermally triggered to release their payload at elevated temperatures. Experimental protocols are developed to study the in situ triggering and release of microencapsulated additives.

  14. Determination of Amino Acids in Cell Culture and Fermentation Broth Media Using Anion-Exchange Chromatography with Integrated Pulsed Amperometric Detection

    PubMed Central

    Hanko, Valoran P.; Heckenberg, Andrea; Rohrer, Jeffrey S.

    2004-01-01

    Anion-exchange chromatography with integrated pulsed amperometric detection (AE-IPAD) separates and directly detects amino acids, carbohydrates, alditols, and glycols in the same injection without pre- or post-column derivatization. These separations use a combination of NaOH and NaOH/sodium acetate eluents. We previously published the successful use of this technique, also known as AAA-Direct, to determine free amino acids in cell culture and fermentation broth media. We showed that retention of carbohydrates varies with eluent NaOH concentration differently than amino acids, and thus separations can be optimized by varying the initial NaOH concentration and its duration. Unfortunately, some amino acids eluting in the acetate gradient portion of the method were not completely resolved from system-related peaks and from unknown peaks in complex cell culture and fermentation media. In this article, we present changes in method that improve amino acid resolution and system ruggedness. The success of these changes and their compatibility with the separations previously designed for fermentation and cell culture are demonstrated with yeast extract-peptone-dextrose broth, M199, Dulbecco’s modified Eagle’s (with F-12), L-15 (Leibovitz), and McCoy’s 5A cell culture media. PMID:15585828

  15. Sample selection and testing of separation processes

    NASA Technical Reports Server (NTRS)

    Karr, L. J.

    1985-01-01

    Phase partitioning, which has become an important tool for the separation and purification of biological materials, was studied. Instruments available for this technique were researched and a countercurrent distribution apparatus, the Biosheff MK2N, was purchased. Various proteins, polysaccharides and cells were studied as models to determine operating procedures and conditions for this piece of equipment. Results were compared with those obtained from other similar equipment, including a nonsynchronous coil planet centrifuge device. Additionally, work was done with affinity ligands attached to PEG, which can further enhance the separation capabilities of phase partitioning.

  16. A Photometric Technique for Determining Fluid Concentration using Consumer-Grade Hardware

    NASA Technical Reports Server (NTRS)

    Leslie, F.; Ramachandran, N.

    1999-01-01

    In support of a separate study to produce an exponential concentration gradient in a magnetic fluid, a noninvasive technique for determining, species concentration from off-the-shelf hardware has been developed. The approach uses a backlighted fluid test cell photographed with a commercial digital camcorder. Because the light extinction coefficient is wavelength dependent, tests were conducted to determine the best filter color to use, although some guidance was also provided using an absorption spectrophotometer. With the appropriate filter in place, the provide attenuation of the light passing, through the test cell was captured by the camcorder. The digital image was analyzed for intensity using, software from Scion Image Corp. downloaded from the Internet. The analysis provides a two-dimensional array of concentration with an average error of 0.0095 ml/ml. This technique is superior to invasive techniques, which require extraction of a sample that disturbs the concentration distribution in the test cell. Refinements of this technique using a true monochromatic laser light Source are also discussed.

  17. Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients.

    PubMed

    Leong, Sim Siong; Yeap, Swee Pin; Lim, JitKang

    2016-12-06

    Magnetic separation is a versatile technique used in sample preparation for diagnostic purpose. For such application, an external magnetic field is applied to drive the separation of target entity (e.g. bacteria, viruses, parasites and cancer cells) from a complex raw sample in order to ease the subsequent task(s) for disease diagnosis. This separation process not only can be achieved via the utilization of high magnetic field gradient, but also, in most cases, low magnetic field gradient with magnitude less than 100 T m -1 is equally feasible. It is the aim of this review paper to summarize the usage of both high gradient magnetic separation and low gradient magnetic separation (LGMS) techniques in this area of research. It is noteworthy that effectiveness of the magnetic separation process not only determines the outcome of a diagnosis but also directly influences its accuracy as well as sensing time involved. Therefore, understanding the factors that simultaneously influence the efficiency of both magnetic separation process and target detection is necessary. Moreover, for LGMS, there are several important considerations that should be taken into account in order to ensure its successful implementation. Hence, this review paper aims to provide an overview to relate all this crucial information by linking the magnetic separation theory to biomedical diagnostic applications.

  18. Cell Partition in Two Polymer Aqueous Phases

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1985-01-01

    Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.

  19. Bioorganic chemistry and the emergence of the first cell

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1977-01-01

    It is suggested that the best way to study the evolution of cells from primordial compounds is to attempt to assemble a protocell, i.e., a primordial cell. Simulation of processes that occurred in archaic times would require inductive reasoning and constructionist techniques rather than the analytic approach in which cell components are separated and studied in isolation. Advantages to primordial life which would result from protocell formation are surveyed, and the proteinoid microsphere, a model of the protocell, is discussed. A photoreactive proteinoid is considered.

  20. Parallel Implementation of the Wideband DOA Algorithm on the IBM Cell BE Processor

    DTIC Science & Technology

    2010-05-01

    Abstract—The Multiple Signal Classification ( MUSIC ) algorithm is a powerful technique for determining the Direction of Arrival (DOA) of signals...Broadband Engine Processor (Cell BE). The process of adapting the serial based MUSIC algorithm to the Cell BE will be analyzed in terms of parallelism and...using Multiple Signal Classification MUSIC algorithm [4] • Computation of Focus matrix • Computation of number of sources • Separation of Signal

  1. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI(3-x)Cl(x) perovskite solar cells.

    PubMed

    Edri, Eran; Kirmayer, Saar; Mukhopadhyay, Sabyasachi; Gartsman, Konstantin; Hodes, Gary; Cahen, David

    2014-03-11

    Developments in organic-inorganic lead halide-based perovskite solar cells have been meteoric over the last 2 years, with small-area efficiencies surpassing 15%. We address the fundamental issue of how these cells work by applying a scanning electron microscopy-based technique to cell cross-sections. By mapping the variation in efficiency of charge separation and collection in the cross-sections, we show the presence of two prime high efficiency locations, one at/near the absorber/hole-blocking-layer, and the second at/near the absorber/electron-blocking-layer interfaces, with the former more pronounced. This 'twin-peaks' profile is characteristic of a p-i-n solar cell, with a layer of low-doped, high electronic quality semiconductor, between a p- and an n-layer. If the electron blocker is replaced by a gold contact, only a heterojunction at the absorber/hole-blocking interface remains.

  2. Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nor, N. S. M., E-mail: madra@ukm.my; Deraman, M., E-mail: madra@ukm.my; Omar, R., E-mail: madra@ukm.my

    Activated porous carbon electrode prepared from fibres of oil palm empty fruit bunches was used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated using carbon electrodes, stainless steel current collector, H{sub 2}SO{sub 4} electrolyte, and three types of nanoporous separators. Cells A, B and C were fabricated using polypropylene, eggshell membrane, and filter paper, respectively. Electrochemical characterizations data from Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanic Charge Discharge techniques showed that specific capacitance, specific power and specific energy for cell A were 122 F g{sup −1}, 177 W kg{sup −1}, 3.42 Wh kg{sup −1}, cellmore » B; 125 F g{sup −1}, 179 W kg{sup −1}, and 3.64 Wh kg{sup −1}, and cell C; 180 F g{sup −1}, 178 W kg{sup −1}, 4.27 Wh kg{sup −1}. All the micrographs from Field Emission Scanning Electron Microscope showed that the different in nanoporous structure of the separators lead to a significant different in influencing the values of specific capacitance, power and energy of supercapacitors, which is associated with the mobility of ion into the pore network. These results indicated that the filter paper was superior than the eggshell membrane and polypropylene nanoporous separators. However, we found that in terms of acidic resistance, polypropylene was the best nanoporous separator for acidic medium.« less

  3. Sperm preparation: state-of-the-art—physiological aspects and application of advanced sperm preparation methods

    PubMed Central

    Henkel, Ralf

    2012-01-01

    For assisted reproduction technologies (ART), numerous techniques were developed to isolate spermatozoa capable of fertilizing oocytes. While early methodologies only focused on isolating viable, motile spermatozoa, with progress of ART, particularly intracytoplasmic sperm injection (ICSI), it became clear that these parameters are insufficient for the identification of the most suitable spermatozoon for fertilization. Conventional sperm preparation techniques, namely, swim-up, density gradient centrifugation and glass wool filtration, are not efficient enough to produce sperm populations free of DNA damage, because these techniques are not physiological and not modeled on the stringent sperm selection processes taking place in the female genital tract. These processes only allow one male germ cell out of tens of millions to fuse with the oocyte. Sites of sperm selection in the female genital tract are the cervix, uterus, uterotubal junction, oviduct, cumulus oophorus and the zona pellucida. Newer strategies of sperm preparation are founded on: (i) morphological assessment by means of ‘motile sperm organelle morphological examination (MSOME)' (ii) electrical charge; and (iii) molecular binding characteristics of the sperm cell. Whereas separation methods based on electrical charge take advantage of the sperm's adherence to a test tube surface or separate in an electrophoresis, molecular binding techniques use Annexin V or hyaluronic acid (HA) as substrates. Techniques in this category are magnet-activated cell sorting, Annexin V-activated glass wool filtration, flow cytometry and picked spermatozoa for ICSI (PICSI) from HA-coated dishes and HA-containing media. Future developments may include Raman microspectrometry, confocal light absorption and scattering spectroscopic microscopy and polarization microscopy. PMID:22138904

  4. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release.

    PubMed

    Zhang, Peiran; Ren, Lihui; Zhang, Xu; Shan, Yufei; Wang, Yun; Ji, Yuetong; Yin, Huabing; Huang, Wei E; Xu, Jian; Ma, Bo

    2015-02-17

    Raman-activated cell sorting (RACS) is a promising single-cell technology that holds several significant advantages, as RACS is label-free, information-rich, and potentially in situ. To date, the ability of the technique to identify single cells in a high-speed flow has been limited by inherent weakness of the spontaneous Raman signal. Here we present an alternative pause-and-sort RACS microfluidic system that combines positive dielectrophoresis (pDEP) for single-cell trap and release with a solenoid-valve-suction-based switch for cell separation. This has allowed the integration of trapping, Raman identification, and automatic separation of individual cells in a high-speed flow. By exerting a periodical pDEP field, single cells were trapped, ordered, and positioned individually to the detection point for Raman measurement. As a proof-of-concept demonstration, a mixture of two cell strains containing carotenoid-producing yeast (9%) and non-carotenoid-producing Saccharomyces cerevisiae (91%) was sorted, which enriched the former to 73% on average and showed a fast Raman-activated cell sorting at the subsecond level.

  5. Metabolic activity of subseafloor microbes in the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Ito, M.; Terada, T.; Inagaki, F.

    2013-12-01

    The South Pacific Gyre (SPG) is characterized as the most oligotrophic open ocean environment. The sediment is rich in oxygen but poor in energy-sources such as reduced organic matter, and hence harbors very low numbers of microbial cells in relatively shallow subseafloor sediment (D'Hondt et al., 2009; Kallmeyer et al., 2012). In such an energy-limited sedimentary habitat, a small size of microbial community persists living functions with extraordinary low oxygen-consumption rate (Røy et al., 2012). During IODP Expedition 329, a series of sediment samples were successfully recovered from 7 drill sites (U1365-1371) from the seafloor to basement in the SPG, providing an unprecedented opportunity to study metabolic activity of the aerobic subseafloor microbial communities. We initiated incubation onboard by adding stable isotope-labeled substrates to the freshly collected sediment sample, such as 13C and/or 15N-labeled bicarbonate, glucose, amino acids, acetate, and ammonium under the (micro-) aerobic condition. One of the technological challenges in this study is to harvest microbial cells from very low-biomass sediment samples for the analysis using nano-scale secondary ion mass spectrometry (NanoSIMS). To address the technical issue, we improved existing cell separation technique for the SPG sediment samples with small inorganic zeolitic grains. By monitoring cell recovery rates through an image-based cell enumeration technique (Morono et al., 2009), we found that cell recovery rates in the SPG sediment samples are generally lower than those in other oceanographic settings (i.e., organic-rich ocean margin sediments). To gain higher cell recovery ratio, we applied multiple density gradient layers, resulting in the cell recovery ratio up to around 80-95% (Morono et al., in press). Then, using the newly developed cell separation technique, we successfully sorted enough number of microbial cells in small spots on the membrane (i.e., 103 to 105 cells per spot). NanoSIMS analysis showed incorporation of the supplemented stable isotope-labeled substrates after 1.5 year-incubation. The substrate incorporation rates of individual microbial cell ranged in average from 1/10 to 1/2 of those values previously observed in an organic-rich ocean margin sediment (Morono et al., 2011). References S. D'Hondt et al., Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci USA 106, 11651 (2009) J. Kallmeyeret al., Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109, 16213 (2012) H. Røy et al., Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science 336, 922 (2012) Y. Morono et al. Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J 3, 503 (2009) Y. Morono et al., An Improved Cell Separation Technique for Marine Subsurface Sediments: Applications for High-throughput Analysis Using Flow Cytometry and Cell Sorting. Environ Microbiol, (2013) Y. Morono et al., Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci USA 108, 18295 (2011)

  6. 3D-liquid chromatography as a complex mixture characterization tool for knowledge-based downstream process development.

    PubMed

    Hanke, Alexander T; Tsintavi, Eleni; Ramirez Vazquez, Maria Del Pilar; van der Wielen, Luuk A M; Verhaert, Peter D E M; Eppink, Michel H M; van de Sandt, Emile J A X; Ottens, Marcel

    2016-09-01

    Knowledge-based development of chromatographic separation processes requires efficient techniques to determine the physicochemical properties of the product and the impurities to be removed. These characterization techniques are usually divided into approaches that determine molecular properties, such as charge, hydrophobicity and size, or molecular interactions with auxiliary materials, commonly in the form of adsorption isotherms. In this study we demonstrate the application of a three-dimensional liquid chromatography approach to a clarified cell homogenate containing a therapeutic enzyme. Each separation dimension determines a molecular property relevant to the chromatographic behavior of each component. Matching of the peaks across the different separation dimensions and against a high-resolution reference chromatogram allows to assign the determined parameters to pseudo-components, allowing to determine the most promising technique for the removal of each impurity. More detailed process design using mechanistic models requires isotherm parameters. For this purpose, the second dimension consists of multiple linear gradient separations on columns in a high-throughput screening compatible format, that allow regression of isotherm parameters with an average standard error of 8%. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1283-1291, 2016. © 2016 American Institute of Chemical Engineers.

  7. Advanced flight hardware for organic separations using aqueous two-phase partitioning

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1996-03-01

    Separation of cells and cell components is the limiting factor in many biomedical research and pharmaceutical development processes. Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT is fabricating and integrating the ADSEP flight hardware for a commercially-driven SPACEHAB 04 experiment that will be the initial step in marketing space separations services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  8. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    PubMed

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  9. Label-free screening of niche-to-niche variation in satellite stem cells using functionalized pores

    NASA Astrophysics Data System (ADS)

    Chapman, Matthew R.; Balakrishnan, Karthik; Conboy, Michael J.; Mohanty, Swomitra; Jabart, Eric; Huang, Haiyan; Hack, James; Conboy, Irina M.; Sohn, Lydia L.

    2012-02-01

    Combinations of surface markers are currently used to identify muscle satellite cells. Using pores functionalized with specific antibodies and measuring the transit time of cells passing through these pores, we discovered remarkable heterogeneity in the expression of these markers in muscle (satellite) stem cells that reside in different single myofibers. Microniche-specific variation in stem cells of the same organ has not been previously described, as bulk analysis does not discriminate between separate myofibers or even separate hind-leg muscle groups. We found a significant population of Sca-1+ satellite cells that form myotubes, thereby demonstrating the myogenic potential of Sca-1+ cells, which are currently excluded in bulk sorting. Finally, using our label-free pore screening technique, we have been able to quantify directly surface expression of Notch1 without activation of the Notch pathway. We show for the first time Notch1-expression heterogeneity in unactivated satellite cells. The discovery of fiber-to-fiber variations prompts new research into the reasons for such diversity in muscle stem cells.

  10. Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods and Numerical Advection Schemes

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Six different convective-stratiform separation techniques, including a new technique that utilizes the ratio of vertical and terminal velocities, are compared and evaluated using two-dimensional numerical simulations of a tropical [Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE)] and midlatitude continental [Preliminary Regional Experiment for STORM-Central (PRESTORM)] squall line. The simulations are made using two different numerical advection schemes: 4th order and positive definite advection. Comparisons are made in terms of rainfall, cloud coverage, mass fluxes, apparent heating and moistening, mean hydrometeor profiles, CFADs (Contoured Frequency with Altitude Diagrams), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. Observational comparisons were unable to conclusively evaluate the performance of the techniques. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly due to the stratiform region for methods that found very little stratiform rain. The midlatitude PRESTORM simulation was found to be nearly invariant with respect to advection type for most quantities while for TOGA COARE fourth order advection produced numerous shallow convective cores and positive definite advection fewer cells that were both broader and deeper penetrating above the freezing level.

  11. Fractionation of surface sediment fines based on a coupled sieve-SPLITT (split flow thin cell) method.

    PubMed

    Coppola, Laurent; Gustafsson, Orjan; Andersson, Per; Axelsson, Pär

    2005-05-01

    In traditional sediment grain-size separation using sieve technique, the bulk of the organic matter passes through the smallest mesh size (generally 38 microm) and is not further fractionated. In this study, a common sieve separation has therefore been coupled with an extra high capacity split flow thin cell fractionation (EHC-SPLITT) instrument to separate the bulk surface sediment not only into size-based sieve fractions (> 100, 63-100, 38-63 and < 38 microm) but particularly to further fractionate hydrodynamically the fine fraction (< 38 microm) using the EHC-SPLITT. Compared to the few previous studies using a smaller high capacity (HC) SPLITT cell, the EHC-SPLITT evaluated in detail here has several advantages (e.g., 23 times higher throughput and allowance for large particle diameters). First, the EHC-SPLITT was calibrated with particle standards. Then, its ability to fractionate fine surface sediments hydrodynamically was demonstrated with material from biogeochemically distinct regimes using two cutoff velocities (1 and 6 m d(-1)). The results from particle standards indicated a good agreement between theory and experiment and a satisfactory mass recovery for the sieve-SPLITT method (80-97%) was observed for sediment samples. The mass distributions revealed that particles < 38 microm were predominant (70-90%), indicating the large need for a technique such as the EHC-SPLITT to further fractionate the fine particles. There were clearly different compositions in the EHC-SPLITT-mediated sub-fractions of the sediment fines as indicated by analyses of organic and inorganic parameters (POC, Si, Fe and Al). The EHC-SPLITT technique has the potential to provide information of great utility to studies of benthic boundary layer transport and off-shelf export and how such processes fractionate geochemical signals.

  12. Removal of algal blooms from freshwater by the coagulation-magnetic separation method.

    PubMed

    Liu, Dan; Wang, Peng; Wei, Guanran; Dong, Wenbo; Hui, Franck

    2013-01-01

    This research investigated the feasibility of changing waste into useful materials for water treatment and proposed a coagulation-magnetic separation technique. This technique was rapid and highly effective for clearing up harmful algal blooms in freshwater and mitigating lake eutrophication. A magnetic coagulant was synthesized by compounding acid-modified fly ash with magnetite (Fe(3)O(4)). Its removal effects on algal cells and dissolved organics in water were studied. After mixing, coagulation, and magnetic separation, the flocs obtained from the magnet surface were examined by SEM. Treated samples were withdrawn for the content determination of chlorophyll-a, turbidity, chemical oxygen demand (COD), total nitrogen, and total phosphorus. More than 99 % of algal cells were removed within 5 min after the addition of magnetic coagulant at optimal loadings (200 mg L(-1)). The removal efficiencies of COD, total nitrogen, and phosphorus were 93, 91, and 94 %, respectively. The mechanism of algal removal explored preliminarily showed that the magnetic coagulant played multiple roles in mesoporous adsorption, netting and bridging, as well as high magnetic responsiveness to a magnetic field. The magnetic-coagulation separation method can rapidly and effectively remove algae from water bodies and greatly mitigate eutrophication of freshwater using a new magnetic coagulant. The method has good performance, is low cost, can turn waste into something valuable, and provides reference and directions for future pilot and production scale-ups.

  13. Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients

    PubMed Central

    Yeap, Swee Pin; Lim, JitKang

    2016-01-01

    Magnetic separation is a versatile technique used in sample preparation for diagnostic purpose. For such application, an external magnetic field is applied to drive the separation of target entity (e.g. bacteria, viruses, parasites and cancer cells) from a complex raw sample in order to ease the subsequent task(s) for disease diagnosis. This separation process not only can be achieved via the utilization of high magnetic field gradient, but also, in most cases, low magnetic field gradient with magnitude less than 100 T m−1 is equally feasible. It is the aim of this review paper to summarize the usage of both high gradient magnetic separation and low gradient magnetic separation (LGMS) techniques in this area of research. It is noteworthy that effectiveness of the magnetic separation process not only determines the outcome of a diagnosis but also directly influences its accuracy as well as sensing time involved. Therefore, understanding the factors that simultaneously influence the efficiency of both magnetic separation process and target detection is necessary. Moreover, for LGMS, there are several important considerations that should be taken into account in order to ensure its successful implementation. Hence, this review paper aims to provide an overview to relate all this crucial information by linking the magnetic separation theory to biomedical diagnostic applications. PMID:27920891

  14. Detection of E. coli O157:H7 from ground beef using Fourier transform infrared (FT-IR) spectroscopy and chemometrics.

    PubMed

    Davis, Reeta; Irudayaraj, Joseph; Reuhs, Bradley L; Mauer, Lisa J

    2010-08-01

    FT-IR spectroscopy methods for detection, differentiation, and quantification of E. coli O157:H7 strains separated from ground beef were developed. Filtration and immunomagnetic separation (IMS) were used to extract live and dead E. coli O157:H7 cells from contaminated ground beef prior to spectral acquisition. Spectra were analyzed using chemometric techniques in OPUS, TQ Analyst, and WinDAS software programs. Standard plate counts were used for development and validation of spectral analyses. The detection limit based on a selectivity value using the OPUS ident test was 10(5) CFU/g for both Filtration-FT-IR and IMS-FT-IR methods. Experiments using ground beef inoculated with fewer cells (10(1) to 10(2) CFU/g) reached the detection limit at 6 h incubation. Partial least squares (PLS) models with cross validation were used to establish relationships between plate counts and FT-IR spectra. Better PLS predictions were obtained for quantifying live E. coli O157:H7 strains (R(2)> or = 0.9955, RMSEE < or = 0.17, RPD > or = 14) and different ratios of live and dead E. coli O157:H7 cells (R(2)= 0.9945, RMSEE = 2.75, RPD = 13.43) from ground beef using Filtration-FT-IR than IMS-FT-IR methods. Discriminant analysis and canonical variate analysis (CVA) of the spectra differentiated various strains of E. coli O157:H7 from an apathogenic control strain. CVA also separated spectra of 100% dead cells separated from ground beef from spectra of 0.5% live cells in the presence of 99.5% dead cells of E. coli O157:H7. These combined separation and FT-IR methods could be useful for rapid detection and differentiation of pathogens in complex foods.

  15. In situ, simultaneous thermal imaging and infrared molecular emission studies of solid oxide fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Kirtley, J. D.; Qadri, S. N.; Steinhurst, D. A.; Owrutsky, J. C.

    2016-12-01

    Various in situ probes of solid oxide fuel cells (SOFCs) have advanced recently to provide detailed, real time data regarding materials and chemical processes that relate to device performance and degradation. These techniques offer insights into complex fuel chemistry at the anode in particular, especially in the context of model predictions. However, cell-to-cell variations can hinder mechanistic interpretations of measurements from separate, independent techniques. The present study describes an in situ technique that for the first time simultaneously measures surface temperature changes using near infrared thermal imaging and gas species using Fourier-transform infrared emission spectra at the anodes of operating SOFCs. Electrolyte-supported SOFCs with Ni-based anodes are operated at 700 °C with internal, dry-reformed methane at 75% maximum current and at open circuit voltage (OCV) while electrochemical and optical measurements are collected. At OCV, more cooling is observed coincident with more CO reforming products. Under load, CO decreases while the anode cools less, especially near the current collectors. The extent of cooling is more sensitive to polarization for electrolyte-supported cells because their anodes are thinner relative to anode-supported cells. This study exemplifies how this duplex technique can be a useful probe of electrochemical processes in SOFCs.

  16. Computer-implemented remote sensing techniques for measuring coastal productivity and nutrient transport systems

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1981-01-01

    An automatic technique has been developed to measure marsh plant production by inference from a species classification derived from Landsat MSS data. A separate computer technique has been developed to calculate the transport path length of detritus and nutrients from their point of origin in the marsh to the shoreline from Landsat data. A nutrient availability indicator, the ratio of production to transport path length, was derived for each marsh-identified Landsat cell. The use of a data base compatible with the Landsat format facilitated data handling and computations.

  17. Immunomicrospheres - Reagents for cell labeling and separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Dreyer, W. J.

    1980-01-01

    Immunomicrospheres are specially designed microscopic particles that have antibodies or similar molecules chemically bound to their surfaces. The antibody-coated microspheres react in a highly specific way with target cells, viruses, or other antigenic agents. Immunomicrospheres may be synthesized so that they incorporate compounds that are highly radioactive, intensely fluorescent, magnetic, electron opaque, highly colored, or pharmacologically active. These various types of microspheres may be coated with pure, highly specific monoclonal antibodies obtained by the new hybridoma cell cloning techniques or with conventional antibody preparations. Some of the many present and potential applications for these new reagents are (1) new types of radioimmune or immunofluorescent assays, (2) improved fluorescence microscopy, (3) separation of cells on the basis of the fluorescent, electrophoretic, or magnetic properties of bound immunomicrospheres, (4) markers for use in several types of electron or standard light microscopy, and (5) delivery of lethal compouds to specific undesirable living cells. The combination of the various new types of synthetic microspheres and the newly available homogeneous antibodies offers new opportunities in research, diagnosis, and therapy.

  18. Multiplex coherent raman spectroscopy detector and method

    NASA Technical Reports Server (NTRS)

    Joyner, Candace C. (Inventor); Patrick, Sheena T. (Inventor); Chen, Peter (Inventor); Guyer, Dean R. (Inventor)

    2004-01-01

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  19. Multiplex coherent raman spectroscopy detector and method

    DOEpatents

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  20. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering.

    PubMed

    Akbarzadeh, Rosa; Yousefi, Azizeh-Mitra

    2014-08-01

    Tissue engineering makes use of 3D scaffolds to sustain three-dimensional growth of cells and guide new tissue formation. To meet the multiple requirements for regeneration of biological tissues and organs, a wide range of scaffold fabrication techniques have been developed, aiming to produce porous constructs with the desired pore size range and pore morphology. Among different scaffold fabrication techniques, thermally induced phase separation (TIPS) method has been widely used in recent years because of its potential to produce highly porous scaffolds with interconnected pore morphology. The scaffold architecture can be closely controlled by adjusting the process parameters, including polymer type and concentration, solvent composition, quenching temperature and time, coarsening process, and incorporation of inorganic particles. The objective of this review is to provide information pertaining to the effect of these parameters on the architecture and properties of the scaffolds fabricated by the TIPS technique. © 2014 Wiley Periodicals, Inc.

  1. Multistage Spatial Property Based Segmentation for Quantification of Fluorescence Distribution in Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Guangyun; Jia, Xiuping; Pham, Tuan D.; Crane, Denis I.

    2010-01-01

    The interpretation of the distribution of fluorescence in cells is often by simple visualization of microscope-derived images for qualitative studies. In other cases, however, it is desirable to be able to quantify the distribution of fluorescence using digital image processing techniques. In this paper, the challenges of fluorescence segmentation due to the noise present in the data are addressed. We report that intensity measurements alone do not allow separation of overlapping data between target and background. Consequently, spatial properties derived from neighborhood profile were included. Mathematical Morphological operations were implemented for cell boundary extraction and a window based contrast measure was developed for fluorescence puncta identification. All of these operations were applied in the proposed multistage processing scheme. The testing results show that the spatial measures effectively enhance the target separability.

  2. Measurement of precipitation induced FUV emission and Geocoronal Lyman Alpha from the IMI mission

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.; Fuselier, S. A.; Rairden, R. L.

    1995-01-01

    This final report describes the activities of the Lockheed Martin Palo Alto Research Laboratory in studying the measurement of ion and electron precipitation induced Far Ultra-Violet (FUV) emissions and Geocoronal Lyman Alpha for the NASA Inner Magnetospheric Imager (IMI) mission. this study examined promising techniques that may allow combining several FUV instruments that would separately measure proton aurora, electron aurora, and geocoronal Lyman alpha into a single instrument operated on a spinning spacecraft. The study consisted of two parts. First, the geocoronal Lyman alpha, proton aurora, and electron aurora emissions were modeled to determine instrument requirements. Second, several promising techniques were investigated to determine if they were suitable for use in an IMI-type mission. Among the techniques investigated were the Hydrogen gas cell for eliminating cold geocoronal Lyman alpha emissions, and a coded aperture spectrometer with sufficient resolution to separate Doppler shifted Lyman alpha components.

  3. Acute hydrodynamic damage induced by SPLITT fractionation and centrifugation in red blood cells.

    PubMed

    Urbina, Adriana; Godoy-Silva, Ruben; Hoyos, Mauricio; Camacho, Marcela

    2016-05-01

    Though blood bank processing traditionally employs centrifugation, new separation techniques may be appealing for large scale processes. Split-flow fractionation (SPLITT) is a family of techniques that separates in absence of labelling and uses very low flow rates and force fields, and is therefore expected to minimize cell damage. However, the hydrodynamic stress and possible consequent damaging effects of SPLITT fractionation have not been yet examined. The aim of this study was to investigate the hydrodynamic damage of SPLITT fractionation to human red blood cells, and to compare these effects with those induced by centrifugation. Peripheral whole blood samples were collected from healthy volunteers. Samples were diluted in a buffered saline solution, and were exposed to SPLITT fractionation (flow rates 1-10 ml/min) or centrifugation (100-1500 g) for 10 min. Cell viability, shape, diameter, mean corpuscular hemoglobin, and membrane potential were measured. Under the operating conditions employed, both SPLITT and centrifugation maintained cell viability above 98%, but resulted in significant sublethal damage, including echinocyte formation, decreased cell diameter, decreased mean corpuscular hemoglobin, and membrane hyperpolarization which was inhibited by EGTA. Wall shear stress and maximum energy dissipation rate showed significant correlation with lethal and sublethal damage. Our data do not support the assumption that SPLITT fractionation induces very low shear stress and is innocuous to cell function. Some changes in SPLITT channel design are suggested to minimize cell damage. Measurement of membrane potential and cell diameter could provide a new, reliable and convenient basis for evaluation of hydrodynamic effects on different cell models, allowing identification of optimal operating conditions on different scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. New approaches for metabolomics by mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vertes, Akos

    Small molecules constitute a large part of the world around us, including fossil and some renewable energy sources. Solar energy harvested by plants and bacteria is converted into energy rich small molecules on a massive scale. Some of the worst contaminants of the environment and compounds of interest for national security also fall in the category of small molecules. The development of large scale metabolomic analysis methods lags behind the state of the art established for genomics and proteomics. This is commonly attributed to the diversity of molecular classes included in a metabolome. Unlike nucleic acids and proteins, metabolites domore » not have standard building blocks, and, as a result, their molecular properties exhibit a wide spectrum. This impedes the development of dedicated separation and spectroscopic methods. Mass spectrometry (MS) is a strong contender in the quest for a quantitative analytical tool with extensive metabolite coverage. Although various MS-based techniques are emerging for metabolomics, many of these approaches include extensive sample preparation that make large scale studies resource intensive and slow. New ionization methods are redefining the range of analytical problems that can be solved using MS. This project developed new approaches for the direct analysis of small molecules in unprocessed samples, as well as pushed the limits of ultratrace analysis in volume limited complex samples. The projects resulted in techniques that enabled metabolomics investigations with enhanced molecular coverage, as well as the study of cellular response to stimuli on a single cell level. Effectively individual cells became reaction vessels, where we followed the response of a complex biological system to external perturbation. We established two new analytical platforms for the direct study of metabolic changes in cells and tissues following external perturbation. For this purpose we developed a novel technique, laser ablation electrospray ionization (LAESI), for metabolite profiling of functioning cells and tissues. The technique was based on microscopic sampling of biological specimens by mid-infrared laser ablation followed by electrospray ionization of the plume and MS analysis. The two main shortcomings of this technique had been limited specificity due to the lack of a separation step, and limited molecular coverage, especially for nonpolar chemical species. To improve specificity and the coverage of the metabolome, we implemented the LAESI ion source on a mass spectrometer with ion mobility separation (IMS). In this system, the gas phase ions produced by the LAESI source were first sorted according to their collisional cross sections in a mobility cell. These separated ion packets were then subjected to MS analysis. By combining the atmospheric pressure ionization with IMS, we improved the metabolite coverage. Further enhancement of the non-polar metabolite coverage resulted from the combination of laser ablation with vacuum UV irradiation of the ablation plume. Our results indicated that this new ionization modality provided improved detection for neutral and non-polar compounds. Based on rapid progress in photonics, we had introduced another novel ion source that utilized the interaction of a laser pulse with silicon nanopost arrays (NAPA). In these nanophotonic ion sources, the structural features were commensurate with the wavelength of the laser light. The enhanced interaction resulted in high ion yields. This ultrasensitive analytical platform enabled the MS analysis of single yeast cells. We extended these NAPA studies from yeast to other microorganisms, including green algae (Chlamydomonas reinhardtii) that captured energy from sunlight on a massive scale. Combining cellular perturbations, e.g., through environmental changes, with the newly developed single cell analysis methods enabled us to follow dynamic changes induced in the cells. In effect, we were able to use individual cells as a “laboratory,” and approached the long-standing goal of establishing a “lab-in-a-cell.” Model systems for these studies included cells of cyanobacteria (Anabaena), yeast (Saccharomyces cerevisiae), green algae (C. reinhardtii) and Arabidopsis thaliana.« less

  5. Capture of circulating tumor cells using photoacoustic flowmetry and two phase flow

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine M.; Rood, Kyle D.; Bhattacharyya, Kiran; DeSouza, Thiago; Sengupta, Shramik; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh; Viator, John A.

    2012-06-01

    Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are unable to detect early onset of metastatic disease. Patients must wait until macroscopic secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and travel through the blood or lymph system can provide data for diagnosing and monitoring metastatic disease. By irradiating enriched blood samples spiked with cultured melanoma cells with nanosecond duration laser light, we induced photoacoustic responses in the pigmented cells. Thus, we can detect and enumerate melanoma cells in blood samples to demonstrate a paradigm for a photoacoustic flow cytometer. Furthermore, we capture the melanoma cells using microfluidic two phase flow, a technique that separates a continuous flow into alternating microslugs of air and blood cell suspension. Each slug of blood cells is tested for the presence of melanoma. Slugs that are positive for melanoma, indicated by photoacoustic waves, are separated from the cytometer for further purification and isolation of the melanoma cell. In this paper, we evaluate the two phase photoacoustic flow cytometer for its ability to detect and capture metastastic melanoma cells in blood.

  6. A stem cell apostasy: A tale of 4 H words

    PubMed Central

    Quesenberry, Peter J.; Goldberg, Laura R.; Dooner, Mark S.

    2014-01-01

    The field of hematopoietic stem cell biology has become increasingly dominated by the pursuit and study of highly purified populations of hematopoietic stem cells (HSCs). Such HSCs are typically isolated based on their cell surface marker expression patterns and ultimately defined by their multipotency and capacity for self-generation. However, even with progressively more stringent stem cell separation techniques, the resultant HSC population remains heterogeneous with respect to both self-renewal and differentiation capacity. Critical studies on un-separated whole bone marrow (WBM) have definitively shown that long-term engraftable hematopoietic stem cells are in active cell cycle and thus continually changing phenotype. Therefore, they cannot be purified by current approaches dependent on stable surface epitope expression because the surface markers are continually changing as well. These critical cycling cells are discarded with current stem cell purifications. Despite this, research defining such characteristics as self-renewal capacity, lineage-commitment, bone marrow niches, and proliferative state of HSCs continues to focus predominantly on this small sub-population of purified marrow cells. This review discusses the research leading to the hierarchical model of hematopoiesis and questions the dogmas pertaining to HSC quiescence and purification. PMID:25183450

  7. Probing Metabolic Activity of Deep Subseafloor Life with NanoSIMS

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Terada, T.; Itoh, M.; Inagaki, F.

    2014-12-01

    There are very few natural environments where life is absent in the Earth's surface biosphere. However, uninhabitable region is expected to be exist in the deep subsurface biosphere, of which extent and constraining factor(s) have still remained largly unknown. Scientific ocean drilling have revealed that microbial communities in sediments are generally phylogenetically distinct from known spieces isolated from the Earth's surface biosphere, and hence metabolic functions of the deep subseafloor life remain unknown. In addition, activity of subseafloor microbial cells are thought to be extraordinally slow, as indicated by limited supply of neutrient and energy substrates. To understand the limits of the Earth's subseafloor biosphere and metabolic functions of microbial populations, detection and quantification of the deeply buried microbial cells in geological habitats are fundamentary important. Using newly developed cell separation techniques as well as an discriminative cell detection system, the current quantification limit of sedimentary microbial cells approaches to 102 cells/cm3. These techniques allow not only to assess very small microbial population close to the subsurface biotic fringe, but also to separate and sort the target cells using flow cytometric cell sorter. Once the deep subseafloor microbial cells are detached from mineral grains and sorted, it opens new windows to subsequent molecular ecological and element/isotopic analyses. With a combined use of nano-scale secondary ion masspectrometry (NanoSIMS) and stable isotope-probing techniques, it is possible to detect and measure activity of substrate incorporation into biomass, even for extremely slow metabolic processes such as uncharacteriszed deep subseafloor life. For example, it was evidenced by NanoSIMS that at least over 80% of microbial cells at ~200 meters-deep, 460,000-year-old sedimentary habitat are indeed live, which substrate incooporation was found to be low (10-15 gC/cell/day) even under the lab incubation condition. Also microbial activity in ultraoligotrophic biosphere samples such as the South Pacific Gyre (i.e., IODP Expeditions 329) will be shown. Our results demonstrates metabolic potential of microbes that have been survived for geological timescale in extremely starved condition.

  8. Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability.

    PubMed

    Sediq, A S; Klem, R; Nejadnik, M R; Meij, P; Jiskoot, Wim

    2018-05-30

    To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells.

  9. Impedance spectroscopy assisted by magnetic nanoparticles as a potential biosensor principle for breast cancer cells in suspension.

    PubMed

    Silva, Jesús G; Cárdenas, Rey A; Quiróz, Alan R; Sánchez, Virginia; Lozano, Lucila M; Pérez, Nadia M; López, Jaime; Villanueva, Cleva; González, César A

    2014-06-01

    Breast cancer (BC) is the leading cause of cancer death in women worldwide, with a higher mortality reported in undeveloped countries. Ideal adjuvant therapeutic strategies require the continuous monitoring of patients by regular blood tests to detect circulating cancer cells, in order to determine whether additional treatment is necessary to prevent cancer dissemination. This circumstance requires a non-complex design of tumor cell biosensor in whole blood with feasibility for use in poor regions. In this work we have evaluated an inexpensive and simple technique of relative bioimpedance measurement, assisted by magnetic nanoparticles, as a potential biosensor of BC cells in suspension. Measurements represent the relative impedance changes caused by the magnetic holding of an interphase of tumor cells versus a homogenous condition in the frequency range of 10-100 kHz. The results indicate that use of a magnet to separate tumor cells in suspension, coupled to magnetic nanoparticles, is a feasible technique to fix an interphase of tumor cells in close proximity to gold electrodes. Relative impedance changes were shown to have potential value as a biosensor method for BC cells in whole blood, at frequencies around 20 kHz. Additional studies are warranted with respect to electrode design and sensitivity at micro-scale levels, according to the proposed technique.

  10. Isolation of plasma membrane fractions from the intestinal epithelial model T84.

    PubMed

    Kaoutzani, P; Parkos, C A; Delp-Archer, C; Madara, J L

    1993-05-01

    The human intestinal epithelial cell line T84 is widely used as a model for studies of Cl- secretion and crypt cell biology. We report a fractionation approach that permits separation of purified apical and basolateral T84 plasma membrane domains. T84 cellular membranes were isolated by nitrogen cavitation and differential centrifugation from monolayers grown on permeable supports. Membranes were then fractionated by isopycnic sucrose density gradient sedimentation, and fractions were assessed, using enzymatic and Western blot techniques, for apical (alkaline phosphatase) and basolateral (Na(+)-K(+)-ATPase) plasma membrane markers and for cytosolic, lysosomal, Golgi, and mitochondrial markers. Buffer conditions were defined that permitted separation of enriched apical and basolateral markers. The validity of the selected markers for the apical and basolateral domains was verified by selective apical and basolateral surface labeling studies using trace iodinated wheat germ agglutinin or biotinylation. This approach allows for separation of apical and basolateral plasma membranes of T84 cells for biochemical analyses and should thus be of broad utility in studies of this model polarized and transporting epithelium.

  11. Micromagnet arrays for on-chip focusing, switching, and separation of superparamagnetic beads and single cells.

    PubMed

    Rampini, S; Kilinc, D; Li, P; Monteil, C; Gandhi, D; Lee, G U

    2015-08-21

    Nonlinear magnetophoresis (NLM) is a novel approach for on-chip transport and separation of superparamagnetic (SPM) beads, based on a travelling magnetic field wave generated by the combination of a micromagnet array (MMA) and an applied rotating magnetic field. Here, we present two novel MMA designs that allow SPM beads to be focused, sorted, and separated on-chip. Converging MMAs were used to rapidly collect the SPM beads from a large region of the chip and focus them into synchronised lines. We characterise the collection efficiency of the devices and demonstrate that they can facilitate on-chip analysis of populations of SPM beads using a single-point optical detector. The diverging MMAs were used to control the transport of the beads and to separate them based on their size. The separation efficiency of these devices was determined by the orientation of the magnetisation of the micromagnets relative to the external magnetic field and the size of the beads and relative to that of micromagnets. By controlling these parameters and the rotation of the external magnetic field we demonstrated the controlled transport of SPM bead-labelled single MDA-MB-231 cells. The use of these novel MMAs promises to allow magnetically-labelled cells to be efficiently isolated and then manipulated on-chip for analysis with high-resolution chemical and physical techniques.

  12. Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle

    PubMed Central

    Chen, Katherine C.; Csikasz-Nagy, Attila; Gyorffy, Bela; Val, John; Novak, Bela; Tyson, John J.

    2000-01-01

    The molecular machinery of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected the roles of cyclin molecules (Cln1–3 and Clb1–6) in coordinating the events of DNA synthesis, bud emergence, spindle formation, nuclear division, and cell separation. These experimental clues suggest a mechanism for the principal molecular interactions controlling cyclin synthesis and degradation. Using standard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three major classes of cyclin-dependent kinase activities. Model in hand, we examine the molecular events controlling “Start” (the commitment step to a new round of chromosome replication, bud formation, and mitosis) and “Finish” (the transition from metaphase to anaphase, when sister chromatids are pulled apart and the bud separates from the mother cell) in wild-type cells and 50 mutants. The model accounts for many details of the physiology, biochemistry, and genetics of cell cycle control in budding yeast. PMID:10637314

  13. 3D-printed and CNC milled flow-cells for chemiluminescence detection.

    PubMed

    Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S

    2014-08-01

    Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  15. Development and characterization of porous silver-incorporated hydroxyapatite ceramic for separation and elimination of microorganisms.

    PubMed

    Yang, Lei; Ning, Xiaoshan; Xiao, Qunfang; Chen, Kexin; Zhou, Heping

    2007-04-01

    A novel filter material for separating and eliminating microorganisms in water and gas was fabricated by incorporating silver ions into porous hydroxyapatite (HA) ceramics prepared by a starch additive technique. The porous ceramics reveal a microstructure of both large and small pores. Microorganism separating and eliminating properties of the porous silver-incorporated HA ceramics (PHA-Ag) were investigated by bacterial and viral filtration tests. The PHA-Ag demonstrated excellent separating and antibacterial effects on Escherichia coli and the mechanisms were studied. Adsorption of bacterial cells to the HA and the barricading effect of small pores contribute to the separating property of PHA-Ag, while the Ag+ ions equip the ceramics with antibacterial property. Furthermore, the PHA-Ag exhibited an observable virus-eliminating property and its probable mechanism was also discussed. (c) 2006 Wiley Periodicals, Inc.

  16. The role of RhD agglutination for the detection of weak D red cells by anti-D flow cytometry.

    PubMed

    Grey, D E; Davies, J I; Connolly, M; Fong, E A; Erber, W N

    2005-04-01

    Anti-D flow cytometry is an accurate method for quantifying feto-maternal haemorrhage (FMH). However, weak D red cells with <1000 RhD sites are not detectable using this methodology but are immunogenic. As quantitation of RhD sites is not practical, an alternative approach is required to identify those weak D fetal red cells where anti-D flow cytometry is inappropriate. We describe a simple algorithm based on RhD agglutination and flow cytometry peak separation. All weak D (n = 34) gave weak agglutination with RUM-1 on immediate spin (grading

  17. Evaluation of Wet Chemical ICP-AES Elemental Analysis Methods usingSimulated Hanford Waste Samples-Phase I Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Charles J.; Edwards, Thomas B.

    2005-04-30

    The wet chemistry digestion method development for providing process control elemental analyses of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Melter Feed Preparation Vessel (MFPV) samples is divided into two phases: Phase I consists of: (1) optimizing digestion methods as a precursor to elemental analyses by ICP-AES techniques; (2) selecting methods with the desired analytical reliability and speed to support the nine-hour or less turnaround time requirement of the WTP; and (3) providing baseline comparison to the laser ablation (LA) sample introduction technique for ICP-AES elemental analyses that is being developed at the Savannah River National Laboratory (SRNL).more » Phase II consists of: (1) Time-and-Motion study of the selected methods from Phase I with actual Hanford waste or waste simulants in shielded cell facilities to ensure that the methods can be performed remotely and maintain the desired characteristics; and (2) digestion of glass samples prepared from actual Hanford Waste tank sludge for providing comparative results to the LA Phase II study. Based on the Phase I testing discussed in this report, a tandem digestion approach consisting of sodium peroxide fusion digestions carried out in nickel crucibles and warm mixed-acid digestions carried out in plastic bottles has been selected for Time-and-Motion study in Phase II. SRNL experience with performing this analytical approach in laboratory hoods indicates that well-trained cell operator teams will be able to perform the tandem digestions in five hours or less. The selected approach will produce two sets of solutions for analysis by ICP-AES techniques. Four hours would then be allocated for performing the ICP-AES analyses and reporting results to meet the nine-hour or less turnaround time requirement. The tandem digestion approach will need to be performed in two separate shielded analytical cells by two separate cell operator teams in order to achieve the nine-hour or less turnaround time. Because of the simplicity of the warm mixed-acid method, a well-trained cell operator team may in time be able to perform both sets of digestions. However, having separate shielded cells for each of the methods is prudent to avoid overcrowding problems that would impede a minimal turnaround time.« less

  18. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology.

    PubMed

    Rashid, Mamoon; Stingl, Ulrich

    2015-12-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70-80% of microbial diversity - recently called the "microbial dark matter" - remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Minimally invasive "separation surgery" plus adjuvant stereotactic radiotherapy in the management of spinal epidural metastases.

    PubMed

    Turel, Mazda K; Kerolus, Mena G; O'Toole, John E

    2017-01-01

    This study aimed to describe the application of minimally invasive surgery (MIS) in separation surgery combined with postoperative stereotactic body radiation therapy (SBRT) in patients with symptomatic metastatic epidural spinal disease. Three techniques are described: (1) MIS posterior separation surgery alone, (2) MIS posterolateral separation surgery with percutaneous pedicle screw placement, and (3) MIS lateral corpectomy with percutaneous pedicle screw placement. Seven representative cases are presented in which the above techniques were applied and after which postoperative SBRT was performed. The seven representative patients (3 male, 4 female) had a mean age of 54 years (range, 46-62 years). Two patients had a primary diagnosis of cholangiocarcinoma and in one patient each a diagnosis of breast, renal, lung adenocarcinoma, melanoma, and urothelial squamous cell carcinoma as their primary tumor. All patients had additional multiorgan disease apart from the metastatic spine involvement. Three patients underwent operations in the lumbar spine, two in the thoracic spine, and one in each of the thoraco-lumbar and lumbo-sacral spine. The average operating time was 149 ± 60.3 min (range, 90-240 min). The mean estimated blood loss was 188.8 cc. The mean length of stay in the hospital was 4 days (range, 3-7 days). There were no surgical complications. All patients received postoperative SBRT (typically 24 Gy in 3 fractions) at a mean of 43.2 days after surgery (range, 30-83). Early reports such as this suggest that MIS techniques can be successfully and safely applied in accomplishing "separation surgery" with adjuvant SBRT in the management of metastatic spinal disease. The potential advantages conferred by MIS techniques such as shortened hospital stay, decreased blood loss, reduced perioperative complications, and earlier initiation of adjuvant radiation are highly desirable in the treatment of this challenging patient population.

  20. DNA-protein crosslinking by trans-platinum(II)diamminedichloride in mammalian cells, a new method of analysis.

    PubMed

    Kohn, K W; Ewig, R A

    1979-03-28

    DNA-protien crosslinks produced in mouse leukemia L1210 cells by trans-Pt(II)diamminedichloride were quantitated using the technique of DNA alkaline elution. DNA single-strand segments that were or were not linked to protein were separable into distinct components by alkaline elution after exposure of the cells to 2--15 kR of X-ray. Protein-linked DNA strands were separated on the basis of their retention of filters at pH 12 while free DNA strands of the size generated by 2--15 kR of X-ray passed rapidly through the filters. The retention of protein-linked DNA strands was attributable to adsorption of protein to the filter under the conditions of alkaline elution. The results obeyed a simple quantitative model according to which the frequency of DNA-protein crosslinks could be calculated.

  1. Engineered core-shell magnetic nanoparticle for MR dual-modal tracking and safe magnetic manipulation of ependymal cells in live rodents

    NASA Astrophysics Data System (ADS)

    Peng, Yung-Kang; Lui, Cathy N. P.; Chen, Yu-Wei; Chou, Shang-Wei; Chou, Pi-Tai; Yung, Ken K. L.; Edman Tsang, S. C.

    2018-01-01

    Tagging recognition group(s) on superparamagnetic iron oxide is known to aid localisation (imaging), stimulation and separation of biological entities using magnetic resonance imaging (MRI) and magnetic agitation/separation (MAS) techniques. Despite the wide applicability of iron oxide nanoparticles in T 2-weighted MRI and MAS, the quality of the images and safe manipulation of the exceptionally delicate neural cells in a live brain are currently the key challenges. Here, we demonstrate the engineered manganese oxide clusters-iron oxide core-shell nanoparticle as an MR dual-modal contrast agent for neural stem cells (NSCs) imaging and magnetic manipulation in live rodents. As a result, using this engineered nanoparticle and associated technologies, identification, stimulation and transportation of labelled potentially multipotent NSCs from a specific location of a live brain to another by magnetic means for self-healing therapy can therefore be made possible.

  2. Small Portable PEM Fuel Cell Systems for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2005-01-01

    Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges

  3. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    NASA Astrophysics Data System (ADS)

    Jünger, Felix; Olshausen, Philipp V.; Rohrbach, Alexander

    2016-07-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes.

  4. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    PubMed Central

    Jünger, Felix; Olshausen, Philipp v.; Rohrbach, Alexander

    2016-01-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes. PMID:27465033

  5. Photophoretic velocimetry for the characterization of aerosols.

    PubMed

    Haisch, Christoph; Kykal, Carsten; Niessner, Reinhard

    2008-03-01

    Aerosols are particles in a size range from some nanometers to some micrometers suspended in air or other gases. Their relevance varies as wide as their origin and composition. In the earth's atmosphere they influence the global radiation balance and human health. Artificially produced aerosols are applied, e.g., for drug administration, as paint and print pigments, or in rubber tire production. In all these fields, an exact characterization of single particles as well as of the particle ensemble is essential. Beyond characterization, continuous separation is often required. State-of-the-art separation techniques are based on electrical, thermal, or flow fields. In this work we present an approach to apply light in the form of photophoretic (PP) forces for characterization and separation of aerosol particles according to their optical properties. Such separation technique would allow, e.g., the separation of organic from inorganic particles of the same aerodynamic size. We present a system which automatically records velocities induced by PP forces and does a statistical evaluation in order to characterize the particle ensemble properties. The experimental system essentially consists of a flow cell with rectangular cross section (1 cm(2), length 7 cm), where the aerosol stream is pumped through in the vertical direction at ambient pressure. In the cell, a laser beam is directed orthogonally to the particle flow direction, which results in a lateral displacement of the particles. In an alternative configuration, the beam is directed in the opposite direction to the aerosol flow; hence, the particles are slowed down by the PP force. In any case, the photophoretically induced variations of speed and position are visualized by a second laser illumination and a camera system, feeding a mathematical particle tracking algorithm. The light source inducing the PP force is a diode laser (lambda = 806 nm, P = 0.5 W).

  6. [Identification of occult disseminated tumor cells by recombinant herpes simplex virus expressing GFP (HSV(GFP))].

    PubMed

    Han, Xiang-ping; Shi, Gui-lan; Wang, Cheng-feng; Li, Jie; Zhang, Jian-wei; Zhang, Yu; Zhang, Shu-ren; Liu, Bin-lei

    2012-12-01

    To develop a novel rapid protocol for the detection of occult disseminated tumor cells by a recombinant herpes simplex virus expressing GFP (HSV(GFP)). Tumor cells of seven cell lines were exposed to HSV(GFP) and then examined for GFP expression by fluorescence microscopy. Various numbers of tumor cells (10, 100, 1000, 10 000) were mixed into 2 ml human whole blood, separated with lymphocytes separation medium, exposed to HSV(GFP), incubated at 37°C for 6 - 24 h and then counted for the number of green cells under the fluorescence microscope. Some clinical samples including peripheral blood, pleural effusion, ascites, spinal fluid from tumor-bearing patients were screened using this protocol in parallel with routine cytological examination. HSV(GFP) was able to infect all 7 tumor cell lines indicating that the HSV(GFP) can be used to detect different types of tumor cells. The detection sensitivity was 10 cancer cells in 2 ml whole blood. In the clinical samples, there were 4/15 positive by routine cytological examination but 11/15 positive by HSV(GFP), indicating a higher sensitivity of this new protocol. Recombinant herpes simplex virus-mediated green fluorescence is a simple and sensitive technique for the identification of occult disseminated cancer cells including circulating tumor cells (CTCs).

  7. Separation of similar yeast strains by IEF techniques.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel

    2009-06-01

    Rapid and reliable identification of the etiological agents of infectious diseases, especially species that are hardly distinguishable by routinely used laboratory methods, e.g. Candida albicans from C. dubliniensis, is necessary for early administration of an appropriate therapy. Similarly, the differentiation between biofilm-positive and biofilm-negative yeast strains is necessary for the choice of a therapeutic strategy due to higher resistance of the biofilm-positive strains to antifungals. In this study rapid separation and identification of similar strains of Candida, cells and/or their lysates, based on IEF are outlined. The isoelectric points of the monitored "similar pairs" of Candidas, C. albicans and C. dubliniensis and the biofilm-positive C. parapsilosis, C. tropicalis and their biofilm-negative strains were determined by CIEF with UV detection in the acidic pH gradient. The differences between their isoelectric points were up to 0.3 units of pI. Simultaneously, a fast and a simple technique was developed for the lysis of the outer membrane cell and characteristic fingerprints were found in lysate electrophoreograms and in gels from the capillary or the gel IEF, respectively.

  8. Carbon Nanotube Based Devices for Intracellular Analysis

    NASA Astrophysics Data System (ADS)

    Singhal, Riju Mohan

    Scientific investigations on individual cells have gained increasing attention in recent years as efforts are being made to understand cellular functioning in complex processes, such as cell division during embryonic development, and owing to realization of heterogeneity amongst a population of a single cell type (for instance, certain individual cancer cells being immune to chemotherapy). Therefore devices enabling electrochemical detection, spectroscopy, optical observations, and separation techniques, along with cell piercing and fluid transfer capabilities at the intra-cellular level, are required. Glass pipettes have conventionally been used for single cell interrogation, however their poor mechanical properties and an intrusive conical geometry have led to limited precision and frequent cell damage or death, justifying research efforts to develop novel, non-intrusive cell probes. Carbon nanotubes (CNTs) are known for their superior physical properties and tunable chemical structure. They possess a high aspect ratio and offer minimally invasive thin carbon walls and tubular geometry. Moreover, possibility of chemical functionalization of CNTs enables multi-functional probes. In this dissertation, novel nanofluidic instruments that have nanostructured carbon tips will be presented along with techniques that utilize the exceptional physical properties of carbon nanotubes, to take miniature biomedical instrumentation to the next level. New methods for fabricating the probes were rigorously developed and their operation was extensively studied. The devices were mechanically robust and were used to inject liquids to a single cell, detect electrochemical signals and enable surface enhanced Raman spectroscopy (SERS) while inducing minimal harm to the cell. Particular attention was focused on the CVD process-which was used to deposit carbon, fluid flow through the nanotubes, and separation of chemical species (atto-liter chromatography) at the nanometer scale that would potentially lead to the highly sought after "selective component extraction" and analysis from a single cell. These multi-functional devices therefore provide a picture of the physiological state of a living cell and function as endoscopes for single cell analysis.

  9. Harnessing electrical forces for separation. Capillary zone electrophoresis, isoelectric focusing, field-flow fractionation, split-flow thin-cell continuous-separation and other techniques.

    PubMed

    Giddings, J C

    1989-10-20

    A simple analysis, first presented twenty years ago, showed that the effectiveness of a field-driven separation like electrophoresis, as expressed by the maximum number of theoretical plates (N), is given by the dimensionless ratio of two energies N = -delta mu ext/2RT in which -delta mu ext is the electrical potential energy drop of a charged species and RT is the thermal energy (R is the gas constant and T is the absolute temperature). Quantity -delta mu ext is the product of the force F acting on the species and the path length X of separation. The exceptional power of electrophoresis, for which often N approximately 10(6), can be traced directly to the enormous magnitude of the electrical force F. This paper explores the fundamentals underlying several different means for utilizing these powerful electrical forces for separation, including capillary zone electrophoresis, gel electrophoresis, isoelectric focusing, electrical field-flow fractionation and split-flow thin continuous separation cells. Remarkably, the above equation and its relatives are found to describe the approximate performance of all these diverse electrically driven systems. Factors affecting both the resolving power and separation speed of the systems are addressed; from these considerations some broad optimization criteria emerge. The capabilities of the different methods are compared using numerical examples.

  10. Optical tweezers for measuring the interaction of the two single red blood cells in flow condition

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander

    2017-03-01

    Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)

  11. Disentangling Random Motion and Flow in a Complex Medium

    PubMed Central

    Koslover, Elena F.; Chan, Caleb K.; Theriot, Julie A.

    2016-01-01

    We describe a technique for deconvolving the stochastic motion of particles from large-scale fluid flow in a dynamic environment such as that found in living cells. The method leverages the separation of timescales to subtract out the persistent component of motion from single-particle trajectories. The mean-squared displacement of the resulting trajectories is rescaled so as to enable robust extraction of the diffusion coefficient and subdiffusive scaling exponent of the stochastic motion. We demonstrate the applicability of the method for characterizing both diffusive and fractional Brownian motion overlaid by flow and analytically calculate the accuracy of the method in different parameter regimes. This technique is employed to analyze the motion of lysosomes in motile neutrophil-like cells, showing that the cytoplasm of these cells behaves as a viscous fluid at the timescales examined. PMID:26840734

  12. Erythrocyte Membrane Failure by Electromechanical Stress.

    PubMed

    Du, E; Qiang, Yuhao; Liu, Jia

    2018-01-01

    We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  13. Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential

    PubMed Central

    Jiang, Chun-Sheng; Yang, Mengjin; Zhou, Yuanyuan; To, Bobby; Nanayakkara, Sanjini U.; Luther, Joseph M.; Zhou, Weilie; Berry, Joseph J.; van de Lagemaat, Jao; Padture, Nitin P.; Zhu, Kai; Al-Jassim, Mowafak M.

    2015-01-01

    Organometal–halide perovskite solar cells have greatly improved in just a few years to a power conversion efficiency exceeding 20%. This technology shows unprecedented promise for terawatt-scale deployment of solar energy because of its low-cost, solution-based processing and earth-abundant materials. We have studied charge separation and transport in perovskite solar cells—which are the fundamental mechanisms of device operation and critical factors for power output—by determining the junction structure across the device using the nanoelectrical characterization technique of Kelvin probe force microscopy. The distribution of electrical potential across both planar and porous devices demonstrates p–n junction structure at the TiO2/perovskite interfaces and minority-carrier diffusion/drift operation of the devices, rather than the operation mechanism of either an excitonic cell or a p-i-n structure. Combining the potential profiling results with solar cell performance parameters measured on optimized and thickened devices, we find that carrier mobility is a main factor that needs to be improved for further gains in efficiency of the perovskite solar cells. PMID:26411597

  14. Carrier Separation and Transport in Perovskite Solar Cells Studied by Nanometre-Scale Profiling of Electrical Potential

    DOE PAGES

    Jiang, Chun-Sheng; Yang, Mengjin; Zhou, Yuanyuan; ...

    2015-09-28

    Organometal–halide perovskite solar cells have greatly improved in just a few years to a power conversion efficiency exceeding 20%. This technology shows unprecedented promise for terawatt-scale deployment of solar energy because of its low-cost, solution-based processing and earth-abundant materials. We have studied charge separation and transport in perovskite solar cells—which are the fundamental mechanisms of device operation and critical factors for power output—by determining the junction structure across the device using the nanoelectrical characterization technique of Kelvin probe force microscopy. Moreover, the distribution of electrical potential across both planar and porous devices demonstrates p–n junction structure at the TiO2/perovskite interfacesmore » and minority-carrier diffusion/drift operation of the devices, rather than the operation mechanism of either an excitonic cell or a p-i-n structure. When we combined the potential profiling results with solar cell performance parameters measured on optimized and thickened devices, we find that carrier mobility is a main factor that needs to be improved for further gains in efficiency of the perovskite solar cells.« less

  15. Assays for the spindle assembly checkpoint in cell culture.

    PubMed

    Marcozzi, Chiara; Pines, Jonathon

    2018-01-01

    The spindle assembly checkpoint (SAC) is crucial to maintain genomic stability since it prevents premature separation of sister chromatids in mitosis and ensures the fidelity of chromosome segregation. The SAC arrests cells in mitosis and is not satisfied until all kinetochores are stably attached to the mitotic spindle. Improperly attached kinetochores activate the SAC and catalyze the formation of the mitotic checkpoint complex (MCC), containing Mad2, Cdc20, BubR1, and Bub3 proteins. The MCC binds and thereby inhibits the APC/C E3 ubiquitin ligase until the last kinetochore has attached to microtubules. Once the SAC is satisfied, the APC/C promptly activates and targets cyclin B1 and securin for degradation, thus allowing sister chromatids to separate and the cell to exit mitosis. Our understanding of SAC signaling has increased thanks to the development of new genetic, biochemical, molecular, and structural biology techniques. Here, we describe how live-cell imaging microscopy in combination with gene-targeting strategies and biochemical assays can be exploited to investigate the intrinsic properties of the SAC in mammalian cultured cells. © 2018 Elsevier Inc. All rights reserved.

  16. Characterization of microporous separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Venugopal, Ganesh; Moore, John; Howard, Jason; Pendalwar, Shekhar

    Several properties including porosity, pore-size distribution, thickness value, electrochemical stability and mechanical properties have to be optimized before a membrane can qualify as a separator for a lithium-ion battery. In this paper we present results of characterization studies carried out on some commercially available lithium-ion battery separators. The relevance of these results to battery performance and safety are also discussed. Porosity values were measured using a simple liquid absorption test and gas permeabilities were measured using a novel pressure drop technique that is similar in principle to the Gurley test. For separators from one particular manufacturer, the trend observed in the pressure drop times was found to be in agreement with the Gurley numbers reported by the separator manufacturer. Shutdown characteristics of the separators were studied by measuring the impedance of batteries containing the separators as a function of temperature. Overcharge tests were also performed to confirm that separator shutdown is indeed a useful mechanism for preventing thermal runaway situations. Polyethylene containing separators, in particular trilayer laminates of polypropylene, polyethylene and polypropylene, appear to have the most attractive properties for preventing thermal runaway in lithium ion cells.

  17. Investigation of Turbulent Boundary-Layer Separation Using Laser Velocimetry

    NASA Technical Reports Server (NTRS)

    Modarress, D.; Johnson, D. A.

    1979-01-01

    Boundary-layer measurements realized by laser velocimetry are presented for a Much 2.9, two-dimensional, shock-wave/turbulent boundary-layer interaction containing an extensive region of separated flow. Mean velocity and turbulent intensity profiles were obtained from upstream of the interaction zone to downstream of the mean reattachment point. The superiority of the laser velocimeter technique over pressure sensors in turbulent separated flows is demonstrated by a comparison of the laser velocimeter data with results obtained from local pilot and static pressure measurements for the same flow conditions. The locations of the mean separation and reattachment points as deduced from the mean velocity measurements are compared to oil-now visualization results. Representative velocity probability density functions obtained in the separated now region are also presented. Critical to the success of this investigation were: the use of Bragg cell frequency shifting and artificial seeding of the now with submicron light-scattering particles.

  18. High temperature seals between ceramic separation membranes and super-alloy housing

    NASA Technical Reports Server (NTRS)

    Honea, G.; Sridhar, K. R.

    1991-01-01

    One of the concepts for oxygen production from Martian atmospheric carbon dioxide involves the use of tubular electrochemical membranes for oxygen separation. The tubular configuration offers the advantage of being able to separate the oxygen at pressures of up to 500 psi, thereby eliminating the need for a pre-liquefaction oxygen compressor. A key technology that has to be developed in order for the electrochemical separator to combine as a compressor is a high temperature static seal between the ceramic separation cell and the nickel-based super-alloy tube. Equipment was designed and fabricated to test the seals. Efforts are under way to develop a finite element model to study the thermal stresses at the joints and on the seal, and the optimal shape of the seal. The choice of seal materials and the technique to be used to fabricate the seals are also being investigated.

  19. A high performance ceramic-polymer separator for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Kichambare, Padmakar; Rai, Amarendra K.; Bhattacharya, Rabi; Rodrigues, Stanley; Subramanyam, Guru

    2016-01-01

    A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared to regular PE separator, LAGP/PE/LAGP hybrid separator showed: (i) higher liquid electrolyte uptake, (ii) higher ionic conductivity, (iii) lower interfacial resistance with lithium and (iv) lower cell voltage polarization during lithium cycling at high current density of 1.3 mA cm-2 at room temperature. The enhanced performance is attributed to higher liquid uptake, LAGP-assisted faster ion conduction and dendrite prevention. Optimization of density and thickness of LAGP layer on PE or other membranes through manipulation of PVD deposition parameters will enable practical applications of this novel hybrid separator in rechargeable lithium batteries with high energy, high power, longer cycle life, and higher safety level.

  20. Removal of malaria-infected red blood cells using magnetic cell separators: A computational study

    PubMed Central

    Kim, Jeongho; Massoudi, Mehrdad; Antaki, James F.; Gandini, Alberto

    2012-01-01

    High gradient magnetic field separators have been widely used in a variety of biological applications. Recently, the use of magnetic separators to remove malaria-infected red blood cells (pRBCs) from blood circulation in patients with severe malaria has been proposed in a dialysis-like treatment. The capture efficiency of this process depends on many interrelated design variables and constraints such as magnetic pole array pitch, chamber height, and flow rate. In this paper, we model the malaria-infected RBCs (pRBCs) as paramagnetic particles suspended in a Newtonian fluid. Trajectories of the infected cells are numerically calculated inside a micro-channel exposed to a periodic magnetic field gradient. First-order stiff ordinary differential equations (ODEs) governing the trajectory of particles under periodic magnetic fields due to an array of wires are solved numerically using the 1st –5th order adaptive step Runge-Kutta solver. The numerical experiments show that in order to achieve a capture efficiency of 99% for the pRBCs it is required to have a longer length than 80 mm; this implies that in principle, using optimization techniques the length could be adjusted, i.e., shortened to achieve 99% capture efficiency of the pRBCs. PMID:22345827

  1. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  2. Profiling of Sugar Nucleotides.

    PubMed

    Rejzek, Martin; Hill, Lionel; Hems, Edward S; Kuhaudomlarp, Sakonwan; Wagstaff, Ben A; Field, Robert A

    2017-01-01

    Sugar nucleotides are essential building blocks for the glycobiology of all living organisms. Detailed information on the types of sugar nucleotides present in a particular cell and how they change as a function of metabolic, developmental, or disease status is vital. The extraction, identification, and quantification of sugar nucleotides in a given sample present formidable challenges. In this chapter, currently used techniques for sugar nucleotide extraction from cells, separation from complex biological matrices, and detection by optical and mass spectrometry methods are discussed. © 2017 Elsevier Inc. All rights reserved.

  3. A Tri-Band Frequency Selective Surface (FSS) to Diplex Widely Separated Bands for Millimeter Wave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha

    2016-10-01

    A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.

  4. Chlorophyll and carotenoid pigments of prochloron (prochlorophyta)

    NASA Technical Reports Server (NTRS)

    Paerl, H. W.; Lewin, R. A.; Cheng, L.

    1983-01-01

    High-performance liquid chromatography (HPLC) with a gradient-elution technique was utilized to separate and quantify chlorophylls a and b as well as major carotenoid pigments present in freeze-dried preprations of prochloron-didemnid associations and in Prochloron cells separated from host colonies. Results confirm earlier spectrophotometric evidence for both chlorophylls a and b in this prokaryote. Chlorophyll a:b ratios range from 4.14 to 19.71; generally good agreement was found between ratios determined in isolated cell preprations and in symbiotic colonies (in hospite). These values are 1.5 to 5-fold higher than ratios determined in a variety of eukaryotic green plants. The carotenoids in Prochloron are quantitatively and qualitatively similar to those found in various freshwater and marine blue-green algae (cyanopbytes) from high-light environments. However, Prochloron differs from cyanophytes by the absence of myxoxanthophyll and related glycosidic carotenoids. It pigment characteristics are considered sufficiently different from those of cyanophytes to justify its assignment to a separate algal division.

  5. Splenic red pulp macrophages are intrinsically superparamagnetic and contaminate magnetic cell isolates.

    PubMed

    Franken, Lars; Klein, Marika; Spasova, Marina; Elsukova, Anna; Wiedwald, Ulf; Welz, Meike; Knolle, Percy; Farle, Michael; Limmer, Andreas; Kurts, Christian

    2015-08-11

    A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.

  6. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  7. Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity

    PubMed Central

    Krönig, Malte; Walter, Max; Drendel, Vanessa; Werner, Martin; Jilg, Cordula A.; Richter, Andreas S.; Backofen, Rolf; McGarry, David; Follo, Marie; Schultze-Seemann, Wolfgang; Schüle, Roland

    2015-01-01

    A lack of cell surface markers for the specific identification, isolation and subsequent analysis of living prostate tumor cells hampers progress in the field. Specific characterization of tumor cells and their microenvironment in a multi-parameter molecular assay could significantly improve prognostic accuracy for the heterogeneous prostate tumor tissue. Novel functionalized gold-nano particles allow fluorescence-based detection of absolute mRNA expression levels in living cells by fluorescent activated flow cytometry (FACS). We use of this technique to separate prostate tumor and benign cells in human prostate needle biopsies based on the expression levels of the tumor marker alpha-methylacyl-CoA racemase (AMACR). We combined RNA and protein detection of living cells by FACS to gate for epithelial cell adhesion molecule (EPCAM) positive tumor and benign cells, EPCAM/CD45 double negative mesenchymal cells and CD45 positive infiltrating lymphocytes. EPCAM positive epithelial cells were further sub-gated into AMACR high and low expressing cells. Two hundred cells from each population and several biopsies from the same patient were analyzed using a multiplexed gene expression profile to generate a cell type resolved profile of the specimen. This technique provides the basis for the clinical evaluation of cell type resolved gene expression profiles as pre-therapeutic prognostic markers for prostate cancer. PMID:25514598

  8. Development of novel separation techniques for biological samples in capillary electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Huan -Tsung

    1994-07-27

    This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good waymore » to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.« less

  9. Clustering of brain tumor cells: a first step for understanding tumor recurrence

    NASA Astrophysics Data System (ADS)

    Khain, Evgeniy; Nowicki, M. O.; Chiocca, E. A.; Lawler, S. E.; Schneider-Mizell, C. M.; Sander, L. M.

    2012-02-01

    Glioblastoma tumors are highly invasive; therefore the overall prognosis of patients remains poor, despite major improvements in treatment techniques. Cancer cells detach from the inner tumor core and actively migrate away [1]; eventually these invasive cells might form clusters, which can develop to recurrent tumors. In vitro experiments in collagen gel [1] followed the clustering dynamics of different glioma cell lines. Based on the experimental data, we formulated a stochastic model for cell dynamics, which identified two mechanisms of clustering. First, there is a critical value of the strength of adhesion; above the threshold, large clusters grow from a homogeneous suspension of cells; below it, the system remains homogeneous, similarly to the ordinary phase separation. Second, when cells form a cluster, there is evidence that their proliferation rate increases. We confirmed the theoretical predictions in a separate cell migration experiment on a substrate and found that both mechanisms are crucial for cluster formation and growth [2]. In addition to their medical importance, these phenomena present exciting examples of pattern formation and collective cell behavior in intrinsically non-equilibrium systems [3]. [4pt] [1] A. M. Stein et al, Biophys. J., 92, 356 (2007). [0pt] [2] E. Khain et al, EPL 88, 28006 (2009). [0pt] [3] E. Khain et al, Phys. Rev. E. 83, 031920 (2011).

  10. Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques.

    PubMed

    Feng, Jingwen; Feng, Tong; Yang, Chengwen; Wang, Wei; Sa, Yu; Feng, Yuanming

    2018-06-01

    This study was to explore the feasibility of prediction and classification of cells in different stages of apoptosis with a stain-free method based on diffraction images and supervised machine learning. Apoptosis was induced in human chronic myelogenous leukemia K562 cells by cis-platinum (DDP). A newly developed technique of polarization diffraction imaging flow cytometry (p-DIFC) was performed to acquire diffraction images of the cells in three different statuses (viable, early apoptotic and late apoptotic/necrotic) after cell separation through fluorescence activated cell sorting with Annexin V-PE and SYTOX® Green double staining. The texture features of the diffraction images were extracted with in-house software based on the Gray-level co-occurrence matrix algorithm to generate datasets for cell classification with supervised machine learning method. Therefore, this new method has been verified in hydrogen peroxide induced apoptosis model of HL-60. Results show that accuracy of higher than 90% was achieved respectively in independent test datasets from each cell type based on logistic regression with ridge estimators, which indicated that p-DIFC system has a great potential in predicting and classifying cells in different stages of apoptosis.

  11. Separating large microscale particles by exploiting charge differences with dielectrophoresis.

    PubMed

    Polniak, Danielle V; Goodrich, Eric; Hill, Nicole; Lapizco-Encinas, Blanca H

    2018-04-13

    Dielectrophoresis (DEP), the migration of particles due to polarization effects under the influence of a nonuniform electric field, was employed for characterizing the behavior and achieving the separation of larger (diameter >5 μm) microparticles by exploiting differences in electrical charge. Usually, electrophoresis (EP) is the method of choice for separating particles based on differences in electrical charge; however, larger particles, which have low electrophoretic mobilities, cannot be easily separated with EP-based techniques. This study presents an alternative for the characterization, assessment, and separation of larger microparticles, where charge differences are exploited with DEP instead of EP. Polystyrene microparticles with sizes varying from 5 to 10 μm were characterized employing microdevices for insulator-based dielectrophoresis (iDEP). Particles within an iDEP microchannel were exposed simultaneously to DEP, EP, and electroosmotic (EO) forces. The electrokinetic behavior of four distinct types of microparticles was carefully characterized by means of velocimetry and dielectrophoretic capture assessments. As a final step, a dielectropherogram separation of two distinct types of 10 μm particles was devised by first characterizing the particles and then performing the separation. The two types of 10 μm particles were eluted from the iDEP device as two separate peaks of enriched particles in less than 80 s. It was demonstrated that particles with the same size, shape, surface functionalization, and made from the same bulk material can be separated with iDEP by exploiting slight differences in the magnitude of particle charge. The results from this study open the possibility for iDEP to be used as a technique for the assessment and separation of biological cells that have very similar characteristics (shape, size, similar make-up), but slight variance in surface electrical charge. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Recycling of nickel-metal hydride battery scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyman, J.W.; Palmer, G.R.

    1994-12-31

    Nickel-metal hydride (Ni-MH) battery technology is being developed as a NiCd replacement for applications in consumer cells and electric vehicle batteries. The U.S. Bureau of Mines is investigating hydrometallurgical recycling technology that separates and recovers individual components from Ni-MH battery scrap. Acid dissolution and metal recovery techniques such as precipitation and solvent extraction produced purified products of rare-earths, nickel, and other metals associated with AB{sub 2} and AB{sub 5} Ni-MH scrap. Tests were conducted on scrap cells of a single chemistry that had been de-canned to reduce iron content. Although recovery techniques have been identified in principal, their applicability tomore » mixed battery waste stream and economic attractiveness remain to be demonstrated. 14 refs.« less

  13. [Application of microbial fuel cell (MFC) in solid waste composting].

    PubMed

    Cui, Jinxin; Wang, Xin; Tang, Jingchun

    2012-03-01

    Microbial fuel cell (MFC) is a new technology that can recover energy from biomass with simultaneous waste treatment. This technique has been developed fast in recent years in combining with environmental techniques such as wastewater treatment, degradation of toxic pollutants and desalination. With the increase of solid waste, applying MFC in composting is promising due to its property of waste disposal with simultaneous energy generation. In this paper, the microbial community of MFCs during composting was summarized. Four major influencing factors including electrodes, separators, oxygen supplement and configurations on the performance of composting MFCs were discussed. The characteristics of composting MFC as a new technique for reducing solid waste were as follows: high microbial biomass resulted in the high current density; adaptable to different environmental conditions; self-adjustable temperature with high energy efficiency; the transportation of proton from anode to cathode were limited by different solid substrates.

  14. Graphene liquid cells for multi-technique analysis of biological cells in water environment

    NASA Astrophysics Data System (ADS)

    Matruglio, A.; Zucchiatti, P.; Birarda, G.; Marmiroli, B.; D'Amico, F.; Kocabas, C.; Kiskinova, M.; Vaccari, L.

    2018-05-01

    In-cell exploration of biomolecular constituents is the new frontier of cellular biology that will allow full access to structure-activity correlation of biomolecules, overcoming the limitations imposed by dissecting the cellular milieu. However, the presence of water, which is a very strong IR absorber and incompatible with the vacuum working conditions of all analytical methods using soft x-rays and electrons, poses severe constraint to perform important imaging and spectroscopic analyses under physiological conditions. Recent advances to separate the sample compartment in liquid cell are based on electron and photon transparent but molecular-impermeable graphene membranes. This strategy has opened a unique opportunity to explore technological materials under realistic operation conditions using various types of electron microscopy. However, the widespread of the graphene liquid cell applications is still impeded by the lack of well-established approaches for their massive production. We report on the first preliminary results for the fabrication of reproducible graphene liquid cells appropriate for the analysis of biological specimens in their natural hydrated environment with several crucial analytical techniques, namely FTIR microscopy, Raman spectroscopy, AFM, SEM and TEM.

  15. Investigation of an optimal cell lysis method for the study of the zinc metalloproteome of Histoplasma capsulatum.

    PubMed

    Donnell, Anna M; Lewis, Stephanie; Abraham, Sami; Subramanian, Kavitha; Figueroa, Julio Landero; Deepe, George S; Vonderheide, Anne P

    2017-10-01

    This work sought to assess optimal extraction conditions in the study of the metalloproteome of the dimorphic fungus Histoplasma capsulatum. One of the body's responses to H. capsulatum infection is sequestration of zinc within host macrophage (MØ), as reported by Vignesh et al. (Immunity 39:697-710, 2013) and Vignesh et al. (PLOS Pathog 9:E1003815, 2013). Thus, metalloproteins containing zinc were of greatest interest as it plays a critical role in survival of the fungus. One challenge in metalloproteomics is the preservation of the native structure of proteins to retain non-covalently bound metals. Many of the conventional cell lysis, separation, and identification techniques in proteomics are carried out under conditions that could lead to protein denaturation. Various cell lysis techniques were investigated in an effort to both maintain the metalloproteins during lysis and subsequent analysis while, at the same time, serving to be strong enough to break the cell wall, allowing access to cytosolic metalloproteins. The addition of 1% Triton x-100, a non-ionic detergent, to the lysis buffer was also studied. Seven lysis methods were considered and these included: Glass Homogenizer (H), Bead Beater (BB), Sonication Probe (SP), Vortex with 1% Triton x-100 (V, T), Vortex with no Triton x-100 (V, NT), Sonication Bath, Vortex, and 1% Triton x-100 (SB, V, T) and Sonication Bath, Vortex, and no Triton x-100 (SB, V, NT). A Qubit® Assay was used to compare total protein concentration and inductively coupled plasma-mass spectrometry (ICP-MS) was utilized for total metal analysis of cell lysates. Size exclusion chromatography coupled to ICP-MS (SEC-HPLC-ICP-MS) was used for separation of the metalloproteins in the cell lysate and the concentration of Zn over a wide molecular weight range was examined. Additional factors such as potential contamination sources were also considered. A cell lysis method involving vortexing H. capsulatum yeast cells with 500 μm glass beads in a 1% Triton x-100 lysis buffer (V, T) was found to be most advantageous to extract intact zinc metalloproteins as demonstrated by the highest Zn to protein ratio, 1.030 ng Zn/μg protein, and Zn distribution among high, mid, and low molecular weights suggesting the least amount of protein denaturation. Graphical abstract In this work, several cell lysis techniques and two lysis buffers were investigated to evaluate the preservation of the zinc metalloproteome of H. capsulatum while maintaining compatibility with the analytical techniques employed.

  16. Cu doping concentration effect on the physical properties of CdS thin films obtained by the CBD technique

    NASA Astrophysics Data System (ADS)

    Albor Aguilera, M. L.; Flores Márquez, J. M.; Remolina Millan, A.; Matsumoto Kuwabara, Y.; González Trujillo, M. A.; Hernández Vásquez, C.; Aguilar Hernandez, J. R.; Hernández Pérez, M. A.; Courel-Piedrahita, M.; Madeira, H. T. Yee

    2017-08-01

    Cu(In, Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) semiconductors are direct band gap materials; when these types of material are used in solar cells, they provide efficiencies of 22.1% and 12.6%, respectively. Most traditional fabrication methods involve expensive vacuum processes including co-evaporation and sputtering techniques, where films and doping are conducted separately. On the other hand, the chemical bath deposition (CBD) technique allows an in situ process. Cu-doped CdS thin films working as a buffer layer on solar cells provide good performing devices and they may be deposited by low cost techniques such as chemical methods. In this work, Cu-doped CdS thin films were deposited using the CBD technique on SnO2:F (FTO) substrates. The elemental analysis and mapping reconstruction were conducted by EDXS. Morphological, optical and electrical properties were studied, and they revealed that Cu doping modified the CdS structure, band-gap value and the electrical properties. Cu-doped CdS films show high resistivity compared to the non-doped CdS. The appropriate parameters of Cu-doped CdS films were determined to obtain an adequate window or buffer layer on CIGS and CZTS photovoltaic solar cells.

  17. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    PubMed

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes <1,000 L, clarification using multi-stage depth filtration offers cost savings compared to clarification using centrifugation. For bioreactor volumes >5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.

  18. Facile hyphenation of gas chromatography and a microcantilever array sensor for enhanced selectivity.

    PubMed

    Chapman, Peter J; Vogt, Frank; Dutta, Pampa; Datskos, Panos G; Devault, Gerald L; Sepaniak, Michael J

    2007-01-01

    The very simple coupling of a standard, packed-column gas chromatograph with a microcantilever array (MCA) is demonstrated for enhanced selectivity and potential analyte identification in the analysis of volatile organic compounds (VOCs). The cantilevers in MCAs are differentially coated on one side with responsive phases (RPs) and produce bending responses of the cantilevers due to analyte-induced surface stresses. Generally, individual components are difficult to elucidate when introduced to MCA systems as mixtures, although pattern recognition techniques are helpful in identifying single components, binary mixtures, or composite responses of distinct mixtures (e.g., fragrances). In the present work, simple test VOC mixtures composed of acetone, ethanol, and trichloroethylene (TCE) in pentane and methanol and acetonitrile in pentane are first separated using a standard gas chromatograph and then introduced into a MCA flow cell. Significant amounts of response diversity to the analytes in the mixtures are demonstrated across the RP-coated cantilevers of the array. Principal component analysis is used to demonstrate that only three components of a four-component VOC mixture could be identified without mixture separation. Calibration studies are performed, demonstrating a good linear response over 2 orders of magnitude for each component in the primary study mixture. Studies of operational parameters including column temperature, column flow rate, and array cell temperature are conducted. Reproducibility studies of VOC peak areas and peak heights are also carried out showing RSDs of less than 4 and 3%, respectively, for intra-assay studies. Of practical significance is the facile manner by which the hyphenation of a mature separation technique and the burgeoning sensing approach is accomplished, and the potential to use pattern recognition techniques with MCAs as a new type of detector for chromatography with analyte-identifying capabilities.

  19. Capillary electrophoresis in two-dimensional separation systems: Techniques and applications.

    PubMed

    Kohl, Felix J; Sánchez-Hernández, Laura; Neusüß, Christian

    2015-01-01

    The analysis of complex samples requires powerful separation techniques. Here, 2D chromatographic separation techniques (e.g. LC-LC, GC-GC) are increasingly applied in many fields. Electrophoretic separation techniques show a different selectivity in comparison to LC and GC and very high separation efficiency. Thus, 2D separation systems containing at least one CE-based separation technique are an interesting alternative featuring potentially a high degree of orthogonality. However, the generally small volumes and strong electrical fields in CE require special coupling techniques. These technical developments are reviewed in this work, discussing benefits and drawbacks of offline and online systems. Emphasis is placed on the design of the systems, their coupling, and the detector used. Moreover, the employment of strategies to improve peak capacity, resolution, or sensitivity is highlighted. Various applications of 2D separations with CE are summarized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantitative two-dimensional gel electrophoresis analysis of human fibroblasts transformed by ras oncogenes.

    PubMed

    Miller, M J; Maher, V M; McCormick, J J

    1992-11-01

    Quantitative two-dimensional gel electrophoresis was used to compare the cellular protein patterns of a normal foreskin-derived human fibroblasts cell line (LG1) and three immortal derivatives of LG1. One derivative, designated MSU-1.1 VO, was selected for its ability to grow in the absence of serum and is non-tumorigenic in athymic mice. The other two strains were selected for focus-formation following transfection with either Ha-ras or N-ras oncogenes and form high grade malignant tumors. Correspondence and cluster analysis provided a nonbiased estimate of the relative similarity of the different two-dimensional patterns. These techniques separated the gel patterns into three distinct classes: LG1, MSU-1.1 VO, and the ras transformed cell strains. The MSU-1.1 VO cells were more closely related to the parental LG1 than to the ras-transformed cells. The differences between the three classes were primarily quantitative in nature: 16% of the spots demonstrated statistically significant changes (P < 0.01, T test, mean ratio of intensity > 2) in the rate of incorporation of radioactive amino acids. The patterns from the two ras-transformed cell strains were similar, and variations in the expression of proteins that occurred between the separate experiments obscured consistent differences between the Ha-ras and N-ras transformed cells. However, while only 9 out of 758 spots were classified as different (1%), correspondence analysis could consistently separate the two ras transformants. One of these spots was five times more intense in the Ha-ras transformed cells than the N-ras.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells.

    PubMed

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H; Watkins, Scott E; Kim, Dong-Yu; Vak, Doojin

    2016-02-08

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%.

  2. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells

    PubMed Central

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H.; Watkins, Scott E.; Kim, Dong-Yu; Vak, Doojin

    2016-01-01

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%. PMID:26853266

  3. Particle separation by phase modulated surface acoustic waves.

    PubMed

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  4. Optical excitations dynamics at hetero-interfaces fullerene/quantum dots

    NASA Astrophysics Data System (ADS)

    Righetto, Marcello; Privitera, Alberto; Franco, Lorenzo; Bozio, Renato

    2017-08-01

    Embedding Semiconductor Quantum Dots (QDs) into hybrid organic-inorganic solar cell holds promises for improving photovoltaic performances. Thanks to their strong coupling with electro-magnetic radiation field, QDs represent paradigmatic photon absorbers. Nevertheless, the quest for suitable charge separating hetero-interfaces is still an open challenge. Within this framework, the excited state interactions between QDs and fullerene derivatives are of great interest for ternary solar cells (polymer:QDs:fullerene). In this work, we investigated the exciton dynamics of core/shell CdSe/CdS QDs both in solution and in blends with fullerene derivative (PCBM). By means of transient optical techniques, we aimed to unveil the dynamics of the QDs-PCBM interaction. Indeed, the observed excited state depopulation of QDs in blends is compatible with an excited state interaction living on picosecond timescale. Through electron paramagnetic resonance, we delved into the nature of this interaction, identifying the presence of charge separated states. The concurrence of these observations suggest a fast electron transfer process, where QDs act as donors and PCBM molecules as acceptors, followed by effective charge separation. Therefore, our experimental results indicate the QDs-PCBM heterointerface as suitable exciton separating interface, paving the way for possible applications in photovoltaics.

  5. From Molecules to Cells to Organisms: Understanding Health and Disease with Multidimensional Single-Cell Methods

    NASA Astrophysics Data System (ADS)

    Candia, Julián

    2013-03-01

    The multidimensional nature of many single-cell measurements (e.g. multiple markers measured simultaneously using Fluorescence-Activated Cell Sorting (FACS) technologies) offers unprecedented opportunities to unravel emergent phenomena that are governed by the cooperative action of multiple elements across different scales, from molecules and proteins to cells and organisms. We will discuss an integrated analysis framework to investigate multicolor FACS data from different perspectives: Singular Value Decomposition to achieve an effective dimensional reduction in the data representation, machine learning techniques to separate different patient classes and improve diagnosis, as well as a novel cell-similarity network analysis method to identify cell subpopulations in an unbiased manner. Besides FACS data, this framework is versatile: in this vein, we will demonstrate an application to the multidimensional single-cell shape analysis of healthy and prematurely aged cells.

  6. Environmental Exposure of Sperm Sex-Chromosomes: A Gender Selection Technique.

    PubMed

    Oyeyipo, Ibukun P; van der Linde, Michelle; du Plessis, Stefan S

    2017-10-01

    Preconceptual sex selection is still a highly debatable process whereby X- and Y-chromosome-bearing spermatozoa are isolated prior to fertilization of the oocyte. Although various separation techniques are available, none can guarantee 100% accuracy. The aim of this study was to separate X- and Y-chromosome-bearing spermatozoa using methods based on the viability difference between the X- and Y-chromosome-bearing spermatozoa. A total of 18 experimental semen samples were used, written consent was obtained from all donors and results were analysed in a blinded fashion. Spermatozoa were exposed to different pH values (5.5, 6.5, 7.5, 8.5, and 9.5), increased temperatures (37°C, 41°C, and 45°C) and ROS level (50 μM, 750 μM, and 1,000 μM). The live and dead cell separation was done through a modified swim-up technique. Changes in the sex-chromosome ratio of samples were established by double-label fluorescent in situ hybridization (FISH) before and after processing. The results indicated successful enrichment of Xchromosome-bearing spermatozoa upon incubation in acidic media, increased temperatures, and elevated H 2 O 2 . This study demonstrated the potential role for exploring the physiological differences between X-and Y-chromosome-bearing spermatozoa in the development of preconceptual gender selection.

  7. Column-coupling strategies for multidimensional electrophoretic separation techniques.

    PubMed

    Kler, Pablo A; Sydes, Daniel; Huhn, Carolin

    2015-01-01

    Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the different intermediate and final detection methods implemented for such separations.

  8. Bead mediated separation of microparticles in droplets.

    PubMed

    Wang, Sida; Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A

    2017-01-01

    Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead's solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield.

  9. Bead mediated separation of microparticles in droplets

    PubMed Central

    Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A.

    2017-01-01

    Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield. PMID:28282412

  10. Nanoindentation of the interphase region of a wood-reinforced polypropylene composite

    Treesearch

    Joseph E. Jakes; John C. Hermanson; Donald S. Stone

    2007-01-01

    The interphase region of a wood-reinforced polypropylene (PP) composite was investigated with nanoindentation techniques capable of separating intrinsic properties of PP in the interphase region from the effect of elastic discontinuity caused by the nearby wood cell wall. From data collected in this experiment, no differences in hardness or Young’s modulus for PP were...

  11. Rapid isolation of blood plasma using a cascaded inertial microfluidic device

    PubMed Central

    Robinson, M.; Hinsdale, T.; Coté, G.

    2017-01-01

    Blood, saliva, mucus, sweat, sputum, and other biological fluids are often hindered in their ability to be used in point-of-care (POC) diagnostics because their assays require some form of off-site sample pre-preparation to effectively separate biomarkers from larger components such as cells. The rapid isolation, identification, and quantification of proteins and other small molecules circulating in the blood plasma from larger interfering molecules are therefore particularly important factors for optical blood diagnostic tests, in particular, when using optical approaches that incur spectroscopic interference from hemoglobin-rich red blood cells (RBCs). In this work, a sequential spiral polydimethylsiloxane (PDMS) microfluidic device for rapid (∼1 min) on-chip blood cell separation is presented. The chip utilizes Dean-force induced migration via two 5-loop Archimedean spirals in series. The chip was characterized in its ability to filter solutions containing fluorescent beads and silver nanoparticles and further using blood solutions doped with a fluorescent protein. Through these experiments, both cellular and small molecule behaviors in the chip were assessed. The results exhibit an average RBC separation efficiency of ∼99% at a rate of 5.2 × 106 cells per second while retaining 95% of plasma components. This chip is uniquely suited for integration within a larger point-of-care diagnostic system for the testing of blood plasma, and the use of multiple filtering spirals allows for the tuning of filtering steps, making this device and the underlying technique applicable for a wide range of separation applications. PMID:28405258

  12. Magnetization of individual yeast cells by in situ formation of iron oxide on cell surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Jinsu; Lee, Hojae; Choi, Insung S.; Yang, Sung Ho

    2017-09-01

    Magnetic functionalization of living cells has intensively been investigated with the aim of various bioapplications such as selective separation, targeting, and localization of the cells by using an external magnetic field. However, the magnetism has not been introduced to individual living cells through the in situ chemical reactions because of harsh conditions required for synthesis of magnetic materials. In this work, magnetic iron oxide was formed on the surface of living cells by optimizing reactions conditions to be mild sufficiently enough to sustain cell viability. Specifically, the reactive LbL strategy led to formation of magnetically responsive yeast cells with iron oxide shells. This facile and direct post-magnetization method would be a useful tool for remote manipulation of living cells with magnetic interactions, which is an important technique for the integration of cell-based circuits and the isolation of cell in microfluidic devices.

  13. Detection, manipulation and post processing of circulating tumor cells using optical techniques

    NASA Astrophysics Data System (ADS)

    Bakhtiaridoost, Somayyeh; Habibiyan, Hamidreza; Ghafoorifard, Hassan

    2015-12-01

    Circulating tumor cells (CTCs) are malignant cells that are derived from a solid tumor in the metastasis stage and are shed into the blood stream. These cells hold great promise to be used as liquid biopsy that is less aggressive than traditional biopsy. Recently, detection and enumeration of these cells has received ever-increasing attention from researchers as a way of early detection of cancer metastasis, determining the effectiveness of treatment and studying the mechanism of formation of secondary tumors. CTCs are found in blood at low concentration, which is a major limitation of isolation and detection of these cells. Over the last few years, multifarious research studies have been conducted on accurate isolation and detection and post processing of CTCs. Among all the proposed systems, microfluidic systems seem to be more attractive for researchers due to their numerous advantages. On the other hand, recent developments in optical methods have made the possibility of cellular studies at single-cell level. Thus, accuracy and efficiency of separation, detection and manipulation of CTCs can be improved using optical techniques. In this review, we describe optical methods that have been used for CTC detection, manipulation and post processing.

  14. A polymeric micro total analysis system for single-cell analysis

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Hong

    The advancement of microengineering has enabled the manipulation and analysis of single cells, which is critical in understanding the molecular mechanisms underlying the basic physiological functions from the point of view of modern biologists. Unfortunately, analysis of single cells remains challenging from a technical perspective, mainly because of the miniature nature of the cell and the high throughput requirements of the analysis. Lab-on-a-chip (LOC) emerges as a research field that shows great promise in this perspective. We have demonstrated a micro total analysis system (mu-TAS) combining chip-based electrophoretic separation, fluorescence detection, and a pulsed Nd:YAG laser cell lysis system, in a Poly(dimethylsiloxane) (PDMS) microfluidic analytical platform for the implementation of single-cell analysis. To accomplish the task, a polymeric microfluidic device was fabricated and UV graft polymerization surface modification techniques were used. To optimize the conditions for the surface treatment techniques, the modified surfaces of PDMS were characterized using AIR-IR spectrum and sessile water drop contact angle measurements, and in-channel surfaces were characterized by their electroosmotic flow mobility. Accurate single-cell analysis relies on rapid cell lysis and therefore an optical measure of fast cell lysis was implemented and optimized in a microscopic station. The influences of pulse energy and the location of the laser beam with respect to the cell in the microchannel were explored. The observation from the cell disruption experiments suggested that the cell lysis was enabled mainly via a thermo-mechanical instead of a plasma-mediated mechanism. Finally, after chip-based electrophoresis and a laser-induced fluorescence (LIF) detection system were incorporated with the laser lysis system in a microfluidic analytical station, a feasibility demonstration of single-cell analysis was implemented. The analytical platform exhibited the capability of fluidic transportation, optical lysis of single cells, separation, and analysis of the lysates by electrophoresis and LIF detection. In comparison with the control experiment, the migration times of the fluorescent signals for the cytosolic fluorophores were in good agreement with those for the standard fluorophores, which confirmed the feasibility of the analytical processes.

  15. Visible light-sensitive APTES-bound ZnO nanowire toward a potent nanoinjector sensing biomolecules in a living cell

    NASA Astrophysics Data System (ADS)

    Lee, Jooran; Choi, Sunyoung; Bae, Seon Joo; Yoon, Seok Min; Choi, Joon Sig; Yoon, Minjoong

    2013-10-01

    Nanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon interaction with a complementary sequence-based double stranded (ds) DNA, whereas it is not significantly affected by non-complementary ds DNA. Further, the tip of a single APTES-ZnO NW can be inserted into the subcellular region of living HEK 293 cells without significant toxicity, and it can also detect the enhancement of the tip emission from subcellular regions with high spatial resolution. These results indicate that the single APTES-ZnO NW would be useful as a potent nanoinjector which can guide visible light into intracellular compartments of mammalian cells, and can also detect nanoscopic optical signal changes induced by interaction with the subcellular specific target biomolecules without separate optical probes.Nanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon interaction with a complementary sequence-based double stranded (ds) DNA, whereas it is not significantly affected by non-complementary ds DNA. Further, the tip of a single APTES-ZnO NW can be inserted into the subcellular region of living HEK 293 cells without significant toxicity, and it can also detect the enhancement of the tip emission from subcellular regions with high spatial resolution. These results indicate that the single APTES-ZnO NW would be useful as a potent nanoinjector which can guide visible light into intracellular compartments of mammalian cells, and can also detect nanoscopic optical signal changes induced by interaction with the subcellular specific target biomolecules without separate optical probes. Electronic supplementary information (ESI) available: Synthesis of APTES-modified ZnO nanowires, DNA functionalization and spectroscopic measurements with additional fluorescence image ad fluorescence decay times, cell culture, injection of a single nanowire into living cells, subcellular imaging and determination of cytotoxicity. See DOI: 10.1039/c3nr03042c

  16. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.

  17. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions. PMID:28042492

  18. Reverse membrane bioreactor: Introduction to a new technology for biofuel production.

    PubMed

    Mahboubi, Amir; Ylitervo, Päivi; Doyen, Wim; De Wever, Heleen; Taherzadeh, Mohammad J

    2016-01-01

    The novel concept of reverse membrane bioreactors (rMBR) introduced in this review is a new membrane-assisted cell retention technique benefiting from the advantageous properties of both conventional MBRs and cell encapsulation techniques to tackle issues in bioconversion and fermentation of complex feeds. The rMBR applies high local cell density and membrane separation of cell/feed to the conventional immersed membrane bioreactor (iMBR) set up. Moreover, this new membrane configuration functions on basis of concentration-driven diffusion rather than pressure-driven convection previously used in conventional MBRs. These new features bring along the exceptional ability of rMBRs in aiding complex bioconversion and fermentation feeds containing high concentrations of inhibitory compounds, a variety of sugar sources and high suspended solid content. In the current review, the similarities and differences between the rMBR and conventional MBRs and cell encapsulation regarding advantages, disadvantages, principles and applications for biofuel production are presented and compared. Moreover, the potential of rMBRs in bioconversion of specific complex substrates of interest such as lignocellulosic hydrolysate is thoroughly studied. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Fluorescence lifetime imaging microscopy using near-infrared contrast agents.

    PubMed

    Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S

    2012-08-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.

  20. Fluorescence Lifetime Imaging Microscopy Using Near-Infrared Contrast Agents

    PubMed Central

    Nothdurft, Ralph; Sarder, Pinaki; Bloch, Sharon; Culver, Joseph; Achilefu, Samuel

    2013-01-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labeled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes’ relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. PMID:22788550

  1. Minimally invasive “separation surgery” plus adjuvant stereotactic radiotherapy in the management of spinal epidural metastases

    PubMed Central

    Turel, Mazda K; Kerolus, Mena G; O'Toole, John E

    2017-01-01

    Aim: This study aimed to describe the application of minimally invasive surgery (MIS) in separation surgery combined with postoperative stereotactic body radiation therapy (SBRT) in patients with symptomatic metastatic epidural spinal disease. Methods: Three techniques are described: (1) MIS posterior separation surgery alone, (2) MIS posterolateral separation surgery with percutaneous pedicle screw placement, and (3) MIS lateral corpectomy with percutaneous pedicle screw placement. Seven representative cases are presented in which the above techniques were applied and after which postoperative SBRT was performed. Results: The seven representative patients (3 male, 4 female) had a mean age of 54 years (range, 46–62 years). Two patients had a primary diagnosis of cholangiocarcinoma and in one patient each a diagnosis of breast, renal, lung adenocarcinoma, melanoma, and urothelial squamous cell carcinoma as their primary tumor. All patients had additional multiorgan disease apart from the metastatic spine involvement. Three patients underwent operations in the lumbar spine, two in the thoracic spine, and one in each of the thoraco-lumbar and lumbo-sacral spine. The average operating time was 149 ± 60.3 min (range, 90–240 min). The mean estimated blood loss was 188.8 cc. The mean length of stay in the hospital was 4 days (range, 3–7 days). There were no surgical complications. All patients received postoperative SBRT (typically 24 Gy in 3 fractions) at a mean of 43.2 days after surgery (range, 30–83). Conclusions: Early reports such as this suggest that MIS techniques can be successfully and safely applied in accomplishing “separation surgery” with adjuvant SBRT in the management of metastatic spinal disease. The potential advantages conferred by MIS techniques such as shortened hospital stay, decreased blood loss, reduced perioperative complications, and earlier initiation of adjuvant radiation are highly desirable in the treatment of this challenging patient population. PMID:28694595

  2. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  3. Multifunctional picoliter droplet manipulation platform and its application in single cell analysis.

    PubMed

    Gu, Shu-Qing; Zhang, Yun-Xia; Zhu, Ying; Du, Wen-Bin; Yao, Bo; Fang, Qun

    2011-10-01

    We developed an automated and multifunctional microfluidic platform based on DropLab to perform flexible generation and complex manipulations of picoliter-scale droplets. Multiple manipulations including precise droplet generation, sequential reagent merging, and multistep solid-phase extraction for picoliter-scale droplets could be achieved in the present platform. The system precision in generating picoliter-scale droplets was significantly improved by minimizing the thermo-induced fluctuation of flow rate. A novel droplet fusion technique based on the difference of droplet interfacial tensions was developed without the need of special microchannel networks or external devices. It enabled sequential addition of reagents to droplets on demand for multistep reactions. We also developed an effective picoliter-scale droplet splitting technique with magnetic actuation. The difficulty in phase separation of magnetic beads from picoliter-scale droplets due to the high interfacial tension was overcome using ferromagnetic particles to carry the magnetic beads to pass through the phase interface. With this technique, multistep solid-phase extraction was achieved among picoliter-scale droplets. The present platform had the ability to perform complex multistep manipulations to picoliter-scale droplets, which is particularly required for single cell analysis. Its utility and potentials in single cell analysis were preliminarily demonstrated in achieving high-efficiency single-cell encapsulation, enzyme activity assay at the single cell level, and especially, single cell DNA purification based on solid-phase extraction.

  4. Differential staining of bacteria: gram stain.

    PubMed

    Moyes, Rita B; Reynolds, Jackie; Breakwell, Donald P

    2009-11-01

    In 1884, Hans Christian Gram, a Danish doctor, developed a differential staining technique that is still the cornerstone of bacterial identification and taxonomic division. This multistep, sequential staining protocol separates bacteria into four groups based on cell morphology and cell wall structure: Gram-positive cocci, Gram-negative cocci, Gram-positive rods, and Gram-negative rods. The Gram stain is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures. (c) 2009 by John Wiley & Sons, Inc.

  5. Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates

    PubMed Central

    Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura

    2016-01-01

    Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790

  6. Paper-based device for separation and cultivation of single microalga.

    PubMed

    Chen, Chih-Chung; Liu, Yi-Ju; Yao, Da-Jeng

    2015-12-01

    Single-cell separation is among the most useful techniques in biochemical research, diagnosis and various industrial applications. Microalgae species have great economic importance as industrial raw materials. Microalgae species collected from environment are typically a mixed and heterogeneous population of species that must be isolated and purified for examination and further application. Conventional methods, such as serial dilution and a streaking-plate method, are intensive of labor and inefficient. We developed a paper-based device for separation and cultivation of single microalga. The fabrication was simply conducted with a common laser printer and required only a few minutes without lithographic instruments and clean-room. The driving force of the paper device was simple capillarity without a complicated pump connection that is part of most devices for microfluidics. The open-structure design of the paper device makes it operable with a common laboratory micropipette for sample transfer and manipulation with a naked eye or adaptable to a robotic system with functionality of high-throughput retrieval and analysis. The efficiency of isolating a single cell from mixed microalgae species is seven times as great as with a conventional method involving serial dilution. The paper device can serve also as an incubator for microalgae growth on simply rinsing the paper with a growth medium. Many applications such as highly expressed cell selection and various single-cell analysis would be applicable. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Selection and Characterization of Dunaliella salina Mutants Defective in Haloadaptation 1

    PubMed Central

    Chitlaru, Edith; Pick, Uri

    1989-01-01

    A technique for selection of Dunaliella mutants defective in their capacity to recover from osmotic shocks has been developed. The selection is based on physical separation of mutants on density gradients. This technique takes advantage of the fact that Dunaliella cells, when exposed to osmotic shocks, initially change volume and density due to water gain or loss and subsequently recover their volume and density by readjusting their intracellular glycerol. Eight mutants that do not recover their original density following hyperosmotic shocks have been isolated. The mutants grow similar to wild type cells in 1 molar NaCl, and recover like the wild type from hypotonic shocks but are defective in recovering from hypertonic shocks. A partial characterization of one of the mutants is described. Images Figure 1 PMID:16667101

  8. Combined quantitative and qualitative two-channel optical biopsy technique for discrimination of tumor borders

    NASA Astrophysics Data System (ADS)

    Bocher, Thomas; Beuthan, Juergen; Scheller, M.; Hopf, Juergen U. G.; Linnarz, Marietta; Naber, Rolf-Dieter; Minet, Olaf; Becker, Wolfgang; Mueller, Gerhard J.

    1995-12-01

    Conventional laser-induced fluorescence spectroscopy (LIFS) of endogenous chromophores like NADH (Nicotineamide Adenine Dinucleotide, reduced form) and PP IX (Protoporphyrin IX) provides information about the relative amounts of these metabolites in the observed cells. But for diagnostic applications the concentrations of these chromophores have to be determined quantitatively to establish tissue-independent differentiation criterions. It is well- known that the individually and locally varying optical tissue parameters are major obstacles for the determination of the true chromophore concentrations by simple fluorescence spectroscopy. To overcome these problems a fiber-based, 2-channel technique including a rescaled NADH-channel (delivering quantitative values) and a relative PP IX-channel was developed. Using the accumulated information of both channels can provide good tissue state separation. Ex-vivo studies with resected and frozen samples (with LN2) of squamous cells in the histologically confirmed states: normal, tumor border, inflammation and hyperplasia were performed. Each state was represented in this series with at least 7 samples. At the identical tissue spot both, the rescaled NADH-fluorescence and the relative PP IX- fluorescence, were determined. In the first case a nitrogen laser (337 nm, 500 ps, 200 microjoule, 10 Hz) in the latter case a diode laser (633 nm, 15 mW, cw) were used as excitation sources. In this ex-vivo study a good separation between the different tissue states was achieved. With a device constructed for clinical usage one quantitative, in-vivo NADH- measurement was done recently showing similar separation capabilities.

  9. Online Nanoflow Multidimensional Fractionation for High Efficiency Phosphopeptide Analysis*

    PubMed Central

    Ficarro, Scott B.; Zhang, Yi; Carrasco-Alfonso, Marlene J.; Garg, Brijesh; Adelmant, Guillaume; Webber, James T.; Luckey, C. John; Marto, Jarrod A.

    2011-01-01

    Despite intense, continued interest in global analyses of signaling cascades through mass spectrometry-based studies, the large-scale, systematic production of phosphoproteomics data has been hampered in-part by inefficient fractionation strategies subsequent to phosphopeptide enrichment. Here we explore two novel multidimensional fractionation strategies for analysis of phosphopeptides. In the first technique we utilize aliphatic ion pairing agents to improve retention of phosphopeptides at high pH in the first dimension of a two-dimensional RP-RP. The second approach is based on the addition of strong anion exchange as the second dimension in a three-dimensional reversed phase (RP)-strong anion exchange (SAX)-RP configuration. Both techniques provide for automated, online data acquisition, with the 3-D platform providing the highest performance both in terms of separation peak capacity and the number of unique phosphopeptide sequences identified per μg of cell lysate consumed. Our integrated RP-SAX-RP platform provides several analytical figures of merit, including: (1) orthogonal separation mechanisms in each dimension; (2) high separation peak capacity (3) efficient retention of singly- and multiply-phosphorylated peptides; (4) compatibility with automated, online LC-MS analysis. We demonstrate the reproducibility of RP-SAX-RP and apply it to the analysis of phosphopeptides derived from multiple biological contexts, including an in vitro model of acute myeloid leukemia in addition to primary polyclonal CD8+ T-cells activated in vivo through bacterial infection and then purified from a single mouse. PMID:21788404

  10. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins.

    PubMed

    Weber, C; Simon, J; Mailänder, V; Morsbach, S; Landfester, K

    2018-06-08

    Nanocarriers that are used for targeted drug delivery come in contact with biological liquids and subsequently proteins will adsorb to the nanocarriers' surface to form the so called 'protein corona'. The protein corona defines the biological identity and determines the biological response towards the nanocarriers in the body. To make nanomedicine safe and reliable it is required to get a better insight into this protein corona and, therefore, the adsorbed proteins have to be characterized. Currently, centrifugation is the common method to isolate the protein corona for further investigations. However, with this method it is only possible to investigate the strongly bound proteins, also referred to as 'hard protein corona'. Therefore, we want to introduce a new separation technique to separate nanoparticles including the soft protein corona containing also loosely bound proteins for further characterization. The used separation technique is the asymmetric flow field-flow fractionation (AF4). We were able to separate the nanoparticles with proteins forming the soft protein corona and were able to show that in our system only the hard protein corona directly influenced the cell uptake behavior. Currently, there is an ongoing debate whether only strongly bound proteins (hard corona) or also loosely bound proteins (soft corona) contribute to the biological identity of nanocarriers, because up to now isolation of the soft corona was not possible. Here, asymmetric flow field-flow fractionation was used to isolate nanoparticles with a preserved soft corona from the biological medium. This enabled the characterization of the soft corona composition and to evaluate its influence on cellular uptake. For our system we found that only the strongly bound proteins (hard corona) determined cell internalization. This method can now be used to evaluate the impact of the soft corona further and to characterize nanomaterials that cannot be separated from blood plasma by other means. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Separation of abscission zone cells in detached Azolla roots depends on apoplastic pH.

    PubMed

    Fukuda, Kazuma; Yamada, Yoshiya; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji

    2013-01-01

    In studies on the mechanism of cell separation during abscission, little attention has been paid to the apoplastic environment. We found that the apoplastic pH surrounding abscission zone cells in detached roots of the water fern Azolla plays a major role in cell separation. Abscission zone cells of detached Azolla roots were separated rapidly in a buffer at neutral pH and slowly in a buffer at pH below 4.0. However, cell separation rarely occurred at pH 5.0-5.5. Light and electron microscopy revealed that cell separation was caused by a degradation of the middle lamella between abscission zone cells at both pH values, neutral and below 4.0. Low temperature and papain treatment inhibited cell separation. Enzyme(s) in the cell wall of the abscission zone cells might be involved in the degradation of the pectin of the middle lamella and the resultant, pH-dependent cell separation. By contrast, in Phaseolus leaf petioles, unlike Azolla roots, cell separation was slow and increased only at acidic pH. The rapid cell separation, as observed in Azolla roots at neutral pH, did not occur. Indirect immunofluorescence microscopy, using anti-pectin monoclonal antibodies, revealed that the cell wall pectins of the abscission zone cells of Azolla roots and Phaseolus leaf petioles looked similar and changed similarly during cell separation. Thus, the pH-related differences in cell separation mechanisms of Azolla and Phaseolus might not be due to differences in cell wall pectin, but to differences in cell wall-located enzymatic activities responsible for the degradation of pectic substances. A possible enzyme system is discussed. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Magnetic manipulation of particles and cells in ferrofluid flow through straight microchannels using two magnets

    NASA Astrophysics Data System (ADS)

    Zeng, Jian

    Microfluidic devices have been increasingly used in the past two decades for particle and cell manipulations in many chemical and biomedical applications. A variety of force fields have been demonstrated to control particle and cell transport in these devices including electric, magnetic, acoustic, and optical forces etc. Among these particle handling techniques, the magnetic approach provides clear advantages over others such as low cost, noninvasive, and free of fluid heating issues. However, the current knowledge of magnetic control of particle transport is still very limited, especially lacking is the handling of diamagnetic particle. This thesis is focused on the magnetic manipulation of diamagnetic particles and cells in ferrofluid flow through the use of a pair of permanent magnets. By varying the configuration of the two magnets, diverse operations of particles and cells is implemented in a straight microchannel that can potentially be integrated into lab-on-a-chip devices for various applications. First, an approach for embedding two, symmetrically positioned, repulsive permanent magnets about a straight rectangular microchannel in a PDMS-based microfluidic device is developed for particle focusing. Focusing particles and cells into a tight stream is often required in order for continuous detection, counting, and sorting. The closest distance between the magnets is limited only by the size of the magnets involved in the fabrication process. The device is used to implement and investigate the three-dimensional magnetic focusing of polystyrene particles in ferrofluid microflow with both top-view and side-view visualizations. The effects of flow speed and particle size on the particle focusing effectiveness are studied. This device is also applied to magnetically focus yeast cells in ferrofluid, which proves to be biocompatible as verified by cell viability test. In addition, an analytical model is developed and found to be able to predict the experimentally observed particle and cell focusing behaviors with reasonable agreement. Next, a simple magnetic technique to concentrate polystyrene particles and live yeast cells in ferrofluid flow through a straight rectangular microchannel is developed. Concentrating particles to a detectable level is often necessary in many applications. The magnetic field gradient is created by two attracting permanent magnets that are placed on the top and bottom of the planar microfluidic device and held in position by their natural attractive force. The effects of flow speed and magnet-magnet distance are studied and the device was applied for use for concentrating live yeast cells. The magnet-magnet distance is mainly controlled by the thickness of the device substrate and can be made small, providing a locally strengthened magnetic field as well as allowing for the use of dilute ferrofluid in the developed magnetic concentration technique. This advantage not only enables a magnetic/fluorescent label-free handling of diamagnetic particles but also renders such handling biocompatible. Lastly, a device is presented for a size-based continuous separation of particles through a straight rectangular microchannel. Particle separation is critical in many applications involving the sorting of cells. A first magnet is used for focusing the particle mixture into a single stream due to its relative close positioning with respect to the channel, thus creating a greater magnetic field magnitude. Then, a following magnet is used to displace the aligned particles to dissimilar flow paths by placing it farther away compared the first magnet, which provides a weaker magnetic field, therefore more sensitive towards the deflection of particles based on their size. The effects of both flow speed and separator magnet position are examined. The experimental data are found to fit well with analytical model predictions. This is followed by a study replacing the particles which are closely sized to that of live yeast cells and observe the separation of the cells from larger particles. Afterwards, a test for biocompatibility is confirmed.

  13. Isolation of tissue layers in hermatypic corals by N-acetylcysteine: morphological and proteomic examinations

    NASA Astrophysics Data System (ADS)

    Peng, S.-E.; Luo, Y.-J.; Huang, H.-J.; Lee, I.-T.; Hou, L.-S.; Chen, W.-N. U.; Fang, L.-S.; Chen, C.-S.

    2008-03-01

    Corals are diploblastic in body pattern and include two tissue layers, the epidermis and gastrodermis, interconnected by an acellular matrix mesoglea. During development, cells in these tissue layers differentiate morphologically and functionally. In most hermatypic corals, the gastrodermis further develops an ability to associate with microalgae dinoflagellates. This endosymbiosis occurs inside specific host gastrodermal cells, and its mechanism still remains unclear notwithstanding decades of research. The delay in progress is partly due to the difficulty in separating the gastrodermis and its symbionts from the epidermis for detailed cellular and biochemical investigations. The present study reports a simple method to separate these two tissue layers in hermatypic corals using the reducing agent, N-acetylcysteine (NAC). Efficient tissue and proteomic isolations are demonstrated by microscopy and two-dimensional SDS polyacrylamide gel electrophoresis (2D SDS-PAGE). The NAC treatment was able to separate tissue layers without inducing protein degradation. Furthermore, the sensitivity of protein detection greatly increases in the isolated tissue layers. The application of the present technique provides future research on endosymbiosis and coral development with a tool for higher accuracy and sensitivity.

  14. Ultrasound guided transplantation of enriched and cryopreserved spermatogonial cell suspension in goats.

    PubMed

    Kaul, G; Kaur, J; Rafeeqi, T A

    2010-12-01

    Spermatogonial stem cells transplantation provides a unique approach for studying spermatogenesis. Initially developed in mice, this technique has now been extended in farm animals and provides an alternative means to preserve valuable male germ line and to produce transgenic animals. The aim of this study was to enrich type A spermatogonial cells amongst the isolated cells from goat testis, to cryopreserve these enriched populations of cells and their subsequent transplantation in unrelated recipient goats under ultrasound guidance. The cells were isolated enzymatically and enriched by differential plating and separation on discontinuous percoll gradient. Ultrasound guided injection of trypan blue dye into rete testis resulted in 20-30% filling of the seminiferous tubules. Prior to transplantation, the cells were labelled with a fluorescent dye to trace donor cells in recipient seminiferous tubules after transplantation. The fluorescent-labelled cells were observed up to 12 weeks after transplantation. © 2009 Blackwell Verlag GmbH.

  15. Long life, rechargeable nickel-zinc battery

    NASA Technical Reports Server (NTRS)

    Luksha, E.

    1974-01-01

    A production version of the inorganic separator was evaluated for improving the life of the nickel-zinc system. Nickel-zinc cells (7-10 Ah capacities) of different electrode separator configurations were constructed and tested. The nickel-zinc cells using the inorganic separator encasing the zinc electrode, the nickel electrode, or both electrodes had shorter lives than cells using Visking and cellophane separation. Cells with the inorganic separation all fell below 70% of their theoretical capacity within 30 cycles, but the cells constructed with organic separation required 80 cycles. Failure of the cells using the ceramic separator was irreversible capacity degradation due to zinc loss through cracks developed in the inorganic separator. Zinc loss through the separator was minimized with the use of combinations of the inorganic separator with Visking and cellophane. Cells using the combined separation operated 130 duty cycles before degrading to 70% of their theoretical capacity.

  16. NOx Sensor for Direct Injection Emission Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness andmore » durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.« less

  17. The effects of stress on the enzymes of peripheral leukocytes

    NASA Technical Reports Server (NTRS)

    Leise, E. M.; Gray, I.

    1973-01-01

    Previous work showed an early response of rabbit and human leukocyte enzymes to the stress of bacterial infection. Since these represented a mixed population of leukocytes and since polymorphonuclear leukocytes (PMN) increased in these preparations, it was necessary to establish whether the observed increase in lactate dehydrenase (LDH) and protein was the result of an increase in any one particular cell type or in all cells. The need for the development of a simple reproducible method for the differential separation of peripheral leukocytes for the furtherance of our own studies was apparent. It was also becoming increasingly apparent that morphologically similar cells, such as small lymphocytes (L) and macrophages, were capable of different biological functions. A dextran gradient centrifugation method was developed which has provided an easily reproducible technique for separating L from PMN. During the course of this work, in which over 250 rabbits were examined, the pattern of daily leukocyte protein and enzyme variation became increasingly more apparent. This information could have some impact on future work with leukocyte enzymes, by our group and by other workers. The differences in normal protein and enzyme levels maintained by some individuals, and some inbred strains, were evaluated and reported separately. It has been shown that one type of leukocyte may react more to a given stress than other leukocytes.

  18. Isoquinoline Alkaloids from Erythrinapoeppigiana (Leguminosae) and Cytotoxic Activity Against Breast Cancer Cells Line MCF-7 In Silico

    NASA Astrophysics Data System (ADS)

    Herlina, T.; Mardianingrum, R.; Gaffar, S.; Supratman, U.

    2017-02-01

    Erythrinapoeppigiana(Leguminosae) is a higher plant that has been used as a folk for the treatment of infection, fever, and inflammation. In the course of our continuing search for novel cytotoxic compounds from genus Erythrina, the methanol extract of E. poeppigiana showed a significant cytotoxic activity against breast cancer cells line MCF-7 in silico. The compounds in methanol extract of the E. poeppigiana was separated using a bioassay-guided fractionation. By using a cytotoxic activity to follow separation, the methylene chloride was separated by several column chromatography techniques on silica gel and ODS to yield three active compounds (1-3). The chemical structures of active compounds were determined on the basis of spectroscopic evidence and comparison with those identical compounds that previously reported and identified as a 10,11-dihydroxyerysodine (1) 6,7-dihydro-17-hydroxyerysotrine (2) 6,7-dihydro-11-methoxyerysotrine (3). Compounds (1-3) showed cytotoxic activity inhibits EGFR 2 against breast cancer cell line MCF-7 in silico molecular docking method with bond Gibbs free energy (ΔG) (kcal/mol) and inhibition constants (Ki) (nM) of value (-8.61121, 4.84×10-7) (-8.1145, 1.12×10-6) and (-7.3394, 4.14×10-6), respectively.

  19. Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus.

    PubMed

    Carnicer, Marc; Vieira, Gilles; Brautaset, Trygve; Portais, Jean-Charles; Heux, Stephanie

    2016-06-01

    The gram-positive bacterium Bacillus methanolicus MGA3 is a promising candidate for methanol-based biotechnologies. Accurate determination of intracellular metabolites is crucial for engineering this bacteria into an efficient microbial cell factory. Due to the diversity of chemical and cell properties, an experimental protocol validated on B. methanolicus is needed. Here a systematic evaluation of different techniques for establishing a reliable basis for metabolome investigations is presented. Metabolome analysis was focused on metabolites closely linked with B. methanolicus central methanol metabolism. As an alternative to cold solvent based procedures, a solvent-free quenching strategy using stainless steel beads cooled to -20 °C was assessed. The precision, the consistency of the measurements, and the extent of metabolite leakage from quenched cells were evaluated in procedures with and without cell separation. The most accurate and reliable performance was provided by the method without cell separation, as significant metabolite leakage occurred in the procedures based on fast filtration. As a biological test case, the best protocol was used to assess the metabolome of B. methanolicus grown in chemostat on methanol at two different growth rates and its validity was demonstrated. The presented protocol is a first and helpful step towards developing reliable metabolomics data for thermophilic methylotroph B. methanolicus. This will definitely help for designing an efficient methylotrophic cell factory.

  20. Electroporation of DC-3F cells is a dual process.

    PubMed

    Wegner, Lars H; Frey, Wolfgang; Silve, Aude

    2015-04-07

    Treatment of biological material by pulsed electric fields is a versatile technique in biotechnology and biomedicine used, for example, in delivering DNA into cells (transfection), ablation of tumors, and food processing. Field exposure is associated with a membrane permeability increase usually ascribed to electroporation, i.e., formation of aqueous membrane pores. Knowledge of the underlying processes at the membrane level is predominantly built on theoretical considerations and molecular dynamics (MD) simulations. However, experimental data needed to monitor these processes with sufficient temporal resolution are scarce. The whole-cell patch-clamp technique was employed to investigate the effect of millisecond pulsed electric fields on DC-3F cells. Cellular membrane permeabilization was monitored by a conductance increase. For the first time, to our knowledge, it could be established experimentally that electroporation consists of two clearly separate processes: a rapid membrane poration (transient electroporation) that occurs while the membrane is depolarized or hyperpolarized to voltages beyond so-called threshold potentials (here, +201 mV and -231 mV, respectively) and is reversible within ∼100 ms after the pulse, and a long-term, or persistent, permeabilization covering the whole voltage range. The latter prevailed after the pulse for at least 40 min, the postpulse time span tested experimentally. With mildly depolarizing or hyperpolarizing pulses just above threshold potentials, the two processes could be separated, since persistent (but not transient) permeabilization required repetitive pulse exposure. Conductance increased stepwise and gradually with depolarizing and hyperpolarizing pulses, respectively. Persistent permeabilization could also be elicited by single depolarizing/hyperpolarizing pulses of very high field strength. Experimental measurements of propidium iodide uptake provided evidence of a real membrane phenomenon, rather than a mere patch-clamp artifact. In short, the response of DC-3F cells to strong pulsed electric fields was separated into a transient electroporation and a persistent permeabilization. The latter dominates postpulse membrane properties but to date has not been addressed by electroporation theory or MD simulations. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Correlated Light and Electron Microscopy/Electron Tomography of Mitochondria In Situ

    PubMed Central

    Perkins, Guy A.; Sun, Mei G.; Frey, Terrence G.

    2009-01-01

    Three-dimensional light microscopy and three-dimensional electron microscopy (electron tomography) separately provide very powerful tools to study cellular structure and physiology, including the structure and physiology of mitochondria. Fluorescence microscopy allows one to study processes in live cells with specific labels and stains that follow the movement of labeled proteins and changes within cellular compartments but does not have sufficient resolution to define the ultrastructure of intracellular organelles such as mitochondria. Electron microscopy and electron tomography provide the highest resolution currently available to study mitochondrial ultrastructure but cannot follow processes in living cells. We describe the combination of these two techniques in which fluorescence confocal microscopy is used to study structural and physiologic changes in mitochondria within apoptotic HeLa cells to define the apoptotic timeframe. Cells can then be selected at various stages of the apoptotic timeframe for examination at higher resolution by electron microscopy and electron tomography. This is a form of “virtual” 4-dimensional electron microscopy that has revealed interesting structural changes in the mitochondria of HeLa cells during apoptosis. The same techniques can be applied, with modification, to study other dynamic processes within cells in other experimental contexts. PMID:19348881

  2. A study of the laminar separation bubble on an airfoil at low Reynolds numbers using flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Schmidt, Gordon S.; Mueller, Thomas J.

    1987-01-01

    The use of flow visualization to study separation bubbles is evaluated. The wind tunnel, two NACA 66(3)-018 airfoil models, and kerosene vapor, titanium tetrachloride, and surface flow visualizations techniques are described. The application of the three visualization techniques to the two airfoil models reveals that the smoke and vapor techniques provide data on the location of laminar separation and the onset of transition, and the surface method produces information about the location of turbulent boundary layer separation. The data obtained with the three flow visualization techniques are compared to pressure distribution data and good correlation is detected. It is noted that flow visualization is an effective technique for examining separation bubbles.

  3. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  4. An experimental study of separated flow on a finite wing

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.

    1981-01-01

    The flow field associated with the formation of a mushroom shaped trailing edge stall cell on a low-aspect-ratio (AR = 4.0) wing was investigated in a series of low speed wind tunnel tests (Reynolds number based on 15.2 cm chord = 480,000). Flow field surveys of the separation bubble and wake of a partially stalled and fully stalled wing were completed using a hot-wire probe, a split-film probe, and a directional sensitive pressure probe. A new color video display technique was developed to display the flow field survey data. Photographs were obtained of surface oil flow patterns and smoke flow visualization

  5. Acrolein Microspheres Are Bonded To Large-Area Substrates

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan; Yen, Richard C. K.

    1988-01-01

    Reactive cross-linked microspheres produced under influence of ionizing radiation in aqueous solutions of unsaturated aldehydes, such as acrolein, with sodium dodecyl sulfate. Diameters of spheres depend on concentrations of ingredients. If polystyrene, polymethylmethacrylate, or polypropylene object immersed in solution during irradiation, microspheres become attached to surface. Resulting modified surface has grainy coating with reactivity similar to free microspheres. Aldehyde-substituted-functional microspheres react under mild conditions with number of organic reagents and with most proteins. Microsphere-coated macrospheres or films used to immobilize high concentrations of proteins, enzymes, hormones, viruses, cells, and large number of organic compounds. Applications include separation techniques, clinical diagnostic tests, catalytic processes, and battery separators.

  6. Thermal transport in lithium ion batteries: An experimental investigation of interfaces and granular materials

    NASA Astrophysics Data System (ADS)

    Gaitonde, Aalok Jaisheela Uday

    Increasing usage and recent accidents due to lithium-ion (Li-ion) batteries exploding or catching on fire has inspired research on the characterization and thermal management of these batteries. In cylindrical 18650 cells, heat generated during the battery's charge/discharge cycle is poorly dissipated to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work presents a technique to measure the thermal conduction across the metallic case-plastic separator interface, which ultimately limits heat transfer out of the jelly roll. The polymeric separator and metallic case are harvested from discharged commercial 18650 battery cells for thermal testing. A miniaturized version of the reference bar method enables measurements of the interface resistance between the case and the separator by establishing a temperature gradient across a multilayer stack consisting of two reference layers of known thermal conductivity and the case-separator sample. The case-separator interfacial conductance is reported for a range of case temperatures and interface pressures. The mean thermal conductance across the case-separator interface is 670 +/- 275 W/(m2K) and no significant temperature or pressure dependence is observed. The effective thermal conductivity of the battery stack is measured to be 0.27 W/m/K and 0.32 W/m/K in linear and radial configurations, respectively. Many techniques for fabricating battery electrodes involve coating particles of the active materials on metallic current collectors. The impact of mechanical shearing on the resultant thermal properties of these packed particle beds during the fabrication process has not yet been studied. Thus, the final portion of this thesis designs and validates a measurement system to measure the effects of mechanical shearing on the thermal conductivity of packed granular beds. This system simultaneously shears the sample while applying a temperature gradient across the particle bed, enabling thermal conductivity measurements using a radial equivalent of the conventional reference bar method. Results of this research, which includes characterization of thermal conductance across the rate limiting separator-case interface, will help improve the design and reliability of lithium ion batteries. Cells of larger dimension and capacity could also be achieved by the improved understanding of thermal transport across the microscopic electrode stack. Better analytic models of the thermal response of the batteries could be constructed, by taking into account the interfacial conductance and thermal conductivity of the electrodes measured in this work. This is of particular importance in the current circumstances, where accidents and safety issues related to lithium ion batteries are on the increase.

  7. Temperature measurement of a dust particle in a RF plasma GEC reference cell

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Qiao, Ke; Matthews, Lorin S.; Hyde, Truell W.

    2016-10-01

    The thermal motion of a dust particle levitated in a plasma chamber is similar to that described by Brownian motion in many ways. The primary difference between a dust particle in a plasma system and a free Brownian particle is that in addition to the random collisions between the dust particle and the neutral gas atoms, there are electric field fluctuations, dust charge fluctuations, and correlated motions from the unwanted continuous signals originating within the plasma system itself. This last contribution does not include random motion and is therefore separable from the random motion in a `normal' temperature measurement. In this paper, we discuss how to separate random and coherent motions of a dust particle confined in a glass box in a Gaseous Electronic Conference (GEC) radio-frequency (RF) reference cell employing experimentally determined dust particle fluctuation data analysed using the mean square displacement technique.

  8. Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation.

    PubMed

    Zhi, Bo; Cui, Yi; Wang, Shengyang; Frank, Benjamin P; Williams, Denise N; Brown, Richard P; Melby, Eric S; Hamers, Robert J; Rosenzweig, Zeev; Fairbrother, D Howard; Orr, Galya; Haynes, Christy L

    2018-06-15

    As-synthesized malic acid carbon dots are found to possess photoblinking properties that are outstanding and superior compared to those of conventional dyes. Considering their excellent biocompatibility, malic acid carbon dots are suitable for super-resolution fluorescence localization microscopy under a variety of conditions, as we demonstrate in fixed and live trout gill epithelial cells. In addition, during imaging experiments, the so-called "excitation wavelength-dependent" emission was not observed for individual as-made malic acid carbon dots, which motivated us to develop a time-saving and high-throughput separation technique to isolate malic acid carbon dots into fractions of different particle size distributions using C 18 reversed-phase silica gel column chromatography. This post-treatment allowed us to determine how particle size distribution influences the optical properties of malic acid carbon dot fractions, that is, optical band gap energies and photoluminescence behaviors.

  9. Advanced techniques in placental biology -- workshop report.

    PubMed

    Nelson, D M; Sadovsky, Y; Robinson, J M; Croy, B A; Rice, G; Kniss, D A

    2006-04-01

    Major advances in placental biology have been realized as new technologies have been developed and existing methods have been refined in many areas of biological research. Classical anatomy and whole-organ physiology tools once used to analyze placental structure and function have been supplanted by more sophisticated techniques adapted from molecular biology, proteomics, and computational biology and bioinformatics. In addition, significant refinements in morphological study of the placenta and its constituent cell types have improved our ability to assess form and function in highly integrated manner. To offer an overview of modern technologies used by investigators to study the placenta, this workshop: Advanced techniques in placental biology, assembled experts who discussed fundamental principles and real time examples of four separate methodologies. Y. Sadovsky presented the principles of microRNA function as an endogenous mechanism of gene regulation. J. Robinson demonstrated the utility of correlative microscopy in which light-level and transmission electron microscopy are combined to provide cellular and subcellular views of placental cells. A. Croy provided a lecture on the use of microdissection techniques which are invaluable for isolating very small subsets of cell types for molecular analysis. Finally, G. Rice presented an overview methods on profiling of complex protein mixtures within tissue and/or fluid samples that, when refined, will offer databases that will underpin a systems approach to modern trophoblast biology.

  10. Topography of Cells Revealed by Variable-Angle Total Internal Reflection Fluorescence Microscopy.

    PubMed

    Cardoso Dos Santos, Marcelina; Déturche, Régis; Vézy, Cyrille; Jaffiol, Rodolphe

    2016-09-20

    We propose an improved version of variable-angle total internal reflection fluorescence microscopy (vaTIRFM) adapted to modern TIRF setup. This technique involves the recording of a stack of TIRF images, by gradually increasing the incident angle of the light beam on the sample. A comprehensive theory was developed to extract the membrane/substrate separation distance from fluorescently labeled cell membranes. A straightforward image processing was then established to compute the topography of cells with a nanometric axial resolution, typically 10-20 nm. To highlight the new opportunities offered by vaTIRFM to quantify adhesion process of motile cells, adhesion of MDA-MB-231 cancer cells on glass substrate coated with fibronectin was examined. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Characterizing the local optoelectronic performance of organic solar cells with scanning-probe microscopy

    NASA Astrophysics Data System (ADS)

    Coffey, David C.

    2007-12-01

    Conjugated polymers, small molecules, and colloidal semiconductor nanocrystals are promising materials for use in low-cost, thin-film solar cells. The photovoltaic performance of these materials, however, is highly dependent on film structure, and directly correlating local film structures with device performance remains challenging. This dissertation describes several techniques we have developed to probe and control the local optoelectronic properties of organic semiconducting films. First, with an aim of rapidly fabricating photovoltaic films with varying morphology, we demonstrate that Dip-Pen Nanolithography (DPN) can be used to control nanoscale phase separation with sub-150 nm lateral resolution in polymer films that are 20--80 nm thick. This control is based on writing monolayer chemical templates that nucleate phase separation, and we use this technique to study heterogeneous nucleation in thin films. Second, we use time-resolved electrostatic force microscopy (trEFM) to measure photoexcited charge in polymer films with a resolution of 100 nm and 100 mus. We show that such data can predict the external quantum efficiencies of polymer photodiodes, and can thus link device performance with local optoelectronic properties. When applied to the study of blended polyfluorene films, we show that domain centers can buildup charge faster then domain interfaces, which indicates that polymer/polymer blend devices should be modeled as having impure donor/acceptor domains. Third, we use photoconductive atomic force microscopy (pcAFM) to map local photocurrents with 20 nm-resolution in polymer/fullerene solar cells- achieving an order of magnitude better resolution than previous techniques. We present photocurrent maps under short-circuit conditions (zero applied bias), as well as under various applied voltages. We find significant variations in the short-circuit current between regions that appear identical in AFM topography. These variations occur from one domain to another, as well as on larger length scales incorporating multiple domains. Our results suggest that organic solar cells can be significantly improved with better donor/acceptor structuring.

  12. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation.

    PubMed

    Luo, Tao; Fan, Lei; Zeng, Yixiao; Liu, Ya; Chen, Shuxun; Tan, Qiulin; Lam, Raymond H W; Sun, Dong

    2018-05-04

    Prefocusing of the cell mixture is necessary for achieving a high-efficiency and continuous dielectrophoretic (DEP) cell separation. However, prefocusing through sheath flow requires a complex and tedious peripheral system for multi-channel fluid control, hindering the integration of DEP separation systems with other microfluidic functionalities for comprehensive clinical and biological tasks. This paper presented a simplified sheathless cell separation approach that combines gravitational-sedimentation-based sheathless prefocusing and DEP separation methods. Through gravitational sedimentation in a tubing, which was inserted into the inlet of a microfluidic chip with an adjustable steering angle, the cells were focused into a stream at the upstream region of a microchannel prior to separation. Then, a DEP force was applied at the downstream region of the microchannel for the active separation of the cells. Through this combined strategy, the peripheral system for the sheath flow was no longer required, and thus the integration of cell separation system with additional microfluidic functionalities was facilitated. The proposed sheathless scheme focused the mixture of cells with different sizes and dielectric properties into a stream in a wide range of flow rates without changing the design of the microfluidic chip. The DEP method is a label-free approach that can continuously separate cells on the basis of the sizes or dielectric properties of the cells and thus capable of greatly flexible cell separation. The efficiency of the proposed approach was experimentally assessed according to its performance in the separation of human acute monocytic leukemia THP-1 cells from yeast cells with respect to different sizes and THP-1 cells from human acute myelomonocytic leukemia OCI-AML3 cells with respect to different dielectric properties. The experimental results revealed that the separation efficiency of the method can surpass 90% and thus effective in separating cells on the basis of either size or dielectric property.

  13. Development of a high capacity bubble domain memory element and related epitaxial garnet materials for application in spacecraft data recorders. Item 2: The optimization of material-device parameters for application in bubble domain memory elements for spacecraft data recorders

    NASA Technical Reports Server (NTRS)

    Besser, P. J.

    1976-01-01

    Bubble domain materials and devices are discussed. One of the materials development goals was a materials system suitable for operation of 16 micrometer period bubble domain devices at 150 kHz over the temperature range -10 C to +60 C. Several material compositions and hard bubble suppression techniques were characterized and the most promising candidates were evaluated in device structures. The technique of pulsed laser stroboscopic microscopy was used to characterize bubble dynamic properties and device performance at 150 kHz. Techniques for large area LPE film growth were developed as a separate task. Device studies included detector optimization, passive replicator design and test and on-chip bridge evaluation. As a technology demonstration an 8 chip memory cell was designed, tested and delivered. The memory elements used in the cell were 10 kilobit serial registers.

  14. Radionuclide imaging of bone marrow disorders

    PubMed Central

    Agool, Ali; Glaudemans, Andor W. J. M.; Boersma, Hendrikus H.; Dierckx, Rudi A. J. O.; Vellenga, Edo

    2010-01-01

    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed. PMID:20625724

  15. Incorporating an Electrode Modification Layer with a Vertical Phase Separated Photoactive Layer for Efficient and Stable Inverted Nonfullerene Polymer Solar Cells.

    PubMed

    Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Li, Jinyan; Bai, Yiming; Wang, Fuzhi; Bian, Xingming; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-20

    For bulk heterojunction polymer solar cells (PSCs), the donors and acceptors featuring specific phase separation and concentration distribution within the electron donor/acceptor blends crucially affect the exciton dissociation and charge transportation. Herein, efficient and stable nonfullerene inverted PSCs incorporating a phase separated photoactive layer and a titanium chelate electrode modification layer are demonstrated. Water contact angle (WCA), scanning kelvin probe microscopy (SKPM), and atomic force microscopy (AFM) techniques are implemented to characterize the morphology of photoactive layers. Compared with the control conventional device, the short-circuit current density (J sc ) is enhanced from 14.74 to 17.45 mAcm -2 . The power conversion efficiency (PCE) for the inverted PSCs with a titanium (diisopropoxide)-bis-(2,4-pentanedionate) (TIPD) layer increases from 9.67% to 11.69% benefiting from the declined exciton recombination and fairly enhanced charge transportation. Furthermore, the nonencapsulated inverted device with a TIPD layer demonstrates the best long-term stability, 85% of initial PCE remaining and an almost undecayed open-circuit voltage (V oc ) after 1440 h. Our results reveal that the titanium chelate is an excellent electrode modification layer to incorporate with a vertical phase separated photoactive layer for producing high-efficiency and high-stability inverted nonfullerene PSCs.

  16. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1993-01-01

    Holographic interferometry is a primary candidate for the measurement of temperature and concentration in various crystal growth experiments destined for space. The method measures refractive index changes in the experiment test cell. A refractive index change can be caused by concentration changes, temperature changes, or a combination of temperature and concentration changes. If the refractive index changes are caused by temperature and concentration changes occurring simultaneously in the experiment test cell, the contributions by the two effects cannot be separated by conventional measurement methods. By using two wavelengths, two independent interferograms can be produced from the reconstruction of the hologram. The two interferograms will be different due to dispersion properties of fluid materials. These differences provide the additional information that allows the separation of simultaneously occurring temperature and concentration gradients. There is no other technique available that can provide this type of information. The primary objectives of this effort are to experimentally verify the mathematical theory of two color holographic interferometry and to determine the practical value of this technique for space application. To achieve these objectives, the accuracy and sensitivity of the technique must be determined for geometry's and materials that are relevant to the Materials Processing in the Space program of NASA. This will be achieved through the use of a specially designed two-color holographic interferometry breadboard optical system. In addition to experiments to achieve the primary goals, the breadboard will also provide inputs to the design of an optimum space flight system.

  17. Detection of early changes in lung cell cytology by flow-systems analysis techniques. Progress report, July 1--December 31, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Hansen, K.M.; Wilson, J.S.

    1978-04-01

    This report summarizes ongoing experiments to develop cytological and biochemical indicators for measuring damage to respiratory tract cells exposed by inhalation of environmental toxic agents. The specific goal of this project is to apply flow cytometric methods to analyze and detect changes in lung epithelium as a function of exposure to toxic agents such as those associated with the production of synthetic fuels from oil shale and coal. The objectives during the past 6 months were to complete modifications to the multiparameter cell separator by adding a krypton laser with an output capability of specific wavelengths ranging from the uvmore » to the ir; analyze and separate lung cells based on their DNA content; evaluate some new fluorescent DNA and protein stains; and treat hamster lung cells with proteolytic enzymes for increasing cell yield. Future experiments will involve the continued analysis and characterization of exfoliated lung cells based primarily on cellular DNA content, protein, morphological features, and specific enzyme activities; quantitation of macrophage activity; exposure of hamsters to toxic agents such as oil shale particulates and ozone; and continued analysis of cells based on DNA content. As this new technology becomes adapted to analyzing respiratory tract cells, the measurement of physical and biochemical cell properties as a function of exposure to toxic agents will be increased. This analytical approach is designed to assist in the establishment of guidelines for estimating risks to exposed humans.« less

  18. Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes.

    PubMed

    Ogawa, T; Dobrinski, I; Avarbock, M R; Brinster, R L

    1999-02-01

    It was recently demonstrated that rat spermatogenesis can occur in the seminiferous tubules of an immunodeficient recipient mouse after transplantation of testis cells from a donor rat. In the present study, hamster donor testis cells were transplanted to mice to determine whether xenogeneic spermatogenesis would result. The hamster diverged at least 16 million years ago from the mouse and produces spermatozoa that are larger than, and have a shape distinctly different from, those of the mouse. In four separate experiments with a total of 13 recipient mice, hamster spermatogenesis was identified in the testes of each mouse. Approximately 6% of the tubules examined demonstrated xenogeneic spermatogenesis. In addition, cryopreserved hamster testis cells generated spermatogenesis in recipients. However, abnormalities were noted in hamster spermatids and acrosomes in seminiferous tubules of recipient mice. Hamster spermatozoa were also found in the epididymis of recipient animals, but these spermatozoa generally lacked acrosomes, and heads and tails were separated. Thus, defects in spermiogenesis occur in hamster spermatogenesis in the mouse, which may reflect a limited ability of endogenous mouse Sertoli cells to support fully the larger and evolutionarily distant hamster germ cell. The generation of spermatogenesis from frozen hamster cells now adds this species to the mouse and rat, in which spermatogonial stem cells also can be cryopreserved. This finding has immediate application to valuable animals of many species, because the cells could be stored until suitable recipients are identified or culture techniques devised to expand the stem cell population.

  19. Metal catalyst technique for texturing silicon solar cells

    DOEpatents

    Ruby, Douglas S.; Zaidi, Saleem H.

    2001-01-01

    Textured silicon solar cells and techniques for their manufacture utilizing metal sources to catalyze formation of randomly distributed surface features such as nanoscale pyramidal and columnar structures. These structures include dimensions smaller than the wavelength of incident light, thereby resulting in a highly effective anti-reflective surface. According to the invention, metal sources present in a reactive ion etching chamber permit impurities (e.g. metal particles) to be introduced into a reactive ion etch plasma resulting in deposition of micro-masks on the surface of a substrate to be etched. Separate embodiments are disclosed including one in which the metal source includes one or more metal-coated substrates strategically positioned relative to the surface to be textured, and another in which the walls of the reaction chamber are pre-conditioned with a thin coating of metal catalyst material.

  20. Antibody-immobilized column for quick cell separation based on cell rolling.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-01-01

    Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.

  1. Isolation of osteoprogenitors from human jaw periosteal cells: a comparison of two magnetic separation methods.

    PubMed

    Olbrich, Marcus; Rieger, Melanie; Reinert, Siegmar; Alexander, Dorothea

    2012-01-01

    Human jaw periosteum tissue contains osteoprogenitors that have potential for tissue engineering applications in oral and maxillofacial surgeries. To isolate osteoprogenitor cells from heterogeneous cell populations, we used the specific mesenchymal stem cell antigen-1 (MSCA-1) antibody and compared two magnetic separation methods. We analyzed the obtained MSCA-1(+) and MSCA-1(-) fractions in terms of purity, yield of positive/negative cells and proliferative and mineralization potentials. The analysis of cell viability after separation revealed that the EasySep method yielded higher viability rates, whereas the flow cytometry results showed a higher purity for the MACS-separated cell fractions. The mineralization capacity of the osteogenic induced MSCA-1(+) cells compared with the MSCA-1(-) controls using MACS was 5-fold higher, whereas the same comparison after EasySep showed no significant differences between both fractions. By analyzing cell proliferation, we detected a significant difference between the proliferative potential of the osteogenic cells versus untreated cells after the MACS and EasySep separations. The differentiated cells after MACS separation adjusted their proliferative capacity, whereas the EasySep-separated cells failed to do so. The protein expression analysis showed small differences between the two separation methods. Our findings suggest that MACS is a more suitable separation method to isolate osteoprogenitors from the entire jaw periosteal cell population.

  2. An Update on Oxidative Damage to Spermatozoa and Oocytes.

    PubMed

    Opuwari, Chinyerum S; Henkel, Ralf R

    2016-01-01

    On the one hand, reactive oxygen species (ROS) are mandatory mediators for essential cellular functions including the function of germ cells (oocytes and spermatozoa) and thereby the fertilization process. However, the exposure of these cells to excessive levels of oxidative stress by too high levels of ROS or too low levels of antioxidative protection will render these cells dysfunctional thereby failing the fertilization process and causing couples to be infertile. Numerous causes are responsible for the delicate bodily redox system being out of balance and causing disease and infertility. Many of these causes are modifiable such as lifestyle factors like obesity, poor nutrition, heat stress, smoking, or alcohol abuse. Possible correctable measures include foremost lifestyle changes, but also supplementation with antioxidants to scavenge excessive ROS. However, this should only be done after careful examination of the patient and establishment of the individual bodily antioxidant needs. In addition, other corrective measures include sperm separation for assisted reproductive techniques. However, these techniques have to be carried out very carefully as they, if applied wrongly, bear risks of generating ROS damaging the germ cells and preventing fertilization.

  3. An Update on Oxidative Damage to Spermatozoa and Oocytes

    PubMed Central

    Opuwari, Chinyerum S.; Henkel, Ralf R.

    2016-01-01

    On the one hand, reactive oxygen species (ROS) are mandatory mediators for essential cellular functions including the function of germ cells (oocytes and spermatozoa) and thereby the fertilization process. However, the exposure of these cells to excessive levels of oxidative stress by too high levels of ROS or too low levels of antioxidative protection will render these cells dysfunctional thereby failing the fertilization process and causing couples to be infertile. Numerous causes are responsible for the delicate bodily redox system being out of balance and causing disease and infertility. Many of these causes are modifiable such as lifestyle factors like obesity, poor nutrition, heat stress, smoking, or alcohol abuse. Possible correctable measures include foremost lifestyle changes, but also supplementation with antioxidants to scavenge excessive ROS. However, this should only be done after careful examination of the patient and establishment of the individual bodily antioxidant needs. In addition, other corrective measures include sperm separation for assisted reproductive techniques. However, these techniques have to be carried out very carefully as they, if applied wrongly, bear risks of generating ROS damaging the germ cells and preventing fertilization. PMID:26942204

  4. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  5. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  6. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  7. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  8. 21 CFR 864.9245 - Automated blood cell separator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...

  9. An adaptive simplex cut-cell method for high-order discontinuous Galerkin discretizations of elliptic interface problems and conjugate heat transfer problems

    NASA Astrophysics Data System (ADS)

    Sun, Huafei; Darmofal, David L.

    2014-12-01

    In this paper we propose a new high-order solution framework for interface problems on non-interface-conforming meshes. The framework consists of a discontinuous Galerkin (DG) discretization, a simplex cut-cell technique, and an output-based adaptive scheme. We first present a DG discretization with a dual-consistent output evaluation for elliptic interface problems on interface-conforming meshes, and then extend the method to handle multi-physics interface problems, in particular conjugate heat transfer (CHT) problems. The method is then applied to non-interface-conforming meshes using a cut-cell technique, where the interface definition is completely separate from the mesh generation process. No assumption is made on the interface shape (other than Lipschitz continuity). We then equip our strategy with an output-based adaptive scheme for an accurate output prediction. Through numerical examples, we demonstrate high-order convergence for elliptic interface problems and CHT problems with both smooth and non-smooth interface shapes.

  10. Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes.

    PubMed

    Yanhong, Fan; Chenghua, He; Guofang, Liu; Haibin, Zhang

    2008-10-01

    The aquatic environment is affected by numerous chemical contaminants. There is an increasing need to identify these chemicals and to evaluate their potential toxicity towards aquatic life. In this research we optimized techniques for primary cell culture of Cyprinus carpio hepatocytes as one adjunct model for ecotoxicological evaluation of the potential hazards of xenobiotics in the aquatic environment. In this study, Cyprinus carpio hepatocytes were isolated by mechanical separation, two-step collagenase perfusion, and pancreatin digestion. The hepatocytes or parenchymal cells could be separated from cell debris and from non-parenchymal cells by low-speed centrifugation (Percoll gradient centrifugation). The harvested hepatocytes were suspended in DMEM, M199 (cultured in 5% CO(2)), or L-15 (cultured without 5% CO(2)) medium then cultured at 17, 27, or 37 degrees C. Cell yield was counted by use of a hemocytometer, and the viability of the cells was assessed by use of the Trypan blue exclusion test. Results from these studies showed that the best method of isolation was pancreatin digestion (the cell yield was 2.7 x 10(8) per g (liver weight) and the viability was 98.4%) and the best medium was M199 (cultured in 5% CO(2)) or L-15 (cultured without 5% CO(2)). The optimum culture temperature was 27 degrees C. The primary hepatocytes culture of Cyprimus carpio grew well and satisfied requirements for most toxicological experiments in this condition.

  11. Turbulent flow separation control through passive techniques

    NASA Technical Reports Server (NTRS)

    Lin, J. C.; Howard, F. G.; Selby, G. V.

    1989-01-01

    Several passive separation control techniques for controlling moderate two-dimensional turbulent flow separation over a backward-facing ramp are studied. Small transverse and swept grooves, passive porous surfaces, large longitudinal grooves, and vortex generators were among the techniques used. It was found that, unlike the transverse and longitudinal grooves of an equivalent size, the 45-deg swept-groove configurations tested tended to enhance separation.

  12. Enzymatic signal amplification for sensitive detection of intracellular antigens by flow cytometry.

    PubMed

    Karkmann, U; Radbruch, A; Hölzel, V; Scheffold, A

    1999-11-19

    Flow cytometry is the method of choice for the analysis of single cells with respect to the expression of specific antigens. Antigens can be detected with specific antibodies either on the cell surface or within the cells, after fixation and permeabilization of the cell membrane. Using conventional fluorochrome-labeled antibodies several thousand antigens are required for clear-cut separation of positive and negative cells. More sensitive reagents, e.g., magnetofluorescent liposomes conjugated to specific antibodies permit the detection of less than 200 molecules per cell but cannot be used for the detection of intracellular antigens. Here, we describe an enzymatic amplification technique (intracellular tyramine-based signal amplification, ITSA) for the sensitive cytometric analysis of intracellular cytokines by immunofluorescence. This approach results in a 10 to 15-fold improvement of the signal-to-noise ratio compared to conventional fluorochrome labeled antibodies and permits the detection of as few as 300-400 intracellular antigens per cell.

  13. Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids.

    PubMed

    Zhao, Wujun; Cheng, Rui; Lim, So Hyun; Miller, Joshua R; Zhang, Weizhong; Tang, Wei; Xie, Jin; Mao, Leidong

    2017-06-27

    This paper reports a biocompatible and label-free cell separation method using ferrofluids that can separate a variety of low-concentration cancer cells from cell culture lines (∼100 cancer cells per mL) from undiluted white blood cells, with a throughput of 1.2 mL h -1 and an average separation efficiency of 82.2%. The separation is based on the size difference of the cancer cells and white blood cells, and is conducted in a custom-made biocompatible ferrofluid that retains not only excellent short-term viabilities but also normal proliferations of 7 commonly used cancer cell lines. A microfluidic device is designed and optimized specifically to shorten the time of live cells' exposure to ferrofluids from hours to seconds, by eliminating time-consuming off-chip sample preparation and extraction steps and integrating them on-chip to achieve a one-step process. As a proof-of-concept demonstration, a ferrofluid with 0.26% volume fraction was used in this microfluidic device to separate spiked cancer cells from cell lines at a concentration of ∼100 cells per mL from white blood cells with a throughput of 1.2 mL h -1 . The separation efficiencies were 80 ± 3%, 81 ± 5%, 82 ± 5%, 82 ± 4%, and 86 ± 6% for A549 lung cancer, H1299 lung cancer, MCF-7 breast cancer, MDA-MB-231 breast cancer, and PC-3 prostate cancer cell lines, respectively. The separated cancer cells' purity was between 25.3% and 28.8%. In addition, the separated cancer cells from this strategy showed an average short-term viability of 94.4 ± 1.3%, and these separated cells were cultured and demonstrated normal proliferation to confluence even after the separation process. Owing to its excellent biocompatibility and label-free operation and its ability to recover low concentrations of cancer cells from white blood cells, this method could lead to a promising tool for rare cell separation.

  14. Time-resolved multicolor two-photon excitation fluorescence microscopy of cells and tissues

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2014-11-01

    Multilabeling which maps the distribution of different targets is an indispensable technique in many biochemical and biophysical studies. Two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with conventional fluorescence labeling techniques such as genetically encoded fluorescent protein (FP) and fluorescent dyes staining could be a powerful tool for imaging living cells. However, the challenge is that the excitation and emission wavelength of these endogenous fluorophores and fluorescent labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores, fluorescent proteins and fluorescent dyes were excited in their optimal wavelengths simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and wavelength domains. Cellular organelles such as nucleus, mitochondria, microtubule and endoplasmic reticulum, were clearly revealed in the TPEF images. The simultaneous imaging of multiple fluorophores of cells will greatly aid the study of sub-cellular compartments and protein localization.

  15. Characterization of fission gas bubbles in irradiated U-10Mo fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Andrew M.; Burkes, Douglas E.; MacFarlan, Paul J.

    2017-09-01

    Irradiated U-10Mo fuel samples were prepared with traditional mechanical potting and polishing methods with in a hot cell. They were then removed and imaged with an SEM located outside of a hot cell. The images were then processed with basic imaging techniques from 3 separate software packages. The results were compared and a baseline method for characterization of fission gas bubbles in the samples is proposed. It is hoped that through adoption of or comparison to this baseline method that sample characterization can be somewhat standardized across the field of post irradiated examination of metal fuels.

  16. Production of Bacteriophages by Listeria Cells Entrapped in Organic Polymers.

    PubMed

    Roy, Brigitte; Philippe, Cécile; Loessner, Martin J; Goulet, Jacques; Moineau, Sylvain

    2018-06-13

    Applications for bacteriophages as antimicrobial agents are increasing. The industrial use of these bacterial viruses requires the production of large amounts of suitable strictly lytic phages, particularly for food and agricultural applications. This work describes a new approach for phage production. Phages H387 ( Siphoviridae ) and A511 ( Myoviridae ) were propagated separately using Listeria ivanovii host cells immobilised in alginate beads. The same batch of alginate beads could be used for four successive and efficient phage productions. This technique enables the production of large volumes of high-titer phage lysates in continuous or semi-continuous (fed-batch) cultures.

  17. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    PubMed

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

  18. Cs-Ba separation using N 2O as a reactant gas in a Multiple Collector-Inductively Coupled Plasma Mass Spectrometer collision-reaction cell: Application to the measurements of Cs isotopes in spent nuclear fuel samples

    NASA Astrophysics Data System (ADS)

    Granet, M.; Nonell, A.; Favre, G.; Chartier, F.; Isnard, H.; Moureau, J.; Caussignac, C.; Tran, B.

    2008-11-01

    In the general frameworks of the nuclear fuel cycle and environmental research field, the Cs isotopic composition must be known with high precision and accuracy. The direct determination of Cs isotopes by mass spectrometry techniques is generally hampered by the presence of Ba isobaric interferences however. Here we present a new method which takes advantage of the collision-reaction cell based Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and allows to analyse Cs isotopes in the presence of Ba without prior separation step. The addition of N 2O gas in the cell leads to an antagonistic behavior of Cs + and Ba + as the latter reacts with the gas to form BaO + and BaOH + products whereas Cs + remains unreactive. The efficiency of the method was demonstrated for an UOx sample by comparing the results obtained (1) from the measurements of pure Cs fractions and (2) from Fission Products fractions containing more than 30 ionisable elements in addition to Cs, Ba, and where U and Pu were previously removed by using ion exchange resin. An excellent agreement is achieved between each set of experiments with an external reproducibility always better than 0.5% (RSD, k = 2). This study confirms the strong potential of collision-reaction cell to measure Cs isotopes in presence of interfering Ba, precluding therefore former systematic chemical separations.

  19. Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy

    DOE PAGES

    Niklas, Jens; Poluektov, Oleg

    2017-03-03

    Understanding charge separation and charge transport at a molecular level is crucial for improving the efficiency of organic photovoltaic (OPV) cells. Under illumination of Bulk Heterojunction (BHJ) blends of polymers and fullerenes, various paramagnetic species are formed including polymer and fullerene radicals, radical pairs, and photoexcited triplet states. Light-induced Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to study these states in BHJ due to its selectivity in probing the paramagnetic intermediates. Some advanced EPR techniques like light-induced ENDOR spectroscopy and pulsed techniques allow the determination of hyperfine coupling tensors, while high-frequency EPR allows the EPR signals of the individualmore » species to be resolved and their g-tensors to be determined. In these magnetic resonance parameters reveal details about the delocalization of the positive polaron on the various polymer donors which is important for the efficient charge separation in BHJ systems. Time-resolved EPR can contribute to the study of the dynamics of charge separation, charge transfer and recombination in BHJ by probing the unique spectral signatures of charge transfer and triplet states. Furthermore, the potential of the EPR also allows characterization of the intermediates and products of BHJ degradation.« less

  20. Measurement of interfacial thermal conductance in Lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gaitonde, Aalok; Nimmagadda, Amulya; Marconnet, Amy

    2017-03-01

    Increasing usage and recent accidents due to Lithium ion (Li-ion) batteries exploding or catching on fire has inspired research on the thermal management of these batteries. In cylindrical 18650 cells, heat generated during the charge/discharge cycle must dissipate to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work develops a technique to measure the thermal resistance across the case-separator interface, which ultimately limits heat transfer out of the jelly roll. Commercial 18650 batteries are discharged and opened using a battery disassembly tool, and the 25 μm thick separator and the 200 μm thick metallic case are harvested to make samples. A miniaturized version of the conventional reference bar method (ASTM astm:D5470)

  1. Dynamic acoustic field activated cell separation (DAFACS).

    PubMed

    Skotis, G D; Cumming, D R S; Roberts, J N; Riehle, M O; Bernassau, A L

    2015-02-07

    Advances in diagnostics, cell and stem cell technologies drive the development of application-specific tools for cell and particle separation. Acoustic micro-particle separation offers a promising avenue for high-throughput, label-free, high recovery, cell and particle separation and isolation in regenerative medicine. Here, we demonstrate a novel approach utilizing a dynamic acoustic field that is capable of separating an arbitrary size range of cells. We first demonstrate the method for the separation of particles with different diameters between 6 and 45 μm and secondly particles of different densities in a heterogeneous medium. The dynamic acoustic field is then used to separate dorsal root ganglion cells. The shearless, label-free and low damage characteristics make this method of manipulation particularly suited for biological applications. Advantages of using a dynamic acoustic field for the separation of cells include its inherent safety and biocompatibility, the possibility to operate over large distances (centimetres), high purity (ratio of particle population, up to 100%), and high efficiency (ratio of separated particles over total number of particles to separate, up to 100%).

  2. Differential electrophoretic separation of cells and its effect on cell viability

    NASA Technical Reports Server (NTRS)

    Leise, E. M.; Lesane, F.

    1974-01-01

    An electrophoretic separation method was applied to the separation of cells. To determine the efficiency of the separation, it was necessary to apply existing methodology and develop new methods to assess the characteristics and functions of the separated subpopulations. Through appropriate application of the widely used isoelectric focusing procedure, a reproducible separation method was developed. Cells accumulated at defined pH and 70-80% remained viable. The cells were suitable for further biologic, biochemical and immunologic studies.

  3. Rapid separation of very low concentrations of bacteria from blood.

    PubMed

    Buchanan, Clara M; Wood, Ryan L; Hoj, Taalin R; Alizadeh, Mahsa; Bledsoe, Colin G; Wood, Madison E; McClellan, Daniel S; Blanco, Rae; Hickey, Caroline L; Ravsten, Tanner V; Husseini, Ghaleb A; Robison, Richard A; Pitt, William G

    2017-08-01

    A rapid and accurate diagnosis of the species and antibiotic resistance of bacteria in septic blood is vital to increase survival rates of patients with bloodstream infections, particularly those with carbapenem-resistant enterobacteriaceae (CRE) infections. The extremely low levels in blood (1 to 100CFU/ml) make rapid diagnosis difficult. In this study, very low concentrations of bacteria (6 to 200CFU/ml) were separated from 7ml of whole blood using rapid sedimentation in a spinning hollow disk that separated plasma from red and white cells, leaving most of the bacteria suspended in the plasma. Following less than a minute of spinning, the disk was slowed, the plasma was recovered, and the bacteria were isolated by vacuum filtration. The filters were grown on nutrient plates to determine the number of bacteria recovered from the blood. Experiments were done without red blood cell (RBC) lysis and with RBC lysis in the recovered plasma. While there was scatter in the data from blood with low bacterial concentrations, the mean average recovery was 69%. The gender of the blood donor made no statistical difference in bacterial recovery. These results show that this rapid technique recovers a significant amount of bacteria from blood containing clinically relevant low levels of bacteria, producing the bacteria in minutes. These bacteria could subsequently be identified by molecular techniques to quickly identify the infectious organism and its resistance profile, thus greatly reducing the time needed to correctly diagnose and treat a blood infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Enhanced separation of membranes during free flow zonal electrophoresis in plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2007-07-15

    Free flow zonal electrophoresis (FFZE) is a versatile technique that allows for the separation of cells, organelles, membranes, and proteins based on net surface charge during laminar flow through a thin aqueous layer. We have been optimizing the FFZE technique to enhance separation of plant vacuolar membranes (tonoplast) from other endomembranes to pursue a directed proteomics approach to identify novel tonoplast transporters. Addition of ATP to a mixture of endomembranes selectively enhanced electrophoretic mobility of acidic vesicular compartments during FFZE toward the positive electrode. This has been attributed to activation of the V-ATPase generating a more negative membrane potential outside the vesicles, resulting in enhanced migration of acidic vesicles, including tonoplast, to the anode (Morré, D. J.; Lawrence, J.; Safranski, K.; Hammond, T.; Morré, D. M. J. Chromatogr., A 1994, 668, 201-213). We confirm that ATP does induce a redistribution of membranes during FFZE of microsomal membranes isolated from several plant species, including Arabidopsis thaliana, Thellungiella halophila, Mesembryanthemum crystallinum, and Ananas comosus. However, we demonstrate, using V-ATPase-specific inhibitors, nonhydrolyzable ATP analogs, and ionophores to dissipate membrane potential, that the ATP-dependent migrational shift of membranes under FFZE is not due to activation of the V-ATPase. Addition of EDTA to chelate Mg2+, leading to the production of the tetravalent anionic form of ATP, resulted in a further enhancement of membrane migration toward the anode, and manipulation of cell surface charge by addition of polycations also influenced the ATP-dependent migration of membranes. We propose that ATP enhances the mobility of endomembranes by screening positive surface charges on the membrane surface.

  5. Practical, microfabrication-free device for single-cell isolation.

    PubMed

    Lin, Liang-I; Chao, Shih-Hui; Meldrum, Deirdre R

    2009-08-21

    Microfabricated devices have great potential in cell-level studies, but are not easily accessible for the broad biology community. This paper introduces the Microscale Oil-Covered Cell Array (MOCCA) as a low-cost device for high throughput single-cell analysis that can be easily produced by researchers without microengineering knowledge. Instead of using microfabricated structures to capture cells, MOCCA isolates cells in discrete aqueous droplets that are separated by oil on patterned hydrophilic areas across a relatively more hydrophobic substrate. The number of randomly seeded Escherichia coli bacteria in each discrete droplet approaches single-cell levels. The cell distribution on MOCCA is well-fit with Poisson distribution. In this pioneer study, we created an array of 900-picoliter droplets. The total time needed to seed cells in approximately 3000 droplets was less than 10 minutes. Compared to traditional microfabrication techniques, MOCCA dramatically lowers the cost of microscale cell arrays, yet enhances the fabrication and operational efficiency for single-cell analysis.

  6. The role of accessory cells in polyclonal T cell activation. I. Both induction of interleukin 2 production and of interleukin 2 responsiveness by concanavalin A are accessory cell dependent.

    PubMed

    Hünig, T; Loos, M; Schimpl, A

    1983-01-01

    Recent studies from other laboratories have shown that concanavalin A (Con A) acts at two separate steps in polyclonal T cell activation: interleukin 2 (IL2) production, and induction of responsiveness to IL2. Using a combination of techniques for the depletion of accessory cells from lymph node T cells, we have investigated which of these steps, if not both, is responsible for the known requirement for accessory cells in the Con A response. It was found that with increasing T cell purification, first the ability is lost to produce sufficient levels of endogenous IL2, whereas induction of IL2 responsiveness can still take place. Further removal of accessory cells however yields a population of resting T cells that cannot be induced by Con A to become IL2-reactive. It was concluded that both IL2 production and induction of reactivity to IL2 are accessory cell-dependent events.

  7. Studies of elongation factor Tu in Streptococcus faecium (ATCC 9790)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourbeau, P.P.

    1986-01-01

    It has been known for over twenty years that elongation factor Tu (Ef-Tu) is one of the proteins involved in protein synthesis in bacteria. Several years ago, it was proposed that Ef-Tu may, in addition, have other structural functions in bacterial. The author's research has examined the function of Ef-Tu in Streptococcus faecium. Using an antibiotic kirromycin, which specifically inhibits Ef-Tu function, the effects upon a number of cellular parameters were determined. Inhibition of both protein and RNA synthesis was found to be similar to the effect of chloramphenicol. Using the residual division technique for the determination of cell cyclemore » events with both heterogeneous and sucrose gradient fractionated cell populations, a kirromycin sensitive event was detected between 8 min. (Td = 30 min.) and 19 min. (Td = 175 min.) later in the cell cycle than the chloramphenical sensitive event. This suggests that kirromycin is inhibiting a terminal cell cycle event which is in addition to the inhibition of protein synthesis. Purification of Ef-Tu was performed using two different methods: ion exchange and molecular exclusion chromatography; and GDP affinity chromatography. Various schemes were employed to try and obtain optimum cellular fractionation, allowing for both proper separation of ribosomes from the other cellular fractions and retention of enzymatic activity by Ef-Tu as determined by a /sup 3/H-GDP binding assay. Analysis of the cell cycle of S. faecium using the residual division technique was also performed. In addition, certain cell wall antibiotics were used to determine if other cell cycle events could be determined using the residual division technique.« less

  8. Novel platform for minimizing cell loss on separation process: Droplet-based magnetically activated cell separator

    NASA Astrophysics Data System (ADS)

    Kim, Youngho; Hong, Su; Lee, Sang Ho; Lee, Kangsun; Yun, Seok; Kang, Yuri; Paek, Kyeong-Kap; Ju, Byeong-Kwon; Kim, Byungkyu

    2007-07-01

    To reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACS—which consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tube—we could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry. We could find that the number (3241/59940) of cells lost in the DMACS is much less than that (22360/59940) in the MACS while the efficiency of cell separation in the DMACS (96.07%) is almost the same as that in the MACS (96.72%). Practically, with fluorescent images, it was visually confirmed that the statistical data are reliable. From the viability test by using Hoechst 33 342, it was also demonstrated that there was no cell damage on a gas-liquid interface. Conclusively, DMACS will be a powerful tool to separate rare cells and applicable as a separator, key component of lab-on-a-chip.

  9. Isolation, Culture, and Differentiation of Bone Marrow Stromal Cells and Osteoclast Progenitors from Mice.

    PubMed

    Maridas, David E; Rendina-Ruedy, Elizabeth; Le, Phuong T; Rosen, Clifford J

    2018-01-06

    Bone marrow stromal cells (BMSCs) constitute a cell population routinely used as a representation of mesenchymal stem cells in vitro. They reside within the bone marrow cavity alongside hematopoietic stem cells (HSCs), which can give rise to red blood cells, immune progenitors, and osteoclasts. Thus, extractions of cell populations from the bone marrow results in a very heterogeneous mix of various cell populations, which can present challenges in experimental design and confound data interpretation. Several isolation and culture techniques have been developed in laboratories in order to obtain more or less homogeneous populations of BMSCs and HSCs invitro. Here, we present two methods for isolation of BMSCs and HSCs from mouse long bones: one method that yields a mixed population of BMSCs and HSCs and one method that attempts to separate the two cell populations based on adherence. Both methods provide cells suitable for osteogenic and adipogenic differentiation experiments as well as functional assays.

  10. Implications of cellular models of dopamine neurons for disease

    PubMed Central

    Evans, Rebekah C.; Oster, Andrew M.; Pissadaki, Eleftheria K.; Drion, Guillaume; Kuznetsov, Alexey S.; Gutkin, Boris S.

    2016-01-01

    This review addresses the present state of single-cell models of the firing pattern of midbrain dopamine neurons and the insights that can be gained from these models into the underlying mechanisms for diseases such as Parkinson's, addiction, and schizophrenia. We will explain the analytical technique of separation of time scales and show how it can produce insights into mechanisms using simplified single-compartment models. We also use morphologically realistic multicompartmental models to address spatially heterogeneous aspects of neural signaling and neural metabolism. Separation of time scale analyses are applied to pacemaking, bursting, and depolarization block in dopamine neurons. Differences in subpopulations with respect to metabolic load are addressed using multicompartmental models. PMID:27582295

  11. Imaging cell picker: A morphology-based automated cell separation system on a photodegradable hydrogel culture platform.

    PubMed

    Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji

    2018-06-09

    Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Results of the 1974 through 1977 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Sidwell, L. B.

    1978-01-01

    From 1974 through 1977, seven solar cell calibration flights and two R&D flights with a spectroradiometer as a payload were attempted. There were two R&D flights, and one calibration flight that failed. Each calibration flight balloon was designed to carry its payload to an altitude of 36.6 km (120 kft). The R&D flight balloons were designed for a payload altitude of 47.5 km (150 kft). At the end of the flight period, the upper (solar cell calibration system) and lower (consolidated instrument package (DIP) payloads were separated from the balloon and descend via parachutes. The calibrated solar cells recovered in this manner were used as primary intensity reference standards during solar simulator testing of solar cells and solar arrays with similar spectral response characteristics. This method of calibration has become the most widely accepted technique for developing space standard solar cells.

  13. A comparative study of Sephadex, glass wool and Percoll separation techniques on sperm quality and IVF results for cryopreserved bovine semen.

    PubMed

    Lee, Hae-Lee; Kim, Sue-Hee; Ji, Dong-Beom; Kim, Yong-Jun

    2009-09-01

    The aim of this study was to compare the effects of spermatozoa separation techniques on sperm quality and in-vitro fertilization (IVF) results for cryopreserved bovine semen. Sephadex, glass wool and Percoll gradient separation techniques were used for sperm separation and sperm motility, morphology and membrane integrity were evaluated before and after separation. Also, cleavage and blastocyst developmental rate were investigated after IVF with sperm recovered by each separation technique. The motility of samples obtained by the three separation techniques were greater compared to the control samples (p < 0.05). The percentage of spermatozoa with intact plasma-membrane integrity, identified by 6-carboxyfluoresceindiacetate/ propidium iodide fluorescent staining and the hypo-osmotic swelling test, was highest in the glass wool filtration samples (p < 0.05). The cleavage and blastocyst rate of total oocytes produced from glass wool filtration samples were also higher than the control and Sephadex filtration samples (p < 0.05), but were not significantly different from Percoll separation samples. However, a significantly greater number of cleaved embryos produced by glass wool filtration developed to blastocyst stage than those produced by Percoll separation (p < 0.05). These results indicate that spermatozoa with good quality can be achieved by these three separation techniques and can be used for bovine IVF. In particular, it suggests that glass wool filtration would be the most effective method of the three for improving sperm quality and embryo production for cryopreserved bovine spermatozoa.

  14. Comparison of TiO₂ and ZnO solar cells sensitized with an indoline dye: time-resolved laser spectroscopy studies of partial charge separation processes.

    PubMed

    Sobuś, Jan; Burdziński, Gotard; Karolczak, Jerzy; Idígoras, Jesús; Anta, Juan A; Ziółek, Marcin

    2014-03-11

    Time-resolved laser spectroscopy techniques in the time range from femtoseconds to seconds were applied to investigate the charge separation processes in complete dye-sensitized solar cells (DSC) made with iodide/iodine liquid electrolyte and indoline dye D149 interacting with TiO2 or ZnO nanoparticles. The aim of the studies was to explain the differences in the photocurrents of the cells (3-4 times higher for TiO2 than for ZnO ones). Electrochemical impedance spectroscopy and nanosecond flash photolysis studies revealed that the better performance of TiO2 samples is not due to the charge collection and dye regeneration processes. Femtosecond transient absorption results indicated that after first 100 ps the number of photoinduced electrons in the semiconductor is 3 times higher for TiO2 than for ZnO solar cells. Picosecond emission studies showed that the lifetime of the D149 excited state is about 3 times longer for ZnO than for TiO2 samples. Therefore, the results indicate that lower performance of ZnO solar cells is likely due to slower electron injection. The studies show how to correlate the laser spectroscopy methodology with global parameters of the solar cells and should help in better understanding of the behavior of alternative materials for porous electrodes for DSC and related devices.

  15. Mass spectrometric methods for monitoring redox processes in electrochemical cells.

    PubMed

    Oberacher, Herbert; Pitterl, Florian; Erb, Robert; Plattner, Sabine

    2015-01-01

    Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation-reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common. © 2013 The Authors. Mass Spectrometry Reviews published by Wiley Periodicals, Inc.

  16. Prenatal diagnosis of hemoglobinopathies: evaluation of techniques for analysing globin-chain synthesis in blood samples obtained by fetoscopy.

    PubMed Central

    Congote, L. F.; Hamilton, E. F.; Chow, J. C.; Perry, T. B.

    1982-01-01

    Three techniques for analysing hemoglobin synthesis in blood samples obtained by fetoscopy were evaluated. Of the fetuses studied, 12 were not at risk of genetic disorders, 10 were at risk of beta-thalassemia, 2 were at risk of sickle cell anemia and 1 was at risk of both diseases. The conventional method of prenatal diagnosis of hemoglobinopathies, involving the separation of globin chains labelled with a radioactive isotope on carboxymethyl cellulose (CMC) columns, was compared with a method involving globin-chain separation by high-pressure liquid chromatography (HPLC) and with direct analysis of labelled hemoglobin tetramers obtained from cell lysates by chromatography on ion-exchange columns. The last method is technically the simplest and can be used for diagnosing beta-thalassemia and sickle cell anemia. However, it gives spuriously high levels of adult hemoglobin in samples containing nonlabelled adult hemoglobin. HPLC is the fastest method for prenatal diagnosis of beta-thalassemia and may prove as reliable as the CMC method. Of the 13 fetuses at risk for hemoglobinopathies, 1 was predicted to be affected, and the diagnosis was confirmed in the abortus. Of 12 predicted to be unaffected, 1 was aborted spontaneously and was unavailable for confirmatory studies, as were 3 of the infants; however, the diagnosis was confirmed in seven cases and is awaiting confirmation when the infant in 6 months old in one case. Couples at risk of bearing a child with a hemoglobinopathy should be referred for genetic counselling before pregnancy or, at the latest, by the 12th week of gestation so that prenatal diagnosis can be attempted by amniocentesis, safer procedure, with restriction endonuclease analysis of the amniotic fluid cells. PMID:7139502

  17. Mass spectrometric methods for monitoring redox processes in electrochemical cells

    PubMed Central

    Oberacher, Herbert; Pitterl, Florian; Erb, Robert; Plattner, Sabine

    2015-01-01

    Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation–reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common. PMID:24338642

  18. Normalization, bias correction, and peak calling for ChIP-seq

    PubMed Central

    Diaz, Aaron; Park, Kiyoub; Lim, Daniel A.; Song, Jun S.

    2012-01-01

    Next-generation sequencing is rapidly transforming our ability to profile the transcriptional, genetic, and epigenetic states of a cell. In particular, sequencing DNA from the immunoprecipitation of protein-DNA complexes (ChIP-seq) and methylated DNA (MeDIP-seq) can reveal the locations of protein binding sites and epigenetic modifications. These approaches contain numerous biases which may significantly influence the interpretation of the resulting data. Rigorous computational methods for detecting and removing such biases are still lacking. Also, multi-sample normalization still remains an important open problem. This theoretical paper systematically characterizes the biases and properties of ChIP-seq data by comparing 62 separate publicly available datasets, using rigorous statistical models and signal processing techniques. Statistical methods for separating ChIP-seq signal from background noise, as well as correcting enrichment test statistics for sequence-dependent and sonication biases, are presented. Our method effectively separates reads into signal and background components prior to normalization, improving the signal-to-noise ratio. Moreover, most peak callers currently use a generic null model which suffers from low specificity at the sensitivity level requisite for detecting subtle, but true, ChIP enrichment. The proposed method of determining a cell type-specific null model, which accounts for cell type-specific biases, is shown to be capable of achieving a lower false discovery rate at a given significance threshold than current methods. PMID:22499706

  19. Chromatographic peak deconvolution of constitutional isomers by multiple-reaction-monitoring mass spectrometry.

    PubMed

    Trapp, Oliver

    2010-02-12

    Highly efficient and sophisticated separation techniques are available to analyze complex compound mixtures with superior sensitivities and selectivities often enhanced by a 2nd dimension, e.g. a separation technique or spectroscopic and spectrometric techniques. For enantioselective separations numerous chiral stationary phases (CSPs) exist to cover a broad range of chiral compounds. Despite these advances enantioselective separations can become very challenging for mixtures of stereolabile constitutional isomers, because the on-column interconversion can lead to completely overlapping peak profiles. Typically, multidimensional separation techniques, e.g. multidimensional GC (MDGC), using an achiral 1st separation dimension and transferring selected analytes to a chiral 2nd separation are the method of choice to approach such problems. However, this procedure is very time consuming and only predefined sections of peaks can be transferred by column switching to the second dimension. Here we demonstrate for stereolabile 1,2-dialkylated diaziridines a technique to experimentally deconvolute overlapping gas chromatographic elution profiles of constitutional isomers based on multiple-reaction-monitoring MS (MRM-MS). The here presented technique takes advantage of different fragmentation probabilities and pathways to isolate the elution profile of configurational isomers. Copyright 2009 Elsevier B.V. All rights reserved.

  20. On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons

    DOE PAGES

    Marquardt, Drew; Heberle, Frederick A.; Nickels, Jonathan D.; ...

    2015-09-21

    In order to understand the biological role of lipids in cell membranes, it is necessary to determine the mesoscopic structure of well-defined model membrane systems. Neutron and X-ray scattering are non-invasive, probe-free techniques that have been used extensively in such systems to probe length scales ranging from angstroms to microns, and dynamics occurring over picosecond to millisecond time scales. Finally, recent developments in the area of phase separated lipid systems mimicking membrane rafts will be presented, and the underlying concepts of the different scattering techniques used to study them will be discussed in detail.

  1. Noninvasive Detection and Imaging of Molecular Markers in Live Cardiomyocytes Derived from Human Embryonic Stem Cells

    PubMed Central

    Pascut, Flavius C.; Goh, Huey T.; Welch, Nathan; Buttery, Lee D.; Denning, Chris; Notingher, Ioan

    2011-01-01

    Raman microspectroscopy (RMS) was used to detect and image molecular markers specific to cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs). This technique is noninvasive and thus can be used to discriminate individual live CMs within highly heterogeneous cell populations. Principal component analysis (PCA) of the Raman spectra was used to build a classification model for identification of individual CMs. Retrospective immunostaining imaging was used as the gold standard for phenotypic identification of each cell. We were able to discriminate CMs from other phenotypes with >97% specificity and >96% sensitivity, as calculated with the use of cross-validation algorithms (target 100% specificity). A comparison between Raman spectral images corresponding to selected Raman bands identified by the PCA model and immunostaining of the same cells allowed assignment of the Raman spectral markers. We conclude that glycogen is responsible for the discrimination of CMs, whereas myofibril proteins have a lesser contribution. This study demonstrates the potential of RMS for allowing the noninvasive phenotypic identification of hESC progeny. With further development, such label-free optical techniques may enable the separation of high-purity cell populations with mature phenotypes, and provide repeated measurements to monitor time-dependent molecular changes in live hESCs during differentiation in vitro. PMID:21190678

  2. Time-resolved optical spectroscopic quantification of red blood cell damage caused by cardiovascular devices

    NASA Astrophysics Data System (ADS)

    Sakota, D.; Sakamoto, R.; Sobajima, H.; Yokoyama, N.; Yokoyama, Y.; Waguri, S.; Ohuchi, K.; Takatani, S.

    2008-02-01

    Cardiovascular devices such as heart-lung machine generate un-physiological level of shear stress to damage red blood cells, leading to hemolysis. The diagnostic techniques of cell damages, however, have not yet been established. In this study, the time-resolved optical spectroscopy was applied to quantify red blood cell (RBC) damages caused by the extracorporeal circulation system. Experimentally, the fresh porcine blood was subjected to varying degrees of shear stress in the rotary blood pump, followed with measurement of the time-resolved transmission characteristics using the pico-second pulses at 651 nm. The propagated optical energy through the blood specimen was detected using a streak camera. The data were analyzed in terms of the mean cell volume (MCV) and mean cell hemoglobin concentration (MCHC) measured separately versus the energy and propagation time of the light pulses. The results showed that as the circulation time increased, the MCV increased with decrease in MCHC. It was speculated that the older RBCs with smaller size and fragile membrane properties had been selectively destroyed by the shear stress. The time-resolved optical spectroscopy is a useful technique in quantifying the RBCs' damages by measuring the energy and propagation time of the ultra-short light pulses through the blood.

  3. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media.

    PubMed

    Meunier, Sarah M; Todorovic, Biljana; Dare, Emma V; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J Larry; Sasges, Michael; Aucoin, Marc G

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media.

  4. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media

    PubMed Central

    Meunier, Sarah M.; Todorovic, Biljana; Dare, Emma V.; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J. Larry; Sasges, Michael; Aucoin, Marc G.

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media. PMID:26975046

  5. Groundwater management under uncertainty using a stochastic multi-cell model

    NASA Astrophysics Data System (ADS)

    Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.

    2017-08-01

    The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.

  6. Simultaneous extraction of proteins and metabolites from cells in culture

    PubMed Central

    Sapcariu, Sean C.; Kanashova, Tamara; Weindl, Daniel; Ghelfi, Jenny; Dittmar, Gunnar; Hiller, Karsten

    2014-01-01

    Proper sample preparation is an integral part of all omics approaches, and can drastically impact the results of a wide number of analyses. As metabolomics and proteomics research approaches often yield complementary information, it is desirable to have a sample preparation procedure which can yield information for both types of analyses from the same cell population. This protocol explains a method for the separation and isolation of metabolites and proteins from the same biological sample, in order for downstream use in metabolomics and proteomics analyses simultaneously. In this way, two different levels of biological regulation can be studied in a single sample, minimizing the variance that would result from multiple experiments. This protocol can be used with both adherent and suspension cell cultures, and the extraction of metabolites from cellular medium is also detailed, so that cellular uptake and secretion of metabolites can be quantified. Advantages of this technique includes:1.Inexpensive and quick to perform; this method does not require any kits.2.Can be used on any cells in culture, including cell lines and primary cells extracted from living organisms.3.A wide variety of different analysis techniques can be used, adding additional value to metabolomics data analyzed from a sample; this is of high value in experimental systems biology. PMID:26150938

  7. Multi-Quadrant Biopsy Technique Improves Diagnostic Ability in Large Heterogeneous Renal Masses.

    PubMed

    Abel, E Jason; Heckman, Jennifer E; Hinshaw, Louis; Best, Sara; Lubner, Meghan; Jarrard, David F; Downs, Tracy M; Nakada, Stephen Y; Lee, Fred T; Huang, Wei; Ziemlewicz, Timothy

    2015-10-01

    Percutaneous biopsy obtained from a single location is prone to sampling error in large heterogeneous renal masses, leading to nondiagnostic results or failure to detect poor prognostic features. We evaluated the accuracy of percutaneous biopsy for large renal masses using a modified multi-quadrant technique vs a standard biopsy technique. Clinical and pathological data for all patients with cT2 or greater renal masses who underwent percutaneous biopsy from 2009 to 2014 were reviewed. The multi-quadrant technique was defined as multiple core biopsies from at least 4 separate solid enhancing areas in the tumor. The incidence of nondiagnostic findings, sarcomatoid features and procedural complications was recorded, and concordance between biopsy specimens and nephrectomy pathology was compared. A total of 122 biopsies were performed for 117 tumors in 116 patients (46 using the standard biopsy technique and 76 using the multi-quadrant technique). Median tumor size was 10 cm (IQR 8-12). Biopsy was nondiagnostic in 5 of 46 (10.9%) standard and 0 of 76 (0%) multi-quadrant biopsies (p=0.007). Renal cell carcinoma was identified in 96 of 115 (82.0%) tumors and nonrenal cell carcinoma tumors were identified in 21 (18.0%). One complication occurred using the standard biopsy technique and no complications were reported using the multi-quadrant technique. Sarcomatoid features were present in 23 of 96 (23.9%) large renal cell carcinomas studied. Sensitivity for identifying sarcomatoid features was higher using the multi-quadrant technique compared to the standard biopsy technique at 13 of 15 (86.7%) vs 2 of 8 (25.0%) (p=0.0062). The multi-quadrant percutaneous biopsy technique increases the ability to identify aggressive pathological features in large renal tumors and decreases nondiagnostic biopsy rates. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. 52Mn Production for PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1)

    DOE PAGES

    Lewis, Christina M.; Graves, Stephen A.; Hernandez, Reinier; ...

    2015-01-01

    There is a growing demand for long-term in vivo stem cell imaging for assessing cell therapy techniques and guiding therapeutic decisions. This work develops the production of 52Mn and establishes proof of concept for the use of divalent metal transporter 1 (DMT1) as a positron emission tomography (PET) and magnetic resonance imaging (MRI) reporter gene for stem cell tracking in the rat brain. 52Mn was produced via proton irradiation of a natural chromium target. In a comparison of two 52Mn separation methods, solvent-solvent extraction was preferred over ion exchange chromatography because of reduced chromium impurities and higher 52Mn recovery. Inmore » vitro uptake of Mn-based PET and MRI contrast agents ( 52Mn 2+ and Mn 2+, respectively) was enhanced in DMT1 over-expressing human neural progenitor cells (hNPC-DMT1) compared to wild-type control cells (hNPC-WT). After cell transplantation in the rat striatum, increased uptake of Mn-based contrast agents in grafted hNPC-DMT1 was detected in in vivo manganese-enhanced MRI (MEMRI) and ex vivo PET and autoradiography. These initial studies indicate that this approach holds promise for dual-modality PET/MR tracking of transplanted stem cells in the central nervous system and prompt further investigation into the clinical applicability of this technique.« less

  9. Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques.

    PubMed

    Xavier, Miguel; Oreffo, Richard O C; Morgan, Hywel

    2016-01-01

    Skeletal stem cells (SSC) are a sub-population of bone marrow stromal cells that reside in postnatal bone marrow with osteogenic, chondrogenic and adipogenic differentiation potential. SSCs reside only in the bone marrow and have organisational and regulatory functions in the bone marrow microenvironment and give rise to the haematopoiesis-supportive stroma. Their differentiation capacity is restricted to skeletal lineages and therefore the term SSC should be clearly distinguished from mesenchymal stem cells which are reported to exist in extra-skeletal tissues and, critically, do not contribute to skeletal development. SSCs are responsible for the unique regeneration capacity of bone and offer unlimited potential for application in bone regenerative therapies. A current unmet challenge is the isolation of homogeneous populations of SSCs, in vitro, with homogeneous regeneration and differentiation capacities. Challenges that limit SSC isolation include a) the scarcity of SSCs in bone marrow aspirates, estimated at between 1 in 10-100,000 mononuclear cells; b) the absence of specific markers and thus the phenotypic ambiguity of the SSC and c) the complexity of bone marrow tissue. Microfluidics provides innovative approaches for cell separation based on bio-physical features of single cells. Here we review the physical principles underlying label-free microfluidic sorting techniques and review their capacity for stem cell selection/sorting from complex (heterogeneous) samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Tumor-stem cells interactions by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.

    2013-02-01

    Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.

  11. Isolation of circulating immune complexes using Raji cells. Separation of antigens from immune complexes and production of antiserum.

    PubMed Central

    Theofilopoulos, A N; Eisenberg, R A; Dixon, F J

    1978-01-01

    Raji cells were used for the isolation of complement-fixing antigen-antibody complexes from serum. Immune complexes bound to these cells were radiolabeled at the cell surface with lactoperoxidase. The complexes were then eluted from the cells with isotonic citrate buffer pH 3.2 or recovered by immunoprecipitation of cell lysates. The antigen and antibody moieties of the complexes were isolated by dissociating sucrose density gradient centrifugation or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A variety of preformed immune complexes were successfully isolated from serum with this approach. In addition, these techniques were used to isolate and identify the antigens in immune complexes in the serum of rabbits with chronic serum sickness and rats with Moloney virus-induced sarcomas. Methods were also developed for the production of antisera against the antigenic moiety of immune complexes isolated from serum. Repeated challenge of rabbits with whole Raji cells with bound complexes or eluates from such cells resulted in antibody production against the antigens of the immune complexes, although reactivity against cellular and serum components was also elicited. Monospecific antisera against the antigens in immune complexes were produced by immunizing rabbits with the alum-precipitated antigen isolated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These techniques may be useful in isolating antigens in immune complex-associated diseases of unknown etiology. Images PMID:659616

  12. Detecting cells in time varying intensity images in confocal microscopy for gene expression studies in living cells

    NASA Astrophysics Data System (ADS)

    Mitra, Debasis; Boutchko, Rostyslav; Ray, Judhajeet; Nilsen-Hamilton, Marit

    2015-03-01

    In this work we present a time-lapsed confocal microscopy image analysis technique for an automated gene expression study of multiple single living cells. Fluorescence Resonance Energy Transfer (FRET) is a technology by which molecule-to-molecule interactions are visualized. We analyzed a dynamic series of ~102 images obtained using confocal microscopy of fluorescence in yeast cells containing RNA reporters that give a FRET signal when the gene promoter is activated. For each time frame, separate images are available for three spectral channels and the integrated intensity snapshot of the system. A large number of time-lapsed frames must be analyzed to identify each cell individually across time and space, as it is moving in and out of the focal plane of the microscope. This makes it a difficult image processing problem. We have proposed an algorithm here, based on scale-space technique, which solves the problem satisfactorily. The algorithm has multiple directions for even further improvement. The ability to rapidly measure changes in gene expression simultaneously in many cells in a population will open the opportunity for real-time studies of the heterogeneity of genetic response in a living cell population and the interactions between cells that occur in a mixed population, such as the ones found in the organs and tissues of multicellular organisms.

  13. Elasticity of human embryonic stem cells as determined by atomic force microscopy.

    PubMed

    Kiss, Robert; Bock, Henry; Pells, Steve; Canetta, Elisabetta; Adya, Ashok K; Moore, Andrew J; De Sousa, Paul; Willoughby, Nicholas A

    2011-10-01

    The expansive growth and differentiation potential of human embryonic stem cells (hESCs) make them a promising source of cells for regenerative medicine. However, this promise is off set by the propensity for spontaneous or uncontrolled differentiation to result in heterogeneous cell populations. Cell elasticity has recently been shown to characterize particular cell phenotypes, with undifferentiated and differentiated cells sometimes showing significant differences in their elasticities. In this study, we determined the Young's modulus of hESCs by atomic force microscopy using a pyramidal tip. Using this method we are able to take point measurements of elasticity at multiple locations on a single cell, allowing local variations due to cell structure to be identified. We found considerable differences in the elasticity of the analyzed hESCs, reflected by a broad range of Young's modulus (0.05-10 kPa). This surprisingly high variation suggests that elasticity could serve as the basis of a simple and efficient large scale purification/separation technique to discriminate subpopulations of hESCs.

  14. The detection of cancer in living tissue with single-cell precision and the development of a system for targeted drug delivery to cancer

    NASA Astrophysics Data System (ADS)

    Fields, Adam; Pi, Sean; Ramek, Alex; Bernheim, Taylor; Fields, Jessica; Pernodet, Nadine; Rafailovich, Miriam

    2007-03-01

    The development of innovations in the field of cancer diagnostics is imperative to improve the early identification of malignant cells within the human body. Two novel techniques are presented for the detection of cancer cells in living tissue. First, shear modulation force microscopy (SMFM) was employed to measure cell mechanics of normal and cancer cells in separate and mixed tissue cultures. We found that the moduli of normal keratinocytes were twice as high as the moduli of SCC cancerous keratinocytes, and that the cancer cells were unambiguously identifiable from a mixture of both kinds of cells. Second, confocal microscopy and the BIAcore 2000 were used to demonstrate the preferential adhesion of glass micro-beads impregnated with fluorescent dye to the membranes of cancer cells as compared to those of normal cells. In addition to their use as a cancer detection system, these hollow and porous beads present a model system for targeted drug delivery in the treatment of cancer.

  15. Ferromagnetic nanowires: Field-induced self-assembly, magnetotransport and biological applications

    NASA Astrophysics Data System (ADS)

    Tanase, Monica

    In this dissertation, a series of experiments on magnetic nanowires are described. Magnetic nanowires suspended in fluid solutions can be assembled and ordered by taking advantage of their large shape anisotropy. Magnetic manipulation and assembly techniques were developed, using electrodeposited Ni nanowires. Preorienting nanowires in a small magnetic field induced their self-assembly in continuous chains. A new technique of magnetic trapping allowed capture of single nanowires from fluid suspension on lithographically fabricated micromagnets. As described herein, the presence of an external magnetic field plays a fundamental role in all fluid assembly methods used. The dynamics of both chaining and trapping processes is described quantitatively in terms of the interplay of magnetic forces and fluid drag at low Reynolds number. Lithographic methods for addressing single nanowires for transport characterization were developed. Magnetotransport measurements were performed on individual straight and bent PtNiPt nanowires. The Pt end segments provided an oxide-free interface to the magnetic central segment. In straight nanowires, domain reversal was observed to occur via curling mode initiated in a small nucleation volume. Magnetotransport in bent nanowires allowed the investigation of a domain wall trapped at the bend. Magnetic trapping of nanowires on pre-fabricated electrodes was adapted as a successful alternative contacting technique to lithography. The self-assembly and manipulation techniques were adapted for manipulation of cells as nanowires were found to bind to cells through nonspecific adhesion mechanisms. Ni nanowires were found to outperform superparamagnetic beads in magnetic cell separations. Additionally, the large remnant magnetization of the nanowires allowed for low-field manipulation techniques. Self-assembled chains of cells were formed and single cells were localized on substrates patterned with micromagnets. A fluid flow method was developed to controllably introduce the cells in the proximity of arrays of micromagnets. Cells decorated the arrays forming patterns described well by dipolar interactions between the magnetic elements and the nanowires. Calculations of the locations favorable for trapping were performed by evaluating the energy of interaction between the array and the nanowires. A second-order mechanism of cell capture was also identified, i.e. chaining by wire-wire dipolar interaction.

  16. What cell death does in development.

    PubMed

    Zakeri, Zahra; Penaloza, Carlos G; Smith, Kyle; Ye, Yixia; Lockshin, Richard A

    2015-01-01

    Cell death is prominent in gametogenesis and shapes and sculpts embryos. In non-mammalian embryos one sees little or no cell death prior to the maternal-zygotic transition, but, in mammalian embryos, characteristic deaths of one or two cells occur at the end of compaction and are apparently necessary for the separation of the trophoblast from the inner cell mass. Considerable sculpting of the embryo occurs by cell deaths during organogenesis, and appropriate cell numbers, especially in the CNS and in the immune system, are generated by massive overproduction of cells and selection of a few, with death of the rest. The timing, identity, and genetic control of specific cells that die have been well documented in Caenorhabditis, but in other embryos the stochastic nature of the deaths limit our ability to do more than identify the regions in which cells will die. Complete disruption of the cell death machinery can be lethal, but many mutations of the regulatory machinery yield only modest or no phenotypes, indicating substantial redundancy and compensation of regulatory mechanisms. Most of the deaths are apoptotic and are identified by techniques used to recognize apoptosis, but techniques identifying lysosomes (whether in dying or involuting cells or in the phagocytes that invade the tissue) also reveal patterns of cell death. Aberrant cell deaths that produce known phenotypes are typically localized, indicating that the mechanism of activating a programmed death in a specific region, rather than the mechanism of death, is aberrant. These results lead us to conclude that we need to know much more about the conversations among cells that lead cells to commit suicide.

  17. Pneumatic jigging: Influence of operating parameters on separation efficiency of solid waste materials.

    PubMed

    Abd Aziz, Mohd Aizudin; Md Isa, Khairuddin; Ab Rashid, Radzuwan

    2017-06-01

    This article aims to provide insights into the factors that contribute to the separation efficiency of solid particles. In this study, a pneumatic jigging technique was used to assess the separation of solid waste materials that consisted of copper, glass and rubber insulator. Several initial experiments were carried out to evaluate the strengths and limitations of the technique. It is found that despite some limitations of the technique, all the samples prepared for the experiments were successfully separated. The follow-up experiments were then carried out to further assess the separation of copper wire and rubber insulator. The effects of air flow and pulse rates on the separation process were examined. The data for these follow-up experiments were analysed using a sink float analysis technique. The analysis shows that the air flow rate was very important in determining the separation efficiency. However, the separation efficiency may be influenced by the type of materials used.

  18. Layout-aware simulation of soft errors in sub-100 nm integrated circuits

    NASA Astrophysics Data System (ADS)

    Balbekov, A.; Gorbunov, M.; Bobkov, S.

    2016-12-01

    Single Event Transient (SET) caused by charged particle traveling through the sensitive volume of integral circuit (IC) may lead to different errors in digital circuits in some cases. In technologies below 180 nm, a single particle can affect multiple devices causing multiple SET. This fact adds the complexity to fault tolerant devices design, because the schematic design techniques become useless without their layout consideration. The most common layout mitigation technique is a spatial separation of sensitive nodes of hardened circuits. Spatial separation decreases the circuit performance and increases power consumption. Spacing should thus be reasonable and its scaling follows the device dimensions' scaling trend. This paper presents the development of the SET simulation approach comprised of SPICE simulation with "double exponent" current source as SET model. The technique uses layout in GDSII format to locate nearby devices that can be affected by a single particle and that can share the generated charge. The developed software tool automatizes multiple simulations and gathers the produced data to present it as the sensitivity map. The examples of conducted simulations of fault tolerant cells and their sensitivity maps are presented in this paper.

  19. Effective separation technique for small diameter whiskers.

    NASA Technical Reports Server (NTRS)

    Westfall, L. J.

    1972-01-01

    Description of a technique for separating small-diameter whiskers from the as-grown matt by gently agitating the whisker matts in a solution of deionized or distilled water for six to eight hours. High-strength Al2O3 whiskers were effectively separated by this technique, comprising an average 48% of the original weight of the whisker matt. According to estimation, more than 90% of separated whiskers had diameters between 0.7 and 2.0 microns.

  20. Characterization of A Three-Dimensional Organotypic Co-Culture Skin Model for Epidermal Differentiation of Rat Adipose-Derived Stem Cells.

    PubMed

    Ghanavati, Zeinab; Orazizadeh, Mahmoud; Bayati, Vahid; Abbaspour, Mohammad Reza; Khorsandi, Layasadat; Mansouri, Esrafil; Neisi, Niloofar

    2016-01-01

    The organotypic co-culture is a well-known technique to examine cellular interactions and their roles in stem cell proliferation and differentiation. This study aims to evaluate the effects of dermal fibroblasts (DFs) on epidermal differentiation of adipose-derived stem cells (ASCs) using a three-dimensional (3D) organotypic co- culture technique. In this experimental research study, rat DFs and ASCs were isolated and cultured separately on electrospun polycaprolactone (PCL) matrices. The PCL matrices seeded by ASCs were superimposed on to the matrices seeded by DFs in order to create a 3D organotypic co-culture. In the control groups, PCL matrices seeded by ASCs were placed on matrices devoid of DFs. After 10 days, we assessed the expressions of keratinocyte-related genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and expression of pan-cytokeratin protein by immunofluorescence in the differentiated keratinocyte-like cells from co- culture and control groups. Keratinocyte-like cell morphologies were also observed by scanning electron microscopy (SEM). The early, intermediate, and terminal differentiation keratinocyte markers-Cytokeratin14, Filaggrin, and Involucrin significantly expressed in the co-culture groups com- pared to the control ones (P<0.05). We observed pan-cytokeratin in keratinocyte-like cells of both groups by immunofluorescence. SEM observation of the co-culture groups showed that the differentiated keratinocyte-like cells developed a polygonal cobblestone shape, considered characteristic of keratinocytes. The 3D organotypic co-culture bilayered construct that consisted of DFs and ASCs was an effective technique for epidermal differentiation of ASCs. This co-culture might be useful for epidermal differentiation of stem cells for future applications in skin regeneration.

  1. Characterization of A Three-Dimensional Organotypic Co-Culture Skin Model for Epidermal Differentiation of Rat Adipose-Derived Stem Cells

    PubMed Central

    Ghanavati, Zeinab; Orazizadeh, Mahmoud; Bayati, Vahid; Abbaspour, Mohammad Reza; Khorsandi, Layasadat; Mansouri, Esrafil; Neisi, Niloofar

    2016-01-01

    Objective The organotypic co-culture is a well-known technique to examine cellular interactions and their roles in stem cell proliferation and differentiation. This study aims to evaluate the effects of dermal fibroblasts (DFs) on epidermal differentiation of adipose-derived stem cells (ASCs) using a three-dimensional (3D) organotypic co- culture technique. Materials and Methods In this experimental research study, rat DFs and ASCs were isolated and cultured separately on electrospun polycaprolactone (PCL) matrices. The PCL matrices seeded by ASCs were superimposed on to the matrices seeded by DFs in order to create a 3D organotypic co-culture. In the control groups, PCL matrices seeded by ASCs were placed on matrices devoid of DFs. After 10 days, we assessed the expressions of keratinocyte-related genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and expression of pan-cytokeratin protein by immunofluorescence in the differentiated keratinocyte-like cells from co- culture and control groups. Keratinocyte-like cell morphologies were also observed by scanning electron microscopy (SEM). Results The early, intermediate, and terminal differentiation keratinocyte markers-Cytokeratin14, Filaggrin, and Involucrin significantly expressed in the co-culture groups com- pared to the control ones (P<0.05). We observed pan-cytokeratin in keratinocyte-like cells of both groups by immunofluorescence. SEM observation of the co-culture groups showed that the differentiated keratinocyte-like cells developed a polygonal cobblestone shape, considered characteristic of keratinocytes. Conclusion The 3D organotypic co-culture bilayered construct that consisted of DFs and ASCs was an effective technique for epidermal differentiation of ASCs. This co-culture might be useful for epidermal differentiation of stem cells for future applications in skin regeneration. PMID:27602310

  2. New diagnostic technique for the study of turbulent boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Horstman, C. C.; Owen, F. K.

    1974-01-01

    Description of a diagnostic technique for determining the unsteady character of turbulent boundary-layer separation. The technique uses thin platinum films mounted flush with the model surface. Voltages from these films provide measurements related to the flow character above the film. For illustration, results obtained by this technique are presented for the interaction of a hypersonic shock wave and a turbulent boundary layer, with and without separation.

  3. Reduction of polyatomic interferences in ICP-MS by collision/reaction cell (CRC-ICP-MS) techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eiden, Greg C; Barinaga, Charles J; Koppenaal, David W

    2012-05-01

    Polyatomic and other spectral interferences in plasma source mass spectrometry (PSMS) can be dramatically reduced using collision and reaction cells (CRC). These devices have been used for decades in fundamental studies of ion-molecule chemistry, but have only recently been applied to PSMS. Benefits of this approach as applied in inductively coupled plasma MS (ICP-MS) include interference reduction, isobar separation, and thermalization/focusing of ions. Novel ion-molecule chemistry schemes are now routinely designed and empirically evaluated with relative ease. These “chemical resolution” techniques can avert interferences requiring mass spectral resolutions of >600,000 (m/m). Purely physical ion beam processes, including collisional dampening andmore » collisional dissociation, are also employed to provide improved sensitivity, resolution, and spectral simplicity. CRC techniques are now firmly entrenched in current-day ICP-MS technology, enabling unprecedented flexibility and freedom from many spectral interferences. A significant body of applications has now been reported in the literature. CRC techniques are found to be most useful for specialized or difficult analytical needs and situations, and are employed in both single- and multi-element determination modes.« less

  4. High-resolution Identification and Separation of Living Cell Types by Multiple microRNA-responsive Synthetic mRNAs.

    PubMed

    Endo, Kei; Hayashi, Karin; Saito, Hirohide

    2016-02-23

    The precise identification and separation of living cell types is critical to both study cell function and prepare cells for medical applications. However, intracellular information to distinguish live cells remains largely inaccessible. Here, we develop a method for high-resolution identification and separation of cell types by quantifying multiple microRNA (miRNA) activities in live cell populations. We found that a set of miRNA-responsive, in vitro synthesized mRNAs identify a specific cell population as a sharp peak and clearly separate different cell types based on less than two-fold differences in miRNA activities. Increasing the number of miRNA-responsive mRNAs enhanced the capability for cell identification and separation, as we precisely and simultaneously distinguished different cell types with similar miRNA profiles. In addition, the set of synthetic mRNAs separated HeLa cells into subgroups, uncovering heterogeneity of the cells and the level of resolution achievable. Our method could identify target live cells and improve the efficiency of cell purification from heterogeneous populations.

  5. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    PubMed

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  6. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping

    NASA Astrophysics Data System (ADS)

    Labib, Mahmoud; Mohamadi, Reza M.; Poudineh, Mahla; Ahmed, Sharif U.; Ivanov, Ivaylo; Huang, Ching-Lung; Moosavi, Maral; Sargent, Edward H.; Kelley, Shana O.

    2018-05-01

    Cell-to-cell variation in gene expression creates a need for techniques that can characterize expression at the level of individual cells. This is particularly true for rare circulating tumour cells, in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis—single-cell mRNA cytometry—that enables the isolation of rare cells from whole blood as a function of target mRNA sequences. This approach uses two classes of magnetic particles that are labelled to selectively hybridize with different regions of the target mRNA. Hybridization leads to the formation of large magnetic clusters that remain localized within the cells of interest, thereby enabling the cells to be magnetically separated. Targeting specific intracellular mRNAs enablescirculating tumour cells to be distinguished from normal haematopoietic cells. No polymerase chain reaction amplification is required to determine RNA expression levels and genotype at the single-cell level, and minimal cell manipulation is required. To demonstrate this approach we use single-cell mRNA cytometry to detect clinically important sequences in prostate cancer specimens.

  7. Electrophoretic cell separation using microspheres. [purification of lymphocytes

    NASA Technical Reports Server (NTRS)

    Smolka, A.; Sachs, G.

    1980-01-01

    Methods of cell separation based on the electrokinetic properties of the cell membrane offer a degree of discrimination among cell populations which is not available with methods based on cell size or density alone. Studies aimed at extending red cell separations using microspheres to purification of lymphocytes.

  8. In Vivo Fluorescence Imaging and Tracking of Circulating Cells and Therapeutic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Markovic, Stacey

    Noninvasive enumeration of rare circulating cells in small animals is of great importance in many areas of biomedical research, but most existing enumeration techniques involve drawing and enriching blood which is known to be problematic. Recently, small animal "in vivo flow cytometry" (IVFC) techniques have been developed, where cells flowing through small arterioles are counted continuously and noninvasively in vivo. However, higher sensitivity IVFC techniques are needed for studying low-abundance (<100/mL) circulating cells. To this end, we developed a macroscopic fluorescence imaging system and automated computer vision algorithm that allows in vivo detection, enumeration and tracking of circulating fluorescently labeled cells from multiple large blood vessels in the ear of a mouse. This technique ---"computer vision IVFC" (CV-IVFC) --- allows cell detection and enumeration at concentrations of 20 cells/mL. Performance of CV-IVFC was also characterized for low-contrast imaging scenarios, representing conditions of weak cell fluorescent labeling or high background tissue autofluorescence, and showed efficient tracking and enumeration of circulating cells with 50% sensitivity in contrast conditions degraded 2 orders of magnitude compared to in vivo testing supporting the potential utility of CV-IVFC in a range of biological models. Refinement of prior work in our lab of a separate rare-cell detection platform - "diffuse fluorescence flow cytometry" (DFFC) --- implemented a "frequency encoding" scheme by modulating two excitation lasers. Fluorescent light from both lasers can be simultaneously detected and split by frequency allowing for better discrimination of noise, sensitivity, and cell localization. The system design is described in detail and preliminary data is shown. Last, we developed a broad-field transmission fluorescence imaging system to observe nanoparticle (NP) diffusion in bulk biological tissue. Novel, implantable NP spacers allow controlled, long-term release of drugs. However, kinetics of NP (drug) diffusion over time is still poorly understood. Our imaging system allowed us to quantify diffusion of free dye and NPs of different sizes in vitro and in vivo. Subsequent analysis verified that there was continuous diffusion which could be controlled based on particle size. Continued use of this imaging system will aid optimization of NP spacers.

  9. Magnetic Correlations In A Magnetite Nanoparticle Assembly Investigated Using Polarized SANS

    NASA Astrophysics Data System (ADS)

    Krycka, Kathryn; Hogg, Charles; Ijiri, Yumi; Booth, Ryan; Borchers, Julie; Chen, Wangchun; Laver, Mark; Gentile, Thomas; Maranville, Brian; Breslauer, Benjamin; Majetich, Sara

    2008-03-01

    Using small angle neutron scattering (SANS) with polarization analysis, we have studied ferromagnetic magnetite monodisperse nanospheres in order to determine the field (0 and 1.3 Tesla) and temperature (50, 100, and 200 K) dependence of the magnetic interparticle correlations. These particles were 7 nm in diameter with an average edge-to-edge separation of 2.5 nm. Preparation techniques are described elsewhere [1]. An FeSi supermirror polarized the incident neutrons, and a polarized 3He cell was used as a spin analyzer. While a typical magnetic SANS experiment observes the convolution of the nuclear and magnetic terms, we have implemented and further developed an algorithm to separate the four spin dependent cross sections. This provides an unambiguous separation and measurement of magnetic and nuclear contributions. At low temperatures, magnetic correlation lengths have been found to be significantly larger than at high temperatures.[1] J. Am. Chem. Soc. 2002, 124, 8204-8205.

  10. Superparamagnetic nano-immunobeads toward food safety insurance

    NASA Astrophysics Data System (ADS)

    Liu, Xuefeng; Zhang, Lei; Zeng, Jing; Gao, Yan; Tang, Zhiyong

    2013-07-01

    In this work, superparamagnetic nano-immunobeads (SPM-NIBs) based on conjugation of superparamagnetic Fe3O4 nanoparticles with specific antibodies have been developed toward food safety insurance. The resultant SPM-NIBs exhibits excellent colloidal stability and reversible magnetic response. Vibrio parahaemolyticus, which is a main foodborne pathogenes from contaminated seafood, can be separated specifically and efficiently by the resultant SPM-NIBs. The results of bacteria separation demonstrate that the SPM-NIBs have a higher specific activity and sensitivity toward V. parahaemolyticus. About 80 % of V. parahaemolyticus cells can be captured when the concentration of the broth reaches 103 CFU/mL. Thus, the SPM-NIBs can effectively enhance the efficiency for target bacteria inspections by shortening the period of culture time. This work holds the promise of development of general technique to prepare effective SPM-NIBs toward food safety inspections and other bio-related applications for target analyte separation and collection.

  11. Analysis of cellular and extracellular DNA in fingerprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Button, Julie M.

    It has been previously shown that DNA can be recovered from latent fingerprints left on various surfaces [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. However, the source of the DNA, extracellular versus cellular origin, is difficult to determine. If the DNA is cellular, it is believed to belong to skin cells while extracellular DNA is believed to originate from body fluids such as sweat [D. J. Daly et. al, Forensic Sci. Int. Genet. 6, 41-46 (2012); V. V. Vlassov et. al, BioEssays 29, 654-667 (2007)]. The origin of the DNA in fingerprints has implicationsmore » for processing and interpretation of forensic evidence. The determination of the origin of DNA in fingerprints is further complicated by the fact that the DNA in fingerprints tends to be at a very low quantity [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. This study examined fingerprints from five volunteers left on sterilized glass slides and plastic pens. Three fingerprints were left on each glass slide (thumb, index, and middle fingers) while the pens were held as if one was writing with them. The DNA was collected from the objects using the wet swabbing technique (TE buffer). Following collection, the cellular and extracellular components of each sample were separated using centrifugation and an acoustofluidics system. Centrifugation is still the primary separation technique utilized in forensics laboratories, while acoustic focusing uses sound waves to focus large particles (cells) into low pressure nodes, separating them from the rest of the sample matrix. After separation, all samples were quantified using real-time quantitative PCR (qPCR). The overall trend is that there is more DNA in the extracellular fractions than cellular fractions for both centrifugation and acoustofluidic processing. Additionally, more DNA was generally collected from the pen samples than the samples left on glass slides.« less

  12. Evaluation of Inorganic/Organic Separators

    NASA Technical Reports Server (NTRS)

    Donnel, C. P., III

    1976-01-01

    Thirty-six (36) experimental 40AH sealed silver-zinc cells were constructed during phase I of this two (2) phase program. These cells were divided into six (6) groups of six (6) cells each. Each group of six (6) cells was evenly divided into two batches of three (3) cells each. Groups 1 through 4 each featured a different inorganic filler material in the slurry used to coat the separator substrate. Groups 5 and 6 featured an alternate method of separator bag construction. With the exception of the various separator materials, the parts and processes used to produce these thirty-six (36) cells were the same as those used to make the HR40-7 cell. The two (2) batches of cells in each cell group differed only in the lots of solutions and other separator slurry components used. Each cell was given two formation charge/discharge cycles prior to being shipped to NASA Lewis Research Center. Phase II of the program consisted of constructing another thirty-six (36) 40AH experimental cells in six (6) groups of six (6) cells each. Each group was distinguished by the type of precoated separator material used to fabricate separator bags. A new method of separator bag construction was used in this phase of the program. These cells were given two (2) formation cycles and shipped to NASA Lewis Research Center.

  13. Further analyses of human kidney cell populations separated on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Stewart, Robin M.; Todd, Paul; Cole, Kenneth D.; Morrison, Dennis R.

    1992-01-01

    Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120 C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantization of plasminogen activators in these samples. These assays of frozen-culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator-producing cells from nonproducing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one other.

  14. Quality testing of an innovative cascade separation system for multiple cell separation

    NASA Astrophysics Data System (ADS)

    Pierzchalski, Arkadiusz; Moszczynska, Aleksandra; Albrecht, Bernd; Heinrich, Jan-Michael; Tarnok, Attila

    2012-03-01

    Isolation of different cell types from mixed samples in one separation step by FACS is feasible but expensive and slow. It is cheaper and faster but still challenging by magnetic separation. An innovative bead-based cascade-system (pluriSelect GmbH, Leipzig, Germany) relies on simultaneous physical separation of different cell types. It is based on antibody-mediated binding of cells to beads of different size and isolation with sieves of different mesh-size. We validated pluriSelect system for single parameter (CD3) and simultaneous separation of CD3 and CD15 cells from EDTA blood-samples. Results were compared with those obtained by MACS (Miltenyi-Biotech) magnetic separation (CD3 separation). pluriSelect separation was done in whole blood, MACS on Ficoll gradient isolated leukocytes, according to the manufacturer's protocols. Isolated and residual cells were immunophenotyped (7-color 8-antibody panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLADR) on a CyFlowML flow cytometer (Partec GmbH). Cell count (Coulter), purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (92-98%), yield (50-60%) and viability (92-98%) of isolated cells. PluriSelect separation was slightly faster than MACS (1.15 h versus 1.5h). Moreover, no preenrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two cell subpopulation directly from whole blood and can provide a simple alternative to FACS. The isolated cells can be used for further research applications.

  15. Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes

    PubMed Central

    Yanhong, Fan; Chenghua, He; Guofang, Liu

    2008-01-01

    The aquatic environment is affected by numerous chemical contaminants. There is an increasing need to identify these chemicals and to evaluate their potential toxicity towards aquatic life. In this research we optimized techniques for primary cell culture of Cyprinus carpio hepatocytes as one adjunct model for ecotoxicological evaluation of the potential hazards of xenobiotics in the aquatic environment. In this study, Cyprinus carpio hepatocytes were isolated by mechanical separation, two-step collagenase perfusion, and pancreatin digestion. The hepatocytes or parenchymal cells could be separated from cell debris and from non-parenchymal cells by low-speed centrifugation (Percoll gradient centrifugation). The harvested hepatocytes were suspended in DMEM, M199 (cultured in 5% CO2), or L-15 (cultured without 5% CO2) medium then cultured at 17, 27, or 37 °C. Cell yield was counted by use of a hemocytometer, and the viability of the cells was assessed by use of the Trypan blue exclusion test. Results from these studies showed that the best method of isolation was pancreatin digestion (the cell yield was 2.7 × 108 per g (liver weight) and the viability was 98.4%) and the best medium was M199 (cultured in 5% CO2) or L-15 (cultured without 5% CO2). The optimum culture temperature was 27 °C. The primary hepatocytes culture of Cyprimus carpio grew well and satisfied requirements for most toxicological experiments in this condition. PMID:19002769

  16. Fresenius AS.TEC204 blood cell separator.

    PubMed

    Sugai, Mikiya

    2003-02-01

    Fresenius AS.TEC204 is a third-generation blood cell separator that incorporates the continuous centrifugal separation method and automatic control of the cell separation process. Continuous centrifugation separates cell components according to their specific gravity, and different cell components are either harvested or eliminated as needed. The interface between the red blood cell and plasma is optically detected, and the Interface Control (IFC) cooperates with different pumps, monitors and detectors to harvest required components automatically. The system is composed of three major sections; the Front Panel Unit; the Pump Unit, and the Centrifuge Unit. This unit can be used for a wide variety of clinical applications including collection of platelets, peripheral blood stem cells, bone marrow stem cells, granulocytes, mononuclear cells, and exchange of plasma or red cells, and for plasma treatment.

  17. DEFINITION OF MULTIVARIATE GEOCHEMICAL ASSOCIATIONS WITH POLYMETALLIC MINERAL OCCURRENCES USING A SPATIALLY DEPENDENT CLUSTERING TECHNIQUE AND RASTERIZED STREAM SEDIMENT DATA - AN ALASKAN EXAMPLE.

    USGS Publications Warehouse

    Jenson, Susan K.; Trautwein, C.M.

    1984-01-01

    The application of an unsupervised, spatially dependent clustering technique (AMOEBA) to interpolated raster arrays of stream sediment data has been found to provide useful multivariate geochemical associations for modeling regional polymetallic resource potential. The technique is based on three assumptions regarding the compositional and spatial relationships of stream sediment data and their regional significance. These assumptions are: (1) compositionally separable classes exist and can be statistically distinguished; (2) the classification of multivariate data should minimize the pair probability of misclustering to establish useful compositional associations; and (3) a compositionally defined class represented by three or more contiguous cells within an array is a more important descriptor of a terrane than a class represented by spatial outliers.

  18. Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components

  19. Biological membranes

    PubMed Central

    Watson, Helen

    2015-01-01

    Biological membranes allow life as we know it to exist. They form cells and enable separation between the inside and outside of an organism, controlling by means of their selective permeability which substances enter and leave. By allowing gradients of ions to be created across them, membranes also enable living organisms to generate energy. In addition, they control the flow of messages between cells by sending, receiving and processing information in the form of chemical and electrical signals. This essay summarizes the structure and function of membranes and the proteins within them, and describes their role in trafficking and transport, and their involvement in health and disease. Techniques for studying membranes are also discussed. PMID:26504250

  20. Sol-gel derived (La 0.8M 0.2)CrO 3 (M dbnd Ca, Sr) coating layer on stainless-steel substrate for use as a separator in intermediate-temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    A Lee, E.; Lee, S.; Hwang, H. J.; Moon, J.-W.

    A ceramic coating technique is applied to reduce the voltage drop caused by oxidation of the metallic separator (SUS444) in intermediate-temperature (IT) solid oxide fuel cell (SOFCs) systems. Precursor solutions for (La, Ca)CrO 3 (LCC) and (La, Sr)CrO 3 (LSC) coatings are prepared by adding nitric acid and ethylene glycol into an aqueous solution of lanthanum, strontium (or calcium) and chromium nitrates. Dried LCC and LSC gel films are heat-treated at 400-800 °C after dip-coating on the SUS444 substrate. XRD and Fourier-transform infrared (FT-IR) analysis is used to examine the crystallization behaviour and chemical structure of the precursor solution. The oxidation behaviour of the coated SUS444 substrate is compared with an uncoated SUS444 substrate. The oxidation of the SUS444 is inhibited by the LCC and LSC thin film layers.

  1. Capillary isoelectric focusing and fluorometric detection of proteins and microorganisms dynamically modified by poly(ethylene glycol) pyrenebutanoate.

    PubMed

    Horka, Marie; Ruzicka, Filip; Horký, Jaroslav; Holá, Veronika; Slais, Karel

    2006-12-15

    The nonionogenic pyrene-based tenside, poly(ethylene glycol) pyrenebutanoate, was prepared and applied in capillary isoelectric focusing with fluorometric detection. This dye was used here as a buffer additive in capillary isoelectric focusing for a dynamic modification of the sample of proteins and microorganisms. The values of the isoelectric points of the labeled bioanalytes were calculated with use of the fluorescent pI markers and were found comparable with pI of the native compounds. The mixed cultures of proteins and microorganisms, Escherichia coli CCM 3954, Staphylococcus epidermidis CCM 4418, Proteus vulgaris, Enterococcus faecalis CCM 4224, and Stenotrophomonas maltophilia, the strains of the yeast cells, Candida albicans CCM 8180, Candida krusei, Candida parapsilosis, Candida glabrata, Candida tropicalis, and Saccharomyces cerevisiae were reproducibly focused and separated by the suggested technique. Using UV excitation for the on-column fluorometric detection, the minimum detectable amount was down to 10 cells injected on the separation capillary.

  2. Mesh-Based Entry Vehicle and Explosive Debris Re-Contact Probability Modeling

    NASA Technical Reports Server (NTRS)

    McPherson, Mark A.; Mendeck, Gavin F.

    2011-01-01

    The risk to a crewed vehicle arising from potential re-contact with fragments from an explosive breakup of any jettisoned spacecraft segments during entry has long sought to be quantified. However, great difficulty lies in efficiently capturing the potential locations of each fragment and their collective threat to the vehicle. The method presented in this paper addresses this problem by using a stochastic approach that discretizes simulated debris pieces into volumetric cells, and then assesses strike probabilities accordingly. Combining spatial debris density and relative velocity between the debris and the entry vehicle, the strike probability can be calculated from the integral of the debris flux inside each cell over time. Using this technique it is possible to assess the risk to an entry vehicle along an entire trajectory as it separates from the jettisoned segment. By decoupling the fragment trajectories from that of the entry vehicle, multiple potential separation maneuvers can then be evaluated rapidly to provide an assessment of the best strategy to mitigate the re-contact risk.

  3. Droplet microfluidics with magnetic beads: a new tool to investigate drug-protein interactions.

    PubMed

    Lombardi, Dario; Dittrich, Petra S

    2011-01-01

    In this study, we give the proof of concept for a method to determine binding constants of compounds in solution. By implementing a technique based on magnetic beads with a microfluidic device for segmented flow generation, we demonstrate, for individual droplets, fast, robust and complete separation of the magnetic beads. The beads are used as a carrier for one binding partner and hence, any bound molecule is separated likewise, while the segmentation into small microdroplets ensures fast mixing, and opens future prospects for droplet-wise analysis of drug candidate libraries. We employ the method for characterization of drug-protein binding, here warfarin to human serum albumin. The approach lays the basis for a microfluidic droplet-based screening device aimed at investigating the interactions of drugs with specific targets including enzymes and cells. Furthermore, the continuous method could be employed for various applications, such as binding assays, kinetic studies, and single cell analysis, in which rapid removal of a reactive component is required.

  4. Chromatographic Techniques for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin

    2017-04-01

    The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.

  5. Genes Related to Antiviral Activity, Cell Migration, and Lysis Are Differentially Expressed in CD4+ T Cells in Human T Cell Leukemia Virus Type 1-Associated Myelopathy/Tropical Spastic Paraparesis Patients

    PubMed Central

    Pinto, Mariana Tomazini; Malta, Tathiane Maistro; Rodrigues, Evandra Strazza; Pinheiro, Daniel Guariz; Panepucci, Rodrigo Alexandre; Malmegrim de Farias, Kelen Cristina Ribeiro; Sousa, Alessandra De Paula; Takayanagui, Osvaldo Massaiti; Tanaka, Yuetsu; Covas, Dimas Tadeu

    2014-01-01

    Abstract Human T cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T cells and these cells play a central role in HTLV-1 infection. In this study, we investigated the global gene expression profile of circulating CD4+ T cells from the distinct clinical status of HTLV-1-infected individuals in regard to TAX expression levels. CD4+ T cells were isolated from asymptomatic HTLV-1 carrier (HAC) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients in order to identify genes involved in HAM/TSP development using a microarray technique. Hierarchical clustering analysis showed that healthy control (CT) and HTLV-1-infected samples clustered separately. We also observed that the HAC and HAM/TSP groups clustered separately regardless of TAX expression. The gene expression profile of CD4+ T cells was compared among the CT, HAC, and HAM/TSP groups. The paxillin (Pxn), chemokine (C-X-C motif ) receptor 4 (Cxcr4), interleukin 27 (IL27), and granzyme A (Gzma) genes were differentially expressed between the HAC and HAM/TSP groups, regardless of TAX expression. The perforin 1 (Prf1) and forkhead box P3 (Foxp3) genes were increased in the HAM/TSP group and presented a positive correlation to the expression of TAX and the proviral load (PVL). The frequency of CD4+FOXP3+ regulatory T cells (Treg) was higher in HTLV-1-infected individuals. Foxp3 gene expression was positively correlated with cell lysis-related genes (Gzma, Gzmb, and Prf1). These findings suggest that CD4+ T cell activity is distinct between the HAC and HAM/TSP groups. PMID:24041428

  6. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  7. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  8. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  9. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  10. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  11. Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations.

    PubMed

    Han, Ki-Ho; Frazier, A Bruno

    2006-02-01

    This paper presents the characterization of continuous single-stage and three-stage cascade paramagnetic capture (PMC) mode magnetophoretic microseparators for high efficiency separation of red and white blood cells from diluted whole blood based on their native magnetic properties. The separation mechanism for both PMC microseparators is based on a high gradient magnetic separation (HGMS) method. This approach enables separation of blood cells without the use of additives such as magnetic beads. Experimental results for the single-stage PMC microseparator show that 91.1% of red blood cells were continuously separated from the sample at a volumetric flow rate of 5 microl h-1. In addition, the three-stage cascade PMC microseparator continuously separated 93.5% of red blood cells and 97.4% of white blood cells from whole blood at a volumetric flow rate of 5 microl h-1.

  12. Deterministic Migration-Based Separation of White Blood Cells.

    PubMed

    Kim, Byeongyeon; Choi, Young Joon; Seo, Hyekyung; Shin, Eui-Cheol; Choi, Sungyoung

    2016-10-01

    Functional and phenotypic analyses of peripheral white blood cells provide useful clinical information. However, separation of white blood cells from peripheral blood requires a time-consuming, inconvenient process and thus analyses of separated white blood cells are limited in clinical settings. To overcome this limitation, a microfluidic separation platform is developed to enable deterministic migration of white blood cells, directing the cells into designated positions according to a ridge pattern. The platform uses slant ridge structures on the channel top to induce the deterministic migration, which allows efficient and high-throughput separation of white blood cells from unprocessed whole blood. The extent of the deterministic migration under various rheological conditions is explored, enabling highly efficient migration of white blood cells in whole blood and achieving high-throughput separation of the cells (processing 1 mL of whole blood less than 7 min). In the separated cell population, the composition of lymphocyte subpopulations is well preserved, and T cells secrete cytokines without any functional impairment. On the basis of the results, this microfluidic platform is a promising tool for the rapid enrichment of white blood cells, and it is useful for functional and phenotypic analyses of peripheral white blood cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sperm preparation for ART

    PubMed Central

    Henkel, Ralf R; Schill, Wolf-Bernhard

    2003-01-01

    The onset of clinical assisted reproduction, a quarter of a century ago, required the isolation of motile spermatozoa. As the indication of assisted reproduction shifted from mere gynaecological indications to andrological indications during the years, this urged andrological research to understand the physiology of male germ cell better and develop more sophisticated techniques to separate functional spermatozoa from those that are immotile, have poor morphology or are not capable to fertilize oocytes. Initially, starting from simple washing of spermatozoa, separation techniques, based on different principles like migration, filtration or density gradient centrifugation evolved. The most simple and cheapest is the conventional swim-up procedure. A more sophisticated and most gentle migration method is migration-sedimentation. However, its yield is relatively small and the technique is therefore normally only limited to ejaculates with a high number of motile spermatozoa. Recently, however, the method was also successfully used to isolate spermatozoa for intracytoplasmic sperm injection (ICSI). Sperm separation methods that yield a higher number of motile spermatozoa are glass wool filtration or density gradient centrifugation with different media. Since Percoll® as a density medium was removed from the market in 1996 for clinical use in the human because of its risk of contamination with endotoxins, other media like IxaPrep®, Nycodenz, SilSelect®, PureSperm® or Isolate® were developed in order to replace Percoll®. Today, an array of different methods is available and the selection depends on the quality of the ejaculates, which also includes production of reactive oxygen species (ROS) by spermatozoa and leukocytes. Ejaculates with ROS production should not be separated by means of conventional swim-up, as this can severely damage the spermatozoa. In order to protect the male germ cells from the influence of ROS and to stimulate their motility to increase the yield, a number of substances can be added to the ejaculate or the separation medium. Caffeine, pentoxifylline and 2-deoxyadenosine are substances that were used to stimulate motility. Recent approaches to stimulate spermatozoa include bicarbonate, metal chelators or platelet-activating factor (PAF). While the use of PAF already resulted in pregnancies in intrauterine insemination, the suitability of the other substances for the clinical use still needs to be tested. Finally, the isolation of functional spermatozoa from highly viscous ejaculates is a special challenge and can be performed enzymatically to liquefy the ejaculate. The older method, by which the ejaculate is forcefully aspirated through a narrow-gauge needle, should be abandoned as it can severely damage spermatozoa, thus resulting in immotile sperm. PMID:14617368

  14. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  15. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  16. Recent advances in microparticle continuous separation.

    PubMed

    Kersaudy-Kerhoas, M; Dhariwal, R; Desmulliez, M P Y

    2008-03-01

    Recent advances in microparticle separation in continuous flow are presented. It is intended for scientists in the field of separation science in biology, chemistry and microsystems engineering. Recent techniques of micron-sized particle separation within microsystems are described with emphasis on five different categories: optical, magnetic, fluidic-only, electrical and minor separation methods. Examples from the growing literature are explained with insights on separation efficiency and microengineering challenges. Current applications of the techniques are discussed.

  17. Separation of CHO cells using hydrocyclones.

    PubMed

    Pinto, Rodrigo C V; Medronho, Ricardo A; Castilho, Leda R

    2008-01-01

    Hydrocyclones are simple and robust separation devices with no moving parts. In the past few years, their use in animal cell separation has been proposed. In this work, the use of different hydrocyclone configurations for Chinese hamster ovary (CHO) cell separation was investigated following an experimental design. It was shown that cell separation efficiencies for cultures of the wild-type CHO.K1 cell line and of a recombinant CHO cell line producing granulocyte-macrophage colony stimulating factor (GM-CSF) were kept above 97%. Low viability losses were observed, as measured by trypan blue exclusion and by determination of intracellular lactate dehydrogenase (LDH) released to the culture medium. Mathematical models were proposed to predict the flow rate, flow ratio and separation efficiency as a function of hydrocyclone geometry and pressure drop. When cells were monitored for any induction of apoptosis upon passage through the hydrocyclones, no increase in apoptotic cell concentration was observed within 48 h of hydrocycloning. Thus, based on the high separation efficiencies, the robustness of the equipment, and the absence of apoptosis induction, hydrocyclones seem to be specially suited for use as cell retention devices in long-term perfusion runs.

  18. Floating-point scaling technique for sources separation automatic gain control

    NASA Astrophysics Data System (ADS)

    Fermas, A.; Belouchrani, A.; Ait-Mohamed, O.

    2012-07-01

    Based on the floating-point representation and taking advantage of scaling factor indetermination in blind source separation (BSS) processing, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an automatic gain control in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division-free BSS algorithm with two inputs, two outputs. The proposed technique is computationally cheaper and efficient for a hardware implementation compared to the Euclidean normalisation.

  19. Cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, Steven T.; Feikert, John H.; Kachmitter, James L.; Pekala, Richard W.

    1995-01-01

    An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack.

  20. Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells.

    PubMed

    Leblebici, Sibel Y; Chen, Teresa L; Olalde-Velasco, Paul; Yang, Wanli; Ma, Biwu

    2013-10-23

    Photocurrent generation in organic solar cells requires that excitons, which are formed upon light absorption, dissociate into free carriers at the interface of electron acceptor and donor materials. The high exciton binding energy, arising from the low permittivity of organic semiconductor films, generally causes low exciton separation efficiency and subsequently low power conversion efficiency. We demonstrate here, for the first time, that the exciton binding energy in B,O-chelated azadipyrromethene (BO-ADPM) donor films is reduced by increasing the film permittivity by blending the BO-ADPM donor with a high dielectric constant small molecule, camphoric anhydride (CA). Various spectroscopic techniques, including impedance spectroscopy, photon absorption and emission spectroscopies, as well as X-ray spectroscopies, are applied to characterize the thin film electronic and photophysical properties. Planar heterojunction solar cells are fabricated with a BO-ADPM:CA film as the electron donor and C60 as the acceptor. With an increase in the dielectric constant of the donor film from ∼4.5 to ∼11, the exciton binding energy is reduced and the internal quantum efficiency of the photovoltaic cells improves across the entire spectrum, with an ∼30% improvement in the BO-ADPM photoactive region.

  1. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies

    NASA Astrophysics Data System (ADS)

    1994-03-01

    This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  2. Design and simulation of a microfluidic device for acoustic cell separation.

    PubMed

    Shamloo, Amir; Boodaghi, Miad

    2018-03-01

    Experimental acoustic cell separation methods have been widely used to perform separation for different types of blood cells. However, numerical simulation of acoustic cell separation has not gained enough attention and needs further investigation since by using numerical methods, it is possible to optimize different parameters involved in the design of an acoustic device and calculate particle trajectories in a simple and low cost manner before spending time and effort for fabricating these devices. In this study, we present a comprehensive finite element-based simulation of acoustic separation of platelets, red blood cells and white blood cells, using standing surface acoustic waves (SSAWs). A microfluidic channel with three inlets, including the middle inlet for sheath flow and two symmetrical tilted angle inlets for the cells were used to drive the cells through the channel. Two interdigital transducers were also considered in this device and by implementing an alternating voltage to the transducers, an acoustic field was created which can exert the acoustic radiation force to the cells. Since this force is dependent to the size of the cells, the cells are pushed towards the midline of the channel with different path lines. Particle trajectories for different cells were obtained and compared with a theoretical equation. Two types of separations were observed as a result of varying the amplitude of the acoustic field. In the first mode of separation, white blood cells were sorted out through the middle outlet and in the second mode of separation, platelets were sorted out through the side outlets. Depending on the clinical needs and by using the studied microfluidic device, each of these modes can be applied to separate the desired cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. When Less Is More: The indications for MIS Techniques and Separation Surgery in Metastatic Spine Disease.

    PubMed

    Zuckerman, Scott L; Laufer, Ilya; Sahgal, Arjun; Yamada, Yoshiya J; Schmidt, Meic H; Chou, Dean; Shin, John H; Kumar, Naresh; Sciubba, Daniel M

    2016-10-15

    Systematic review. The aim of this study was to review the techniques, indications, and outcomes of minimally invasive surgery (MIS) and separation surgery with subsequent radiosurgery in the treatment of patients with metastatic spine disease. The utilization of MIS techniques in patients with spine metastases is a growing area within spinal oncology. Separation surgery represents a novel paradigm where radiosurgery provides long-term control after tumor is surgically separated from the neural elements. PubMed, Embase, and CINAHL databases were systematically queried for literature reporting MIS techniques or separation surgery in patients with metastatic spine disease. PRISMA guidelines were followed. Of the initial 983 articles found, 29 met inclusion criteria. Twenty-five articles discussed MIS techniques and were grouped according to the primary objective: percutaneous stabilization (8), tubular retractors (4), mini-open approach (8), and thoracoscopy/endoscopy (5). The remaining 4 studies reported separation surgery. Indications were similar across all studies and included patients with instability, refractory pain, or neurologic compromise. Intraoperative variables, outcomes, and complications were similar in MIS studies compared to traditional approaches, and some MIS studies showed a statistically significant improvement in outcomes. Studies of mini-open techniques had the strongest evidence for superiority. Low-quality evidence currently exists for MIS techniques and separation surgery in the treatment of metastatic spine disease. Given the early promising results, the next iteration of research should include higher-quality studies with sufficient power, and will be able to provide higher-level evidence on the outcomes of MIS approaches and separation surgery. N/A.

  4. Simultaneous recording of electrical activity and the underlying ionic currents in NG108-15 cells cultured on gold substrate.

    PubMed

    Acosta-García, Ma Cristina; Morales-Reyes, Israel; Jiménez-Anguiano, Anabel; Batina, Nikola; Castellanos, N P; Godínez-Fernández, R

    2018-02-01

    This paper shows the simultaneous recording of electrical activity and the underlying ionic currents by using a gold substrate to culture NG108-15 cells. Cells grown on two different substrates (plastic Petri dishes and gold substrates) were characterized quantitatively through scanning electron microscopy (SEM) as well as qualitatively by optical and atomic force microscopy (AFM). No significant differences were observed between the surface area of cells cultured on gold substrates and Petri dishes, as indicated by measurements performed on SEM images. We also evaluated the electrophysiological compatibility of the cells through standard patch-clamp experiments by analyzing features such as the resting potential, membrane resistance, ionic currents, etc. Cells grown on both substrates showed no significant differences in their dependency on voltage, as well as in the magnitude of the Na+ and K+ current density; however, cells cultured on the gold substrate showed a lower membrane capacitance when compared to those grown on Petri dishes. By using two separate patch-clamp amplifiers, we were able to record the membrane current with the conventional patch-clamp technique and through the gold substrate simultaneously. Furthermore, the proposed technique allowed us to obtain simultaneous recordings of the electrical activity (such as action potentials firing) and the underlying membrane ionic currents. The excellent conductivity of gold makes it possible to overcome important difficulties found in conventional electrophysiological experiments such as those presented by the resistance of the electrolytic bath solution. We conclude that the technique here presented constitutes a solution to the problem of the simultaneous recording of electrical activity and the underlying ionic currents, which for decades, had been solved only partially.

  5. Characterization of the Tissue and Stromal Cell Components of Micro-Superficial Enhanced Fluid Fat Injection (Micro-SEFFI) for Facial Aging Treatment.

    PubMed

    Rossi, Martina; Roda, Barbara; Zia, Silvia; Vigliotta, Ilaria; Zannini, Chiara; Alviano, Francesco; Bonsi, Laura; Zattoni, Andrea; Reschiglian, Pierluigi; Gennai, Alessandro

    2018-06-14

    New microfat preparations provide material suitable for use as a regenerative filler for different facial areas. To support the development of new robust techniques for regenerative purposes, the cellular content of the sample should be considered. To evaluate the stromal vascular fraction (SVF) cell components of micro-superficial enhanced fluid fat injection (SEFFI) samples via a technique to harvest re-injectable tissue with minimum manipulation. The results were compared to those obtained from SEFFI samples. Microscopy analysis was performed to visualize the tissue structure. Micro-SEFFI samples were also fractionated using Celector ®, an innovative non-invasive separation technique, to provide an initial evaluation of sample fluidity and composition. SVFs obtained from SEFFI and micro-SEFFI were studied. Adipose stromal cells (ASCs) were isolated and characterized by proliferation and differentiation capacity assays. Microscopic and quality analyses of micro-SEFFI samples by Celector® confirmed the high fluidity and sample cellular composition in terms of red blood cell contamination, the presence of cell aggregates and extracellular matrix fragments. ASCs were isolated from adipose tissue harvested using SEFFI and micro-SEFFI systems. These cells were demonstrated to have a good proliferation rate and differentiation potential towards mesenchymal lineages. Despite the small sizes and low cellularity observed in micro-SEFFI-derived tissue, we were able to isolate stem cells. This result partially explains the regenerative potential of autologous micro-SEFFI tissue grafts. In addition, using this novel Celector® technology, tissues used for aging treatment were characterized analytically, and the adipose tissue composition was evaluated with no need for extra sample processing.

  6. CIEF separation, UV detection, and quantification of ampholytic antibiotics and bacteria from different matrices.

    PubMed

    Horká, Marie; Vykydalová, Marie; Růžička, Filip; Šalplachta, Jiří; Holá, Veronika; Dvořáčková, Milada; Kubesová, Anna; Šlais, Karel

    2014-10-01

    The effect of antibiotics on the microbial cells and concentration of antibiotics in the human body is essential for the effective use of antimicrobial therapy. The capillary isoelectric focusing is a suitable technique for the separation and the detection of bacteria, and amphoteric substances from nature. However, the determination of isoelectric points of ampholytic antibiotics by conventional techniques is time consuming. For this reason, capillary isoelectric focusing seems to be appropriate as a simple and reliable way for establishing them. The separation conditions for the capillary isoelectric focusing of selected ampholytic antibiotics with known isoelectric points and pK as, ampicillin (pI 4.9), ciprofloxacin (pI 7.4), ofloxacin (pI 7.1), tetracycline (pI 5.4), tigecycline (pI 9.7), and vancomycin (pI 8.1), were found and optimized in the suitable pH ranges pH 2.0-5.3, 2.0-9.6, and 9.0-10.4. The established values of isoelectric points correspond with those found in the literature except tigecycline. Its pI was not found in the literature. As an example of a possible procedure for direct detection of both ampholytic antibiotics and bacteria, Staphylococcus epidermidis, in the presence of culture media or whole human blood, was found. The changes of the bacterial cells after their treatment with tetracycline were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Capillary isoelectric focusing allows the fast and simple determination of isoelectric points of relevant antibiotics, their quantification from the environment, as well as studying their effectiveness on microorganisms in biological samples.

  7. Clinico-serologic co-relation in bi-directional ABO incompatible hemopoietic stem cell transplantation.

    PubMed

    Basu, Sabita; Dhar, Supriya; Mishra, Deepak; Chandy, Mammen

    2015-01-01

    The ABO blood group system is of prime significance in red cell transfusion and organ transplantation. However, ABO compatibility is not critical in allogenic hemopoietic stem cell transplantation (HSCT) and approximately 40-50% of hemopoietic stem cell transplants are ABO incompatible. This incompatibility may be major, minor or bi-directional. Though there are descriptions of transfusion practice and protocols in ABO incompatible HSCT, there are considerable variations and transfusion support in these patients can be very challenging. The immunohematologic observations in two cases of bi-directional ABO incompatible HSCT have been described, and clinico-serologic correlation has been attempted. In both cases, peripheral blood stem cell harvests were obtained using the Cobe spectra cell separator. Immunohematologic assessments in the donor and recipient were done as a part of pre HSCT evaluation. Both the standard tube technique and column agglutination method (Ortho Biovue Micro Bead System) was used. Antibody screen was done by column agglutination method using three cell panel (Surgiscreen cells). Isoagglutinin titration was done by the master dilution method and standard validated techniques were used. The pattern of laboratory findings in the two cases was different and so were the clinical outcomes. Although there was early engraftment in the first case, the second case developed pure red cell aplasia and this was well-reflected in the immunohematologic assessments. Immunohematologic assessment correlated well with the clinical picture and could be used to predict clinical outcome and onset of complications in ABO incompatible HSCT.

  8. Laser capture microdissection: should an ultraviolet or infrared laser be used?

    PubMed

    Vandewoestyne, Mado; Goossens, Karen; Burvenich, Christian; Van Soom, Ann; Peelman, Luc; Deforce, Dieter

    2013-08-15

    Laser capture microdissection (LCM) is a well-established cell separation technique. It combines microscopy with laser beam technology and allows targeting of specific cells or tissue regions that need to be separated from others. Consequently, this biological material can be used for genome or transcriptome analyses. Appropriate methods of sample preparation, however, are crucial for the success of downstream molecular analysis. The aim of this study was to objectively compare the two main LCM systems, one based on an ultraviolet (UV) laser and the other based on an infrared (IR) laser, on different criteria ranging from user-friendliness to sample quality. The comparison was performed on two types of samples: peripheral blood mononuclear cells and blastocysts. The UV laser LCM system had several advantages over the IR laser LCM system. Not only does the UV system allow faster and more precise sample collection, but also the obtained samples-even single cell samples-can be used for DNA extraction and downstream polymerase chain reaction (PCR) applications. RNA-based applications are more challenging for both LCM systems. Although sufficient RNA can be extracted from as few as 10 cells for reverse transcription quantitative PCR (RT-qPCR) analysis, the low RNA quality should be taken into account when designing the RT-qPCR assays. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy.

    PubMed

    Iermak, Ievgeniia; Vink, Jochem; Bader, Arjen N; Wientjes, Emilie; van Amerongen, Herbert

    2016-09-01

    Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was achieved by separating the time-resolved fluorescence of PSI and PSII in the leaf. It is found that the PSII antenna size is larger on the abaxial side of A. thaliana leaves, presumably because chloroplasts in the spongy mesophyll are "shaded" by the palisade cells. The number of chlorophylls in PSI on the adaxial side of the A. thaliana leaf is slightly higher. The C4 plant M. x giganteus contains both mesophyll and bundle sheath cells, which have a different PSI/PSII ratio. It is shown that the time-resolved fluorescence of bundle sheath and mesophyll cells can be analysed separately. The relative number of chlorophylls, which belong to PSI (as compared to PSII) in the bundle sheath cells is at least 2.5 times higher than in mesophyll cells. FLIM is thus demonstrated to be a useful technique to study the PSI/PSII ratio and PSII antenna size in well-defined regions of plant leaves without having to isolate pigment-protein complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Capillary electrophoresis of inorganic anions.

    PubMed

    Kaniansky, D; Masár, M; Marák, J; Bodor, R

    1999-02-26

    This review deals with the separation mechanisms applied to the separation of inorganic anions by capillary electrophoresis (CE) techniques. It covers various CE techniques that are suitable for the separation and/or determination of inorganic anions in various matrices, including capillary zone electrophoresis, micellar electrokinetic chromatography, electrochromatography and capillary isotachophoresis. Detection and sample preparation techniques used in CE separations are also reviewed. An extensive part of this review deals with applications of CE techniques in various fields (environmental, food and plant materials, biological and biomedical, technical materials and industrial processes). Attention is paid to speciations of anions of arsenic, selenium, chromium, phosphorus, sulfur and halogen elements by CE.

  11. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.

    PubMed

    Raeisdasteh Hokmabad, Vahideh; Davaran, Soodabeh; Ramazani, Ali; Salehi, Roya

    2017-11-01

    Current strategies of tissue engineering are focused on the reconstruction and regeneration of damaged or deformed tissues by grafting of cells with scaffolds and biomolecules. Recently, much interest is given to scaffolds which are based on mimic the extracellular matrix that have induced the formation of new tissues. To return functionality of the organ, the presence of a scaffold is essential as a matrix for cell colonization, migration, growth, differentiation and extracellular matrix deposition, until the tissues are totally restored or regenerated. A wide variety of approaches has been developed either in scaffold materials and production procedures or cell sources and cultivation techniques to regenerate the tissues/organs in tissue engineering applications. This study has been conducted to present an overview of the different scaffold fabrication techniques such as solvent casting and particulate leaching, electrospinning, emulsion freeze-drying, thermally induced phase separation, melt molding and rapid prototyping with their properties, limitations, theoretical principles and their prospective in tailoring appropriate micro-nanostructures for tissue regeneration applications. This review also includes discussion on recent works done in the field of tissue engineering.

  12. Simultaneous analysis of heparan sulfate, chondroitin/dermatan sulfates, and hyaluronan disaccharides by glycoblotting-assisted sample preparation followed by single-step zwitter-ionic-hydrophilic interaction chromatography.

    PubMed

    Takegawa, Yasuhiro; Araki, Kayo; Fujitani, Naoki; Furukawa, Jun-ichi; Sugiyama, Hiroaki; Sakai, Hideaki; Shinohara, Yasuro

    2011-12-15

    Glycosaminoglycans (GAGs) play important roles in cell adhesion and growth, maintenance of extracellular matrix (ECM) integrity, and signal transduction. To fully understand the biological functions of GAGs, there is a growing need for sensitive, rapid, and quantitative analysis of GAGs. The present work describes a novel analytical technique that enables high throughput cellular/tissue glycosaminoglycomics for all three families of uronic acid-containing GAGs, hyaluronan (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), and heparan sulfate (HS). A one-pot purification and labeling procedure for GAG Δ-disaccharides was established by chemo-selective ligation of disaccharides onto high density hydrazide beads (glycoblotting) and subsequent labeling by fluorescence. The 17 most common disaccharides (eight comprising HS, eight CS/DS, and one comprising HA) could be separated with a single chromatography for the first time by employing a zwitter-ionic type of hydrophilic-interaction chromatography column. These novel analytical techniques were able to precisely characterize the glycosaminoglycome in various cell types including embryonal carcinoma cells and ocular epithelial tissues (cornea, conjunctiva, and limbus).

  13. [Microwave stimulated cell marker analysis. Possibilities for more rapid immune diagnosis].

    PubMed

    Ebener, U; Wehner, S

    1993-01-01

    We describe a successful rapid APAAP-complex technique using innovative application of microwave irradiation (MIWI) on Ficoll separated peripheral blood mononuclear cell smears of healthy donors. The typing with several monoclonal antibodies (MoAbs) against different cell surface antigens is compared with the conventional APAAP procedure. The commercial domestic microwave oven was operated at 2.45 GHz. Fifteen second irradiation at 350 W during all incubation steps, e.g. primary antibody, bridging antibody and APAAP-complexes produced excellent color reactions with Fast Red TR, Fast Blue BB, New Fuchsin or NBT similar with the conventional immunoenzyme procedure. The routinely usage of a Silicon-Chamber-System developed by us is applicable without limitation under microwave conditions. The results till now have shown that the application of microwave-technique (MIWI) eliminated the need for much longer incubation periods without lost of sensitivity. All immunological markers could be detected in the same degree as observed with the conventional method. We could demonstrate that an immunological diagnosis is possible within 30 minutes using air dried smears in an microwave oven.

  14. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel.

    PubMed

    Miller, Robert Bertram; Sadek, Anwar; Rodriguez, Alvaro; Iannuzzi, Mariano; Giai, Carla; Senko, John M; Monty, Chelsea N

    2016-01-01

    Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms.

  15. Evaluation of results of cell electrophoresis experiments on space shuttle STS-3 including pre-flight and post-flight laboratory experiments

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    The objectives of the red blood cell experiments were to provide a visual check on the electrophoretic process and especially electroosmotic flow in space as well as to provide test separations of non-degradable standard particles for comparison with the separations of the three viable cell types studied on the Apollo-Soyuz Test Project. Determination of the maximum concentrations of cells that can be separated in column electrophore was a significant goal. Two of the eight columns were available for red cell experiments, so two concentrations of human and rabbit RBC mixtures were used. The objectives of another experiment were to evaluate the reproducibility of microgravity electrophoretic separation of living kidney cells, to separate cells with highly viability despite two freeze-thaw cycles, and to optimize the physical conditions of cell separation. Owing to the uncertain heterogeneity of the starting material, the experimental design does not assess resolution in microgravity, but improved separability was sought in comparison to density-gradient electrophoresis or continuous-flow electrophoresis. Efforts were made to increase cell yield and cell viability and to assess reproducibility directly.

  16. Isolation and measurement of the features of arrays of cell aggregates formed by dielectrophoresis using the user-specified Multi Regions Masking (MRM) technique

    NASA Astrophysics Data System (ADS)

    Yusvana, Rama; Headon, Denis; Markx, Gerard H.

    2009-08-01

    The use of dielectrophoresis for the construction of artificial skin tissue with skin cells in follicle-like 3D cell aggregates in well-defined patterns is demonstrated. To analyse the patterns produced and to study their development after their formation a Virtual Instrument (VI) system was developed using the LabVIEW IMAQ Vision Development Module. A series of programming functions (algorithms) was used to isolate the features on the image (in our case; the patterned aggregates) and separate them from all other unwanted regions on the image. The image was subsequently converted into a binary version, covering only the desired microarray regions which could then be analysed by computer for automatic object measurements. The analysis utilized the simple and easy-to-use User-Specified Multi-Regions Masking (MRM) technique, which allows one to concentrate the analysis on the desired regions specified in the mask. This simplified the algorithms for the analysis of images of cell arrays having similar geometrical properties. By having a collection of scripts containing masks of different patterns, it was possible to quickly and efficiently develop sets of custom virtual instruments for the offline or online analysis of images of cell arrays in the database.

  17. Separate vertical wiring for the fixation of comminuted fractures of the inferior pole of the patella.

    PubMed

    Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo; Yang, Kyu Hyun

    2014-05-01

    Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing.

  18. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2015-12-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.

  19. Integrality and separability of multitouch interaction techniques in 3D manipulation tasks.

    PubMed

    Martinet, Anthony; Casiez, Géry; Grisoni, Laurent

    2012-03-01

    Multitouch displays represent a promising technology for the display and manipulation of data. While the manipulation of 2D data has been widely explored, 3D manipulation with multitouch displays remains largely unexplored. Based on an analysis of the integration and separation of degrees of freedom, we propose a taxonomy for 3D manipulation techniques with multitouch displays. Using that taxonomy, we introduce Depth-Separated Screen-Space (DS3), a new 3D manipulation technique based on the separation of translation and rotation. In a controlled experiment, we compared DS3 with Sticky Tools and Screen-Space. Results show that separating the control of translation and rotation significantly affects performance for 3D manipulation, with DS3 performing faster than the two other techniques.

  20. Fundamentals and Application of Magnetic Particles in Cell Isolation and Enrichment

    PubMed Central

    Plouffe, Brian D.; Murthy, Shashi K.; Lewis, Laura H.

    2014-01-01

    Magnetic sorting using magnetic beads has become a routine methodology for the separation of key cell populations from biological suspensions. Due to the inherent ability of magnets to provide forces at a distance, magnetic cell manipulation is now a standardized process step in numerous processes in tissue engineering, medicine, and in fundamental biological research. Herein we review the current status of magnetic particles to enable isolation and separation of cells, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles and on current applications of magnet-based cell separation in laboratory and clinical settings. We highlight the contribution of cell separation to biomedical research and medicine and detail modern cell separation methods (both magnetic and non-magnetic). In addition to a review of the current state-of-the-art in magnet-based cell sorting, we discuss current challenges and available opportunities for further research, development and commercialization of magnetic particle-based cell separation systems. PMID:25471081

  1. Detection and capture of single circulating melanoma cells using photoacoustic flowmetry

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine; Mosley, Jeffrey; Goldschmidt, Benjamin S.; Viator, John A.

    2010-02-01

    Photoacoustic flowmetry has been used to detect single circulating melanoma cells in vitro. Circulating melanoma cells are those cells that travel in the blood and lymph systems to create secondary tumors and are the hallmark of metastasis. This technique involves taking blood samples from patients, separating the white blood and melanoma cells from whole blood and irradiating them with a pulsed laser in a flowmetry set up. Rapid, visible wavelength laser pulses on the order of 5 ns can induce photoacoustic waves in melanoma cells due to their melanin content, while surrounding white blood cells remain acoustically passive. We have developed a system that identifies rare melanoma cells and captures them in 50 microliter volumes using suction applied near the photoacoustic detection chamber. The 50 microliter sample is then diluted and the experiment is repeated using the new sample until only a melanoma cell remains. We have tested this system on dyed microspheres ranging in size from 300 to 500 microns. Capture of circulating melanoma cells may provide the opportunity to study metastatic cells for basic understanding of the spread of cancer and to optimize patient specific therapies.

  2. Effects of red blood cell aggregates dissociation on the estimation of ultrasound speckle image velocimetry.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-08-01

    Ultrasound speckle image of blood is mainly attributed by red blood cells (RBCs) which tend to form RBC aggregates. RBC aggregates are separated into individual cells when the shear force is over a certain value. The dissociation of RBC aggregates has an influence on the performance of ultrasound speckle image velocimetry (SIV) technique in which a cross-correlation algorithm is applied to the speckle images to get the velocity field information. The present study aims to investigate the effect of the dissociation of RBC aggregates on the estimation quality of SIV technique. Ultrasound B-mode images were captured from the porcine blood circulating in a mock-up flow loop with varying flow rate. To verify the measurement performance of SIV technique, the centerline velocity measured by the SIV technique was compared with that measured by Doppler spectrograms. The dissociation of RBC aggregates was estimated by using decorrelation of speckle patterns in which the subsequent window was shifted as much as the speckle displacement to compensate decorrelation caused by in-plane loss of speckle patterns. The decorrelation of speckles is considerably increased according to shear rate. Its variations are different along the radial direction. Because the dissociation of RBC aggregates changes ultrasound speckles, the estimation quality of SIV technique is significantly correlated with the decorrelation of speckles. This degradation of measurement quality may be improved by increasing the data acquisition rate. This study would be useful for simultaneous measurement of hemodynamic and hemorheological information of blood flows using only speckle images. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood - A review.

    PubMed

    Antfolk, Maria; Laurell, Thomas

    2017-05-01

    Rare cells in blood, such as circulating tumor cells or fetal cells in the maternal circulation, posses a great prognostic or diagnostic value, or for the development of personalized medicine, where the study of rare cells could provide information to more specifically targeted treatments. When conventional cell separation methods, such as flow cytometry or magnetic activated cell sorting, have fallen short other methods are desperately sought for. Microfluidics have been extensively used towards isolating and processing rare cells as it offers possibilities not present in the conventional systems. Furthermore, microfluidic methods offer new possibilities for cell separation as they often rely on non-traditional biomarkers and intrinsic cell properties. This offers the possibility to isolate cell populations that would otherwise not be targeted using conventional methods. Here, we provide an extensive review of the latest advances in continuous flow microfluidic rare cell separation and processing with each cell's specific characteristics and separation challenges as a point of view. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment.

    PubMed

    Faraghat, Shabnam A; Hoettges, Kai F; Steinbach, Max K; van der Veen, Daan R; Brackenbury, William J; Henslee, Erin A; Labeed, Fatima H; Hughes, Michael P

    2017-05-02

    Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.

  5. Separator development and testing of nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gonzalez-Sanabria, O. D.; Manzo, M. A.

    1984-01-01

    The components, design, and operating characteristics of Ni-H2 cells batteries were improved. A separator development program was designed to develop a separator that is resistant to penetration by oxygen and loose active material from then nickel electrode, while retraining the required chemical and thermal stability, reservoir capability, and high ionic conductivity. The performance of the separators in terms of cell operating voltage was to at least match that of state-of-the-art separators while eliminating the separator problems. The separators were submitted to initial screening tests and those which successfully completed the tests were built into Ni-H2 cells for short term testing. The separators with the best performance are tested for long term performance and life.

  6. Method for forming a cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, Steven T.; Feikert, John H.; Kaschmitter, James L.; Pekala, Richard W.

    1994-01-01

    An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack.

  7. Cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, S.T.; Feikert, J.H.; Kachmitter, J.L.; Pekala, R.W.

    1995-02-28

    An improved multi-cell electrochemical energy storage device is described, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.

  8. Method for forming a cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, S.T.; Feikert, J.H.; Kaschmitter, J.L.; Pekala, R.W.

    1994-08-09

    An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.

  9. Rapid cell separation with minimal manipulation for autologous cell therapies

    NASA Astrophysics Data System (ADS)

    Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  10. Analysis of transitional separation bubbles on infinite swept wings

    NASA Technical Reports Server (NTRS)

    Davis, R. L.; Carter, J. E.

    1986-01-01

    A previously developed two-dimensional local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation), has been extended for the calculation of transitional separation bubbles over infinite swept wings. As part of this effort, Roberts' empirical correlation, which is interpreted as a separated flow empirical extension of Mack's stability theory for attached flows, has been incorporated into the ALESEP procedure for the prediction of the transition location within the separation bubble. In addition, the viscous procedure used in the ALESEP techniques has been modified to allow for wall suction. A series of two-dimensional calculations is presented as a verification of the prediction capability of the interaction techniques with the Roberts' transition model. Numerical tests have shown that this two-dimensional natural transition correlation may also be applied to transitional separation bubbles over infinite swept wings. Results of the interaction procedure are compared with Horton's detailed experimental data for separated flow over a swept plate which demonstrates the accuracy of the present technique. Wall suction has been applied to a similar interaction calculation to demonstrate its effect on the separation bubble. The principal conclusion of this paper is that the prediction of transitional separation bubbles over two-dimensional or infinite swept geometries is now possible using the present interacting boundary layer approach.

  11. Determination of 90Sr / 238U ratio by double isotope dilution inductively coupled plasma mass spectrometer with multiple collection in spent nuclear fuel samples with in situ 90Sr / 90Zr separation in a collision-reaction cell

    NASA Astrophysics Data System (ADS)

    Isnard, H.; Aubert, M.; Blanchet, P.; Brennetot, R.; Chartier, F.; Geertsen, V.; Manuguerra, F.

    2006-02-01

    Strontium-90 is one of the most important fission products generated in nuclear industry. In the research field concerning nuclear waste disposal in deep geological environment, it is necessary to quantify accurately and precisely its concentration (or the 90Sr / 238U atomic ratio) in irradiated fuels. To obtain accurate analysis of radioactive 90Sr, mass spectrometry associated with isotope dilution is the most appropriated method. But, in nuclear fuel samples the interference with 90Zr must be previously eliminated. An inductively coupled plasma mass spectrometer with multiple collection, equipped with an hexapole collision cell, has been used to eliminate the 90Sr / 90Zr interference by addition of oxygen in the collision cell as a reactant gas. Zr + ions are converted into ZrO +, whereas Sr + ions are not reactive. A mixed solution, prepared from a solution of enriched 84Sr and a solution of enriched 235U was then used to quantify the 90Sr / 238U ratio in spent fuel sample solutions using the double isotope dilution method. This paper shows the results, the reproducibility and the uncertainties that can be obtained with this method to quantify the 90Sr / 238U atomic ratio in an UOX (uranium oxide) and a MOX (mixed oxide) spent fuel samples using the collision cell of an inductively coupled plasma mass spectrometer with multiple collection to perform the 90Sr / 90Zr separation. A comparison with the results obtained by inductively coupled plasma mass spectrometer with multiple collection after a chemical separation of strontium from zirconium using a Sr spec resin (Eichrom) has been performed. Finally, to validate the analytical procedure developed, measurements of the same samples have been performed by thermal ionization mass spectrometry, used as an independent technique, after chemical separation of Sr.

  12. A microchip electrophoresis-mass spectrometric platform with double cell lysis nano-electrodes for automated single cell analysis.

    PubMed

    Li, Xiangtang; Zhao, Shulin; Hu, Hankun; Liu, Yi-Ming

    2016-06-17

    Capillary electrophoresis-based single cell analysis has become an essential approach in researches at the cellular level. However, automation of single cell analysis has been a challenge due to the difficulty to control the number of cells injected and the irreproducibility associated with cell aggregation. Herein we report the development of a new microfluidic platform deploying the double nano-electrode cell lysis technique for automated analysis of single cells with mass spectrometric detection. The proposed microfluidic chip features integration of a cell-sized high voltage zone for quick single cell lysis, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Built upon this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) has been developed for automated single cell analysis. In the method, cell introduction, cell lysis, and MCE-MS separation are computer controlled and integrated as a cycle into consecutive assays. Analysis of large numbers of individual PC-12 neuronal cells (both intact and exposed to 25mM KCl) was carried out to determine intracellular levels of dopamine (DA) and glutamic acid (Glu). It was found that DA content in PC-12 cells was higher than Glu content, and both varied from cell to cell. The ratio of intracellular DA to Glu was 4.20±0.8 (n=150). Interestingly, the ratio drastically decreased to 0.38±0.20 (n=150) after the cells are exposed to 25mM KCl for 8min, suggesting the cells released DA promptly and heavily while they released Glu at a much slower pace in response to KCl-induced depolarization. These results indicate that the proposed MCE-MS analytical platform may have a great potential in researches at the cellular level. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. HLA-targeted flow cytometric sorting of blood cells allows separation of pure and viable microchimeric cell populations.

    PubMed

    Drabbels, Jos J M; van de Keur, Carin; Kemps, Berit M; Mulder, Arend; Scherjon, Sicco A; Claas, Frans H J; Eikmans, Michael

    2011-11-10

    Microchimerism is defined by the presence of low levels of nonhost cells in a person. We developed a reliable method for separating viable microchimeric cells from the host environment. For flow cytometric cell sorting, HLA antigens were targeted with human monoclonal HLA antibodies (mAbs). Optimal separation of microchimeric cells (present at a proportion as low as 0.01% in artificial mixtures) was obtained with 2 different HLA mAbs, one targeting the chimeric cells and the other the background cells. To verify purity of separated cell populations, flow-sorted fractions of 1000 cells were processed for DNA analysis by HLA-allele-specific and Y-chromosome-directed real-time quantitative PCR assays. After sorting, PCR signals of chimeric DNA markers in the positive fractions were significantly enhanced compared with those in the presort samples, and they were similar to those in 100% chimeric control samples. Next, we demonstrate applicability of HLA-targeted FACS sorting after pregnancy by separating chimeric maternal cells from child umbilical cord mononuclear cells. Targeting allelic differences with anti-HLA mAbs with FACS sorting allows maximal enrichment of viable microchimeric cells from a background cell population. The current methodology enables reliable microchimeric cell detection and separation in clinical specimens.

  14. Tailored liquid chromatography-mass spectrometry analysis improves the coverage of the intracellular metabolome of HepaRG cells.

    PubMed

    Cuykx, Matthias; Negreira, Noelia; Beirnaert, Charlie; Van den Eede, Nele; Rodrigues, Robim; Vanhaecke, Tamara; Laukens, Kris; Covaci, Adrian

    2017-03-03

    Metabolomics protocols are often combined with Liquid Chromatography-Mass Spectrometry (LC-MS) using mostly reversed phase chromatography coupled to accurate mass spectrometry, e.g. quadrupole time-of-flight (QTOF) mass spectrometers to measure as many metabolites as possible. In this study, we optimised the LC-MS separation of cell extracts after fractionation in polar and non-polar fractions. Both phases were analysed separately in a tailored approach in four different runs (two for the non-polar and two for the polar-fraction), each of them specifically adapted to improve the separation of the metabolites present in the extract. This approach improves the coverage of a broad range of the metabolome of the HepaRG cells and the separation of intra-class metabolites. The non-polar fraction was analysed using a C18-column with end-capping, mobile phase compositions were specifically adapted for each ionisation mode using different co-solvents and buffers. The polar extracts were analysed with a mixed mode Hydrophilic Interaction Liquid Chromatography (HILIC) system. Acidic metabolites from glycolysis and the Krebs cycle, together with phosphorylated compounds, were best detected with a method using ion pairing (IP) with tributylamine and separation on a phenyl-hexyl column. Accurate mass detection was performed with the QTOF in MS-mode only using an extended dynamic range to improve the quality of the dataset. Parameters with the greatest impact on the detection were the balance between mass accuracy and linear range, the fragmentor voltage, the capillary voltage, the nozzle voltage, and the nebuliser pressure. By using a tailored approach for the intracellular HepaRG metabolome, consisting of three different LC techniques, over 2200 metabolites can be measured with a high precision and acceptable linear range. The developed method is suited for qualitative untargeted LC-MS metabolomics studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).

    PubMed

    Hyun, Kyung-A; Lee, Tae Yoon; Lee, Su Hyun; Jung, Hyo-Il

    2015-05-15

    Over the past few decades, circulating tumor cells (CTCs) have been studied as a means of overcoming cancer. However, the rarity and heterogeneity of CTCs have been the most significant hurdles in CTC research. Many techniques for CTC isolation have been developed and can be classified into positive enrichment (i.e., specifically isolating target cells using cell size, surface protein expression, and so on) and negative enrichment (i.e., specifically eluting non-target cells). Positive enrichment methods lead to high purity, but could be biased by their selection criteria, while the negative enrichment methods have relatively low purity, but can isolate heterogeneous CTCs. To compensate for the known disadvantages of the positive and negative enrichments, in this study we introduced a two-stage microfluidic chip. The first stage involves a microfluidic magnetic activated cell sorting (μ-MACS) chip to elute white blood cells (WBCs). The second stage involves a geometrically activated surface interaction (GASI) chip for the selective isolation of CTCs. We observed up to 763-fold enrichment in cancer cells spiked into 5 mL of blood sample using the μ-MACS chip at 400 μL/min flow rate. Cancer cells were successfully separated with separation efficiencies ranging from 10.19% to 22.91% based on their EpCAM or HER2 surface protein expression using the GASI chip at a 100 μL/min flow rate. Our two-stage microfluidic chips not only isolated CTCs from blood cells, but also classified heterogeneous CTCs based on their characteristics. Therefore, our chips can contribute to research on CTC heterogeneity of CTCs, and, by extension, personalized cancer treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Magnetic Levitation Coupled with Portable Imaging and Analysis for Disease Diagnostics.

    PubMed

    Knowlton, Stephanie M; Yenilmez, Bekir; Amin, Reza; Tasoglu, Savas

    2017-02-19

    Currently, many clinical diagnostic procedures are complex, costly, inefficient, and inaccessible to a large population in the world. The requirements for specialized equipment and trained personnel require that many diagnostic tests be performed at remote, centralized clinical laboratories. Magnetic levitation is a simple yet powerful technique and can be applied to levitate cells, which are suspended in a paramagnetic solution and placed in a magnetic field, at a position determined by equilibrium between a magnetic force and a buoyancy force. Here, we present a versatile platform technology designed for point-of-care diagnostics which uses magnetic levitation coupled to microscopic imaging and automated analysis to determine the density distribution of a patient's cells as a useful diagnostic indicator. We present two platforms operating on this principle: (i) a smartphone-compatible version of the technology, where the built-in smartphone camera is used to image cells in the magnetic field and a smartphone application processes the images and to measures the density distribution of the cells and (ii) a self-contained version where a camera board is used to capture images and an embedded processing unit with attached thin-film-transistor (TFT) screen measures and displays the results. Demonstrated applications include: (i) measuring the altered distribution of a cell population with a disease phenotype compared to a healthy phenotype, which is applied to sickle cell disease diagnosis, and (ii) separation of different cell types based on their characteristic densities, which is applied to separate white blood cells from red blood cells for white blood cell cytometry. These applications, as well as future extensions of the essential density-based measurements enabled by this portable, user-friendly platform technology, will significantly enhance disease diagnostic capabilities at the point of care.

  17. Quantifying the Labeling and the Levels of Plant Cell Wall Precursors Using Ion Chromatography Tandem Mass Spectrometry1[W][OA

    PubMed Central

    Alonso, Ana P.; Piasecki, Rebecca J.; Wang, Yan; LaClair, Russell W.; Shachar-Hill, Yair

    2010-01-01

    The biosynthesis of cell wall polymers involves enormous fluxes through central metabolism that are not fully delineated and whose regulation is poorly understood. We have established and validated a liquid chromatography tandem mass spectrometry method using multiple reaction monitoring mode to separate and quantify the levels of plant cell wall precursors. Target analytes were identified by their parent/daughter ions and retention times. The method allows the quantification of precursors at low picomole quantities with linear responses up to the nanomole quantity range. When applying the technique to Arabidopsis (Arabidopsis thaliana) T87 cell cultures, 16 hexose-phosphates (hexose-Ps) and nucleotide-sugars (NDP-sugars) involved in cell wall biosynthesis were separately quantified. Using hexose-P and NDP-sugar standards, we have shown that hot water extraction allows good recovery of the target metabolites (over 86%). This method is applicable to quantifying the levels of hexose-Ps and NDP-sugars in different plant tissues, such as Arabidopsis T87 cells in culture and fenugreek (Trigonella foenum-graecum) endosperm tissue, showing higher levels of galacto-mannan precursors in fenugreek endosperm. In Arabidopsis cells incubated with [U-13CFru]sucrose, the method was used to track the labeling pattern in cell wall precursors. As the fragmentation of hexose-Ps and NDP-sugars results in high yields of [PO3]−/or [H2PO4]− ions, mass isotopomers can be quantified directly from the intensity of selected tandem mass spectrometry transitions. The ability to directly measure 13C labeling in cell wall precursors makes possible metabolic flux analysis of cell wall biosynthesis based on dynamic labeling experiments. PMID:20442274

  18. Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.

    PubMed

    Zhang, Xinjie; Zhu, Zhixian; Xiang, Nan; Long, Feifei; Ni, Zhonghua

    2018-03-20

    Microfluidic technologies for cell separation were reported frequently in recent years. However, a compact microfluidic instrument enabling thoroughly automated cell separation is still rarely reported until today due to the difficult hybrid between the macrosized fluidic control system and the microsized microfluidic device. In this work, we propose a novel and automated microfluidic instrument to realize size-based separation of cancer cells in a label-free and high-throughput manner. Briefly, the instrument is equipped with a fully integrated microfluidic device and a set of robust fluid-driven and control units, and the instrument functions of precise fluid infusion and high-throughput cell separation are guaranteed by a flow regulatory chip and two cell separation chips which are the key components of the microfluidic device. With optimized control programs, the instrument is successfully applied to automatically sort human breast adenocarcinoma cell line MCF-7 from 5 mL of diluted human blood with a high recovery ratio of ∼85% within a rapid processing time of ∼23 min. We envision that our microfluidic instrument will be potentially useful in many biomedical applications, especially cell separation, enrichment, and concentration for the purpose of cell culture and analysis.

  19. Differential white cell count by centrifugal microfluidics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generationmore » of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.« less

  20. Thinner, More-Efficient Oxygen-Separation Cells

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Galica, Leo M.; Losey, Robert W.

    1992-01-01

    Better gas-distribution plates fabricated more easily. Oxygen-separation cell redesigned to make it more efficient, smaller, lighter, and easier to manufacture. Potential applications include use as gas separators, filters, and fuel cells.

  1. Optimization of the structural configuration of ICBA/P3HT photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Nemnes, G. A.; Iftimie, Sorina; Palici, Alexandra; Nicolaev, Adela; Mitran, T. L.; Radu, A.; Antohe, S.

    2017-12-01

    We investigate a possible route for optimization of organic P3HT:ICBA photovoltaic cells. In order to ensure a more efficient charge separation and collection at the electrodes, two- and three-layer structures are produced, where additional P3HT and ICBA single layers are placed adjacent to the mixed layer. The J-V characteristics are modeled using Monte-Carlo simulations in a flexible computational framework, reproducing the typical morphologies of the active layers. We discuss the implications of the structural modifications, in particular the enhancement of the open circuit voltage. Qualitative features of the theoretical simulations are validated by experiment. The proposed fabrication technique of using solvents with different boiling points for successive deposition of the individual layers may constitute an accessible route for producing optimized solar cell structures.

  2. Analysis of branched DNA replication and recombination intermediates from prokaryotic cells by two-dimensional (2D) native-native agarose gel electrophoresis.

    PubMed

    Robinson, Nicholas P

    2013-01-01

    Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.

  3. Bioprinting a cardiac valve.

    PubMed

    Jana, Soumen; Lerman, Amir

    2015-12-01

    Heart valve tissue engineering could be a possible solution for the limitations of mechanical and biological prostheses, which are commonly used for heart valve replacement. In tissue engineering, cells are seeded into a 3-dimensional platform, termed the scaffold, to make the engineered tissue construct. However, mimicking the mechanical and spatial heterogeneity of a heart valve structure in a fabricated scaffold with uniform cell distribution is daunting when approached conventionally. Bioprinting is an emerging technique that can produce biological products containing matrix and cells, together or separately with morphological, structural and mechanical diversity. This advance increases the possibility of fabricating the structure of a heart valve in vitro and using it as a functional tissue construct for implantation. This review describes the use of bioprinting technology in heart valve tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Phenotypic and Genetic Characterization of Circulating Tumor Cells by Combining Immunomagnetic Selection and FICTION Techniques

    PubMed Central

    Campos, María; Prior, Celia; Warleta, Fernando; Zudaire, Isabel; Ruíz-Mora, Jesús; Catena, Raúl; Calvo, Alfonso; Gaforio, José J.

    2008-01-01

    The presence of circulating tumor cells (CTCs) in breast cancer patients has been proven to have clinical relevance. Cytogenetic characterization of these cells could have crucial relevance for targeted cancer therapies. We developed a method that combines an immunomagnetic selection of CTCs from peripheral blood with the fluorescence immunophenotyping and interphase cytogenetics as a tool for investigation of neoplasm (FICTION) technique. Briefly, peripheral blood (10 ml) from healthy donors was spiked with a predetermined number of human breast cancer cells. Nucleated cells were separated by double density gradient centrifugation of blood samples. Tumor cells (TCs) were immunomagnetically isolated with an anti-cytokeratin antibody and placed onto slides for FICTION analysis. For immunophenotyping and genetic characterization of TCs, a mixture of primary monoclonal anti-pancytokeratin antibodies was used, followed by fluorescent secondary antibodies, and finally hybridized with a TOP2A/HER-2/CEP17 multicolor probe. Our results show that TCs can be efficiently isolated from peripheral blood and characterized by FICTION. Because genetic amplification of TOP2A and ErbB2 (HER-2) in breast cancer correlates with response to anthracyclines and herceptin therapies, respectively, this novel methodology could be useful for a better classification of patients according to the genetic alterations of CTCs and for the application of targeted therapies. (J Histochem Cytochem 56:667–675, 2008) PMID:18413646

  5. Capacitive mixing with electrodes of the same kind for energy production from salinity differences

    NASA Astrophysics Data System (ADS)

    Marino, M.; Kozynchenko, O.; Tennison, S.; Brogioli, D.

    2016-03-01

    The capacitive mixing technique is aimed at producing renewable energy from salinity differences, for example between sea and river water. The technique makes use of two electrodes that modify their potential in opposite directions when the concentration of the solution in which they are immersed is changed, as a consequence of the dynamics of the electric double layer which forms in the ionic solution. Unfortunately, it is difficult to find two electrodes presenting both optimal performances and opposite potential variations. In order to overcome this problem, we present here a cell scheme with electrodes of the same kind (and thus identical dependence of potential on concentration) which can be operated with a CapMix cycle; it is based on a concentration cell with identical electrodes dipped into two compartments separated by a non-perm-selective porous diaphragm. Thanks to the cyclic operation, the actual cell voltage rise and the power production are close to the values obtained with the traditional scheme, or even higher, depending on the features of the ion transport in the liquid junction region. We present an experimental demonstration of the working principles and we study the power production and energy efficiency in the light of the theory of ion transport in fluids. We show that our technique is competitive with respect to the other CapMix techniques, with the relevant advantage that we make use of only one kind of electrode.

  6. Capacitive mixing with electrodes of the same kind for energy production from salinity differences.

    PubMed

    Marino, M; Kozynchenko, O; Tennison, S; Brogioli, D

    2016-03-23

    The capacitive mixing technique is aimed at producing renewable energy from salinity differences, for example between sea and river water. The technique makes use of two electrodes that modify their potential in opposite directions when the concentration of the solution in which they are immersed is changed, as a consequence of the dynamics of the electric double layer which forms in the ionic solution. Unfortunately, it is difficult to find two electrodes presenting both optimal performances and opposite potential variations. In order to overcome this problem, we present here a cell scheme with electrodes of the same kind (and thus identical dependence of potential on concentration) which can be operated with a CapMix cycle; it is based on a concentration cell with identical electrodes dipped into two compartments separated by a non-perm-selective porous diaphragm. Thanks to the cyclic operation, the actual cell voltage rise and the power production are close to the values obtained with the traditional scheme, or even higher, depending on the features of the ion transport in the liquid junction region. We present an experimental demonstration of the working principles and we study the power production and energy efficiency in the light of the theory of ion transport in fluids. We show that our technique is competitive with respect to the other CapMix techniques, with the relevant advantage that we make use of only one kind of electrode.

  7. Label-free density difference amplification-based cell sorting.

    PubMed

    Song, Jihwan; Song, Minsun; Kang, Taewook; Kim, Dongchoul; Lee, Luke P

    2014-11-01

    The selective cell separation is a critical step in fundamental life sciences, translational medicine, biotechnology, and energy harvesting. Conventional cell separation methods are fluorescent activated cell sorting and magnetic-activated cell sorting based on fluorescent probes and magnetic particles on cell surfaces. Label-free cell separation methods such as Raman-activated cell sorting, electro-physiologically activated cell sorting, dielectric-activated cell sorting, or inertial microfluidic cell sorting are, however, limited when separating cells of the same kind or cells with similar sizes and dielectric properties, as well as similar electrophysiological phenotypes. Here we report a label-free density difference amplification-based cell sorting (dDACS) without using any external optical, magnetic, electrical forces, or fluidic activations. The conceptual microfluidic design consists of an inlet, hydraulic jump cavity, and multiple outlets. Incoming particles experience gravity, buoyancy, and drag forces in the separation chamber. The height and distance that each particle can reach in the chamber are different and depend on its density, thus allowing for the separation of particles into multiple outlets. The separation behavior of the particles, based on the ratio of the channel heights of the inlet and chamber and Reynolds number has been systematically studied. Numerical simulation reveals that the difference between the heights of only lighter particles with densities close to that of water increases with increasing the ratio of the channel heights, while decreasing Reynolds number can amplify the difference in the heights between the particles considered irrespective of their densities.

  8. Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS).

    PubMed

    An, Jaemin; Lee, Jangwon; Lee, Sang Ho; Park, Jungyul; Kim, Byungkyu

    2009-06-01

    In this paper, we successfully separated malignant human breast cancer epithelial cells (MCF 7) from healthy breast cells (MCF 10A) and analyzed the main parameters that influence the separation efficiency with an advanced dielectrophoresis (DEP)-activated cell sorter (DACS). Using the efficient DACS, the malignant cancer cells (MCF 7) were isolated successfully by noninvasive methods from normal cells with similar cell size distributions (MCF 10A), depending on differences between their material properties such as conductivity and permittivity, because our system was able to discern the subtle differences in the properties by generating continuously changed electrical field gradients. In order to evaluate the separation performance without considering size variations, the cells collected from each outlet were divided into size-dependent groups and counted statistically. Following that, the quantitative relative ratio of numbers between MCF 7 and MCF 10A cells in each size-dependent group separated by the DEP were compared according to applied frequencies in the range 48, 51, and 53 MHz with an applied amplitude of 8 V(pp). Finally, under the applied voltage of 48 MHz-8 V(pp) and a flow rate of 290 microm/s, MCF 7 and MCF 10A cells were separated with a maximum efficiency of 86.67% and 98.73% respectively. Therefore, our suggested system shows it can be used for detection and separation of cancerous epithelial cells from noncancerous cells in clinical applications.

  9. The evaluation of layered separators for nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1991-01-01

    The concept of using layered separators to achieve the required electrolyte retention and bubble pressure fo nickel-hydrogen cells was evaluated in a boilerplate cell test. Zircar cloth, polyethylene paper and polypropylene felt were combined with a layer of radiation-grafted polyethylene film to achieve the required properties. Three cells of each layered separator were built and tested by characterization cycling and by low earth orbit cycling for 5000 cycles at 80 percent DOD. Three cells containing asbestos separators were used as the reference.

  10. Cell separation: Terminology and practical considerations

    PubMed Central

    Tomlinson, Sophie; Yang, Xuebin B; Kirkham, Jennifer

    2013-01-01

    Cell separation is a powerful tool in biological research. Increasing usage, particularly within the tissue engineering and regenerative medicine communities, means that researchers from a diverse range of backgrounds are utilising cell separation technologies. This review aims to offer potential solutions to cell sorting problems and to clarify common ambiguities in terminology and experimental design. The frequently used cell separation terms of ‘purity’, ‘recovery’ and ‘viability’ are discussed, and attempts are made to reach a consensus view of their sometimes ambiguous meanings. The importance of appropriate experimental design is considered, with aspects such as marker expression, tissue isolation and original cell population analysis discussed. Finally, specific technical issues such as cell clustering, dead cell removal and non-specific antibody binding are considered and potential solutions offered. The solutions offered may provide a starting point to improve the quality of cell separations achieved by both the novice and experienced researcher alike. PMID:23440031

  11. Separate Vertical Wiring for the Fixation of Comminuted Fractures of the Inferior Pole of the Patella

    PubMed Central

    Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo

    2014-01-01

    Purpose Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Materials and Methods Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. Results For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Conclusion Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing. PMID:24719149

  12. Integrated fuel cell stack shunt current prevention arrangement

    DOEpatents

    Roche, Robert P.; Nowak, Michael P.

    1992-01-01

    A fuel cell stack includes a plurality of fuel cells juxtaposed with one another in the stack and each including a pair of plate-shaped anode and cathode electrodes that face one another, and a quantity of liquid electrolyte present at least between the electrodes. A separator plate is interposed between each two successive electrodes of adjacent ones of the fuel cells and is unified therewith into an integral separator plate. Each integral separator plate is provided with a circumferentially complete barrier that prevents flow of shunt currents onto and on an outer peripheral surface of the separator plate. This barrier consists of electrolyte-nonwettable barrier members that are accommodated, prior to the formation of the integral separator plate, in corresponding edge recesses situated at the interfaces between the electrodes and the separator plate proper. Each barrier member extends over the entire length of the associated marginal portion and is flush with the outer periphery of the integral separator plate. This barrier also prevents cell-to-cell migration of any electrolyte that may be present at the outer periphery of the integral separator plate while the latter is incorporated in the fuel cell stack.

  13. CE separation of proteins and yeasts dynamically modified by PEG pyrenebutanoate with fluorescence detection.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel

    2007-07-01

    The optimized protocols of the bioanalytes separation, proteins and yeasts, dynamically modified by the nonionogenic tenside PEG pyrenebutanoate, were applied in CZE and CIEF with the acidic gradient in pH range 2-5.5, both with fluorescence detection. PEG pyrenebutanoate was used as a buffer additive for a dynamic modification of proteins and/or yeast samples. The narrow peaks of modified analytes were detected. The values of the pI's of the labeled proteins were calculated using new fluorescent pI markers in CIEF and they were found to be comparable with pI's of the native compounds. As an example of the possible use of the suggested CIEF technique, the mixed cultures of yeasts, Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Candida zeylanoides, Geotrichum candidum, Saccharomyces cerevisiae, Trichosporon asahii and Yarrowia lipolytica, were reproducibly focused and separated with high sensitivity. Using UV excitation for the on-column fluorometric detection, the minimum detectable amounts of analytes, femtograms of proteins and down to ten cells injected on the separation capillary, were estimated.

  14. Analysis of oligonucleotide photoproducts produced by UV-A light and a riboflavin photosensitizer

    NASA Astrophysics Data System (ADS)

    Gelhaus, Stacy L.; LaCourse, William R.

    2004-12-01

    DNA damage is caused by a variety of foreign and endogenous compounds. There are endogenous photosensitizers in cells, such as porphyrins and flavins, which may create damage in the presence of UV-A light. Typically, samples are analyzed by 32P-postlabelling and electrophoretic separation or by LC-MS separation and detection. Separation by HPLC is common; however, in all instances, the DNA sample is hydrolyzed down to nucleosides prior to analysis. It will be shown here that ion-pairing reversed phase high performance liquid chromatography (IP-RPLC) has the ability to provide biophysical information concerning the sites of UV-A induced photosensitizer damage on an intact oligonucleotide concurrent with the separation. IP-RPLC is less labor intensive and faster than electrophoretic methods and it is less costly than LC-MS. IP-RPLC can also be used to purify modified oligonucleotides for further use and analysis. This technique is sensitive to the charge, conformation, and sequence characteristics of the nucleic acid sample and may be used to determine the damage or modifications made to DNA by a variety of compounds.

  15. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics[S

    PubMed Central

    Hines, Kelly M.; Herron, Josi; Xu, Libin

    2017-01-01

    Ion mobility-mass spectrometry (IM-MS) has proven to be a highly informative technique for the characterization of lipids from cells and tissues. We report the combination of hydrophilic-interaction liquid chromatography (HILIC) with traveling-wave IM-MS (TWIM-MS) for comprehensive lipidomics analysis. Main lipid categories such as glycerolipids, sphingolipids, and glycerophospholipids are separated on the basis of their lipid backbones in the IM dimension, whereas subclasses of each category are mostly separated on the basis of their headgroups in the HILIC dimension, demonstrating the orthogonality of HILIC and IM separations. Using our previously established lipid calibrants for collision cross-section (CCS) measurements in TWIM, we measured over 250 CCS values covering 12 lipid classes in positive and negative modes. The coverage of the HILIC-IM-MS method is demonstrated in the analysis of Neuro2a neuroblastoma cells exposed to benzalkonium chlorides (BACs) with C10 or C16 alkyl chains, which we have previously shown to affect gene expression related to cholesterol and lipid homeostasis. We found that BAC exposure resulted in significant changes to several lipid classes, including glycerides, sphingomyelins, phosphatidylcholines, and phosphatidylethanolamines. Our results indicate that BAC exposure modifies lipid homeostasis in a manner that is dependent upon the length of the BAC alkyl chain. PMID:28167702

  16. Large silver-cadmium technology program

    NASA Technical Reports Server (NTRS)

    Charlip, S.; Lerner, S.

    1971-01-01

    The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.

  17. Improved Separators For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Shen, David; Surampudi, Subbarao; Huang, Chen-Kuo; Halpert, Gerald

    1994-01-01

    Improved pairs of separators proposed for use in rechargeable lithium cells operating at ambient temperature. Block growth of lithium dendrites and help prevent short circuits. Each cell contains one separator made of microporous polypropylene placed next to anode, and one separator made of microporous polytetrafluoroethylene (PTFE) next to cathode. Separators increase cycle lives of secondary lithium cells. Cells to which concept applicable those of Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/VO(x), and Li/MnO(2) chemical systems. Advantageous in spacecraft, military, communications, automotive, and other applications in which high energy density and rechargeability needed.

  18. Fuel-Cell Water Separator

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul

    2010-01-01

    The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.

  19. Effects of ozone and peroxone on algal separation via dispersed air flotation.

    PubMed

    Nguyen, Truc Linh; Lee, D J; Chang, J S; Liu, J C

    2013-05-01

    Effects of pre-oxidation on algal separation by dispersed air flotation were examined. Ozone (O3) and peroxone (O3 and H2O2) could induce cell lysis, release of intracellular organic matter (IOM), and mineralization of organic substances. Separation efficiency of algal cells improved when pre-oxidized. Total of 76.4% algal cells was separated at 40 mg/L of N-cetyl-N-N-N-trimethylammonium bromide (CTAB), while 95% were separated after 30-min ozonation. Pre-oxidation by ozone and peroxone also enhanced flotation separation efficiency of dissolved organic carbon (DOC), polysaccharide, and protein, in which peroxone process exerted more significantly than O3. Two main mechanisms were involved in flotation separation of unoxidized algal suspension, namely hydrophobic cell surface and cell flocculation resulting from CTAB adsorption. However, flocculation by CTAB was hindered for pre-oxidized algal suspensions. It implied that the compositional changes in extracellular organic matter (EOM) by pre-oxidation were more determined for flotation separation of pre-oxidized cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Numerical simulation of isolation of cancer cells in a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Djukic, T.; Topalovic, M.; Filipovic, N.

    2015-08-01

    Cancer is a disease that is characterized by the uncontrolled increase of numbers of cells. Circulating tumour cells (CTCs) are separated from the primary tumor, circulate in the bloodstream and form metastases. Circulating tumor cells can be identified in the blood of a patient by taking a blood sample. Microfluidic chips are a new technique that is used to isolate these cells from the blood sample. In this paper a numerical model is presented that is able to simulate the motion of individual cells through a microfluidic chip. The proposed numerical model gives very valuable insight into the processes happening within a microfluidic chip. The accuracy of the proposed model is compared with experimental results. The experimental setup that is described in literature is used to create identical geometrical domains and define simulation parameters. A good agreement of experimental and numerical results demonstrates that the proposed model can be successfully used to simulate complex behaviour of CTCs inside microfluidic chips.

  1. Fuel cell system with separating structure bonded to electrolyte

    DOEpatents

    Bourgeois, Richard Scott; Gudlavalleti, Sauri; Quek, Shu Ching; Hasz, Wayne Charles; Powers, James Daniel

    2010-09-28

    A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.

  2. Bibliography of articles and reports on mineral-separation techniques, processes, and applications

    NASA Technical Reports Server (NTRS)

    Harmon, R. S.

    1971-01-01

    A bibliography of published articles and reports on mineral-separation techniques, processes, and applications is presented along with an author and subject index. This information is intended for use in the mineral-separation facility of the Lunar Receiving Laboratory at the NASA Manned Spacecraft Center and as an aid and reference to persons involved or interested in mineral separation.

  3. Stripe-patterned thermo-responsive cell culture dish for cell separation without cell labeling.

    PubMed

    Kumashiro, Yoshikazu; Ishihara, Jun; Umemoto, Terumasa; Itoga, Kazuyoshi; Kobayashi, Jun; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-02-11

    A stripe-patterned thermo-responsive surface is prepared to enable cell separation without labeling. The thermo-responsive surface containing a 3 μm striped pattern exhibits various cell adhesion and detachment properties. A mixture of three cell types is separated on the patterned surface based on their distinct cell-adhesion properties, and the composition of the cells is analyzed by flow cytometry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas

    PubMed Central

    Hou, Yu; Guo, Huahu; Cao, Chen; Li, Xianlong; Hu, Boqiang; Zhu, Ping; Wu, Xinglong; Wen, Lu; Tang, Fuchou; Huang, Yanyi; Peng, Jirun

    2016-01-01

    Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells. PMID:26902283

  5. High-throughput separation of cells by dielectrophoresis enhanced with 3D gradient AC electric field.

    PubMed

    Tada, Shigeru; Hayashi, Masako; Eguchi, Masanori; Tsukamoto, Akira

    2017-11-01

    We propose a novel, high-performance dielectrophoretic (DEP) cell-separation flow chamber with a parallel-plate channel geometry. The flow chamber, consisting of a planar electrode on the top and an interdigitated-pair electrode array at the bottom, was developed to facilitate the separation of cells by creating a nonuniform AC electric field throughout the volume of the flow chamber. The operation and performance of the device were evaluated using live and dead human epithermal breast (MCF10A) cells. The separation dynamics of the cell suspension in the flow chamber was also investigated by numerically simulating the trajectories of individual cells. A theoretical model to describe the dynamic cell behavior under the action of DEP, including dipole-dipole interparticle, viscous, and gravitational forces, was developed. The results demonstrated that the live cells traveling through the flow chamber congregated into sites where the electric field gradient was minimal, in the middle of the flow stream slightly above the centerlines of the grounded electrodes at the bottom. Meanwhile, the dead cells were trapped on the edges of the high-voltage electrodes at the bottom. Cells were thus successfully separated with a remarkably high separation ratio (∼98%) at the appropriately tuned field frequency and applied voltage. The numerically predicted behavior and spatial distribution of the cells during separation also showed good agreement with those observed experimentally.

  6. Apollo Soyuz pamphlet No. 7: Biology in zero-G

    NASA Technical Reports Server (NTRS)

    Page, L. W.; Page, T.

    1977-01-01

    The effects of weightlessness on small living organisms, and methods for improving biological techniques were investigated in the seven experiments reported in this pamphlet which is intended as a curriculum supplement for secondary schools. Topics include: (1) killfish hatching and orientation; (2) microbial growth and changes in biorhythm; (3) cell separation by electrophoresis; (4) microbial exchange in the space raft; and (5) changes in astronaut immunity during spaceflight. The pamphlet is intended as a curriculum supplement for secondary schools.

  7. A method for monitoring nuclear absorption coefficients of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1989-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  8. Functional characterization of a regulatory human T-cell subpopulation increasing during autologous MLR.

    PubMed Central

    Cosulich, M E; Risso, A; Canonica, G W; Bargellesi, A

    1986-01-01

    The present study was undertaken to investigate the heterogeneity of helper T cells in humans using two different monoclonal antibodies: 5/9 and MLR4. The former identifies 15-20% of resting T lymphocytes from peripheral blood and corresponds to an anti-helper/inducer T cell. The second antibody, MLR4, recognizes 5% of total T lymphocytes and partially overlaps with the 5/9+ T cells. In order to investigate functional differences within the 5/9+ cells, we separated two different subsets (5/9+ MLR+ and 5/9+ MLR4-) by a rosetting technique. Although both subsets provide help for Ig synthesis in a PWM-stimulated culture, only the 5/9+ MLR4- fraction gave a proliferative response in both autologous and allogeneic MLR and to soluble protein antigens. The effect of radiation on the ability of the two subsets to provide help for Ig synthesis showed that the 5/9+ MLR4+ subset is highly radiation-sensitive, while 5/9+ MLR- is relatively radiation-resistant. In a further series of experiments, 5/9+ MLR4+ cells isolated after activation in an autologous MLR but not by Con A, were no longer able to induce T-cell differentiation but now showed a strong suppressor effect. The 5/9+ MLR4- subset separated from the same cultures did not display any suppressor function. These data demonstrate in fresh PBL the existence of a radiation-sensitive regulatory subset exerting a helper activity, and which acquires suppressor activity after activation in autologous MLR. PMID:2936679

  9. Mesoporous silicon oxide films and their uses as templates in obtaining nanostructured conductive polymers

    NASA Astrophysics Data System (ADS)

    Salgado, R.; Arteaga, G. C.; Arias, J. M.

    2018-04-01

    Obtaining conductive polymers (CPs) for the manufacture of OLEDs, solar cells, electrochromic devices, sensors, etc., has been possible through the use of electrochemical techniques that allow obtaining films of controlled thickness with positive results in different applications. Current trends point towards the manufacture of nanomaterials, and therefore it is necessary to develop methods that allow obtaining CPs with nanostructured morphology. This is possible by using a porous template to allow the growth of the polymeric materials. However, prior and subsequent treatments are required to separate the material from the template so that it can be evaluated in the applications mentioned above. This is why mesoporous silicon oxide films (template) are essential for the synthesis of nanostructured polymers since both the template and the polymer are obtained on the electrode surface, and therefore it is not necessary to separate the material from the template. Thus, the material can be evaluated directly in the applications mentioned above. The dimensions of the resulting nanostructures will depend on the power, time and technique used for electropolymerization as well as the monomer and the surfactant of the mesoporous film.

  10. Guided self-assembly of magnetic beads for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gusenbauer, Markus; Nguyen, Ha; Reichel, Franz; Exl, Lukas; Bance, Simon; Fischbacher, Johann; Özelt, Harald; Kovacs, Alexander; Brandl, Martin; Schrefl, Thomas

    2014-02-01

    Micromagnetic beads are widely used in biomedical applications for cell separation, drug delivery, and hyperthermia cancer treatment. Here we propose to use self-organized magnetic bead structures which accumulate on fixed magnetic seeding points to isolate circulating tumor cells. The analysis of circulating tumor cells is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. Microfluidic chips for isolating circulating tumor cells use either affinity, size or density capturing methods. We combine multiphysics simulation techniques to understand the microscopic behavior of magnetic beads interacting with soft magnetic accumulation points used in lab-on-chip technologies. Our proposed chip technology offers the possibility to combine affinity and size capturing with special antibody-coated bead arrangements using a magnetic gradient field created by Neodymium Iron Boron permanent magnets. The multiscale simulation environment combines magnetic field computation, fluid dynamics and discrete particle dynamics.

  11. A mesoscopic simulation on distributions of red blood cells in a bifurcating channel

    NASA Astrophysics Data System (ADS)

    Inoue, Yasuhiro; Takagi, Shu; Matsumoto, Yoichiro

    2004-11-01

    Transports of red blood cells (RBCs) or particles in bifurcated channels have been attracting renewed interest since the advent of concepts of MEMS for sorting, analyzing, and removing cells or particles from sample medium. In this talk, we present a result on a transport of red blood cells (RBCs) in a bifurcating channel studied by using a mesoscale simulation technique of immiscible droplets, where RBCs have been modeled as immiscible droplets. The distribution of RBCs is represented by the fractional RBC flux into two daughters as a function of volumetric flow ratio between the daughters. The data obtained in our simulations are examined with a theoretical prediction, in which, we assume an exponential distribution for positions of RBCs in the mother channel. The theoretical predictions show a good agreement with simulation results. A non-uniform distribution of RBCs in the mother channel affects disproportional separation of RBC flux at a bifurcation.

  12. Electrophoretic separation and analysis of living cells from solid tissues by several methods - Human embryonic kidney cell cultures as a model

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.

    1986-01-01

    The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.

  13. Separation of cells from the rat anterior pituitary gland

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Hatfield, J. Michael

    1984-01-01

    Data concerned with analyzing the cellular organization of the rat anterior pituitary gland are examined. The preparation of the cell suspensions and the methods used to separate pituitary cell types are described. Particular emphasis is given to velocity sedimentation at unit gravity, density gradient centrifugation, affinity methods, fluorescence activated cell sorting, and density gradient and continuous-flow electrophoresis. The difficulties encountered when attempting to compare data from different pituitary cell separation studies are discussed, and results from various experiments are presented. The functional capabilities of the separated cell populations can be tested in various culture systems.

  14. Imaging immune surveillance of individual natural killer cells confined in microwell arrays.

    PubMed

    Guldevall, Karolin; Vanherberghen, Bruno; Frisk, Thomas; Hurtig, Johan; Christakou, Athanasia E; Manneberg, Otto; Lindström, Sara; Andersson-Svahn, Helene; Wiklund, Martin; Önfelt, Björn

    2010-11-12

    New markers are constantly emerging that identify smaller and smaller subpopulations of immune cells. However, there is a growing awareness that even within very small populations, there is a marked functional heterogeneity and that measurements at the population level only gives an average estimate of the behaviour of that pool of cells. New techniques to analyze single immune cells over time are needed to overcome this limitation. For that purpose, we have designed and evaluated microwell array systems made from two materials, polydimethylsiloxane (PDMS) and silicon, for high-resolution imaging of individual natural killer (NK) cell responses. Both materials were suitable for short-term studies (<4 hours) but only silicon wells allowed long-term studies (several days). Time-lapse imaging of NK cell cytotoxicity in these microwell arrays revealed that roughly 30% of the target cells died much more rapidly than the rest upon NK cell encounter. This unexpected heterogeneity may reflect either separate mechanisms of killing or different killing efficiency by individual NK cells. Furthermore, we show that high-resolution imaging of inhibitory synapse formation, defined by clustering of MHC class I at the interface between NK and target cells, is possible in these microwells. We conclude that live cell imaging of NK-target cell interactions in multi-well microstructures are possible. The technique enables novel types of assays and allow data collection at a level of resolution not previously obtained. Furthermore, due to the large number of wells that can be simultaneously imaged, new statistical information is obtained that will lead to a better understanding of the function and regulation of the immune system at the single cell level.

  15. Rubisco small subunit, chlorophyll a/b-binding protein and sucrose:fructan-6-fructosyl transferase gene expression and sugar status in single barley leaf cells in situ. Cell type specificity and induction by light.

    PubMed

    Lu, Chungui; Koroleva, Olga A; Farrar, John F; Gallagher, Joe; Pollock, Chris J; Tomos, A Deri

    2002-11-01

    We describe a highly efficient two-step single-cell reverse transcriptase-polymerase chain reaction technique for analyzing gene expression at the single-cell level. Good reproducibility and a linear dose response indicated that the technique has high specificity and sensitivity for detection and quantification of rare RNA. Actin could be used as an internal standard. The expression of message for Rubisco small subunit (RbcS), chlorophyll a/b-binding protein (Cab), sucrose (Suc):fructan-6-fructosyl transferase (6-SFT), and Actin were measured in individual photosynthetic cells of the barley (Hordeum vulgare) leaf. Only Actin was found in the non-photosynthetic epidermal cells. Cab, RbcS, and 6-SFT genes were expressed at a low level in mesophyll and parenchymatous bundle sheath (BS) cells when sampled from plants held in dark for 40 h. Expression increased considerably after illumination. The amount of 6-SFT, Cab, and RbcS transcript increased more in mesophyll cells than in the parenchymatous BS cells. The difference may be caused by different chloroplast structure and posttranscriptional control in mesophyll and BS cells. When similar single-cell samples were assayed for Suc, glucose, and fructan, there was high correlation between 6-SFT gene expression and Suc and glucose concentrations. This is consistent with Suc concentration being the trigger for transcription. Together with earlier demonstrations that the mesophyll cells have a higher sugar threshold for fructan polymerization, our data may indicate separate control of transcription and enzyme activity. Values for the sugar concentrations of the individual cell types are reported.

  16. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods.

    PubMed

    Greening, David W; Xu, Rong; Ji, Hong; Tauro, Bow J; Simpson, Richard J

    2015-01-01

    Exosomes are 40-150 nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of tumorigenic proteins, mRNA and miRNA. Exosomes are important regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest their importance for diagnostic and therapeutic applications, and as drug delivery vehicles. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. In this chapter, we reveal the protocol and key insights into the isolation, purification and characterization of exosomes, distinct from shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, a comprehensive evaluation of exosome isolation methods including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM-coated magnetic beads (IAC-Exos) were examined. All exosome isolation methodologies contained 40-150 nm vesicles based on electron microscopy, and positive for exosome markers (Alix, TSG101, HSP70) based on immunoblotting. This protocol employed a proteomic profiling approach to characterize the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method in exosome isolation. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, IAC-Exos was shown to be the most effective method to isolate exosomes. However, the use of density-based separation (DG-Exos) provides significant advantages for exosome isolation when the use of immunoaffinity capture is limited (due to antibody availability and suitability of exosome markers).

  17. Optimization of yield in magnetic cell separations using nickel nanowires of different lengths.

    PubMed

    Hultgren, Anne; Tanase, Monica; Felton, Edward J; Bhadriraju, Kiran; Salem, Aliasger K; Chen, Christopher S; Reich, Daniel H

    2005-01-01

    Ferromagnetic nanowires are shown to perform both high yield and high purity single-step cell separations on cultures of NIH-3T3 mouse fibroblast cells. The nanowires are made by electrochemical deposition in nanoporous templates, permitting detailed control of their chemical and physical properties. When added to fibroblast cell cultures, the nanowires are internalized by the cells via the integrin-mediated adhesion pathway. The effectiveness of magnetic cell separations using Ni nanowires 350 nm in diameter and 5-35 micrometers long in field gradients of 40 T/m was compared to commercially available superparamagnetic beads. The percent yield of the separated populations is found to be optimized when the length of the nanowire is matched to the diameter of the cells in the culture. Magnetic cell separations performed under these conditions achieve 80% purity and 85% yield, a 4-fold increase over the beads. This effect is shown to be robust when the diameter of the cell is changed within the same cell line using mitomycin-C.

  18. Review of anhydrous zirconium-hafnium separation techniques. Information circular/1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skaggs, R.L.; Rogers, D.T.; Hunter, D.B.

    1983-12-01

    Sixteen nonaqueous techniques conceived to replace the current aqueous scheme for separating hafnium and zirconium tetrachlorides were reviewed and evaluated by the Bureau of Mines. The methods are divided into two classes: separation by fractional volatilization of the tetrachlorides, which takes advantage of the higher volatility of hafnium tetrachloride; and separation by chemical techniques, based on differences in chemical behavior of the two tetrachlorides. The criteria used to evaluate separation methods were temperature, pressure, separation factor per equilibrium stage, complexity, compatibility with existing technology, and potential for continuous operation. Three processes were selected as being most promising: (1) high-pressure distillation,more » (2) extractive distillation from a molten salt, and (3) preferential reduction of gaseous ZrCl4. Any of the proposed nonaqueous Hf-Zr separation schemes must be supplemented with additional purification to remove trace impurities.« less

  19. Capillary sample introduction of polymerase chain reaction (PCR) products separated in ultrathin slab gels.

    PubMed

    Bullard, K M; Hietpas, P B; Ewing, A G

    1998-01-01

    Polymerase chain reaction (PCR) amplified short tandem repeat (STR) samples from the HUMVWF locus have been analyzed using a unique sample introduction and separation technique. A single capillary is used to transfer samples onto an ultrathin slab gel (57 microm thin). This ultrathin nondenaturing polyacrylamide gel is used to separate the amplified fragments, and laser-induced fluorescence with ethidium bromide is used for detection. The feasibility of performing STR analysis using this system has been investigated by examining the reproducibility for repeated samples. Reproducibility is examined by comparing the migration of the 14 and 17 HUMVWF alleles on three consecutive separations on the ultrathin slab gel. Using one locus, separations match in migration time with the two alleles 42 s apart for each of the three consecutive separations. This technique shows potential to increase sample throughput in STR analysis techniques although separation resolution still needs to be improved.

  20. Multi-quadrant biopsy technique improves diagnostic ability in large heterogeneous renal masses. Abel EJ, Heckman JE, Hinshaw L, Best S, Lubner M, Jarrard DF, Downs TM, Nakada SY, Lee FT Jr, Huang W, Ziemlewicz T.J Urol. 2015 Oct;194(4):886-91. [Epub 2015 Mar 30]. doi: 10.1016/j.juro.2015.03.106.

    PubMed

    Jay, Raman; Heckman, J E; Hinshaw, L; Best, S; Lubner, M; Jarrard, D F; Downs, T M; Nakada, S Y; Lee, F T; Huang, W; Ziemlewicz, T

    2017-03-01

    Percutaneous biopsy obtained from a single location is prone to sampling error in large heterogeneous renal masses, leading to nondiagnostic results or failure to detect poor prognostic features. We evaluated the accuracy of percutaneous biopsy for large renal masses using a modified multi-quadrant technique vs. a standard biopsy technique. Clinical and pathological data for all patients with cT2 or greater renal masses who underwent percutaneous biopsy from 2009 to 2014 were reviewed. The multi-quadrant technique was defined as multiple core biopsies from at least 4 separate solid enhancing areas in the tumor. The incidence of nondiagnostic findings, sarcomatoid features and procedural complications was recorded, and concordance between biopsy specimens and nephrectomy pathology was compared. A total of 122 biopsies were performed for 117 tumors in 116 patients (46 using the standard biopsy technique and 76 using the multi-quadrant technique). Median tumor size was 10cm (IQR: 8-12). Biopsy was nondiagnostic in 5 of 46 (10.9%) standard and 0 of 76 (0%) multi-quadrant biopsies (P = 0.007). Renal cell carcinoma was identified in 96 of 115 (82.0%) tumors and nonrenal cell carcinoma tumors were identified in 21 (18.0%). One complication occurred using the standard biopsy technique and no complications were reported using the multi-quadrant technique. Sarcomatoid features were present in 23 of 96 (23.9%) large renal cell carcinomas studied. Sensitivity for identifying sarcomatoid features was higher using the multi-quadrant technique compared to the standard biopsy technique at 13 of 15 (86.7%) vs. 2 of 8 (25.0%) (P = 0.0062). The multi-quadrant percutaneous biopsy technique increases the ability to identify aggressive pathological features in large renal tumors and decreases nondiagnostic biopsy rates. Copyright © 2017. Published by Elsevier Inc.

  1. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing.

    PubMed

    Xu, Chun-Xiu; Yin, Xue-Feng

    2011-02-04

    A chip-based microfluidic system for high-throughput single-cell analysis is described. The system was integrated with continuous introduction of individual cells, rapid dynamic lysis, capillary electrophoretic (CE) separation and laser induced fluorescence (LIF) detection. A cross microfluidic chip with one sheath-flow channel located on each side of the sampling channel was designed. The labeled cells were hydrodynamically focused by sheath-flow streams and sequentially introduced into the cross section of the microchip under hydrostatic pressure generated by adjusting liquid levels in the reservoirs. Combined with the electric field applied on the separation channel, the aligned cells were driven into the separation channel and rapidly lysed within 33ms at the entry of the separation channel by Triton X-100 added in the sheath-flow solution. The maximum rate for introducing individual cells into the separation channel was about 150cells/min. The introduction of sheath-flow streams also significantly reduced the concentration of phosphate-buffered saline (PBS) injected into the separation channel along with single cells, thus reducing Joule heating during electrophoretic separation. The performance of this microfluidic system was evaluated by analysis of reduced glutathione (GSH) and reactive oxygen species (ROS) in single erythrocytes. A throughput of 38cells/min was obtained. The proposed method is simple and robust for high-throughput single-cell analysis, allowing for analysis of cell population with considerable size to generate results with statistical significance. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Role of pectolytic enzymes in the programmed separation of cells from the root cap of higher plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawes, M.C.

    1995-03-01

    The objective of this research was to develop a model system to study border cell separation in transgenic pea roots. In addition, the hypothesis that genes encoding pectolytic enzymes in the root cap play a role in the programmed separation of root border cells from the root tip was tested. The following objectives have been accomplished: (1) the use of transgenic hairy roots to study border cell separation has been optimized for Pisum sativum; (2) a cDNA encoding a root cap pectinmethylesterase (PME) has been cloned; (3) PME and polygalacturonase activities in cell walls of the root cap have beenmore » characterized and shown to be correlated with border cell separation. A fusion gene encoding pectate lyase has also been transformed into pea hairy root cells.« less

  3. Novel Nanofiber-based Membrane Separators for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Yanilmaz, Meltem

    Lithium-ion batteries have been widely used in electronic devices including mobile phones, laptop computers, and cameras due to their high specific energy, high energy density, long cycling lifetime, and low self-discharge rate. Nowadays, lithium-ion batteries are finding new applications in electric/hybrid vehicles and energy storage for smart grids. To be used in these new applications, novel battery components are needed so that lithiumion batteries with higher cell performance, better safety, and lower cost can be developed. A separator is an important component to obtain safe batteries and its primary function is to prevent electronic contact between electrodes while regulating cell kinetics and ionic flow. Currently, microporous membranes are the most commonly used separator type and they have good mechanical properties and chemical stability. However, their wettability and thermal stabilities are not sufficient for applications that require high operating temperature and high performance. Due to the superior properties such as large specific surface area, small pore size and high porosity, electrospun nanofiber membranes can be good separator candidate for highperformance lithium-ion batteries. In this work, we focus our research on fabricating nanofiber-based membranes to design new high-performance separators with good thermal stability, as well as superior electrochemical performance compared to microporous polyolefin membranes. To combine the good mechanical strength of PP nonwovens with the excellent electrochemical properties of SiO2/polyvinylidene fluoride (PVDF) composite nanofibers, SiO 2/PVDF composite nanofiber-coated PP nonwoven membranes were prepared. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber-coated nonwoven membranes. Although ceramic/polymer composites can be prepared by encapsulating ceramic particles directly into polymer nanofibers, the performance of the resultant composite membranes is restricted because these nanoparticles are not exposed to liquid electrolytes and have limited effect on improving the cell performance. Hence, we introduced new nanoparticle-on-nanofiber hybrid membrane separators by combining electrospraying with electrospinning techniques. Electrochemical properties were enhanced due to the increased surface area caused by the unique hybrid structure of SiO2 nanoparticles and PVDF nanofibers. To design a high-performance separator with enhanced mechanical properties and good thermal stability, electrospun SiO2/nylon 6,6 nanofiber membranes were fabricated. It was found that SiO2/nylon 6,6 nanofiber membranes had superior thermal stability and mechanical strength. Electrospinning has serious drawbacks such as low spinning rate and high production cost. Centrifugal spinning is a fast, cost-effective and safe alternative to the electrospinning. SiO2/polyacrylonitrile (PAN) membranes were produced by using centrifugal spinning. Compared with commercial microporous polyolefin membranes, SiO2/PAN membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN membrane separators were assembled into lithium/lithium iron phosphate cells and these cells exhibited good cycling and C-rate performance.

  4. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  5. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.

    PubMed

    Caplan, Z; Melilli, C; Barbano, D M

    2013-04-01

    The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Lithography with MeV Energy Ions for Biomedical Applications: Accelerator Considerations

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Whitlow, H. J.; Nakagawa, S. T.; Yoshida, E.

    2009-03-01

    MeV ion beam lithographies are very powerful techniques for 3D direct writing in positive or negtive photoresist materials. Nanometer-scale rough structures, or clear areas with straight vertical sidewalls as thin as a few 10's of nm in a resist of a few nm to 100 μm thickness can be made. These capabilities are particularly useful for lithography in cellular- and sub-cellular level biomedical research and technology applications. It can be used for tailor making special structures such as optical waveguides, biosensors, DNA sorters, spotting plates, systems for DNA, protein and cell separation, special cell-growth substrates and microfluidic lab-on-a-chip devices. Furthermore MeV ion beam lithography can be used for rapid prototyping, and also making master stamps and moulds for mass production by hot embossing and nanoimprint lithography. The accelerator requirements for three different high energy ion beam lithography techniques are overviewed. We consider the special requirements placed on the accelerator and how this is achieved for a commercial proton beam writing tool.

  7. Stacking Oxygen-Separation Cells

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.

    1991-01-01

    Simplified configuration and procedure developed for assembly of stacks of solid-electrolyte cells separating oxygen from air electrochemically. Reduces number of components and thus reduces probability of such failures as gas leaks, breakdown of sensitive parts, and electrical open or short circuits. Previous, more complicated version of cell described in "Improved Zirconia Oxygen-Separation Cell" (NPO-16161).

  8. Determination of glutathione and glutathione disulfide in biological samples: an in-depth review.

    PubMed

    Monostori, Péter; Wittmann, Gyula; Karg, Eszter; Túri, Sándor

    2009-10-15

    Glutathione (GSH) is a thiol-containing tripeptide, which plays central roles in the defence against oxidative damage and in signaling pathways. Upon oxidation, GSH is transformed to glutathione disulfide (GSSG). The concentrations of GSH and GSSG and their molar ratio are indicators of cell functionality and oxidative stress. Assessment of redox homeostasis in various clinical states and medical applications for restoration of the glutathione status are of growing importance. This review is intended to provide a state-of-the-art overview of issues relating to sample pretreatment and choices for the separation and detection of GSH and GSSG. High-performance liquid chromatography, capillary electrophoresis and gas chromatography (as techniques with a separation step) with photometric, fluorimetric, electrochemical and mass spectrometric detection are discussed, stress being laid on novel approaches.

  9. Separation of mouse testis cells on a Celsep (TM) apparatus and their usefulness as a source of high molecular weight DNA or RNA

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Gizang-Ginsberg, E.; Engelmyer, E.; Gavin, B. J.; Ponzetto, C.

    1985-01-01

    The use of a self-contained unit-gravity cell separation apparatus for separation of populations of mouse testicular cells is described. The apparatus, a Celsep (TM), maximizes the unit area over which sedimentation occurs, reduces the amount of separation medium employed, and is quite reproducible. Cells thus isolated have been good sources for isolation of DNA, and notably, high molecular weight RNA.

  10. A three dimensional micropatterned tumor model for breast cancer cell migration studies.

    PubMed

    Peela, Nitish; Sam, Feba S; Christenson, Wayne; Truong, Danh; Watson, Adam W; Mouneimne, Ghassan; Ros, Robert; Nikkhah, Mehdi

    2016-03-01

    Breast cancer cell invasion is a highly orchestrated process driven by a myriad of complex microenvironmental stimuli, making it difficult to isolate and assess the effects of biochemical or biophysical cues (i.e. tumor architecture, matrix stiffness) on disease progression. In this regard, physiologically relevant tumor models are becoming instrumental to perform studies of cancer cell invasion within well-controlled conditions. Herein, we explored the use of photocrosslinkable hydrogels and a novel, two-step photolithography technique to microengineer a 3D breast tumor model. The microfabrication process enabled precise localization of cell-encapsulated circular constructs adjacent to a low stiffness matrix. To validate the model, breast cancer cell lines (MDA-MB-231, MCF7) and non-tumorigenic mammary epithelial cells (MCF10A) were embedded separately within the tumor model, all of which maintained high viability throughout the experiments. MDA-MB-231 cells exhibited extensive migratory behavior and invaded the surrounding matrix, whereas MCF7 or MCF10A cells formed clusters that stayed confined within the circular tumor regions. Additionally, real-time cell tracking indicated that the speed and persistence of MDA-MB-231 cells were substantially higher within the surrounding matrix compared to the circular constructs. Z-stack imaging of F-actin/α-tubulin cytoskeletal organization revealed unique 3D protrusions in MDA-MB-231 cells and an abundance of 3D clusters formed by MCF7 and MCF10A cells. Our results indicate that gelatin methacrylate (GelMA) hydrogel, integrated with the two-step photolithography technique, has great promise in the development of 3D tumor models with well-defined architecture and tunable stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Avoiding false positive antigen detection by flow cytometry on blood cell derived microparticles: the importance of an appropriate negative control.

    PubMed

    Crompot, Emerence; Van Damme, Michael; Duvillier, Hugues; Pieters, Karlien; Vermeesch, Marjorie; Perez-Morga, David; Meuleman, Nathalie; Mineur, Philippe; Bron, Dominique; Lagneaux, Laurence; Stamatopoulos, Basile

    2015-01-01

    Microparticles (MPs), also called microvesicles (MVs) are plasma membrane-derived fragments with sizes ranging from 0.1 to 1μm. Characterization of these MPs is often performed by flow cytometry but there is no consensus on the appropriate negative control to use that can lead to false positive results. We analyzed MPs from platelets, B-cells, T-cells, NK-cells, monocytes, and chronic lymphocytic leukemia (CLL) B-cells. Cells were purified by positive magnetic-separation and cultured for 48h. Cells and MPs were characterized using the following monoclonal antibodies (CD19,20 for B-cells, CD3,8,5,27 for T-cells, CD16,56 for NK-cells, CD14,11c for monocytes, CD41,61 for platelets). Isolated MPs were stained with annexin-V-FITC and gated between 300nm and 900nm. The latex bead technique was then performed for easy detection of MPs. Samples were analyzed by Transmission (TEM) and Scanning Electron microscopy (SEM). Annexin-V positive events within a gate of 300-900nm were detected and defined as MPs. Our results confirmed that the characteristic antigens CD41/CD61 were found on platelet-derived-MPs validating our technique. However, for MPs derived from other cell types, we were unable to detect any antigen, although they were clearly expressed on the MP-producing cells in the contrary of several data published in the literature. Using the latex bead technique, we confirmed detection of CD41,61. However, the apparent expression of other antigens (already deemed positive in several studies) was determined to be false positive, indicated by negative controls (same labeling was used on MPs from different origins). We observed that mother cell antigens were not always detected on corresponding MPs by direct flow cytometry or latex bead cytometry. Our data highlighted that false positive results could be generated due to antibody aspecificity and that phenotypic characterization of MPs is a difficult field requiring the use of several negative controls.

  12. Avoiding False Positive Antigen Detection by Flow Cytometry on Blood Cell Derived Microparticles: The Importance of an Appropriate Negative Control

    PubMed Central

    Crompot, Emerence; Van Damme, Michael; Duvillier, Hugues; Pieters, Karlien; Vermeesch, Marjorie; Perez-Morga, David; Meuleman, Nathalie; Mineur, Philippe; Bron, Dominique; Lagneaux, Laurence; Stamatopoulos, Basile

    2015-01-01

    Background Microparticles (MPs), also called microvesicles (MVs) are plasma membrane-derived fragments with sizes ranging from 0.1 to 1μm. Characterization of these MPs is often performed by flow cytometry but there is no consensus on the appropriate negative control to use that can lead to false positive results. Materials and Methods We analyzed MPs from platelets, B-cells, T-cells, NK-cells, monocytes, and chronic lymphocytic leukemia (CLL) B-cells. Cells were purified by positive magnetic-separation and cultured for 48h. Cells and MPs were characterized using the following monoclonal antibodies (CD19,20 for B-cells, CD3,8,5,27 for T-cells, CD16,56 for NK-cells, CD14,11c for monocytes, CD41,61 for platelets). Isolated MPs were stained with annexin-V-FITC and gated between 300nm and 900nm. The latex bead technique was then performed for easy detection of MPs. Samples were analyzed by Transmission (TEM) and Scanning Electron microscopy (SEM). Results Annexin-V positive events within a gate of 300-900nm were detected and defined as MPs. Our results confirmed that the characteristic antigens CD41/CD61 were found on platelet-derived-MPs validating our technique. However, for MPs derived from other cell types, we were unable to detect any antigen, although they were clearly expressed on the MP-producing cells in the contrary of several data published in the literature. Using the latex bead technique, we confirmed detection of CD41,61. However, the apparent expression of other antigens (already deemed positive in several studies) was determined to be false positive, indicated by negative controls (same labeling was used on MPs from different origins). Conclusion We observed that mother cell antigens were not always detected on corresponding MPs by direct flow cytometry or latex bead cytometry. Our data highlighted that false positive results could be generated due to antibody aspecificity and that phenotypic characterization of MPs is a difficult field requiring the use of several negative controls. PMID:25978814

  13. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells.

    PubMed

    Sanchez-Antequera, Yolanda; Mykhaylyk, Olga; van Til, Niek P; Cengizeroglu, Arzu; de Jong, J Henk; Huston, Marshall W; Anton, Martina; Johnston, Ian C D; Pojda, Zygmunt; Wagemaker, Gerard; Plank, Christian

    2011-04-21

    Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.

  14. Evaluation program for secondary spacecraft cells: Initial evaluation tests of Eagle-Picher Industries, Incorporated 6.0 ampere-hour, nickel-cadmium spacecraft cells for separator material evaluation

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1975-01-01

    Several groups of nickel cadmium cells were tested for the durability of their separator materials. The cells were rated at 6.0 ampere-hours, and contained double ceramic seals. Two cells in each group were fitted with pressure gauge assemblies. Results are presented for various brands of separator materials.

  15. Method for separating biological cells. [suspended in aqueous polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E. (Inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  16. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.

    PubMed

    Teuscher, Joël; Brauer, Jan C; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E

    2017-11-01

    Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  17. Automated cell disruption is a reliable and effective method of isolating RNA from fresh snap-frozen normal and malignant oral mucosa samples.

    PubMed

    Van der Vorst, Sébastien; Dekairelle, Anne-France; Irenge, Léonid; Hamoir, Marc; Robert, Annie; Gala, Jean-Luc

    2009-01-01

    This study compared automated vs. manual tissue grinding in terms of RNA yield obtained from oral mucosa biopsies. A total of 20 patients undergoing uvulectomy for sleep-related disorders and 10 patients undergoing biopsy for head and neck squamous cell carcinoma were enrolled in the study. Samples were collected, snap-frozen in liquid nitrogen, and divided into two parts of similar weight. Sample grinding was performed on one sample from each pair, either manually or using an automated cell disruptor. The performance and efficacy of each homogenization approach was compared in terms of total RNA yield (spectrophotometry, fluorometry), mRNA quantity [densitometry of specific TP53 amplicons and TP53 quantitative reverse-transcribed real-time PCR (qRT-PCR)], and mRNA quality (functional analysis of separated alleles in yeast). Although spectrophotometry and fluorometry results were comparable for both homogenization methods, TP53 expression values obtained by amplicon densitometry and qRT-PCR were significantly and consistently better after automated homogenization (p<0.005) for both uvula and tumor samples. Functional analysis of separated alleles in yeast results was better with the automated technique for tumor samples. Automated tissue homogenization appears to be a versatile, quick, and reliable method of cell disruption and is especially useful in the case of small malignant samples, which show unreliable results when processed by manual homogenization.

  18. Comparison of three techniques for generation of tolerogenic dendritic cells: siRNA, oligonucleotide antisense, and antibody blocking.

    PubMed

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Moazzeni, Mohammad; Soheili, Zahra Soheila; Samiee, Shahram

    2010-12-01

    In recent years, a new view of dendritic cells (DCs) as a main regulator of immunity to induce and maintain tolerance has been established. In vitro manipulation of their development and maturation is a topic of DC therapeutic application, which utilizes their inherent tolerogenicity. In this field, the therapeutic potential of antisense, siRNA, and blocking antibody are an interesting goal. In the present study, the efficiency of these three methods--siRNA, antisense, and blocking antibody--against CD40 molecule and its function in DCs and BCL1 cell line are compared. DCs were separated from mouse spleen and then cultured in vitro using Lipofectamine 2000 to deliver both silencers; the efficacy of transfection was estimated by flow cytometry. mRNA expression and protein synthesis were assessed by real time-PCR and flow cytometry, respectively. By Annexin V and propidium iodine staining, we could evaluate the viability of transfected cells. Knocking down the CD40 gene into separate groups of DCs by siRNA, antisense, and blocking antibody treated DCs can cause an increase in IL-4, decrease in IL-12, IFN-γ production, and allostimulation activity. Our results indicated that, in comparison to antisense and blocking antibody, siRNAs appear to be quantitatively more efficient in CD40 downregulation and their differences are significant.

  19. Focal macromolecule delivery in neuronal tissue using simultaneous pressure ejection and local electroporation

    PubMed Central

    Barker, Matthew; Billups, Brian; Hamann, Martine

    2009-01-01

    Electroporation creates transient pores in the plasma membrane to introduce macromolecules within a cell or cell population. Generally, electrical pulses are delivered between two electrodes separated from each other, making electroporation less likely to be localised. We have developed a new device combining local pressure ejection with local electroporation through a double-barrelled glass micropipette to transfer impermeable macromolecules in brain slices or in cultured HEK293 cells. The design achieves better targeting of the site of pressure ejection with that of electroporation. With this technique, we have been able to limit the delivery of propidium iodide or dextran amine within areas of 100–200 μm diameter. We confirm that local electroporation is transient and show that when combined with pressure ejection, it allows local transfection of EGFP plasmids within HEK293 cells or within cerebellar and hippocampal slice cultures. We further show that local electroporation is less damaging when compared to global electroporation using two separate electrodes. Focal delivery of dextran amine dyes within trapezoid body fibres allowed tracing axonal tracts within brainstem slices, enabling the study of identified calyx of Held presynaptic terminals in living brain tissue. This labelling method can be used to target small nuclei in neuronal tissue and is generally applicable to the study of functional synaptic connectivity, or live axonal tracing in a variety of brain areas. PMID:19014970

  20. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    PubMed

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  1. [Influence of Cryopreservation on Human Peripheral Blood Mononuclear Cell Immunocompetence].

    PubMed

    Pan, Xue-Feng; Lu, Chun-Xia; Yang, Li-Li; Shu, Chang; Yao, Na; Zuo, Hong-Bin; Cui, Li-Feng

    2016-08-01

    To establish a method for isolation, cryopreservation and recovery of the highly viable human peripheral blood monomuclear cells (PBMNCs) so as to achieve the long-term preservation of PBMNCs. A total of 80-100 ml peripheral blood were collected from the healthy volumteers aged over 50 years old. The PBMNCs were isolated by the Ficoll density gradient technique and cryopreserved gradually by program control method in liquid nitrogen freezer of -196 °C. The serum-free medium and autoloqous plasma medium were test for preservation of PBMNCs. The cell viability was assessed at time point of 1, 2, 4, 8, 12 and 24 months after thawing. Finally, the proliferation ability, purity and cytotoxicity were compared between the autologous immune lymphocytes (AIL) induced from cryopreserved PBMNCs and AIL as control from fresh PBMNCs. After separating, the cell viability was 99.6%±0.4%, and the recovery rate of lymphocytes was 58.4%±6.52%. The cell recovery rate of lymphocyte was 89.7%±3.82% at 24 months. The quality assurance program was reliable within 2 years of running. The AIL cells induced with cryopreserved PBMNCs were not significantly different from those induced from fresh PBMNCs in terms of proliferative action, purity and cytotoxicity(CD3(+)CD8(+) ≥45%,CD3(+)CD56(+) NKT≥10%,CD4(+)CD25(+) NKT≤10%). Manual separation of lymphocytes in vitro can get enough high-quality PBMNCs. The long-term cryopreserved PBMNC still maintain their high viability. The reinfusion of the clinical autologous immune cells would be advantageous for early tumor immunotherapy. Human AIL induced from cryopreserved PBMNC maintain their anti-tumor ability. These findings have the important implications for the application of these cells to adoptive cellular therapy.

  2. Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry.

    PubMed

    Ito, Jun; Herter, Thomas; Baidoo, Edward E K; Lao, Jeemeng; Vega-Sánchez, Miguel E; Michelle Smith-Moritz, A; Adams, Paul D; Keasling, Jay D; Usadel, Björn; Petzold, Christopher J; Heazlewood, Joshua L

    2014-03-01

    Understanding the intricate metabolic processes involved in plant cell wall biosynthesis is limited by difficulties in performing sensitive quantification of many involved compounds. Hydrophilic interaction liquid chromatography is a useful technique for the analysis of hydrophilic metabolites from complex biological extracts and forms the basis of this method to quantify plant cell wall precursors. A zwitterionic silica-based stationary phase has been used to separate hydrophilic nucleotide sugars involved in cell wall biosynthesis from milligram amounts of leaf tissue. A tandem mass spectrometry operating in selected reaction monitoring mode was used to quantify nucleotide sugars. This method was highly repeatable and quantified 12 nucleotide sugars at low femtomole quantities, with linear responses up to four orders of magnitude to several 100pmol. The method was also successfully applied to the analysis of purified leaf extracts from two model plant species with variations in their cell wall sugar compositions and indicated significant differences in the levels of 6 out of 12 nucleotide sugars. The plant nucleotide sugar extraction procedure was demonstrated to have good recovery rates with minimal matrix effects. The approach results in a significant improvement in sensitivity when applied to plant samples over currently employed techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    NASA Astrophysics Data System (ADS)

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.; Gratton, Enrico

    2012-04-01

    We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation.

  4. Reactivity of inducer cell subsets and T8-cell activation during the human autologous mixed lymphocyte reaction.

    PubMed

    Romain, P L; Morimoto, C; Daley, J F; Palley, L S; Reinherz, E L; Schlossman, S F

    1984-01-01

    To characterize the responding T cells in the autologous mixed lymphocyte reaction (AMLR), T cells were fractionated into purified subpopulations employing monoclonal antibodies and a variety of separation techniques including fluorescence-activated cell sorting. It was found that isolated T4 cells, but not T8 cells, proliferated in response to autologous non-T cells. More importantly, within the T4 subset, the autoreactive population was greatly enriched in a fraction reactive with an autoantibody from patients with juvenile chronic arthritis (JRA) or the monoclonal antibody anti-TQ1. Although T8 cells themselves were unable to proliferate in the AMLR, they could be induced to respond in the presence of either T4 cells or exogenous IL-2 containing medium. This was demonstrated by direct measurement of tritiated thymidine uptake by T8 cells during the course of the AMLR as well as by analysis of their relative DNA content. Taken together, these data indicate that the AMLR represents a complex pattern of immune responsiveness distinct from that observed in response to soluble antigen or alloantigen. The precise function of this T-cell circuit remains to be determined.

  5. Type of monocyte immunomagnetic separation affects the morphology of monocyte-derived dendritic cells, as investigated by scanning electron microscopy.

    PubMed

    Kowalewicz-Kulbat, M; Ograczyk, E; Krawczyk, K; Rudnicka, W; Fol, M

    2016-12-01

    Dendritic cells (DCs) are increasingly being used for multiple applications and are useful tools for many immunotherapeutic strategies. The understanding of the possible impact of the DCs-generation methods on the biological capacities of these cells is therefore essential. Although the immunomagnetic separation is regarded as a fast and accurate method yielding cells with the high purity and efficiency, still little is known about its impact on the properties of the generated DCs. The aim of this study was to compare the morphology of the monocyte derived dendritic cells (MoDCs), generated from monocytes selected with anti-CD14 mAbs (positive separation) and treated with anti-CD3, -CD7, -CD16, -CD19, -CD56, -CD123, glycophorin A (negative separation), using laser scanning microscopy. We found that the type of the immunomagnetic separation method used strongly influences the shape and cell dimension of the MoDCs. We observed that the height of both immature and LPS-matured DCs generated from monocytes isolated by negative separation was significantly higher compared to the cells obtained by positive separation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis.

    PubMed

    Ye, Ting; Li, Hua; Lam, K Y

    2015-02-01

    In this paper, we numerically explore the possibility of separating two groups of deformable cells, by a very small dielectrophoretic (DEP) microchip with the characteristic length of several cell diameters. A 2D two-fluid model is developed to describe the separation process, where three types of forces are considered, the aggregation force for cell-cell interaction, the deformation force for cell deformation, and the DEP force for cell dielectrophoresis. As a model validation, we calculate the levitation height of a cell subject to DEP force, and compare it with the experimental data. After that, we simulate the separation of two groups of cells with different dielectric properties at high and low frequencies, respectively. The simulation results show that the deformable cells can be separated successfully by a very small DEP microchip, according to not only their different permittivities at the high frequency, but also their different conductivities at the low frequency. In addition, both two groups of cells have a shape deformation from an original shape to a lopsided slipper shape during the separation process. It is found that the cell motion is mainly determined by the DEP force arising from the electric field, causing the cells to deviate from the centerline of microchannel. However, the cell deformation is mainly determined by the deformation force arising from the fluid flow, causing the deviated cells to undergo an asymmetric motion with the deformation of slipper shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Separation techniques: Chromatography

    PubMed Central

    Coskun, Ozlem

    2016-01-01

    Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406

  8. Using dynamic mode decomposition for real-time background/foreground separation in video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutz, Jose Nathan; Grosek, Jacob; Brunton, Steven

    The technique of dynamic mode decomposition (DMD) is disclosed herein for the purpose of robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. Foreground/background separation is achieved at the computational cost of just one singular value decomposition (SVD) and one linear equation solve, thus producing results orders of magnitude faster than robust principal component analysis (RPCA). Additional techniques, including techniques for analyzing the video for multi-resolution time-scale components, and techniques for reusing computations to allow processing of streaming video in real time, are also described herein.

  9. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison.

    PubMed

    Wegel, Eva; Göhler, Antonia; Lagerholm, B Christoffer; Wainman, Alan; Uphoff, Stephan; Kaufmann, Rainer; Dobbie, Ian M

    2016-06-06

    Many biological questions require fluorescence microscopy with a resolution beyond the diffraction limit of light. Super-resolution methods such as Structured Illumination Microscopy (SIM), STimulated Emission Depletion (STED) microscopy and Single Molecule Localisation Microscopy (SMLM) enable an increase in image resolution beyond the classical diffraction-limit. Here, we compare the individual strengths and weaknesses of each technique by imaging a variety of different subcellular structures in fixed cells. We chose examples ranging from well separated vesicles to densely packed three dimensional filaments. We used quantitative and correlative analyses to assess the performance of SIM, STED and SMLM with the aim of establishing a rough guideline regarding the suitability for typical applications and to highlight pitfalls associated with the different techniques.

  10. Application of separable parameter space techniques to multi-tracer PET compartment modeling.

    PubMed

    Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J

    2016-02-07

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  11. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.

    2016-02-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  12. Wall effects in continuous microfluidic magneto-affinity cell separation.

    PubMed

    Wu, Liqun; Zhang, Yong; Palaniapan, Moorthi; Roy, Partha

    2010-05-01

    Continuous microfluidic magneto-affinity cell separator combines unique microscale flow phenomenon with advantageous nanobead properties, to isolate cells with high specificity. Owing to the comparable size of the cell-bead complexes and the microchannels, the walls of the microchannel exert a strong influence on the separation of cells by this method. We present a theoretical and experimental study that provides a quantitative description of hydrodynamic wall interactions and wall rolling velocity of cells. A transient convection model describes the transport of cells in two-phase microfluidic flow under the influence of an external magnetic field. Transport of cells along the microchannel walls is also considered via an additional equation. Results show the variation of cell flux in the fluid phases and the wall as a function of a dimensionless parameter arising in the equations. Our results suggest that conditions may be optimized to maximize cell separation while minimizing contact with the wall surfaces. Experimentally measured cell rolling velocities on the wall indicate the presence of other near-wall forces in addition to fluid shear forces. Separation of a human colon carcinoma cell line from a mixture of red blood cells, with folic acid conjugated 1 microm and 200 nm beads, is reported.

  13. Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing.

    PubMed

    Girshovitz, Pinhas; Frenklach, Irena; Shaked, Natan T

    2015-11-01

    We propose a new portable imaging configuration that can double the field of view (FOV) of existing off-axis interferometric imaging setups, including broadband off-axis interferometers. This configuration is attached at the output port of the off-axis interferometer and optically creates a multiplexed interferogram on the digital camera, which is composed of two off-axis interferograms with straight fringes at orthogonal directions. Each of these interferograms contains a different FOV of the imaged sample. Due to the separation of these two FOVs in the spatial-frequency domain, they can be fully reconstructed separately, while obtaining two complex wavefronts from the sample at once. Since the optically multiplexed off-axis interferogram is recorded by the camera in a single exposure, fast dynamics can be recorded with a doubled imaging area. We used this technique for quantitative phase microscopy of biological samples with extended FOV. We demonstrate attaching the proposed module to a diffractive phase microscopy interferometer, illuminated by a broadband light source. The biological samples used for the experimental demonstrations include microscopic diatom shells, cancer cells, and flowing blood cells.

  14. [Expression and identification of eukaryotic expression vectors of Brucella melitensis lipoprotein OMP19].

    PubMed

    He, Zuoping; Luo, Peifang; Hu, Feihuan; Weng, Yunceng; Wang, Wenjing; Li, Chengyao

    2016-04-01

    To construct eukaryotic expression vectors carrying Brucella melitensis outer membrane protein 19 (OMP19), express them in transfected Huh7.5.1 and JEG-3 cells, and analyze their role in cell apoptosis. Brucella melitensis lipidated OMP19 (L-OMP19) gene and unlipidated OMP19 (U-OMP19) gene were amplified by PCR and inserted into the vector pZeroBack/blunt. The correct L-OMP19 and U-OMP19 genes verified by XbaI and BamHI double digestion and sequencing were cloned into the lentivirus expression vector pHAGE-CMV-MCS-IZsGreen to construct vectors pHAGE-L-OMP19 and pHAGE-U-OMP19, which were separately transfected into 293FT cells, Huh7.5.1 and JEG-3 cells. L-OMP19 and U-OMP19 in the cells were detected by Western blotting and immunofluorescence technique. Flow cytometry combined with annexin V-PE/7-AAD staining was used to detect the cell apoptosis. The lentiviral vectors pHAGE-L-OMP19 and pHAGE-U-OMP19 were constructed correctly and the recombinant lipoproteins L-OMP19 and U-OMP19 expressed in the above cells were well recognized by the specific antibodies against L-OMP19 in Western blotting and immunofluorescence technique. L-OMP19 and U-OMP19 induced JEG-3 cell death, but did not induce the apoptosis of Huh7.5.1 cells. The eukaryotic expression vectors of L-OMP19 and U-OMP19 have been constructed successfully. Recombinant lipoproteins L-OMP19 and U-OMP19 expressed in cells have a good antigenicity, which could be used as experimental materials for the research on the relationship between host cells and lipoproteins in Brucella infection.

  15. Inverse boundary-layer theory and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Carter, J. E.

    1978-01-01

    Inverse boundary layer computational procedures, which permit nonsingular solutions at separation and reattachment, are presented. In the first technique, which is for incompressible flow, the displacement thickness is prescribed; in the second technique, for compressible flow, a perturbation mass flow is the prescribed condition. The pressure is deduced implicitly along with the solution in each of these techniques. Laminar and turbulent computations, which are typical of separated flow, are presented and comparisons are made with experimental data. In both inverse procedures, finite difference techniques are used along with Newton iteration. The resulting procedure is no more complicated than conventional boundary layer computations. These separated boundary layer techniques appear to be well suited for complete viscous-inviscid interaction computations.

  16. Characterization and storage of malaria antigens: Fractionation of Plasmodium knowlesi-induced antigens of rhesus monkey erythrocyte membranes*

    PubMed Central

    Schmidt-Ullrich, R.; Wallach, D. F. H.; Lightholder, J.

    1979-01-01

    In order to characterize parasite-induced host cell membrane antigens, the plasma membranes of Plasmodium knowlesi-infected rhesus erythrocytes have been compared with those of normal red cells and purified schizonts by immunochemical and biochemical techniques. Host cell membranes and schizonts were separated by differential centrifugation following nitrogen decompression. Isolated schizonts were further fractionated into several subcellular compartments. Crossed-immune electrophoresis, against monkey anti-schizont serum, of Triton X-100-solubilized material identified 7 P. knowlesi-specific antigens, of which 4 could be detected only in the host cell membranes. These membranes also contained 3 proteins, with relative molecular masses of 55 000, 65 000 and 90 000 and isoelectric points at pH 4.5, 4.5 and 5.2, respectively, which are lacking in normal membranes. Pulse-chase experiments with (14C)-glucosamine showed that these parasite-induced host cell membrane components are glycoproteins. ImagesFig. 1Fig. 2 PMID:120762

  17. Fabrication of hierarchical micro-nanotopographies for cell attachment studies.

    PubMed

    López-Bosque, M J; Tejeda-Montes, E; Cazorla, M; Linacero, J; Atienza, Y; Smith, K H; Lladó, A; Colombelli, J; Engel, E; Mata, A

    2013-06-28

    We report on the development of micro/nanofabrication processes to create hierarchical surface topographies that expand from 50 nm to microns in size on different materials. Three different approaches (named FIB1, FIB2, and EBL) that combine a variety of techniques such as photolithography, reactive ion etching, focused ion beam lithography, electron beam lithography, and soft lithography were developed, each one providing different advantages and disadvantages. The EBL approach was employed to fabricate substrates comprising channels with features between 200 nm and 10 μm in size on polymethylmethacrylate (PMMA), which were then used to investigate the independent or competitive effects of micro- and nanotopographies on cell adhesion and morphology. Rat mesenchymal stem cells (rMSCs) were cultured on four different substrates including 10 μm wide and 500 nm deep channels separated by 10 μm distances (MICRO), 200 nm wide and 100 nm deep nanochannels separated by 200 nm distances (NANO), their combination in parallel (PARAL), and in a perpendicular direction (PERP). Rat MSCs behaved differently on all tested substrates with a high degree of alignment (as measured by both number of aligned cells and average angle) on both NANO and MICRO. Furthermore, cells exhibited the highest level of alignment on PARAL, suggesting a synergetic effect of the two scales of topographies. On the other hand, cells on PERP exhibited the lowest alignment and a consistent change in morphology over time that seemed to be the result of interactions with both micro- and nanochannels positioned in the perpendicular direction, also suggesting a competitive effect of the topographies.

  18. Surfactant Functionalization Induces Robust, Differential Adhesion of Tumor Cells and Blood Cells to Charged Nanotube-Coated Biomaterials Under Flow

    PubMed Central

    Mitchell, Michael J.; Castellanos, Carlos A.; King, Michael R.

    2015-01-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion. PMID:25934290

  19. Cell design concepts for aqueous lithium-oxygen batteries: A model-based assessment

    NASA Astrophysics Data System (ADS)

    Grübl, Daniel; Bessler, Wolfgang G.

    2015-11-01

    Seven cell design concepts for aqueous (alkaline) lithium-oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separator chamber, and a redox-flow separator) are compared. Cathode and separator thicknesses are varied over a wide range (50 μm-20 mm) in order to identify optimum configurations. All designs show a considerable capacity-rate effect due to spatiotemporally inhomogeneous precipitation of solid discharge product LiOH·H2O. In addition, a cell design with flooded cathode and redox-flow separator including oxygen uptake within the external tank is suggested. For this design, the model predicts specific power up to 33 W/kg and specific energy up to 570 Wh/kg (gravimetric values of discharged cell including all cell components and catholyte except housing and piping).

  20. Quantitative phase imaging using four interferograms with special phase shifts by dual-wavelength in-line phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming; Han, Hao

    2018-05-01

    A new approach of quantitative phase imaging using four interferograms with special phase shifts in dual-wavelength in-line phase-shifting interferometry is presented. In this method, positive negative 2π phase shifts are employed to easily separate the incoherent addition of two single-wavelength interferograms by combining the phase-shifting technique with the subtraction procedure, then the quantitative phase at one of both wavelengths can be achieved based on two intensities without the corresponding dc terms by the use of the character of the trigonometric function. The quantitative phase of the other wavelength can be retrieved from two dc-term suppressed intensities obtained by employing the two-step phase-shifting technique or the filtering technique in the frequency domain. The proposed method is illustrated with theory, and its effectiveness is demonstrated by simulation experiments of the spherical cap and the HeLa cell, respectively.

Top