Respiration in heterotrophic unicellular eukaryotic organisms.
Fenchel, Tom
2014-08-01
Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size. Copyright © 2014 Elsevier GmbH. All rights reserved.
An assessment of the effects of cell size on AGNPS modeling of watershed runoff
Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.
2008-01-01
This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.
Guo, Mei; Rupe, Mary A.; Dieter, Jo Ann; Zou, Jijun; Spielbauer, Daniel; Duncan, Keith E.; Howard, Richard J.; Hou, Zhenglin; Simmons, Carl R.
2010-01-01
Genes involved in cell number regulation may affect plant growth and organ size and, ultimately, crop yield. The tomato (genus Solanum) fruit weight gene fw2.2, for instance, governs a quantitative trait locus that accounts for 30% of fruit size variation, with increased fruit size chiefly due to increased carpel ovary cell number. To expand investigation of how related genes may impact other crop plant or organ sizes, we identified the maize (Zea mays) gene family of putative fw2.2 orthologs, naming them Cell Number Regulator (CNR) genes. This family represents an ancient eukaryotic family of Cys-rich proteins containing the PLAC8 or DUF614 conserved motif. We focused on native expression and transgene analysis of the two maize members closest to Le-fw2.2, namely, CNR1 and CNR2. We show that CNR1 reduced overall plant size when ectopically overexpressed and that plant and organ size increased when its expression was cosuppressed or silenced. Leaf epidermal cell counts showed that the increased or decreased transgenic plant and organ size was due to changes in cell number, not cell size. CNR2 expression was found to be negatively correlated with tissue growth activity and hybrid seedling vigor. The effects of CNR1 on plant size and cell number are reminiscent of heterosis, which also increases plant size primarily through increased cell number. Regardless of whether CNRs and other cell number–influencing genes directly contribute to, or merely mimic, heterosis, they may aid generation of more vigorous and productive crop plants. PMID:20400678
Cancer stem cells and cell size: A causal link?
Li, Qiuhui; Rycaj, Kiera; Chen, Xin; Tang, Dean G
2015-12-01
The majority of normal animal cells are 10-20 μm in diameter. Many signaling mechanisms, notably PI3K/Akt/mTOR, Myc, and Hippo pathways, tightly control and coordinate cell growth, cell size, cell division, and cell number during homeostasis. These regulatory mechanisms are frequently deregulated during tumorigenesis resulting in wide variations in cell sizes and increased proliferation in cancer cells. Here, we first review the evidence that primitive stem cells in adult tissues are quiescent and generally smaller than their differentiated progeny, suggesting a correlation between small cell sizes with the stemness. Conversely, increased cell size positively correlates with differentiation phenotypes. We then discuss cancer stem cells (CSCs) and present some evidence that correlates cell sizes with CSC activity. Overall, a causal link between CSCs and cell size is relatively weak and remains to be rigorously assessed. In the future, optimizing methods for isolating cells based on size should help elucidate the connection between cancer cell size and CSC characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Shixuan; Ginzberg, Miriam Bracha; Patel, Nish; Hild, Marc; Leung, Bosco; Li, Zhengda; Chen, Yen-Chi; Chang, Nancy; Wang, Yuan; Tan, Ceryl; Diena, Shulamit; Trimble, William; Wasserman, Larry; Jenkins, Jeremy L; Kirschner, Marc W; Kafri, Ran
2018-03-29
Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity. © 2017, Liu et al.
Herculano-Houzel, Suzana; Messeder, Débora J.; Fonseca-Azevedo, Karina; Pantoja, Nilma A.
2015-01-01
There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease. PMID:26082686
Herculano-Houzel, Suzana; Messeder, Débora J; Fonseca-Azevedo, Karina; Pantoja, Nilma A
2015-01-01
There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.
Vertical distribution of the prokaryotic cell size in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
La Ferla, R.; Maimone, G.; Azzaro, M.; Conversano, F.; Brunet, C.; Cabral, A. S.; Paranhos, R.
2012-12-01
Distributions of prokaryotic cell size and morphology were studied in different areas of the Mediterranean Sea by using image analysis on samples collected from surface down to bathypelagic layers (max depth 4,900 m) in the Southern Tyrrhenian, Southern Adriatic and Eastern Mediterranean Seas. Distribution of cell size of prokaryotes in marine ecosystem is very often not considered, which makes our study first in the context of prokaryotic ecology. In the deep Mediterranean layers, an usually-not-considered form of carbon sequestration through prokaryotic cells has been highlighted, which is consistent with an increase in cell size with the depth of the water column. A wide range in prokaryotic cell volumes was observed (between 0.045 and 0.566 μm3). Increase in cell size with depth was opposed to cell abundance distribution. Our results from microscopic observations were confirmed by the increasing HNA/LNA ratio (HNA, cells with high nucleic acid content; LNA, cells with low nucleic acid content) along the water column. Implications of our results on the increasing cell size with depth are in the fact that the quantitative estimation of prokaryotic biomass changes along the water column and the amount of carbon sequestered in the deep biota is enhanced.
The evolution of bacterial cell size: the internal diffusion-constraint hypothesis.
Gallet, Romain; Violle, Cyrille; Fromin, Nathalie; Jabbour-Zahab, Roula; Enquist, Brian J; Lenormand, Thomas
2017-07-01
Size is one of the most important biological traits influencing organismal ecology and evolution. However, we know little about the drivers of body size evolution in unicellulars. A long-term evolution experiment (Lenski's LTEE) in which Escherichia coli adapts to a simple glucose medium has shown that not only the growth rate and the fitness of the bacterium increase over time but also its cell size. This increase in size contradicts prominent 'external diffusion' theory (EDC) predicting that cell size should have evolved toward smaller cells. Among several scenarios, we propose and test an alternative 'internal diffusion-constraint' (IDC) hypothesis for cell size evolution. A change in cell volume affects metabolite concentrations in the cytoplasm. The IDC states that a higher metabolism can be achieved by a reduction in the molecular traffic time inside of the cell, by increasing its volume. To test this hypothesis, we studied a population from the LTEE. We show that bigger cells with greater growth and CO 2 production rates and lower mass-to-volume ratio were selected over time in the LTEE. These results are consistent with the IDC hypothesis. This novel hypothesis offers a promising approach for understanding the evolutionary constraints on cell size.
Inverse size scaling of the nucleolus by a concentration-dependent phase transition.
Weber, Stephanie C; Brangwynne, Clifford P
2015-03-02
Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Larger Daphnia at lower temperature: a role for cell size and genome configuration?
Jalal, Marwa; Wojewodzic, Marcin W; Laane, Carl Morten M; Hessen, Dag O
2013-09-01
Experiments with Daphnia magna and Daphnia pulex raised at 10 and 20 °C yielded larger adult size at the lower temperature. This must reflect increased cell size, increased cell numbers, or a combination of both. As it is difficult to achieve good estimates on cell size in crustaceans, we, therefore, measured nucleus and genome size using flow cytometry at 10 and 20 °C. DNA was stained with propidium iodide, ethidium bromide, and DAPI. Both nucleus and genome size estimates were elevated at 10 °C compared with 20 °C, suggesting that larger body size at low temperature could partly be accredited to an enlarged nucleus and thus cell size. Confocal microscopy observations confirmed the staining properties of fluorochromes. As differences in nucleotide numbers in response of growth temperature within a life span is unlikely, these results seem accredited to changed DNA-fluorochrome binding properties, presumably reflecting increased DNA condensation at low temperature. This implies that genome size comparisons may be impacted by ambient temperature in ectotherms. It also suggests that temperature-induced structural changes in the genome could affect cell size and for some species even body size.
Kuluev, B R; Safiullina, M G; Kniazev, A V; Chemeris, A V
2013-01-01
We obtained transgenic tobacco plants demonstrating overexpression of NtEXPA5 gene that encodes alpha-expansin of Nicotiana tabacum. The transgenic plants were characterized by increased size of leaves and stems. However, size of flowers remained almost unchanged. The increase of organ sizes was induced by cell stretching only. Moreover, the number of cell divisions was even decreased. The obtained data suggest tight interaction between cell stretching regulation and cell division, which together provide the basic mechanism aimed at the controlling of plant organ sizes.
The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast
2017-01-01
The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. PMID:28939614
Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds
2012-01-01
Background Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Result Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. Conclusion Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation. PMID:22269093
Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds.
Jaiswal, Pundrik; Soldati, Thierry; Thewes, Sascha; Baskar, Ramamurthy
2012-01-23
Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation.
Inflating bacterial cells by increased protein synthesis
Basan, Markus; Zhu, Manlu; Dai, Xiongfeng; Warren, Mya; Sévin, Daniel; Wang, Yi-Ping; Hwa, Terence
2015-01-01
Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations. We report that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied. In particular, synthesizing large amounts of “useless” proteins led to an inversion of the canonical, positive relation, with slow growing cells enlarged 7- to 8-fold compared to cells growing at similar rates under nutrient limitation. Strikingly, this increase in cell size was accompanied by a 3- to 4-fold increase in cellular DNA content at slow growth, reaching up to an amount equivalent to ∼8 chromosomes per cell. Despite drastic changes in cell mass and macromolecular composition, cellular dry mass density remained constant. Our findings reveal an important role of protein synthesis in cell division control. PMID:26519362
Perturbation of nucleo-cytoplasmic transport affects size of nucleus and nucleolus in human cells.
Ganguly, Abira; Bhattacharjee, Chumki; Bhave, Madhura; Kailaje, Vaishali; Jain, Bhawik K; Sengupta, Isha; Rangarajan, Annapoorni; Bhattacharyya, Dibyendu
2016-03-01
Size regulation of human cell nucleus and nucleolus are poorly understood subjects. 3D reconstruction of live image shows that the karyoplasmic ratio (KR) increases by 30-80% in transformed cell lines compared to their immortalized counterpart. The attenuation of nucleo-cytoplasmic transport causes the KR value to increase by 30-50% in immortalized cell lines. Nucleolus volumes are significantly increased in transformed cell lines and the attenuation of nucleo-cytoplasmic transport causes a significant increase in the nucleolus volume of immortalized cell lines. A cytosol and nuclear fraction swapping experiment emphasizes the potential role of unknown cytosolic factors in nuclear and nucleolar size regulation. © 2016 Federation of European Biochemical Societies.
The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast.
Leitao, Ricardo M; Kellogg, Douglas R
2017-11-06
The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. © 2017 Leitao and Kellogg.
Qi, Ruhu; John, Peter Crook Lloyd
2007-07-01
The Arabidopsis (Arabidopsis thaliana) CYCD2;1 gene introduced in genomic form increased cell formation in the Arabidopsis root apex and leaf, while generating full-length mRNA, raised CDK/CYCLIN enzyme activity, reduced G1-phase duration, and reduced size of cells at S phase and division. Other cell cycle genes, CDKA;1, CYCLIN B;1, and the cDNA form of CYCD2;1 that produced an aberrantly spliced mRNA, produced smaller or zero increases in CDK/CYCLIN activity and did not increase the number of cells formed. Plants with a homozygous single insert of genomic CYCD2;1 grew with normal morphology and without accelerated growth of root or shoot, not providing evidence that cell formation or CYCLIN D2 controls growth of postembryonic vegetative tissues. At the root apex, cells progressed normally from meristem to elongation, but their smaller size enclosed less growth and a 40% reduction in final size of epidermal and cortical cells was seen. Smaller elongated cell size inhibited endoreduplication, indicating a cell size requirement. Leaf cells were also smaller and more numerous during proliferation and epidermal pavement and palisade cells attained 59% and 69% of controls, whereas laminas reached normal size. Autonomous control of expansion was therefore not evident in abundant cell types that formed tissues of root or leaf. Cell size was reduced by a greater number formed in a tissue prior to cell and tissue expansion. Initiation and termination of expansion did not correlate with cell dimension or number and may be determined by tissue-wide signals acting across cellular boundaries.
Lee, Sang Jin; Choi, Jin San; Park, Ki Suk; Khang, Gilson; Lee, Young Moo; Lee, Hai Bang
2004-08-01
Response of different types of cells on materials is important for the applications of tissue engineering and regenerative medicine. It is recognized that the behavior of the cell adhesion, proliferation, and differentiation on materials depends largely on surface characteristics such as wettability, chemistry, charge, rigidity, and roughness. In this study, we examined the behavior of MG63 osteoblast-like cells cultured on a polycarbonate (PC) membrane surfaces with different micropore sizes (0.2-8.0 microm in diameter). Cell adhesion and proliferation to the PC membrane surfaces were determined by cell counting and MTT assay. The effect of surface micropore on the MG63 cells was evaluated by cell morphology, protein content, and alkaline phosphatase (ALP) specific activity. It seems that the cell adhesion and proliferation were progressively inhibited as the PC membranes had micropores with increasing size, probably due to surface discontinuities produced by track-etched pores. Increasing micropore size of the PC membrane results in improved protein synthesis and ALP specific activity in isolated cells. There was a statistically significant difference (P<0.05) between different micropore sizes. The MG63 cells also maintained their phenotype under conditions that support a round cell shape. RT-PCR analysis further confirmed the osteogenic phenotype of the MG63 cells onto the PC membranes with different micropore sizes. In results, as micropore size is getting larger, cell number is reduced and cell differentiation and matrix production is increased. This study demonstrated that the surface topography plays an important role for phenotypic expression of the MG63 osteoblast-like cells.
Geometry, packing, and evolutionary paths to increased multicellular size
NASA Astrophysics Data System (ADS)
Jacobeen, Shane; Graba, Elyes C.; Brandys, Colin G.; Day, Thomas C.; Ratcliff, William C.; Yunker, Peter J.
2018-05-01
The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018), 10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ˜13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.
Svensson, Filip; Norberg, Jon; Snoeijs, Pauline
2014-01-01
Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how "body size" (cells and colonies) and motility change along temperature (2-26°C) and salinity (0.5-7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels.
Toge, T; Hamamoto, S; Itagaki, E; Yajima, K; Tanada, M; Nakane, H; Kohno, H; Nakanishi, K; Hattori, T
1983-11-01
In 173 gastric cancer patients, activities of Concanavalin-A-induced suppressor cells (Con-AS) and spontaneous suppressor cells (SpS) in peripheral blood lymphocytes (PBL), splenic vein lymphocytes (SVL), and spleen cells (SCs) were investigated. Suppressions by Con-AS in PBL were significantly effective in patients of Stages III and IV, while suppressions by SpS were effective in patients with recurrent tumors. Thus, in PBLs of cancer patients, suppressor precursors, which are considered to be activated in vitro by Concanavalin-A, seemed to appear with the advances of the disease, and SpS activities, which could be already activated in vivo, seemed to increase in the terminal stage. In SCs, increased activities of Con-AS, but normal activities of SpS, were observed, and these suppressor-cell populations consisted of glass nonadherent cells. Suppressor activities of SCs would be due to suppressor T-cells, not to other types of cells. Furthermore, Con-AS existed in the medium-sized lymphocytes, which were fractionated on the basis of cell size, while SpS in the large-sized lymphocytes. A higher proportion of T-cells, bearing Fc receptors for IgG, was observed in the larger-sized lymphocyte fractions. Cell numbers in the large-sized lymphocyte fraction tended to increase with the advances of tumors. From these results, it is suggested that higher presence of suppressor precursors and the increase of SpS activities may occur in cancer patients, depending on the tumor advancing.
Hisada, Masayuki; Ota, Yoshihiro; Zhang, Xiuying; Cameron, Andrew M; Gao, Bin; Montgomery, Robert A; Williams, George Melville; Sun, Zhaoli
2015-01-01
Livers from Lewis rats fed with 7% alcohol for 5 weeks were used for transplantation. Reduced sized (50%) livers or whole livers were transplanted into normal DA recipients, which, in this strain combination, survive indefinitely when the donor has not been fed alcohol. However, none of the rats survived a whole fatty liver transplant while six of seven recipients of reduced sized alcoholic liver grafts survived long term. SDF-1 and HGF were significantly increased in reduced size liver grafts compared to whole liver grafts. Lineage-negative Thy-1+CXCR4+CD133+ stem cells were significantly increased in the peripheral blood and in allografts after reduced size fatty liver transplantation. In contrast, there were meager increases in cells reactive with anti Thy-1, CXCR4 and CD133 in peripheral blood and allografts in whole alcoholic liver recipients. The provision of plerixafor, a stem cell mobilizer, salvaged 5 of 10 whole fatty liver grafts. Conversely, blocking SDF-1 activity with neutralizing antibodies diminished stem cell recruitment and four of five reduced sized fatty liver recipients died. Thus chemokine insuficiency was associated with transplant failure of whole grafts which was overcome by the increased regenerative requirements promoted by the small grafts and mediated by SDF-1 resulting in stem cell influx. PMID:22994609
Patra, Krushna C; Bardeesy, Nabeel
2018-06-18
The factors determining longevity of different animals are incompletely defined. In this issue of Developmental Cell, Anzi et al. (2018) show that distinct strategies for postnatal pancreatic growth operate in different mammals and correlate with lifespan, with short-lived species exhibiting increasing pancreatic cell size and long-lived animals increasing cell number. Copyright © 2018 Elsevier Inc. All rights reserved.
Kirby, Tyler J.; Patel, Rooshil M.; McClintock, Timothy S.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.; McCarthy, John J.
2016-01-01
Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number of transcriptionally active myonuclei and the amount of RNA generated by each myonucleus increased. During late hypertrophy, transcription did not scale with cell size, as smaller myofibers (<1000 μm2) demonstrated the highest transcriptional activity. Finally, transcription was primarily responsible for changes in the expression of genes known to regulate myofiber size. These findings show that resident myonuclei possess a significant reserve capacity to up-regulate transcription during hypertrophy and that myofiber transcription is responsive to DNA content but uncoupled from cell size during hypertrophy. PMID:26764089
Zadrag-Tecza, Renata; Kwolek-Mirek, Magdalena; Alabrudzińska, Małgorzata; Skoneczna, Adrianna
2018-01-01
The total lifespan of the yeast Saccharomyces cerevisiae may be divided into two phases: the reproductive phase, during which the cell undergoes mitosis cycles to produce successive buds, and the postreproductive phase, which extends from the last division to cell death. These phases may be regulated by a common mechanism or by distinct ones. In this paper, we proposed a more comprehensive approach to reveal the mechanisms that regulate both reproductive potential and total lifespan in cell size context. Our study was based on yeast cells, whose size was determined by increased genome copy number, ranging from haploid to tetraploid. Such experiments enabled us to test the hypertrophy hypothesis, which postulates that excessive size achieved by the cell-the hypertrophy state-is the reason preventing the cell from further proliferation. This hypothesis defines the reproductive potential value as the difference between the maximal size that a cell can reach and the threshold value, which allows a cell to undergo its first cell cycle and the rate of the cell size to increase per generation. Here, we showed that cell size has an important impact on not only the reproductive potential but also the total lifespan of this cell. Moreover, the maximal cell size value, which limits its reproduction capacity, can be regulated by different factors and differs depending on the strain ploidy. The achievement of excessive size by the cell (hypertrophic state) may lead to two distinct phenomena: the cessation of reproduction without "mother" cell death and the cessation of reproduction with cell death by bursting, which has not been shown before.
Xavier, Miguel; de Andrés, María C; Spencer, Daniel; Oreffo, Richard O C; Morgan, Hywel
2017-08-01
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. © 2017 The Authors.
2017-01-01
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. PMID:28835540
Jin, Songwan; Zador, Zsolt; Verkman, A. S.
2008-01-01
Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises ∼20% of brain parenchymal volume and contains cell-cell gaps ∼50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (α), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (Do/D). Experimental Do/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. Do/D for the small solute calcein in different regions of brain was in the range 3.0–4.1, and increased with brain cell swelling after water intoxication. Do/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured Do/D using realistic α, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted Do/D for different solute sizes. Also, the modeling showed unanticipated effects on Do/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS. PMID:18469079
Jin, Songwan; Zador, Zsolt; Verkman, A S
2008-08-01
Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises approximately 20% of brain parenchymal volume and contains cell-cell gaps approximately 50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (alpha), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (D(o)/D). Experimental D(o)/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. D(o)/D for the small solute calcein in different regions of brain was in the range 3.0-4.1, and increased with brain cell swelling after water intoxication. D(o)/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured D(o)/D using realistic alpha, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted D(o)/D for different solute sizes. Also, the modeling showed unanticipated effects on D(o)/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS.
Kwolek-Mirek, Magdalena; Alabrudzińska, Małgorzata
2018-01-01
The total lifespan of the yeast Saccharomyces cerevisiae may be divided into two phases: the reproductive phase, during which the cell undergoes mitosis cycles to produce successive buds, and the postreproductive phase, which extends from the last division to cell death. These phases may be regulated by a common mechanism or by distinct ones. In this paper, we proposed a more comprehensive approach to reveal the mechanisms that regulate both reproductive potential and total lifespan in cell size context. Our study was based on yeast cells, whose size was determined by increased genome copy number, ranging from haploid to tetraploid. Such experiments enabled us to test the hypertrophy hypothesis, which postulates that excessive size achieved by the cell—the hypertrophy state—is the reason preventing the cell from further proliferation. This hypothesis defines the reproductive potential value as the difference between the maximal size that a cell can reach and the threshold value, which allows a cell to undergo its first cell cycle and the rate of the cell size to increase per generation. Here, we showed that cell size has an important impact on not only the reproductive potential but also the total lifespan of this cell. Moreover, the maximal cell size value, which limits its reproduction capacity, can be regulated by different factors and differs depending on the strain ploidy. The achievement of excessive size by the cell (hypertrophic state) may lead to two distinct phenomena: the cessation of reproduction without “mother” cell death and the cessation of reproduction with cell death by bursting, which has not been shown before. PMID:29743970
Svensson, Filip; Norberg, Jon; Snoeijs, Pauline
2014-01-01
Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how “body size” (cells and colonies) and motility change along temperature (2–26°C) and salinity (0.5–7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels. PMID:25279720
In Vivo Single-Cell Fluorescence and Size Scaling of Phytoplankton Chlorophyll Content.
Álvarez, Eva; Nogueira, Enrique; López-Urrutia, Ángel
2017-04-01
In unicellular phytoplankton, the size scaling exponent of chlorophyll content per cell decreases with increasing light limitation. Empirical studies have explored this allometry by combining data from several species, using average values of pigment content and cell size for each species. The resulting allometry thus includes phylogenetic and size scaling effects. The possibility of measuring single-cell fluorescence with imaging-in-flow cytometry devices allows the study of the size scaling of chlorophyll content at both the inter- and intraspecific levels. In this work, the changing allometry of chlorophyll content was estimated for the first time for single phytoplankton populations by using data from a series of incubations with monocultures exposed to different light levels. Interspecifically, our experiments confirm previous modeling and experimental results of increasing size scaling exponents with increasing irradiance. A similar pattern was observed intraspecifically but with a larger variability in size scaling exponents. Our results show that size-based processes and geometrical approaches explain variations in chlorophyll content. We also show that the single-cell fluorescence measurements provided by imaging-in-flow devices can be applied to field samples to understand the changes in the size dependence of chlorophyll content in response to environmental variables affecting primary production. IMPORTANCE The chlorophyll concentrations in phytoplankton register physiological adjustments in cellular pigmentation arising mainly from changes in light conditions. The extent of these adjustments is constrained by the size of the phytoplankton cells, even within single populations. Hence, variations in community chlorophyll derived from photoacclimation are also dependent on the phytoplankton size distribution. Copyright © 2017 American Society for Microbiology.
In Vivo Single-Cell Fluorescence and Size Scaling of Phytoplankton Chlorophyll Content
Nogueira, Enrique; López-Urrutia, Ángel
2017-01-01
ABSTRACT In unicellular phytoplankton, the size scaling exponent of chlorophyll content per cell decreases with increasing light limitation. Empirical studies have explored this allometry by combining data from several species, using average values of pigment content and cell size for each species. The resulting allometry thus includes phylogenetic and size scaling effects. The possibility of measuring single-cell fluorescence with imaging-in-flow cytometry devices allows the study of the size scaling of chlorophyll content at both the inter- and intraspecific levels. In this work, the changing allometry of chlorophyll content was estimated for the first time for single phytoplankton populations by using data from a series of incubations with monocultures exposed to different light levels. Interspecifically, our experiments confirm previous modeling and experimental results of increasing size scaling exponents with increasing irradiance. A similar pattern was observed intraspecifically but with a larger variability in size scaling exponents. Our results show that size-based processes and geometrical approaches explain variations in chlorophyll content. We also show that the single-cell fluorescence measurements provided by imaging-in-flow devices can be applied to field samples to understand the changes in the size dependence of chlorophyll content in response to environmental variables affecting primary production. IMPORTANCE The chlorophyll concentrations in phytoplankton register physiological adjustments in cellular pigmentation arising mainly from changes in light conditions. The extent of these adjustments is constrained by the size of the phytoplankton cells, even within single populations. Hence, variations in community chlorophyll derived from photoacclimation are also dependent on the phytoplankton size distribution. PMID:28115378
The wave numbers of supercritical surface tension driven Benard convection
NASA Technical Reports Server (NTRS)
Koschmieder, E. L.; Switzer, D. W.
1991-01-01
The cell size or the wave numbers of supercritical hexagonal convection cells in primarily surface tension driven convection on a uniformly heated plate was studied experimentally in thermal equilibrium in thin layers of silicone oil of large aspect ratio. It was found that the cell size decreases with increased temperature difference in the slightly supercritical range, and that the cell size is unique within the experimental error. It was also observed that the cell size reaches a minimum and begins to increase at larger temperature differences. This reversal of the rate of change of the wave number with temperature difference is attributed to influences of buoyancy on the fluid motion. The consequences of buoyancy were tested with three fluid layers of different depth.
The wavenumbers of supercritical surface-tension-driven Benard convection
NASA Technical Reports Server (NTRS)
Koschmieder, E. L.; Switzer, D. W.
1992-01-01
The cell size or the wavenumbers of supercritical hexagonal convection cells in primarily surface-tension-driven convection on a uniformly heated plate has been studied experimentally in thermal equilibrium in thin layers of silicone oil of large aspect ratio. It has been found that the cell size decreases with increased temperature difference in the slightly supercritical range, and that the cell size is unique within the experimental error. It has also been observed that the cell size reaches a minimum and begins to increase at larger temperature differences. This reversal of the rate of change of the wavenumber with temperature difference is attributed to influences of buoyancy on the fluid motion. The consequences of buoyancy have been tested with three fluid layers of different depth.
Lake warming favours small-sized planktonic diatom species
Winder, Monika; Reuter, John E.; Schladow, S. Geoffrey
2008-01-01
Diatoms contribute to a substantial portion of primary production in the oceans and many lakes. Owing to their relatively heavy cell walls and high nutrient requirements, planktonic diatoms are expected to decrease with climate warming because of reduced nutrient redistribution and increasing sinking velocities. Using a historical dataset, this study shows that diatoms were able to maintain their biovolume with increasing stratification in Lake Tahoe over the last decades; however, the diatom community structure changed. Increased stratification and reduced nitrogen to phosphorus ratios selected for small-celled diatoms, particularly within the Cyclotella genus. An empirical model showed that a shift in phytoplankton species composition and cell size was consistent within different depth strata, indicating that altered nutrient concentrations were not responsible for the change. The increase in small-celled species was sufficient to decrease the average diatom size and thus sinking velocity, which strongly influences energy transfer through the food web and carbon cycling. Our results show that within the diverse group of diatoms, small-sized species with a high surface area to volume ratio were able to adapt to a decrease in mixing intensity, supporting the hypotheses that abiotic drivers affect the size structure of planktonic communities and that warmer climate favours small-sized diatom cells. PMID:18812287
Kinoshita, Isao; Sanbe, Akiko; Yokomura, E-iti
2008-01-01
Changes in nuclear DNA content and cell size of adaxial and abaxial epidermal pavement cells were investigated using bright light-induced leaf expansion of Phaseolus vulgaris plants. In primary leaves of bean plants grown under high (sunlight) or moderate (ML; photon flux density, 163 micromol m(-2) s(-1)) light, most adaxial epidermal pavement cells had a nucleus with the 4C amount of DNA, whereas most abaxial pavement cells had a 2C nucleus. In contrast, plants grown under low intensity white light (LL; 15 micromol m(-2) s(-1)) for 13 d, when cell proliferation of epidermal pavement cells had already finished, had a 2C nuclear DNA content in most adaxial pavement cells. When these LL-grown plants were transferred to ML, the increase in irradiance raised the frequency of 4C nuclei in adaxial but not in abaxial pavement cells within 4 d. On the other hand, the size of abaxial pavement cells increased by 53% within 4 d of transfer to ML and remained unchanged thereafter, whereas adaxial pavement cells continuously enlarged for 12 d. This suggests that the increase in adaxial cell size after 4 d is supported by the nuclear DNA doubling. The different responses between adaxial and abaxial epidermal cells were not induced by the different light intensity at both surfaces. It was shown that adaxial epidermal cells have a different property than abaxial ones.
Adebonojo, Festus O.
1975-01-01
In an effort to test the adipose hyperplasia theory of obesity in humans, adipose cells, derived from anterior abdominal walls of human infants and children, were grown in synthetic medium (McCoy's 5A Medium) supplemented with 20% fetal calf serum. Adipose cells which became delipidinized in culture were found to be capable of division and the rate and number of cell divisions was age dependent. Cells of infants under 1 yr of age and cells derived from early adolescent children divided to varying degrees in culture. Adipose cells from children aged 1-10 yr showed no cell division. Cell division was never observed in a lipid-laden adipocyte. Measurements of cell diameter showed that after the first year of life, cell size increased progressively with age. During the first year adipose cell size appeared to reflect the rapid hyperplasia of the first 3 mo, reaching smallest size at 3-12 mo but increasing thereafter. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6 PMID:124114
The effect of scaffold pore size in cartilage tissue engineering.
Nava, Michele M; Draghi, Lorenza; Giordano, Carmen; Pietrabissa, Riccardo
2016-07-26
The effect of scaffold pore size and interconnectivity is undoubtedly a crucial factor for most tissue engineering applications. The aim of this study was to examine the effect of pore size and porosity on cartilage construct development in different scaffolds seeded with articular chondrocytes. We fabricated poly-L-lactide-co-trimethylene carbonate scaffolds with different pore sizes, using a solvent-casting/particulate-leaching technique. We seeded primary bovine articular chondrocytes on these scaffolds, cultured the constructs for 2 weeks and examined cell proliferation, viability and cell-specific production of cartilaginous extracellular matrix proteins, including GAG and collagen. Cell density significantly increased up to 50% with scaffold pore size and porosity, likely facilitated by cell spreading on the internal surface of bigger pores, and by increased mass transport of gases and nutrients to cells, and catabolite removal from cells, allowed by lower diffusion barriers in scaffolds with a higher porosity. However, both the cell metabolic activity and the synthesis of cartilaginous matrix proteins significantly decreased by up to 40% with pore size. We propose that the association of smaller pore diameters, causing 3-dimensional cell aggregation, to a lower oxygenation caused by a lower porosity, could have been the condition that increased the cell-specific synthesis of cartilaginous matrix proteins in the scaffold with the smallest pores and the lowest porosity among those tested. In the initial steps of in vitro cartilage engineering, the combination of small scaffold pores and low porosity is an effective strategy with regard to the promotion of chondrogenesis.
Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells
NASA Astrophysics Data System (ADS)
Kumar, Dhiraj; Mutreja, Isha; Chitcholtan, Kenny; Sykes, Peter
2017-11-01
Nanomedicine has advanced the biomedical field with the availability of multifunctional nanoparticles (NPs) systems that can target a disease site enabling drug delivery and helping to monitor the disease. In this paper, we synthesised the gold nanoparticles (AuNPs) with an average size 18, 40, 60 and 80 nm, and studied the effect of nanoparticles size, concentration and incubation time on ovarian cancer cells namely, OVCAR5, OVCAR8, and SKOV3. The size measured by transmission electron microscopy images was slightly smaller than the hydrodynamic diameter; measured size by ImageJ as 14.55, 38.13, 56.88 and 78.56 nm. The cellular uptake was significantly controlled by the AuNPs size, concentration, and the cell type. The nanoparticles uptake increased with increasing concentration, and 18 and 80 nm AuNPs showed higher uptake ranging from 1.3 to 5.4 μg depending upon the concentration and cell type. The AuNPs were associated with a temporary reduction in metabolic activity, but metabolic activity remained more than 60% for all sample types; NPs significantly affected the cell proliferation activity in first 12 h. The increase in nanoparticle size and concentration induced the production of reactive oxygen species in 24 h.
Manufacturing of Open-Cell Zn-22Al-2Cu Alloy Foams by a Centrifugal-Replication Process
NASA Astrophysics Data System (ADS)
Sánchez, A.; Cruz, A.; Rivera, J. E.; Romero, J. A.; Suárez, M. A.; Gutiérrez, V. H.
2018-01-01
Centrifugal force was used to produce open-cell Zn-22Al-2Cu alloy foams by the replication method. Three different sizes (0.50, 0.69, and 0.95 mm) of NaCl spherical particles were used as space holders. A relatively low infiltration pressure was required to infiltrate completely the liquid metal into the three pore sizes, and it was determined based on the centrifugation system parameters. The infiltration pressure required was decreased when the diameter of the particle was increased. The porosity of the foam was increased from 58 to 63 pct, when the pore size was increased from 0.50 to 0.95 mm, while the relative density was decreased from 0.42 to 0.36. The NaCl preform was preheated to avoid the freezing and to keep the rheological properties of the melt. The centrifugal-replication method is a suitable technique for the fabrication of open-cell Zn-Al-Cu alloy foams with small pore size. The compressive mechanical properties of the open-cell Zn-22Al-2Cu foams increased when the pore size decreased.
Altered Astrocyte-Neuron Interactions and Epileptogenesis in Tuberous Sclerosis Complex Disorder
2013-06-01
mouse brain Phospho-S6 staining revealed a striking dysmorphic appearance and increased cell size in the TSC1CKO cortex (Figs. 3). These enlarged...TSC1CKO mice. B A 11 6. Increased cell size of TSC1CKO astrocytes Increased numbers of astrocytes, many with enlarged and dysmorphic shapes, have
Lim, Sung Don; Yim, Won Choel; Liu, Degao; ...
2018-04-16
Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix–loop–helix transcription factor (VvCEB1 opt) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield. Ionomic analysis of leaves revealed the VvCEB1 opt-overexpressing plants had significantly elevated, K, S and Mo contents relative to control lines. Increased Kmore » content likely drives increased osmotic potential within cells leading to greater cellular growth and expansion. To understand the mechanistic basis of VvCEB1 opt action, one transgenic line was genotyped using RNA-Seq mRNA expression profiling and revealed a novel transcriptional reprogramming network with significant changes in mRNA abundance for genes with functions in delayed flowering, pathogen–defence responses, iron homeostasis, vesicle-mediated cell wall formation and auxin-mediated signalling and responses. Direct testing of VvCEB1 opt-overexpressing plants showed that they had significantly elevated auxin content and a significantly increased number of lateral leaf primordia within meristems relative to controls, confirming that cell expansion and organ number proliferation were likely an auxin-mediated process. VvCEB1 opt overexpression in Nicotiana sylvestris also showed larger cells, organ size and biomass demonstrating the potential applicability of this innovative strategy for improving plant biomass and reproductive yield in crops.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Sung Don; Yim, Won Choel; Liu, Degao
Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix–loop–helix transcription factor (VvCEB1 opt) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield. Ionomic analysis of leaves revealed the VvCEB1 opt-overexpressing plants had significantly elevated, K, S and Mo contents relative to control lines. Increased Kmore » content likely drives increased osmotic potential within cells leading to greater cellular growth and expansion. To understand the mechanistic basis of VvCEB1 opt action, one transgenic line was genotyped using RNA-Seq mRNA expression profiling and revealed a novel transcriptional reprogramming network with significant changes in mRNA abundance for genes with functions in delayed flowering, pathogen–defence responses, iron homeostasis, vesicle-mediated cell wall formation and auxin-mediated signalling and responses. Direct testing of VvCEB1 opt-overexpressing plants showed that they had significantly elevated auxin content and a significantly increased number of lateral leaf primordia within meristems relative to controls, confirming that cell expansion and organ number proliferation were likely an auxin-mediated process. VvCEB1 opt overexpression in Nicotiana sylvestris also showed larger cells, organ size and biomass demonstrating the potential applicability of this innovative strategy for improving plant biomass and reproductive yield in crops.« less
Wright, Bernice; Cave, Richard A; Cook, Joseph P; Khutoryanskiy, Vitaliy V; Mi, Shengli; Chen, Bo; Leyland, Martin; Connon, Che J
2012-05-01
Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for 'on-demand' use. In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.
Effect of Microstructural Parameters on the Relative Densities of Metal Foams
NASA Technical Reports Server (NTRS)
Raj, S. V.; Kerr, Jacob A.
2010-01-01
A detailed quantitative microstructural analyses of primarily open cell FeCrAlY and 314 stainless steel metal foams with different relative densities and pores per inch (p.p.i.) were undertaken in the present investigation to determine the effect of microstructural parameters on the relative densities of metal foams. Several elements of the microstructure, such as longitudinal and transverse cell sizes, cell areas and perimeters, ligament dimensions, cell shapes and volume fractions of closed and open cells, were measured. The cross-sections of the foam ligaments showed a large number of shrinkage cavities, and their circularity factors and average sizes were determined. The volume fractions of closed cells increased linearly with increasing relative density. In contrast, the volume fractions of the open cells and ligaments decreased with increasing relative density. The relative densities and p.p.i. were not significantly dependent on cell size, cell perimeter and ligament dimensions within the limits of experimental scatter. A phenomenological model is proposed to rationalize the present microstructural observations.
Kozlowski, J; Czarnoleski, M; François-Krassowska, A; Maciak, S; Pis, T
2010-12-23
We examined cell size correlations between tissues, and cell size to body mass relationships in passerine birds, amphibians and mammals. The size correlated highly between all cell types in birds and amphibians; mammalian tissues clustered by size correlation in three tissue groups. Erythrocyte size correlated well with the volume of other cell types in birds and amphibians, but poorly in mammals. In birds, body mass correlated positively with the size of all cell types including erythrocytes, and in mammals only with the sizes of some cell types. Size of mammalian erythrocytes correlated with body mass only within the most taxonomically uniform group of species (rodents and lagomorphs). Cell volume increased with body mass of birds and mammals to less than 0.3 power, indicating that body size evolved mostly by changes in cell number. Our evidence suggests that epigenetic mechanisms determining cell size relationships in tissues are conservative in birds and amphibians, but less stringent in mammals. The patterns of cell size to body mass relationships we obtained challenge some key assumptions of fractal and cellular models used by allometric theory to explain mass-scaling of metabolism. We suggest that the assumptions in both models are not universal, and that such models need reformulation.
NASA Astrophysics Data System (ADS)
Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W.; Gimble, Jeffrey M.; Hayes, Daniel J.
2015-04-01
Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell-particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.
Kirby, Tyler J; Patel, Rooshil M; McClintock, Timothy S; Dupont-Versteegden, Esther E; Peterson, Charlotte A; McCarthy, John J
2016-03-01
Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number of transcriptionally active myonuclei and the amount of RNA generated by each myonucleus increased. During late hypertrophy, transcription did not scale with cell size, as smaller myofibers (<1000 μm(2)) demonstrated the highest transcriptional activity. Finally, transcription was primarily responsible for changes in the expression of genes known to regulate myofiber size. These findings show that resident myonuclei possess a significant reserve capacity to up-regulate transcription during hypertrophy and that myofiber transcription is responsive to DNA content but uncoupled from cell size during hypertrophy. © 2016 Kirby et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Yurinskaya, Valentina; Aksenov, Nikolay; Moshkov, Alexey; Model, Michael; Goryachaya, Tatyana; Vereninov, Alexey
2017-10-01
A decrease in flow cytometric forward light scatter (FSC) is commonly interpreted as a sign of apoptotic cell volume decrease (AVD). However, the intensity of light scattering depends not only on the cell size but also on its other characteristics, such as hydration, which may affect the scattering in the opposite way. That makes estimation of AVD by FSC problematic. Here, we aimed to clarify the relationship between light scattering, cell hydration (assayed by buoyant density) and cell size by the Coulter technique. We used human lymphoid cells U937 exposed to staurosporine, etoposide or hypertonic stress as an apoptotic model. An initial increase in FSC was found to occur in apoptotic cells treated with staurosporine and hypertonic solutions; it is accompanied by cell dehydration and is absent in apoptosis caused by etoposide that is consistent with the lack of dehydration in this case. Thus, the effect of dehydration on the scattering signal outweighs the effect of reduction in cell size. The subsequent FSC decrease, which occurred in parallel to accumulation of annexin-positive cells, was similar in apoptosis caused by all three types of inducers. We conclude that an increase, but not a decrease in light scattering, indicates the initial cell volume decrease associated with apoptotic cell dehydration.
Vadlja, Denis; Koller, Martin; Novak, Mario; Braunegg, Gerhart; Horvat, Predrag
2016-12-01
Statistical distribution of cell and poly[3-(R)-hydroxybutyrate] (PHB) granule size and number of granules per cell are investigated for PHB production in a five-stage cascade (5CSTR). Electron microscopic pictures of cells from individual cascade stages (R1-R5) were converted to binary pictures to visualize footprint areas for polyhydroxyalkanoate (PHA) and non-PHA biomass. Results for each stage were correlated to the corresponding experimentally determined kinetics (specific growth rate μ and specific productivity π). Log-normal distribution describes PHA granule size dissimilarity, whereas for R1 and R4, gamma distribution best reflects the situation. R1, devoted to balanced biomass synthesis, predominately contains cells with rather small granules, whereas with increasing residence time τ, maximum and average granule sizes by trend increase, approaching an upper limit determined by the cell's geometry. Generally, an increase of intracellular PHA content and ratio of granule to cell area slow down along the cascade. Further, the number of granules per cell decreases with increasing τ. Data for μ and π obtained by binary picture analysis correlate well with the experimental results. The work describes long-term continuous PHA production under balanced, transient, and nutrient-deficient conditions, as well as their reflection on the granules size, granule number, and cell structure on the microscopic level.
Why large cells dominate estuarine phytoplankton
Cloern, James E.
2018-01-01
Surveys across the world oceans have shown that phytoplankton biomass and production are dominated by small cells (picoplankton) where nutrient concentrations are low, but large cells (microplankton) dominate when nutrient-rich deep water is mixed to the surface. I analyzed phytoplankton size structure in samples collected over 25 yr in San Francisco Bay, a nutrient-rich estuary. Biomass was dominated by large cells because their biomass selectively grew during blooms. Large-cell dominance appears to be a characteristic of ecosystems at the land–sea interface, and these places may therefore function as analogs to oceanic upwelling systems. Simulations with a size-structured NPZ model showed that runs of positive net growth rate persisted long enough for biomass of large, but not small, cells to accumulate. Model experiments showed that small cells would dominate in the absence of grazing, at lower nutrient concentrations, and at elevated (+5°C) temperatures. Underlying these results are two fundamental scaling laws: (1) large cells are grazed more slowly than small cells, and (2) grazing rate increases with temperature faster than growth rate. The model experiments suggest testable hypotheses about phytoplankton size structure at the land–sea interface: (1) anthropogenic nutrient enrichment increases cell size; (2) this response varies with temperature and only occurs at mid-high latitudes; (3) large-cell blooms can only develop when temperature is below a critical value, around 15°C; (4) cell size diminishes along temperature gradients from high to low latitudes; and (5) large-cell blooms will diminish or disappear where planetary warming increases temperature beyond their critical threshold.
NASA Astrophysics Data System (ADS)
Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong
2018-02-01
The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.
Seet, Katrina Y T; Nieminen, Timo A; Zvyagin, Andrei V
2009-01-01
The cell nucleus is the dominant optical scatterer in the cell. Neoplastic cells are characterized by cell nucleus polymorphism and polychromism-i.e., the nuclei exhibits an increase in the distribution of both size and refractive index. The relative size parameter, and its distribution, is proportional to the product of the nucleus size and its relative refractive index and is a useful discriminant between normal and abnormal (cancerous) cells. We demonstrate a recently introduced holographic technique, digital Fourier microscopy (DFM), to provide a sensitive measure of this relative size parameter. Fourier holograms were recorded and optical scatter of individual scatterers were extracted and modeled with Mie theory to determine the relative size parameter. The relative size parameter of individual melanocyte cell nuclei were found to be 16.5+/-0.2, which gives a cell nucleus refractive index of 1.38+/-0.01 and is in good agreement with previously reported data. The relative size parameters of individual malignant melanocyte cell nuclei are expected to be greater than 16.5.
Changes in cell-cycle kinetics responsible for limiting somatic growth in mice
Chang, Maria; Parker, Elizabeth A.; Muller, Tessa J. M.; Haenen, Caroline; Mistry, Maanasi; Finkielstain, Gabriela P.; Murphy-Ryan, Maureen; Barnes, Kevin M.; Sundaram, Rajeshwari; Baron, Jeffrey
2009-01-01
In mammals, the rate of somatic growth is rapid in early postnatal life but then slows with age, approaching zero as the animal approaches adult body size. To investigate the underlying changes in cell-cycle kinetics, [methyl-3H]thymidine and 5’-bromo-2’deoxyuridine were used to double-label proliferating cells in 1-, 2-, and 3-week-old mice for four weeks. Proliferation of renal tubular epithelial cells and hepatocytes decreased with age. The average cell-cycle time did not increase in liver and increased only 1.7 fold in kidney. The fraction of cells in S-phase that will divide again declined approximately 10 fold with age. Concurrently, average cell area increased approximately 2 fold. The findings suggest that somatic growth deceleration primarily results not from an increase in cell-cycle time but from a decrease in growth fraction (fraction of cells that continue to proliferate). During the deceleration phase, cells appear to reach a proliferative limit and undergo their final cell divisions, staggered over time. Concomitantly, cells enlarge to a greater volume, perhaps because they are relieved of the size constraint imposed by cell division. In conclusion, a decline in growth fraction with age causes somatic growth deceleration and thus sets a fundamental limit on adult body size. PMID:18535488
Rong, Yi; Zhou, Ting; Cheng, Wenjuan; Guo, Jiali; Cui, Xiuqing; Liu, Yuewei; Chen, Weihong
2013-11-01
Epidemiological evidence reports silica dust exposure has been associated with increased risk of cardiovascular diseases, but the mechanisms are largely unknown. In this study, endothelial cells were exposed to increasing concentrations of two sizes silica particles and the soluble mediators released by macrophages treated with the same particles for 24 h. Expression and release of cytokines (IL-1β, TNF-α and IL-6) were measured by using ELISA. Cytotoxicity was measured by MTT assay and LDH release. We show that both ways induced increases in cell toxicity and cytokines in a dose-dependent manner. For smaller particles, the soluble mediators are more capable of increasing cytokines compared with the effect of particles directly. For larger particles, evaluating results of these two ways are similar. Either way, smaller particles make the increasing action of cell toxicity and cytokines more remarkable. Our results indicate both silica particle and macrophage-derived mediators can induce endothelial cell injury and inflammation and demonstrate the potential importance of the particle sizes in this effect. Copyright © 2013. Published by Elsevier B.V.
Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singaravelu, Ragunath; National Research Council of Canada, Ottawa, Ontario K1A 0R6; Lyn, Rodney K.
Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limitedmore » cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway.« less
Effect of power system technology and mission requirements on high altitude long endurance aircraft
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
1994-01-01
An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.
In vitro membrane protein synthesis inside Sec translocon-reconstituted cell-sized liposomes
Ohta, Naoki; Kato, Yasuhiko; Watanabe, Hajime; Mori, Hirotada; Matsuura, Tomoaki
2016-01-01
Protein synthesis using an in vitro transcription-translation system (IVTT) inside cell-sized liposomes has become a valuable tool to study the properties of biological systems under cell-mimicking conditions. However, previous liposome systems lacked the machinery for membrane protein translocation. Here, we reconstituted the translocon consisting of SecYEG from Escherichia coli inside cell-sized liposomes. The cell-sized liposomes also carry the reconstituted IVTT, thereby providing a cell-mimicking environment for membrane protein synthesis. By using EmrE, a multidrug transporter from E. coli, as a model membrane protein, we found that both the amount and activity of EmrE synthesized inside the liposome is increased approximately three-fold by incorporating the Sec translocon. The topological change of EmrE induced by the translocon was also identified. The membrane integration of 6 out of 9 E. coli inner membrane proteins that was tested was increased by incorporation of the translocon. By introducing the Sec translocon, the membrane integration efficiency of the membrane protein of interest was increased, and enabled the integration of membrane proteins that otherwise cannot be inserted. In addition, this work represents an essential step toward the construction of an artificial cell through a bottom-up approach. PMID:27808179
Titan Cells Confer Protection from Phagocytosis in Cryptococcus neoformans Infections
Okagaki, Laura H.
2012-01-01
The human fungal pathogen Cryptococcus neoformans produces an enlarged “titan” cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells. PMID:22544904
Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections.
Okagaki, Laura H; Nielsen, Kirsten
2012-06-01
The human fungal pathogen Cryptococcus neoformans produces an enlarged "titan" cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells.
Domínguez-Calderón, Alaide; Ávila-Flores, Antonia; Ponce, Arturo; López-Bayghen, Esther; Calderón-Salinas, José-Víctor; Luis Reyes, José; Chávez-Munguía, Bibiana; Segovia, José; Angulo, Carla; Ramírez, Leticia; Gallego-Gutiérrez, Helios; Alarcón, Lourdes; Martín-Tapia, Dolores; Bautista-García, Pablo; González-Mariscal, Lorenza
2016-01-01
Renal compensatory hypertrophy (RCH) restores normal kidney function after disease or loss of kidney tissue and is characterized by an increase in organ size due to cell enlargement and not to cell proliferation. In MDCK renal epithelial cells, silencing of the tight junction protein zona occludens 2 (ZO-2 KD) induces cell hypertrophy by two mechanisms: prolonging the time that cells spend at the G1 phase of the cell cycle due to an increase in cyclin D1 level, and augmenting the rate of protein synthesis. The latter is triggered by the nuclear accumulation and increased transcriptional activity of Yes-associated protein (YAP), the main target of the Hippo pathway, which results in decreased expression of phosphatase and tensin homologue. This in turn increased the level of phosphatidylinositol (3,4,5)-triphosphate, which transactivates the Akt/mammalian target of rapamycin pathway, leading to activation of the kinase S6K1 and increased synthesis of proteins and cell size. In agreement, in a rat model of uninephrectomy, RCH is accompanied by decreased expression of ZO-2 and nuclear expression of YAP. Our results reveal a novel role of ZO-2 as a modulator of cell size. PMID:27009203
Morphometric analysis of suprabasal cells in oral white lesions.
Shabana, A H; el-Labban, N G; Lee, K W; Kramer, I R
1989-01-01
Surgical specimens from the cheek mucosa of 73 patients with white lesions were studied to determine various morphometric parameters that would help differentiate between the various types of oral mucosal white lesions that carry a risk of malignant change. Four cell types were represented: traumatic keratosis, leucoplakia, candidal leucoplakia and lichen planus, in addition to a control group of normal mucosa. The shape and size of the epithelial cells in two cell compartments, parabasal and spinous, were investigated by an interactive image analysis system (IBAS-1). The results showed an increase in the cell size in the parabasal cell compartment of all the white lesions compared with the normal mucosa. In the spinous cell compartment there was an increase in the cell size in lichen planus and traumatic keratosis; leucoplakia and candidal leucoplakia showed a slight decrease in cell size compared with the normal mucosa. Attempts to discriminate between the four groups of white lesions showed that these parameters can provide a high level of separation between lichen planus and the three other groups, but not between leucoplakia, candidal leucoplakia, and traumatic keratosis. PMID:2703543
Martell, D John; Kieffer, James D
2007-04-01
Muscle development and growth were investigated in haddock larvae (Melanogrammus aeglefinus L.) incubated under controlled temperatures (4, 6, 8 degrees C) and reared post-hatch through yolk-dependent and exogenous-feeding stages in a 6 degrees C post-hatch environment. Changes in cell number and size in superficial and deep myotomes within the epaxial muscle were investigated for 28 days following hatch. Distinct and significant differences in muscle cellularity following separate developmental strategies were observed in superficial and deep myotomes. The number of superficial myofibres increased with time and, although not in a manner proportional to temperature during the first 21 days post hatch (d.p.h.), there was observed a trend during the final 7 days of greater mean cell size that was strongly associated with increased temperature. In addition, there was an apparent correspondence between increased temperature and increased size between 21 and 28 d.p.h. Among all temperature groups the superficial myotome not only demonstrated a consistent unimodal myofibre-size distribution but one that increased in range proportional to temperature. In the deep muscle, myotomes from higher incubation temperatures had a broader range of fibre sizes and greater numbers of myofibres. The onset of a proliferative event, characterized by a significant recruitment of new smaller myofibres and a bimodal distribution of cell sizes, was directly proportional to incubation temperature such that it occurred at 14 d.p.h. at 8 degrees C but not until 28 d.p.h. at 4 degrees C. The magnitude of that recruitment was also directly proportional to temperature. Following hatch, those embryos from the greatest temperature groups had the largest mean deep muscle size but, as a result of the proliferative event, had the smallest-sized cells 28 days later. The muscle developmental and growth strategy as indicated by sequential changes in cellularity and cell-size distributions between myotomes in response to temperature are also discussed in light of whole animal growth and development.
NASA Astrophysics Data System (ADS)
Phanjom, Probin; Ahmed, Giasuddin
2017-12-01
Synthesis of silver nanoparticles (AgNPs) under different physicochemical conditions like concentration of silver nitrate (AgNO3), pH and temperature, using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and its antibacterial properties were demonstrated. When fungal cell filtrate having neutral pH was exposed to different concentrations of aqueous solution AgNO3 (1-10 mM), formation of stable AgNPs of different sizes was observed. The size of the AgNPs decreased with the increase of AgNO3 concentration from 1 mM to 8 mM, however, the particles size increased with the increase of AgNO3 concentration from 9 mM to 10 mM. When fungal cell filtrate exposed to aqueous solution of 1 mM AgNO3 at different pH (4-10), the silver ions (Ag+) were reduced leading to the formation of stable AgNPs of different sizes. The size of the AgNPs decreased with the increase of alkaline conditions. When aqueous solution of 1mM AgNO3 with fungal cell filtrate, having neutral pH, was exposed to different temperatures (10, 30, 50, 70 and 90 °С), formation of stable AgNPs having different sizes were obtained. The size of the AgNPs decreased with the increase of temperature. Synergetic effect with antibiotics and size dependent antibacterial activities were also demonstrated against Escherichia coli (MTCC 1687), Staphylococcus aureus (MTCC 737), Bacillus subtilis (MTCC 441) and Klebseilla pneumoniae (MTCC 4030). The formation AgNPs was characterized by UV-vis spectrophotometer. Transmission electron microscope (TEM) confirmed the sizes of the obtained nanoparticles. X-ray diffractometer (XRD) spectrum confirmed the formation of metallic silver. The Fourier transform infrared spectroscopy (FTIR) confirmed the presence of protein as stabilizing agent around AgNPs. Scanning electron microscope (TEM) confirmed the morphological changes in the treated bacterial organisms.
Co-variation of metabolic rates and cell-size in coccolithophores
NASA Astrophysics Data System (ADS)
Aloisi, G.
2015-04-01
Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis, and to a lesser extent calcification, co-vary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature produces the opposite effect. The magnitude of the coccosphere size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. I introduce a simple model that simulates the growth rate and the size of cells forced by nitrate and phosphate concentrations. By considering a simple rule that allocates the energy flow from nutrient acquisition to cell structure (biomass) and cell maturity (biological complexity, eventually leading to cell division), the model is able to reproduce the co-variation of growth rate and cell size observed in the laboratory when these nutrients become limiting. These results support ongoing efforts to interpret coccosphere and coccolith size measurements in the context of climate change.
Han, Lin; Zhou, Jing; Sun, Yubing; Zhang, Yu; Han, Jung; Fu, Jianping; Fan, Rong
2014-11-01
Single-crystalline nanoporous gallium nitride (GaN) thin films were fabricated with the pore size readily tunable in 20-100 nm. Uniform adhesion and spreading of human mesenchymal stem cells (hMSCs) seeded on these thin films peak on the surface with pore size of 30 nm. Substantial cell elongation emerges as pore size increases to ∼80 nm. The osteogenic differentiation of hMSCs occurs preferentially on the films with 30 nm sized nanopores, which is correlated with the optimum condition for cell spreading, which suggests that adhesion, spreading, and stem cell differentiation are interlinked and might be coregulated by nanotopography.
Concerted control of Escherichia coli cell division
Osella, Matteo; Nugent, Eileen; Cosentino Lagomarsino, Marco
2014-01-01
The coordination of cell growth and division is a long-standing problem in biology. Focusing on Escherichia coli in steady growth, we quantify cell division control using a stochastic model, by inferring the division rate as a function of the observable parameters from large empirical datasets of dividing cells. We find that (i) cells have mechanisms to control their size, (ii) size control is effected by changes in the doubling time, rather than in the single-cell elongation rate, (iii) the division rate increases steeply with cell size for small cells, and saturates for larger cells. Importantly, (iv) the current size is not the only variable controlling cell division, but the time spent in the cell cycle appears to play a role, and (v) common tests of cell size control may fail when such concerted control is in place. Our analysis illustrates the mechanisms of cell division control in E. coli. The phenomenological framework presented is sufficiently general to be widely applicable and opens the way for rigorous tests of molecular cell-cycle models. PMID:24550446
Simulation of micro/nano electroporation for cell transfection
NASA Astrophysics Data System (ADS)
Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei
2018-03-01
The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.
The toxicity, in vitro, of silicon carbide whiskers.
Vaughan, G L; Jordan, J; Karr, S
1991-10-01
To mouse cells in culture, SiC whiskers (SiCW) and asbestos are similarly cytotoxic, disrupting cell membranes and killing cells. Both shorten cell generation time, increase the rate of DNA synthesis, increase total cell DNA content, and cause a loss in growth control often associated with malignant cellular transformation. Within the narrow size range of materials examined, the amount of damage appeared to be more a function of the number of whiskers present than of their size. Silicon carbide whiskers, if mishandled, may pose a serious health hazard to humans.
Fang, Lingling; Guo, Fangjian; Zhou, Lihua; Stahl, Richard; Grams, Jayleen
2015-01-01
Regional deposition of adipose tissue and adipocyte morphology may contribute to increased risk for insulin resistance. The aim of this study was to compare adipocyte cell size and size distribution from multiple fat depots and to determine the association with type 2 diabetes mellitus, anthropomorphic data, and subjects' metabolic profile. Clinical data and adipose tissue from subcutaneous fat, omentum, and mesentery were collected from 30 subjects with morbid obesity. Adipocytes were isolated by collagenase digestion and sized by microscopic measurement of cell diameter. Overall, adipocytes from subcutaneous fat were larger than those from omentum or mesentery. For the subcutaneous and omental fat depots, there was a significant increase in % small cells (14.9% vs 31.4%, p = 0 .006 and 14.0% vs 30.5%, p = 0 .015, respectively) and corresponding decrease in % large cells for nondiabetic vs diabetic patients. There was a similar trend for mesentery but it did not reach statistical significance (p = 0 .090). For omentum and mesentery, there was also a significant decrease in the diameter of the small cells. Fasting glucose was positively correlated with fraction of small cells in omentum and mesentery, and HbA1C was positively correlated with fraction of small cells in the omental fat depot. There was no correlation between large cell diameter with clinical parameters in any of the fat depots. These results indicate size distribution of adipocytes, specifically an increase in the fraction of small cells, is associated with the presence of type 2 diabetes mellitus.
Fang, Lingling; Guo, Fangjian; Zhou, Lihua; Stahl, Richard; Grams, Jayleen
2015-01-01
Aims/hypothesis: Regional deposition of adipose tissue and adipocyte morphology may contribute to increased risk for insulin resistance. The aim of this study was to compare adipocyte cell size and size distribution from multiple fat depots and to determine the association with type 2 diabetes mellitus, anthropomorphic data, and subjects' metabolic profile. Methods: Clinical data and adipose tissue from subcutaneous fat, omentum, and mesentery were collected from 30 subjects with morbid obesity. Adipocytes were isolated by collagenase digestion and sized by microscopic measurement of cell diameter. Results: Overall, adipocytes from subcutaneous fat were larger than those from omentum or mesentery. For the subcutaneous and omental fat depots, there was a significant increase in % small cells (14.9% vs 31.4%, p = 0 .006 and 14.0% vs 30.5%, p = 0 .015, respectively) and corresponding decrease in % large cells for nondiabetic vs diabetic patients. There was a similar trend for mesentery but it did not reach statistical significance (p = 0 .090). For omentum and mesentery, there was also a significant decrease in the diameter of the small cells. Fasting glucose was positively correlated with fraction of small cells in omentum and mesentery, and HbA1C was positively correlated with fraction of small cells in the omental fat depot. There was no correlation between large cell diameter with clinical parameters in any of the fat depots. Conclusions/interpretation: These results indicate size distribution of adipocytes, specifically an increase in the fraction of small cells, is associated with the presence of type 2 diabetes mellitus. PMID:26451283
Phipps, Matthew C.; Clem, William C.; Grunda, Jessica M.; Clines, Gregory A.; Bellis, Susan L.
2012-01-01
Bone-mimetic electrospun scaffolds consisting of polycaprolactone (PCL), collagen I and nanoparticulate hydroxyapatite (HA) have previously been shown to support the adhesion, integrin-related signaling and proliferation of mesenchymal stem cells (MSCs), suggesting these matrices serve as promising degradable substrates for osteoregeneration. However, the small pore sizes in electrospun scaffolds hinder cell infiltration in vitro and tissue-ingrowth into the scaffold in vivo, limiting their clinical potential. In this study, three separate techniques were evaluated for their capability to increase the pore size of the PCL/col I/nanoHA scaffolds: limited protease digestion, decreasing the fiber packing density during electro-spinning, and inclusion of sacrificial fibers of the water-soluble polymer PEO. The PEO sacrificial fiber approach was found to be the most effective in increasing scaffold pore size. Furthermore, the use of sacrificial fibers promoted increased MSC infiltration into the scaffolds, as well as greater infiltration of endogenous cells within bone upon placement of scaffolds within calvarial organ cultures. These collective findings support the use of sacrificial PEO fibers as a means to increase the porosity of complex, bone-mimicking electrospun scaffolds, thereby enhancing tissue regenerative processes that depend upon cell infiltration, such as vascularization and replacement of the scaffold with native bone tissue. PMID:22014462
Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.
2010-01-01
In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design parameters for maximizing gene delivery from hydrogels. PMID:20450944
Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
NASA Astrophysics Data System (ADS)
Sabzyan, Hassan; Sadeghpour, Narges
2016-04-01
Effects of the size of the unit cell on energy, atomic charges, and phonon frequencies of graphene at the Γ point of the Brillouin zone are studied in the absence and presence of an electric field using density functional theory (DFT) methods (LDA and DFT-PBE functionals with Goedecker-Teter-Hutter (GTH) and Troullier-Martins (TM) norm-conserving pseudopotentials). Two types of unit cells containing nC=4-28 carbon atoms are considered. Results show that stability of graphene increases with increasing size of the unit cell. Energy, atomic charges, and phonon frequencies all converge above nC=24 for all functional-pseudopotentials used. Except for the LDA-GTH calculations, application of an electric field of 0.4 and 0.9 V/nm strengths does not change the trends with the size of the unit cell but instead slightly decreases the binding energy of graphene. Results of this study show that the choice of unit cell size and type is critical for calculation of reliable characteristics of graphene.
Reconstructing relative genome size of vascular plants through geological time.
Lomax, Barry H; Hilton, Jason; Bateman, Richard M; Upchurch, Garland R; Lake, Janice A; Leitch, Ilia J; Cromwell, Avery; Knight, Charles A
2014-01-01
The strong positive relationship evident between cell and genome size in both animals and plants forms the basis of using the size of stomatal guard cells as a proxy to track changes in plant genome size through geological time. We report for the first time a taxonomic fine-scale investigation into changes in stomatal guard-cell length and use these data to infer changes in genome size through the evolutionary history of land plants. Our data suggest that many of the earliest land plants had exceptionally large genome sizes and that a predicted overall trend of increasing genome size within individual lineages through geological time is not supported. However, maximum genome size steadily increases from the Mississippian (c. 360 million yr ago (Ma)) to the present. We hypothesise that the functional relationship between stomatal size, genome size and atmospheric CO2 may contribute to the dichotomy reported between preferential extinction of neopolyploids and the prevalence of palaeopolyploidy observed in DNA sequence data of extant vascular plants. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi
2018-06-01
Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.
Castillo-Morales, Atahualpa; Monzón-Sandoval, Jimena; de Sousa, Alexandra A; Urrutia, Araxi O; Gutierrez, Humberto
2016-10-01
Increased brain size is thought to have played an important role in the evolution of mammals and is a highly variable trait across lineages. Variations in brain size are closely linked to corresponding variations in the size of the neocortex, a distinct mammalian evolutionary innovation. The genomic features that explain and/or accompany variations in the relative size of the neocortex remain unknown. By comparing the genomes of 28 mammalian species, we show that neocortical expansion relative to the rest of the brain is associated with variations in gene family size (GFS) of gene families that are significantly enriched in biological functions associated with chemotaxis, cell-cell signalling and immune response. Importantly, we find that previously reported GFS variations associated with increased brain size are largely accounted for by the stronger link between neocortex expansion and variations in the size of gene families. Moreover, genes within these families are more prominently expressed in the human neocortex during early compared with adult development. These results suggest that changes in GFS underlie morphological adaptations during brain evolution in mammalian lineages. © 2016 The Authors.
Chakrabarti, Manohar; Liu, Xiaoxi; Wang, Yanping; Ramos, Alexis
2017-01-01
Increases in fruit weight of cultivated vegetables and fruits accompanied the domestication of these crops. Here we report on the positional cloning of a quantitative trait locus (QTL) controlling fruit weight in tomato. The derived allele of Cell Size Regulator (CSR-D) increases fruit weight predominantly through enlargement of the pericarp areas. The expanded pericarp tissues result from increased mesocarp cell size and not from increased number of cell layers. The effect of CSR on fruit weight and cell size is found across different genetic backgrounds implying a consistent impact of the locus on the trait. In fruits, CSR expression is undetectable early in development from floral meristems to the rapid cell proliferation stage after anthesis. Expression is low but detectable in growing fruit tissues and in or around vascular bundles coinciding with the cell enlargement stage of the fruit maturation process. CSR encodes an uncharacterized protein whose clade has expanded in the Solanaceae family. The mutant allele is predicted to encode a shorter protein due to a 1.4 kb deletion resulting in a 194 amino-acid truncation. Co-expression analyses and GO term enrichment analyses suggest association of CSR with cell differentiation in fruit tissues and vascular bundles. The derived allele arose in Solanum lycopersicum var cerasiforme and appears completely fixed in many cultivated tomato’s market classes. This finding suggests that the selection of this allele was critical to the full domestication of tomato from its intermediate ancestors. PMID:28817560
Snijders, T; Smeets, J S J; van Kranenburg, J; Kies, A K; van Loon, L J C; Verdijk, L B
2016-02-01
Muscle fibre hypertrophy is accompanied by an increase in myonuclear number, an increase in myonuclear domain size or both. It has been suggested that increases in myonuclear domain size precede myonuclear accretion and subsequent muscle fibre hypertrophy during prolonged exercise training. In this study, we assessed the changes in muscle fibre size, myonuclear and satellite cell content throughout 12 weeks of resistance-type exercise training in young men. Twenty-two young men (23 ± 1 year) were assigned to a progressive, 12-weeks resistance-type exercise training programme (3 sessions per week). Muscle biopsies from the vastus lateralis muscle were taken before and after 2, 4, 8 and 12 weeks of exercise training. Muscle fibre size, myonuclear content, myonuclear domain size and satellite cell content were assessed by immunohistochemistry. Type I and type II muscle fibre size increased gradually throughout the 12 weeks of training (type I: 18 ± 5%, type II: 41 ± 6%, P < 0.01). Myonuclear content increased significantly over time in both the type I (P < 0.01) and type II (P < 0.001) muscle fibres. No changes in type I and type II myonuclear domain size were observed at any time point throughout the intervention. Satellite cell content increased significantly over time in both type I and type II muscle fibres (P < 0.001). Increases in myonuclear domain size do not appear to drive myonuclear accretion and muscle fibre hypertrophy during prolonged resistance-type exercise training in vivo in humans. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Daniels, Bryan A; Baldridge, William H
2011-03-01
Horizontal cells of the vertebrate retina have large receptive fields as a result of extensive gap junction coupling. Increased ambient illumination reduces horizontal cell receptive field size. Using the isolated goldfish retina, we have assessed the contribution of nitric oxide to the light-dependent reduction of horizontal cell receptive field size. Horizontal cell receptive field size was assessed by comparing the responses to centered spot and annulus stimuli and from the responses to translated slit stimuli. A period of steady illumination decreased the receptive field size of horizontal cells, as did treatment with the nitric oxide donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (100 μM). Blocking the endogenous production of nitric oxide with the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (1 mM), decreased the light-induced reduction of horizontal cell receptive field size. These findings suggest that nitric oxide is involved in light-induced reduction of horizontal cell receptive field size. Copyright © Cambridge University Press, 2011
Choi, Yeong Min; An, Sungkwan; Lee, Junwoo; Lee, Jae Ho; Lee, Jae Nam; Kim, Young Sam; Ahn, Kyu Joong; An, In-Sook; Bae, Seunghee
2017-12-01
Dermal papilla (DP) is a pivotal part of hair follicle, and the smaller size of the DP is related with the hair loss. In this study, we investigated the effect of titrated extract of Centella asiatica (TECA) on hair growth inductive property on 3D spheroid cultured human DP cells (HDP cells). Significantly increased effect of TECA on cell viability was only shown in 3D sphered HPD cells, not in 2D cultured HDP cells. Also, TECA treatment increased the sphere size of HDP cells. The luciferase activity of STAT reporter genes and the expression of STAT-targeted genes, SOCS1 and SOCS3, were significantly decreased. Also, TECA treatment increased the expression of the hair growth-related signature genes in 3D sphered HDP cells. Furthermore, TECA led to downregulation of the level of phosphorylated STAT proteins in 3D sphered HDP cells. Overall, TECA activates the potential of hair inductive capacity in HDP cells.
Sparse grid techniques for particle-in-cell schemes
NASA Astrophysics Data System (ADS)
Ricketson, L. F.; Cerfon, A. J.
2017-02-01
We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called ‘combination technique’ from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme’s efficiency, both in terms of computation time and memory usage.
Covariation of metabolic rates and cell size in coccolithophores
NASA Astrophysics Data System (ADS)
Aloisi, G.
2015-08-01
Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis and, to a lesser extent, calcification covary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature (below the optimum temperature for growth) produces the opposite effect. The magnitude of the coccosphere-size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere-size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. The coccolithophore database is strongly biased in favour of experiments with the coccolithophore Emiliania huxleyi (E. huxleyi; 82 % of database entries), and more experiments with other species are needed to understand whether these observations can be extended to coccolithophores in general. I introduce a simple model that simulates the growth rate and the size of cells forced by nitrate and phosphate concentrations. By considering a simple rule that allocates the energy flow from nutrient acquisition to cell structure (biomass) and cell maturity (biological complexity, eventually leading to cell division), the model is able to reproduce the covariation of growth rate and cell size observed in laboratory experiments with E. huxleyi when these nutrients become limiting. These results support ongoing efforts to interpret coccosphere and coccolith size measurements in the context of climate change.
Nutritional effects of culture media on mycoplasma cell size and removal by filtration.
Folmsbee, Martha; Howard, Glenn; McAlister, Morven
2010-03-01
Careful media filtration prior to use is an important part of a mycoplasma contamination prevention program. This study was conducted to increase our knowledge of factors that influence efficient filtration of mycoplasma. The cell size of Acholeplasma laidlawii was measured after culture in various nutritional conditions using scanning electron microscopy. The maximum cell size changed, but the minimum cell size remained virtually unchanged and all tested nutritional conditions resulted in a population of cells smaller than 0.2 microm. Culture in Tryptic Soy Broth (TSB) resulted in an apparent increase in the percentage of very small cells which was not reflected in increased penetration of non-retentive 0.2 microm rated filters. A. laidlawii cultured in selected media formulations was used to challenge 0.2 microm rated filters using mycoplasma broth base as the carrier fluid. We used 0.2 microm rated filters as an analytical tool because A. laidlawii is known to penetrate 0.2 microm filters and the degrees of penetration can be compared. Culture of A. laidlawii in TSB resulted in cells that did not penetrate 0.2 microm rated filters to the same degree as cells cultured in other media such as mycoplasma broth or in TSB supplemented with 10% horse serum. (c) 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang
2017-01-01
In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence sensory encoding, and give further insight into how hair cells transduce signals that cover a wide dynamic range of stimuli. PMID:28546313
Zhou, Beiyun; Flodby, Per; Luo, Jiao; Castillo, Dan R; Liu, Yixin; Yu, Fa-Xing; McConnell, Alicia; Varghese, Bino; Li, Guanglei; Chimge, Nyam-Osor; Sunohara, Mitsuhiro; Koss, Michael N; Elatre, Wafaa; Conti, Peter; Liebler, Janice M; Yang, Chenchen; Marconett, Crystal N; Laird-Offringa, Ite A; Minoo, Parviz; Guan, Kunliang; Stripp, Barry R; Crandall, Edward D; Borok, Zea
2018-03-01
Claudins, the integral tight junction (TJ) proteins that regulate paracellular permeability and cell polarity, are frequently dysregulated in cancer; however, their role in neoplastic progression is unclear. Here, we demonstrated that knockout of Cldn18, a claudin family member highly expressed in lung alveolar epithelium, leads to lung enlargement, parenchymal expansion, increased abundance and proliferation of known distal lung progenitors, the alveolar epithelial type II (AT2) cells, activation of Yes-associated protein (YAP), increased organ size, and tumorigenesis in mice. Inhibition of YAP decreased proliferation and colony-forming efficiency (CFE) of Cldn18-/- AT2 cells and prevented increased lung size, while CLDN18 overexpression decreased YAP nuclear localization, cell proliferation, CFE, and YAP transcriptional activity. CLDN18 and YAP interacted and colocalized at cell-cell contacts, while loss of CLDN18 decreased YAP interaction with Hippo kinases p-LATS1/2. Additionally, Cldn18-/- mice had increased propensity to develop lung adenocarcinomas (LuAd) with age, and human LuAd showed stage-dependent reduction of CLDN18.1. These results establish CLDN18 as a regulator of YAP activity that serves to restrict organ size, progenitor cell proliferation, and tumorigenesis, and suggest a mechanism whereby TJ disruption may promote progenitor proliferation to enhance repair following injury.
Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing.
Lacroix, Benjamin; Letort, Gaëlle; Pitayu, Laras; Sallé, Jérémy; Stefanutti, Marine; Maton, Gilliane; Ladouceur, Anne-Marie; Canman, Julie C; Maddox, Paul S; Maddox, Amy S; Minc, Nicolas; Nédélec, François; Dumont, Julien
2018-05-21
Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume. Copyright © 2018 Elsevier Inc. All rights reserved.
Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F
2017-08-01
Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or pharmacological screening. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Anzi, Shira; Stolovich-Rain, Miri; Klochendler, Agnes; Fridlich, Ori; Helman, Aharon; Paz-Sonnenfeld, Avital; Avni-Magen, Nili; Kaufman, Elizabeth; Ginzberg, Miriam B; Snider, Daniel; Ray, Saikat; Brecht, Michael; Holmes, Melissa M; Meir, Karen; Avivi, Aaron; Shams, Imad; Berkowitz, Asaf; Shapiro, A M James; Glaser, Benjamin; Ben-Sasson, Shmuel; Kafri, Ran; Dor, Yuval
2018-06-18
Developmental processes in different mammals are thought to share fundamental cellular mechanisms. We report a dramatic increase in cell size during postnatal pancreas development in rodents, accounting for much of the increase in organ size after birth. Hypertrophy of pancreatic acinar cells involves both higher ploidy and increased biosynthesis per genome copy; is maximal adjacent to islets, suggesting endocrine to exocrine communication; and is partly driven by weaning-related processes. In contrast to the situation in rodents, pancreas cell size in humans remains stable postnatally, indicating organ growth by pure hyperplasia. Pancreatic acinar cell volume varies 9-fold among 24 mammalian species analyzed, and shows a striking inverse correlation with organismal lifespan. We hypothesize that cellular hypertrophy is a strategy for rapid postnatal tissue growth, entailing life-long detrimental effects. Copyright © 2018 Elsevier Inc. All rights reserved.
Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa
2004-10-29
Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.
Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis.
Kim, Jong-yoon
2007-12-01
The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell's internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee's behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.
Epithelial Membrane Protein 2 and β1 integrin signaling regulate APC-mediated processes.
Lesko, Alyssa C; Prosperi, Jenifer R
2017-01-01
Adenomatous Polyposis Coli (APC) plays a critical role in cell motility, maintenance of apical-basal polarity, and epithelial morphogenesis. We previously demonstrated that APC loss in Madin Darby Canine Kidney (MDCK) cells increases cyst size and inverts polarity independent of Wnt signaling, and upregulates the tetraspan protein, Epithelial Membrane Protein 2 (EMP2). Herein, we show that APC loss increases β1 integrin expression and migration of MDCK cells. Through 3D in vitro model systems and 2D migration analysis, we have depicted the molecular mechanism(s) by which APC influences polarity and cell motility. EMP2 knockdown in APC shRNA cells revealed that APC regulates apical-basal polarity and cyst size through EMP2. Chemical inhibition of β1 integrin and its signaling components, FAK and Src, indicated that APC controls cyst size and migration, but not polarity, through β1 integrin and its downstream targets. Combined, the current studies have identified two distinct and novel mechanisms required for APC to regulate polarity, cyst size, and cell migration independent of Wnt signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Chandler-Brown, Devon; Schmoller, Kurt M; Winetraub, Yonatan; Skotheim, Jan M
2017-09-25
Although it has long been clear that cells actively regulate their size, the molecular mechanisms underlying this regulation have remained poorly understood. In budding yeast, cell size primarily modulates the duration of the cell-division cycle by controlling the G1/S transition known as Start. We have recently shown that the rate of progression through Start increases with cell size, because cell growth dilutes the cell-cycle inhibitor Whi5 in G1. Recent phenomenological studies in yeast and bacteria have shown that these cells add an approximately constant volume during each complete cell cycle, independent of their size at birth. These results seem to be in conflict, as the phenomenological studies suggest that cells measure the amount they grow, rather than their size, and that size control acts over the whole cell cycle, rather than specifically in G1. Here, we propose an integrated model that unifies the adder phenomenology with the molecular mechanism of G1/S cell-size control. We use single-cell microscopy to parameterize a full cell-cycle model based on independent control of pre- and post-Start cell-cycle periods. We find that our model predicts the size-independent amount of cell growth during the full cell cycle. This suggests that the adder phenomenon is an emergent property of the independent regulation of pre- and post-Start cell-cycle periods rather than the consequence of an underlying molecular mechanism measuring a fixed amount of growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sabet, S F; Simmons, J; Caldwell, H D
1984-01-01
The effects of DEAE-dextran and cycloheximide on the infection of HeLa 229 cells with Chlamydia trachomatis serotype G were studied in terms of the number of cells infected and the yield of infectious progeny per infected cell. Pretreatment of the host cells with DEAE-dextran resulted in an increase in the number of infected cels but had no significant effect on the yield of infectious progeny per infected cell (burst size). In contrast, the addition of cycloheximide to the medium of infected cells had no significant effect on the number of infected cells but greatly enhanced the burst size. The burst size was calculated to be close to 500. The enhanced burst size was also observed in cells treated with DEAE-dextran and cycloheximide. In addition, there was an increase in the number of cells infected and an augmentation of the infectious progeny yield. Under the conditions of combined treatment, the yield of C. trachomatis serotype G cultivated in HeLa 229 cells was found to be approximately threefold higher than the yield of the organisms cultivated in McCoy cells. The results suggest that HeLa 229 cells treated with DEAE-dextran and cycloheximide offer a most suitable system for the high-yield cultivation of C. trachomatis organisms and possibly also for the diagnosis of infection with these organisms. Images PMID:6208215
Matsiaka, Oleksii M; Penington, Catherine J; Baker, Ruth E; Simpson, Matthew J
2018-04-01
Scratch assays are routinely used to study the collective spreading of cell populations. In general, the rate at which a population of cells spreads is driven by the combined effects of cell migration and proliferation. To examine the effects of cell migration separately from the effects of cell proliferation, scratch assays are often performed after treating the cells with a drug that inhibits proliferation. Mitomycin-C is a drug that is commonly used to suppress cell proliferation in this context. However, in addition to suppressing cell proliferation, mitomycin-C also causes cells to change size during the experiment, as each cell in the population approximately doubles in size as a result of treatment. Therefore, to describe a scratch assay that incorporates the effects of cell-to-cell crowding, cell-to-cell adhesion, and dynamic changes in cell size, we present a new stochastic model that incorporates these mechanisms. Our agent-based stochastic model takes the form of a system of Langevin equations that is the system of stochastic differential equations governing the evolution of the population of agents. We incorporate a time-dependent interaction force that is used to mimic the dynamic increase in size of the agents. To provide a mathematical description of the average behaviour of the stochastic model we present continuum limit descriptions using both a standard mean-field approximation and a more sophisticated moment dynamics approximation that accounts for the density of agents and density of pairs of agents in the stochastic model. Comparing the accuracy of the two continuum descriptions for a typical scratch assay geometry shows that the incorporation of agent growth in the system is associated with a decrease in accuracy of the standard mean-field description. In contrast, the moment dynamics description provides a more accurate prediction of the evolution of the scratch assay when the increase in size of individual agents is included in the model.
Zygmunt, Deborah A.; Singhal, Neha; Kim, Mi-Lyang; Cramer, Megan L.; Crowe, Kelly E.; Xu, Rui; Jia, Ying; Adair, Jessica; Martinez-Pena y Valenzuela, Isabel; Akaaboune, Mohammed; White, Peter; Janssen, Paulus M.
2017-01-01
ABSTRACT Sarcopenia, the loss of muscle mass and strength during normal aging, involves coordinate changes in skeletal myofibers and the cells that contact them, including satellite cells and motor neurons. Here we show that the protein O-fucosyltransferase 1 gene (Pofut1), which encodes a glycosyltransferase required for NotchR-mediated cell-cell signaling, has reduced expression in aging skeletal muscle. Moreover, premature postnatal deletion of Pofut1 in skeletal myofibers can induce aging-related phenotypes in cis within skeletal myofibers and in trans within satellite cells and within motor neurons via the neuromuscular junction. Changed phenotypes include reduced skeletal muscle size and strength, decreased myofiber size, increased slow fiber (type 1) density, increased muscle degeneration and regeneration in aged muscles, decreased satellite cell self-renewal and regenerative potential, and increased neuromuscular fragmentation and occasional denervation. Pofut1 deletion in skeletal myofibers reduced NotchR signaling in young adult muscles, but this effect was lost with age. Increasing muscle NotchR signaling also reduced muscle size. Gene expression studies point to regulation of cell cycle genes, muscle myosins, NotchR and Wnt pathway genes, and connective tissue growth factor by Pofut1 in skeletal muscle, with additional effects on α dystroglycan glycosylation. PMID:28265002
NASA Astrophysics Data System (ADS)
Lee, Won-Ho; Yoon, Sung-Min
2017-05-01
The resistive change memory (RCM) devices using amorphous In-Ga-Zn-O (IGZO) and microcrystalline Al-doped ZnO (AZO) thin films were fabricated on plastic substrates and characterized for flexible electronic applications. The device cell sizes were varied to 25 × 25, 50 × 50, 100 × 100, and 200 × 200 μm2 to examine the effects of cell size on the resistive-switching (RS) behaviors at a flat state and under bending conditions. First, it was found that the high-resistance state programmed currents markedly increased with the increase in the cell size. Second, while the AZO RCM devices did not exhibit RESET operations at a curvature radius smaller than 8.0 mm, the IGZO RCM devices showed sound RS behaviors even at a curvature radius of 4.5 mm. Third, for the IGZO RCM devices with the cell size bigger than 100 × 100 μm2, the RESET operation could not be performed at a curvature radius smaller than 6.5 mm. Thus, it was elucidated that the RS characteristics of the flexible RCM devices using oxide semiconductor thin films were closely related to the types of RS materials and the cell size of the device.
Yan, Huaming; Romero-López, Mónica; Benitez, Lesly I.; Di, Kaijun; Frieboes, Hermann B.; Hughes, Christopher C. W.; Bota, Daniela A.; Lowengrub, John S.
2017-01-01
Glioblastoma (GBM), the most aggressive brain tumor in human patients, is decidedly heterogeneous and highly vascularized. Glioma stem/initiating cells (GSC) are found to play a crucial role by increasing cancer aggressiveness and promoting resistance to therapy. Recently, crosstalk between GSC and vascular endothelial cells has been shown to significantly promote GSC self-renewal and tumor progression. Further, GSC also transdifferentiate into bona-fide vascular endothelial cells (GEC), which inherit mutations present in GSC and are resistant to traditional anti-angiogenic therapies. Here we use 3D mathematical modeling to investigate GBM progression and response to therapy. The model predicted that GSC drive invasive fingering and that GEC spontaneously form a network within the hypoxic core, consistent with published experimental findings. Standard-of-care treatments using DNA-targeted therapy (radiation/chemo) together with anti-angiogenic therapies, reduced GBM tumor size but increased invasiveness. Anti-GEC treatments blocked the GEC support of GSC and reduced tumor size but led to increased invasiveness. Anti-GSC therapies that promote differentiation or disturb the stem cell niche effectively reduced tumor invasiveness and size, but were ultimately limited in reducing tumor size because GEC maintain GSC. Our study suggests that a combinatorial regimen targeting the vasculature, GSC, and GEC, using drugs already approved by the FDA, can reduce both tumor size and invasiveness and could lead to tumor eradication. PMID:28536277
Devoghalaere, Fanny; Doucen, Thomas; Guitton, Baptiste; Keeling, Jeannette; Payne, Wendy; Ling, Toby John; Ross, John James; Hallett, Ian Charles; Gunaseelan, Kularajathevan; Dayatilake, G A; Diak, Robert; Breen, Ken C; Tustin, D Stuart; Costes, Evelyne; Chagné, David; Schaffer, Robert James; David, Karine Myriam
2012-01-13
Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs) were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106). This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3) removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.
2012-01-01
Background Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. Results High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs) were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106). This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. Conclusions The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3) removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point. PMID:22243694
Sapudom, Jiranuwat; Rubner, Stefan; Martin, Steve; Kurth, Tony; Riedel, Stefanie; Mierke, Claudia T; Pompe, Tilo
2015-06-01
The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter--and not pore size--to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Achieving temperature-size changes in a unicellular organism
Forster, Jack; Hirst, Andrew G; Esteban, Genoveva F
2013-01-01
The temperature-size rule (TSR) is an intraspecific phenomenon describing the phenotypic plastic response of an organism size to the temperature: individuals reared at cooler temperatures mature to be larger adults than those reared at warmer temperatures. The TSR is ubiquitous, affecting >80% species including uni- and multicellular groups. How the TSR is established has received attention in multicellular organisms, but not in unicells. Further, conceptual models suggest the mechanism of size change to be different in these two groups. Here, we test these theories using the protist Cyclidium glaucoma. We measure cell sizes, along with population growth during temperature acclimation, to determine how and when the temperature-size changes are achieved. We show that mother and daughter sizes become temporarily decoupled from the ratio 2:1 during acclimation, but these return to their coupled state (where daughter cells are half the size of the mother cell) once acclimated. Thermal acclimation is rapid, being completed within approximately a single generation. Further, we examine the impact of increased temperatures on carrying capacity and total biomass, to investigate potential adaptive strategies of size change. We demonstrate no temperature effect on carrying capacity, but maximum supported biomass to decrease with increasing temperature. PMID:22832346
Maximizing Tumor Immunity With Fractionated Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu; Ratikan, Josephine A.; Iwamoto, Keisuke S.
Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma}more » enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.« less
Regulating positioning and orientation of mitotic spindles via cell size and shape
NASA Astrophysics Data System (ADS)
Li, Jingchen; Jiang, Hongyuan
2018-01-01
Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.
Magnetically modified bioсells in constant magnetic field
NASA Astrophysics Data System (ADS)
Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.
2017-02-01
Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.
Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast
Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M.; Rosebrock, Adam P.; Futcher, Bruce; Cross, Frederick R.
2009-01-01
In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle. PMID:19841732
Medelnik, Jan-Philip; Roensch, Kathleen; Okawa, Satoshi; Del Sol, Antonio; Chara, Osvaldo; Mchedlishvili, Levan; Tanaka, Elly M
2018-06-05
In the developing nervous system, neural stem cells are polarized and maintain an apical domain facing a central lumen. The presence of apical membrane is thought to have a profound influence on maintaining the stem cell state. With the onset of neurogenesis, cells lose their polarization, and the concomitant loss of the apical domain coincides with a loss of the stem cell identity. Little is known about the molecular signals controlling apical membrane size. Here, we use two neuroepithelial cell systems, one derived from regenerating axolotl spinal cord and the other from human embryonic stem cells, to identify a molecular signaling pathway initiated by lysophosphatidic acid that controls apical membrane size and consequently controls and maintains epithelial organization and lumen size in neuroepithelial rosettes. This apical domain size increase occurs independently of effects on proliferation and involves a serum response factor-dependent transcriptional induction of junctional and apical membrane components. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Tachibana, K; Okada, K; Kobayashi, R; Ishihara, Y
2016-08-01
We describe the possibility of high-sensitivity noninvasive blood glucose measurement based on photoacoustic spectroscopy (PAS). The demand for noninvasive blood glucose-level measurement has increased due to the explosive increase in diabetic patients. We have developed a noninvasive blood glucose-level measurement based on PAS. The conventional method uses a straight-type resonant cell. However, the cell volume is large, which results in a low detection sensitivity and difficult portability. In this paper, a small-sized Helmholtz-type resonant cell is proposed to improve detection sensitivity and portability by reducing the cell dead volume. First, the acoustic property of the small-sized Helmholtz-type resonant cell was evaluated by performing an experiment using a silicone rubber. As a result, the detection sensitivity of the small-sized Helmholtz-type resonant cell was approximately two times larger than that of the conventional straight-type resonant cell. In addition, the inside volume was approximately 30 times smaller. Second, the detection limits of glucose concentration were estimated by performing an experiment using glucose solutions. The experimental results showed that a glucose concentration of approximately 1% was detected by the small-sized Helmholtz-type resonant cell. Although these results on the sensitivity of blood glucose-level measurement are currently insufficient, they suggest that miniaturization of a resonance cell is effective in the application of noninvasive blood glucose-level measurement.
Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis
NASA Astrophysics Data System (ADS)
Kim, Jong-Yoon
2007-12-01
The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell’s internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee’s behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.
NASA Astrophysics Data System (ADS)
Zheng, Jing-Yi; Boustany, Nada N.
2010-07-01
Optical scatter imaging is used to estimate organelle size distributions in immortalized baby mouse kidney cells treated with 0.4 μM staurosporine to induce apoptosis. The study comprises apoptosis competent iBMK cells (W2) expressing the proapoptotic proteins Bax/Bak, apoptosis resistant Bax/Bak null cells (D3), and W2 and D3 cells expressing yellow fluorescent protein (YFP) or YFP fused to the antiapoptotic protein Bcl-xL (YFP-Bcl-xL). YFP expression is diffuse within the transfected cells, while YFP-Bcl-xL is localized to the mitochondria. Our results show a significant increase in the mean subcellular particle size from approximately 1.1 to 1.4 μm in both Bax/Bak expressing and Bax/Bak null cells after 60 min of STS treatment compared to DMSO-treated control cells. This dynamic is blocked by overexpression of YFP-Bcl-xL in Bax/Bak expressing cells, but is less significantly inhibited by YFP-Bcl-xL in Bax/Bak null cells. Our data suggest that the increase in subcellular particle size at the onset of apoptosis is modulated by Bcl-xL in the presence of Bax/Bak, but it occurs upstream of the final commitment to programmed cell death. Mitochondrial localization of YFP-Bcl-xL and the finding that micron-sized particles give rise to the scattering signal further suggest that alterations in mitochondrial morphology may underlie the observed changes in light scattering.
Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf
2015-12-07
Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.
The three-dimensional structure of cumulus clouds over the ocean. 1: Structural analysis
NASA Technical Reports Server (NTRS)
Kuo, Kwo-Sen; Welch, Ronald M.; Weger, Ronald C.; Engelstad, Mark A.; Sengupta, S. K.
1993-01-01
Thermal channel (channel 6, 10.4-12.5 micrometers) images of five Landsat thematic mapper cumulus scenes over the ocean are examined. These images are thresholded using the standard International Satellite Cloud Climatology Project (ISCCP) thermal threshold algorithm. The individual clouds in the cloud fields are segmented to obtain their structural statistics which include size distribution, orientation angle, horizontal aspect ratio, and perimeter-to-area (PtA) relationship. The cloud size distributions exhibit a double power law with the smaller clouds having a smaller absolute exponent. The cloud orientation angles, horizontal aspect ratios, and PtA exponents are found in good agreement with earlier studies. A technique also is developed to recognize individual cells within a cloud so that statistics of cloud cellular structure can be obtained. Cell structural statistics are computed for each cloud. Unicellular clouds are generally smaller (less than or equal to 1 km) and have smaller PtA exponents, while multicellular clouds are larger (greater than or equal to 1 km) and have larger PtA exponents. Cell structural statistics are similar to those of the smaller clouds. When each cell is approximated as a quadric surface using a linear least squares fit, most cells have the shape of a hyperboloid of one sheet, but about 15% of the cells are best modeled by a hyperboloid of two sheets. Less than 1% of the clouds are ellipsoidal. The number of cells in a cloud increases slightly faster than linearly with increasing cloud size. The mean nearest neighbor distance between cells in a cloud, however, appears to increase linearly with increasing cloud size and to reach a maximum when the cloud effective diameter is about 10 km; then it decreases with increasing cloud size. Sensitivity studies of threshold and lapse rate show that neither has a significant impact upon the results. A goodness-of-fit ratio is used to provide a quantitative measure of the individual cloud results. Significantly improved results are obtained after applying a smoothing operator, suggesting the eliminating subresolution scale variations with higher spatial resolution may yield even better shape analyses.
Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy
2016-01-01
Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Loo, Christopher P; Snyder, Christopher M; Hill, Ann B
2017-01-01
Increasing amounts of pathogen replication usually lead to a proportionate increase in size and effector differentiation of the CD8 + T cell response, which is attributed to increased Ag and inflammation. Using a murine CMV that is highly sensitive to the antiviral drug famciclovir to modulate virus replication, we found that increased virus replication drove increased effector CD8 + T cell differentiation, as expected. Paradoxically, however, increased virus replication dramatically decreased the size of the CD8 + T cell response to two immunodominant epitopes. The decreased response was due to type I IFN-dependent depletion of conventional dendritic cells and could be reproduced by specific depletion of dendritic cells from day 2 postinfection or by sterile induction of type I IFN. Increased virus replication and type I IFN specifically inhibited the response to two immunodominant epitopes that are known to be dependent on Ag cross-presented by DCs, but they did not inhibit the response to "inflationary" epitopes whose responses can be sustained by infected nonhematopoietic cells. Our results show that type I IFN can suppress CD8 + T cell responses to cross-presented Ag by depleting cross-presenting conventional dendritic cells. Copyright © 2016 by The American Association of Immunologists, Inc.
NASA Astrophysics Data System (ADS)
Han, Li; Zhai, Yanan; Liu, Yang; Hao, Linhua; Guo, Huarong
2017-02-01
Nano-sized zinc oxide (nZnO) particles are one kind of the most commonly used metal oxide nanoparticles (NPs). This study compared the cytotoxic and embryotoxic effects of three increasing sized ZnO particles (ϕ 30 nm, 80-150 nm and 2 μm) in the flounder gill (FG) cells and zebrafish embryos, and analyzed the contribution of size, agglomeration and released Zn2+ to the toxic effects. All the tested ZnO particles were found to be highly toxic to both FG cells and zebrafish embryos. They induced growth inhibition, LDH release, morphological changes and apoptosis in FG cells in a concentration-, size- and time-dependent manner. Moreover, the release of LDH from the exposed FG cells into the medium occurred before the observable morphological changes happened. The ultrasonication treatment and addition of serum favored the dispersion of ZnO particles and alleviated the agglomeration, thus significantly increased the corresponding cytotoxicity. The released Zn2+ ions from ZnO particles into the extracellular medium only partially contributed to the cytotoxicity. All the three sizes of ZnO particles tested induced developmental malformations, decrease of hatching rates and lethality in zebrafish embryos, but size- and concentration- dependent toxic effects were not so obvious as in FG cells possibly due to the easy aggregation of ZnO particles in freshwater. In conclusion, both FG cells and zebrafish embryos are sensitive bioassay systems for safety assessment of ZnO particles and the environmental release of ZnO particles should be closely monitored as far as the safety of aquatic organisms is concerned.
NASA Astrophysics Data System (ADS)
Liefer, J. D.; Benner, I.; Brown, C. M.; Garg, A.; Fiset, C.; Irwin, A. J.; Follows, M. J.; Finkel, Z.
2016-02-01
Trait based modeling efforts are an important tool for predicting the distribution of phytoplankton communities in the ocean and their interaction with elemental stoichiometry. The elemental stoichiometry of phytoplankton is based on their macromolecular composition. Many phytoplankton species accumulate C-rich storage products (carbohydrates and lipids) and reduce N and P-rich functional components (proteins and nucleic acids) upon N- or P-starvation. Reconciling global patterns in C:N:P stoichiometry and phytoplankton community structure and succession requires a better understanding of how phytoplankton macromolecular composition varies across taxa, size class, and growth conditions. We examined changes in cell size and composition from exponential growth to nitrogen starvation in four common phytoplankton species representing two size classes each of chlorophytes and diatoms. Variation in cell size, cell mass, and length of stationary growth phase appeared to be size dependent. The larger species of chlorophyte and diatom had a significant increase in cell mass and cell size with N-starvation and showed no significant change in cell density after starvation for 5-7 days. The smaller size species of both phyla showed no significant change in cell size or mass upon N-starvation and a consistent decline in cell density 1-2 days after peak densities were reached. All species had a similar significant increase in C quota, but changes in N quota and C:N were more variable and species-specific. We also present changes in macromolecular composition and C, N, and P-allocation due to N-starvation and their implications for elemental stoichiometry under natural conditions. These results are compared to field observations of C:N:P stoichiometry and phytoplankton community structure to examine the physiological plasticity that may underlie global oceanic C:N:P variability and demonstrate the importance of this plasticity in trait based models.
Preorchiectomy Leydig Cell Dysfunction in Patients With Testicular Cancer.
Bandak, Mikkel; Jørgensen, Niels; Juul, Anders; Lauritsen, Jakob; Gundgaard Kier, Maria Gry; Mortensen, Mette Saksø; Daugaard, Gedske
2017-02-01
Little is known about preorchiectomy Leydig cell function in patients with testicular germ cell cancer (TGCC). The aim was to estimate the prevalence of preorchiectomy Leydig cell dysfunction and evaluate factors associated with this condition in a cohort of patients with TGCC. We evaluated luteinizing hormone (LH), total testosterone (TT), calculated free T (cFT), estradiol, and sex hormone-binding globulin (SHBG) preorchiectomy in 561 patients with TGCC and compared with 561 healthy controls. We calculated TT/LH and cFT/LH ratios and constructed bivariate charts of TT/LH and cFT/LH from the controls. Logistic regression analysis with an abnormal cFT/LH ratio as outcome and clinical stage, tumor size, age, histology, presence of contralateral germ cell neoplasia in situ (GCNIS), and bilateral tumors as covariates was performed. In patients who were negative for human chorionic gonadotropin (hCG) (n = 374), TT (P = .004), cFT (P < .001), TT/LH ratio (P = .003), and cFT/LH ratio (P = .002) were lower than in controls. A total of 95 (25%) and 91 (24%) of hCG-negative patients had abnormal values when using combined evaluation of TT/LH and cFT/LH, respectively. Increasing tumor size, contralateral GCNIS, and increasing age were associated with Leydig cell dysfunction. In patients positive for hCG (n = 187), all reproductive hormones except SHBG were different from controls (P < .001). Patients with TGCC are at increased risk of Leydig cell dysfunction before orchiectomy. Contralateral GCNIS, increasing age, and increasing tumor size are associated with Leydig cell dysfunction. We hypothesize that patients with preexisting Leydig cell dysfunction are at increased risk of testosterone deficiency following treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Cell Size Clues for the Allee Effect in Vegetative Amoeba Suspension Culture
NASA Astrophysics Data System (ADS)
Franck, Carl; Rappazzo, Brendan; Wang, Xiaoning; Segota, Igor
That cells proliferate at higher rates with increasing density helps us appreciate and understand the development of multicellular behavior through the study of dilute cell systems. However, arduous cell counting with a microscope reveals that in the model eukaryote, Dictyostelium discoideum this transition is difficult to ascertain and thereby further explore despite our earlier progress (Phys. Rev. E 77, 041905, (2008)). Here we report preliminary evidence that the slow proliferation phase is well characterized by reduced cell size compared to the wide distribution of cell sizes in the familiar exponential proliferation phase of moderate densities. This observation is enabled by a new system for characterizing cells in stirred suspension cultures. Our technique relies on quickly acquiring magnitude distributions of detected flashes of laser light scattered in situ by cell targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siemann, Dietmar W.; Rojiani, Amyn M.
2005-07-01
Purpose: ZD6126 is a vascular-targeting agent that induces selective effects on the morphology of proliferating and immature endothelial cells by disrupting the tubulin cytoskeleton. The efficacy of ZD6126 was investigated in large vs. small tumors in a variety of animal models. Methods and Materials: Three rodent tumor models (KHT, SCCVII, RIF-1) and three human tumor xenografts (Caki-1, KSY-1, SKBR3) were used. Mice bearing leg tumors ranging in size from 0.1-2.0 g were injected intraperitoneally with a single 150 mg/kg dose of ZD6126. The response was assessed by morphologic and morphometric means as well as an in vivo to in vitromore » clonogenic cell survival assay. To examine the impact of tumor size on the extent of enhancement of radiation efficacy by ZD6126, KHT sarcomas of three different sizes were irradiated locally with a range of radiation doses, and cell survival was determined. Results: All rodent tumors and human tumor xenografts evaluated showed a strong correlation between increasing tumor size and treatment effect as determined by clonogenic cell survival. Detailed evaluation of KHT sarcomas treated with ZD6126 showed a reduction in patent tumor blood vessels that was {approx}20% in small (<0.3 g) vs. >90% in large (>1.0 g) tumors. Histologic assessment revealed that the extent of tumor necrosis after ZD6126 treatment, although minimal in small KHT sarcomas, became more extensive with increasing tumor size. Clonogenic cell survival after ZD6126 exposure showed a decrease in tumor surviving fraction from approximately 3 x 10{sup -1} to 1 x 10{sup -4} with increasing tumor size. When combined with radiotherapy, ZD6126 treatment resulted in little enhancement of the antitumor effect of radiation in small (<0.3 g) tumors but marked increases in cell kill in tumors larger than 1.0 g. Conclusions: Because bulky neoplastic disease is typically the most difficult to manage, the present findings provide further support for the continued development of vascular disrupting agents such as ZD6126 as a vascular-targeted approach to cancer therapy.« less
Morphotype disparity in the Precambrian
NASA Astrophysics Data System (ADS)
Moore, Rachael; Reitner, Joachim; Braiser, Martin; Donoghue, Phil; Schirrmeister, Bettina
2015-04-01
Prokaryotes have dominated life on Earth for over 2 billion years. Throughout the Precambrian, prokaryotes acted as the major biological impetus for both large and small scale environmental changes. Yet, very little is known about the composition, diversity and evolution of ancient microbial communities due to poor preservation during the Precambrian period. Previous studies of fossils that date to this period relied mainly on light microscopy to identify microfossil morphology and abundance, with limited success. Here we present novel analyses of the microbial remains found in Precambrian stromatolites using Synchrotron Radiation x-Ray Tomographic Microscopy (SRXTM). Microfossils found in samples of three Precambrian deposits, 3.45 Ga Strelley Pool, Australia, 2.1 Ga Gunflint Chert, Canada, and 650 Ma Rasthof Cap Carbonate, Namibia, have been reconstructed in 3D. Based on four scans from each sample, we estimated size and abundance of spheroidal microfossils within those deposits. Our findings show that while cell abundance decreased towards the end of the Precambrian, the biovolume of microfossils within the host rock remained relatively constant. Additionally, both size and disparity increase through time. Constant biovolumes and yet different sizes for these three deposits, point towards a negative correlation of large cell size and cell abundance. This negative correlation indicates that the systems in which these prokaryotes lived may have been biolimited. Both, gas exchange and nutrient uptake in prokaryotes function via diffusion. Therefore, one would expect bacteria to evolve towards an increasing surface to volume ratio. Increased cell sizes, and hence decreased overall surface to volume ratio observed in our data, suggest the influence of other selective factors. Decreased abundance and increased cell size could potentially be associated to changes in nutrient availability and the occurrence of predation. As cells increased in size, more nutrients would be required, which could have a limiting effect on abundance. Additionally, eukaryotes start appearing in the fossil record around 1.6 Ga, with the origin of grazing predators within the Mesoproterozoic. Predation has been suggested to be an important driver for morphological change in bacteria, before. Preservational bias towards larger microfossils, in combination with smaller prokaryotes having been predated on by grazers, this could explain lower appearance of small microfossils in the late Precambrian. Analyses of more localities would be helpful to strengthen conclusions on causes and consequences of microbial size evolution during the Precambrian. Furthermore, analyses of more recently fossilized microbial communities, such as those found in modern stromatolites, could provide valuable information to examine the influence environmental factors have on cell size and abundance. Yet, our results, support earlier hypotheses that suggest a decline in prokaryotic preservation due to the appearance and success of eukaryotes and eukaryotic grazers at the end of the Precambrian.
Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks
Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben
2015-01-01
When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839
Trotta, Vincenzo; Calboli, Federico C F; Ziosi, Marcello; Cavicchi, Sandro
2007-08-16
Genetically based body size differences are naturally occurring in populations of Drosophila melanogaster, with bigger flies in the cold. Despite the cosmopolitan nature of body size clines in more than one Drosophila species, the actual selective mechanisms controlling the genetic basis of body size variation are not fully understood. In particular, it is not clear what the selective value of cell size and cell area variation exactly is. In the present work we determined variation in viability, developmental time and larval competitive ability in response to crowding at two temperatures after artificial selection for reduced cell area, cell number and wing area in four different natural populations of D. melanogaster. No correlated effect of selection on viability or developmental time was observed among all selected populations. An increase in competitive ability in one thermal environment (18 degrees C) under high larval crowding was observed as a correlated response to artificial selection for cell size. Viability and developmental time are not affected by selection for the cellular component of body size, suggesting that these traits only depend on the contingent genetic makeup of a population. The higher larval competitive ability shown by populations selected for reduced cell area seems to confirm the hypothesis that cell area mediated changes have a relationship with fitness, and might be the preferential way to change body size under specific circumstances.
Corneal endothelial cell density and morphology in normal Filipino eyes.
Padilla, Ma Dominga B; Sibayan, Santiago Antonio B; Gonzales, Clarissa S A
2004-03-01
To describe the corneal endothelial cell density and morphology in normal adult Filipino eyes. Specular microscopy was performed in 640 eyes of 320 normal Filipino volunteers aged 20 to 86 years. Of these, 163 were male, and 157 were female. Mean cell density (MCD), mean cell area (MCA), coefficient of variation (CV) in cell size (polymegathism), and hexagonality were recorded and analyzed in relation to fellow eyes, gender, and age. MCD was 2798 +/- 307.2 cells/mm, and MCA was 363.0 +/- 40.3 microm. Results showed that women had a MCD 7.8% greater than men (P < 0.01). Regression analysis showed a consistent decrease in MCD (r = -0.47) and increase in MCA (r = 0.45) from 20 to 60 years of age. This was followed by a marked decrease in correlation and apparent trend reversal for both variables in the groups above 60 years (MCD r = 0.18, MCA r = -0.04) accompanied by a marked increase in CV in cell size (20-60 years r = -0.04, >60 years r = 0.33). A very low negative correlation (r = -0.10) was noted between hexagonality and increasing age through all age groups. The first normative data for the endothelium of Filipino eyes are reported. There are statistically significant differences in MCD between genders, and a consistent decrease in MCD and increase in MCA with age only until 60 years old, after which correlation between age and these variables decreases. Polymegathism and correlation between CV in cell size and age markedly increase after age 60.
Scaling of Foraminifera Parent and Offspring Size through the Phanerozoic
NASA Astrophysics Data System (ADS)
Guo, D.; Holme, F.; Payne, J.; Skotheim, J.
2011-12-01
Since before the 1940s, scientists have studied the scaling of body mass with metabolic rate, heart rate, fecundity, cardiac cycling rate, and numerous other traits. Like these traits, offspring mass scales with parent body mass for plants and animals. However, the relationship is not well documented in single-celled organisms. In our study, we examined how adult size scales with embryo size in fusulinid foraminifera. Fusulinids, and most other foraminifera, are an exceptional study group because the proloculus (the initial shell chamber) can be used to measure the size of the daughter cell at the time it became independent of its parent. We find that proloculus size increases with adult test size across fusulinid species. This pattern may result because the genomic sizes and the cellular machinery necessary for a larger adult size place limits on how small the initial daughter cell can be.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguado, Andrea; Galán, María; Zhenyukh, Olha
2013-04-15
Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number ofmore » SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces MAPK activation, oxidative stress and COX-2 expression. ► Inhibition of MAPK reduces HgCl{sub 2}-induced oxidative stress and COX-2 expression. ► Inhibition of MAPK, oxidative stress and COX-2 restores the altered cell proliferation and size.« less
Fertilization selection on egg and jelly-coat size in the sand dollar Dendraster excentricus.
Levitan, D R; Irvine, S D
2001-12-01
Organisms with external fertilization are often sperm limited, and in echinoids, larger eggs have a higher probability of fertilization than smaller eggs. This difference is thought to be a result of the more frequent sperm-egg collisions experienced by larger targets. Here we report how two components of egg target size, the egg cell and jelly coat, contributed to fertilization success in a selection experiment. We used a cross-sectional analysis of correlated characters to estimate the selection gradients on egg and jelly-coat size in five replicate male pairs of the sand dollar Dendraster excentricus. Results indicated that eggs with larger cells and jelly coats were preferentially fertilized under sperm limitation in the laboratory. The selection gradients were an average of 922% steeper for egg than for jelly-coat size. The standardized selection gradients for egg and jelly-coat size were similar. Our results suggest that fertilization selection can act on both egg-cell and jelly-coat size but that an increase in egg-cell volume is much more likely to increase fertilization success than an equal change in jelly-coat volume. The strengths of the selection gradients were inversely related to the correlation of egg traits across replicate egg clutches. This result suggests the importance of replication in studies of selection of correlated characters.
NASA Astrophysics Data System (ADS)
Dunnick, Katherine
Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity, cerium oxide nanoparticles were chemically modified using a process known as doping, to alter their valence state. The size and shape of the cerium oxide nanoparticles remained constant. Overall, results indicated that cerium oxide was not toxic in both RLE-6TN and NR8383 pulmonary rat cells, however, chemically modifying the valence state of the nanomaterial did affect the antioxidant potential. To determine if this trend was measureable in vivo, rats were exposed to various cerium oxide nanoparticles via intratracheal instillation and damage, changes in pulmonary cell differentials, and phagocytic cell activity were assessed. Results implicate that chemically modifying the nanoparticles had an effect on the overall damage induced by the material but did not dramatically affect inflammatory potential or phagocytic cell activity. Overall the data from these studies imply that size, shape, chemical composition, and valence state of nanomaterials can be manipulated to alter their toxicity.
Method for rapid isolation of sensitive mutants
Freyer, James P.
1997-01-01
Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned.
Method for rapid isolation of sensitive mutants
Freyer, J.P.
1997-07-29
Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned. 15 figs.
Single cell isolation process with laser induced forward transfer.
Deng, Yu; Renaud, Philippe; Guo, Zhongning; Huang, Zhigang; Chen, Ying
2017-01-01
A viable single cell is crucial for studies of single cell biology. In this paper, laser-induced forward transfer (LIFT) was used to isolate individual cell with a closed chamber designed to avoid contamination and maintain humidity. Hela cells were used to study the impact of laser pulse energy, laser spot size, sacrificed layer thickness and working distance. The size distribution, number and proliferation ratio of separated cells were statistically evaluated. Glycerol was used to increase the viscosity of the medium and alginate were introduced to soften the landing process. The role of laser pulse energy, the spot size and the thickness of titanium in energy absorption in LIFT process was theoretically analyzed with Lambert-Beer and a thermal conductive model. After comprehensive analysis, mechanical damage was found to be the dominant factor affecting the size and proliferation ratio of the isolated cells. An orthogonal experiment was conducted, and the optimal conditions were determined as: laser pulse energy, 9 μJ; spot size, 60 μm; thickness of titanium, 12 nm; working distance, 700 μm;, glycerol, 2% and alginate depth, greater than 1 μm. With these conditions, along with continuous incubation, a single cell could be transferred by the LIFT with one shot, with limited effect on cell size and viability. LIFT conducted in a closed chamber under optimized condition is a promising method for reliably isolating single cells.
Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
Sicchieri, Luciana Gonçalves; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Beloti, Marcio Mateus; Rosa, Adalberto Luiz
2012-02-01
A common subject in bone tissue engineering is the need for porous scaffolds to support cell and tissue interactions aiming at repairing bone tissue. As poly(lactide-co-glycolide)-calcium phosphate (PLGA-CaP) scaffolds can be manufactured with different pore sizes, the aim of this study was to evaluate the effect of pore diameter on osteoblastic cell responses and bone tissue formation. Scaffolds were prepared with 85% porosity, with pore diameters in the ranges 470-590, 590-850 and 850-1200 µm. Rat bone marrow stem cells differentiated into osteoblasts were cultured on the scaffolds for up to 10 days to evaluate cell growth, alkaline phosphatase (ALP) activity and the gene expression of the osteoblast markers RUNX2, OSX, COL, MSX2, ALP, OC and BSP by real-time PCR. Scaffolds were implanted in critical size rat calvarial defects for 2, 4, and 8 weeks for histomorphometric analysis. Cell growth and ALP activity were not affected by the pore size; however, there was an increase in the gene expression of osteoblastic markers with the increase in the pore sizes. At 2 weeks all scaffolds displayed a similar amount of bone and blood vessels formation. At 4 and 8 weeks much more bone formation and an increased number of blood vessels were observed in scaffolds with pores of 470-590 µm. These results show that PLGA-CaP is a promising biomaterial for bone engineering. However, ideally, combinations of larger (-1000 µm) and smaller (-500 µm) pores in a single scaffold would optimize cellular and tissue responses during bone healing. Copyright © 2011 John Wiley & Sons, Ltd.
Waiczies, Helmar; Lepore, Stefano; Janitzek, Nicole; Hagen, Ulrike; Seifert, Frank; Ittermann, Bernd; Purfürst, Bettina; Pezzutto, Antonio; Paul, Friedemann; Niendorf, Thoralf; Waiczies, Sonia
2011-01-01
The development of cellular tracking by fluorine (19F) magnetic resonance imaging (MRI) has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton (1H) imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by 19F MR spectroscopy (MRS) that the efficiency in labeling cells of the murine immune system (dendritic cells) by perfluoro-15-crown-5-ether (PFCE) particles increases with increasing particle size (560>365>245>130 nm). Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm). When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the 19F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation), it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models. PMID:21811551
A Motor-Driven Mechanism for Cell-Length Sensing
Rishal, Ida; Kam, Naaman; Perry, Rotem Ben-Tov; Shinder, Vera; Fisher, Elizabeth M.C.; Schiavo, Giampietro; Fainzilber, Mike
2012-01-01
Summary Size homeostasis is fundamental in cell biology, but it is not clear how large cells such as neurons can assess their own size or length. We examined a role for molecular motors in intracellular length sensing. Computational simulations suggest that spatial information can be encoded by the frequency of an oscillating retrograde signal arising from a composite negative feedback loop between bidirectional motor-dependent signals. The model predicts that decreasing either or both anterograde or retrograde signals should increase cell length, and this prediction was confirmed upon application of siRNAs for specific kinesin and/or dynein heavy chains in adult sensory neurons. Heterozygous dynein heavy chain 1 mutant sensory neurons also exhibited increased lengths both in vitro and during embryonic development. Moreover, similar length increases were observed in mouse embryonic fibroblasts upon partial downregulation of dynein heavy chain 1. Thus, molecular motors critically influence cell-length sensing and growth control. PMID:22773964
Advanced nickel-hydrogen cell configuration study
NASA Technical Reports Server (NTRS)
1983-01-01
Long-term trends in the evolution of space power technology point toward increased payload power demand which in turn translates into both higher battery system charge storage capability and higher operating voltages. State of the art nickel-hydrogen cells of the 50 to 60 Wh size, packaged in individual pressure vessels, are capable of meeting the required cycle life for a wide range of anticipated operating conditions; however, they provided several drawbacks to battery system integrated efforts. Because of size, high voltage/high power systems require integrating hundreds of cells into the operating system. Packaging related weight and volume inefficiencies degrade the energy density and specific energy of individual cells currently at 30 Wh/cudm and 40 Wh/kg respectively. In addition, the increased parts count and associated handling significantly affect the overall battery related costs. Spacecraft battery systems designers within industry and Government realize that to reduce weight, volume, and cost requires increases in the capacity of nickel-hydrogen cells.
Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals.
Trevijano-Contador, Nuria; de Oliveira, Haroldo Cesar; García-Rodas, Rocío; Rossi, Suélen Andreia; Llorente, Irene; Zaballos, Ángel; Janbon, Guilhem; Ariño, Joaquín; Zaragoza, Óscar
2018-05-01
Cryptococcus neoformans is an encapsulated pathogenic yeast that can change the size of the cells during infection. In particular, this process can occur by enlarging the size of the capsule without modifying the size of the cell body, or by increasing the diameter of the cell body, which is normally accompanied by an increase of the capsule too. This last process leads to the formation of cells of an abnormal enlarged size denominated titan cells. Previous works characterized titan cell formation during pulmonary infection but research on this topic has been hampered due to the difficulty to obtain them in vitro. In this work, we describe in vitro conditions (low nutrient, serum supplemented medium at neutral pH) that promote the transition from regular to titan-like cells. Moreover, addition of azide and static incubation of the cultures in a CO2 enriched atmosphere favored cellular enlargement. This transition occurred at low cell densities, suggesting that the process was regulated by quorum sensing molecules and it was independent of the cryptococcal serotype/species. Transition to titan-like cell was impaired by pharmacological inhibition of PKC signaling pathway. Analysis of the gene expression profile during the transition to titan-like cells showed overexpression of enzymes involved in carbohydrate metabolism, as well as proteins from the coatomer complex, and related to iron metabolism. Indeed, we observed that iron limitation also induced the formation of titan cells. Our gene expression analysis also revealed other elements involved in titan cell formation, such as calnexin, whose absence resulted in appearance of abnormal large cells even in regular rich media. In summary, our work provides a new alternative method to investigate titan cell formation devoid the bioethical problems that involve animal experimentation.
The Coherent Interlayer Resistance of a Single, Misoriented Interface between Two Graphite Stacks
NASA Astrophysics Data System (ADS)
Lake, Roger K.; Habib, K. M. Masum; Sylvia, Somaia; Ge, Supeng; Neupane, Mahesh
2014-03-01
The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles ranging from 0° to 27 .29° . The quantum-resistance of the ideal AB stack is on the order of 1 to 10 m Ωμm2 depending on the Fermi energy. For small rotation angles <= 7 .34° , the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with primitive cell size for minimum size cells. A change of misorientation angle by one degree can increase the primitive cell size by three orders of magnitude. These large cell sizes may not follow the exponential trend of the minimal cells especially at energies a few hundred meV away from the charge neutrality point. At such energies, their coherent interlayer resistance is likely to coincide with that of a nearby rotation angle with a much smaller primitive cell. The energy dependence of the interlayer transmission is described and analyzed. This work was supported in part by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
Platinum Nanoparticles Induce Apoptosis on Raw 264.7 Macrophage Cells.
Loan, Ta Thi; Do, Le Thanh; Yoo, Hoon
2018-02-01
The cellular effects of platinum nanoparticles (PNP05, average size of 5 nm, and PNP30, average size of 30 nm) were investigated on murine leukemia Raw 264.7 cells. Cells treated with various concentrations of PNPs showed size-dependent cytotoxicity in an MTT assay with PNP5 of smaller nanoparticles higher toxicity than PNP30. Investigations on cell morphology, Annexin V assay, DNA fragmentation and the activity of caspase-3/-7 showed that PNPs induced apoptosis on Raw 264.7 cells by changing cell morphology and density, increasing cell population in apoptosis and causing nucleus fragmentation. Further study on caspase activity by Western blotting revealed that the apoptosis was induced by the activation of caspase-3 and -7. In addition, PNPs inactivated DNA repair system, generating dose-dependent DNA ladder bands on agarose gel electrophoresis. Taken together, PNPs triggered cytotoxicity on Raw 264.7 cells by suppressing cell growth/survival and inducing apoptosis.
Membrane tension regulates clathrin-coated pit dynamics
NASA Astrophysics Data System (ADS)
Liu, Allen
2014-03-01
Intracellular organization depends on close communication between the extracellular environment and a network of cytoskeleton filaments. The interactions between cytoskeletal filaments and the plasma membrane lead to changes in membrane tension that in turns help regulate biological processes. Endocytosis is thought to be stimulated by low membrane tension and the removal of membrane increases membrane tension. While it is appreciated that the opposing effects of exocytosis and endocytosis have on keeping plasma membrane tension to a set point, it is not clear how membrane tension affects the dynamics of clathrin-coated pits (CCPs), the individual functional units of clathrin-mediated endocytosis. Furthermore, although it was recently shown that actin dynamics counteracts membrane tension during CCP formation, it is not clear what roles plasma membrane tension plays during CCP initiation. Based on the notion that plasma membrane tension is increased when the membrane area increases during cell spreading, we designed micro-patterned surfaces of different sizes to control the cell spreading sizes. Total internal reflection fluorescence microscopy of living cells and high content image analysis were used to quantify the dynamics of CCPs. We found that there is an increased proportion of CCPs with short (<20s) lifetime for cells on larger patterns. Interestingly, cells on larger patterns have higher CCP initiation density, an effect unexpected based on the conventional view of decreasing endocytosis with increasing membrane tension. Furthermore, by analyzing the intensity profiles of CCPs that were longer-lived, we found CCP intensity decreases with increasing cell size, indicating that the CCPs are smaller with increasing membrane tension. Finally, disruption of actin dynamics significantly increased the number of short-lived CCPs, but also decreased CCP initiation rate. Together, our study reveals new mechanistic insights into how plasma membrane tension regulates the dynamics of CCPs.
Tseliou, Eleni; Cheng, Ke; Luthringer, Daniel J.; Ho, Chak-Sum; Takayama, Kentaro; Minamino, Naoto; Dawkins, James F.; Chowdhury, Supurna; Duong, Doan Trang; Seinfeld, Jeffrey; Middleton, Ryan C.; Dharmakumar, Rohan; Li, Debiao; Marbán, Linda; Makkar, Raj R.; Marbán, Eduardo
2014-01-01
Background Epicardial injection of heart-derived cell products is safe and effective post-myocardial infarction (MI), but clinically-translatable transendocardial injection has never been evaluated. We sought to assess the feasibility, safety and efficacy of percutaneous transendocardial injection of heart-derived cells in porcine chronic ischemic cardiomyopathy. Methods and Results We studied a total of 89 minipigs; 63 completed the specified protocols. After NOGA-guided transendocardial injection, we quantified engraftment of escalating doses of allogeneic cardiospheres or cardiosphere-derived cells in minipigs (n = 22) post-MI. Next, a dose-ranging, blinded, randomized, placebo-controlled (“dose optimization”) study of transendocardial injection of the better-engrafting product was performed in infarcted minipigs (n = 16). Finally, the superior product and dose (150 million cardiospheres) were tested in a blinded, randomized, placebo-controlled (“pivotal”) study (n = 22). Contrast-enhanced cardiac MRI revealed that all cardiosphere doses preserved systolic function and attenuated remodeling. The maximum feasible dose (150 million cells) was most effective in reducing scar size, increasing viable myocardium and improving ejection fraction. In the pivotal study, eight weeks post-injection, histopathology demonstrated no excess inflammation, and no myocyte hypertrophy, in treated minipigs versus controls. No alloreactive donor-specific antibodies developed over time. MRI showed reduced scar size, increased viable mass, and attenuation of cardiac dilatation with no effect on ejection fraction in the treated group compared to placebo. Conclusions Dose-optimized injection of allogeneic cardiospheres is safe, decreases scar size, increases viable myocardium, and attenuates cardiac dilatation in porcine chronic ischemic cardiomyopathy. The decreases in scar size, mirrored by increases in viable myocardium, are consistent with therapeutic regeneration. PMID:25460005
Liu, Chao; Xue, Chundong; Chen, Xiaodong; Shan, Lei; Tian, Yu; Hu, Guoqing
2015-06-16
Viscoelasticity-induced particle migration has recently received increasing attention due to its ability to obtain high-quality focusing over a wide range of flow rates. However, its application is limited to low throughput regime since the particles can defocus as flow rate increases. Using an engineered carrier medium with constant and low viscosity and strong elasticity, the sample flow rates are improved to be 1 order of magnitude higher than those in existing studies. Utilizing differential focusing of particles of different sizes, here, we present sheathless particle/cell separation in simple straight microchannels that possess excellent parallelizability for further throughput enhancement. The present method can be implemented over a wide range of particle/cell sizes and flow rates. We successfully separate small particles from larger particles, MCF-7 cells from red blood cells (RBCs), and Escherichia coli (E. coli) bacteria from RBCs in different straight microchannels. The proposed method could broaden the applications of viscoelastic microfluidic devices to particle/cell separation due to the enhanced sample throughput and simple channel design.
Hawley, Brie; Schaeffer, Joshua; Poole, Jill A.; Dooley, Gregory P.; Reynolds, Stephen; Volckens, John
2015-01-01
Exposure to organic dusts is associated with increased respiratory morbidity and mortality in agricultural workers. Organic dusts in dairy farm environments are complex, polydisperse mixtures of toxic and immunogenic compounds. Previous toxicological studies focused primarily on exposures to the respirable size fraction, however, organic dusts in dairy farm environments are known to contain larger particles. Given the size distribution of dusts from dairy farm environments, the nasal and bronchial epithelia represent targets of agricultural dust exposures. In this study, well-differentiated normal human bronchial epithelial cells and human nasal epithelial cells were exposed to two different size fractions (PM10 and PM>10) of dairy parlor dust using a novel aerosol-to-cell exposure system. Levels of pro-inflammatory transcripts (IL-8, IL-6, and TNF-α) were measured two hr after exposure. Lactate dehydrogenase (LDH) release was also measured as an indicator of cytotoxicity. Cell exposure to dust was measured in each size fraction as a function of mass, endotoxin, and muramic acid levels. To our knowledge, this is the first study to evaluate the effects of distinct size fractions of agricultural dust on human airway epithelial cells. Our results suggest that both PM10 and PM>10 size fractions elicit a pro-inflammatory response in airway epithelial cells and that the entire inhalable size fraction needs to be considered when assessing potential risks from exposure to agricultural dusts. Further, data suggest that human bronchial cells respond differently to these dusts than human nasal cells and, therefore, the two cell types need to be considered separately in airway cell models of agricultural dust toxicity. PMID:25965193
Gansau, Jennifer; Kelly, Lara; Buckley, Conor
2018-06-11
Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x10<sup>6</sup> cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a variety of applications such as drug development or cell therapies. . © 2018 IOP Publishing Ltd.
Characterisation of putative oxygen chemoreceptors in bowfin (Amia calva).
Porteus, Cosima S; Wright, Patricia A; Milsom, William K
2014-04-15
Serotonin containing neuroepithelial cells (NECs) are putative oxygen sensing cells found in different locations within the gills of fish. In this study we wished to determine the effect of sustained internal (blood) hypoxaemia versus external (aquatic) hypoxia on the size and density of NECs in the first gill arch of bowfin (Amia calva), a facultative air breather. We identified five different populations of serotonergic NECs in this species (Types I-V) based on location, presence of synaptic vesicles (SV) that stain for the antibody SV2, innervation and labelling with the neural crest marker HNK-1. Cell Types I-III were innervated, and these cells, which participate in central O2 chemoreflexes, were studied further. Although there was no change in the density of any cell type in bowfin after exposure to sustained hypoxia (6.0 kPa for 7 days) without access to air, all three of these cell types increased in size. In contrast, only Type II and III cells increased in size in bowfin exposed to sustained hypoxia with access to air. These data support the suggestion that NECs are putative oxygen-sensing cells, that they occur in several locations, and that Type I cells monitor only hypoxaemia, whereas both other cell types monitor hypoxia and hypoxaemia.
Behavior of bone cells in contact with magnesium implant material.
Burmester, Anna; Willumeit-Römer, Regine; Feyerabend, Frank
2017-01-01
Magnesium-based implants exhibit several advantages, such as biodegradability and possible osteoinductive properties. Whether the degradation may induce cell type-specific changes in metabolism still remains unclear. To examine the osteoinductivity mechanisms, the reaction of bone-derived cells (MG63, U2OS, SaoS2, and primary human osteoblasts (OB)) to magnesium (Mg) was determined. Mg-based extracts were used to mimic more realistic Mg degradation conditions. Moreover, the influence of cells having direct contact with the degrading Mg metal was investigated. In exposure to extracts and in direct contact, the cells decreased pH and osmolality due to metabolic activity. Proliferating cells showed no significant reaction to extracts, whereas differentiating cells were negatively influenced. In contrast to extract exposure, where cell size increased, in direct contact to magnesium, cell size was stable or even decreased. The amount of focal adhesions decreased over time on all materials. Genes involved in bone formation were significantly upregulated, especially for primary human osteoblasts. Some osteoinductive indicators were observed for OB: (i) an increased cell count after extract addition indicated a higher proliferation potential; (ii) increased cell sizes after extract supplementation in combination with augmented adhesion behavior of these cells suggest an early switch to differentiation; and (iii) bone-inducing gene expression patterns were determined for all analyzed conditions. The results from the cell lines were inhomogeneous and showed no specific stimulus of Mg. The comparison of the different cell types showed that primary cells of the investigated tissue should be used as an in vitro model if Mg is analyzed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 165-179, 2017. © 2015 Wiley Periodicals, Inc.
Duvillié, B; Currie, C; Chrones, T; Bucchini, D; Jami, J; Joshi, R L; Hill, D J
2002-04-01
The targeted disruption of the two nonallelic insulin genes in mouse was reported previously to result in intrauterine growth retardation, severe diabetes immediately after suckling, and death within 48 h of birth. We have further used these animals to investigate the morphology and cell biology of the endocrine pancreas in late gestation and at birth when insulin is absent throughout development. Pancreatic beta-cells were identified by detecting the activity of the LacZ gene inserted at the Ins2 locus. A significant increase in the mean area of the islets was found at embryonic d 18.5 (E18.5) and in the newborn in Ins1-/-, Ins2-/- animals compared with Ins1-/-, Ins2+/- and wild-type controls, whereas the blood glucose levels were unaltered. The individual size of the beta-cells in the insulin-deficient fetuses was similar to controls, suggesting that the relative increase in islet size was due to an increase in cell number. Immunohistochemistry for proliferating cell nuclear antigen within the pancreatic ductal epithelium showed no differences in labeling index between insulin-deficient and control mice, and no change in the number of beta-cells associated with ducts, but the relative size distribution of the islets was altered so that fewer islets under 5,000 microm(2) and more islets greater than 10,000 microm(2) were present in Ins1-/-, Ins2-/- animals. This suggests that the greater mean islet size seen in insulin-deficient animals represented an enlargement of formed islets and was not associated with an increase in islet neogenesis. The proportional contribution of alpha- and beta-cells to the islets was not altered. This was supported by an increase in the number of cells containing immunoreactive proliferating cell nuclear antigen in both islet alpha- and beta-cells at E18.5 in insulin-deficient mice, and a significantly lower incidence of apoptotic cells, as determined by molecular histochemistry using the terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling reaction. The density of blood vessels within sections of whole pancreas, or within islets, was determined by immunohistochemistry for the endothelial cell marker CD31 and was found to be increased 2-fold in insulin-deficient mice compared with controls at E18.5. However, no changes were found in the steady-state expression of mRNAs encoding vascular endothelial growth factor, its receptor Flk-1, IGF-I or -II, the IGF-I and insulin receptors, or insulin receptor substrates-1 or -2 in pancreata from Ins1-/-, Ins2-/- mice compared with Ins1-/-, Ins2+/- controls. Thus, we conclude that the relative hyperplasia of the islets in late gestation in the insulin-deficient mice was due to an increased islet cell proliferation coupled with a reduced apoptosis, which may be related to an increased vascularization of the pancreas.
Separation of human bone marrow by counterflow centrifugation monitored by DNA-flowcytometry.
de Witte, T; Plas, A; Koekman, E; Blankenborg, G; Salden, M; Wessels, J; Haanen, C
1984-10-01
Human bone marrow was fractionated by counterflow centrifugation into 16 fractions with increasing cell size. Three distinct subpopulations could be recognized: small lymphocytic cells, medium-sized nucleated erythroid cells and large myeloid elements. DNA-flowcytometry and 3H-thymidine uptake showed that within the erythroid and myeloid cell populations counterflow centrifugation separates each population according to the cell cycle phase. Hypotonic treatment of bone marrow for removal of the erythroid nucleated cells resulted in a complete abrogation of the proliferating erythroid cell population. Counterflow centrifugation also separates the small non-proliferating myeloid and erythroid committed stem cells from the larger proliferating stem cells. It appeared feasible to separate the small lymphocytic cells from the majority of BFU-E and CFU-GM, due to the larger size of the proliferating normoblasts and the committed progenitor cells. Elimination of the mature lymphocytes from the haematopoietic stem cells by counterflow centrifugation may offer an alternative approach to the prevention of graft versus host disease (GvHD).
NASA Astrophysics Data System (ADS)
Fadlilah, D. R.; Fajar, M. N.; Aini, A. N.; Haqqiqi, R. I.; Wirawan, P. R.; Endarko
2018-04-01
The synthesized carbon from bones of chicken, cow, and fish with the calcination temperature at 450 and 600°C have been successfully fabricated for counter electrode in the Super Low-Cost Solar Cell (SLC-LC) based the structure of Dye-Sensitized Solar Cells (DSSC). The main proposed study was to fabricate SLC-SC and investigate the influence of the synthesized carbon from animal’s bone for counter electrode towards to photovoltaic performance of SLC-SC. X-Ray Diffraction and UV-Vis was used to characterize the phase and the optical properties of TiO2 as photoanode in SLC-SC. Meanwhile, the morphology and particle size distribution of the synthesized carbon in counter electrodes were investigated by Scanning Electron Microscopy (SEM) and Particle Size Analyzer (PSA). The results showed that the TiO2 has anatase phase with the absorption wavelength of 300 to 550 nm. The calcination temperature for synthesizing of carbon could affect morphology and particle size distribution. The increasing temperature gave the effect more dense in morphology and increased the particle size of carbon in the counter electrode. Changes in morphology and particle size of carbon give effect to the performance of the SLC-SC where the increased morphology’s compact and particle size make decreased in the performance of the SLC-SC.
Bigger Brains or Bigger Nuclei? Regulating the Size of Auditory Structures in Birds
Kubke, M. Fabiana; Massoglia, Dino P.; Carr, Catherine E.
2012-01-01
Increases in the size of the neuronal structures that mediate specific behaviors are believed to be related to enhanced computational performance. It is not clear, however, what developmental and evolutionary mechanisms mediate these changes, nor whether an increase in the size of a given neuronal population is a general mechanism to achieve enhanced computational ability. We addressed the issue of size by analyzing the variation in the relative number of cells of auditory structures in auditory specialists and generalists. We show that bird species with different auditory specializations exhibit variation in the relative size of their hindbrain auditory nuclei. In the barn owl, an auditory specialist, the hind-brain auditory nuclei involved in the computation of sound location show hyperplasia. This hyperplasia was also found in songbirds, but not in non-auditory specialists. The hyperplasia of auditory nuclei was also not seen in birds with large body weight suggesting that the total number of cells is selected for in auditory specialists. In barn owls, differences observed in the relative size of the auditory nuclei might be attributed to modifications in neurogenesis and cell death. Thus, hyperplasia of circuits used for auditory computation accompanies auditory specialization in different orders of birds. PMID:14726625
NASA Astrophysics Data System (ADS)
Kettler, Katja; Giannakou, Christina; de Jong, Wim H.; Hendriks, A. Jan; Krystek, Petra
2016-09-01
Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Macrophages are the first line of defense against invading foreign agents including NPs. How macrophages deal with the particles is essential for potential toxicity of the NPs. However, there is a considerable lack of uptake studies of particles in the nanometer range and macrophage-like cells. Therefore, uptake rates were determined over 24 h for three different AgNPs sizes (20, 50 and 75 nm) in medium with and without fetal calf serum. Non-toxic concentrations of 10 ng Ag/mL for monocytic THP-1 cells, representing realistic exposure concentration for short-term exposures, were chosen. The uptake of Ag was higher in medium without fetal calf serum and showed increasing uptake for decreasing NP sizes, both on NP mass and on number basis. Internal cellular concentrations reached roughly 32/10 %, 25/18 % and 21/15 % of the nominal concentration in the absence of fetal calf serum/with fetal calf serum for 20-, 50- and 75-nm NPs, respectively. Our research shows that uptake kinetics in macrophages differ for various NP sizes. To increase the understanding of the mechanism of NP toxicity in cells, the process of uptake (timing) should be considered.
Gater, Deborah L; Widatalla, Namareq; Islam, Kinza; AlRaeesi, Maryam; Teo, Jeremy C M; Pearson, Yanthe E
2017-12-13
The transformation of normal macrophage cells into lipid-laden foam cells is an important step in the progression of atherosclerosis. One major contributor to foam cell formation in vivo is the intracellular accumulation of cholesterol. Here, we report the effects of various combinations of low-density lipoprotein, sterols, lipids and other factors on human macrophages, using an automated image analysis program to quantitatively compare single cell properties, such as cell size and lipid content, in different conditions. We observed that the addition of cholesterol caused an increase in average cell lipid content across a range of conditions. All of the sterol-lipid mixtures examined were capable of inducing increases in average cell lipid content, with variations in the distribution of the response, in cytotoxicity and in how the sterol-lipid combination interacted with other activating factors. For example, cholesterol and lipopolysaccharide acted synergistically to increase cell lipid content while also increasing cell survival compared with the addition of lipopolysaccharide alone. Additionally, ergosterol and cholesteryl hemisuccinate caused similar increases in lipid content but also exhibited considerably greater cytotoxicity than cholesterol. The use of automated image analysis enables us to assess not only changes in average cell size and content, but also to rapidly and automatically compare population distributions based on simple fluorescence images. Our observations add to increasing understanding of the complex and multifactorial nature of foam-cell formation and provide a novel approach to assessing the heterogeneity of macrophage response to a variety of factors.
NASA Astrophysics Data System (ADS)
Xiao, Xin; Wang, Wei; Liu, Dong; Zhang, Haoqiang; Gao, Peng; Geng, Lei; Yuan, Yulin; Lu, Jianxi; Wang, Zhen
2015-03-01
The porous architectural characteristics of biomaterials play an important role in scaffold revascularization. However, no consensus exists regarding optimal interconnection sizes for vascularization and its scaffold bioperformance with different interconnection sizes. Therefore, a series of disk-type beta-tricalcium phosphates with the same pore sizes and variable interconnections were produced to evaluate how the interconnection size influenced biomaterial vascularization in vitro and in vivo. We incubated human umbilical vein endothelial cells on scaffolds with interconnections of various sizes. Results showed that scaffolds with a 150 μm interconnection size ameliorated endothelial cell function evidenced by promoting cell adhesion and migration, increasing cell proliferation and enhancing expression of platelet-endothelial cell adhesion molecules and vascular endothelial growth factor. In vivo study was performed on rabbit implanted with scaffolds into the bone defect on femoral condyles. Implantation with scaffolds with 150 μm interconnection size significantly improved neovascularization as shown by micro-CT as compared to scaffolds with 100 and 120 μm interconnection sizes. Moreover, the aforementioned positive effects were abolished by blocking PI3K/Akt/eNOS pathway with LY-294002. Our study explicitly demonstrates that the scaffold with 150 μm interconnection size improves neovascularization via the PI3K/Akt pathway and provides a target for biomaterial inner structure modification to attain improved clinical performance in implant vascularization.
Increased ambient fine particulate matter (FPM) concentrations are associated with increased risk for short-term and long-term adverse cardiovascular events. Ultrafine PM (UFPM) due to its size and increased surface area might be particularly toxic. Mast cells are well recognized...
NASA Astrophysics Data System (ADS)
Blasi, Thomas; Buettner, Florian; Strasser, Michael K.; Marr, Carsten; Theis, Fabian J.
2017-06-01
Accessing gene expression at a single-cell level has unraveled often large heterogeneity among seemingly homogeneous cells, which remains obscured when using traditional population-based approaches. The computational analysis of single-cell transcriptomics data, however, still imposes unresolved challenges with respect to normalization, visualization and modeling the data. One such issue is differences in cell size, which introduce additional variability into the data and for which appropriate normalization techniques are needed. Otherwise, these differences in cell size may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We derive the probability for the cell-growth-corrected mRNA transcript number given the measured, cell size-dependent mRNA transcript number, based on the assumption that the average number of transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can be used for both data normalization and to analyze the steady-state distributions used to infer the gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem cells). We show that correcting for differences in cell size affects the interpretation of the data obtained by typically performed computational analysis.
Fenton-treated functionalized diamond nanoparticles as gene delivery system.
Martín, Roberto; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo
2010-01-26
When raw diamond nanoparticles (Dnp, 7 nm average particle size) obtained from detonation are submitted to harsh Fenton-treatment, the resulting material becomes free of amorphous soot matter and the process maintains the crystallinity, reduces the particle size (4 nm average particle size), increases the surface OH population, and increases water solubility. All these changes are beneficial for subsequent Dnp covalent functionalization and for the ability of Dnp to cross cell membranes. Fenton-treated Dnps have been functionalized with thionine and the resulting sample has been observed in HeLa cell nuclei. A triethylammonium-functionalized Dnp pairs electrostatically with a plasmid having the green fluorescent protein gene and acts as gene delivery system permitting the plasmid to cross HeLa cell membrane, something that does not occur for the plasmid alone without assistance of polycationic Dnp.
Size-dependent protein segregation at membrane interfaces
NASA Astrophysics Data System (ADS)
Schmid, Eva M.; Bakalar, Matthew H.; Choudhuri, Kaushik; Weichsel, Julian; Ann, Hyoung Sook; Geissler, Phillip L.; Dustin, Michael L.; Fletcher, Daniel A.
2016-07-01
Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell-cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.
Rockett, Benjamin Drew; Franklin, Andrew; Harris, Mitchel; Teague, Heather; Rockett, Alexis; Shaikh, Saame Raza
2011-06-01
Model membrane and cellular detergent extraction studies show (n-3) PUFA predominately incorporate into nonrafts; thus, we hypothesized (n-3) PUFA could disrupt nonraft organization. The first objective of this study was to determine whether (n-3) PUFA disrupted nonrafts of EL4 cells, an extension of our previous work in which we discovered an (n-3) PUFA diminished raft clustering. EPA or DHA treatment of EL4 cells increased plasma membrane accumulation of the nonraft probe 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate by ~50-70% relative to a BSA control. Förster resonance energy transfer imaging showed EPA and DHA also disrupted EL4 nanometer scale nonraft organization by increasing the distance between nonraft molecules by ~25% compared with BSA. However, changes in nonrafts were due to an increase in cell size; under conditions where EPA or DHA did not increase cell size, nonraft organization was unaffected. We next translated findings on EL4 cells by testing if (n-3) PUFA administered to mice disrupted nonrafts and rafts. Imaging of B cells isolated from mice fed low- or high-fat (HF) (n-3) PUFA diets showed no change in nonraft organization compared with a control diet (CD). However, confocal microscopy revealed the HF (n-3) PUFA diet disrupted lipid raft clustering and size by ~40% relative to CD. Taken together, our data from 2 different model systems suggest (n-3) PUFA have limited effects on nonrafts. The ex vivo data, which confirm previous studies with EL4 cells, provide evidence that (n-3) PUFA consumed through the diet disrupt B cell lipid raft clustering.
Rockett, Benjamin Drew; Franklin, Andrew; Harris, Mitchel; Teague, Heather; Rockett, Alexis; Shaikh, Saame Raza
2011-01-01
Model membrane and cellular detergent extraction studies show (n-3) PUFA predominately incorporate into nonrafts; thus, we hypothesized (n-3) PUFA could disrupt nonraft organization. The first objective of this study was to determine whether (n-3) PUFA disrupted nonrafts of EL4 cells, an extension of our previous work in which we discovered an (n-3) PUFA diminished raft clustering. EPA or DHA treatment of EL4 cells increased plasma membrane accumulation of the nonraft probe 1,1′-dilinoleyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate by ~50–70% relative to a BSA control. Förster resonance energy transfer imaging showed EPA and DHA also disrupted EL4 nanometer scale nonraft organization by increasing the distance between nonraft molecules by ~25% compared with BSA. However, changes in nonrafts were due to an increase in cell size; under conditions where EPA or DHA did not increase cell size, nonraft organization was unaffected. We next translated findings on EL4 cells by testing if (n-3) PUFA administered to mice disrupted nonrafts and rafts. Imaging of B cells isolated from mice fed low- or high-fat (HF) (n-3) PUFA diets showed no change in nonraft organization compared with a control diet (CD). However, confocal microscopy revealed the HF (n-3) PUFA diet disrupted lipid raft clustering and size by ~40% relative to CD. Taken together, our data from 2 different model systems suggest (n-3) PUFA have limited effects on nonrafts. The ex vivo data, which confirm previous studies with EL4 cells, provide evidence that (n-3) PUFA consumed through the diet disrupt B cell lipid raft clustering. PMID:21525263
Escherichia coli challenge and one type of smectite alter intestinal barrier of pigs
2013-01-01
An experiment was conducted to determine how an E. coli challenge and dietary clays affect the intestinal barrier of pigs. Two groups of 32 pigs (initial BW: 6.9 ± 1.0 kg) were distributed in a 2 × 4 factorial arrangement of a randomized complete block design (2 challenge treatments: sham or E. coli, and 4 dietary treatments: control, 0.3% smectite A, 0.3% smectite B and 0.3% zeolite), with 8 replicates total. Diarrhea score, growth performance, goblet cell size and number, bacterial translocation from intestinal lumen to lymph nodes, intestinal morphology, and relative amounts of sulfo and sialo mucins were measured. The E. coli challenge reduced performance, increased goblet cell size and number in the ileum, increased bacterial translocation from the intestinal lumen to the lymph nodes, and increased ileal crypt depth. One of the clays (smectite A) tended to increase goblet cell size in ileum, which may indicate enhanced protection. In conclusion, E. coli infection degrades intestinal barrier integrity but smectite A may enhance it. PMID:24359581
Escherichia coli challenge and one type of smectite alter intestinal barrier of pigs.
Almeida, Juliana Abranches Soares; Liu, Yanhong; Song, Minho; Lee, Jeong Jae; Gaskins, H Rex; Maddox, Carol Wolfgang; Osuna, Orlando; Pettigrew, James Eugene
2013-12-20
An experiment was conducted to determine how an E. coli challenge and dietary clays affect the intestinal barrier of pigs. Two groups of 32 pigs (initial BW: 6.9 ± 1.0 kg) were distributed in a 2 × 4 factorial arrangement of a randomized complete block design (2 challenge treatments: sham or E. coli, and 4 dietary treatments: control, 0.3% smectite A, 0.3% smectite B and 0.3% zeolite), with 8 replicates total. Diarrhea score, growth performance, goblet cell size and number, bacterial translocation from intestinal lumen to lymph nodes, intestinal morphology, and relative amounts of sulfo and sialo mucins were measured. The E. coli challenge reduced performance, increased goblet cell size and number in the ileum, increased bacterial translocation from the intestinal lumen to the lymph nodes, and increased ileal crypt depth. One of the clays (smectite A) tended to increase goblet cell size in ileum, which may indicate enhanced protection. In conclusion, E. coli infection degrades intestinal barrier integrity but smectite A may enhance it.
Yoon, Donghoon; Okhotin, David V.; Kim, Bumjun; Okhotina, Yulia; Okhotin, Daniel J.; Miasnikova, Galina Y.; Sergueeva, Adelina I.; Polyakova, Lydia A.; Maslow, Alexei; Lee, Yonggu; Semenza, Gregg L.; Prchal, Josef T.
2010-01-01
Chuvash polycythemia, the first hereditary disease associated with dysregulated oxygen-sensing to be recognized, is characterized by a homozygous germ-line loss-of-function mutation of the VHL gene (VHLR200W) resulting in elevated hypoxia inducible factor (HIF)-1α and HIF-2α levels, increased red cell mass and propensity to thrombosis. Organ volume is determined by the size and number of cells, and the underlying molecular control mechanisms are not fully elucidated. Work from several groups has demonstrated that the proliferation of cells is regulated in opposite directions by HIF-1α and HIF-2α. HIF-1α inhibits cell proliferation by displacing MYC from the promoter of the gene encoding the cyclin-dependent kinase inhibitor, p21Cip1, thereby inducing its expression. In contrast, HIF-2α promotes MYC activity and cell proliferation. Here we report that the volumes of liver, spleen, and kidneys relative to body mass were larger in 30 individuals with Chuvash polycythemia than in 30 matched Chuvash controls. In Hif1a+/− mice, which are heterozygous for a null (knockout) allele at the locus encoding HIF-1α, hepatic HIF-2α mRNA was increased (2-fold) and the mass of the liver was increased, compared with wild-type littermates, without significant difference in cell volume. Hepatic p21Cip1 mRNA levels were 9.5-fold lower in Hif1a+/− mice compared with wild-type littermates. These data suggest that, in addition to increased red cell mass, the sizes of liver, spleen, and kidneys are increased in Chuvash polycythemia. At least in the liver, this phenotype may result from increased HIF-2α and decreased p21Cip1 levels leading to increased hepatocyte proliferation. PMID:20140661
Lateral dimension-dependent antibacterial activity of graphene oxide sheets.
Liu, Shaobin; Hu, Ming; Zeng, Tingying Helen; Wu, Ran; Jiang, Rongrong; Wei, Jun; Wang, Liang; Kong, Jing; Chen, Yuan
2012-08-21
Graphene oxide (GO) is a promising precursor to produce graphene-family nanomaterials for various applications. Their potential health and environmental impacts need a good understanding of their cellular interactions. Many factors may influence their biological interactions with cells, and the lateral dimension of GO sheets is one of the most relevant material properties. In this study, a model bacterium, Escherichia coli ( E. coli ), was used to evaluate the antibacterial activity of well-dispersed GO sheets, whose lateral size differs by more than 100 times. Our results show that the antibacterial activity of GO sheets toward E. coli cells is lateral size dependent. Larger GO sheets show stronger antibacterial activity than do smaller ones, and they have different time- and concentration-dependent antibacterial activities. Large GO sheets lead to most cell loss after 1 h incubation, and their concentration strongly influences antibacterial activity at relative low concentration (<10 μg/mL). In contrast, when incubating with small GO sheets up to 4 h, the inactivation rate of E. coli cells continues increasing. The increase of small GO sheet concentration also results in persistent increases in their antibacterial activity. In this study, GO sheets with different lateral sizes are all well dispersed, and their oxidation capacity toward glutathione is similar, consistent with X-ray photoelectron spectroscopy and ultraviolet-visible absorption spectroscopy results. This suggests the lateral size-dependent antibacterial activity of GO sheets is caused by neither their aggregation states, nor oxidation capacity. Atomic force microscope analysis of GO sheets and cells shows that GO sheets interact strongly with cells. Large GO sheets more easily cover cells, and cells cannot proliferate once fully covered, resulting in the cell viability loss observed in the followed colony counting test. In contrast, small GO sheets adhere to the bacterial surfaces, which cannot effectively isolate cells from environment. This study highlights the importance of tailoring the lateral dimension of GO sheets to optimize the application potential with minimal risks for environmental health and safety.
NASA Astrophysics Data System (ADS)
Li, Lingxiangyu; Fernández-Cruz, María Luisa; Connolly, Mona; Schuster, Michael; Navas, José María
2015-01-01
Here, the effects of incubation temperature and particle size on the dissolution and aggregation behavior of copper nanoparticles (CuNPs) in culture media were investigated over 96 h, equivalent to the time period for acute cell toxicity tests. Three CuNPs with the nominal sizes of 25, 50, and 100 nm and one type of micro-sized particles (MPs, 500 nm) were examined in culture media used for human and fish hepatoma cell lines acute tests. A large decrease in sizes of CuNPs in the culture media was observed in the first 24 h incubation, and subsequently the sizes of CuNPs changed slightly over the following 72 h. Moreover, the decreasing rate in size was significantly dependent on the incubation temperature; the higher the incubation temperature, the larger the decreasing rate in size. In addition to that, we also found that the release of copper ions depended on the incubation temperature. Moreover, the dissolution rate of Cu particles increased very fast in the first 24 h, with a slight increase over the following 72 h.
Parra-Flores, Julio; Juneja, Vijay; Garcia de Fernando, Gonzalo; Aguirre, Juan
2016-01-01
Cronobacter spp. have been responsible for severe infections in infants associated with consumption of powdered infant formula and follow-up formulae. Despite several risk assessments described in published studies, few approaches have considered the tremendous variability in cell response that small micropopulations or single cells can have in infant formula during storage, preparation or post process/preparation before the feeding of infants. Stochastic approaches can better describe microbial single cell response than deterministic models as we prove in this study. A large variability of lag phase was observed in single cell and micropopulations of ≤50 cells. This variability increased as the heat shock increased and growth temperature decreased. Obviously, variability of growth of individual Cronobacter sakazakii cell is affected by inoculum size, growth temperature and the probability of cells able to grow at the conditions imposed by the experimental conditions should be taken into account, especially when errors in bottle-preparation practices, such as improper holding temperatures, or manipulation, may lead to growth of the pathogen to a critical cell level. The mean probability of illness from initial inoculum size of 1 cell was below 0.2 in all the cases and for inoculum size of 50 cells the mean probability of illness, in most of the cases, was above 0.7. PMID:27148223
Construction of trypanosome artificial mini-chromosomes.
Lee, M G; E, Y; Axelrod, N
1995-01-01
We report the preparation of two linear constructs which, when transformed into the procyclic form of Trypanosoma brucei, become stably inherited artificial mini-chromosomes. Both of the two constructs, one of 10 kb and the other of 13 kb, contain a T.brucei PARP promoter driving a chloramphenicol acetyltransferase (CAT) gene. In the 10 kb construct the CAT gene is followed by one hygromycin phosphotransferase (Hph) gene, and in the 13 kb construct the CAT gene is followed by three tandemly linked Hph genes. At each end of these linear molecules are telomere repeats and subtelomeric sequences. Electroporation of these linear DNA constructs into the procyclic form of T.brucei generated hygromycin-B resistant cell lines. In these cell lines, the input DNA remained linear and bounded by the telomere ends, but it increased in size. In the cell lines generated by the 10 kb construct, the input DNA increased in size to 20-50 kb. In the cell lines generated by the 13 kb constructs, two sizes of linear DNAs containing the input plasmid were detected: one of 40-50 kb and the other of 150 kb. The increase in size was not the result of in vivo tandem repetitions of the input plasmid, but represented the addition of new sequences. These Hph containing linear DNA molecules were maintained stably in cell lines for at least 20 generations in the absence of drug selection and were subsequently referred to as trypanosome artificial mini-chromosomes, or TACs. Images PMID:8532534
Vijay, Srinivasan; Vinh, Dao N.; Hai, Hoang T.; Ha, Vu T. N.; Dung, Vu T. M.; Dinh, Tran D.; Nhung, Hoang N.; Tram, Trinh T. B.; Aldridge, Bree B.; Hanh, Nguyen T.; Thu, Do D. A.; Phu, Nguyen H.; Thwaites, Guy E.; Thuong, Nguyen T. T.
2017-01-01
Mycobacterial cellular variations in growth and division increase heterogeneity in cell length, possibly contributing to cell-to-cell variation in host and antibiotic stress tolerance. This may be one of the factors influencing Mycobacterium tuberculosis persistence to antibiotics. Tuberculosis (TB) is a major public health problem in developing countries, antibiotic persistence, and emergence of antibiotic resistance further complicates this problem. We wanted to investigate the factors influencing cell-length distribution in clinical M. tuberculosis strains. In parallel we examined M. tuberculosis cell-length distribution in a large set of clinical strains (n = 158) from ex vivo sputum samples, in vitro macrophage models, and in vitro cultures. Our aim was to understand the influence of clinically relevant factors such as host stresses, M. tuberculosis lineages, antibiotic resistance, antibiotic concentrations, and disease severity on the cell size distribution in clinical M. tuberculosis strains. Increased cell size and cell-to-cell variation in cell length were associated with bacteria in sputum and infected macrophages rather than liquid culture. Multidrug-resistant (MDR) strains displayed increased cell length heterogeneity compared to sensitive strains in infected macrophages and also during growth under rifampicin (RIF) treatment. Importantly, increased cell length was also associated with pulmonary TB disease severity. Supporting these findings, individual host stresses, such as oxidative stress and iron deficiency, increased cell-length heterogeneity of M. tuberculosis strains. In addition we also observed synergism between host stress and RIF treatment in increasing cell length in MDR-TB strains. This study has identified some clinical factors contributing to cell-length heterogeneity in clinical M. tuberculosis strains. The role of these cellular adaptations to host and antibiotic tolerance needs further investigation. PMID:29209302
Effects of Ni particle morphology on cell performance of Na/NiCl2 battery
NASA Astrophysics Data System (ADS)
Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan
2017-11-01
Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.
Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding
Vuković, Lidija D.; Jevtić, Predrag; Zhang, Zhaojie; Stohr, Bradley A.; Levy, Daniel L.
2016-01-01
ABSTRACT Altered nuclear size is associated with many cancers, and determining whether cancer-associated changes in nuclear size contribute to carcinogenesis necessitates an understanding of mechanisms of nuclear size regulation. Although nuclear import rates generally positively correlate with nuclear size, NTF2 levels negatively affect nuclear size, despite the role of NTF2 (also known as NUTF2) in nuclear recycling of the import factor Ran. We show that binding of Ran to NTF2 is required for NTF2 to inhibit nuclear expansion and import of large cargo molecules in Xenopus laevis egg and embryo extracts, consistent with our observation that NTF2 reduces the diameter of the nuclear pore complex (NPC) in a Ran-binding-dependent manner. Furthermore, we demonstrate that ectopic NTF2 expression in Xenopus embryos and mammalian tissue culture cells alters nuclear size. Finally, we show that increases in nuclear size during melanoma progression correlate with reduced NTF2 expression, and increasing NTF2 levels in melanoma cells is sufficient to reduce nuclear size. These results show a conserved capacity for NTF2 to impact on nuclear size, and we propose that NTF2 might be a new cancer biomarker. PMID:26823604
2018-01-01
The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli, for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli and other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persister cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding circuits' robustness across growth conditions is key for the effective design of synthetic biological systems. PMID:29657814
Wu, Xuping; Smavadati, Shirin; Nordfjäll, Katarina; Karlsson, Krister; Qvarnström, Fredrik; Simonsson, Martin; Bergqvist, Michael; Gryaznov, Sergei; Ekman, Simon; Paulsson-Karlsson, Ylva
2012-12-01
Telomerase is mainly active in human tumor cells, which provides an opportunity for a therapeutic window on telomerase targeting. We sought to evaluate the potential of the thio-phosphoramidate oligonucleotide inhibitor of telomerase, imetelstat, as a drug candidate for treatment of esophageal cancer. Our results showed that imetelstat inhibited telomerase activity in a dose-dependent manner in esophageal cancer cells. After only 1 week of imetelstat treatment, a reduction of colony formation ability of esophageal cancer cells was observed. Furthermore, long-term treatment with imetelstat decreased cell growth of esophageal cancer cells with different kinetics regarding telomere lengths. Short-term imetelstat treatment also increased γ-H2AX and 53BP1 foci staining in the esophageal cancer cell lines indicating a possible induction of DNA double strand breaks (DSBs). We also found that pre-treatment with imetelstat led to increased number and size of 53BP1 foci after ionizing radiation. The increase of 53BP1 foci number was especially pronounced during the first 1h of repair whereas the increase of foci size was prominent later on. This study supports the potential of imetelstat as a therapeutic agent for the treatment of esophageal cancer. Copyright © 2012 Elsevier B.V. All rights reserved.
Suwannoi, Panita; Chomnawang, Mullika; Sarisuta, Narong; Reichl, Stephan; Müller-Goymann, Christel C
2017-12-01
The aim of the present study was to develop acyclovir (ACV) ocular drug delivery systems of bovine serum albumin (BSA) nanoparticles as well as to assess their in vitro transcorneal permeation across human corneal epithelial (HCE-T) cell multilayers. The ACV-loaded BSA nanoparticles were prepared by desolvation method along with physicochemical characterization, cytotoxicity, as well as in vitro transcorneal permeation studies across HCE-T cell multilayers. The nanoparticles appeared to be spherical in shape and nearly uniform in size of about 200 nm. The size of nanoparticles became smaller with decreasing BSA concentration, while the ratios of water to ethanol seemed not to affect the size. Increasing the amount of ethanol in desolvation process led to significant reduction of drug entrapment of nanoparticles with smaller size and more uniformity. The ACV-loaded BSA nanoparticles prepared were shown to have no cytotoxic effect on HCE-T cells used in permeation studies. The in vitro transcorneal permeation results revealed that ACV could permeate through the HCE-T cell multilayers significantly higher from BSA nanoparticles than from aqueous ACV solutions. The ACV-loaded BSA nanoparticles could be prepared by desolvation method without glutaraldehyde in the formulation. ACV could increasingly permeate through the multilayers of HCE-T cells from the ACV-loaded BSA nanoparticles. Therefore, the ACV-loaded BSA nanoparticles could be a highly potential ocular drug delivery system.
NASA Astrophysics Data System (ADS)
Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.
2016-08-01
Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.
The effect of retinal pigment epithelial cell patch size on growth factor expression
Vargis, Elizabeth A.; Peterson, Cristen B.; Morrell-Falvey, Jennifer L.; ...
2014-01-30
The spatial organization of retinal pigment epithelial (RPE) cells grown in culture was controlled using micropatterning techniques in order to examine the effect of patch size on cell health and differentiation. Understanding this effect is a critical step in the development of multiplexed high throughput fluidic assays and provides a model for replicating disease states associated with the deterioration of retinal tissue during age-related macular degeneration (AMD). Microcontact printing of fibronectin on polystyrene and glass substrates was used to promote cell attachment, forming RPE patches of controlled size and shape. These colonies mimic the effect of atrophy and loss-of-function thatmore » occurs in the retina during degenerative diseases such as AMD. After 72 hours of cell growth, levels of vascular endothelial growth factor (VEGF), an important biomarker of AMD, were measured. Cells were counted and morphological indicators of cell viability and tight junction formation were assessed via fluorescence microscopy. As a result, up to a twofold increase of VEGF expression per cell was measured as colony size decreased, suggesting that the local microenvironment of, and connections between, RPE cells influences growth factor expression leading to the initiation and progression of diseases such as AMD.« less
Sound absorption characteristics of aluminum foam with spherical cells
NASA Astrophysics Data System (ADS)
Li, Yunjie; Wang, Xinfu; Wang, Xingfu; Ren, Yuelu; Han, Fusheng; Wen, Cuie
2011-12-01
Aluminum foams were fabricated by an infiltration process. The foams possess spherical cells with a fixed porosity of 65% and varied pore sizes which ranged from 1.3 to 1.9 mm. The spherical cells are interconnected by small pores or pore openings on the cell walls that cause the foams show a characteristic of open cell structures. The sound absorption coefficient of the aluminum foams was measured by a standing wave tube and calculated by a transfer function method. It is shown that the sound absorption coefficient increases with an increase in the number of pore openings in the unit area or with a decrease of the diameter of the pore openings in the range of 0.3 to 0.4 mm. If backed with an air cavity, the resonant absorption peaks in the sound absorption coefficient versus frequency curves will be shifted toward lower frequencies as the cavity depth is increased. The samples with the same pore opening size but different pore size show almost the same absorption behavior, especially in the low frequency range. The present results are in good agreement with some theoretical predictions based on the acoustic impedance measurements of metal foams with circular apertures and cylindrical cavities and the principle of electroacoustic analogy.
Kang, Kyungsu; Lee, Hee Ju; Yoo, Ji-Hye; Jho, Eun Hye; Kim, Chul Young; Kim, Minkyun; Nho, Chu Won
2011-08-01
Arctigenin is a natural plant lignan previously shown to induce G(2)/M arrest in SW480 human colon cancer cells as well as AGS human gastric cancer cells, suggesting its use as a possible cancer chemopreventive agent. Changes in cell and nuclear size often correlate with the functionality of cancer-treating agents. Here, we report that arctigenin induces cell and nuclear enlargement of SW480 cells. Arctigenin clearly induced the formation of giant nuclear shapes in SW480, as demonstrated by fluorescence microscopic observation and quantitative determination of nuclear size. Cell and nuclear size were further assessed by flow cytometric analysis of light scattering and fluorescence pulse width after propidium iodide staining. FSC-H and FL2-W values (parameters referring to cell and nuclear size, respectively) significantly increased after arctigenin treatment; the mean values of FSC-H and FL2-W in arctigenin-treated SW480 cells were 572.6 and 275.1, respectively, whereas those of control cells were 482.0 and 220.7, respectively. Our approach may provide insights into the mechanism behind phytochemical-induced cell and nuclear enlargement as well as functional studies on cancer-treating agents.
Effects of pore size and dissolved organic matters on diffusion of arsenate in aqueous solution.
Wang, Yulong; Wang, Shaofeng; Wang, Xin; Jia, Yongfeng
2017-02-01
Presented here is the influence of membrane pore size and dissolved organic matters on the diffusion coefficient (D) of aqueous arsenate, investigated by the diffusion cell method for the first time. The pH-dependent diffusion coefficient of arsenate was determined and compared with values from previous studies; the coefficient was found to decrease with increasing pH, showing the validity of our novel diffusion cell method. The D value increased dramatically as a function of membrane pore size at small pore sizes, and then increased slowly at pore sizes larger than 2.0μm. Using the ExpAssoc model, the maximum D value was determined to be 11.2565×10 -6 cm 2 /sec. The presence of dissolved organic matters led to a dramatic increase of the D of arsenate, which could be attributed to electrostatic effects and ionic effects of salts. These results improve the understanding of the diffusion behavior of arsenate, especially the important role of various environmental parameters in the study and prediction of the migration of arsenate in aquatic water systems. Copyright © 2016. Published by Elsevier B.V.
Khudoerkov, R M; Sal'kov, V N; Sal'nikova, O V; Sobolev, V B
2014-01-01
Computerized morphometry was used to examine the sizes of neuronal bodies and the compactness of arrangement of neurons and neuroglial cells in layers III and V of the sensorimotor cortex in senescence-accelerated prone 1 (SAMP1) mice (an experimental group) and senescence-accelerated-resistant strain 1 (SAMR1) ones (a control group). In the SAMP1 mice as compared to the SAMR1 ones, the neuronal body sizes were significantly unchanged; the compactness of their arrangement decreased by 17 and 20% in layers III and V, respectively; that of neuroglial cells significantly increased by 14% in layer III only. In the SAMP1 mice versus the SAMR1 ones, the glial index rose by 36% in layer III and by 24% in layer V. During simulation of physiological aging, the sizes of neuronal bodies were shown to be virtually unchanged in the cerebral cortex; the compactness of their arrangement (cell counts) moderately reduced and that of neuroglial cells increased, which caused a rise in the glioneuronal index that was indicative of the enhanced supporting function of neuroglial cells during the physiological aging of brain structures.
The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite
NASA Astrophysics Data System (ADS)
Habib, K. M. Masum; Sylvia, Somaia S.; Ge, Supeng; Neupane, Mahesh; Lake, Roger K.
2013-12-01
The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm2. For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described.
Dias, Carla; Silva, Corália; Freitas, Claudia; Reis, Alberto; da Silva, Teresa Lopes
2016-07-01
The effect of the culture medium pH (3.5-6.0) on the carotenoid and lipid (as fatty acids) production by the yeast Rhodosporidium toruloides NCYC 921 was studied. Flow cytometry was used to evaluate the yeast's physiological response to different culture medium pH values. The yeast biomass concentration and lipid content were maxima at pH 4.0 (5.90 g/L and 21.85 % w/w, respectively), while the maximum carotenoid content (63.37 μg/g) was obtained at pH 5.0. At the exponential phase, the yeast cell size and internal complexity were similar, at different medium pH. At the stationary phase, the yeast cell size and internal complexity decreased as the medium pH increased. At the exponential phase, the proportion of cells with polarized membranes was always high (>80 %) but at the stationary phase, the proportion of yeast cells with depolarized membranes was dominant (>65 %) and increased with the medium pH increase. The results here reported may contribute for yeast bioprocesses optimization. For the first time, multiparameter flow cytometry was used to evaluate the impact of medium pH changes on the yeast cell physiological status, specifically on the yeast membrane potential, membrane integrity, cell size and internal complexity.
Song, Yuanhui; Ju, Yang; Song, Guanbin; Morita, Yasuyuki
2013-01-01
Cell adhesion, migration, and proliferation are significantly affected by the surface topography of the substrates on which the cells are cultured. Alumina is one of the most popular implant materials used in orthopedics, but few data are available concerning the cellular responses of mesenchymal stem cells (MSCs) grown on nanoporous structures. MSCs were cultured on smooth alumina substrates and nanoporous alumina substrates to investigate the interaction between surface topographies of nanoporous alumina and cellular behavior. Nanoporous alumina substrates with pore sizes of 20 nm and 100 nm were used to evaluate the effect of pore size on MSCs as measured by proliferation, morphology, expression of integrin β1, and osteogenic differentiation. An MTT assay was used to measure cell viability of MSCs on different substrates, and determined that cell viability decreased with increasing pore size. Scanning electron microscopy was used to investigate the effect of pore size on cell morphology. Extremely elongated cells and prominent cell membrane protrusions were observed in cells cultured on alumina with the larger pore size. The expression of integrin β1 was enhanced in MSCs cultured on porous alumina, revealing that porous alumina substrates were more favorable for cell growth than smooth alumina substrates. Higher levels of osteoblastic differentiation markers such as alkaline phosphatase, osteocalcin, and mineralization were detected in cells cultured on alumina with 100 nm pores compared with cells cultured on alumina with either 20 nm pores or smooth alumina. This work demonstrates that cellular behavior is affected by variation in pore size, providing new insight into the potential application of this novel biocompatible material for the developing field of tissue engineering. PMID:23935364
Shape recognition of microbial cells by colloidal cell imprints
NASA Astrophysics Data System (ADS)
Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.
2013-08-01
We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.
A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.
Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian
2015-10-05
Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity.
Yan, Fei; Zhang, Chao; Zheng, Yi; Mei, Lin; Tang, Lina; Song, Cunxian; Sun, Hongfan; Huang, Laiqiang
2010-02-01
The aim of this work was to investigate the effect of triblock copolymer poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Docetaxel-loaded nanoparticles were prepared by oil-in-water emulsion/solvent evaporation technique using biodegradable poly(lactic-co-glycolic acid) (PLGA) with or without addition of poloxamer 188, respectively. The resulting nanoparticles were found to be spherical with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug-release profile of both nanoparticle formulations showed a biphasic release pattern. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in the docetaxel-resistant MCF-7 TAX30 human breast cancer cell line could be found in comparison with that of PLGA nanoparticles. In addition, the docetaxel-loaded PLGA/poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than that of docetaxel-loaded PLGA nanoparticles and Taxotere (P < .05). In conclusion, the results showed advantages of docetaxel-loaded PLGA nanoparticles incorporated with poloxamer 188 compared with the nanoparticles without incorporation of poloxamer 188 in terms of sustainable release and efficacy in breast cancer chemotherapy. The effects of poloxamer 188, a triblock copolymer were studied on nanoparticle morphology, size, cancer cell uptake and cytotoxicity. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in resistant human breast cancer cell line was demonstrated, resulting in a significantly higher level of cytotoxicity. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, Falah H.; Alwan, Dheyaa B.
2018-05-01
It became a great interest Dye-sensitized solar cells (DSSC) as a successful alternative to silicon solar cells in terms of cost and simplicity. These cells rely on a semi-conductive material of electricity TiO2 nanocrystalline which encapsulates glass electrodes from the connected side at a temperature 450°C. In this work, the effect of nanoparticle size shows the size of atoms. The smaller the size of the atoms, the greater the surface area and thus the sufficient absorption of the dye and the stimulation of electrons, where increasing surface area increases efficiency. Then a limited amount was added and at a certain concentration, which led to a reasonable improvement in efficiency. According to this procedure commercially available TiO2 (10 nm,25 nm,33 nm, 50 nm) standard. A TiO2 paste was prepared by mixing commercial TiO2, ethanol, distilled water, F:SnO2 (FTO film thickness 14 μm) conductive glasses. By using Dr. Blade method we got films with appropriate thicknesses, then by using several particle sizes (10 nm, 25 nm, 33 nm, 50 nm),many efficiencies were founded (2.39 %, 2.1 %,1.85 %,1.65%) respectively. Improved solar cell efficiency after addition of several chemical materials and the best that got is Cu (NO3)2. Efficiency became for (10 nm) (2.61 %, 2.34 %,2.1%,1.85%) respectively under 40 mW/cm2.
2015-01-01
control group; standard skin grafting with 1:1.5 meshing); Arm 2 (experimental group 1; wide 1:6 mesh graft with sprayed cells), and Arm 3...injured patient’s body and grafted over the wounded area to obtain a healed wound. These skin grafts are often “meshed” or flattened and spread out to...increase the size of the skin graft to better cover a large wound. Standard “meshing” increases the size of the donor graft by 1.5 times (1:1.5
Hill, Eric M.; Petersen, Christian P.
2015-01-01
Mechanisms determining final organ size are poorly understood. Animals undergoing regeneration or ongoing adult growth are likely to require sustained and robust mechanisms to achieve and maintain appropriate sizes. Planarians, well known for their ability to undergo whole-body regeneration using pluripotent adult stem cells of the neoblast population, can reversibly scale body size over an order of magnitude by controlling cell number. Using quantitative analysis, we showed that after injury planarians perfectly restored brain:body proportion by increasing brain cell number through epimorphosis or decreasing brain cell number through tissue remodeling (morphallaxis), as appropriate. We identified a pathway controlling a brain size set-point that involves feedback inhibition between wnt11-6/wntA/wnt4a and notum, encoding conserved antagonistic signaling factors expressed at opposite brain poles. wnt11-6/wntA/wnt4a undergoes feedback inhibition through canonical Wnt signaling but is likely to regulate brain size in a non-canonical pathway independently of beta-catenin-1 and APC. Wnt/Notum signaling tunes numbers of differentiated brain cells in regenerative growth and tissue remodeling by influencing the abundance of brain progenitors descended from pluripotent stem cells, as opposed to regulating cell death. These results suggest that the attainment of final organ size might be accomplished by achieving a balance of positional signaling inputs that regulate the rates of tissue production. PMID:26525673
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.
2017-01-01
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...
2017-07-07
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less
BIG LEAF is a regulator of organ size and adventitious root formation in poplar.
Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B
2017-01-01
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.
NASA Technical Reports Server (NTRS)
Voecks, G. E.
1985-01-01
In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.
Manga, Mohamed S; York, David W
2017-09-12
Stirred cell membrane emulsification (SCME) has been employed to prepare concentrated Pickering oil in water emulsions solely stabilized by fumed silica nanoparticles. The optimal conditions under which highly stable and low-polydispersity concentrated emulsions using the SCME approach are highlighted. Optimization of the oil flux rates and the paddle stirrer speeds are critical to achieving control over the droplet size and size distribution. Investigating the influence of oil volume fraction highlights the criticality of the initial particle loading in the continuous phase on the final droplet size and polydispersity. At a particle loading of 4 wt %, both the droplet size and polydispersity increase with increasing of the oil volume fraction above 50%. As more interfacial area is produced, the number of particles available in the continuous phase diminishes, and coincidently a reduction in the kinetics of particle adsorption to the interface resulting in larger polydisperse droplets occurs. Increasing the particle loading to 10 wt % leads to significant improvements in both size and polydispersity with oil volume fractions as high as 70% produced with coefficient of variation values as low as ∼30% compared to ∼75% using conventional homogenization techniques.
Jahanshahi, Maryam; Hsiao, Kuangfu; Jenny, Andreas; Pfleger, Cathie M
2016-08-01
Hippo signaling acts as a master regulatory pathway controlling growth, proliferation, and apoptosis and also ensures that variations in proliferation do not alter organ size. How the pathway coordinates restricting proliferation with organ size control remains a major unanswered question. Here we identify Rae1 as a highly-conserved target of the Hippo Pathway integrating proliferation and organ size. Genetic and biochemical studies in Drosophila cells and tissues and in mammalian cells indicate that Hippo signaling promotes Rae1 degradation downstream of Warts/Lats. In proliferating cells, Rae1 loss restricts cyclin B levels and organ size while Rae1 over-expression increases cyclin B levels and organ size, similar to Hippo Pathway over-activation or loss-of-function, respectively. Importantly, Rae1 regulation by the Hippo Pathway is crucial for its regulation of cyclin B and organ size; reducing Rae1 blocks cyclin B accumulation and suppresses overgrowth caused by Hippo Pathway loss. Surprisingly, in addition to suppressing overgrowth, reducing Rae1 also compromises survival of epithelial tissue overgrowing due to loss of Hippo signaling leading to a tissue "synthetic lethality" phenotype. Excitingly, Rae1 plays a highly conserved role to reduce the levels and activity of the Yki/YAP oncogene. Rae1 increases activation of the core kinases Hippo and Warts and plays a post-transcriptional role to increase the protein levels of the Merlin, Hippo, and Warts components of the pathway; therefore, in addition to Rae1 coordinating organ size regulation with proliferative control, we propose that Rae1 also acts in a feedback circuit to regulate pathway homeostasis.
Jenny, Andreas; Pfleger, Cathie M.
2016-01-01
Hippo signaling acts as a master regulatory pathway controlling growth, proliferation, and apoptosis and also ensures that variations in proliferation do not alter organ size. How the pathway coordinates restricting proliferation with organ size control remains a major unanswered question. Here we identify Rae1 as a highly-conserved target of the Hippo Pathway integrating proliferation and organ size. Genetic and biochemical studies in Drosophila cells and tissues and in mammalian cells indicate that Hippo signaling promotes Rae1 degradation downstream of Warts/Lats. In proliferating cells, Rae1 loss restricts cyclin B levels and organ size while Rae1 over-expression increases cyclin B levels and organ size, similar to Hippo Pathway over-activation or loss-of-function, respectively. Importantly, Rae1 regulation by the Hippo Pathway is crucial for its regulation of cyclin B and organ size; reducing Rae1 blocks cyclin B accumulation and suppresses overgrowth caused by Hippo Pathway loss. Surprisingly, in addition to suppressing overgrowth, reducing Rae1 also compromises survival of epithelial tissue overgrowing due to loss of Hippo signaling leading to a tissue “synthetic lethality” phenotype. Excitingly, Rae1 plays a highly conserved role to reduce the levels and activity of the Yki/YAP oncogene. Rae1 increases activation of the core kinases Hippo and Warts and plays a post-transcriptional role to increase the protein levels of the Merlin, Hippo, and Warts components of the pathway; therefore, in addition to Rae1 coordinating organ size regulation with proliferative control, we propose that Rae1 also acts in a feedback circuit to regulate pathway homeostasis. PMID:27494403
In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells
NASA Astrophysics Data System (ADS)
Kang, Tianshu; Guan, Rongfa; Chen, Xiaoqiang; Song, Yijuan; Jiang, Han; Zhao, Jin
2013-11-01
There has been rapid growth in nanotechnology in both the public and private sectors worldwide, but concern about nanosafety exists. To assess size-dependent cytotoxicity on human cancer cells, we studied the cytotoxic effect of three kinds of zinc oxide nanoparticles (ZnO NPs) on human epithelial colorectal adenocarcinoma (Caco-2) cells. Nanoparticles were first characterized by size, distribution, and intensity. Multiple assays have been adopted to measure the cell activity and oxidative stress. The cytotoxicity of ZnO NPs was time dependent and dose dependent. The 24-h exposure was chosen to confirm the viability and accessibility of the cells and taken as the appropriate time for the following test system. The IC50 value was found at a low concentration. The oxidative stress elicited a significant reduction in glutathione with increase in reactive oxygen species and lactate dehydrogenase. The toxicity resulted in a deletion of cells in the G1 phase and an accumulation of cells in the S and G2/M phases. One type of metallic oxide (ZnO) exerted different cytotoxic effects according to different particle sizes. Data from the previous experiments showed that 26-nm ZnO NPs appeared to have the highest toxicity to Caco-2 cells. The study demonstrated the toxicity of ZnO NPs to Caco-2 cells and the impact of particle size, which could be useful in the medical applications.
Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects
Watari, Fumio; Takashi, Noriyuki; Yokoyama, Atsuro; Uo, Motohiro; Akasaka, Tsukasa; Sato, Yoshinori; Abe, Shigeaki; Totsuka, Yasunori; Tohji, Kazuyuki
2009-01-01
Nanosizing effects of materials on biological organisms was investigated by biochemical cell functional tests, cell proliferation and animal implantation testing. The increase in specific surface area causes the enhancement of ionic dissolution and serious toxicity for soluble, stimulative materials. This effect originates solely from materials and enhances the same functions as those in a macroscopic size as a catalyst. There are other effects that become prominent, especially for non-soluble, biocompatible materials such as Ti. Particle size dependence showed the critical size for the transition of behaviour is at approximately 100 μm, 10 μm and 200 nm. This effect has its origin in the biological interaction process between both particles and cells/tissue. Expression of superoxide anions, cytokines tumour necrosis factor-α and interleukin-1β from neutrophils was increased with the decrease in particle size and especially pronounced below 10 μm, inducing phagocytosis to cells and inflammation of tissue, although inductively coupled plasma chemical analysis showed no dissolution from Ti particles. Below 200 nm, stimulus decreases, then particles invade into the internal body through the respiratory or digestive systems and diffuse inside the body. Although macroscopic hydroxyapatite, which exhibits excellent osteoconductivity, is not replaced with natural bone, nanoapatite composites induce both phagocytosis of composites by osteoclasts and new bone formation by osteoblasts when implanted in bone defects. The progress of this bioreaction results in the conversion of functions to bone substitution. Although macroscopic graphite is non-cell adhesive, carbon nanotubes (CNTs) are cell adhesive. The adsorption of proteins and nano-meshwork structure contribute to the excellent cell adhesion and growth on CNTs. Non-actuation of the immune system except for a few innate immunity processes gives the non-specific nature to the particle bioreaction and restricts reaction to the size-sensitive phagocytosis. Materials larger than cell size, approximately 10 μm, behave inertly, but those smaller become biointeractive and induce the intrinsic functions of living organisms. This bioreaction process causes the conversion of functions such as from biocompatibility to stimulus in Ti-abraded particles, from non-bone substitutional to bone substitutional in nanoapatite and from non-cell adhesive to cell adhesive CNTs. The insensitive nature permits nanoparticles that are less than 200 nm to slip through body defence systems and invade directly into the internal body. PMID:19364724
Zechner, Dietmar; Thuerauf, Donna J.; Hanford, Deanna S.; McDonough, Patrick M.; Glembotski, Christopher C.
1997-01-01
Three hallmark features of the cardiac hypertrophic growth program are increases in cell size, sarcomeric organization, and the induction of certain cardiac-specific genes. All three features of hypertrophy are induced in cultured myocardial cells by α1- adrenergic receptor agonists, such as phenylephrine (PE) and other growth factors that activate mitogen- activated protein kinases (MAPKs). In this study the MAPK family members extracellular signal–regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 were activated by transfecting cultured cardiac myocytes with constructs encoding the appropriate kinases possessing gain-of-function mutations. Transfected cells were then analyzed for changes in cell size, sarcomeric organization, and induction of the genes for the A- and B-type natriuretic peptides (NPs), as well as the α-skeletal actin (α-SkA) gene. While activation of JNK and/or ERK with MEKK1COOH or Raf-1 BXB, respectively, augmented cell size and effected relatively modest increases in NP and α-SkA promoter activities, neither upstream kinase conferred sarcomeric organization. However, transfection with MKK6 (Glu), which specifically activated p38, augmented cell size, induced NP and α-Ska promoter activities by up to 130-fold, and elicited sarcomeric organization in a manner similar to PE. Moreover, all three growth features induced by MKK6 (Glu) or PE were blocked with the p38-specific inhibitor, SB 203580. These results demonstrate novel and potentially central roles for MKK6 and p38 in the regulation of myocardial cell hypertrophy. PMID:9314533
Control of cell interaction using quasi-monochromatic light with varying spatiotemporal coherence
NASA Astrophysics Data System (ADS)
Budagovsky, A. V.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.
2017-02-01
By the example of plants, fungi and bacteria, we consider the possibility of controlling the interaction of cells, being in competitive, antagonistic, or parasitic relations. For this aim we used short-time irradiation (a few seconds or minutes) with the red (633 nm) quasi-monochromatic light having different spatiotemporal coherence. It is shown that the functional activity is mostly increased in the cells whose size does not exceed the coherence length and the correlation radius of the light field. Thus, in the case of cells essentially differing in size, it is possible to increase the activity of smaller cells, avoiding the stimulation of larger ones. For example, the radiation having relatively low coherence (Lcoh, rcor <= 10 μm) facilitates mainly the damage of large-size plant cells by pathogen fungi, while the exposure to light with less statistical regularity (Lcoh = 4 μm, rcor = 5 μm) inhibits the growth of the Fusarium microcera fungus, infected by the bacterium of the Pseudomonas species. The quasi-monochromatic radiation with sufficiently high spatiotemporal coherence stimulated all interacting species (bacteria, fungi, plants). In the considered biocenosis, the equilibrium was shifted towards the favour of organisms having the highest rate of cell division or the ones better using their adaptation potential.
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1990-01-01
Stratocumulus cloud fields in the FIRE IFO region are analyzed using LANDSAT Thematic Mapper imagery. Structural properties such as cloud cell size distribution, cell horizontal aspect ratio, fractional coverage and fractal dimension are determined. It is found that stratocumulus cloud number densities are represented by a power law. Cell horizontal aspect ratio has a tendency to increase at large cell sizes, and cells are bi-fractal in nature. Using LANDSAT Multispectral Scanner imagery for twelve selected stratocumulus scenes acquired during previous years, similar structural characteristics are obtained. Cloud field spatial organization also is analyzed. Nearest-neighbor spacings are fit with a number of functions, with Weibull and Gamma distributions providing the best fits. Poisson tests show that the spatial separations are not random. Second order statistics are used to examine clustering.
Cellular packing, mechanical stress and the evolution of multicellularity
NASA Astrophysics Data System (ADS)
Jacobeen, Shane; Pentz, Jennifer T.; Graba, Elyes C.; Brandys, Colin G.; Ratcliff, William C.; Yunker, Peter J.
2018-03-01
The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks ( 291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size—a fundamental step in the evolution of multicellularity.
Hierarchical complexity and the size limits of life.
Heim, Noel A; Payne, Jonathan L; Finnegan, Seth; Knope, Matthew L; Kowalewski, Michał; Lyons, S Kathleen; McShea, Daniel W; Novack-Gottshall, Philip M; Smith, Felisa A; Wang, Steve C
2017-06-28
Over the past 3.8 billion years, the maximum size of life has increased by approximately 18 orders of magnitude. Much of this increase is associated with two major evolutionary innovations: the evolution of eukaryotes from prokaryotic cells approximately 1.9 billion years ago (Ga), and multicellular life diversifying from unicellular ancestors approximately 0.6 Ga. However, the quantitative relationship between organismal size and structural complexity remains poorly documented. We assessed this relationship using a comprehensive dataset that includes organismal size and level of biological complexity for 11 172 extant genera. We find that the distributions of sizes within complexity levels are unimodal, whereas the aggregate distribution is multimodal. Moreover, both the mean size and the range of size occupied increases with each additional level of complexity. Increases in size range are non-symmetric: the maximum organismal size increases more than the minimum. The majority of the observed increase in organismal size over the history of life on the Earth is accounted for by two discrete jumps in complexity rather than evolutionary trends within levels of complexity. Our results provide quantitative support for an evolutionary expansion away from a minimal size constraint and suggest a fundamental rescaling of the constraints on minimal and maximal size as biological complexity increases. © 2017 The Author(s).
Puelles, Victor G.; Douglas-Denton, Rebecca N.; Cullen-McEwen, Luise A.; Li, Jinhua; Hughson, Michael D.; Hoy, Wendy E.; Kerr, Peter G.
2015-01-01
Increases in glomerular size occur with normal body growth and in many pathologic conditions. In this study, we determined associations between glomerular size and numbers of glomerular resident cells, with a particular focus on podocytes. Kidneys from 16 male Caucasian-Americans without overt renal disease, including 4 children (≤3 years old) to define baseline values of early life and 12 adults (≥18 years old), were collected at autopsy in Jackson, Mississippi. We used a combination of immunohistochemistry, confocal microscopy, and design-based stereology to estimate individual glomerular volume (IGV) and numbers of podocytes, nonepithelial cells (NECs; tuft cells other than podocytes), and parietal epithelial cells (PECs). Podocyte density was calculated. Data are reported as medians and interquartile ranges (IQRs). Glomeruli from children were small and contained 452 podocytes (IQR=335–502), 389 NECs (IQR=265–498), and 146 PECs (IQR=111–206). Adult glomeruli contained significantly more cells than glomeruli from children, including 558 podocytes (IQR=431–746; P<0.01), 1383 NECs (IQR=998–2042; P<0.001), and 367 PECs (IQR=309–673; P<0.001). However, large adult glomeruli showed markedly lower podocyte density (183 podocytes per 106 µm3) than small glomeruli from adults and children (932 podocytes per 106 µm3; P<0.001). In conclusion, large adult glomeruli contained more podocytes than small glomeruli from children and adults, raising questions about the origin of these podocytes. The increased number of podocytes in large glomeruli does not match the increase in glomerular size observed in adults, resulting in relative podocyte depletion. This may render hypertrophic glomeruli susceptible to pathology. PMID:25568174
Feasibility of ceramic-polymer composite cryogels as scaffolds for bone tissue engineering.
Rodriguez-Lorenzo, Luis M; Saldaña, Laura; Benito-Garzón, Lorena; García-Carrodeguas, Raul; de Aza, Salvador; Vilaboa, Nuria; Román, Julio San
2012-06-01
The purpose of the current study was to investigate whether the cryopolymerization technique is capable of producing suitable scaffolds for bone tissue engineering. Cryopolymers made of 2-hydroxyethyl methacrylate and acrylic acid with (W1 and W20) and without (W0) wollastonite particles were prepared. The elastic modulus of the specimens rose one order of magnitude from W1 to W20. Total porosity reached 56% for W0, 72% for W1 and 36% for W20, with pore sizes of up to 2 mm, large interconnection sizes of up to 1 mm and small interconnection sizes of 50-80 µm on dry specimens. Cryogels swell up to 224 ± 17% for W0, 315 ± 18% for W1 and 231 ± 27% for W20 specimens, while maintaining the integrity of the bodies. Pore sizes > 5 mm can be observed for swollen specimens. The biocompatibility of the samples was tested using human mesenchymal stem cells isolated from bone marrow and adipose tissues. Both types of cells attached and grew on the three tested substrates, colonized their inner regions and organized an extracellular cell matrix. Fibronectin and osteopontin levels decreased in the media from cells cultured on W20 samples, likely due to increased binding on the ECM deposited by cells. The osteoprotegerin-to-receptor activator of nuclear factor-κB ligand secretion ratios increased with increasing wollastonite content. Altogether, these results indicate that an appropriate balance of surface properties and structure that favours stromal cell colonization in the porous cryogels can be achieved by modulating the amount of wollastonite. Copyright © 2011 John Wiley & Sons, Ltd.
Incretin and islet hormone responses to meals of increasing size in healthy subjects.
Alsalim, Wathik; Omar, Bilal; Pacini, Giovanni; Bizzotto, Roberto; Mari, Andrea; Ahrén, Bo
2015-02-01
Postprandial glucose homeostasis is regulated through the secretion of glucagon-like peptide 1 (GLP-1) through the stimulation of insulin secretion and inhibition of glucagon secretion. However, how these processes dynamically adapt to demands created by caloric challenges achieved during daily life is not known. The objective of the study was to explore the adaptation of incretin and islet hormones after mixed meals of increasing size in healthy subjects. Twenty-four healthy lean subjects ingested a standard breakfast after an overnight fast followed, after 4 hours, by a lunch of a different size (511, 743, and 1034 kcal) but with identical nutrient composition together with 1.5 g paracetamol. Glucose, insulin, C-peptide, glucagon, intact GLP-1, and glucose-dependent insulinotropic polypeptide (GIP) and paracetamol were measured after the meals. Area under the 180-minute curve (AUC) for insulin, C-peptide, glucagon, GLP-1, and GIP and model-derived β-cell function and paracetamol appearance were calculated. Glucose profiles were similar after the two larger meals, whereas after the smaller meal, there was a postpeak reduction below baseline to a nadir of 3.8 ± 0.1 mmol/L after 75 minutes (P < .001). The AUC for GLP-1, GIP, insulin, and C-peptide were significantly higher by increasing the caloric load as was β-cell sensitivity to glucose. In contrast, the AUC glucagon was the same for all three meals, although there was an increase in glucagon after the postpeak glucose reduction in the smaller meal. The 0- to 20-minute paracetamol appearance was increased by increasing meal size. Mixed lunch meals of increasing size elicit a caloric-dependent insulin response due to increased β-cell secretion achieved by increased GIP and GLP-1 levels. The adaptation at larger meals results in identical glucose excursions, whereas after a lower caloric lunch, the insulin response is high, resulting in a postpeak suppression of glucose below baseline.
Innervation of single fungiform taste buds during development in rat.
Krimm, R F; Hill, D L
1998-08-17
To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.
Memory-Augmented Cellular Automata for Image Analysis.
1978-11-01
case in which each cell has memory size proportional to the logarithm of the input size, showing the increased capabilities of these machines for executing a variety of basic image analysis and recognition tasks. (Author)
NASA Astrophysics Data System (ADS)
Elnoby, Rasha M.; Mourad, M. Hussein; Elnaby, Salah L. Hassab; Abou Kana, Maram T. H.
2018-05-01
Solar based cells coated by nanoparticles (NPs) acknowledge potential utilizing as a part of photovoltaic innovation. The acquired silicon solar cells (Si-SCs) coated with different sizes of silver nanoparticles (Ag NPs) as well as uncoated were fabricated in our lab. The sizes and optical properties of prepared NPs were characterized by spectroscopic techniques and Mie theory respectively. The reflectivity of Si-SCs showed reduction of this property as the size of NPs increased. Electrical properties as open circuit current, fill factor and output power density were assessed and discussed depending on point of view of Mie theory for the optical properties of NPs. Also, photostabilities of SCs were assessed using diode laser of wavelength 450 nm and power 300 mW. Coated SCs with the largest Ag NPs size showed the highest Photostability due to its highest scattering efficiency according to Mie theory concept.
Effect of Frozen Storage Temperature on the Quality of Premium Ice Cream.
Park, Sung Hee; Jo, Yeon-Ji; Chun, Ji-Yeon; Hong, Geun-Pyo; Davaatseren, Munkhtugs; Choi, Mi-Jung
2015-01-01
The market sales of premium ice cream have paralleled the growth in consumer desire for rich flavor and taste. Storage temperature is a major consideration in preserving the quality attributes of premium ice cream products for both the manufacturer and retailers during prolonged storage. We investigated the effect of storage temperature (-18℃, -30℃, -50℃, and -70℃) and storage times, up to 52 wk, on the quality attributes of premium ice cream. Quality attributes tested included ice crystal size, air cell size, melting resistance, and color. Ice crystal size increased from 40.3 μm to 100.1 μm after 52 wk of storage at -18℃. When ice cream samples were stored at -50℃ or -70℃, ice crystal size slightly increased from 40.3 μm to 57-58 μm. Initial air cell size increased from 37.1 μm to 87.7 μm after storage at -18℃ for 52 wk. However, for storage temperatures of -50℃ and -70℃, air cell size increased only slightly from 37.1 μm to 46-47 μm. Low storage temperature (-50℃ and -70℃) resulted in better melt resistance and minimized color changes in comparison to high temperature storage (-18℃ and -30℃). In our study, quality changes in premium ice cream were gradually minimized according to decrease in storage temperature up to-50℃. No significant beneficial effect of -70℃ storage was found in quality attributes. In the scope of our experiment, we recommend a storage temperature of -50℃ to preserve the quality attributes of premium ice cream.
Effect of Frozen Storage Temperature on the Quality of Premium Ice Cream
Park, Sung Hee; Jo, Yeon-Ji; Chun, Ji-Yeon; Hong, Geun-Pyo
2015-01-01
The market sales of premium ice cream have paralleled the growth in consumer desire for rich flavor and taste. Storage temperature is a major consideration in preserving the quality attributes of premium ice cream products for both the manufacturer and retailers during prolonged storage. We investigated the effect of storage temperature (−18℃, −30℃, −50℃, and −70℃) and storage times, up to 52 wk, on the quality attributes of premium ice cream. Quality attributes tested included ice crystal size, air cell size, melting resistance, and color. Ice crystal size increased from 40.3 μm to 100.1 μm after 52 wk of storage at −18℃. When ice cream samples were stored at −50℃ or −70℃, ice crystal size slightly increased from 40.3 μm to 57-58 μm. Initial air cell size increased from 37.1 μm to 87.7 μm after storage at −18℃ for 52 wk. However, for storage temperatures of −50℃ and −70℃, air cell size increased only slightly from 37.1 μm to 46-47 μm. Low storage temperature (−50℃ and −70℃) resulted in better melt resistance and minimized color changes in comparison to high temperature storage (−18℃ and −30℃). In our study, quality changes in premium ice cream were gradually minimized according to decrease in storage temperature up to−50℃. No significant beneficial effect of −70℃ storage was found in quality attributes. In the scope of our experiment, we recommend a storage temperature of −50℃ to preserve the quality attributes of premium ice cream. PMID:26877639
Abstract
Procedures for purification of Leydig cells have facilitated studies of their regulatory biology. A multistep procedure, that includes a filtration with nylon mesh (100 micron pore size) to separate interstitial cells from the seminiferous tubules, combining centr...
Skibinski, David O. F.
2018-01-01
Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment. PMID:29702650
Zyuzin, Mikhail V; Honold, Tobias; Carregal-Romero, Susana; Kantner, Karsten; Karg, Matthias; Parak, Wolfgang J
2016-04-06
The temperature-dependence of the hydrodynamic diameter and colloidal stability of gold-polymer core-shell particles with temperature-sensitive (poly(N-isopropylacrylamide)) and temperature-insensitive shells (polyallylaminine hydrochloride/polystyrensulfonate, poly(isobutylene-alt-maleic anhydride)-graft-dodecyl) are investigated in various aqueous media. The data demonstrate that for all nanoparticle agglomeration, i.e., increase in effective nanoparticle size, the presence of salts or proteins in the dispersion media has to be taken into account. Poly(N-isopropylacrylamide) coated nanoparticles show a reversible temperature-dependent increase in size above the volume phase transition of the polymer shell when they are dispersed in phosphate buffered saline or in media containing protein. In contrast, the nanoparticles coated with temperature-insensitive polymers show a time-dependent increase in size in phosphate buffered saline or in medium containing protein. This is due to time-dependent agglomeration, which is particularly strong in phosphate buffered saline, and induces a time-dependent, irreversible increase in the hydrodynamic diameter of the nanoparticles. This demonstrates that one has to distinguish between temperature- and time-induced agglomerations. Since the size of nanoparticles regulates their uptake by cells, temperature-dependent uptake of thermosensitive and non-thermosensitive nanoparticles by cells lines is compared. No temperature-specific difference between both types of nanoparticles could be observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schauries, Marie; Kaczmarek, Adrian; Franz-Wachtel, Mirita; Du, Wei; Krug, Karsten; Maček, Boris; Petersen, Janni
2017-01-01
Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline) growth conditions. While it is well established that PI(3,5)P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes), neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor) sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division. PMID:28273166
CD4+ Foxp3+ T-cells contribute to myocardial ischemia-reperfusion injury.
Mathes, Denise; Weirather, Johannes; Nordbeck, Peter; Arias-Loza, Anahi-Paula; Burkard, Matthias; Pachel, Christina; Kerkau, Thomas; Beyersdorf, Niklas; Frantz, Stefan; Hofmann, Ulrich
2016-12-01
The present study analyzed the effect of CD4 + Forkhead box protein 3 negative (Foxp3 - ) T-cells and Foxp3 + CD4 + T-cells on infarct size in a mouse myocardial ischemia-reperfusion model. We examined the infarct size as a fraction of the area-at-risk as primary study endpoint in mice after 30minutes of coronary ligation followed by 24hours of reperfusion. CD4 + T-cell deficient MHC-II KO mice showed smaller histologically determined infarct size (34.5±4.7% in MHCII KO versus 59.4±4.9% in wildtype (WT)) and better preserved ejection fraction determined by magnetic resonance tomography (56.9±2.8% in MHC II KO versus 39.0±4.2% in WT). MHC-II KO mice also displayed better microvascular perfusion than WT mice after 24hours of reperfusion. Also CD4 + T-cell sufficient OT-II mice, which express an in this context irrelevant T-cell receptor, revealed smaller infarct sizes compared to WT mice. However, MHC-II blocking anti-I-A/I-E antibody treatment was not able to reduce infarct size indicating that autoantigen recognition is not required for the activation of CD4 + T-cells during reperfusion. Flow-cytometric analysis also did not detect CD4 + T-cell activation in heart draining lymph nodes in response to 24hours of ischemia-reperfusion. Adoptive transfer of CD4 + T-cells in CD4 KO mice increased the infarct size only when including the Foxp3 + CD25 + subset. Depletion of CD4 + Foxp3 + T-cells in DEREG mice enabling specific conditional ablation of this subset by treatment with diphtheria toxin attenuated infarct size as compared to diphtheria toxin treated WT mice. CD4 + Foxp3 + T-cells enhance myocardial ischemia-reperfusion injury. CD4 + T-cells exert injurious effects without the need for prior activation by MHC-II restricted autoantigen recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Castillo-Morales, Atahualpa; Monzón-Sandoval, Jimena; de Sousa, Alexandra A.
2016-01-01
Increased brain size is thought to have played an important role in the evolution of mammals and is a highly variable trait across lineages. Variations in brain size are closely linked to corresponding variations in the size of the neocortex, a distinct mammalian evolutionary innovation. The genomic features that explain and/or accompany variations in the relative size of the neocortex remain unknown. By comparing the genomes of 28 mammalian species, we show that neocortical expansion relative to the rest of the brain is associated with variations in gene family size (GFS) of gene families that are significantly enriched in biological functions associated with chemotaxis, cell–cell signalling and immune response. Importantly, we find that previously reported GFS variations associated with increased brain size are largely accounted for by the stronger link between neocortex expansion and variations in the size of gene families. Moreover, genes within these families are more prominently expressed in the human neocortex during early compared with adult development. These results suggest that changes in GFS underlie morphological adaptations during brain evolution in mammalian lineages. PMID:27707894
Effect of temperature on the formation of creep substructure in sodium chloride single crystals
NASA Technical Reports Server (NTRS)
Raj, Sai V.; Pharr, George M.
1992-01-01
The effect of temperature on the substructure morphology and the cell and subgrain size was investigated experimentally in NaCl single crystals under creep in the temperature range 573-873 K. It is found that the effect of temperature on the cell and subgrain sizes is weak in comparison with the effect of stress. However, there was a qualitative change in the substructure morphology with temperature, with the cells and subgrains better defined at higher temperatures. The volume fraction of the cell boundaries decreased with increasing temperature, thereby indicating a refinement of the microstructure at higher temperatures.
Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding.
Vuković, Lidija D; Jevtić, Predrag; Zhang, Zhaojie; Stohr, Bradley A; Levy, Daniel L
2016-03-15
Altered nuclear size is associated with many cancers, and determining whether cancer-associated changes in nuclear size contribute to carcinogenesis necessitates an understanding of mechanisms of nuclear size regulation. Although nuclear import rates generally positively correlate with nuclear size, NTF2 levels negatively affect nuclear size, despite the role of NTF2 (also known as NUTF2) in nuclear recycling of the import factor Ran. We show that binding of Ran to NTF2 is required for NTF2 to inhibit nuclear expansion and import of large cargo molecules in Xenopus laevis egg and embryo extracts, consistent with our observation that NTF2 reduces the diameter of the nuclear pore complex (NPC) in a Ran-binding-dependent manner. Furthermore, we demonstrate that ectopic NTF2 expression in Xenopus embryos and mammalian tissue culture cells alters nuclear size. Finally, we show that increases in nuclear size during melanoma progression correlate with reduced NTF2 expression, and increasing NTF2 levels in melanoma cells is sufficient to reduce nuclear size. These results show a conserved capacity for NTF2 to impact on nuclear size, and we propose that NTF2 might be a new cancer biomarker. © 2016. Published by The Company of Biologists Ltd.
Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong
2016-01-01
Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution. PMID:26961061
Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong
2016-03-10
Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution.
Poduri, Aruna; Chang, Andrew H; Raftrey, Brian; Rhee, Siyeon; Van, Mike; Red-Horse, Kristy
2017-09-15
How mechanotransduction intersects with chemical and transcriptional factors to shape organogenesis is an important question in developmental biology. This is particularly relevant to the cardiovascular system, which uses mechanical signals from flowing blood to stimulate cytoskeletal and transcriptional responses that form a highly efficient vascular network. Using this system, artery size and structure are tightly regulated, but the underlying mechanisms are poorly understood. Here, we demonstrate that deletion of Smad4 increased the diameter of coronary arteries during mouse embryonic development, a phenotype that followed the initiation of blood flow. At the same time, the BMP signal transducers SMAD1/5/8 were activated in developing coronary arteries. In a culture model of blood flow-induced shear stress, human coronary artery endothelial cells failed to align when either BMPs were inhibited or SMAD4 was depleted. In contrast to control cells, SMAD4- deficient cells did not migrate against the direction of shear stress and increased proliferation rates specifically under flow. Similar alterations were seen in coronary arteries in vivo Thus, endothelial cells perceive the direction of blood flow and respond through SMAD signaling to regulate artery size. © 2017. Published by The Company of Biologists Ltd.
Contact behavior modelling and its size effect on proton exchange membrane fuel cell
NASA Astrophysics Data System (ADS)
Qiu, Diankai; Peng, Linfa; Yi, Peiyun; Lai, Xinmin; Janßen, Holger; Lehnert, Werner
2017-10-01
Contact behavior between the gas diffusion layer (GDL) and bipolar plate (BPP) is of significant importance for proton exchange membrane fuel cells. Most current studies on contact behavior utilize experiments and finite element modelling and focus on fuel cells with graphite BPPs, which lead to high costs and huge computational requirements. The objective of this work is to build a more effective analytical method for contact behavior in fuel cells and investigate the size effect resulting from configuration alteration of channel and rib (channel/rib). Firstly, a mathematical description of channel/rib geometry is outlined in accordance with the fabrication of metallic BPP. Based on the interface deformation characteristic and Winkler surface model, contact pressure between BPP and GDL is then calculated to predict contact resistance and GDL porosity as evaluative parameters of contact behavior. Then, experiments on BPP fabrication and contact resistance measurement are conducted to validate the model. The measured results demonstrate an obvious dependence on channel/rib size. Feasibility of the model used in graphite fuel cells is also discussed. Finally, size factor is proposed for evaluating the rule of size effect. Significant increase occurs in contact resistance and porosity for higher size factor, in which channel/rib width decrease.
Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles
NASA Astrophysics Data System (ADS)
Fede, C.; Albertin, Giovanna; Petrelli, L.; De Caro, R.; Fortunati, I.; Weber, V.; Ferrante, Camilla
2017-09-01
Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size.
Zarghami, Niloufar; Murrell, Donna H; Jensen, Michael D; Dick, Frederick A; Chambers, Ann F; Foster, Paula J; Wong, Eugene
2018-06-01
Brain metastasis is becoming increasingly prevalent in breast cancer due to improved extra-cranial disease control. With emerging availability of modern image-guided radiation platforms, mouse models of brain metastases and small animal magnetic resonance imaging (MRI), we examined brain metastases' responses from radiotherapy in the pre-clinical setting. In this study, we employed half brain irradiation to reduce inter-subject variability in metastases dose-response evaluations. Half brain irradiation was performed on a micro-CT/RT system in a human breast cancer (MDA-MB-231-BR) brain metastasis mouse model. Radiation induced DNA double stranded breaks in tumors and normal mouse brain tissue were quantified using γ-H2AX immunohistochemistry at 30 min (acute) and 11 days (longitudinal) after half-brain treatment for doses of 8, 16 and 24 Gy. In addition, tumor responses were assessed volumetrically with in-vivo longitudinal MRI and histologically for tumor cell density and nuclear size. In the acute setting, γ-H2AX staining in tumors saturated at higher doses while normal mouse brain tissue continued to increase linearly in the phosphorylation of H2AX. While γ-H2AX fluorescence intensities returned to the background level in the brain 11 days after treatment, the residual γ-H2AX phosphorylation in the radiated tumors remained elevated compared to un-irradiated contralateral tumors. With radiation, MRI-derived relative tumor growth was significantly reduced compared to the un-irradiated side. While there was no difference in MRI tumor volume growth between 16 and 24 Gy, there was a significant reduction in tumor cell density from histology with increasing dose. In the longitudinal study, nuclear size in the residual tumor cells increased significantly as the radiation dose was increased. Radiation damages to the DNAs in the normal brain parenchyma are resolved over time, but remain unrepaired in the treated tumors. Furthermore, there is a radiation dose response in nuclear size of surviving tumor cells. Increase in nuclear size together with unrepaired DNA damage indicated that the surviving tumor cells post radiation had continued to progress in the cell cycle with DNA replication, but failed cytokinesis. Half brain irradiation provides efficient evaluation of dose-response for cancer cell lines, a pre-requisite to perform experiments to understand radio-resistance in brain metastases.
Reduced Ang2 expression in aging endothelial cells.
Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J
2016-06-03
Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. Copyright © 2016 Elsevier Inc. All rights reserved.
Interplay between Endometriosis and Pregnancy in a Mouse Model.
Bilotas, Mariela Andrea; Olivares, Carla Noemí; Ricci, Analía Gabriela; Baston, Juan Ignacio; Bengochea, Tatiana Soledad; Meresman, Gabriela Fabiana; Barañao, Rosa Inés
2015-01-01
To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation. Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid. Pregnancy rate (i.e. pregnant mice/N) decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions. Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis.
Neurogenic radial glia in the outer subventricular zone of human neocortex.
Hansen, David V; Lui, Jan H; Parker, Philip R L; Kriegstein, Arnold R
2010-03-25
Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.
Angular-dependent light scattering from cancer cells in different phases of the cell cycle.
Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong
2017-10-10
Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.
Organelle Size Scaling of the Budding Yeast Vacuole by Relative Growth and Inheritance.
Chan, Yee-Hung M; Reyes, Lorena; Sohail, Saba M; Tran, Nancy K; Marshall, Wallace F
2016-05-09
It has long been noted that larger animals have larger organs compared to smaller animals of the same species, a phenomenon termed scaling [1]. Julian Huxley proposed an appealingly simple model of "relative growth"-in which an organ and the whole body grow with their own intrinsic rates [2]-that was invoked to explain scaling in organs from fiddler crab claws to human brains. Because organ size is regulated by complex, unpredictable pathways [3], it remains unclear whether scaling requires feedback mechanisms to regulate organ growth in response to organ or body size. The molecular pathways governing organelle biogenesis are simpler than organogenesis, and therefore organelle size scaling in the cell provides a more tractable case for testing Huxley's model. We ask the question: is it possible for organelle size scaling to arise if organelle growth is independent of organelle or cell size? Using the yeast vacuole as a model, we tested whether mutants defective in vacuole inheritance, vac8Δ and vac17Δ, tune vacuole biogenesis in response to perturbations in vacuole size. In vac8Δ/vac17Δ, vacuole scaling increases with the replicative age of the cell. Furthermore, vac8Δ/vac17Δ cells continued generating vacuole at roughly constant rates even when they had significantly larger vacuoles compared to wild-type. With support from computational modeling, these results suggest there is no feedback between vacuole biogenesis rates and vacuole or cell size. Rather, size scaling is determined by the relative growth rates of the vacuole and the cell, thus representing a cellular version of Huxley's model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian
2015-07-01
Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ye, Zhou; Ellis, Michael W.; Nain, Amrinder S.; Behkam, Bahareh
2017-04-01
Microbial fuel cells (MFCs) are envisioned to serve as compact and sustainable sources of energy; however, low current and power density have hindered their widespread use. Introduction of 3D micro/nanostructures on the MFC anode is known to improve its performance by increasing the surface area available for bacteria attachment; however, the role of the feature size remains poorly understood. To delineate the role of feature size from the ensuing surface area increase, nanostructures with feature heights of 115 nm and 300 nm, both at a height to width aspect ratio of 0.3, are fabricated in a grid pattern on glassy carbon electrodes (GCEs). Areal current densities and bacteria attachment densities of the patterned and unpatterned GCEs are compared using Shewanella oneidensis Δbfe in a three-electrode bioreactor. The 115 nm features elicit a remarkable 40% increase in current density and a 78% increase in bacterial attachment density, whereas the GCE with 300 nm pattern does not exhibit significant change in current density or bacterial attachment density. The current density dependency on feature size is maintained over the entire 160 h experiment. Thus, optimally sized surface features have a substantial effect on current production that is independent of their effect on surface area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolbeare, F.A.; Phares, W.
1979-01-01
Conditions for the biochemical and flow cytometric assay of 7-bromo-3-hydroxy-2-naphtho-o-anisidine phosphatase and ..beta..-D-glucuronidase activities in Chinese hamster ovary cells were studied. In the biochemical assays, the pH optimum for the phosphatase activity was pH 4.6 with a Km of 10/sup -5/ M; the pH optimum for ..beta..-D-glucuronidase activity was pH 5.0 with a Km of 2 x 10/sup -5/ M. For intact cells the derived constants were 3 to 10 times higher. The rate of hydrolysis of both substrates was also examined by flow cytometry. Cellular fluorescence increased linearly for only about 15 min. Diffusion of the fluorescent product probablymore » caused nonlinearity of the fluorescence increase and was demonstrated by mixing cells incubated with substrate with those that had not been incubated. After 15 min, cells that had not been exposed previously to product or substrate contained the fluorescent product. Cells fractionated into size classes by centrifugal elutriation also were analyzed by flow cytometry for ..beta..-D-glucuronidase activity. The activity increased linearly with the increase in cell size corresponding to the progression from G/sub 1/ through S and into G/sub 2/-M phases of the cell cycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirtchevsky, D.
1960-01-01
The effect of D/sub 2/O on the growth of three stable mammalian cell lines (HeLa, L, and L-5178Y) was investigated. As D/sub 2/O concentration is increased, all cells show an increased water content and dry weight and a decreased growth rate. Cytologically an increase is seen in ths number of multinucleated cells and sudanophilic material. Chemical investigation of the three stable D/sub 2/O-grown cell lines shows a decrease in phosphorus compounds of all types and in ribose compounds. An increase in total glyceride, a questionable increase in ester sterol in L5l78Y and L, and a decrease in free sterol aremore » noted. In HeLa, a definite increase in estsr sterol and a questionable change in free sterol are seen. Swiss mice were maintained on a regimen of 25% D/sub 2/O for three weeks. The mice were slightly smaller than H/ sub 2/O-fed controls, but the liver weight/ body weight ratio was greater. There were no significant differences in liver lipid or cholesterol. Histologic examination showed progressive vacuolization and loss of basophilia, with changes in the mitochondrial distribution in the cytoplasm. These alterations did not show any specific localization in the hepatic lobule. There was a progressive reduction in the ability of liver homogenates from D/sub 2/O-fed mice to convent acetate-2-C-14 to cholesterol and fatty acid. Incubation of normal mouse livers in media containing 75% D/sub 2/O resulted in significant enhancement of cholesterol and fatty acid biosynthetic capacity. The reduced lipogenesis in D/ sub 2/O-fed mice appears to be due to derangements in cell structure, rather than to inhibition of enzyme activity, The effect of D/sub 2/O on bacteriophage replication was examined. Ths burst size of T5 was somewhat reduced in deuterated E. coli, but the burst size of T7 was significantly increased. These differences might be explained by the fact that although the bulk of T5 DNA is derived from the medium, most of the T7 DNA is derived from the host. With increased size of the host, more DNA and protein production might be expected. Studies of the multiplication of poliovirus in deuterated HeLa and monkey kidney cells show a marked increase in burst size. An attenuated type 1 polio virus (CHAT) that does not normally multiply at elevated temperatares will do so in deuterated media. This strain of polio will also grow well on stable lines of monkey kidney in deuterated media; in aqueous media the growth of CHAT on this cell line is very poor. (auth)« less
Szczurek, Andrzej; Plyushch, Artyom; Macutkevic, Jan
2018-01-01
Electromagnetic shielding is a topic of high importance for which lightweight materials are highly sought. Porous carbon materials can meet this goal, but their structure needs to be controlled as much as possible. In this work, cellular carbon monoliths of well-defined porosity and cell size were prepared by a template method, using sacrificial paraffin spheres as the porogen and resorcinol-formaldehyde (RF) resin as the carbon precursor. Physicochemical studies were carried out for investigating the conversion of RF resin into carbon, and the final cellular monoliths were investigated in terms of elemental composition, total porosity, surface area, micropore volumes, and micro/macropore size distributions. Electrical and electromagnetic (EM) properties were investigated in the static regime and in the Ka-band, respectively. Due to the phenolic nature of the resin, the resultant carbon was glasslike, and the special preparation protocol that was used led to cellular materials whose cell size increased with density. The materials were shown to be relevant for EM shielding, and the relationships between those properties and the density/cell size of those cellular monoliths were elucidated. PMID:29723961
Constraints on the adult-offspring size relationship in protists.
Caval-Holme, Franklin; Payne, Jonathan; Skotheim, Jan M
2013-12-01
The relationship between adult and offspring size is an important aspect of reproductive strategy. Although this filial relationship has been extensively examined in plants and animals, we currently lack comparable data for protists, whose strategies may differ due to the distinct ecological and physiological constraints on single-celled organisms. Here, we report measurements of adult and offspring sizes in 3888 species and subspecies of foraminifera, a class of large marine protists. Foraminifera exhibit a wide range of reproductive strategies; species of similar adult size may have offspring whose sizes vary 100-fold. Yet, a robust pattern emerges. The minimum (5th percentile), median, and maximum (95th percentile) offspring sizes exhibit a consistent pattern of increase with adult size independent of environmental change and taxonomic variation over the past 400 million years. The consistency of this pattern may arise from evolutionary optimization of the offspring size-fecundity trade-off and/or from cell-biological constraints that limit the range of reproductive strategies available to single-celled organisms. When compared with plants and animals, foraminifera extend the evidence that offspring size covaries with adult size across an additional five orders of magnitude in organism size. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Li, Bei; Liu, Hua; Zhang, Yue; Kang, Tao; Zhang, Li; Tong, Jianhua; Xiao, Langtao; Zhang, Hongxia
2013-12-01
Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase-encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild-type plants, an effect that was reproduced in our 2-year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase-encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improve both grain yield and grain quality in crop plants. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Turner, Joseph D.; Jenkins, Gavin R.; Hogg, Karen G.; Aynsley, Sarah A.; Paveley, Ross A.; Cook, Peter C.; Coles, Mark C.; Mountford, Adrian P.
2011-01-01
Eggs of the helminth Schistosoma mansoni accumulate in the colon following infection and generate Th2-biassed inflammatory granulomas which become down- modulated in size as the infection proceeds to chronicity. However, although CD4+CD25+FoxP3+regulatory T cells (Tregs) are known to suppress Th1-mediated colitis, it is not clear whether they control Th2 –associated pathologies of the large intestine which characterise several helminth infections. Here we used a novel 3D-multiphoton confocal microscopy approach to visualise and quantify changes in the size and composition of colonic granulomas at the acute and chronic phases of S. mansoni infection. We observed decreased granuloma size, as well as reductions in the abundance of DsRed+ T cells and collagen deposition at 14 weeks (chronic) compared to 8 weeks (acute) post-infection. Th2 cytokine production (i.e. IL-4, IL-5) in the colonic tissue and draining mesenteric lymph node (mLN) decreased during the chronic phase of infection, whilst levels of TGF-β1 increased, co-incident with reduced mLN proliferative responses, granuloma size and fibrosis. The proportion of CD4+CD25+FoxP3+Tregs: CD4+ cells in the mLN increased during chronic disease, while within colonic granulomas there was an approximate 4-fold increase. The proportion of CD4+CD25+FoxP3+Tregs in the mLN that were CD103+ and CCR5+ also increased indicating an enhanced potential to home to intestinal sites. CD4+CD25+ cells suppressed antigen-specific Th2 mLN cell proliferation in vitro, while their removal during chronic disease resulted in significantly larger granulomas, partial reversal of Th2 hypo-responsiveness and an increase in the number of eosinophils in colonic granulomas. Finally, transfer of schistosome infection-expanded CD4+CD25+Tregs down-modulated the development of colonic granulomas, including collagen deposition. Therefore, CD4+CD25+FoxP3+Tregs appear to control Th2 colonic granulomas during chronic infection, and are likely to play a role in containing pathology during intestinal schistosomiasis. PMID:21858239
The role of membrane fluidization in the gel-assisted formation of giant polymersomes
Greene, Adrienne C.; Henderson, Ian M.; Gomez, Andrew; ...
2016-07-13
Polymersomes are being widely explored as synthetic analogs of lipid vesicles based on their enhanced stability and potential uses in a wide variety of applications in (e.g., drug delivery, cell analogs, etc.). Controlled formation of giant polymersomes for use in membrane studies and cell mimetic systems, however, is currently limited by low-yield production methodologies. Here, we describe for the first time, how the size distribution of giant poly(ethylene glycol)-poly(butadiene) (PEO-PBD) polymersomes formed by gel-assisted rehydration may be controlled based on membrane fluidization. We first show that the average diameter and size distribution of PEO-PBD polymersomes may be readily increased bymore » increasing the temperature of the rehydration solution. Further, we describe a correlative relationship between polymersome size and membrane fluidization through the addition of sucrose during rehydration, enabling the formation of PEO-PBD polymersomes with a range of diameters, including giant-sized vesicles (>100 μm). This correlative relationship suggests that sucrose may function as a small molecule fluidizer during rehydration, enhancing polymer diffusivity during formation and increasing polymersome size. Altogether the ability to easily regulate the size of PEO-PBD polymersomes based on membrane fluidity, either through temperature or fluidizers, has broadly applicability in areas including targeted therapeutic delivery and synthetic biology.« less
Micropatterning tractional forces in living cells
NASA Technical Reports Server (NTRS)
Wang, Ning; Ostuni, Emanuele; Whitesides, George M.; Ingber, Donald E.
2002-01-01
Here we describe a method for quantifying traction in cells that are physically constrained within micron-sized adhesive islands of defined shape and size on the surface of flexible polyacrylamide gels that contain fluorescent microbeads (0.2-microm diameter). Smooth muscle cells were plated onto square (50 x 50 microm) or circular (25- or 50-microm diameter) adhesive islands that were created on the surface of the gels by applying a collagen coating through microengineered holes in an elastomeric membrane that was later removed. Adherent cells spread to take on the size and shape of the islands and cell tractions were quantitated by mapping displacement fields of the fluorescent microbeads within the gel. Cells on round islands did not exhibit any preferential direction of force application, but they exerted their strongest traction at sites where they formed protrusions. When cells were confined to squares, traction was highest in the corners both in the absence and presence of the contractile agonist, histamine, and cell protrusions were also observed in these regions. Quantitation of the mean traction exerted by cells cultured on the different islands revealed that cell tension increased as cell spreading was promoted. These results provide a mechanical basis for past studies that demonstrated a similar correlation between spreading and growth within various anchorage-dependent cells. This new approach for analyzing the spatial distribution of mechanical forces beneath individual cells that are experimentally constrained to defined sizes and shapes may provide additional insight into the biophysical basis of cell regulation. Copyright 2002 Wiley-Liss, Inc.
SEM Imaging for Observation of Morphological Changes in Anaemic Human Blood Cell
NASA Astrophysics Data System (ADS)
Datta, Triparna; Roychoudhury, Uttam
Scanning Electron Microscopy (SEM) is utilized to elucidate the morphological changes in anaemic human red blood cells. Haemoglobin concentration in human blood is in the range of 11.5-13.5 g/dl in healthy adults. Haemoglobin concentration in anaemic red blood is below the lower limit of normal range. Sometimes, the nature of the abnormal shape of the blood cell determines the cause of anaemia. Normally, there occurs a variation in the diameter of the red blood cell (RBC) for different types of anaemia. Increased variation of size in blood cell is termed anisocytosis (a type of anaemia) (Mohan H, Text book of pathology, New Delhi). In case of anisocytosis, diameter of cells larger than normal cell is observed. The classification of anaemia by the size of blood cell is logical, i.e. common morphological abnormality of human blood cell (Davidson's principle and practice of medicine, Publisher Churchill Livingstone, London). Cells are studied under ZEISS SEM with different magnification and applied potential of kV range. Thus the diameters of RBCs in SEM have been compared with RBCs photographed with light microscope. Anaemic cells are observed overlapped with each other with increasing diameter.
Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans.
Klis, Frans M; de Koster, Chris G; Brul, Stanley
2014-01-01
Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.
Cell Wall-Related Bionumbers and Bioestimates of Saccharomyces cerevisiae and Candida albicans
de Koster, Chris G.; Brul, Stanley
2014-01-01
Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species. PMID:24243791
BIOLOGICAL EFFECTS OF DEUTERIUM OXIDE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothstein, E.L.
1962-01-01
D/sub 2/0 was used to study the synthesis of viral nucleic acid and cellular lipids. Deuteration of bacterial and mammalian cells resulted in increascd size and an altered lipid profile. Infection of Escherichia coli with phages T5 and T7 resulted in the production of increased amounts of T7. Such increases were appearently a function of deuteration in the life cycle of the virus. Similarly, the HeLa cell, maintained in tissue culture, produced increased amounts of polio virus when cells were deuterated. (H.H.D.)
Yu, Miao; Huang, Shaohui; Yu, Kevin Jun; Clyne, Alisa Morss
2012-01-01
Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles. PMID:22754315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fine, L.G.; Holley, R.W.; Nasri, H.
Renal hypertrophy is characterized by an increase in cell size and protein content with minimal hyperplasia. The mechanisms of control of this pattern of cell growth have not been determined. The present studies examined whether the growth inhibitor elaborated by BSC-1 kidney epilethal cells (GI), which has nearly identical biological properties to transforming growth factor ..beta.. (TGF-..beta..), could transform a mitogenic stimulus into a hypertrophic stimulus for rabbit renal proximal tubular cells in primary culture. Insulin plus hydrocortisone increased the amount of protein per cell, cell volume, and (/sup 3/H)thymidine incorporation at 24 and 48 hr in these cells. Whenmore » added together with insulin plus hydrocortisone, GI/TGF-..beta.. inhibited the stimulatory effect of these mitogens on (/sup 3/H)thymidine incorporation but did not block the increase in protein per cell and cell volume - i.e., the cells underwent hypertrophy. The fact that this pattern persisted for 48 hr indicated that GI/TGF-..beta.. exerted a prolonged inhibitory effect on mitogenic-stimulated DNA synthesis rather than delaying its onset. Amiloride-sensitive Na/sup +/ uptake using /sup 22/Na/sup +/ as a tracer, correlated with protein per cell and cell volume rather than with DNA synthesis. These studies indicate that the control of cell size may be regulated by autocrine mechanisms mediated by the elaboration of growth inhibitory factors that alter the pattern of the growth response to mitogens.« less
Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells*
Jevtić, Predrag; Edens, Lisa J.; Li, Xiaoyang; Nguyen, Thang; Chen, Pan; Levy, Daniel L.
2015-01-01
A fundamental question in cell biology concerns the regulation of organelle size. While nuclear size is exquisitely controlled in different cell types, inappropriate nuclear enlargement is used to diagnose and stage cancer. Clarifying the functional significance of nuclear size necessitates an understanding of the mechanisms and proteins that control nuclear size. One structural component implicated in the regulation of nuclear morphology is the nuclear lamina, a meshwork of intermediate lamin filaments that lines the inner nuclear membrane. However, there has not been a systematic investigation of how the level and type of lamin expression influences nuclear size, in part due to difficulties in precisely controlling lamin expression levels in vivo. In this study, we circumvent this limitation by studying nuclei in Xenopus laevis egg and embryo extracts, open biochemical systems that allow for precise manipulation of lamin levels by the addition of recombinant proteins. We find that nuclear growth and size are sensitive to the levels of nuclear lamins, with low and high concentrations increasing and decreasing nuclear size, respectively. Interestingly, each type of lamin that we tested (lamins B1, B2, B3, and A) similarly affected nuclear size whether added alone or in combination, suggesting that total lamin concentration, and not lamin type, is more critical to determining nuclear size. Furthermore, we show that altering lamin levels in vivo, both in Xenopus embryos and mammalian tissue culture cells, also impacts nuclear size. These results have implications for normal development and carcinogenesis where both nuclear size and lamin expression levels change. PMID:26429910
Diel Variations in Optical Properties of Micromonas pusilla, a Prasinophyte
NASA Technical Reports Server (NTRS)
DuRand, Michele D.; Green, Rebecca E.; Sosik, Heidi M.; Olson, Robert J.
2001-01-01
A laboratory experiment was conducted on cultures of Micromonas pusilla, a marine prasinophyte, to investigate how cell growth and division affect the optical properties over the light:dark cycle. Measurements were made of cell size and concentration, attenuation and absorption coefficients, flow cytometric light scattering (in forward and side directions), chlorophyll and carbon content. Refractive index was calculated using the anomalous diffraction approximation Cells were about 1.5 micrometers in diameter and exhibited phased division, with the major division burst occurring during the night. Typical diel variations were observed, with cells increasing in size and light scattering during the day as they photosynthesize and decreasing at night upon division. The cells were in ultradian growth, with more than one division per day, at a light level of 120 Mu-mol photons m/sq/sec. Since these cells are similar in size to small phytoplankton that are typically abundant in field samples, these results can be used in the interpretation of diel variations in light scattering in natural populations of phytoplankton.
In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery
NASA Astrophysics Data System (ADS)
Wang, Yancai; Zhang, Dianrui; Liu, Zhaoping; Liu, Guangpu; Duan, Cunxian; Jia, Lejiao; Feng, Feifei; Zhang, Xiaoyu; Shi, Yanqiu; Zhang, Qiang
2010-04-01
In this study, we evaluate the effect of particle sizes on the physicochemical properties of silybin and identify the influence of silybin nanosuspensions on its permeation across the Caco-2 cell monolayer. In vivo pharmacokinetic evaluation of silybin nanosuspensions was also carried out in beagle dogs. TEM, AFM and SEM analyses revealed the effect of homogenization pressure on particle size and morphology, and confirmed the existence of a surfactant-stabilizer film on the surface of nanoparticles. DSC and XRPD experiments manifested that the crystalline state was maintained as particle size was reduced and the enhanced dissolution property was due to the increased surface area. Nanosuspensions had a significant influence on drug transport across the Caco-2 cell monolayer and the enhanced dissolution velocity was responsible for the increased permeability. A pharmacokinetics study in beagle dogs further confirmed the in vitro results and demonstrated that oral administration of silybin nanosuspensions significantly increase its bioavailability compared to the coarse powder. Nanosuspensions of silybin with smaller particle size reveal a higher potential to increase their oral bioavailability; while for intravenous infusion the lower pressure produced silybin nanosuspensions appeared to maintain a more sustained drug release profile.
Cannabidiol Reduces Leukemic Cell Size - But Is It Important?
Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L
2017-01-01
The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro . However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent.
Cannabidiol Reduces Leukemic Cell Size – But Is It Important?
Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L.
2017-01-01
The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro. However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent. PMID:28392768
Deletion of p66Shc in mice increases the frequency of size-change mutations in the lacZ transgene.
Beltrami, Elena; Ruggiero, Antonella; Busuttil, Rita; Migliaccio, Enrica; Pelicci, Pier Giuseppe; Vijg, Jan; Giorgio, Marco
2013-04-01
Upon oxidative challenge the genome accumulates adducts and breaks that activate the DNA damage response to repair, arrest, or eliminate the damaged cell. Thus, reactive oxygen species (ROS) generated by endogenous oxygen metabolism are thought to affect mutation frequency. However, few studies determined the mutation frequency when oxidative stress is reduced. To test whether in vivo spontaneous mutation frequency is altered in mice with reduced oxidative stress and cell death rate, we crossed p66Shc knockout (p66KO) mice, characterized by reduced intracellular concentration of ROS and by impaired apoptosis, with a transgenic line harboring multiple copies of the lacZ mutation reporter gene as part of a plasmid that can be recovered from organs into Escherichia coli to measure mutation rate. Liver and small intestine from 2- to 24-month-old, lacZ (p66Shc+/+) and lacZp66KO mice, were investigated revealing no difference in overall mutation frequency but a significant increase in the frequency of size-change mutations in the intestine of lacZp66KO mice. This difference was further increased upon irradiation of mice with X-ray. In addition, we found that knocking down cyclophilin D, a gene that facilitates mitochondrial apoptosis acting downstream of p66Shc, increased the size-change mutation frequency in small intestine. Size-change mutations also accumulated in death-resistant embryonic fibroblasts from lacZp66KO mice treated with H2 O2 . These results indicate that p66Shc plays a role in the accumulation of DNA rearrangements and suggest that p66Shc functions to clear damaged cells rather than affect DNA metabolism. © 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Effects of cholinergic drugs on receptive field properties of rabbit retinal ganglion cells
Ariel, M.; Daw, N. W.
1982-01-01
1. Retinal ganglion cells were recorded extracellularly from the rabbit's eye in situ to study the effects of cholinergic drugs on receptive field properties. Physostigmine, an acetylcholinesterase inhibitor, and nicotine increased the spontaneous activity of nearly all retinal ganglion cell types. The effectiveness of physostigmine was roughly correlated with the neurone's inherent level of spontaneous activity. Brisk cells, having high rates of spontaneous firing, showed large increases in their maintained discharge, whereas sluggish cells, with few or no spontaneous spikes, showed small and sometimes transient increases in spontaneous activity during physostigmine. 2. The sensitivity of ganglion cells to spots of optimal size and position did not change substantially during the infusion of physostigmine. However, the responsiveness to light (number of spikes per stimulus above the spontaneous level) increased. This effect occurred with sluggish and more complex cells, rarely with brisk cells. 3. Another effect of physostigmine on sluggish and more complex cells was to make these cells `on—off'. The additional response to the inappropriate change in contrast had a long latency and lacked an initial transient burst. 4. Complex receptive field properties such as orientation sensitivity, radial grating inhibition, speed tuning and size specificity were also examined. These inhibitory properties were still present during infusion of physostigmine and, in most cases, the trigger feature of each cell type remained. 5. These results are consistent with pharmacological results on ACh release from the retina. There appear to be two types of release of ACh, having their most powerful influences on separate classes of cells. One release (transient), occurs at light onset and offset and acts primarily on sluggish and more complex ganglion cells; the other release (tonic) is not light-modulated and acts primarily on brisk cells. A wiring diagram for the ACh cells is suggested. PMID:7097593
The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size
Rideout, Elizabeth J.; Narsaiya, Marcus S.; Grewal, Savraj S.
2015-01-01
Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway. PMID:26710087
The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.
Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S
2015-12-01
Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.
Cui, Long-Hui; Joo, Hyung Joon; Kim, Dae Hwan; Seo, Ha-Rim; Kim, Jung Suk; Choi, Seung-Cheol; Huang, Li-Hua; Na, Ji Eun; Lim, I-Rang; Kim, Jong-Ho; Rhyu, Im Joo; Hong, Soon Jun; Lee, Kyu Back; Lim, Do-Sun
2018-01-01
Nanotopography plays a pivotal role in the regulation of cellular responses. Nonetheless, little is known about how the gradient size of nanostructural stimuli alters the responses of endothelial progenitor cells without chemical factors. Herein, the fabrication of gradient nanopattern plates intended to mimic microenvironment nanotopography is described. The gradient nanopattern plates consist of nanopillars of increasing diameter ranges [120-200 nm (GP 120/200), 200-280 nm (GP 200/280), and 280-360 nm (GP 280/360)] that were used to screen the responses of human endothelial colony-forming cells (hECFCs). Nanopillars with a smaller nanopillar diameter caused the cell area and perimeter of hECFCs to decrease and their filopodial outgrowth to increase. The structure of vinculin (a focal adhesion marker in hECFCs) was also modulated by nanostructural stimuli of the gradient nanopattern plates. Moreover, Rho-associated protein kinase (ROCK) gene expression was significantly higher in hECFCs cultured on GP 120/200 than in those on flat plates (no nanopillars), and ROCK suppression impaired the nanostructural-stimuli-induced vinculin assembly. These results suggest that the gradient nanopattern plates generate size-specific nanostructural stimuli suitable for manipulation of the response of hECFCs, in a process dependent on ROCK signaling. This is the first evidence of size-specific nanostructure-sensing behavior of hECFCs. Nano feature surfaces are of growing interest as materials for a controlled response of various cells. In this study, we successfully fabricated gradient nanopattern plates to manipulate the response of blood-derived hECFCs without any chemical stimulation. Interestingly, we find that the sensitive nanopillar size for manipulation of hECFCs is range between 120 nm and 200 nm, which decreased the area and increased the filopodial outgrowth of hECFCs. Furthermore, we only modulate the nanopillar size to increase ROCK expression can be an attractive method for modulating the cytoskeletal integrity and focal adhesion of hECFCs. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Synchronization of Mammalian Cells and Nuclei by Centrifugal Elutriation.
Banfalvi, Gaspar
2017-01-01
Synchronized populations of large numbers of cells can be obtained by centrifugal elutriation on the basis of sedimentation properties of small round particles, with minimal perturbation of cellular functions. The physical characteristics of cell size and sedimentation velocity are operative in the technique of centrifugal elutriation also known as counterstreaming centrifugation. The elutriator is an advanced device for increasing the sedimentation rate to yield enhanced resolution of cell separation. A random population of cells is introduced into the elutriation chamber of an elutriator rotor running in a specially designed centrifuge. By increasing step-by-step the flow rate of the elutriation fluid, successive populations of relatively homogeneous cell size can be removed from the elutriation chamber and used as synchronized subpopulations. For cell synchronization by centrifugal elutriation, early log S phase cell populations are most suitable where most of the cells are in G1 and S phase (>80 %). Apoptotic cells can be found in the early elutriation fractions belonging to the sub-Go window. Protocols for the synchronization of nuclei of murine pre-B cells and high-resolution centrifugal elutriation of CHO cells are given. The verification of purity and cell cycle positions of cells in elutriated fractions includes the measurement of DNA synthesis by [ 3 H]-thymidine incorporation and DNA content by propidium iodide flow cytometry.
Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3.
Riikonen, Johanna; Percy, Kevin E; Kivimäenpää, Minna; Kubiske, Mark E; Nelson, Neil D; Vapaavuori, Elina; Karnosky, David F
2010-04-01
Betula papyrifera trees were exposed to elevated concentrations of CO(2) (1.4 x ambient), O(3) (1.2 x ambient) or CO(2) + O(3) at the Aspen Free-air CO(2) Enrichment Experiment. The treatment effects on leaf surface characteristics were studied after nine years of tree exposure. CO(2) and O(3) increased epidermal cell size and reduced epidermal cell density but leaf size was not altered. Stomatal density remained unaffected, but stomatal index increased under elevated CO(2). Cuticular ridges and epicuticular wax crystallites were less evident under CO(2) and CO(2) + O(3). The increase in amorphous deposits, particularly under CO(2) + O(3,) was associated with the appearance of elongated plate crystallites in stomatal chambers. Increased proportions of alkyl esters resulted from increased esterification of fatty acids and alcohols under elevated CO(2) + O(3). The combination of elevated CO(2) and O(3) resulted in different responses than expected under exposure to CO(2) or O(3) alone. 2009 Elsevier Ltd. All rights reserved.
Gao, Tong; Knecht, David; Tang, Lei; Hatton, R. Diane; Gomer, Richard H.
2004-01-01
Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of ∼20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin− cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB. PMID:15470246
Calculations of the Acceleration of Centrifugal Loading on Adherent Cells
NASA Astrophysics Data System (ADS)
Chen, Kang; Song, Yang; Liu, Qing; Zhang, Chunqiu
2017-07-01
Studies have shown that the morphology and function of living cells are greatly affected by the state of different high acceleration. Based on the centrifuge, we designed a centrifugal cell loading machine for the mechanical biology of cells under high acceleration loading. For the machine, the feasibility of the experiment was studied by means of constant acceleration or variable acceleration loading in the Petri dish fixture and/or culture flask. Here we analyzed the distribution of the acceleration of the cells with the change of position and size of the culturing device quantitatively. It is obtained that Petri dish fixture and/or culture flask can be used for constant acceleration loading by experiments; the centripetal acceleration of the adherent cells increases with the increase of the distance between the rotor center of the centrifuge and the fixture of the Petri dish and the size of the fixture. It achieves the idea that the general biology laboratory can conduct the study of mechanical biology at high acceleration. It also provides a basis for more accurate study of the law of high acceleration on mechanobiology of cells.
Active properties of living tissues lead to size-dependent dewetting
NASA Astrophysics Data System (ADS)
Perez-Gonzalez, Carlos; Alert, Ricard; Blanch-Mercader, Carles; Gomez-Gonzalez, Manuel; Casademunt, Jaume; Trepat, Xavier
Key biological processes such as cancer and development are characterized by drastic transitions from 2D to a 3D geometry. These rearrangements have been classically studied as a wetting problem. According to this theory, wettability of a substrate by an epithelium is determined by the competition between cell-cell and cell-substrate adhesion energies. In contrast, we found that, far from a passive process, tissue dewetting is an active process driven by tissue internal forces. Experimentally, we reproduced epithelial dewetting by promoting a progressive formation of intercellular junctions in a monolayer of epithelial cells. Interestingly, the formation of intercellular junctions produces an increase in cell contractility, with the subsequent increase in traction and intercellular stress. At a certain time, tissue tension overcomes cell-substrate maximum adhesion and the monolayer spontaneously dewets the substrate. We developed an active polar fluid model, finding both theoretically and experimentally that critical contractility to promote wetting-dewetting transition depends on cell-substrate adhesion and, unexpectedly, on tissue size. As a whole, this work generalizes wetting theory to living tissues, unveiling unprecedented properties due to their unique active nature.
Effect of weightlessness conditions on the somatic embryogenesis in the culture of carrot cells
NASA Technical Reports Server (NTRS)
Butenko, R. G.; Dmitriyeva, N. N.; Ongko, V.; Basyrova, L. V.
1977-01-01
A carrot cell culture seeded in Petri dishes in the United States and transported to the USSR was subjected to weightlessness for 20 days during the flight of Kosmos 782. The controls were cultures placed on a centrifuge (1 g) inside the satellite and cultures left on ground in the U.S.S.R. and the United States. A count of structures in the dishes after the flight showed that the number of developing embryonic structures and the extent of their differentiation in weightlessness did not reliably differ from the number and extent of differentiation in structures developed on the ground. Structures with long roots developed in weightlessness. Analysis of the root zones showed that these roots differed by the increased size of the zone of differentiated cells. The increased size of the zones of differentiated cells can indicate earlier development of embryonic structures.
NASA Astrophysics Data System (ADS)
Ahamed, Maqusood; Khan, M. A. Majeed; Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws
2016-07-01
We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1-10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV-3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation & glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells.
Yu, Yue; Wang, Changlei; Grice, Corey R.; ...
2017-04-26
Here, we show that the cooperation of lead thiocyanate additive and a solvent annealing process can effectively increase the grain size of mixed-cation lead mixed-halide perovskite thin films while avoiding excess lead iodide formation. As a result, the average grain size of the wide-bandgap mixed-cation lead perovskite thin films increases from 66 ± 24 to 1036 ± 111 nm, and the mean carrier lifetime shows a more than 3-fold increase, from 330 ns to over 1000 ns. Consequently, the average open-circuit voltage of wide-bandgap perovskite solar cells increases by 80 (70) mV, and the average power conversion efficiency (PCE) increasesmore » from 13.44 ± 0.48 (11.75 ± 0.34) to 17.68 ± 0.36 (15.58 ± 0.55)% when measured under reverse (forward) voltage scans. The best-performing wide-bandgap perovskite solar cell, with a bandgap of 1.75 eV, achieves a stabilized PCE of 17.18%.« less
Huang, Lixing; Xi, Zhihui; Wang, Chonggang; Zhang, Youyu; Yang, Zhibing; Zhang, Shiqi; Chen, Yixin; Zuo, Zhenghong
2016-01-01
Growing evidence indicates that there is an emerging link between environmental pollution and cardiac hypertrophy, while the mechanism is unclear. The objective of this study was to examine whether phenanthrene (Phe) could cause cardiac hypertrophy, and elucidate the molecular mechanisms involved. We found that: 1) Phe exposure increased the heart weight and cardiomyocyte size of rats; 2) Phe exposure led to enlarged cell size, and increased protein synthesis in H9C2 cells; 3) Phe exposure induced important markers of cardiac hypertrophy, such as atrial natriuretic peptide, B-type natriuretic peptide, and c-Myc in H9C2 cells and rat hearts; 4) Phe exposure perturbed miR-133a, CdC42 and RhoA, which were key regulators of cardiac hypertrophy, in H9C2 cells and rat hearts; 5) Phe exposure induced DNA methyltransferases (DNMTs) in H9C2 cells and rat hearts; 6) Phe exposure led to methylation of CpG sites within the miR-133a locus and reduced miR-133a expression in H9C2 cells; 7) DNMT inhibition and miR-133a overexpression could both alleviate the enlargement of cell size and perturbation of CdC42 and RhoA caused by Phe exposure. These results indicated that Phe could induce cardiomyocyte hypertrophy in the rat and H9C2 cells. The mechanism might involve reducing miR-133a expression by DNA methylation. PMID:26830171
Wang, Zhifa; Hu, Hanqing; Li, Zhijin; Weng, Yanming; Dai, Taiqiang; Zong, Chunlin; Liu, Yanpu; Liu, Bin
2016-04-01
Techniques that use sheets of cells have been successfully used in various types of tissue regeneration, and platelet-rich fibrin (PRF) can be used as a source of growth factors to promote angiogenesis. We have investigated the effects of the combination of PRF and sheets of mesenchymal stem cells (MSC) from bone marrow on the restoration of bone in critical-size calvarial defects in rabbits to find out whether the combination promotes bony healing. Sheets of MSC and PRF were prepared from the same donor. We then implanted the combined MSC and PRF in critical-size calvarial defects in rabbits and assessed bony restoration by microcomputed tomography (microCT) and histological analysis. The results showed that PRF significantly increased bony regeneration at 8 weeks after implantation of sheets of MSC and PRF compared with sheets of MSC alone (p=0.0048). Our results indicate that the combination of sheets of MSC and PRF increases bone regeneration in critical-size calvarial defects in rabbits, and provides a new way to improve skeletal healing. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
The double-stranded RNA-binding protein Staufen 2 regulates eye size.
Cockburn, Diane M; Charish, Jason; Tassew, Nardos G; Eubanks, James; Bremner, Rod; Macchi, Paolo; Monnier, Philippe P
2012-11-01
Regulation of tissue size is a poorly understood process. Mammalian Staufen 2 (Stau2) is a double-stranded mRNA binding protein known to regulate dendrite formation in vitro as well as cell survival and migration in vivo. Three Stau2 isoforms have been identified in the brain of mammals. Here we show that all these Stau2 isoforms are also expressed in the developing eye of chicken embryos. Strikingly, ectopic expression of Stau2 was sufficient to increase eye size, suggesting a novel biological role of Stau2 in eye morphogenesis. Moreover, down regulation of Stau2 in vivo resulted in a small eye. Microphthalmia was not associated with either increased cell death or differentiation but with reduced cell proliferation. Rescue experiments showed that all three Stau2 isoforms present in the developing eye could prevent microphthalmia. Finally, we showed that Stau2 silencing decreased HES-1 and Sox-2 in the developing eye. These data highlight a new biological function for Stau2 and suggest that translation control of specific Stau2-associated transcripts may be a key regulator of tissue size. Copyright © 2012 Elsevier Inc. All rights reserved.
Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles
Hedberg, Jonas; Di Bucchianico, Sebastiano; Möller, Lennart; Odnevall Wallinder, Inger; Elihn, Karine; Karlsson, Hanna L.
2016-01-01
Occupational exposure to airborne nickel is associated with an elevated risk for respiratory tract diseases including lung cancer. Therefore, the increased production of Ni-containing nanoparticles necessitates a thorough assessment of their physical, chemical, as well as toxicological properties. The aim of this study was to investigate and compare the characteristics of nickel metal (Ni) and nickel oxide (NiO) particles with a focus on Ni release, reactive oxygen species (ROS) generation, cellular uptake, cytotoxicity and genotoxicity. Four Ni-containing particles of both nano-size (Ni-n and NiO-n) and micron-size (Ni-m1 and Ni-m2) were tested. The released amount of Ni in solution was notably higher in artificial lysosomal fluid (e.g. 80–100 wt% for metallic Ni) than in cell medium after 24h (ca. 1–3 wt% for all particles). Each of the particles was taken up by the cells within 4 h and they remained in the cells to a high extent after 24 h post-incubation. Thus, the high dissolution in ALF appeared not to reflect the particle dissolution in the cells. Ni-m1 showed the most pronounced effect on cell viability after 48 h (alamar blue assay) whereas all particles showed increased cytotoxicity in the highest doses (20–40 μg cm2) when assessed by colony forming efficiency (CFE). Interestingly an increased CFE, suggesting higher proliferation, was observed for all particles in low doses (0.1 or 1 μg cm-2). Ni-m1 and NiO-n were the most potent in causing acellular ROS and DNA damage. However, no intracellular ROS was detected for any of the particles. Taken together, micron-sized Ni (Ni-m1) was more reactive and toxic compared to the nano-sized Ni. Furthermore, this study underlines that the low dose effect in terms of increased proliferation observed for all particles should be further investigated in future studies. PMID:27434640
Improved FCG-1 cell technology
NASA Astrophysics Data System (ADS)
Breault, R. D.; Congdon, J. V.; Coykendall, R. D.; Luoma, W. L.
1980-10-01
Fuel cell performance in the ribbed substrate cell configuration consistent with that projected for a commercial power plant is demonstrated. Tests were conducted on subscale cells and on two 20 cell stacks of 4.8 MW demonstrator size cell components. These tests evaluated cell stack materials, processes, components, and assembly configurations. The first task was to conduct a component development effort to introduce improvements in 3.7 square foot, ribbed substrate acid cell repeating parts which represented advances in performance, function, life, and lower cost for application in higher pressure and temperature power plants. Specific areas of change were the electrode substrate, catalyst, matrix, seals, separator plates, and coolers. Full sized ribbed substrate stack components incorporating more stable materials were evaluated at increased pressure (93 psia) and temperature (405 F) conditions. Two 20 cell stacks with a 3.7 square feet, ribbed substrate cell configuration were tested.
Practical implications of theoretical consideration of capsule filling by the dosator nozzle system.
Jolliffe, I G; Newton, J M
1982-05-01
Eight lactose size fractions with mean particle sizes ranging from 15.6 to 155.2 micrometers were characterized by their failure properties using a Jenike shear cell. The effective angle of internal friction was found to be constant for all size fractions, with a mean value of 36.2 degrees. Jenike flow factors could only be obtained for the two most cohesive size fractions presumably due to limitations of the shear cell. Angles of wall friction, phi, were determined for all size fractions on face ground and turned stainless steel surfaces. These decreased with increasing particle size up to around 40 micrometers, above which they became effectively constant for both surfaces. The rougher turned plate gave consistently higher values of phi for each particle size. Simple retention experiments with a dosator nozzle and a range of powder bed bulk densities showed good retention was possible only up to a particle size of around 40 micrometers. Retention was difficult or impossible above this size. Values of phi were applied to equations derived in the theoretical approach described previously (Jolliffe et al 1980). This showed that the strength required within a powder to ensure arching increases with increasing particle size up to around 40 micrometers. Above this size, this strength requirement becomes constant. This is related to the powder retention observations. Finally, the failure data was used to calculate the minimum compressive stresses required to ensure powder retention within the dosator nozzle, by employing the equations described by Jolliffe et al (1980). This suggested that, as powders became more free flowing, a larger compressive stress is necessary and that the angle of wall friction should be lower to ensure stress is transmitted to the arching zone.
Es'kov, E K; Es'kova, M D
2014-01-01
High variability of cells size is used selectively for reproduction of working bees and drones. A decrease in both distance between cells and cells size themselves causes similar effects to body mass and morphometric traits of developing individuals. Adaptation of honey bees to living in shelters has led to their becoming tolerant to hypoxia. Improvement of ethological and physiological mechanisms of thermal regulation is associated with limitation of ecological valence and acquiring of stenothermic features by breed. Optimal thermal conditions for breed are limited by the interval 33-34.5 degrees C. Deviations of temperature by 3-4 degrees C beyond this range have minimum lethal effect at embryonic stage of development and medium effect at the stage of pre-pupa and pupa. Developing at the low bound of the vital range leads to increasing, while developing at the upper bound--to decreasing of body mass, mandibular and hypopharyngeal glands, as well as other organs, which, later, affects the variability of these traits during the adult stage of development. Eliminative and teratogenic efficiency of ecological factors that affect a breed is most often manifested in underdevelopment of wings. However, their size (in case of wing laminas formation). is characterized by relatively low variability and size-dependent asymmetry. Asymmetry variability of wings and other pair organs is expressed through realignment of size excess from right- to left-side one with respect to their increase. Selective elimination by those traits whose emerging probability increases as developmental conditions deviate from the optimal ones promotes restrictions on individual variability. Physiological mechanisms that facilitate adaptability enhancement under conditions of increasing anthropogenic contamination of eivironment and trophic substrates consumed by honey bees, arrear to be toxicants accumulation in rectum and crops' ability to absorb contaminants from nectar in course of its processing to honey.
Nath, Suman C; Horie, Masanobu; Nagamori, Eiji; Kino-Oka, Masahiro
2017-10-01
Aggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.1 ± 0.4) × 10 1 -(2.8 ± 0.5) × 10 1 cells/aggregate) showed a lower growth rate in comparison to medium size aggregates ((8.8 ± 0.8) × 10 1 -(6.8 ± 1.1) × 10 2 cells/aggregate) during early-stage of culture (24-72 h). However, when small size aggregates were cultured in conditioned medium, their growth rate increased significantly. On the other hand, large size aggregates ((1.1 ± 0.2) × 10 3 -(3.5 ± 1.1) × 10 3 cells/aggregate) showed a lower growth rate and lower expression level of proliferation marker (ki-67) in the center region of aggregate in comparison to medium size aggregate during early-stage of culture. Medium size aggregates showed the highest growth rate during early-stage of culture. Furthermore, hiPSCs proliferation was dependent on culture time because the growth rate decreased significantly during late-stage of culture (72-120 h) at which point collagen type I accumulated on the periphery of aggregate, suggesting blockage of diffusive transport of nutrients, oxygen and metabolites into and out of the aggregates. Consideration of initial cell number and culture time are important to maintain balance between autocrine factors secretion and extracellular matrix accumulation on the aggregate periphery to achieve optimal growth of hiPSCs in the culture of single aggregate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Palanki, Rohan; Arora, Sumit; Tyagi, Nikhil; Rusu, Lilia; Singh, Ajay P; Palanki, Srinivas; Carter, James E; Singh, Seema
2015-09-15
Ultraviolet (UV) radiation from sun, particularly its UVB component (290-320 nm), is considered the major etiological cause of skin cancer that impacts over 2 million lives in the United States alone. Recently, we reported that polydisperse colloidal suspension of silver nanoparticles (AgNPs) protected the human keratinocytes (HaCaT) against UVB-induced damage, thus indicating their potential for prevention of skin carcinogenesis. Here we sought out to investigate if size controlled the chemopreventive efficacy of AgNPs against UVB-induced DNA damage and apoptosis. Percent cell viability was examined by WST-1 assay after treating the cells with various doses (1-10 μg/mL) of AgNPs of different sizes (10, 20, 40, 60 and 100 nm) for 12 and 24 h. For protection studies, cells were treated with AgNPs of different sizes at a uniform concentration of 1 μg/mL. After 3 h, cells were irradiated with UVB (40 mJ/cm(2)) and dot-blot analysis was performed to detect cyclobutane pyrimidine dimers (CPDs) as an indication of DNA damage. Apoptosis was analyzed by flow cytometry after staining the cells with 7-Amino-Actinomycin (7-AAD) and PE Annexin V. Immunoblot analysis was accomplished by processing the cells for protein extraction and Western blotting using specific antibodies against various proteins. The data show that the pretreatment of HaCaT cells with AgNPs in the size range of 10-40 nm were effective in protecting the skin cells from UVB radiation-induced DNA damage as validated by reduced amounts of CPDs, whereas no protection was observed with AgNPs of larger sizes (60 and 100 nm). Similarly, only smaller size AgNPs (10-40 nm) were effective in protecting the skin cells from UV radiation-induced apoptosis. At the molecular level, UVB -irradiation of HaCaT cells led to marked increase in expression of pro-apoptotic protein (Bax) and decrease in anti-apoptotic proteins (Bcl-2 and Bcl-xL), while it remained largely unaffected in skin cells pretreated with smaller size AgNPs (10-40 nm). Altogether, these findings suggest that size is a critical determinant of the UVB-protective efficacy of AgNPs in human keratinocytes.
Hatipoglu, Nuh; Bilgin, Gokhan
2017-10-01
In many computerized methods for cell detection, segmentation, and classification in digital histopathology that have recently emerged, the task of cell segmentation remains a chief problem for image processing in designing computer-aided diagnosis (CAD) systems. In research and diagnostic studies on cancer, pathologists can use CAD systems as second readers to analyze high-resolution histopathological images. Since cell detection and segmentation are critical for cancer grade assessments, cellular and extracellular structures should primarily be extracted from histopathological images. In response, we sought to identify a useful cell segmentation approach with histopathological images that uses not only prominent deep learning algorithms (i.e., convolutional neural networks, stacked autoencoders, and deep belief networks), but also spatial relationships, information of which is critical for achieving better cell segmentation results. To that end, we collected cellular and extracellular samples from histopathological images by windowing in small patches with various sizes. In experiments, the segmentation accuracies of the methods used improved as the window sizes increased due to the addition of local spatial and contextual information. Once we compared the effects of training sample size and influence of window size, results revealed that the deep learning algorithms, especially convolutional neural networks and partly stacked autoencoders, performed better than conventional methods in cell segmentation.
Dual role of BMP signaling in the regulation of Drosophila intestinal stem cell self-renewal.
Tian, Aiguo; Jiang, Jin
2017-10-02
Many adult organs including Drosophila adult midguts rely on resident stem cells to replenish damaged cells during tissue homeostasis and regeneration. Previous studies have shown that, upon injury, intestinal stem cells (ISCs) in the midguts can increase proliferation and lineage differentiation to meet the demand for tissue repair. Our recent study has demonstrated that, in response to certain injury, midguts can expand ISC population size as an additional regenerative mechanism. We found that injury elicited by bleomycin feeding or bacterial infection increased the production of two BMP ligands (Dpp and Gbb) in enterocytes (ECs), leading to elevated BMP signaling in progenitor cells that drove an expansion of ISCs by promoting their symmetric self-renewing division. Interestingly, we also found that BMP signaling in ECs inhibits the production of Dpp and Gbb, and that this negative feedback mechanism is required to reset ISC pool size to the homeostatic state. Our findings suggest that BMP signaling exerts two opposing influences on stem cell activity depending on where it acts: BMP signaling in progenitor cells promotes ISC self-renewal while BMP signaling in ECs restricts ISC self-renewal by preventing excessive production of BMP ligands. Our results further suggest that transient expansion of ISC population in conjunction with increasing ISC proliferation provides a more effective strategy for tissue regeneration.
Neri, Tommaso; Pergoli, Laura; Petrini, Silvia; Gravendonk, Lotte; Balia, Cristina; Scalise, Valentina; Amoruso, Angela; Pedrinelli, Roberto; Paggiaro, Pierluigi; Bollati, Valentina; Celi, Alessandro
2016-04-01
Particulate airborne pollution is associated with increased cardiopulmonary morbidity. Microparticles are extracellular vesicles shed by cells upon activation or apoptosis involved in physiological processes such as coagulation and inflammation, including airway inflammation. We investigated the hypothesis that particulate matter causes the shedding of microparticles by human mononuclear and endothelial cells. Cells, isolated from the blood and the umbilical cords of normal donors, were cultured in the presence of particulate from a standard reference. Microparticles were assessed in the supernatant as phosphatidylserine concentration. Microparticle-associated tissue factor was assessed by an one-stage clotting assay. Nanosight technology was used to evaluate microparticle size distribution. Particulate matter induces a dose- and time- dependent, rapid (1h) increase in microparticle generation in both cells. These microparticles express functional tissue factor. Particulate matter increases intracellular calcium concentration and phospholipase C inhibition reduces microparticle generation. Nanosight analysis confirmed that upon exposure to particulate matter both cells express particles with a size range consistent with the definition of microparticles (50-1000 nm). Exposure of mononuclear and endothelial cells to particulate matter upregulates the generation of microparticles at least partially mediated by calcium mobilization. This observation might provide a further link between airborne pollution and cardiopulmonary morbidity. Copyright © 2016 Elsevier B.V. All rights reserved.
Hyperglycemic Conditions Prime Cells for RIP1-dependent Necroptosis*
LaRocca, Timothy J.; Sosunov, Sergey A.; Shakerley, Nicole L.; Ten, Vadim S.; Ratner, Adam J.
2016-01-01
Necroptosis is a RIP1-dependent programmed cell death (PCD) pathway that is distinct from apoptosis. Downstream effector pathways of necroptosis include formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), both of which depend on glycolysis. This suggests that increased cellular glucose may prime necroptosis. Here we show that exposure to hyperglycemic levels of glucose enhances necroptosis in primary red blood cells (RBCs), Jurkat T cells, and U937 monocytes. Pharmacologic or siRNA inhibition of RIP1 prevented the enhanced death, confirming it as RIP1-dependent necroptosis. Hyperglycemic enhancement of necroptosis depends upon glycolysis with AGEs and ROS playing a role. Total levels of RIP1, RIP3, and mixed lineage kinase domain-like (MLKL) proteins were increased following treatment with high levels of glucose in Jurkat and U937 cells and was not due to transcriptional regulation. The observed increase in RIP1, RIP3, and MLKL protein levels suggests a potential positive feedback mechanism in nucleated cell types. Enhanced PCD due to hyperglycemia was specific to necroptosis as extrinsic apoptosis was inhibited by exposure to high levels of glucose. Hyperglycemia resulted in increased infarct size in a mouse model of brain hypoxia-ischemia injury. The increased infarct size was prevented by treatment with nec-1s, strongly suggesting that increased necroptosis accounts for exacerbation of this injury in conditions of hyperglycemia. This work reveals that hyperglycemia represents a condition in which cells are extraordinarily susceptible to necroptosis, that local glucose levels alter the balance of PCD pathways, and that clinically relevant outcomes may depend on glucose-mediated effects on PCD. PMID:27129772
Toxicity of copper on the growth of marine microalgae Pavlova sp. and its chlorophyll-a
NASA Astrophysics Data System (ADS)
Purbonegoro, T.; Suratno; Puspitasari, R.; Husna, N. A.
2018-02-01
Marine microalgae is the primary producer at the base of the marine food chain. Their sensitivity to metal contamination provides important information for predicting the environmental impact of pollution. Toxicity testing using marine microalgae Pavlova sp. was carried out to assess the toxicity of copper on the growth and chlorophyll-a content. Results of this study show that adverse effects were observed by the increase of copper concentration. Cell number began to decrease at the lowest concentration (13 μg/L) and reduced drastically at 98 μg/L. Minimum cell number was observed at the highest concentration (890 μg/L). The inhibition concentration (IC50) value of copper for Pavlova sp. was 51.46 μg/L and at concentrations >29 μgL-1 the chlorophyll-a content decreased dramatically compared to the control. A variation in cell size and morphology was also observed at the higher concentration by the increase in the cell size and loss of setae compared to normal cells.
Graft Growth and Podocyte Dedifferentiation in Donor-Recipient Size Mismatch Kidney Transplants.
Müller-Deile, Janina; Bräsen, Jan Hinrich; Pollheimer, Marion; Ratschek, Manfred; Haller, Hermann; Pape, Lars; Schiffer, Mario
2017-10-01
Kidney transplantation is the treatment choice for patients with end-stage renal diseases. Because of good long-term outcome, pediatric kidney grafts are also accepted for transplantation in adult recipients despite a significant mismatch in body size and age between donor and recipient. These grafts show a remarkable ability of adaptation to the recipient body and increase in size in a very short period, presumably as an adaptation to hyperfiltration. We investigated renal graft growth as well as glomerular proliferation and differentiation markers Kiel-67, paired box gene 2 and Wilms tumor protein (WT1) expression in control biopsies from different transplant constellations: infant donor for infant recipient, infant donor for child recipient, infant donor for adult recipient, child donor for child recipient, child donor for adult recipient, and adult donor for an adult recipient. We detected a significant increase in kidney graft size after transplantation in all conditions with a body size mismatch, which was most prominent when an infant donated for a child. Podocyte WT1 expression was comparable in different transplant conditions, whereas a significant increase in WT1 expression could be detected in parietal epithelial cells, when a kidney graft from a child was transplanted into an adult. In kidney grafts that were relatively small for the recipients, we could detect reexpression of podocyte paired box gene 2. Moreover, the proliferation marker Kiel-67 was expressed in glomerular cells in grafts that increased in size after transplantation. Kidney grafts rapidly adapt to the recipient size after transplantation if they are transplanted in a body size mismatch constellation. The increase in transplant size is accompanied by an upregulation of proliferation and dedifferentiation markers in podocytes. The different examined conditions exclude hormonal factors as the key trigger for this growth so that most likely hyperfiltration is the key trigger inducing the rapid growth response.
Graft Growth and Podocyte Dedifferentiation in Donor-Recipient Size Mismatch Kidney Transplants
Müller-Deile, Janina; Bräsen, Jan Hinrich; Pollheimer, Marion; Ratschek, Manfred; Haller, Hermann; Pape, Lars; Schiffer, Mario
2017-01-01
Background Kidney transplantation is the treatment choice for patients with end-stage renal diseases. Because of good long-term outcome, pediatric kidney grafts are also accepted for transplantation in adult recipients despite a significant mismatch in body size and age between donor and recipient. These grafts show a remarkable ability of adaptation to the recipient body and increase in size in a very short period, presumably as an adaptation to hyperfiltration. Methods We investigated renal graft growth as well as glomerular proliferation and differentiation markers Kiel-67, paired box gene 2 and Wilms tumor protein (WT1) expression in control biopsies from different transplant constellations: infant donor for infant recipient, infant donor for child recipient, infant donor for adult recipient, child donor for child recipient, child donor for adult recipient, and adult donor for an adult recipient. Results We detected a significant increase in kidney graft size after transplantation in all conditions with a body size mismatch, which was most prominent when an infant donated for a child. Podocyte WT1 expression was comparable in different transplant conditions, whereas a significant increase in WT1 expression could be detected in parietal epithelial cells, when a kidney graft from a child was transplanted into an adult. In kidney grafts that were relatively small for the recipients, we could detect reexpression of podocyte paired box gene 2. Moreover, the proliferation marker Kiel-67 was expressed in glomerular cells in grafts that increased in size after transplantation. Conclusions Kidney grafts rapidly adapt to the recipient size after transplantation if they are transplanted in a body size mismatch constellation. The increase in transplant size is accompanied by an upregulation of proliferation and dedifferentiation markers in podocytes. The different examined conditions exclude hormonal factors as the key trigger for this growth so that most likely hyperfiltration is the key trigger inducing the rapid growth response. PMID:29026873
Kongkanand, Anusorn; Tvrdy, Kevin; Takechi, Kensuke; Kuno, Masaru; Kamat, Prashant V
2008-03-26
Different-sized CdSe quantum dots have been assembled on TiO2 films composed of particle and nanotube morphologies using a bifunctional linker molecule. Upon band-gap excitation, CdSe quantum dots inject electrons into TiO2 nanoparticles and nanotubes, thus enabling the generation of photocurrent in a photoelectrochemical solar cell. The results presented in this study highlight two major findings: (i) ability to tune the photoelectrochemical response and photoconversion efficiency via size control of CdSe quantum dots and (ii) improvement in the photoconversion efficiency by facilitating the charge transport through TiO2 nanotube architecture. The maximum IPCE (photon-to-charge carrier generation efficiency) obtained with 3 nm diameter CdSe nanoparticles was 35% for particulate TiO2 and 45% for tubular TiO2 morphology. The maximum IPCE observed at the excitonic band increases with decreasing particle size, whereas the shift in the conduction band to more negative potentials increases the driving force and favors fast electron injection. The maximum power-conversion efficiency =1% obtained with CdSe-TiO2 nanotube film highlights the usefulness of tubular morphology in facilitating charge transport in nanostructure-based solar cells. Ways to further improve power-conversion efficiency and maximize light-harvesting capability through the construction of a rainbow solar cell are discussed.
Using white-light spectroscopy for size determination of tissue phantoms
NASA Astrophysics Data System (ADS)
Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram
2005-09-01
Along with breast and cervical cancer, esophageal adenocarcinoma is one of the most common types of cancers. The characteristic features of pre-cancerous tissues are the increase in cell proliferation rate and cell nuclei enlargement, which both take place in the epithelium of human body surfaces. However, in the early stages of cancer these changes are very small and difficult to detect, even for expert pathologists. The aim of our research is to develop an optical probe for in vivo detection of nuclear size changes using white light scattering from cell nuclei. The probe will be employed through an endoscope and will be used for the medical examination of the esophagus. The proposed method of examination will be noninvasive, cheap, and specific, compared to a biopsy. Before the construction of this probe, we have developed theory to determine the nuclei size from the reflection data. In this first stage of our research, we compare experimental and theoretical scattered light intensities. Our theoretical model includes the values of scatterer size from which we can extract the nuclei size value. We first performed the study of polystyrene microspheres, acting as a tissue phantom. Spectral and angular distributions of scattered white light from tissue phantoms were studied. Experimental results show significant differences between the spectra of microspheres of different sizes and demonstrate almost linear relation between the number of spectral oscillations and the size of microspheres. Best results were achieved when the scattered light spectrum was collected at 30° to the normal of the sample surface. We present these research results in this paper. In ongoing work, normal and cancerous mammalian cell studies are being performed in order to determine cell nuclei size correlation with the size of microspheres through the light scattering spectrum observation.
Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping
Augustsson, Per; Karlsen, Jonas T.; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel
2016-01-01
Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size. PMID:27180912
Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping.
Augustsson, Per; Karlsen, Jonas T; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel
2016-05-16
Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.
2010-06-30
animals, increases in corticosterone (the rat equivalent of cortisol) or in sensitivity to corticosterone increases vulnerability to addictive effects ...Additionally, the corticosterone inhibitor suppressed the effects of cocaine to increase locomotor activity, which was measured once following cocaine...from the Kearns group indicated that the observed effect size (Cohen’s d) of the main effect of rat strain was 1.25. A cell size of 6 rats (totaling
Automated thematic mapping and change detection of ERTS-A images
NASA Technical Reports Server (NTRS)
Gramenopoulos, N. (Principal Investigator)
1975-01-01
The author has identified the following significant results. In the first part of the investigation, spatial and spectral features were developed which were employed to automatically recognize terrain features through a clustering algorithm. In this part of the investigation, the size of the cell which is the number of digital picture elements used for computing the spatial and spectral features was varied. It was determined that the accuracy of terrain recognition decreases slowly as the cell size is reduced and coincides with increased cluster diffuseness. It was also proven that a cell size of 17 x 17 pixels when used with the clustering algorithm results in high recognition rates for major terrain classes. ERTS-1 data from five diverse geographic regions of the United States were processed through the clustering algorithm with 17 x 17 pixel cells. Simple land use maps were produced and the average terrain recognition accuracy was 82 percent.
Microautophagy in nutritive phagocytes of sea urchins.
Kalachev, Alexander V; Yurchenko, Olga V
2017-01-01
Two types of cells were observed in germinative epithelium of male and female sea urchins: germ cells and somatic accessory cells; the latter referred to as nutritive phagocytes. At the onset of gametogenesis, nutritive phagocytes accumulate nutrients and greatly increase in their size. As gametogenesis progresses, the accumulated nutrients are transferred from nutritive phagocytes into developing gametes, and size of the nutritive phagocytes decreases. An electron microscopic study of nutritive phagocytes in sea urchins, Strongylocentrotus intermedius, at different stages of annual reproductive cycle showed for the first time that both macro- and microautophagy take place in nutritive phagocytes. Both processes occur simultaneously and regulate size and composition of nutritive phagocytes in male and female sea urchins. Nutritive phagocytes consume redundant cytoplasm via macroautophagy. Microautophagy is probably involved in consumption of redundant membranes that appear within nutritive phagocytes due to destruction of nutrient-storing globules, macroautophagy, and phagocytosis of germ cells or their remnants.
Multiple organ gigantism caused by mutation in VmPPD gene in blackgram (Vigna mungo).
Naito, Ken; Takahashi, Yu; Chaitieng, Bubpa; Hirano, Kumi; Kaga, Akito; Takagi, Kyoko; Ogiso-Tanaka, Eri; Thavarasook, Charaspon; Ishimoto, Masao; Tomooka, Norihiko
2017-03-01
Seed size is one of the most important traits in leguminous crops. We obtained a recessive mutant of blackgram that had greatly enlarged leaves, stems and seeds. The mutant produced 100% bigger leaves, 50% more biomass and 70% larger seeds though it produced 40% less number of seeds. We designated the mutant as multiple-organ-gigantism ( mog ) and found the mog phenotype was due to increase in cell numbers but not in cell size. We also found the mog mutant showed a rippled leaf ( rl ) phenotype, which was probably caused by a pleiotropic effect of the mutation. We performed a map-based cloning and successfully identified an 8 bp deletion in the coding sequence of VmPPD gene, an orthologue of Arabidopsis PEAPOD ( PPD ) that regulates arrest of cell divisions in meristematic cells . We found no other mutations in the neighboring genes between the mutant and the wild type. We also knocked down GmPPD genes and reproduced both the mog and rl phenotypes in soybean. Controlling PPD genes to produce the mog phenotype is highly valuable for breeding since larger seed size could directly increase the commercial values of grain legumes.
Higgins, Michael L.; Daneo-Moore, Lolita
1972-01-01
The application of quantitative electron microscopy to thin sections of cells of Streptococcus faecalis specifically inhibited for deoxyribonucleic acid (DNA), ribonucleic acid, and protein synthesis shows that septal mesosomes (i) increase in size when protein synthesis is inhibited by at least 80% while DNA synthesis proceeds at no less than 50% of the control rate and (ii) decrease in size when DNA synthesis is inhibited 50% or more during the initial 10 min of treatment. This indicates that fluctuations in mesosome size are dependent on the extent of DNA synthesis. The fluctuations in mesosome areas observed on treatment do not correlate with the kinetics of glycerol incorporation per milliliter of a culture. However, when glycerol incorporation is placed on a per cell basis, a strong correlation is observed between increases in (i) the thickness of the electron-transparent layer of the cytoplasmic membrane and (ii) the amount of glycerol incorporated per cell. It seems that the electron-transparent membrane layer may thicken to accommodate changes in lipid content when protein and lipid synthesis are uncoupled. Images PMID:4110926
Multiple organ gigantism caused by mutation in VmPPD gene in blackgram (Vigna mungo)
Naito, Ken; Takahashi, Yu; Chaitieng, Bubpa; Hirano, Kumi; Kaga, Akito; Takagi, Kyoko; Ogiso-Tanaka, Eri; Thavarasook, Charaspon; Ishimoto, Masao; Tomooka, Norihiko
2017-01-01
Seed size is one of the most important traits in leguminous crops. We obtained a recessive mutant of blackgram that had greatly enlarged leaves, stems and seeds. The mutant produced 100% bigger leaves, 50% more biomass and 70% larger seeds though it produced 40% less number of seeds. We designated the mutant as multiple-organ-gigantism (mog) and found the mog phenotype was due to increase in cell numbers but not in cell size. We also found the mog mutant showed a rippled leaf (rl) phenotype, which was probably caused by a pleiotropic effect of the mutation. We performed a map-based cloning and successfully identified an 8 bp deletion in the coding sequence of VmPPD gene, an orthologue of Arabidopsis PEAPOD (PPD) that regulates arrest of cell divisions in meristematic cells. We found no other mutations in the neighboring genes between the mutant and the wild type. We also knocked down GmPPD genes and reproduced both the mog and rl phenotypes in soybean. Controlling PPD genes to produce the mog phenotype is highly valuable for breeding since larger seed size could directly increase the commercial values of grain legumes. PMID:28588392
Modeling and analysis of collective cell migration in an in vivo three-dimensional environment
Dai, Wei; Prasad, Mohit; Luo, Junjie; Gov, Nir S.; Montell, Denise J.
2016-01-01
A long-standing question in collective cell migration has been what might be the relative advantage of forming a cluster over migrating individually. Does an increase in the size of a collectively migrating group of cells enable them to sample the chemical gradient over a greater distance because the difference between front and rear of a cluster would be greater than for single cells? We combined theoretical modeling with experiments to study collective migration of the border cells in-between nurse cells in the Drosophila egg chamber. We discovered that cluster size is positively correlated with migration speed, up to a particular point above which speed plummets. This may be due to the effect of viscous drag from surrounding nurse cells together with confinement of all of the cells within a stiff extracellular matrix. The model predicts no relationship between cluster size and velocity for cells moving on a flat surface, in contrast to movement within a 3D environment. Our analyses also suggest that the overall chemoattractant profile in the egg chamber is likely to be exponential, with the highest concentration in the oocyte. These findings provide insights into collective chemotaxis by combining theoretical modeling with experimentation. PMID:27035964
Analysis of x-ray tomography data of an extruded low density styrenic foam: an image analysis study
NASA Astrophysics Data System (ADS)
Lin, Jui-Ching; Heeschen, William
2016-10-01
Extruded styrenic foams are low density foams that are widely used for thermal insulation. It is difficult to precisely characterize the structure of the cells in low density foams by traditional cross-section viewing due to the frailty of the walls of the cells. X-ray computed tomography (CT) is a non-destructive, three dimensional structure characterization technique that has great potential for structure characterization of styrenic foams. Unfortunately the intrinsic artifacts of the data and the artifacts generated during image reconstruction are often comparable in size and shape to the thin walls of the foam, making robust and reliable analysis of cell sizes challenging. We explored three different image processing methods to clean up artifacts in the reconstructed images, thus allowing quantitative three dimensional determination of cell size in a low density styrenic foam. Three image processing approaches - an intensity based approach, an intensity variance based approach, and a machine learning based approach - are explored in this study, and the machine learning image feature classification method was shown to be the best. Individual cells are segmented within the images after the images were cleaned up using the three different methods and the cell sizes are measured and compared in the study. Although the collected data with the image analysis methods together did not yield enough measurements for a good statistic of the measurement of cell sizes, the problem can be resolved by measuring multiple samples or increasing imaging field of view.
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu; Li, Jian-Feng; Yu, Yong; Wang, Jia-Xiang; Li, Xiao-Ya; Peng, Qi-Xian; Zhu, Wen-Jun
2012-11-01
The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.
Reduced Ang2 expression in aging endothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at; Ebenbauer, B.; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna
Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of agingmore » before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.« less
Comparative analysis of cells and proteins of pumpkin plants for the control of fruit size.
Nakata, Yumiko; Taniguchi, Go; Takazaki, Shinya; Oda-Ueda, Naoko; Miyahara, Kohji; Ohshima, Yasumi
2012-09-01
Common pumpkin plants (Cucurbita maxima) produce fruits of 1-2 kg size on the average, while special varieties of the same species called Atlantic Giant are known to produce a huge fruit up to several hundred kilograms. As an approach to determine the factors controlling the fruit size in C. maxima, we cultivated both AG and control common plants, and found that both the cell number and cell sizes were increased in a large fruit while DNA content of the cell did not change significantly. We also compared protein patterns in the leaves, stems, ripe and young fruits by two-dimensional (2D) gel electrophoresis, and identified those differentially expressed between them with mass spectroscopy. Based on these results, we suggest that factors in photosynthesis such as ribulose-bisphosphate carboxylase, glycolysis pathway enzymes, heat-shock proteins and ATP synthase play positive or negative roles in the growth of a pumpkin fruit. These results provide a step toward the development of plant biotechnology to control fruit size in the future. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rezaei, Farzaneh; Richard, Tom L.; Logan, Bruce E.
Microbial fuel cells (MFCs) produce bioelectricity from a wide variety of organic and inorganic substrates. Chitin can be used as a slowly degrading substrate in MFCs and thus as a long-term fuel to sustain power by these devices in remote locations. However, little is known about the effects of particle size on power density and length of the power cycle (longevity). We therefore examined power generation from chitin particles sieved to produce three average particle sizes (0.28, 0.46 and 0.78 mm). The longevity increased from 9 to 33 days with an increase in the particle diameter from 0.28 to 0.78 mm. Coulombic efficiency also increased with particle size from 18% to 56%. The maximum power density was lower for the largest (0.78 mm) particles (176 mW m -2), with higher power densities for the 0.28 mm (272 mW m -2) and 0.46 mm (252 mW m -2) particle sizes. The measured lifetimes of these particles scaled with particle diameter to the 1.3 power. Application of a fractal dissolution model indicates chitin particles had a three-dimensional fractal dimension between 2 and 2.3. These results demonstrate particles can be used as a sustainable fuel in MFCs, but that particle sizes will need to be controlled to achieve desired power levels.
Ibrahim, Mohamed; Schoelermann, Julia; Mustafa, Kamal; Cimpan, Mihaela R
2018-04-30
Human exposure to titanium dioxide nanoparticles (nano-TiO 2 ) is increasing. An internal source of nano-TiO 2 is represented by titanium-based orthopedic and dental implants can release nanoparticles (NPs) upon abrasion. Little is known about how the size of NPs influences their interaction with cytoskeletal protein networks and the functional/homeostatic consequences that might follow at the implant-bone interface with regard to osteoblasts. We investigated the effects of size of anatase nano-TiO 2 on SaOS-2 human osteoblast-like cells exposed to clinically relevant concentrations (0.05, 0.5, 5 mg/L) of 5 and 40 nm spherical nano-TiO 2 . Cell viability and proliferation, adhesion, spread and migration were assessed, as well as the orientation of actin and microtubule cytoskeletal networks. The phosphorylation of focal adhesion kinase (p-FAK Y397 ) and the expression of vinculin in response to nano-TiO 2 were also assessed. Treatment with nano-TiO 2 disrupted the actin and microtubule cytoskeletal networks leading to morphological modifications of SaOS-2 cells. The phosphorylation of p-FAK Y397 and the expression of vinculin were also modified depending on the particle size, which affected cell adhesion. Consequently, the cell migration was significantly impaired in the 5 nm-exposed cells compared to unexposed cells. The present work shows that the orientation of cytoskeletal networks and the focal adhesion proteins and subsequently the adhesion, spread and migration of SaOS-2 cells were affected by the selected nano-TiO 2 in a size dependent manner. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Controlling cell volume for efficient PHB production by Halomonas.
Jiang, Xiao-Ran; Yao, Zhi-Hao; Chen, Guo-Qiang
2017-11-01
Bacterial morphology is decided by cytoskeleton protein MreB and cell division protein FtsZ encoded by essential genes mreB and ftsZ, respectively. Inactivating mreB and ftsZ lead to increasing cell sizes and cell lengths, respectively, yet seriously reduce cell growth ability. Here we develop a temperature-responsible plasmid expression system for compensated expression of relevant gene(s) in mreB or ftsZ disrupted recombinants H. campaniensis LS21, allowing mreB or ftsZ disrupted recombinants to grow normally at 30°C in a bioreactor for 12h so that a certain cell density can be reached, followed by 36h cell size expansions or cell shape elongations at elevated 37°C at which the mreB and ftsZ encoded plasmid pTKmf failed to replicate in the recombinants and thus lost themselves. Finally, 80% PHB yield increase was achieved via controllable morphology manipulated H. campaniensis LS21. It is concluded that controllable expanding cell volumes (widths or lengths) provides more spaces for accumulating more inclusion body polyhydroxybutyrate (PHB) and the resulting cell gravity precipitation benefits the final separation of cells and product during downstream. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.
Stata, Matt; Sage, Tammy L; Hoffmann, Natalie; Covshoff, Sarah; Ka-Shu Wong, Gane; Sage, Rowan F
2016-05-01
The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
St Pierre, B. A.; Tidball, J. G.
1994-01-01
Modifications in muscle loading have been reported previously to result in increased numbers of mononucleated cells and changes in myofibril organization at myotendinous junctions (MTJs). The goals of this study were to determine the identity of those mononucleated cells and to examine the relationships between changes in their structure, location, and number with structural aspects of remodeling at MTJs experiencing modified loading. Soleus muscles from rats subjected to 10 days of hindlimb suspension were analyzed 0, 2, 4, and 7 days after return to weight bearing. Immunohistochemistry showed that ED1+, ED2+ and Ia+ macrophages were present at the MTJ and microtendon of control muscle. After reloading, ED2+ macrophages increased in number and size at MTJs and microtendons, indicating their activation. ED1+ cells showed no change in size or number whereas Ia+ cells were increased in size at day 7 of reloading. Electron microscopic observations showed that mononucleated cells near MTJs of control or suspended muscle were not highly active in protein synthesis or secretion. However, in reloaded muscle, mononucleated cells were found to be in close proximity to MTJs and to contain a high concentration of organelles associated with protein secretion. During these stages of reloading, extensive remodeling of myofibril-membrane associations occurred and nascent sarcomeres appeared in the MTJ regions of muscle fibers. Immunohistochemistry showed that during these stages of nascent sarcomere formation, there was renewed expression of developmental myosin heavy chain at MTJs, with this heavy chain appearing most prominently at the MTJ at day 7 of reloading. The activation and increased numbers of macrophages at MTJs and the close apposition of secretory cells to the MTJ membrane during remodeling lead us to propose that macrophage-derived factors may influence remodeling of MTJs in muscles experiencing modified loading. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:7992849
Liu, Han; Du, Li; Wang, Ru; Wei, Chao; Liu, Bo; Zhu, Lei; Liu, Pixu; Liu, Qiang; Li, Jiang; Lu, Shi-Long; Xiao, Jing
2015-05-10
Salivary gland tumor (SGT) is one of the least studied cancers due to its rarity and heterogeneous histological types. Here, we reported that loss of PTEN expression was most frequently found in the poorly differentiated, high grade solid adenoid cystic carcinomas. Loss of PTEN expression correlated with activation of mTOR by increased phosphorylated S6 ribosome protein. We further functionally studied the role of PTEN in a pair of human SACC cell lines, SACC-83 and SACC-LM. Reduced PTEN level was correlated with the metastasis potential. When we knocked down PTEN in the SACC-83 cell line, we observed increased proliferation and enhanced migration/invasion in vitro, and increased tumor size in vivo. We further tested the therapeutical effect by applying a PI3K/mTOR inhibitor NVP-BEZ235 to both SACC cell lines. Decreased cell proliferation, increased apoptosis, as well as reduced cell migration/invasion were observed in both cell lines upon the NVP-BEZ235 treatment. Moreover, the NVP-BEZ235 treatment in a SGT xenograft mouse model significantly reduced primary tumor size and lung metastasis. Taken together, our results demonstrated that PTEN is a potent tumor suppressor in human SGTs, and targeting PI3K/mTOR pathway may be effective in the targeted therapy for human SGT patients with loss of PTEN expression.
Effects of perfluorinated chemicals on adipocyte development ...
Obesity is a growing concern in the US population. Current interest is high in the role played by environmental factors called obesogens that may contribute to obesity through developmental exposure. One class of potential obesogens is the family of perfluorinated chemicals used as surfactants in a variety of industrial applications. Given the importance of understanding the role these compounds play in lipid homeostasis we used pre-adipocyte 3T3-L1 mouse fibroblast cells (Zen-Bio, RTP NC) to study their effects on adipogenesis and lipid accumulation. These cells differentiate into adipocytes accumulating large lipid droplets. Cultures were treated with perfluorooctanoic acid (PFOA) (1-200uM), perfluorononanoic acid (PFNA) (5-lOOuM), perfluorooctane sulfonate (PFOS) (5O-300uM), and perfluorohexane sulfonate (PFHxS) (40- 250uM). Cell size number, and lipid content were assessed using morphomeiric analysis. All four compounds decreased cell size compared to control, and PFNA was most potent, in terms of lowest observed effect concentration (LOEC), whereas PFOA was least potent. Cell number increased for all perfluorinated chemicals tested, most potently for PFNA and least for PFOS. Interestingly, average lipid area per cell for all four chemicals decreased compared to control, but PFOS and PFHxS had increased total lipid area. Additionally, significant increases in total triglyceride were noted for all compounds compared to controls. PFOA and PFNA increased trigly
Nijhout, H Frederik; Laub, Emily; Grunert, Laura W
2018-03-19
The wing imaginal disks of Lepidoptera can be grown in tissue culture, but require both insulin and ecdysone to grow normally. Here, we investigate the contributions the two hormones make to growth. Ecdysone is required to maintain mitoses, whereas in the presence of insulin alone mitoses stop. Both ecdysone and insulin stimulate protein synthesis, but only ecdysone stimulates DNA synthesis. Insulin stimulates primarily cytoplasmic growth and an increase in cell size, whereas ecdysone, by virtue of its stimulation of DNA synthesis and mitosis, stimulates growth by an increase in cell number. Although both hormones stimulate protein synthesis, they do so in different spatial patterns. Both hormones stimulate protein synthesis in the inter-vein regions, but ecdysone stimulates synthesis more strongly in the veins and in the margin of the wing disk. We propose that the balance of insulin and ecdysone signaling must be regulated to maintain normal growth, and when growth appears to be due primarily to an increase in cell number, or an increase in cell size, this may indicate growth occurred under conditions that favored a stronger role for ecdysone, or insulin, respectively. © 2018. Published by The Company of Biologists Ltd.
Florant, Gregory L; Porst, Heather; Peiffer, Aubrey; Hudachek, Susan F; Pittman, Chris; Summers, Scott A; Rajala, Michael W; Scherer, Philipp E
2004-11-01
Leptin and adiponectin are proteins produced and secreted from white adipose tissue and are important regulators of energy balance and insulin sensitivity. Seasonal changes in leptin and adiponectin have not been investigated in mammalian hibernators in relationship to changes in fat cell and fat mass. We sought to determine the relationship between serum leptin and adiponectin levels with seasonal changes in lipid mass. We collected serum and tissue samples from marmots (Marmota flaviventris) in different seasons while measuring changes in fat mass, including fat-cell size. We found that leptin is positively associated with increasing fat mass and fat-cell size, while adiponectin is negatively associated with increasing lipid mass. These findings are consistent with the putative roles of these adipokines: leptin increases with fat mass and is involved in enhancing lipid oxidation while adiponectin appears to be higher in summer when hepatic insulin sensitivity should be maintained since the animals are eating. Our data suggest that during autumn/winter animals have switched from a lipogenic condition to a lipolytic state, which may include leptin resistance.
NASA Astrophysics Data System (ADS)
Woellner, Cristiano F.; Freire, José A.
2016-02-01
We analyzed the impact of the complex channel network of donor and acceptor domains in nanostructured solar cells on the mobility of the charge carriers moving by thermally activated hopping. Particular attention was given to the so called intermixed phase, or interface roughness, that has recently been shown to promote an increase in the cell efficiency. The domains were obtained from a Monte Carlo simulation of a two-species lattice gas. We generated domain morphologies with controllable channel size and interface roughness. The field and density dependence of the carrier hopping mobility in different morphologies was obtained by solving a master equation. Our results show that the mobility decreases with roughness and increases with typical channel sizes. The deleterious effect of the roughness on the mobility is quite dramatic at low carrier densities and high fields. The complex channel network is shown to be directly responsible for two potentially harmful effects to the cell performance: a remarkable decrease of the mobility with increasing field and the accumulation of charge at the domains interface, which leads to recombination losses.
Directed evolution of cell size in Escherichia coli.
Yoshida, Mari; Tsuru, Saburo; Hirata, Naoko; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen; Yomo, Tetsuya
2014-12-17
In bacteria, cell size affects chromosome replication, the assembly of division machinery, cell wall synthesis, membrane synthesis and ultimately growth rate. In addition, cell size can also be a target for Darwinian evolution for protection from predators. This strong coupling of cell size and growth, however, could lead to the introduction of growth defects after size evolution. An important question remains: can bacterial cell size change and/or evolve without imposing a growth burden? The directed evolution of particular cell sizes, without a growth burden, was tested with a laboratory Escherichia coli strain. Cells of defined size ranges were collected by a cell sorter and were subsequently cultured. This selection-propagation cycle was repeated, and significant changes in cell size were detected within 400 generations. In addition, the width of the size distribution was altered. The changes in cell size were unaccompanied by a growth burden. Whole genome sequencing revealed that only a few mutations in genes related to membrane synthesis conferred the size evolution. In conclusion, bacterial cell size could evolve, through a few mutations, without growth reduction. The size evolution without growth reduction suggests a rapid evolutionary change to diverse cell sizes in bacterial survival strategies.
Shaffery, J P; Roffwarg, H P; Speciale, S G; Marks, G A
1999-04-12
We have previously shown that during the post-natal critical period of development of the cat visual system, 1 week of instrumental rapid eye movement (REM) sleep deprivation (IRSD) during 2 weeks of monocular deprivation (MD) results in significant amplification of the effects of solely the 2-week MD on cell-size in the binocular segment of the lateral geniculate nucleus (LGN) [36,40]. In this study, we examined whether elimination of ponto-geniculo-occipital (PGO)-wave phasic activity in the LGN during REM sleep (REMS), rather than suppression of all REMS state-related activity, would similarly yield enhanced plasticity effects on cell-size in LGN. PGO-activity was eliminated in LGN by bilateral pontomesencephalic lesions [8,32]. This method of removing phasic activation at the level of the LGN preserved sleep and wake proportions as well as the tonic activities (low voltage, fast frequency ECoG and low amplitude EMG) that characterize REM sleep. The lesions were performed in kittens on post-natal day 42, at the end of the first week of the 2-week period of MD, the same age when IRSD was started in the earlier study. LGN interlaminar cell-size disparity increased in the PGO-wave-suppressed animals as it had in behaviorally REM sleep-deprived animals. Smaller A1/A-interlaminar ratios reflect the increased disparity effect in both the REM sleep- and PGO-suppressed groups compared to animals subjected to MD-alone. With IRSD, the effect was achieved because the occluded eye-related, LGN A1-lamina cells tended to be smaller relative to their size after MD-alone, whereas after PGO-suppressing lesions, the A1-lamina cells retained their size and the non-occluded eye-related, A-lamina cells tended to be larger than after MD-alone. Despite this difference, for which several possible explanations are offered, these A1/A-interlaminar ratio data indicate that in conjunction either with suppression of the whole of the REMS state or selective removal of REM sleep phasic activity at the LGN, altered visual input evokes more LGN cell plasticity during the developmental period than it would otherwise. These data further support involvement of the REM sleep state in reducing susceptibility to plasticity changes and undesirable variability in the course of normative CNS growth and maturation. Copyright 1999 Elsevier Science B.V.
Effects of crystallite size on the structure and magnetism of ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoming; Zhu, Mengqiang; Koopal, Luuk K.
2015-12-15
The structure and magnetic properties of nano-sized (1.6 to 4.4 nm) ferrihydrite samples are systematically investigated through a combination of X-ray diffraction (XRD), X-ray pair distribution function (PDF), X-ray absorption spectroscopy (XAS) and magnetic analyses. The XRD, PDF and Fe K-edge XAS data of the ferrihydrite samples are all fitted well with the Michel ferrihydrite model, indicating similar local-, medium- and long-range ordered structures. PDF and XAS fitting results indicate that, with increasing crystallite size, the average coordination numbers of Fe–Fe and the unit cell parameter c increase, while Fe2 and Fe3 vacancies and the unit cell parameter a decrease.more » Mössbauer results indicate that the surface layer is relatively disordered, which might have been caused by the random distribution of Fe vacancies. These results support Hiemstra's surface-depletion model in terms of the location of disorder and the variations of Fe2 and Fe3 occupancies with size. Magnetic data indicate that the ferrihydrite samples show antiferromagnetism superimposed with a ferromagnetic-like moment at lower temperatures (100 K and 10 K), but ferrihydrite is paramagnetic at room temperature. In addition, both the magnetization and coercivity decrease with increasing ferrihydrite crystallite size due to strong surface effects in fine-grained ferrihydrites. Smaller ferrihydrite samples show less magnetic hyperfine splitting and a lower unblocking temperature (T B) than larger samples. The dependence of magnetic properties on grain size for nano-sized ferrihydrite provides a practical way to determine the crystallite size of ferrihydrite quantitatively in natural environments or artificial systems.« less
Cold-sensing regulates Drosophila growth through insulin-producing cells
Li, Qiaoran; Gong, Zhefeng
2015-01-01
Across phyla, body size is linked to climate. For example, rearing fruit flies at lower temperatures results in bigger body sizes than those observed at higher temperatures. The underlying molecular basis of this effect is poorly understood. Here we provide evidence that the temperature-dependent regulation of Drosophila body size depends on a group of cold-sensing neurons and insulin-producing cells (IPCs). Electrically silencing IPCs completely abolishes the body size increase induced by cold temperature. IPCs are directly innervated by cold-sensing neurons. Stimulation of these cold-sensing neurons activates IPCs, promotes synthesis and secretion of Drosophila insulin-like peptides and induces a larger body size, mimicking the effects of rearing the flies in cold temperature. Taken together, these findings reveal a neuronal circuit that mediates the effects of low temperature on fly growth. PMID:26648410
Size-dependent protein segregation at membrane interfaces
Schmid, Eva M; Bakalar, Matthew H; Choudhuri, Kaushik; Weichsel, Julian; Ann, HyoungSook; Geissler, Phillip L; Dustin, Michael L; Fletcher, Daniel A
2016-01-01
Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane protein organization, such as E-cadherin enrichment in epithelial junctional complexes and CD45 exclusion from the signaling foci of immunological synapses. To isolate the role of protein size in these processes, we reconstituted membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between binding and non-binding proteins can dramatically alter their organization at membrane interfaces in the absence of active contributions from the cytoskeleton, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally-driven membrane height fluctuations that transiently limit access to the interface. This simple, sensitive, and highly effective means of passively segregating proteins has implications for signaling at cell-cell junctions and protein sorting at intracellular contact points between membrane-bound organelles. PMID:27980602
[The effect of the intratracheal administration of americium-241 on rat alveolar macrophages].
Shopova, V; Sŭlovski, P; Dancheva, V
1996-01-01
In experiments in rats it was found that 241Am transitory decreases the total cell number and alveolar macrophage's percentage in bronchoalveolar lavage fluid (BALF): increases the macrophages size and nuclear size; and increases acid phosphatase and lactate dehydrogenase activities in BALF. It was suggested that 241Am causes and activation in the alveolar macrophages which probably appears as one of factors provoking lung injuries.
Huys, Roeland; Braeken, Dries; Jans, Danny; Stassen, Andim; Collaert, Nadine; Wouters, Jan; Loo, Josine; Severi, Simone; Vleugels, Frank; Callewaert, Geert; Verstreken, Kris; Bartic, Carmen; Eberle, Wolfgang
2012-04-07
To cope with the growing needs in research towards the understanding of cellular function and network dynamics, advanced micro-electrode arrays (MEAs) based on integrated complementary metal oxide semiconductor (CMOS) circuits have been increasingly reported. Although such arrays contain a large number of sensors for recording and/or stimulation, the size of the electrodes on these chips are often larger than a typical mammalian cell. Therefore, true single-cell recording and stimulation remains challenging. Single-cell resolution can be obtained by decreasing the size of the electrodes, which inherently increases the characteristic impedance and noise. Here, we present an array of 16,384 active sensors monolithically integrated on chip, realized in 0.18 μm CMOS technology for recording and stimulation of individual cells. Successful recording of electrical activity of cardiac cells with the chip, validated with intracellular whole-cell patch clamp recordings are presented, illustrating single-cell readout capability. Further, by applying a single-electrode stimulation protocol, we could pace individual cardiac cells, demonstrating single-cell addressability. This novel electrode array could help pave the way towards solving complex interactions of mammalian cellular networks. This journal is © The Royal Society of Chemistry 2012
Onagbesan, O M; Peddie, M J; Williams, J
1994-05-01
There is relatively little information on the factors which regulate the proliferation and alterations in the steroidogenic capacity of avian theca cells during follicular maturation. The development of culture conditions for these cells to determine the effects of gonadotrophin (LH) and the growth factors epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) on DNA synthesis and estrogen production is reported. Cultures were established in serum-supplemented (with fetal calf serum or chicken serum) or ITS+ (insulin, transferrin, and selenium plus additives) supplemented serum-free media. Cell replication occurred throughout the 72-hr culture period as indicated by a linear increase in the DNA content of the culture dishes. Aromatase activity of the cells as defined by conversion of androstenedione to estrogen was best maintained in serum-free medium while sera inhibited this activity. Ovine LH enhanced the aromatase activity of cultured cells from medium and small-sized follicles, while IGF-I and EGF inhibited both basal and LH-stimulated aromatase activity. LH, IGF-I, and EGF all stimulated cell proliferation as reflected by increased DNA. The responses of cells to these peptides varied with the size of the follicle, with the greatest effects on cells from F4/5.
Interplay between Endometriosis and Pregnancy in a Mouse Model
Bilotas, Mariela Andrea; Olivares, Carla Noemí; Ricci, Analía Gabriela; Baston, Juan Ignacio; Bengochea, Tatiana Soledad; Meresman, Gabriela Fabiana; Barañao, Rosa Inés
2015-01-01
Objectives To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation. Study Design Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid. Results Pregnancy rate (i.e. pregnant mice/N) decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions. Conclusions Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis. PMID:25915402
Ahamed, Maqusood; Khan, M. A. Majeed; Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws
2016-01-01
We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1–10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV–3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation & glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells. PMID:27444578
Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis
Jiang, Jianming; Burgon, Patrick G.; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M.; O’Meara, Caitlin C.; Fomovsky, Gregory; McConnell, Bradley K.; Lee, Richard T.; Seidman, J. G.; Seidman, Christine E.
2015-01-01
Homozygous cardiac myosin binding protein C-deficient (Mybpct/t) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpct/t myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpct/t myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpct/t mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3+/− individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3−/− mice is primarily myocyte hyperplasia. PMID:26153423
Kuo, Yung-Chih; Wang, Cheng-Ting
2014-07-01
A liposomal system with surface lactoferrin (Lf) was developed for delivering neuron growth factor (NGF) across the blood-brain barrier (BBB) and improving the viability of neuron-like SK-N-MC cells with deposited β-amyloid peptide (Aβ). The Lf-grafted liposomes carrying NGF (Lf/NGF-liposomes) were applied to a monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes (HAs) and to fibrillar Aβ1-42-insulted SK-N-MC cells. An increase in cholesterol mole percentage enhanced the particle size, absolute value of zeta potential, and physical stability, however, reduced the entrapment efficiency and release rate of NGF. In addition, an increase in Lf concentration increased the particle size, surface nitrogen percentage, NGF permeability across the BBB, and viability of HBMECs, HAs, and SK-N-MC cells, however, decreased the absolute value of zeta potential, surface phosphorus percentage, and loading efficiency of Lf. After treating with Lf/NGF-liposomes, a higher Aβ concentration yielded a lower survival of SK-N-MC cells. The current Lf/NGF-liposomes are efficacious drug carriers to target the BBB and inhibit the Aβ-induced neurotoxicity as potential pharmacotherapy for Alzheimer's disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
Daniaux, Lise A; Laurenson, Michele P; Marks, Stanley L; Moore, Peter F; Taylor, Sandra L; Chen, Rachel X; Zwingenberger, Allison L
2014-01-01
Gastrointestinal lymphoma is the most common form of lymphoma in the cat. More recently, an ultrasonographic pattern associated with feline small cell T-cell gastrointestinal lymphoma has been recognized as a diffuse thickening of the muscularis propria of the small intestine. This pattern is also described with feline inflammatory bowel disease. To evaluate the similarities between the diseases, we quantified the thickness of the muscularis propria layer in the duodenum, jejunum and ileum of 14 cats affected by small cell T-cell lymphoma and inflammatory bowel disease (IBD) and 19 healthy cats. We found a significantly increased thickness of the muscularis propria in cats with lymphoma and IBD compared with healthy cats. The mean thickness of the muscularis propria in cats with lymphoma or IBD was twice the thickness than that of healthy cats, and was the major contributor to significant overall bowel wall thickening in the duodenum and jejunum. A muscularis to submucosa ratio >1 is indicative of an abnormal bowel segment. Colic lymph nodes in cats with lymphoma were increased in size compared with healthy cats. In cats with gastrointestinal lymphoma and histologic transmural infiltration of the small intestines, colic or jejunal lymph nodes were rounded, increased in size and hypoechoic. PMID:23900499
Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells.
Manikandan, M; Hasan, Nazim; Wu, Hui-Fen
2013-07-01
This study demonstrates the effective synthesis of five different sized/shaped Pt NPs, within a narrow size regime of 1-21 nm using a modified methodology and the toxicity/biocompatibility of Pt NPs on Neuro 2A cancer cells was investigated elaborately by using light microscopic observations, tryphan blue exclusion assay, MTT assay and ICP-MS. The Pt NPs-C with sizes 5-6 nm showed superior non-cytotoxic property compared to the other four Pt NPs. These non-cytotoxic Pt NPs were employed for successful photothermal treatment of Neuro 2A cell lines using near-IR 1064 nm of laser irradiation. The Pt NPs-C could generate a 9 °C increase in temperature leading to effective photothermal killing of cancer cells. The MALDI-MS was used to prove the possibility of apoptosis related triggering of cell death in the presence of the Pt NPs. The results confirm that the current approach is an effective platform for in vivo treatment of neuro cancer cells. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleaver, J.E.; Thomas, G.H.; Park, S.D.
1979-01-01
Human cells (normal and xeroderma pigmentosum variant) irradiated with ultraviolet light and pulse-labelled with (/sup 3/H)thymidine underwent transient decline and recovery of molecular weights of newly synthesized DNA and rates of (/sup 3/H)thymidine incorporation. The ability to synthesize normal-sized DNA recovered more rapidly in both cell types than thymidine incorporation. During recovery cells steadily increased in their ability to replicate normal-sized DNA on damaged templates. The molecular weight versus time curves fitted exponential functions with similar rate constants in normal and heterozygous xeroderma pigmentosum cells, but with a slower rate in two xeroderma pigmentosum variant cell lines. Caffeine added duringmore » the post-irradiation period eliminated the recovery of molecular weights in xeroderma pigmentosum variant but not in normal cells. The recovery of the ability to synthesize normal-sized DNA represents a combination of a number of cellular regulatory processes, some of which are constitutive, and one of which is altered in the xeroderma pigmentosum variant such that recovery becomes slow and caffeine sensitive.« less
The optimal density of cellular solids in axial tension.
Mihai, L Angela; Alayyash, Khulud; Wyatt, Hayley
2017-05-01
For cellular bodies with uniform cell size, wall thickness, and shape, an important question is whether the same volume of material has the same effect when arranged as many small cells or as fewer large cells. To answer this question, for finite element models of periodic structures of Mooney-type material with different structural geometry and subject to large strain deformations, we identify a nonlinear elastic modulus as the ratio between the mean effective stress and the mean effective strain in the solid cell walls, and show that this modulus increases when the thickness of the walls increases, as well as when the number of cells increases while the volume of solid material remains fixed. Since, under the specified conditions, this nonlinear elastic modulus increases also as the corresponding mean stress increases, either the mean modulus or the mean stress can be employed as indicator when the optimum wall thickness or number of cells is sought.
Liu, Yumei; Shi, Feng; Bo, Lin; Zhi, Wei; Weng, Jie; Qu, Shuxin
2017-10-01
The aim of this study was to develop a novel alginate-encapsulated system (Alg beads) to investigate the cell response to critical-sized wear particles of ultra-high molecular weight polyethylene loaded with alendronate sodium (UHMWPE-ALN), one of the most effective drugs to treat bone resorption in clinic. The extrusion method was used to prepare Alg beads encapsulating rat calvarial osteoblasts (RCOs) and critical-sized UHMWPE-ALN wear particles with spherical morphology and uniform size. The morphology, permeability and stability of Alg beads were characterized. The proliferation, ALP activity, cell apoptosis and distribution of live/dead RCOs co-cultured with wear particles in Alg beads were evaluated. RCOs and critical-sized UHMWPE-ALN wear particles distributed evenly and contacted efficiently in Alg beads. Alg beads were both permeable to trypsin and BSA, while the smaller the molecular was, the larger the diffuse was. The proliferation of RCOs in Alg beads increased with time, which indicated that Alg beads provided suitable conditions for cell culture. The long-term stability of Alg beads indicated the possibility for the longer time of co-cultured cells with wear particles. Critical-sized UHMWPE-ALN and UHMWPE wear particles both inhibited the proliferation and differentiation of RCOs, and induced the apoptosis of RCOs encapsulated in Alg beads. However, these effects could be significantly alleviated by the ALN released from the critical-sized UHMWPE-ALN wear particles. The present results suggested that this novel-developed co-culture system was feasible to evaluate the cell response to critical-sized UHMWPE-ALN wear particles for a longer time. Copyright © 2017 Elsevier B.V. All rights reserved.
Lamb, Rebecca; Ozsvari, Bela; Bonuccelli, Gloria; Smith, Duncan L.; Pestell, Richard G.; Martinez-Outschoorn, Ubaldo E.; Clarke, Robert B.; Sotgia, Federica; Lisanti, Michael P.
2015-01-01
Tumor cell metabolic heterogeneity is thought to contribute to tumor recurrence, distant metastasis and chemo-resistance in cancer patients, driving poor clinical outcome. To better understand tumor metabolic heterogeneity, here we used the MCF7 breast cancer line as a model system to metabolically fractionate a cancer cell population. First, MCF7 cells were stably transfected with an hTERT-promoter construct driving GFP expression, as a surrogate marker of telomerase transcriptional activity. To enrich for immortal stem-like cancer cells, MCF7 cells expressing the highest levels of GFP (top 5%) were then isolated by FACS analysis. Notably, hTERT-GFP(+) MCF7 cells were significantly more efficient at forming mammospheres (i.e., stem cell activity) and showed increased mitochondrial mass and mitochondrial functional activity, all relative to hTERT-GFP(−) cells. Unbiased proteomics analysis of hTERT-GFP(+) MCF7 cells directly demonstrated the over-expression of 33 key mitochondrial proteins, 17 glycolytic enzymes, 34 ribosome-related proteins and 17 EMT markers, consistent with an anabolic cancer stem-like phenotype. Interestingly, MT-CO2 (cytochrome c oxidase subunit 2; Complex IV) expression was increased by >20-fold. As MT-CO2 is encoded by mt-DNA, this finding is indicative of increased mitochondrial biogenesis in hTERT-GFP(+) MCF7 cells. Importantly, most of these candidate biomarkers were transcriptionally over-expressed in human breast cancer epithelial cells in vivo. Similar results were obtained using cell size (forward/side scatter) to fractionate MCF7 cells. Larger stem-like cells also showed increased hTERT-GFP levels, as well as increased mitochondrial mass and function. Thus, this simple and rapid approach for the enrichment of immortal anabolic stem-like cancer cells will allow us and others to develop new prognostic biomarkers and novel anti-cancer therapies, by specifically and selectively targeting this metabolic sub-population of aggressive cancer cells. Based on our proteomics and functional analysis, FDA-approved inhibitors of protein synthesis and/or mitochondrial biogenesis, may represent novel treatment options for targeting these anabolic stem-like cancer cells. PMID:26323205
Hyperglycemic Conditions Prime Cells for RIP1-dependent Necroptosis.
LaRocca, Timothy J; Sosunov, Sergey A; Shakerley, Nicole L; Ten, Vadim S; Ratner, Adam J
2016-06-24
Necroptosis is a RIP1-dependent programmed cell death (PCD) pathway that is distinct from apoptosis. Downstream effector pathways of necroptosis include formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), both of which depend on glycolysis. This suggests that increased cellular glucose may prime necroptosis. Here we show that exposure to hyperglycemic levels of glucose enhances necroptosis in primary red blood cells (RBCs), Jurkat T cells, and U937 monocytes. Pharmacologic or siRNA inhibition of RIP1 prevented the enhanced death, confirming it as RIP1-dependent necroptosis. Hyperglycemic enhancement of necroptosis depends upon glycolysis with AGEs and ROS playing a role. Total levels of RIP1, RIP3, and mixed lineage kinase domain-like (MLKL) proteins were increased following treatment with high levels of glucose in Jurkat and U937 cells and was not due to transcriptional regulation. The observed increase in RIP1, RIP3, and MLKL protein levels suggests a potential positive feedback mechanism in nucleated cell types. Enhanced PCD due to hyperglycemia was specific to necroptosis as extrinsic apoptosis was inhibited by exposure to high levels of glucose. Hyperglycemia resulted in increased infarct size in a mouse model of brain hypoxia-ischemia injury. The increased infarct size was prevented by treatment with nec-1s, strongly suggesting that increased necroptosis accounts for exacerbation of this injury in conditions of hyperglycemia. This work reveals that hyperglycemia represents a condition in which cells are extraordinarily susceptible to necroptosis, that local glucose levels alter the balance of PCD pathways, and that clinically relevant outcomes may depend on glucose-mediated effects on PCD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Harini, Lakshminarasimhan; Karthikeyan, Bose; Srivastava, Sweta; Suresh, Srinag Bangalore; Ross, Cecil; Gnanakumar, Georgepeter; Rajagopal, Srinivasan; Sundar, Krishnan; Kathiresan, Thandavarayan
2017-02-01
Breast cancer accounts for the first highest mortality rate in India and second in world. Though current treatment strategies are effectively killing cancer cells, they also end in causing severe side effects and drug resistance. Curcumin is a nutraceutical with multipotent activity but its insolubility in water limits its therapeutic potential as an anti-cancer drug. The hydrophilicity of curcumin could be increased by nanoformulation or changing its functional groups. In this study, curcumin is loaded on mesoporous silica nanoparticle and its anti-cancer activity is elucidated with MCF-7 cell death. Structural characteristics of Mobil Composition of Matter - 41(MCM-41) as determined by high-resolution transmission electron microscopy (HR-TEM) shows that MCM-41 size ranges from 100 to 200 nm diameters with pore size 2-10 nm for drug adsorption. The authors found 80-90% of curcumin is loaded on MCM-41 and curcumin is released efficiently at pH 3.0. The 50 µM curcumin-loaded MCM-41 induced 50% mortality of MCF-7 cells. Altogether, their results suggested that increased curcumin loading and sustained release from MCM-41 effectively decreased cell survival of MCF-7 cells in vitro.
DNA Tetrahedron Delivery Enhances Doxorubicin-Induced Apoptosis of HT-29 Colon Cancer Cells
NASA Astrophysics Data System (ADS)
Zhang, Guiyu; Zhang, Zhiyong; Yang, Junen
2017-08-01
As a nano-sized drug carrier with the advantage of modifiability and proper biocompatibility, DNA tetrahedron (DNA tetra) delivery is hopeful to enhance the inhibitory efficiency of nontargeted anticancer drugs. In this investigation, doxorubicin (Dox) was assembled to a folic acid-modified DNA tetra via click chemistry to prepare a targeted antitumor agent. Cellular uptake efficiency was measured via fluorescent imaging. Cytotoxicity, inhibition efficiency, and corresponding mechanism on colon cancer cell line HT-29 were evaluated by MTT assay, cell proliferation curve, western blot, and flow cytometry. No cytotoxicity was induced by DNA tetra, but the cellular uptake ratio increased obviously resulting from the DNA tetra-facilitated penetration through cellular membrane. Accordingly, folic acid-DNA tetra-Dox markedly increased the antitumor efficiency with increased apoptosis levels. In details, 100 μM was the effective concentration and a 6-h incubation period was needed for apoptosis induction. In conclusion, nano-sized DNA tetrahedron was a safe and effective delivery system for Dox and correspondingly enhanced the anticancer efficiency.
NASA Astrophysics Data System (ADS)
Saruwatari, Kazuko; Satoh, Manami; Harada, Naomi; Suzuki, Iwane; Shiraiwa, Yoshihiro
2016-05-01
Strains of the coccolithophore Emiliania huxleyi (Haptophyta) collected from the subarctic North Pacific and Arctic oceans in 2010 were established as clone cultures and have been maintained in the laboratory at 15 °C and 32 ‰ salinity. To study the physiological responses of coccolith formation to changes in temperature and salinity, growth experiments and morphometric investigations were performed on two strains, namely MR57N isolated from the northern Bering Sea and MR70N at the Chukchi Sea. This is the first report of a detailed morphometric and morphological investigation of Arctic Ocean coccolithophore strains. The specific growth rates at the logarithmic growth phases in both strains markedly increased as temperature was elevated from 5 to 20 °C, although coccolith productivity (estimated as the percentage of calcified cells) was similar at 10-20 % at all temperatures. On the other hand, the specific growth rate of MR70N was affected less by changes in salinity in the range 26-35 ‰, but the proportion of calcified cells decreased at high and low salinities. According to scanning electron microscopy (SEM) observations, coccolith morphotypes can be categorized into Type B/C on the basis of their biometrical parameters. The central area elements of coccoliths varied from thin lath type to well-calcified lath type when temperature was increased or salinity was decreased, and coccolith size decreased simultaneously. Coccolithophore cell size also decreased with increasing temperature, although the variation in cell size was slightly greater at the lower salinity level. This indicates that subarctic and arctic coccolithophore strains can survive in a wide range of seawater temperatures and at lower salinities with change in their morphology. Because all coccolith biometric parameters followed the scaling law, the decrease in coccolith size was caused simply by the reduced calcification. Taken together, our results suggest that calcification productivity may be used to predict future oceanic environmental conditions in the polar regions.
Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro
NASA Astrophysics Data System (ADS)
Zhou, Guoqiang; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying
2016-05-01
Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.
Ding, Ming-Zhu; Tian, Hong-Chi; Cheng, Jing-Sheng; Yuan, Ying-Jin
2009-12-01
To investigate the metabolic regulation against inoculum density and stress response to high cell density, comparative metabolomic analysis was employed on Saccharomyces cerevisiae under fermentations with five different inoculum sizes by gas chromatography time-of-flight mass spectrometry. Samples from these fermentations were clearly distinguished by principal components analysis, indicating that inoculum size had a profound effect on the metabolism of S. cerevisiae. Potential biomarkers responsible for the discrimination were identified as glycerol, phosphoric acid, succinate, glycine, isoleucine, proline, palmitoleic acid, myo-inositol and ethanolamine. It indicated that enhanced stress protectants in glycerol biosynthesis and amino acid metabolism, depressed citric acid cycle intermediates, as well as decreased metabolites relating to membrane structure and function were involved as the inoculum size of yeast increased. Furthermore, significantly higher levels of glycerol and proline in yeast cells of higher inoculum size fermentation (40 g l(-1)) revealed that they played important roles in protecting yeast from stresses in high cell density fermentation. These findings provided new insights into characterizing the metabolic regulation and stress response depending on inoculum density during ethanol fermentation.
Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization.
Muntean, Andrew G; Pang, Liyan; Poncz, Mortimer; Dowdy, Steven F; Blobel, Gerd A; Crispino, John D
2007-06-15
Endomitosis is a unique form of cell cycle used by megakaryocytes, in which the latter stages of mitosis are bypassed so that the cell can increase its DNA content and size. Although several transcription factors, including GATA-1 and RUNX-1, have been implicated in this process, the link between transcription factors and polyploidization remains undefined. Here we show that GATA-1-deficient megakaryocytes, which display reduced size and polyploidization, express nearly 10-fold less cyclin D1 and 10-fold increased levels of p16 compared with their wild-type counterparts. We further demonstrate that cyclin D1 is a direct GATA-1 target in megakaryocytes, but not erythroid cells. Restoration of cyclin D1 expression, when accompanied by ectopic overexpression of its partner Cdk4, resulted in a dramatic increase in megakaryocyte size and DNA content. However, terminal differentiation was not rescued. Of note, polyploidization was only modestly reduced in cyclin D1-deficient mice, likely due to compensation by elevated cyclin D3 expression. Finally, consistent with an additional defect conferred by increased levels of p16, inhibition of cyclin D-Cdk4 complexes with a TAT-p16 fusion peptide significantly blocked polyploidization of wild-type megakaryocytes. Together, these data show that GATA-1 controls growth and polyploidization by regulating cyclin D-Cdk4 kinase activity.
Cyclin D–Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization
Muntean, Andrew G.; Pang, Liyan; Poncz, Mortimer; Dowdy, Steven F.; Blobel, Gerd A.
2007-01-01
Endomitosis is a unique form of cell cycle used by megakaryocytes, in which the latter stages of mitosis are bypassed so that the cell can increase its DNA content and size. Although several transcription factors, including GATA-1 and RUNX-1, have been implicated in this process, the link between transcription factors and polyploidization remains undefined. Here we show that GATA-1–deficient megakaryocytes, which display reduced size and polyploidization, express nearly 10-fold less cyclin D1 and 10-fold increased levels of p16 compared with their wild-type counterparts. We further demonstrate that cyclin D1 is a direct GATA-1 target in megakaryocytes, but not erythroid cells. Restoration of cyclin D1 expression, when accompanied by ectopic overexpression of its partner Cdk4, resulted in a dramatic increase in megakaryocyte size and DNA content. However, terminal differentiation was not rescued. Of note, polyploidization was only modestly reduced in cyclin D1–deficient mice, likely due to compensation by elevated cyclin D3 expression. Finally, consistent with an additional defect conferred by increased levels of p16, inhibition of cyclin D-Cdk4 complexes with a TAT-p16 fusion peptide significantly blocked polyploidization of wild-type megakaryocytes. Together, these data show that GATA-1 controls growth and polyploidization by regulating cyclin D-Cdk4 kinase activity. PMID:17317855
The effect of particle size on the genotoxicity of gold nanoparticles.
Xia, Qiyue; Li, Hongxia; Liu, Ying; Zhang, Shuyang; Feng, Qiyi; Xiao, Kai
2017-03-01
Despite the increasing biomedical applications of gold nanoparticles (AuNPs), their toxicological effects need to be thoroughly understood. In the present study, the genotoxic potential of commercially available AuNPs with varying size (5, 20, and 50 nm) were assessed using a battery of in vitro and in vivo genotoxicity assays. In the comet assay, 20 and 50 nm AuNPs did not induce obvious DNA damage in HepG2 cells at the tested concentrations, whereas 5 nm NPs induced a dose-dependent increment in DNA damage after 24-h exposure. Furthermore, 5 nm AuNPs induced cell cycle arrest in G1 phase in response to DNA damage, and promoted the production of reactive oxygen species (ROS). In the chromosomal aberration test, AuNPs exposure did not increase in the frequency of chromosomal aberrations in Chinese hamster lung (CHL) cells. In the standard in vivo micronucleus test, no obvious increase in the frequency of micronucleus formation was found in mice after 4 day exposure of AuNPs. However, when the exposure period was extended to 14 days, 5 nm AuNPs presented significant clastogenic damage, with a dose-dependent increase of micronuclei frequencies. This finding suggests that particle size plays an important role in determining the genotoxicity of AuNPs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 710-719, 2017. © 2016 Wiley Periodicals, Inc.
Liquid-Feed Methanol Fuel Cell With Membrane Electrolyte
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao; Narayanan, S. R.; Halpert, Gerald; Frank, Harvey; Vamos, Eugene
1995-01-01
Fuel cell generates electricity from direct liquid feed stream of methanol/water solution circulated in contact with anode, plus direct gaseous feed stream of air or oxygen in contact with cathode. Advantages include relative simplicity and elimination of corrosive electrolytic solutions. Offers potential for reductions in size, weight, and complexity, and for increases in safety of fuel-cell systems.
Beta-cell metabolic alterations under chronic nutrient overload in rat and human islets
USDA-ARS?s Scientific Manuscript database
The aim of this study was to assess multifactorial Beta-cell responses to metabolic perturbations in primary rat and human islets. Treatment of dispersed rat islet cells with elevated glucose and free fatty acids (FFAs, oleate:palmitate = 1:1 v/v) resulted in increases in the size and the number of ...
Functional and morphological changes in endocrine pancreas following cola drink consumption in rats.
Otero-Losada, Matilde; Cao, Gabriel; González, Julián; Muller, Angélica; Ottaviano, Graciela; Lillig, Christopher; Capani, Francisco; Ambrosio, Giuseppe; Milei, José
2015-01-01
We report the effects of long-term cola beverage drinking on glucose homeostasis, endocrine pancreas function and morphology in rats. Wistar rats drank: water (group W), regular cola beverage (group C, sucrose sweetened) or "light" cola beverage (group L, artificially sweetened). After 6 months, 50% of the animals in each group were euthanized and the remaining animals consumed water for the next 6 months when euthanasia was performed. Biochemical assays, insulinemia determination, estimation of insulin resistance (HOMA-IR), morphometry and immunohistochemistry evaluations were performed in pancreas. Hyperglycemia (16%, p<0.05), CoQ10 (coenzyme-Q10) decrease (-52%,p<0.01), strong hypertriglyceridemia (2.8-fold, p<0.01), hyperinsulinemia (2.4 fold, p<0.005) and HOMA-IR increase (2.7 fold, p<0.01) were observed in C. Group C showed a decrease in number of α cells (-42%, p<0.01) and β cells (-58%, p<0.001) and a moderate increase in α cells' size after wash-out (+14%, p<0.001). Group L showed reduction in β cells' size (-9%, p<0.001) and only after wash-out (L12) a 19% increase in size (p<0.0001) with 35% decrease in number of α cells (p<0.01). Groups C and L showed increase in α/β-cell ratio which was irreversible only in C (α/β = +38% in C6,+30% in C12, p<0.001vs.W6). Regular cola induced a striking increase in the cytoplasmic expression of Trx1 (Thioredoxin-1) (2.25-fold in C6 vs. W6; 2.7-fold in C12 vs. W12, p<0.0001) and Prx2 (Peroxiredoxin-2) (3-fold in C6 vs. W6; 2-fold in C12 vs. W12, p<0.0001). Light cola induced increase in Trx1 (3-fold) and Prx2 (2-fold) after wash-out (p<0.0001, L12 vs. W12). Glucotoxicity may contribute to the loss of β cell function with depletion of insulin content. Oxidative stress, suggested by increased expression of thioredoxins and low circulating levels of CoQ10, may follow sustained hyperglycemia. A likely similar panorama may result from the effects of artificially sweetened cola though via other downstream routes.
Tan, Karen A L; Walker, Marion; Morris, Keith; Greig, Irene; Mason, J Ian; Sharpe, Richard M
2006-04-01
This marmoset study addresses concerns about feeding human male infants with soy formula milk (SFM). From age 4 to 5 days, seven male co-twin sets were fed standard formula milk (SMA) or SFM for 5-6 weeks; blood samples were subsequently collected at 10-week intervals. Testes from co-twins killed at 120-138 weeks were fixed for cell counts. SFM- and SMA-fed twins showed normal weight gain; puberty started and progressed normally, based on blood testosterone measurements. Body weight, organ weights (prostate, seminal vesicles, pituitary, thymus and spleen) and penis length were comparable in co-twins. All SMA- and 6/7 SFM-fed males were fertile. Unexpectedly, testis weight (P = 0.041), Sertoli (P = 0.025) and Leydig cell (P = 0.026) numbers per testis were consistently increased in SFM-fed co-twins; the increase in Leydig cell numbers was most marked in males with consistently low-normal testosterone levels. Seminiferous epithelium volume per tubule showed a less consistent, non-significant increase in SFM-fed males; raised germ cell numbers per testis, probably due to increased Sertoli cells, conceivably resulted in larger testes. Average lumen size, although greater in SFM-fed group, was inconsistent between co-twins and the difference was not significant. Infant feeding with SFM has no gross adverse reproductive effects in male marmosets, though it alters testis size and cell composition, and there is consistent, if indirect, evidence for possible 'compensated Leydig cell failure'. Similar and perhaps larger changes likely occur in adult men who were fed SFM as infants.
Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells.
Esper, Raymond M; Dame, Michael; McClintock, Shannon; Holt, Peter R; Dannenberg, Andrew J; Wicha, Max S; Brenner, Dean E
2015-12-01
Multiple mechanisms are likely to account for the link between obesity and increased risk of postmenopausal breast cancer. Two adipokines, leptin and adiponectin, are of particular interest due to their opposing biologic functions and associations with breast cancer risk. In the current study, we investigated the effects of leptin and adiponectin on normal breast epithelial stem cells. Levels of leptin in human adipose explant-derived conditioned media positively correlated with the size of the normal breast stem cell pool. In contrast, an inverse relationship was found for adiponectin. Moreover, a strong linear relationship was observed between the leptin/adiponectin ratio in adipose conditioned media and breast stem cell self-renewal. Consistent with these findings, exogenous leptin stimulated whereas adiponectin suppressed breast stem cell self-renewal. In addition to local in-breast effects, circulating factors, including leptin and adiponectin, may contribute to the link between obesity and breast cancer. Increased levels of leptin and reduced amounts of adiponectin were found in serum from obese compared with age-matched lean postmenopausal women. Interestingly, serum from obese women increased stem cell self-renewal by 30% compared with only 7% for lean control serum. Taken together, these data suggest a plausible explanation for the obesity-driven increase in postmenopausal breast cancer risk. Leptin and adiponectin may function as both endocrine and paracrine/juxtacrine factors to modulate the size of the normal stem cell pool. Interventions that disrupt this axis and thereby normalize breast stem cell self-renewal could reduce the risk of breast cancer. ©2015 American Association for Cancer Research.
HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells.
Zhang, Wei; Zhou, Xiangjun; Yao, Qisheng; Liu, Yutao; Zhang, Hao; Dong, Zheng
2017-10-01
Exosomes are nano-sized vesicles produced and secreted by cells to mediate intercellular communication. The production and function of exosomes in kidney tissues and cells remain largely unclear. Hypoxia is a common pathophysiological condition in kidneys. This study was designed to characterize exosome production during hypoxia of rat renal proximal tubular cells (RPTCs), investigate the regulation by hypoxia-inducible factor-1 (HIF-1), and determine the effect of the exosomes on ATP-depletion-induced tubular cell injury. Hypoxia did not change the average sizes of exosomes secreted by RPTCs, but it significantly increased exosome production in a time-dependent manner. HIF-1 induction with dimethyloxalylglycine also promoted exosome secretion, whereas pharmacological and genetic suppression of HIF-1 abrogated the increase of exosome secretion under hypoxia. The exosomes from hypoxic RPTCs had inhibitory effects on apoptosis of RPTCs following ATP depletion. The protective effects were lost in the exosomes from HIF-1α knockdown cells. It is concluded that hypoxia stimulates exosome production and secretion in renal tubular cells. The exosomes from hypoxic cells are protective against renal tubular cell injury. HIF-1 mediates exosome production during hypoxia and contributes to the cytoprotective effect of the exosomes. Copyright © 2017 the American Physiological Society.
Ruscheinsky, Monika; De la Motte, Carol; Mahendroo, Mala
2008-01-01
The uterine cervix undergoes changes during pregnancy and labor that transform it from a closed, rigid, collagen dense structure to one that is distensible, has a disorganized collagen matrix, and dilates sufficiently to allow birth. To protect the reproductive tract from exposure to the external environment, the cervix must be rapidly altered to a closed, undistensible structure after birth. Preparturition remodeling is characterized by increased synthesis of hyaluronan, decreased expression of collagen assembly genes and increased distribution of inflammatory cells into the cervical matrix. Postpartum remodeling is characterized by decreased hyaluronan (HA) content, increased expression of genes involved in assembly of mature collagen and inflammation. The focus of this study is to advance our understanding of functions HA plays in this dynamic process through characterization of HA size, structure and binding proteins in the mouse cervix. Changes in size and structure of HA before and after birth were observed as well as cell specific expression of HA binding proteins. CD44 expression is localized to the pericellular matrix surrounding the basal epithelia and on immune cells while inter α trypsin inhibitor (IαI) and versican are localized to the stromal matrix. Co-localization of HA and IαI is most pronounced after birth. Upregulation of the versican degrading protease, ADAMTS1 occurs in the cervix prior to birth. These studies suggest that HA has multiple, cell specific functions in the cervix that may include modulation of tissue structure and integrity, epithelial cell migration and differentiation, and inflammatory responses. PMID:18353623
Imaging of Biological Cells Using Luminescent Silver Nanoparticles
NASA Astrophysics Data System (ADS)
Kravets, Vira; Almemar, Zamavang; Jiang, Ke; Culhane, Kyle; Machado, Rosa; Hagen, Guy; Kotko, Andriy; Dmytruk, Igor; Spendier, Kathrin; Pinchuk, Anatoliy
2016-01-01
The application of luminescent silver nanoparticles as imaging agents for neural stem and rat basophilic leukemia cells was demonstrated. The experimental size dependence of the extinction and emission spectra for silver nanoparticles were also studied. The nanoparticles were functionalized with fluorescent glycine dimers. Spectral position of the resonance extinction and photoluminescence emission for particles with average diameters ranging from 9 to 32 nm were examined. As the particle size increased, the spectral peaks for both extinction and the intrinsic emission of silver nanoparticles shifted to the red end of the spectrum. The intrinsic photoluminescence of the particles was orders of magnitude weaker and was spectrally separated from the photoluminescence of the glycine dimer ligands. The spectral position of the ligand emission was independent of the particle size; however, the quantum yield of the nanoparticle-ligand system was size-dependent. This was attributed to the enhancement of the ligand's emission caused by the local electric field strength's dependence on the particle size. The maximum quantum yield determined for the nanoparticle-ligand complex was (5.2 ± 0.1) %. The nanoparticles were able to penetrate cell membranes of rat basophilic leukemia and neural stem cells fixed with paraformaldehyde. Additionally, toxicity studies were performed. It was found that towards rat basophilic leukemia cells, luminescent silver nanoparticles had a toxic effect in the silver atom concentration range of 10-100 μM.
NASA Astrophysics Data System (ADS)
Reza Barati, Mohammad; Selomulya, Cordelia; Suzuki, Kiyonori
2014-05-01
Magnetic nanoparticles with narrow size distributions have successfully been synthesized by an ultrasonic assisted co-precipitation method. The effects of particle size on magnetic properties, heat generation by AC fields, and the cell cytotoxicity were investigated for MgFe2O4 nanoparticles with mean diameters varying from 7 ± 0.5 nm to 29 ± 1 nm. The critical size for superparamagnetic to ferrimagnetic transition (DS→F) of MgFe2O4 was determined to be about 13 ± 0.5 nm at 300 K. The specific absorption rate (SAR) of MgFe2O4 nanoparticles was strongly size dependent; it showed a maximum value of 19 W/g when the particle size was 10 ± 0.5 nm at which the Néel and Brownian relaxations are the major cause of heating. The SAR value was suppressed dramatically by 46% with increasing particle size from 10 ± 0.5 nm to 13 ± 0.5 nm, where Néel relaxation slows down and SAR results primarily from Brownian relaxation loss. A further reduction in SAR value was evident when the size was increased from 13 ± 0.5 nm to 16 ± 1 nm, where the superparamagnetic to ferromagnetic transition occurs. However, SAR showed a tendency to increase with particle size again above 16 ± 1 nm where hysteresis loss becomes the dominant mechanism of heat generation. The particle size dependence of SAR in the superparamagnetic region was well described by considering the effective relaxation time estimated based on a log-normal size distribution. The clear size dependence of SAR is attributable to the high degree of monodispersity of particles synthesized here. The high SAR value of water-based MgFe2O4 magnetic suspension combined with low cell cytotoxicity suggests a great potential of MgFe2O4 nanoparticles for magnetic hyperthermia therapy applications.
Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit.
Sonoda, Yutaka; Sako, Kaori; Maki, Yuko; Yamazaki, Naoko; Yamamoto, Hiroko; Ikeda, Akira; Yamaguchi, Junji
2009-10-01
The ubiquitin/26S proteasome pathway plays a central role in the degradation of short-lived regulatory proteins, to control many cellular events. To further understand this pathway, we focused on the RPT2 subunit of the 26S proteasome regulatory particle. The Arabidopsis genome contains two genes, AtRPT2a and AtRPT2b, which encode paralog molecules of the RPT2 subunit, with a difference of only three amino acids in the protein sequences. Both genes showed similar mRNA accumulation patterns. However, the rpt2a mutant showed a specific phenotype of enlarged leaves caused by increased cell size, in correlation with increased ploidy. Detailed analyses revealed that cell expansion is increased in the rpt2a mutant by extended endoreduplication early in leaf development. The transcription of genes encoding cell cycle-related components, for DNA replication licensing and the G2/M phase, was also promoted in the rpt2a mutant, suggesting that extended endoreduplication was caused by increased DNA replication, and disrupted regulation of the G2/M checkpoint, at the proliferation stage of leaf development.
The effects of perfluorinated chemicals on adipocyte differentiation in vitro.
Watkins, Andrew M; Wood, Carmen R; Lin, Mimi T; Abbott, Barbara D
2015-01-15
The 3T3-L1 preadipocyte culture system has been used to examine numerous compounds that influence adipocyte differentiation or function. The perfluoroalkyl acids (PFAAs), used as surfactants in a variety of industrial applications, are of concern as environmental contaminants that are detected worldwide in human serum and animal tissues. This study was designed to evaluate the potential for PFAAs to affect adipocyte differentiation and lipid accumulation using mouse 3T3-L1 cells. Cells were treated with perfluorooctanoic acid (PFOA) (5-100 µM), perfluorononanoic acid (PFNA) (5-100 µM), perfluorooctane sulfonate (PFOS) (50-300 µM), perfluorohexane sulfonate (PFHxS) (40-250 µM), the peroxisome proliferator activated receptor (PPAR) PPARα agonist Wyeth-14,643 (WY-14,643), and the PPARγ agonist rosiglitazone. The PPARγ agonist was included as a positive control as this pathway is critical to adipocyte differentiation. The PPARα agonist was included as the PFAA compounds are known activators of this pathway. Cells were assessed morphometrically and biochemically for number, size, and lipid content. RNA was extracted for qPCR analysis of 13 genes selected for their importance in adipocyte differentiation and lipid metabolism. There was a significant concentration-related increase in cell number and decreased cell size after exposure to PFOA, PFHxS, PFOS, and PFNA. All four PFAA treatments produced a concentration-related decrease in the calculated average area occupied by lipid per cell. However, total triglyceride levels per well increased with a concentration-related trend for all compounds, likely due to the increased cell number. Expression of mRNA for the selected genes was affected by all exposures and the specific impacts depended on the particular compound and concentration. Acox1 and Gapdh were upregulated by all six compounds. The strongest overall effect was a nearly 10-fold induction of Scd1 by PFHxS. The sulfonated PFAAs produced numerous, strong changes in gene expression similar to the effects after treatment with the PPARγ agonist rosiglitazone. By comparison, the effects on gene expression were muted for the carboxylated PFAAs and for the PPARα agonist WY-14,643. In summary, all perfluorinated compounds increased cell number, decreased cell size, increased total triglyceride, and altered expression of genes associated with adipocyte differentiation and lipid metabolism. Published by Elsevier Ireland Ltd.
Sipahi, Rifat; Zupanc, Günther K H
2018-05-14
Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Study of TiO2 particles size, dyes, and catalyst to improve the performance of DSSC
NASA Astrophysics Data System (ADS)
Saehana, Sahrul; Darsikin, Muslimin
2016-02-01
This study reports effort to improve performance of solar cells by using various natural dyes in dye-sensitized solar cell (DSSC). We applied three kind of natural dye, i.e, black rice dye, cactus dye and dragon fruit dye. We found that performance of DSSC which employ black rice dye was higher than other natural dyes. It is because the wider spectrum wavelength of black rice dyes. Its performance also compared with rhutenium dye (N719). Effect of TiO2 particle to DSSC performance was also investigated. It was concluded that smaller TiO2 particle size will increase the performance of DSSC solar cells. It was because the smaller particle size (high surface area) will load more dye. In addition, we also demonstrated the use of graphite from lead pencil as counter electrode.
NASA Astrophysics Data System (ADS)
Burger, D. R.
1983-11-01
Progress of a photovoltaic (PV) device from a research concept to a competitive power-generation source requires an increasing concern with current collection. The initial metallization focus is usually on contact resistance, since a good ohmic contact is desirable for accurate device characterization measurements. As the device grows in size, sheet resistance losses become important and a metal grid is usually added to reduce the effective sheet resistance. Later, as size and conversion efficiency continue to increase, grid-line resistance and cell shadowing must be considered simultaneously, because grid-line resistance is inversely related to total grid-line area and cell shadowing is directly related. A PV cell grid design must consider the five power-loss phenomena mentioned above: sheet resistance, contact resistance, grid resistance, bus-bar resistance and cell shadowing. Although cost, reliability and usage are important factors in deciding upon the best metallization system, this paper will focus only upon grid-line design and substrate material problems for flat-plate solar arrays.
Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice
Garofalo, Stefano; D’Alessandro, Giuseppina; Chece, Giuseppina; Brau, Frederic; Maggi, Laura; Rosa, Alessandro; Porzia, Alessandra; Mainiero, Fabrizio; Esposito, Vincenzo; Lauro, Clotilde; Benigni, Giorgia; Bernardini, Giovanni; Santoni, Angela; Limatola, Cristina
2015-01-01
Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment. PMID:25818172
Fluoromica nanoparticle cytotoxicity in macrophages decreases with size and extent of uptake
Tee, Nicolin; Zhu, Yingdong; Mortimer, Gysell M; Martin, Darren J; Minchin, Rodney F
2015-01-01
Polyurethanes are widely used in biomedical devices such as heart valves, pacemaker leads, catheters, vascular devices, and surgical dressings because of their excellent mechanical properties and good biocompatibility. Layered silicate nanoparticles can significantly increase tensile strength and breaking strain of polyurethanes potentially increasing the life span of biomedical devices that suffer from wear in vivo. However, very little is known about how these nanoparticles interact with proteins and cells and how they might exert unwanted effects. A series of fluoromica nanoparticles ranging in platelet size from 90 to over 600 nm in diameter were generated from the same base material ME100 by high energy milling and differential centrifugation. The cytotoxicity of the resulting particles was dependent on platelet size but in a manner that is opposite to many other types of nanomaterials. For the fluoromicas, the smaller the platelet size, the less toxicity was observed. The small fluoromica nanoparticles (<200 nm) were internalized by macrophages via scavenger receptors, which was dependent on the protein corona formed in serum. This internalization was associated with apoptosis in RAW cells but not in dTHP-1 cells. The larger particles were not internalized efficiently but mostly decorated the surface of the cells, causing membrane disruption, even in the presence of 80% serum. This work suggests the smaller fluoromica platelets may be safer for use in humans but their propensity to recognize macrophage scavenger receptors also suggests that they will target the reticulo-endoplasmic system in vivo. PMID:25848256
Influence of coronary artery diameter on eNOS protein content
NASA Technical Reports Server (NTRS)
Laughlin, M. H.; Turk, J. R.; Schrage, W. G.; Woodman, C. R.; Price, E. M.
2003-01-01
The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.
Xin, Xukai; Li, Bo; Jung, Jaehan; ...
2014-07-24
Quantum dot-sensitized solar cells (QDSSCs) have emerged as a promising solar architecture for next-generation solar cells. The QDSSCs exhibit a remarkably fast electron transfer from the quantum dot (QD) donor to the TiO 2 acceptor with size quantization properties of QDs that allows for the modulation of band energies to control photoresponse and photoconversion efficiency of solar cells. In order to understand the mechanisms that underpin this rapid charge transfer, the electronic properties of CdSe and PbSe QDs with different sizes on the TiO 2 substrate are simulated using a rigorous ab initio density functional method. Our method capitalizes onmore » localized orbital basis set, which is computationally less intensive. Quite intriguingly, a remarkable set of electron bridging states between QDs and TiO 2 occurring via the strong bonding between the conduction bands of QDs and TiO 2 is revealed. Such bridging states account for the fast adiabatic charge transfer from the QD donor to the TiO 2 acceptor, and may be a general feature for strongly coupled donor/acceptor systems. All the QDs/TiO 2 systems exhibit type II band alignments, with conduction band offsets that increase with the decrease in QD size. This facilitates the charge transfer from QDs donors to TiO 2 acceptors and explains the dependence of the increased charge transfer rate with the decreased QD size.« less
Geng, Juan; Li, Liqun; Lv, Qian; Zhao, Yi; Liu, Yan; Zhang, Li; Li, Xuejun
2017-12-01
Functional allelic variants of TaGW2 - 6A produce large grains, possibly via changes in endosperm cells and dry matter by regulating the expression of cytokinins and starch-related genes via the ubiquitin-proteasome system. In wheat, TaGW2-6A coding region allelic variants are closely related to the grain width and weight, but how this region affects grain development has not been fully elucidated; thus, we explored its influence on grain development based mainly on histological and grain filling analyses. We found that the insertion type (NIL31) TaGW2-6A allelic variants exhibited increases in cell numbers and cell size, thereby resulting in a larger (wider) grain size with an accelerated grain milk filling rate, and increases in grain width and weight. We also found that cytokinin (CK) synthesis genes and key starch biosynthesis enzyme AGPase genes were significantly upregulated in the TaGW2-6A allelic variants, while CK degradation genes and starch biosynthesis-negative regulators were downregulated in the TaGW2-6A allelic variants, which was consistent with the changes in cells and grain filling. Thus, we speculate that TaGW2-6A allelic variants are linked with CK signaling, but they also influence the accumulation of starch by regulating the expression of related genes via the ubiquitin-proteasome system to control the grain size and grain weight.
2017-01-01
Core–shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO2-blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO2-philicity. The successful synthesis of core–shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core–shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of designer nucleating particles to enhance the foam cell nucleation efficiency. PMID:28980799
Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G Julius
2017-11-01
Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO 2 -blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO 2 -philicity. The successful synthesis of core-shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core-shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO 2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO 2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of designer nucleating particles to enhance the foam cell nucleation efficiency.
Extrusion foaming of protein-based thermoplastic and polyethylene blends
NASA Astrophysics Data System (ADS)
Gavin, Chanelle; Lay, Mark C.; Verbeek, Casparus J. R.
2016-03-01
Currently the extrusion foamability of Novatein® Thermoplastic Protein (NTP) is being investigated at the University of Waikato in collaboration with the Biopolymer Network Ltd (NZ). NTP has been developed from bloodmeal (>86 wt% protein), a co-product of the meat industry, by adding denaturants and plasticisers (tri-ethylene glycol and water) allowing it to be extruded and injection moulded. NTP alone does not readily foam when sodium bicarbonate is used as a chemical blowing agent as its extensional viscosity is too high. The thermoplastic properties of NTP were modified by blending it with different weight fractions of linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH) compatibiliser. Extrusion foaming was conducted in two ways, firstly using the existing water content in the material as the blowing agent and secondly by adding sodium bicarbonate. When processed in a twin screw extruder (L/D 25 and 10 mm die) the material readily expanded due to the internal moisture content alone, with a conditioned expansion ratio of up to ± 0.13. Cell structure was non-uniform exhibiting a broad range cell sizes at various stages of formation with some coalescence. The cell size reduced through the addition of sodium bicarbonate, overall more cells were observed and the structure was more uniform, however ruptured cells were also visible on the extrudate skin. Increasing die temperature and introducing water cooling reduced cell size, but the increased die temperature resulted in surface degradation.
NASA Astrophysics Data System (ADS)
Jung, Haeng-Yun; Yeo, In-Seon; Kim, Tae-Un; Ki, Hyun-Chul; Gu, Hal-Bon
2018-02-01
In this study, we exploit local surface plasmon resonance (LSPR) in order to improve the efficiency of dye-sensitized solar cells (DSSCs). In order to investigate the effect of LSPR, Ag nanoparticles of several sizes were formed using electro-beam equipment; sizes were varied by changing the annealing time. DSSCs were fabricated by coating Ag nanoparticles onto a TiO2 thin film. Finally, TiO2 nanoparticles were layered onto the Ag nanoparticles via a titanium tetra-isopropoxide (TTIP) treatment. This study used nanoparticle-coated TiO2 thin films as photoelectrodes, and manufactured the cell in the unit of the DSSCs. We compared the behavior of the electrical properties of DSSCs depending on the presence or absence of Ag nanoparticles, as well as on the nanoparticle size. The Ag particles did not affect dye adsorption because the content of Ag particles is very low (0.13%) compared to that in TiO2 in the photoelectrode. The DSSCs with LSPR showed increased electric current density compared to those without LSPR, and improved the solar conversion efficiency (η) by 24%. The current density of the DSSCs increased because the light absorption of the dye increased. Therefore, we determined that LSPR affects the electrical properties of DSSCs.
Qin, Shuzhi; Sun, Xiangshi; Li, Feng; Yu, Kongtong; Zhou, Yulin; Liu, Na; Zhao, Chengguo; Teng, Lesheng; Li, Youxin
2017-12-21
Biodegradable nanoparticles with diameters between 100 nm and 500 nm are of great interest in the contexts of targeted delivery. The present work provides a review concerning the effect of binary organic solvents together with emulsifier on particle size as well as the influence of particle size on the in vitro drug release and uptake behavior. The polymeric lipid nanoparticles (PLNs) with different particle sizes were prepared by using binary solvent dispersion method. Various formulation parameters such as binary organic solvent composition and emulsifier types were evaluated on the basis of their effects on particle size and size distribution. PLNs had a strong dependency on the surface tension, intrinsic viscosity and volatilization rate of binary organic solvents and the hydrophilicity/hydrophobicity of emulsifiers. Acetone-methanol system together with pluronic F68 as emulsifier was proved to obtain the smallest particle size. Then the PLNs with different particle sizes were used to investigate how particle size at nanoscale affects interacted with tumor cells. As particle size got smaller, cellular uptake increased in tumor cells and PLNs with particle size of ~120 nm had the highest cellular uptake and fastest release rate. The paclitaxel (PTX)-loaded PLNs showed a size-dependent inhibition of tumor cell growth, which was commonly influenced by cellular uptake and PTX release. The PLNs would provide a useful means to further elucidate roles of particle size on delivery system of hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Choi, Ho Jin; Jang, So-Young; Hwang, Eun Seong
2015-10-01
During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on CD8(+) T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential.
Farahani, Reza; Kanaan, Amjad; Gavrialov, Orit; Brunnert, Steven; Douglas, Robert M; Morcillo, Patrick; Haddad, Gabriel G
2008-01-01
Exposure to chronic constant or intermittent hypoxia (CCH or CIH) may have different effects on growth and development in early life. In this work, we exposed postnatal day 2 (P2) CD1 mice to CCH or CIH (11% O2) for 4 weeks and examined the effect of hypoxia on body and organ growth until P30. Regression analysis showed that weight increased in control, CCH and CIH cohorts with age with r2 values of 0.99, 0.97, and 0.94, respectively. Between days 2 and 30, slopes were 0.93+/-0.057, 0.76+/-0.108, and 0.63+/-0.061 (g/day, means+/-SEM) for control, CIH, and CCH, respectively and significantly different from each other (P<0.001). The slopes between P2 and P16 were 0.78+/-0.012, 0.46+/-0.002, and 0.47+/-0.019 for control, CCH and CIH, respectively. From P16 to 30, slopes were 1.12+/-0.033, 1.09+/-0.143, and 0.82+/-0.08 for control, CIH, and CCH, respectively with no significant difference from each other, suggesting a catch-up growth in the latter part of the hypoxic period. Slower weight gain resulted in a 12% and 23% lower body weight in CIH and CCH mice (P<0.001) by P30. Lung/body ratios were 0.010, 0.015, 0.015 for control, CIH, and CCH at P30, respectively. The decrease in liver, kidney, and brain weight were greater in CCH than CIH. Smaller liver weight was shown to be due to a reduction in cell size and cell number. Liver in CIH and CCH mice showed a 5% and 10% reduction in cell size (P<0.05) and a reduction of 28% in cell number (P<0.001) at P30. In contrast, CCH and CIH heart weight was 13% and 33% greater than control at P30 (P<0.05), respectively. This increase in the heart weight was due to an increase in the size of cardiomyocytes which showed an increase of 12% and 14% (P<0.001) for CIH and CCH, respectively as compared to control. Brain weight was 0.48 and 0.46 g for CIH and CCH, respectively (95% and 92% of normal). We concluded that (a) CIH and CCH follow different body and organ growth patterns; (b) mostly with CCH, the liver and kidneys are reduced in size in a proportionate way to body size but heart, lung, and brain are either spared or increased in size compared to body weight; and (c) the decrease in liver is secondary mostly to a decrease in cell number. Copyright (c) 2007 Wiley-Liss, Inc.
Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers
NASA Technical Reports Server (NTRS)
Ishaug-Riley, S. L.; Crane-Kruger, G. M.; Yaszemski, M. J.; Mikos, A. G.
1998-01-01
Neonatal rat calvarial osteoblasts were cultured in 90% porous, 75:25 poly(DL-lactic-co-glycolic acid) (PLGA) foam scaffolds for up to 56 days to examine the effects of the cell seeding density, scaffold pore size, and foam thickness on the proliferation and function of the cells in this three-dimensional environment. Osteoblasts were seeded at either 11.1 x 10(5) or 22.1 x 10(5) cells per cm2 onto PLGA scaffolds having pore sizes in the range of 150-300 or 500-710 microm with a thickness of either 1.9 or 3.2 mm. After 1 day in culture, 75.6 and 68.6% of the seeded cells attached and proliferated on the 1.9 mm thick scaffolds of 150-300 microm pore size for the low and high seeding densities, respectively. The number of osteoblasts continued to increase throughout the study and eventually leveled off near 56 days, as indicated by a quantitative DNA assay. Osteoblast/foam constructs with a low cell seeding density achieved comparable DNA content and alkaline phosphatase (ALPase) activity after 14 days, and mineralization results after 56 days to those with a high cell seeding density. A maximum penetration depth of osseous tissue of 220+/-40 microm was reached after 56 days in the osteoblast/foam constructs of 150-300 microm pore size initially seeded with a high cell density. For constructs of 500-710 microm pore size, the penetration depth was 190+/-40 microm under the same conditions. Scaffold pore size and thickness did not significantly affect the proliferation or function of osteoblasts as demonstrated by DNA content, ALPase activity, and mineralized tissue formation. These data show that comparable bone-like tissues can be engineered in vitro over a 56 day period using different rat calvarial osteoblast seeding densities onto biodegradable polymer scaffolds with pore sizes in the range of 150-710 microm. When compared with the results of a previous study where similar polymer scaffolds were seeded and cultured with marrow stromal cells, this study demonstrates that PLGA foams are suitable substrates for osteoblast growth and differentiated function independent of cell source.
NASA Astrophysics Data System (ADS)
Landry, M. R.; Taylor, A. G.
2016-02-01
Phytoplankton community structure is shaped both by the bottom-up influences of the physical-chemical environment and by the top-down impacts of food webs. Emergent patterns in the contemporary ocean can thus be "null hypotheses" of future changes assuming that the underlying structuring relationships remain intact but only shift spatially. To provide such a context for the California Current Ecosystem (CCE) and adjacent open-ocean ecosystems, we used a combination of digital epifluorescence microscopy and flow cytometry to investigate variability of phytoplankton biomass, composition and size structure across gradients of ecosystem richness, as represented by total autotrophic carbon (AC). Biomass of large micro-sized (>20 µm) phytoplankton increases as a power function with system richness. Nano-sized cells (2-20 µm) increase at a lower rate at low AC, and level off at high AC. Pico-sized cells (<2-µm) do not clearly dominate at low AC and decline significantly at high AC, neither predicted by competition theory. This study provides several new insights into structural relationships and mechanisms in the CCE: 1) diatoms and dinoflagellates co-dominate the micro-phytoplankton size class throughout the range of system richness; 2) nano-phytoplankton co-dominate biomass in oligotrophic (low AC) waters, suggesting widespread mixotrophy rather than direct competition with pico-phytoplankton for nutrients; and 3) the pico-phytoplankton decline at high AC impacts small eukaryotes as well as photosynthetic bacteria, consistent with a broad stimulation of grazing pressure on all bacterial-sized cells in richer systems. Observed variability in heterotrophic bacteria and nano-flagellate grazers with system richness is consistent with this mechanism.
Bioprinted chitosan-gelatin thermosensitive hydrogels using an inexpensive 3D printer.
Roehm, Kevin D; Madihally, Sundararajan V
2017-11-30
The primary bottleneck in bioprinting cell-laden structures with carefully controlled spatial relation is a lack of biocompatible inks and printing conditions. In this regard, we explored using thermogelling chitosan-gelatin (CG) hydrogel as a novel bioprinting ink; CG hydrogels are unique in that it undergoes a spontaneous phase change at physiological temperature, and does not need post-processing. In addition, we used a low cost (<$800) compact 3D printer, and modified with a new extruder to print using disposable syringes and hypodermic needles. We investigated (i) the effect of concentration of CG on gelation characteristics, (ii) solution preparation steps (centrifugation, mixing, and degassing) on printability and fiber formation, (iii) the print bed temperature profiles via IR imaging and grid-based assessment using thermocouples, (iv) the effect of feed rate (10-480 cm min -1 ), flow rate (15-60 μl min -1 ) and needle height (70-280 μm) on fiber size and characteristics, and (v) the distribution of neuroblastoma cells in printed fibers, and the viability after five days in culture. We used agarose gel to create uniform print surfaces to maintain a constant gap with the needle tip. These results showed that degassing the solution, and precooling the solution was necessary for obtaining continuous fibers. Fiber size decreased from 760, to 243 μm as the feed rate increased from 10 to 100 cm min -1 . Bed temperature played the greatest role in fiber size, followed by feed rate. Increased needle height initially decreased fiber size but then increased showing an optimum. Cells were well distributed within the fibers and exhibited excellent viability and no contamination after 5 d. Overall we printed 3D, sterile, cell-laden structures with an inexpensive bioprinter and a novel ink, without post-processing. The bioprinter described here and the novel CG hydrogels have significant potential as an ink for bioprinitng various cell-laden structures.
Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells
NASA Astrophysics Data System (ADS)
Li, Jingchao; Li, Jia'en Jasmine; Zhang, Jing; Wang, Xinlong; Kawazoe, Naoki; Chen, Guoping
2016-04-01
Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications.Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications. Electronic supplementary information (ESI) available: Additional experimental results. See DOI: 10.1039/c5nr08808a
Engineering Tenofovir Loaded Chitosan Nanoparticles
Meng, Jianing; Sturgis, Timothy F.; Youan, Bi-Botti C.
2011-01-01
The objective of this study was to engineer a model anti-HIV microbicide (Tenofovir) loaded chitosan based nanoparticles (NPs). Box-Behnken design allowed to assess the influence of formulation variables on the size of NPs and drug encapsulation efficiency (EE%) that were analyzed by dynamic light scattering and UV spectroscopy, respectively. The effect of the NPs on vaginal epithelial cells and Lactobacillus crispatus viability and their mucoadhesion to porcine vaginal tissue were assessed by cytotoxicity assays and fluorimetry, respectively. In the optimal aqueous conditions, the EE% and NPs size was 5.83% and 207.97nm, respectively. With 50% (v/v) ethanol/water as alternative solvent, these two responses increased to 20% and 602 nm, respectively. Drug release from medium (281 nm) and large size (602 nm)-sized NPs fitted the Higuchi (r2=0.991) and first-order release (r2=0.999) models, respectively. These NPs were not cytotoxic to both the vaginal epithelial cell line and Lactobacillus for 48 hours. When the diameter of the NPs decreased from 900 nm to 188 nm, the mucoadhesion increased from 6% to 12%. However, the combinatorial effect of EE% × mucoadhesion for larger size NPs was the highest. Overall, large-size, microbicide loaded chitosan NPs appeared to be promising nanomedicines for the prevention of HIV transmission. PMID:21704704
Some factors affecting efficiencies of n-CdS/p-CdTe thin film solar cells
NASA Astrophysics Data System (ADS)
Morris, G. C.; Das, S. K.; Tanner, P. G.
1992-02-01
Electrodeposited CdS and CdTe thin films have been fabricated into solar cells with a CdS/CdTe heterojunction. The CdTe films were made by varying two parameters, viz. the concentration of tellurium ions in the deposition solution and the quasi-rest potential (QRP) of the deposit. The properties of the completed cells were examined as a function of those preparation variables. Cell efficiency varied with both QRP and tellurium ion concentration. Whilst chemical analytic methods showed no compositional variation between cells, morphological studies showed that the most efficient cells had the largest grain size. Electrical and capacitance measurements were used to show that the density of interband states and of junction interface states increased with structural imperfection. The major losses in the solar cell parameters increased with increased polycrystalline structure.
Effect of Anatase Synthesis on the Performance of Dye-Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Sánchez-García, Mario Alberto; Bokhimi, Xim; Maldonado-Álvarez, Arturo; Jiménez-González, Antonio Esteban
2015-07-01
Anatase nanoparticles were synthesized from a titanium isopropoxide solution using a hydrothermal process at different pressures in an autoclave system while keeping the volume of the solution constant. As the autoclave pressure was increased from 1 to 71 atm (23 to 210 °C), the crystal size in the nanoparticles increased from 9 to 13.8 nm. The anatase nanoparticles were used to build dye-sensitized solar cells (DSSC). Mesoporous films of this oxide were deposited over conducting SnO2:F substrates using the screen-printing technique and then annealed at 530 °C at 1 atm of air pressure. The morphology of the mesoporous film surface of anatase, studied using scanning electron microscopy, revealed that the crystal size and pore distribution were functions of the pressure conditions. The energy band gap of the films as a function of the crystal size exhibited quantum effects below 11.8 nm. The effects of the anatase synthesis conditions and properties of the mesoporous film on the DSSC-type solar cell parameters, η%, V OC, J SC, and FF, were also investigated: the mesoporous anatase films prepared at 200 °C (54 atm of pressure in the autoclave) and annealed at 530 °C in air generated the best solar cell, having the highest conversion efficiency.
Modeling tensional homeostasis in multicellular clusters.
Tam, Sze Nok; Smith, Michael L; Stamenović, Dimitrije
2017-03-01
Homeostasis of mechanical stress in cells, or tensional homeostasis, is essential for normal physiological function of tissues and organs and is protective against disease progression, including atherosclerosis and cancer. Recent experimental studies have shown that isolated cells are not capable of maintaining tensional homeostasis, whereas multicellular clusters are, with stability increasing with the size of the clusters. Here, we proposed simple mathematical models to interpret experimental results and to obtain insight into factors that determine homeostasis. Multicellular clusters were modeled as one-dimensional arrays of linearly elastic blocks that were either jointed or disjointed. Fluctuating forces that mimicked experimentally measured cell-substrate tractions were obtained from Monte Carlo simulations. These forces were applied to the cluster models, and the corresponding stress field in the cluster was calculated by solving the equilibrium equation. It was found that temporal fluctuations of the cluster stress field became attenuated with increasing cluster size, indicating that the cluster approached tensional homeostasis. These results were consistent with previously reported experimental data. Furthermore, the models revealed that key determinants of tensional homeostasis in multicellular clusters included the cluster size, the distribution of traction forces, and mechanical coupling between adjacent cells. Based on these findings, we concluded that tensional homeostasis was a multicellular phenomenon. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Téllez, Noèlia; Vilaseca, Marina; Martí, Yasmina; Pla, Arturo; Montanya, Eduard
2016-09-01
Limitations in β-cell regeneration potential in middle-aged animals could contribute to the increased risk to develop diabetes associated with aging. We investigated β-cell regeneration of middle-aged Wistar rats in response to two different regenerative stimuli: partial pancreatectomy (Px + V) and gastrin administration (Px + G). Pancreatic remnants were analyzed 3 and 14 days after surgery. β-Cell mass increased in young animals after Px and was further increased after gastrin treatment. In contrast, β-cell mass did not change after Px or after gastrin treatment in middle-aged rats. β-Cell replication and individual β-cell size were similarly increased after Px in young and middle-aged animals, and β-cell apoptosis was not modified. Nuclear immunolocalization of neurog3 or nkx6.1 in regenerative duct cells, markers of duct cell plasticity, was increased in young but not in middle-aged Px rats. The pancreatic progenitor-associated transcription factors neurog3 and sox9 were upregulated in islet β-cells of middle-aged rats and further increased after Px. The percentage of chromogranin A+/hormone islet cells was significantly increased in the pancreases of middle-aged Px rats. In summary, the potential for compensatory β-cell hyperplasia and hypertrophy was retained in middle-aged rats, but β-cell dedifferentiation and impaired duct cell plasticity limited β-cell regeneration. Copyright © 2016 the American Physiological Society.
Cardiac Stem Cell Hybrids Enhance Myocardial Repair
Quijada, Pearl; Salunga, Hazel T.; Hariharan, Nirmala; Cubillo, Jonathan D.; El-Sayed, Farid G.; Moshref, Maryam; Bala, Kristin M.; Emathinger, Jacqueline M.; La Torre, Andrea De; Ormachea, Lucia; Alvarez, Roberto; Gude, Natalie A.; Sussman, Mark A.
2015-01-01
Rationale Dual cell transplantation of cardiac progenitor cells (CPCs) and mesenchymal stem cells (MSCs) after infarction improves myocardial repair and performance in large animal models relative to delivery of either cell population. Objective To demonstrate that CardioChimeras (CCs) formed by fusion between CPCs and MSCs have enhanced reparative potential in a mouse model of myocardial infarction relative to individual stem cells or combined cell delivery. Methods and Results Two distinct and clonally derived CCs, CC1 and CC2 were utilized for this study. CCs improved left ventricular anterior wall thickness (AWT) at 4 weeks post injury, but only CC1 treatment preserved AWT at 18 weeks. Ejection fraction was enhanced at 6 weeks in CCs, and functional improvements were maintained in CCs and CPC + MSC groups at 18 weeks. Infarct size was decreased in CCs, whereas CPC + MSC and CPC parent groups remained unchanged at 12 weeks. CCs exhibited increased persistence, engraftment, and expression of early commitment markers within the border zone relative to combinatorial and individual cell population-injected groups. CCs increased capillary density and preserved cardiomyocyte size in the infarcted regions suggesting CCs role in protective paracrine secretion. Conclusions CCs merge the application of distinct cells into a single entity for cellular therapeutic intervention in the progression of heart failure. CCs are a novel cell therapy that improves upon combinatorial cell approaches to support myocardial regeneration. PMID:26228030
Coupling Bacterial Activity Measurements with Cell Sorting by Flow Cytometry.
Servais; Courties; Lebaron; Troussellier
1999-08-01
> Abstract A new procedure to investigate the relationship between bacterial cell size and activity at the cellular level has been developed; it is based on the coupling of radioactive labeling of bacterial cells and cell sorting by flow cytometry after SYTO 13 staining. Before sorting, bacterial cells were incubated in the presence of tritiated leucine using a procedure similar to that used for measuring bacterial production by leucine incorporation and then stained with SYTO 13. Subpopulations of bacterial cells were sorted according to their average right-angle light scatter (RALS) and fluorescence. Average RALS was shown to be significantly related to the average biovolume. Experiments were performed on samples collected at different times in a Mediterranean seawater mesocosm enriched with nitrogen and phosphorus. At four sampling times, bacteria were sorted in two subpopulations (cells smaller and larger than 0.25 µm(3)). The results indicate that, at each sampling time, the growth rate of larger cells was higher than that of smaller cells. In order to confirm this tendency, cell sorting was performed on six subpopulations differing in average biovolume during the mesocosm follow-up. A clear increase of the bacterial growth rates was observed with increasing cell size for the conditions met in this enriched mesocosm.http://link.springer-ny.com/link/service/journals/00248/bibs/38n2p180.html
NASA Astrophysics Data System (ADS)
Liang, Jingjing; Liang, Chunjun; Zhang, Huimin; Sun, Mengjie; Liu, Hong; Ji, Chao; Zhang, Xuewen; Li, Dan; He, Zhiqun
Organic-inorganic halide perovskites are currently generating extensive interest for applications in solar cells. The perovskite morphology and composition have significant roles in solar cells. Impure phases, which will influence the performance of solar cells, are inevitably present in the film of perovskite. We found that another MAI deposition on the previous perovskite could ameliorate the film. The post-deposited MAI participates in the reconstruction of the perovskite, leading to reduced amount of impure phase, increased grain size, increased absorption and significantly improved power conversion efficiency. The results demonstrate a treatment approach to fabricate efficient planar heterojunction perovskite solar cells.
Cell Blebbing in Confined Microfluidic Environments
Ibo, Markela; Srivastava, Vasudha; Robinson, Douglas N.; Gagnon, Zachary R.
2016-01-01
Migrating cells can extend their leading edge by forming myosin-driven blebs and F-actin-driven pseudopods. When coerced to migrate in resistive environments, Dictyostelium cells switch from using predominately pseudopods to blebs. Bleb formation has been shown to be chemotactic and can be influenced by the direction of the chemotactic gradient. In this study, we determine the blebbing responses of developed cells of Dictyostelium discoideum to cAMP gradients of varying steepness produced in microfluidic channels with different confining heights, ranging between 1.7 μm and 3.8 μm. We show that microfluidic confinement height, gradient steepness, buffer osmolarity and Myosin II activity are important factors in determining whether cells migrate with blebs or with pseudopods. Dictyostelium cells were observed migrating within the confines of microfluidic gradient channels. When the cAMP gradient steepness is increased from 0.7 nM/μm to 20 nM/μm, cells switch from moving with a mixture of blebs and pseudopods to moving only using blebs when chemotaxing in channels with confinement heights less than 2.4 μm. Furthermore, the size of the blebs increases with gradient steepness and correlates with increases in myosin-II localization at the cell cortex. Reduction of intracellular pressure by high osmolarity buffer or inhibition of myosin-II by blebbistatin leads to a decrease in bleb formation and bleb size. Together, our data reveal that the protrusion type formed by migrating cells can be influenced by the channel height and the steepness of the cAMP gradient, and suggests that a combination of confinement-induced myosin-II localization and cAMP-regulated cortical contraction leads to increased intracellular fluid pressure and bleb formation. PMID:27706201
Huang, Qingda; Zhang, Yurong; Liu, Shuting; Wang, Wen; Luo, Yiping
2013-01-01
The question of how the scaling of metabolic rate with body mass (M) is achieved in animals is unresolved. Here, we tested the cell metabolism hypothesis and the organ size hypothesis by assessing the mass scaling of the resting metabolic rate (RMR), maximum metabolic rate (MMR), erythrocyte size, and the masses of metabolically active organs in the crucian carp (Carassius auratus). The M of the crucian carp ranged from 4.5 to 323.9 g, representing an approximately 72-fold difference. The RMR and MMR increased with M according to the allometric equations RMR = 0.212M 0.776 and MMR = 0.753M 0.785. The scaling exponents for RMR (b r) and MMR (b m) obtained in crucian carp were close to each other. Thus, the factorial aerobic scope remained almost constant with increasing M. Although erythrocyte size was negatively correlated with both mass-specific RMR and absolute RMR adjusted to M, it and all other hematological parameters showed no significant relationship with M. These data demonstrate that the cell metabolism hypothesis does not describe metabolic scaling in the crucian carp, suggesting that erythrocyte size may not represent the general size of other cell types in this fish and the metabolic activity of cells may decrease as fish grows. The mass scaling exponents of active organs was lower than 1 while that of inactive organs was greater than 1, which suggests that the mass scaling of the RMR can be partly due to variance in the proportion of active/inactive organs in crucian carp. Furthermore, our results provide additional evidence supporting the correlation between locomotor capacity and metabolic scaling. PMID:24376588
NASA Astrophysics Data System (ADS)
Murali, Kumarasamy; Kenesei, Kata; Li, Yang; Demeter, Kornél; Környei, Zsuzsanna; Madarász, Emilia
2015-02-01
Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs.Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06849a
Knight, Toyin; Basu, Joydeep; Rivera, Elias A; Spencer, Thomas; Jain, Deepak; Payne, Richard
2013-01-01
Various methods can be employed to fabricate scaffolds with characteristics that promote cell-to-material interaction. This report examines the use of a novel technique combining compression molding with particulate leaching to create a unique multi-layered scaffold with differential porosities and pore sizes that provides a high level of control to influence cell behavior. These cell behavioral responses were primarily characterized by bridging and penetration of two cell types (epithelial and smooth muscle cells) on the scaffold in vitro. Larger pore sizes corresponded to an increase in pore penetration, and a decrease in pore bridging. In addition, smaller cells (epithelial) penetrated further into the scaffold than larger cells (smooth muscle cells). In vivo evaluation of a multi-layered scaffold was well tolerated for 75 d in a rodent model. This data shows the ability of the components of multi-layered scaffolds to influence cell behavior, and demonstrates the potential for these scaffolds to promote desired tissue outcomes in vivo.
Effect of cell-size on the energy absorption features of closed-cell aluminium foams
NASA Astrophysics Data System (ADS)
Nammi, S. K.; Edwards, G.; Shirvani, H.
2016-11-01
The effect of cell-size on the compressive response and energy absorption features of closed-cell aluminium (Al) foam were investigated by finite element method. Micromechanical models were constructed with a repeating unit-cell (RUC) which was sectioned from tetrakaidecahedra structure. Using this RUC, three Al foam models with different cell-sizes (large, medium and small) and all of same density, were built. These three different cell-size pieces of foam occupy the same volume and their domains contained 8, 27 and 64 RUCs respectively. However, the smaller cell-size foam has larger surface area to volume ratio compared to other two. Mechanical behaviour was modelled under uniaxial loading. All three aggregates (3D arrays of RUCs) of different cell-sizes showed an elastic region at the initial stage, then followed by a plateau, and finally, a densification region. The smaller cell size foam exhibited a higher peak-stress and a greater densification strain comparing other two cell-sizes investigated. It was demonstrated that energy absorption capabilities of smaller cell-size foams was higher compared to the larger cell-sizes examined.
Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation
NASA Astrophysics Data System (ADS)
Johnson, Monica M.; Mendoza, Ryan; Raghavendra, Achyut J.; Podila, Ramakrishna; Brown, Jared M.
2017-03-01
The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcɛRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.
The Study of Non-Viral Nanoscale Delivery Systems for Islet Transplantation
NASA Astrophysics Data System (ADS)
Gutierrez, Diana
Due to safety concerns associated with using viral systems clinically to expand islet cells and make them available to many more patients, significant emphasis has been placed on producing a safe and effective non-viral delivery system for biological research and gene therapy. To obtain this goal, we propose the use of an innovative technology that utilizes gold nanoparticles (AuNPs) as a non-viral method of delivery. Our laboratory was one of the first to describe the use of AuNPs in human islets and observe AuNPs can penetrate into the core of islets to deliver a gene to the vast majority of the cells, without damaging the cell. Gold nanoparticles proved to be a biocompatible delivery system both in vitro and in vivo. Thus far, gene therapy and molecular biology have focused primarily on delivering DNA of a specific gene into cells. The risk of this approach is that the DNA can be permanently incorporated into the genome and lead to damages in the cell that could result in overexpression of cancerous tumor cells. This risk does not exist with the use of mRNA. Many researchers believe mRNA is too unstable to be used as a molecular tool to overexpress specific proteins. With advances in nanotechnology, and better understanding of the translation process, methods have been developed that allow for expression of specific proteins by intracellular delivery of protein-encoding mRNA. We used AuNPs conjugated to mCherry mRNA to establish a proof of concept of the feasibility of using AuNP-mRNA to achieve increased expression of a specific protein within cells. To do this, we conjugated mCherry mRNA to AuNPs and tested the feasibility for increasing delivery efficacy and preserve functionality of human pancreatic islets. We believe that with this novel technology we can create AuNPs that allow specific mRNA to enter islets and lead to the production of a specific protein within the cell, with the aim to induce beta cell proliferation. In a previous experiment with single cells, the highest amount of protein expression was observed after 24 hours incubation with mCherry conjugated AuNPs. Based on this, human islets were treated with 12 nm, 7 nm and 2 nm mCherry AuNPs for 24 hours. The expression of mCherry protein in human islets was analyzed by 3D image reconstruction of z-stack images acquired by confocal microscopy. A minimal amount of mCherry protein was expressed in human islets when treated with mCherry mRNA coupled to the 12 nm size AuNP. Decreasing the size of the AuNPs to 7 nm or 2 nm resulted in substantial increase in mCherry protein expression throughout human pancreatic islets when treated at concentrations of 20 nM and 50 nM with mCherry mRNA AuNPs for 24 hours. We used measurements of calcium influx, KCL and mitochondrial potential to determine the effect of AuNP-mCherry mRNA treatment on islet cell function. The area under the curve was computed for intracellular calcium influx of three different islet preparations. There was no statistically significance difference between (2 nm) 20 nM versus (7 nm) 20 nM, (2 nm) 20 nM versus (7 nm) 50 nM, (2 nm) 50 nM versus (7 nm) 20 nM, (2 nm) 50 nM versus (7 nm) 50 nM. For the area under the curve for the KCL there was no significant statistical difference between the groups. In addition, mitochondrial potential indices demonstrated similarity between the control group and mCherry mRNA AuNPs treated human pancreatic islets, there was no statistical difference between the three different sizes and concentrations when compared to the non-treated group. Taken together, AuNP did not impair islet function when concentration was increased. Although, the optimal size of AuNP that was easily seen to express mCherry protein was 7 nm, when human islet cells were treated with AuNP coupled to mRNA for E2F3 (the beta-cell proliferation inducing protein), to observe whether there was any sign of enhanced beta-cell proliferation, the 12 nm sized AuNP seemed to give a slight increase in beta-cell proliferation. Transmission electron microscopy (TEM) was used to determine where within the islets the AuNPs were localized. This validated that both the 12 nm and 7 nm size AuNPs crossed the cell membrane and were found within vesicles, mitochondria and in one case the insulin granules of the islets. A notable difference that was detected under TEM for the two size of AuNPs was that the 12nm appeared predominantly in clusters where as the 7nm AuNP was more evenly distributed within the cell. Further analysis with TEM may provide insight on how the size, concentration and kinetics of the AuNPs will influence protein expression and beta-cell expansion within human pancreatic islets. (Abstract shortened by UMI.).
Vaillier, D; Daculsi, R; Gualde, N
1995-01-01
We have studied the relationship between cytotoxic activity, size and granularity of murine interleukin-2-activated adherent killer cells issued from spleen cells cultured with high levels of IL-2. The effects of prostaglandin E2 (PGE2) and forskolin upon these cells were assessed. All adherent spleen cells obtained after 5 days of culture were large granular lymphocytes but presented a heterogeneity in size and granularity. After fractionation on a discontinuous-density Percoll gradient, four cellular subpopulations were isolated. Fluorescence-activated cell sorting analysis showed that cells of the lightest fraction (F1) were the largest, while the cells found in the heaviest fraction (F4) were much more granular than the cells collected in the two intermediate fractions (F2 and F3). The serine esterases level was higher in F4 than in unfractionated cells and diminished to about 40% in cells of fractions F2 and F3, which expressed a cytotoxic activity against YAC-1 cells higher than that in unfractionated cells or in F1 or F4, which presented the lowest cytotoxic activity. When AK cells were cultured for 48 h in the presence of either PGE2 or forskolin, which induce an intracellular increase of cAMP, we observed that PGE2 (1 microM) inhibited the cytotoxic activity, but surprisingly forskolin (2 microM) exerted a stimulating effect on the induction of cytotoxic activity. After fractionation on a discontinuous Percoll gradient we observed the same cellular distribution among PGE2 or forskolin-treated or -untreated cells, but PGE2 induced an increase of size and granularity. This effect of PGE2 was more potent on the cells collected in F4. However this variation of granularity was not associated with any variation in the serine esterase level. The cytotoxic activity of PGE2- or forskolin-treated cells did not present any significant variation relative to the control for cells collected in F2 and F3; on the other hand, forskolin-treated cells collected in F4 showed a significantly higher cytotoxicity than did the corresponding untreated or PGE2-treated cells.
Optical narrow band frequency analysis of polystyrene bead mixtures
NASA Astrophysics Data System (ADS)
Popov, Kaloyan A.; Kurzweg, Timothy P.
2010-02-01
Early pre-cancerous conditions in tissue can be studied as mixture of cancerous and healthy cells. White light spectroscopy is a promising technique for determining the size of scattering elements, which, in cells are the nuclei. However, in a mixture of different sized scatterers, possibly between healthy and cancerous cells, the white light spectroscopy spatial data is not easily analyzed, making it difficult to determine the individual components that comprise the mixture. We have previously found by obtaining spatial limited data by using an optical filter and converting this spatial data into the Fourier domain, we can determine characteristic signature frequencies for individual scatterers. In this paper, we show analysis of phantom tissues representing esophagus tissue. We examine phantom tissue representing pre-cancerous conditions, when some of the cell nuclei increase in size. We also experimentally show a relationship between the particle concentration and the amplitude of the Fourier signature peak. In addition, we discuss the frequency peak amplitude dependency based on the Tyndall Effect, which describes particles aggregating into clusters.
NASA Astrophysics Data System (ADS)
Jiang, W. G.; Xiong, C. A.; Wu, X. G.
2013-11-01
The residual thermal stresses induced by the high-temperature sintering process in multilayer ceramic capacitors (MLCCs) are investigated by using a finite-element unit cell model, in which the strain gradient effect is considered. The numerical results show that the residual thermal stresses depend on the lateral margin length, the thickness ratio of the dielectrics layer to the electrode layer, and the MLCC size. At a given thickness ratio, as the MLCC size is scaled down, the peak shear stress reduces significantly and the normal stresses along the length and thickness directions change slightly with the decrease in the ceramic layer thickness t d as t d > 1 μm, but as t d < 1 μm, the normal stress components increase sharply with the increase in t d. Thus, the residual thermal stresses induced by the sintering process exhibit strong size effects and, therefore, the strain gradient effect should be taken into account in the design and evaluation of MLCC devices
Dragosz-Kluska, Dominika; Pis, Tomasz; Pawlik, Katarzyna; Kapustka, Filip; Kilarski, Wincenty M.; Kozłowski, Jan
2018-01-01
ABSTRACT Cell size plays a role in body size evolution and environmental adaptations. Addressing these roles, we studied body mass and cell size in Galliformes birds and Rodentia mammals, and collected published data on their genome sizes. In birds, we measured erythrocyte nuclei and basal metabolic rates (BMRs). In birds and mammals, larger species consistently evolved larger cells for five cell types (erythrocytes, enterocytes, chondrocytes, skin epithelial cells, and kidney proximal tubule cells) and evolved smaller hepatocytes. We found no evidence that cell size differences originated through genome size changes. We conclude that the organism-wide coordination of cell size changes might be an evolutionarily conservative characteristic, and the convergent evolutionary body size and cell size changes in Galliformes and Rodentia suggest the adaptive significance of cell size. Recent theory predicts that species evolving larger cells waste less energy on tissue maintenance but have reduced capacities to deliver oxygen to mitochondria and metabolize resources. Indeed, birds with larger size of the abovementioned cell types and smaller hepatocytes have evolved lower mass-specific BMRs. We propose that the inconsistent pattern in hepatocytes derives from the efficient delivery system to hepatocytes, combined with their intense involvement in supracellular function and anabolic activity. PMID:29540429
Detection of internal structure by scattered light intensity: Application to kidney cell sorting
NASA Technical Reports Server (NTRS)
Goolsby, C. L.; Kunze, M. E.
1985-01-01
Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.
Does clutch size evolve in response to parasites and immunocompetence?
Martin, T.E.; Moller, A.P.; Merino, S.; Clobert, J.
2001-01-01
Parasites have been argued to influence clutch size evolution, but past work and theory has largely focused on within-species optimization solutions rather than clearly addressing among-species variation. The effects of parasites on clutch size variation among species can be complex, however, because different parasites can induce age-specific differences in mortality that can cause clutch size to evolve in different directions. We provide a conceptual argument that differences in immunocompetence among species should integrate differences in overall levels of parasite-induced mortality to which a species is exposed. We test this assumption and show that mortality caused by parasites is positively correlated with immunocompetence measured by cell-mediated measures. Under life history theory, clutch size should increase with increased adult mortality and decrease with increased juvenile mortality. Using immunocompetence as a general assay of parasite-induced mortality, we tested these predictions by using data for 25 species. We found that clutch size increased strongly with adult immunocompetence. In contrast, clutch size decreased weakly with increased juvenile immunocompetence. But, immunocompetence of juveniles may be constrained by selection on adults, and, when we controlled for adult immunocompetence, clutch size decreased with juvenile immunocompetence. Thus, immunocompetence seems to reflect evolutionary differences in parasite virulence experienced by species, and differences in age-specific parasite virulence appears to exert opposite selection on clutch size evolution.
The expanding implications of polyploidy
Schoenfelder, Kevin P.
2015-01-01
Polyploid cells, which contain more than two genome copies, occur throughout nature. Beyond well-established roles in increasing cell size/metabolic output, polyploidy can also promote nonuniform genome, transcriptome, and metabolome alterations. Polyploidy also frequently confers resistance to environmental stresses not tolerated by diploid cells. Recent progress has begun to unravel how this fascinating phenomenon contributes to normal physiology and disease. PMID:26008741
Control of proliferation and cancer growth by the Hippo signaling pathway
Ehmer, Ursula; Sage, Julien
2015-01-01
The control of cell division is essential for normal development and the maintenance of cellular homeostasis. Abnormal cell proliferation is associated with multiple pathological states, including cancer. While the Hippo/YAP signaling pathway was initially thought to control organ size and growth, increasing evidence indicates that this pathway also plays a major role in the control of proliferation independent of organ size control. In particular, accumulating evidence indicates that the Hippo/YAP signaling pathway functionally interacts with multiple other cellular pathways and serves as a central node in the regulation of cell division, especially in cancer cells. Here recent observations are highlighted that connect Hippo/YAP signaling to transcription, the basic cell cycle machinery, and the control of cell division. Furthermore, the oncogenic and tumor suppressive attributes of YAP/TAZ are reviewed which emphasizes the relevance of the Hippo pathway in cancer. PMID:26432795
Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells
Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Usui, Yuki; Maruyama, Kayo; Takanashi, Seiji; Aoki, Kaoru; Kobayashi, Shinsuke; Nomura, Hiroki; Tanaka, Manabu; Okamoto, Masanori; Kato, Hiroyuki
2014-01-01
This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs) and cup-stacked carbon nanotubes (CSCNTs) on biological responses in vitro. Three types of MWCNTs – VGCF®-X, VGCF®-S, and VGCF® (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively) – and three CSCNTs of different lengths (CS-L, 20–80 μm; CS-S, 0.5–20 μm; and CS-M, of intermediate length) were tested. Human bronchial epithelial (BEAS-2B) and malignant pleural mesothelioma cells were exposed to the CNTs (1–50 μg/mL), and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT (concentration, 10 μg/mL). However, total reactive oxygen species/superoxide generation did not contribute to cytotoxicity. The results demonstrate that CSCNTs could be suitable for biological applications and that CNT shape and size can have differential effects depending on cell type, which can be exploited in the development of highly specialized, biocompatible CNTs. PMID:24790438
A reliable sealing method for microbatteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Cartmell, Samuel; Li, Qiuyan
2017-02-01
With continuous downsizing of electronic devices, lithium batteries of traditional shapes cannot meet the demand where small-size high energy density batteries are needed. Conventional sealing methods become increasingly difficult to apply and impose high processing cost as the size of batteries decreases. In this report, a facile sealing method is proposed and demonstrated in CFx/Li mini-batteries. The method employs a temporary barrier to liquid electrolytes while relies on the epoxies/cell casings bond for the hermetic sealing. Cells sealed by this method show no degradation for an extended period of storage time.
Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles
NASA Astrophysics Data System (ADS)
Hsiao, I.-Lun; Huang, Yuh-Jeen
2013-09-01
Although an increasing number of in vitro studies are being published regarding the cytotoxicity of nanomaterials, the components of the media for toxicity assays have often varied according to the needs of the scientists. Our aim for this study was to evaluate the influence of serum—in this case, fetal bovine serum—in a cell culture medium on the toxicity of nano-sized (50-70 nm) and micro-sized (<1 μm) ZnO on human lung epithelial cells (A549). The nano- and micro-sized ZnO both exhibited their highest toxicity when exposed to serum-free media, in contrast to exposure in media containing 5 or 10 % serum. This mainly comes not only from the fact that ZnO particles in the serum-free media have a higher dosage-per-cell ratio, which results from large aggregates of particles, rapid sedimentation, absence of protein protection, and lower cell growth rate, but also that extracellular Zn2+ release contributes to cytotoxicity. Although more extracellular Zn2+ release was observed in serum-containing media, it did not contribute to nano-ZnO cytotoxicity. Furthermore, non-dissolved particles underwent size-dependent particle agglomeration, resulting in size-dependent toxicity in both serum-containing and serum-free media. A low correlation between cytotoxicity and inflammation endpoints in the serum-free medium suggested that some signaling pathways were changed or induced. Since cell growth, transcription behavior for protein production, and physicochemical properties of ZnO particles all were altered in serum-free media, we recommend the use of a serum-containing medium when evaluating the cytotoxicity of NPs.
Microenvironmental Regulation of Mammary Carcinogenesis
2009-06-01
cells, leukocytes 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...metastatic spread to sentinel LNs and increased primary tumor size13. Perhaps more significant, the ratio of CD4+ to CD8+ T cells or TH2 to TH1 cells...present in primary tumors, where CD4+ or TH2 cells are more frequent than CD8+ or TH1 cells, correlates with LN metastasis and reduced overall patient
Shamloo, Amir; Kamali, Ali
2017-10-01
In this study, a dielectrophoresis field-flow fractionation device was analyzed using a numerical simulation method and the behaviors of a set of different cells were investigated. By reducing the alternating current frequency of the electrodes from the value used in the original setup configuration and increasing the number of exit channels, total discrimination in cell trajectories and subsequent separation of four cell types were achieved. Cells were differentiated based on their size and dielectric response that are represented in their real part of Clausius-Mossotti factor at different frequencies. A number of novel designs were also proposed based on the original setup configuration. It was seen that by reducing the length of the main channel and the number of electrodes at low frequencies and not changing the inlet flow velocities, cell separation was still achieved successfully, although with a slightly larger electrode voltage. The shorter main channel decreased the residence time for the cells on the chip and also reduced the overall size of the device-these were improvements over the original design. The obtained results can be used to analyze other cell types by knowing their size and dielectric properties to design geometries that can ensure separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gan, Lin; Rudi, Stefan; Cui, Chunhua; Heggen, Marc; Strasser, Peter
2016-06-01
Dealloyed Pt bimetallic core-shell catalysts derived from low-Pt bimetallic alloy nanoparticles (e.g, PtNi3 ) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control their particle size below a critical value (≈10 nm) to suppress nanoporosity formation and hence reduce significant base metal (e.g., Ni) leaching under the corrosive ORR condition. Fine size control of the sub-10 nm PtNi3 nanoparticles and understanding their size dependent ORR electrocatalysis are crucial to further improve their ORR activity and stability yet still remain unexplored. A robust synthetic approach is presented here for size-controlled PtNi3 nanoparticles between 3 and 10 nm while keeping a constant particle composition and their size-selected growth mechanism is studied comprehensively. This enables us to address their size-dependent ORR activities and stabilities for the first time. Contrary to the previously established monotonic increase of ORR specific activity and stability with increasing particle size on Pt and Pt-rich bimetallic nanoparticles, the Pt-poor PtNi3 nanoparticles exhibit an unusual "volcano-shaped" size dependence, showing the highest ORR activity and stability at the particle sizes between 6 and 8 nm due to their highest Ni retention during long-term catalyst aging. The results of this study provide important practical guidelines for the size selection of the low Pt bimetallic ORR electrocatalysts with further improved durably high activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rabban, Joseph T; Crawford, Beth; Chen, Lee-May; Powell, Catherine B; Zaloudek, Charles J
2009-01-01
Germline mutations in the hereditary breast/ovary carcinoma genes BRCA1 or BRCA2 confer increased lifetime risk for ovarian, fallopian tube, and primary peritoneal carcinoma. This risk can be minimized by prophylactic surgery. Risk-reducing salpingo-oophorectomy (RRSO) provides 2 potential benefits: long-term cancer risk reduction and immediate detection of occult early carcinoma, which frequently arises in the tubal fimbriae. Recognition of occult early tubal carcinoma is challenging because it is often microscopic in size and can be confined to the fimbrial epithelium without invasion. Transitional cell metaplasia is a benign epithelial alteration that is a common finding in the serosa of the tube but is underrecognized in the tubal fimbriae, where it may mimic tubal intraepithelial carcinoma. The aim of this study was to define the incidence, morphology, immunophenotype, and distribution of transitional cell metaplasia of the fimbriae in RRSO specimens from 96 women with BRCA germline mutations and to compare these features to those of tubal intraepithelial carcinoma in this cohort. RRSO specimens from an additional 30 women at increased risk for ovarian cancer based on strong family history were also studied, along with RRSO from 1 patient with Lynch syndrome, and 1 patient with PTEN mutation. Transitional cell metaplasia of the fimbriae was present in 26% of all RRSO specimens. It was commonly multifocal (67%), with involvement of the tip, edges, or base of the fimbrial plicae. Average size of a metaplastic focus was 1.3 mm (range: 0.1 to 10 mm). None of the metaplastic foci expressed p53 by immunohistochemistry nor was there increased staining for the proliferation marker MIB-1. Occult early carcinoma was detected in 6/128 RRSO specimens. Median tumor size was 2.7 mm (range: 1 to 11 mm). All expressed p53 and showed markedly increased MIB-1 staining. The key criteria distinguishing transitional cell metaplasia from tubal intraepithelial carcinoma were uniform cell size and shape, normal nucleus:cytoplasm ratios, lack of nuclear atypia, presence of nuclear grooves, lack of mitoses, and absence of p53 expression or increased staining for MIB-1. No particular clinical variables (BRCA 1 vs. BRCA 2 mutation, parity, personal history of breast cancer, prior abdomino-pelvic surgery, or intraoperative findings) or benign pathologic alterations in the RRSO specimens were associated with the presence of transitional cell metaplasia of the fimbriae. None of the patients with this finding developed peritoneal carcinoma during follow-up ranging from 1 month to 9 years. This study demonstrates that transitional cell metaplasia of the fimbriae is a common benign finding in RRSO specimens that should not be confused with the much less common finding of tubal intraepithelial carcinoma.
Hayashi, Shinichi; Ochi, Haruki; Ogino, Hajime; Kawasumi, Aiko; Kamei, Yasuhiro; Tamura, Koji; Yokoyama, Hitoshi
2014-12-01
The size and shape of tissues are tightly controlled by synchronized processes among cells and tissues to produce an integrated organ. The Hippo signaling pathway controls both cell proliferation and apoptosis by dual signal-transduction states regulated through a repressive kinase cascade. Yap1 and Tead, transcriptional regulators that act downstream of the Hippo signaling kinase cascade, have essential roles in regulating cell proliferation. In amphibian limb or tail regeneration, the local tissue outgrowth terminates when the correct size is reached, suggesting that organ size is strictly controlled during epimorphic organ-level regeneration. We recently demonstrated that Yap1 is required for the regeneration of Xenopus tadpole limb buds (Hayashi et al., 2014, Dev. Biol. 388, 57-67), but the molecular link between the Hippo pathway and organ size control in vertebrate epimorphic regeneration is not fully understood. To examine the requirement of Hippo pathway transcriptional regulators in epimorphic regeneration, including organ size control, we inhibited these regulators during Xenopus tadpole tail regeneration by overexpressing a dominant-negative form of Yap (dnYap) or Tead4 (dnTead4) under a heat-shock promoter in transgenic animal lines. Each inhibition resulted in regeneration defects accompanied by reduced cell mitosis and increased apoptosis. Single-cell gene manipulation experiments indicated that Tead4 cell-autonomously regulates the survival of neural progenitor cells in the regenerating tail. In amphibians, amputation at the proximal level of the tail (deep amputation) results in faster regeneration than that at the distal level (shallow amputation), to restore the original-sized tail with similar timing. However, dnTead4 overexpression abolished the position-dependent differential growth rate of tail regeneration. These results suggest that the transcriptional regulators in the Hippo pathway, Tead4 and Yap1, are required for general vertebrate epimorphic regeneration as well as for organ size control in appendage regeneration. In regenerative medicine, these findings should contribute to the development of three-dimensional organs with the correct size for a patient's body. Copyright © 2014 Elsevier Inc. All rights reserved.
Chitty, L S; Griffin, D R; Meaney, C; Barrett, A; Khalil, A; Pajkrt, E; Cole, T J
2011-03-01
To improve the prenatal diagnosis of achondroplasia by constructing charts of fetal size, defining frequency of sonographic features and exploring the role of non-invasive molecular diagnosis based on cell-free fetal deoxyribonucleic acid (DNA) in maternal plasma. Data on fetuses with a confirmed diagnosis of achondroplasia were obtained from our databases, records reviewed, sonographic features and measurements determined and charts of fetal size constructed using the LMS (lambda-mu-sigma) method and compared with charts used in normal pregnancies. Cases referred to our regional genetics laboratory for molecular diagnosis using cell-free fetal DNA were identified and results reviewed. Twenty-six cases were scanned in our unit. Fetal size charts showed that femur length was usually on or below the 3(rd) centile by 25 weeks' gestation, and always below the 3(rd) by 30 weeks. Head circumference was above the 50(th) centile, increasing to above the 95(th) when compared with normal for the majority of fetuses. The abdominal circumference was also increased but to a lesser extent. Commonly reported sonographic features were bowing of the femora, frontal bossing, short fingers, a small chest and polyhydramnios. Analysis of cell-free fetal DNA in six pregnancies confirmed the presence of the c.1138G > A mutation in the FGRF3 gene in four cases with achondroplasia, but not the two subsequently found to be growth restricted. These data should improve the accuracy of diagnosis of achondroplasia based on sonographic findings, and have implications for targeted molecular confirmation that can reliably and safely be carried out using cell-free fetal DNA. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.
Shade response of a full size TESSERA module
NASA Astrophysics Data System (ADS)
Slooff, Lenneke H.; Carr, Anna J.; de Groot, Koen; Jansen, Mark J.; Okel, Lars; Jonkman, Rudi; Bakker, Jan; de Gier, Bart; Harthoorn, Adriaan
2017-08-01
A full size TESSERA shade tolerant module has been made and was tested under various shadow conditions. The results show that the dedicated electrical interconnection of cells result in an almost linear response under shading. Furthermore, the voltage at maximum power point is almost independent of the shadow. This decreases the demand on the voltage range of the inverter. The increased shadow linearity results in a calculated increase in annual yield of about 4% for a typical Dutch house.
Influence of the crystallinity of a sputtered hydroxyapatite film on its osteocompatibility.
Ozeki, K; Goto, T; Aoki, H; Masuzawa, T
2015-01-01
Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering, and the sputtered films were crystallized using a hydrothermal treatment at 120°C and 170°C to evaluate the influence of the crystallinity of the HA film on its osteocompatibility. The crystallite size and surface morphology of the films were observed using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The alkaline phosphatase (ALP) expression, osteocalin (OCN) expression and bone formation of osteoblast cells on the films were measured to evaluate the osteocompatibility of the film.The crystallite size increased as the hydrothermal temperature increased, and the crystallite sizes of the film treated at 120°C and 170°C were 82.2±12.3 nm and 124.7±13.3 nm, respectively. Globular particles were observed in the hydrothermally treated film using SEM. The size of the particles on the film increased as the hydrothermal temperature increased, and the width of the particles on the film treated at 120°C and 170°C were approximately 120-190 nm and 300-500 nm, respectively. In the osteoblast cell culture experiments, the ALP expression, OCN expression and bone formation area on the films treated at 120°C were higher than those treated for films treated at 170°C.
HU content and dynamics in Escherichia coli during the cell cycle and at different growth rates.
Abebe, Anteneh Hailu; Aranovich, Alexander; Fishov, Itzhak
2017-10-16
DNA-binding proteins play an important role in maintaining bacterial chromosome structure and functions. Heat-unstable (HU) histone-like protein is one of the most abundant of these proteins and participates in all major chromosome-related activities. Owing to its low sequence specificity, HU fusions with fluorescent proteins were used for general staining of the nucleoid, aiming to reveal its morphology and dynamics. We have exploited a single chromosomal copy of hupA-egfp fusion under the native promoter and used quantitative microscopy imaging to investigate the amount and dynamics of HUα in Escherichia coli cells. We found that in steady-state growing populations the cellular HUα content is proportional to the cell size, whereas its concentration is size independent. Single-cell live microscopy imaging confirmed that the amount of HUα exponentially increases during the cell cycle, but its concentration is maintained constant. This supports the existence of an auto-regulatory mechanism underlying the HUα cellular level, in addition to reflecting the gene copy number. Both the HUα amount and concentration strongly increase with the cell growth rate in different culture media. Unexpectedly, the HU/DNA stoichiometry also remarkably increases with the growth rate. This last finding may be attributed to a higher requirement for maintaining the chromosome structure in nucleoids with higher complexity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
T Cell CX3CR1 Mediates Excess Atherosclerotic Inflammation in Renal Impairment
Dong, Lei; Nordlohne, Johannes; Ge, Shuwang; Hertel, Barbara; Melk, Anette; Rong, Song; Haller, Hermann
2016-01-01
Reduced kidney function increases the risk for atherosclerosis and cardiovascular death. Leukocytes in the arterial wall contribute to atherosclerotic plaque formation. We investigated the role of fractalkine receptor CX3CR1 in atherosclerotic inflammation in renal impairment. Apoe−/− (apolipoprotein E) CX3CR1−/− mice with renal impairment were protected from increased aortic atherosclerotic lesion size and macrophage accumulation. Deficiency of CX3CR1 in bone marrow, only, attenuated atherosclerosis in renal impairment in an independent atherosclerosis model of LDL receptor–deficient (LDLr−/−) mice as well. Analysis of inflammatory leukocytes in atherosclerotic mixed bone-marrow chimeric mice (50% wild-type/50% CX3CR1−/− bone marrow into LDLr−/− mice) showed that CX3CR1 cell intrinsically promoted aortic T cell accumulation much more than CD11b+CD11c+ myeloid cell accumulation and increased IL-17-producing T cell counts. In vitro, fewer TH17 cells were obtained from CX3CR1−/− splenocytes than from wild-type splenocytes after polarization with IL-6, IL-23, and TGFβ. Polarization of TH17 or TREG cells, or stimulation of splenocytes with TGFβ alone, increased T cell CX3CR1 reporter gene expression. Furthermore, TGFβ induced CX3CR1 mRNA expression in wild-type cells in a dose- and time-dependent manner. In atherosclerotic LDLr−/− mice, CX3CR1+/− T cells upregulated CX3CR1 and IL-17A production in renal impairment, whereas CX3CR1−/− T cells did not. Transfer of CX3CR1+/− but not Il17a−/− T cells into LDLr−/−CX3CR1−/− mice increased aortic lesion size and aortic CD11b+CD11c+ myeloid cell accumulation in renal impairment. In summary, T cell CX3CR1 expression can be induced by TGFβ and is instrumental in enhanced atherosclerosis in renal impairment. PMID:26449606
Jian, Yu-Tao; Yang, Yue; Tian, Tian; Stanford, Clark; Zhang, Xin-Ping; Zhao, Ke
2015-01-01
Five types of porous Nickel-Titanium (NiTi) alloy samples of different porosities and pore sizes were fabricated. According to compressive and fracture strengths, three groups of porous NiTi alloy samples underwent further cytocompatibility experiments. Porous NiTi alloys exhibited a lower Young’s modulus (2.0 GPa ~ 0.8 GPa). Both compressive strength (108.8 MPa ~ 56.2 MPa) and fracture strength (64.6 MPa ~ 41.6 MPa) decreased gradually with increasing mean pore size (MPS). Cells grew and spread well on all porous NiTi alloy samples. Cells attached more strongly on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cell adhesion on porous NiTi alloys was correlated negatively to MPS (277.2 μm ~ 566.5 μm; p < 0.05). More cells proliferated on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cellular ALP activity on all porous NiTi alloy samples was higher than on control group and blank group (p < 0.05). The porous NiTi alloys with optimized pore size could be a potential orthopedic material. PMID:26047515
Effects of Emulsifier, Overrun and Dasher Speed on Ice Cream Microstructure and Melting Properties.
Warren, Maya M; Hartel, Richard W
2018-03-01
Ice cream is a multiphase frozen food containing ice crystals, air cells, fat globules, and partially coalesced fat globule clusters dispersed in an unfrozen serum phase (sugars, proteins, and stabilizers). This microstructure is responsible for ice cream's melting characteristics. By varying both formulation (emulsifier content and overrun) and processing conditions (dasher speed), the effects of different microstructural elements, particularly air cells and fat globule clusters, on ice cream melt-down properties were studied. Factors that caused an increase in shear stress within the freezer, namely increasing dasher speed and overrun, caused a decrease in air cell size and an increase in extent of fat destabilization. Increasing emulsifier content, especially of polysorbate 80, caused an increase in extent of fat destabilization. Both overrun and fat destabilization influenced drip-through rates. Ice creams with a combination of low overrun and low fat destabilization had the highest drip-through rates. Further, the amount of remnant foam left on the screen increased with reduced drip-through rates. These results provide a better understanding of the effects of microstructure components and their interactions on drip-through rate. Manipulating operating and formulation parameters in ice cream manufacture influences the microstructure (air cells, ice crystals, and fat globule clusters). This work provides guidance on which parameters have most effect on air cell size and fat globule cluster formation. Further, the structural characteristics that reduce melt-down rate were determined. Ice cream manufacturers will use these results to tailor their products for the desired quality attributes. © 2018 Institute of Food Technologists®.
Quatresooz, Pascale; Piérard-Franchimont, Claudine; Piérard, Gérald E
2009-09-01
Sensitive/reactive skin is regarded as a manifestation of sensory irritation. This susceptibility condition to various exogenous factors suggests the intervention of some neuropeptides and other neurobiological mediators. Mast cells are among the putative implicated cells. The present immunohistochemical and morphometric study was performed on two groups of 36 gender- and age-matched subjects complaining or not from reactive skin as determined by electric current perception. In the mid upper part of the dermis, the numerical density in mast cells and the size of the microvasculature were assessed distinguishing the blood and lymphatic vessels. Globally, the distributions of data were large in reactive skin. This condition was characterized by a prominent increase in both the numerical density in mast cells and the overall size of the lymphatics. By contrast, no difference was found in the size of cutaneous blood vessels. More precisely, it appeared that a subgroup of people with reactive skin exhibited these changes contrasting with some other individuals whose data remained close to the normal range. Mast cells and lymphatics are probably involved in the process of sensory irritation affecting a subgroup of the population.
NASA Astrophysics Data System (ADS)
Chiriacò, Fernanda; Conversano, Francesco; Soloperto, Giulia; Casciaro, Ernesto; Ragusa, Andrea; Sbenaglia, Enzo Antonio; Dipaola, Lucia; Casciaro, Sergio
2013-07-01
Nanosized particles are receiving increasing attention as future contrast agents (CAs) for ultrasound (US) molecular imaging, possibly decorated on its surface with biological recognition agents for targeted delivery and deposition of therapeutics. In particular, silica nanospheres (SiNSs) have been demonstrated to be feasible in terms of contrast enhancement on conventional US systems. In this work, we evaluated the cytotoxicity of SiNSs on breast cancer (MCF-7) and HeLa (cervical cancer) cells employing NSs with sizes ranging from 160 to 330 nm and concentration range of 1.5-5 mg/mL. Cell viability was evaluated in terms of size, dose and time dependence, performing the MTT reduction assay with coated and uncoated SiNSs. Whereas uncoated SiNSs caused a variable significant decrease in cell viability on both cell lines mainly depending on size and exposure time, PEGylated SiNSs (SiNSs-PEG) exhibit a high level of biocompatibility. In fact, after 72-h incubation, viability of both cell types was above the cutoff value of 70 % at concentration up to 5 mg/mL. We also investigated the acoustical behavior of coated and uncoated SiNSs within conventional diagnostic US fields in order to determine a suitable configuration, in terms of particle size and concentration, for their employment as targetable CAs. Our results indicate that the employment of SiNSs with diameters around 240 nm assures the most effective contrast enhancement even at the lowest tested concentration, coupled with the possibility of targeting all tumor tissues, being the SiNSs still in a size range where reticuloendothelial system trapping effect is relatively low.
Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells.
Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis
2014-10-01
Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se 2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF 2 coated with a thin atomic layer deposited Al 2 O 3 layer, or direct current magnetron sputtering of Al 2 O 3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al 2 O 3 /CIGS rear interface. (MgF 2 /)Al 2 O 3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells.
Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells
Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis
2014-01-01
Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passivation layer with nano-sized local point contact openings is employed to enhance rear internal reflection and decrease the rear surface recombination velocity significantly, as compared with a standard Mo/CIGS rear interface. The formation of nano-sphere shaped precipitates in chemical bath deposition of CdS is used to generate nano-sized point contact openings. Evaporation of MgF2 coated with a thin atomic layer deposited Al2O3 layer, or direct current magnetron sputtering of Al2O3 are used as rear surface passivation layers. Rear internal reflection is enhanced substantially by the increased thickness of the passivation layer, and also the rear surface recombination velocity is reduced at the Al2O3/CIGS rear interface. (MgF2/)Al2O3 rear surface passivated ultra-thin CIGS solar cells are fabricated, showing an increase in short circuit current and open circuit voltage compared to unpassivated reference cells with equivalent CIGS thickness. Accordingly, average solar cell efficiencies of 13.5% are realized for 385 nm thick CIGS absorber layers, compared with 9.1% efficiency for the corresponding unpassivated reference cells. PMID:26300619
Long-term Blue Light Effects on the Histology of Lettuce and Soybean Leaves and Stems
NASA Technical Reports Server (NTRS)
Dougher, Tracy A. O.; Bugbee, Bruce
2004-01-01
Blue light (320 to 496 nm) alters hypocotyl and stem elongation and leaf expansion in short-term, cell-level experiments, but histological effects of blue light in long-term studies of whole plants have not been described. We measured cell size and number in stems of soybean (Glycine max L.) and leaves of soybean and lettuce (Lactuca sativa L.), at two blue light fractions. Short-term studies have shown that cell expansion in stems is rapidly inhibited when etiolated tissue is exposed to blue light. However, under long-term light exposure, an increase in the blue light fraction from less than 0.1% to 26% decreased internode length, specifically by inhibiting soybean cell division in stems. In contrast, an increase in blue light fraction from 6% to 26% reduced soybean leaf area by decreasing cell expansion. Surprisingly, lettuce leaf area increased with increasing blue light fraction (0% to 6%), which was attributed to a 3.1-fold increase in cell expansion and a 1.6-fold increase in cell division.
The geometry of proliferating dicot cells.
Korn, R W
2001-02-01
The distributions of cell size and cell cycle duration were studied in two-dimensional expanding plant tissues. Plastic imprints of the leaf epidermis of three dicot plants, jade (Crassula argentae), impatiens (Impatiens wallerana), and the common begonia (Begonia semperflorens) were made and cell outlines analysed. The average, standard deviation and coefficient of variance (CV = 100 x standard deviation/average) of cell size were determined with the CV of mother cells less than the CV for daughter cells and both are less than that for all cells. An equation was devised as a simple description of the probability distribution of sizes for all cells of a tissue. Cell cycle durations as measured in arbitrary time units were determined by reconstructing the initial and final sizes of cells and they collectively give the expected asymmetric bell-shaped probability distribution. Given the features of unequal cell division (an average of 11.6% difference in size of daughter cells) and the size variation of dividing cells, it appears that the range of cell size is more critically regulated than the size of a cell at any particular time.
miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.
Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei
2017-01-01
MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.
Okano, Yutaka; Hristova, Krassimira R; Leutenegger, Christian M; Jackson, Louise E; Denison, R Ford; Gebreyesus, Binyam; Lebauer, David; Scow, Kate M
2004-02-01
Ammonium oxidation by autotrophic ammonia-oxidizing bacteria (AOB) is a key process in agricultural and natural ecosystems and has a large global impact. In the past, the ecology and physiology of AOB were not well understood because these organisms are notoriously difficult to culture. Recent applications of molecular techniques have advanced our knowledge of AOB, but the necessity of using PCR-based techniques has made quantitative measurements difficult. A quantitative real-time PCR assay targeting part of the ammonia-monooxygenase gene (amoA) was developed to estimate AOB population size in soil. This assay has a detection limit of 1.3 x 10(5) cells/g of dry soil. The effect of the ammonium concentration on AOB population density was measured in soil microcosms by applying 0, 1.5, or 7.5 mM ammonium sulfate. AOB population size and ammonium and nitrate concentrations were monitored for 28 days after (NH4)2SO4 application. AOB populations in amended treatments increased from an initial density of approximately 4 x 10(6) cells/g of dry soil to peak values (day 7) of 35 x 10(6) and 66 x 10(6) cells/g of dry soil in the 1.5 and 7.5 mM treatments, respectively. The population size of total bacteria (quantified by real-time PCR with a universal bacterial probe) remained between 0.7 x 10(9) and 2.2 x 10(9) cells/g of soil, regardless of the ammonia concentration. A fertilization experiment was conducted in a tomato field plot to test whether the changes in AOB density observed in microcosms could also be detected in the field. AOB population size increased from 8.9 x 10(6) to 38.0 x 10(6) cells/g of soil by day 39. Generation times were 28 and 52 h in the 1.5 and 7.5 mM treatments, respectively, in the microcosm experiment and 373 h in the ammonium treatment in the field study. Estimated oxidation rates per cell ranged initially from 0.5 to 25.0 fmol of NH4+ h(-1) cell(-1) and decreased with time in both microcosms and the field. Growth yields were 5.6 x 10(6), 17.5 x 10(6), and 1.7 x 10(6) cells/mol of NH4+ in the 1.5 and 7.5 mM microcosm treatments and the field study, respectively. In a second field experiment, AOB population size was significantly greater in annually fertilized versus unfertilized soil, even though the last ammonium application occurred 8 months prior to measurement, suggesting a long-term effect of ammonium fertilization on AOB population size.
Rashel, Rakib H.; Patino, Reynaldo
2017-01-01
Salinity (5–30) effects on golden alga growth were determined at a standard laboratory temperature (22 °C) and one associated with natural blooms (13 °C). Inoculum-size effects were determined over a wide size range (100–100,000 cells ml−1). A strain widely distributed in the USA, UTEX-2797 was the primary study subject but another of limited distribution, UTEX-995 was used to evaluate growth responses in relation to genetic background. Variables examined were exponential growth rate (r), maximum cell density (max-D) and, when inoculum size was held constant (100 cells ml−1), density at onset of exponential growth (early-D). In UTEX-2797, max-D increased as salinity increased from 5 to ∼10–15 and declined thereafter regardless of temperature but r remained generally stable and only declined at salinity of 25–30. In addition, max-D correlated positively with r and early-D, the latter also being numerically highest at salinity of 15. In UTEX-995, max-D and r responded similarly to changes in salinity − they remained stable at salinity of 5–10 and 5–15, respectively, and declined at higher salinity. Also, max-D correlated with r but not early-D. Inoculum size positively and negatively influenced max-D and r, respectively, in both strains and these effects were significant even when the absolute size difference was small (100 versus 1000 cells ml−1). When cultured under similar conditions, UTEX-2797 grew faster and to much higher density than UTEX-995. In conclusion, (1) UTEX-2797’s superior growth performance may explain its relatively wide distribution in the USA, (2) the biphasic growth response of UTEX-2797 to salinity variation, with peak abundance at salinity of 10–15, generally mirrors golden alga abundance-salinity associations in US inland waters, and (3) early cell density – whether artificially manipulated or naturally attained – can influence UTEX-2797 bloom potential.
2017-01-01
Cell size distribution is highly reproducible, whereas the size of individual cells often varies greatly within a tissue. This is obvious in a population of Arabidopsis thaliana leaf epidermal cells, which ranged from 1,000 to 10,000 μm2 in size. Endoreduplication is a specialized cell cycle in which nuclear genome size (ploidy) is doubled in the absence of cell division. Although epidermal cells require endoreduplication to enhance cellular expansion, the issue of whether this mechanism is sufficient for explaining cell size distribution remains unclear due to a lack of quantitative understanding linking the occurrence of endoreduplication with cell size diversity. Here, we addressed this question by quantitatively summarizing ploidy profile and cell size distribution using a simple theoretical framework. We first found that endoreduplication dynamics is a Poisson process through cellular maturation. This finding allowed us to construct a mathematical model to predict the time evolution of a ploidy profile with a single rate constant for endoreduplication occurrence in a given time. We reproduced experimentally measured ploidy profile in both wild-type leaf tissue and endoreduplication-related mutants with this analytical solution, further demonstrating the probabilistic property of endoreduplication. We next extended the mathematical model by incorporating the element that cell size is determined according to ploidy level to examine cell size distribution. This analysis revealed that cell size is exponentially enlarged 1.5 times every endoreduplication round. Because this theoretical simulation successfully recapitulated experimentally observed cell size distributions, we concluded that Poissonian endoreduplication dynamics and exponential size-boosting are the sources of the broad cell size distribution in epidermal tissue. More generally, this study contributes to a quantitative understanding whereby stochastic dynamics generate steady-state biological heterogeneity. PMID:28926847
Changes in face with age (image)
... layers remains unchanged. The number of pigment-containing cells (melanocytes) decreases, but the remaining melanocytes increase in size. Aging skin thus appears thinner, more translucent. Age spots ...
NASA Astrophysics Data System (ADS)
Wang, Yan J.; Strohm, Eric M.; Sun, Yang; Niu, Chengcheng; Zheng, Yuanyi; Wang, Zhigang; Kolios, Michael C.
2014-03-01
Phase-change contrast agents consisting of a perfluorocarbon (PFC) liquid core stabilized by a lipid, protein, or polymer shell have been proposed for a variety of clinical applications. Previous work has demonstrated that vaporization can be induced by laser irradiation through optical absorbers incorporated inside the droplet. In this study, Poly-lactide-coglycolic acid (PLGA) particles loaded with PFC liquid and silica-coated gold nanoparticles (GNPs) were developed and characterized using photoacoustic (PA) methods. Microsized PLGA particles were loaded with PFC liquid and GNPs (14, 35, 55nm each with a 20nm silica shell) using a double emulsion method. The PA signal intensity and optical vaporization threshold were investigated using a 375 MHz transducer and a focused 532-nm laser (up to 450-nJ per pulse). The laser-induced vaporization threshold energy decreased with increasing GNP size. The vaporization threshold was 850, 690 and 420 mJ/cm2 for 5μm-sized PLGA particles loaded with 14, 35 and 55 nm GNPs, respectively. The PA signal intensity increased as the laser fluence increased prior to the vaporization event. This trend was observed for all particles sizes. PLGA particles were then incubated with MDA-MB-231 breast cancer cells for 6 hours to investigate passive targeting, and the vaporization of the PLGA particles that were internalized within cells. The PLGA particles passively internalized by MDA cells were visualized via confocal fluorescence imaging. Upon PLGA particle vaporization, bubbles formed inside the cells resulting in cell destruction. This work demonstrates that GNPs-loaded PLGA/PFC particles have potential as PA theranostic agents in PA imaging and optically-triggered drug delivery systems.
Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku
2015-01-14
In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.
Proinsulin atypical maturation and disposal induces extensive defects in mouse Ins2+/Akita β-cells.
Yuan, Qingxin; Tang, Wei; Zhang, Xiaoping; Hinson, Jack A; Liu, Chao; Osei, Kwame; Wang, Jie
2012-01-01
Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR), metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2(+/Akita) β-cells. We used T antigen-transformed Ins2(+/Akita) and control Ins2(+/+) β-cells established from Akita and wild-type littermate mice. In Ins2(+/Akita) β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2(+/Akita) β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2(+/Akita) β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes.
Proinsulin Atypical Maturation and Disposal Induces Extensive Defects in Mouse Ins2+/Akita β-Cells
Zhang, Xiaoping; Hinson, Jack A.; Liu, Chao; Osei, Kwame; Wang, Jie
2012-01-01
Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR), metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2+/Akita β-cells. We used T antigen-transformed Ins2+/Akita and control Ins2+/+ β-cells established from Akita and wild-type littermate mice. In Ins2+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes. PMID:22509386
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahara, Makiko; Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi; Inoue, Takeshi
2013-05-17
Highlights: •Chemo-sensitivity to SN-38 was assayed by the automated cell counter. •Colon cancer cell line, HCT116 cells were more sensitive to SN-38 than HT29 cells. •Increase of cell size reflects G2/M arrest. •Appearance of small particles indicates cell apoptosis. -- Abstract: In vitro assessment of chemosensitivity are important for experiments evaluating cancer therapies. The Scepter 2.0 cell counter, an automated handheld device based on the Coulter principle of impedance-based particle detection, enables the accurate discrimination of cell populations according to cell size and volume. In this study, the effects of SN-38, the active metabolite of irinotecan, on the colon cancermore » cell lines HCT116 and HT29 were evaluated using this device. The cell count data obtained with the Scepter counter were compared with those obtained with the {sup 3}H-thymidine uptake assay, which has been used to measure cell proliferation in many previous studies. In addition, we examined whether the changes in the size distributions of these cells reflected alterations in the frequency of cell cycle arrest and/or apoptosis induced by SN-38 treatment. In our experiments using the Scepter 2.0 cell counter, the cell counts were demonstrated to be accurate and reproducible measure and alterations of cell diameter reflected G2/M cell cycle arrest and apoptosis. Our data show that easy-to-use cell counting tools can be utilized to evaluate the cell-killing effects of novel treatments on cancer cells in vitro.« less
Protozoa inhibition by different salts: Osmotic stress or ionic stress?
Li, Changhao; Li, Jingya; Lan, Christopher Q; Liao, Dankui
2017-09-01
Cell density and morphology changes were tested to examine the effects of salts including NaHCO 3 , NaCl, KHCO 3 , and KCl at 160 mM on protozoa. It was demonstrated that ionic stress rather than osmotic stress led to protozoa cell death and NaHCO 3 was shown to be the most effective inhibitor. Deformation of cells and cell shrinkage were observed when protozoan cells were exposed to polyethylene glycol (PEG) or any of the salts. However, while PEG treated cells could fully recover in both number and size, only a small portion of the salt-treated cells survive and cell size was 36-58% smaller than the regular. The disappearance of salt-treated protozoa cells was hypothetically attributed to disruption of the cytoplasmic membrane of these cells. It is further hypothesized that the PEG-treated protozoan cells carried out regulatory volume increase (RVI) after the osmotic shock but the RVI of salt-treated protozoa was hurdled to varied extents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1418-1424, 2017. © 2017 American Institute of Chemical Engineers.
Hosseinkhani, Hossein; Aoyama, Ternyoshi; Yamamoto, Shingo; Ogawa, Osamu; Tabata, Yasuhiko
2002-10-01
The purpose of this study is to examine the ultrasound (US)-enhanced gene expression by the complexes of a plasmid DNA with gelatin derivatives of aminization. Gelatin derivatives with different introduced extents of ethylenediamine (Ed), spermidine (Sd), and spermine (Sm) were prepared with a water-soluble carbodiimide. The molecular size and zeta potential of the gelatin derivatives before and after complexation with the plasmid DNA were examined. After incubation with the complexes with or without US exposure, the DNA expression of rat gastric mucosal cells was measured to evaluate the effect of the type of gelatin derivatives on their gene expression. The cell uptake of the complexes, the cell viability, and the buffering effect of gelatin derivatives were examined. The apparent molecular size and zeta potential of gelatin derivatives became larger as their aminization extent increased although the Sm gelatin derivative of higher aminization showed a larger value than other corresponding derivatives. Irrespective of the type of gelatin derivatives, the apparent molecular size of plasmid DNA was reduced by increasing the gelatin-DNA mixing ratio to attain a saturated value of about 150 nm. The condensed gelatin-DNA complexes showed the zeta potential of 10-15 mV. The cells incubated with the complex exhibited significantly stronger luciferase activities than free plasmid DNA, and the activity was further enhanced by US irradiation. The enhancement was significant for the Sm derivative compared with the corresponding Ed and Sd derivatives. The amount of plasmid DNA internalized into the cells was significantly increased by the complexation with every gelatin derivative, whereas US irradiation did not significantly increase the DNA internalization. US irradiation had no effect on the viability of cells incubated with every gelatin derivative-plasmid DNA complex, although the viability was decreased by the complex incubation. The buffering capacity of Sm derivative was higher than that of Ed and Sd derivatives and comparable with that of polyethylene amine. Among amine derivatives of gelatin, the Sm derivative enabled the plasmid DNA to induce the US-enhanced gene expression of cells in vitro most effectively because of the superior buffering effect.
Optimization of gluten-free formulations for French-style breads.
Mezaize, S; Chevallier, S; Le Bail, A; de Lamballerie, M
2009-04-01
The formulation of gluten-free bread, which will be suitable for patients with coeliac disease, was optimized to provide bread similar to French bread. The effects of the presence of hydrocolloids and the substitution of the flour basis by flour or proteins from different sources were studied. The added ingredients were (1) hydrocolloids (carboxymethylcellulose [CMC], guar gum, hydroxypropylmethylcellulose [HPMC], and xanthan gum), and (2) substitutes (buckwheat flour, whole egg powder, and whey proteins). The bread quality parameters measured were specific volume, dry matter of bread, crust color, crumb hardness, and gas cell size distribution. Specific volume was increased by guar gum and HPMC. Breads with guar gum had color characteristics similar to French bread. Hardness decreased with the addition of hydrocolloids, especially HPMC and guar. Breads with guar gum had the most heterogeneous cell size distribution, and guar gum was therefore selected for further formulations. Bread prepared with buckwheat flour had improved quality: an increased specific volume, a softer texture, color characteristics, and gas-cell size distribution similar to French bread. Bread with 1.9% guar gum (w/w, total flour basis) and 5% buckwheat flour (of all flours and substitutes) mimicked French bread quality attributes.
NASA Astrophysics Data System (ADS)
Abrari, Masoud; Ghanaatshoar, Majid; Hosseiny Davarani, Saied Saeed; Moazami, Hamid Reza; Kazeminezhad, Iraj
2017-05-01
A facile synthetic route has been employed to prepare tin oxide nanoparticles. The route comprises anodic dissolution of metallic tin in the presence of tetramethylammonium chloride called electrooxidation. The effect of experimental parameters was investigated with special focus on solution pH. The obtained nanostructures have been characterized by XRD, EDS, TEM, FESEM, FTIR and UV-visible studies. The results show that the solution pH has a critical influence on the nanoparticles properties. The hydrophilic feature of nanoparticles decreases with pH growth, whereas their mean size increases. On the other hand, the size distribution is much uniform for the samples prepared at low pH. Having achieved the nanoparticles by electrooxidation, the dye-sensitized solar cells based on the produced SnO_2 nanoparticles were fabricated and the influence of nanoparticles on their performance was investigated. By variation in solution pH, we prepared nanoparticles with different particle sizes and photoanodes with various dye-loading abilities. The dye absorption and consequently current density of cells increased in acidic case, and therefore, power conversion efficiency grew up by 33% in acidic synthetic environment.
The endothelial sample size analysis in corneal specular microscopy clinical examinations.
Abib, Fernando C; Holzchuh, Ricardo; Schaefer, Artur; Schaefer, Tania; Godois, Ronialci
2012-05-01
To evaluate endothelial cell sample size and statistical error in corneal specular microscopy (CSM) examinations. One hundred twenty examinations were conducted with 4 types of corneal specular microscopes: 30 with each BioOptics, CSO, Konan, and Topcon corneal specular microscopes. All endothelial image data were analyzed by respective instrument software and also by the Cells Analyzer software with a method developed in our lab. A reliability degree (RD) of 95% and a relative error (RE) of 0.05 were used as cut-off values to analyze images of the counted endothelial cells called samples. The sample size mean was the number of cells evaluated on the images obtained with each device. Only examinations with RE < 0.05 were considered statistically correct and suitable for comparisons with future examinations. The Cells Analyzer software was used to calculate the RE and customized sample size for all examinations. Bio-Optics: sample size, 97 ± 22 cells; RE, 6.52 ± 0.86; only 10% of the examinations had sufficient endothelial cell quantity (RE < 0.05); customized sample size, 162 ± 34 cells. CSO: sample size, 110 ± 20 cells; RE, 5.98 ± 0.98; only 16.6% of the examinations had sufficient endothelial cell quantity (RE < 0.05); customized sample size, 157 ± 45 cells. Konan: sample size, 80 ± 27 cells; RE, 10.6 ± 3.67; none of the examinations had sufficient endothelial cell quantity (RE > 0.05); customized sample size, 336 ± 131 cells. Topcon: sample size, 87 ± 17 cells; RE, 10.1 ± 2.52; none of the examinations had sufficient endothelial cell quantity (RE > 0.05); customized sample size, 382 ± 159 cells. A very high number of CSM examinations had sample errors based on Cells Analyzer software. The endothelial sample size (examinations) needs to include more cells to be reliable and reproducible. The Cells Analyzer tutorial routine will be useful for CSM examination reliability and reproducibility.
NASA Astrophysics Data System (ADS)
Alkhatib, Mayson H.; AlBishi, Hayat M.
2013-03-01
Doxorubicin (DOX) is an anticancer drug used to treat several cancer diseases. However, it has several dose limitation aspects because of its poor bioavailability, hydrophobicity, and cytotoxicity. In this study, five nanoemulsion (NE) formulations, containing soya phosphatidylcholine/polyoxyethylenglycerol trihydroxy-stearate 40 (EU)/sodium oleate as surfactant, cholesterol (CHO) as oil phase, and Tris-HCl buffer (pH 7.22), were produced. The NE droplets morphologies of the entire blank and DOX-loaded formulations, revealed by the transmission electron microscope, were spherical. The droplet sizes of blank NEs, obtained between 2.9 and 6.4 nm, decreased significantly with the increase in the ratio of surfactant-to-oil, whereas the droplets sizes of DOX-loaded NE formulations were significantly higher and found in the range of 7.7-15.9 nm. The evaluation for both blank and DOX-loaded NE formulations proved that the NE carrier had improved the DOX efficacy and reduced its cytotoxicity. It showed that the cell growth inhibition of the breast cancer cells (MCF-7) have exceeded the commercial DOX by a factor of 1.7 with increased apoptosis activity and minimal cytotoxicity against the normal human foreskin cells (HFS). In contrast, commercial DOX was found to exhibit a significant non-selective toxicity against both MCF-7 and HFS cells. In conclusion, we have developed DOX-loaded NE formulations which selectively and significantly inhibited cell proliferation of MCF-7 cells and increased apoptosis.
Kim, Kyobum; Dean, David; Wallace, Jonathan; Breithaupt, Rob; Mikos, Antonios G.; Fisher, John P.
2011-01-01
Scaffold design parameters, especially physical construction factors such as mechanical stiffness of substrate materials, pore size of 3D porous scaffolds, and channel geometry, are known to influence the osteogenic signal expression and subsequent differentiation of a transplanted cell population. In this study of photocrosslinked poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) scaffolds, the effect of DEF incorporation ratio and pore size on the osteogenic signal expression of rat bone marrow stromal cells (BMSCs) was investigated. Results demonstrated that DEF concentrations and pore sizes that led to increased scaffold mechanical stiffness also upregulated osteogenic signal expression, including bone morphogenic protein-2 (BMP-2), fibroblast growth factors-2 (FGF-2), transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and Runx2 transcriptional factor. Similar scaffold fabrication parameters supported rapid BMSC osteoblastic differentiation, as demonstrated by increased alkaline phosphatase (ALP) and osteocalcin expression. When scaffolds with random architecture, fabricated by porogen leaching, were compared to those with controlled architecture, fabricated by stereolithography (SLA), results showed that SLA scaffolds with the highly permeable and porous channels also have significantly higher expression of FGF-2, TGF-β1, and VEGF. Subsequent ALP expression and osteopontin secretion were also significantly increased in SLA scaffolds. Based upon these results, we conclude that scaffold properties provided by additive manufacturing techniques such as SLA fabrication, particularly increased mechanical stiffness and high permeability, may stimulate dramatic BMSC responses that promote rapid bone tissue regeneration. PMID:21396709
Sheridan, J W; Simmons, R J
1983-12-01
The buoyancy of suspension-grown Mastocytoma P815 X-2 cells in albumin-rich Cohn fraction V protein (CFVP) density gradients was found to be affected by prior incubation of the cells in pancreatin-EDTA salt solution. Whereas in pH 5.2 CFVP, pancreatin-EDTA treated cells behaved as if of reduced density when compared with the control 'undigested' group, in pH 7.3 CFVP they behaved as if of increased density. By contrast, pancreatin-EDTA treatment had no effect on the buoyancy of mastocytoma cells in polyvinylpyrrolidone-coated colloidal silica (PVP-CS, Percoll T.M.) density gradients of either pH 5.2 or pH 7.3. As cell size determinations failed to reveal alterations in cell size either as a direct result of pancreatin-EDTA treatment or as a combined consequence of such treatment and exposure to CFVP either with or without centrifugation, a mechanism involving a change in cell density other than during the centrifugation process itself seems unlikely. Binding studies employing 125I-CFVP, although indicating that CFVP bound to cells at 4 degrees, failed to reveal a pancreatin-EDTA treatment-related difference in the avidity of this binding. Although the mechanism of the pancreatin-EDTA-induced buoyancy shift in CFVP remains obscure, the absence of such an effect in PVP-CS suggests that the latter cell separation solution may more accurately be used to determine cell density.
Zenoni, Sara; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Sanson, Andrea; de Groot, Peter; Sordo, Sara; Citterio, Sandra; Monti, Francesca; Pezzotti, Mario
2011-08-01
• Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. • PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. • The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. • These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Sahmani, S; Aghdam, M M
2017-06-07
Microtubules including tubulin heterodimers arranging in a parallel shape of cylindrical hollow plays an important role in the mechanical stiffness of a living cell. In the present study, the nonlocal strain gradient theory of elasticity including simultaneously the both nonlocality and strain gradient size dependency is put to use within the framework of a refined orthotropic shell theory with hyperbolic distribution of shear deformation to analyze the size-dependent buckling and postbuckling characteristics of microtubules embedded in cytoplasm under axial compressive load. The non-classical governing differential equations are deduced via boundary layer theory of shell buckling incorporating the nonlinear prebuckling deformation and microtubule-cytoplasm interaction in the living cell environment. Finally, with the aid of a two-stepped perturbation solution methodology, the explicit analytical expressions for nonlocal strain gradient stability paths of axially loaded microtubules are achieved. It is illustrated that by taking the nonlocal size effect into consideration, the critical buckling load of microtubule and its maximum deflection associated with the minimum postbuckling load decreases, while the strain gradient size dependency causes to increase them. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rao, R. G. S.; Ulaby, F. T.
1977-01-01
The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.
NASA Technical Reports Server (NTRS)
Plank, L. D.; Kunze, M. E.; Todd, P. W.
1985-01-01
Cultured mouse leukemia cells line L5178Y were subjected to upward electrophoresis in a density gradient and the slower migrating cell populations were enriched in G2 cells. It is indicated that this cell line does not change electrophoretic mobility through the cell cycle. The possibility that increased sedimentation downward on the part of the larger G2 cells caused this separation was explored. Two different cell populations were investigated. The log phase population was found to migrate upward faster than the G2 population, and a similar difference between their velocities and calculated on the basis of a 1 um diameter difference between the two cell populations. The G2 and G1 enriched populations were isolated by Ficoll density gradient sedimentation. The bottom fraction was enriched in G2 cells and the top fraction was enriched with G1 cells, especially when compared with starting materials. The electrophoretic mobilities of these two cell populations did not differ significantly from one another. Cell diameter dependent migration curves were calculated and were found to be different. Families of migration curves that differ when cell size is considered as a parameter are predicted.
NASA Technical Reports Server (NTRS)
Castell, Karen; Day, John H. (Technical Monitor)
2001-01-01
ST5 mission requirements include validation of Lithium-ion battery in orbit. Accommodation in the power system for Li-ion battery can be reduced with smaller amp-hour size, highly matched cells when compared to the larger amp-hour size approach. Result can be lower system mass and increased reliability.
Experimentally Induced Repeated Anhydrobiosis in the Eutardigrade Richtersius coronifer.
Czernekova, Michaela; Jönsson, K Ingemar
2016-01-01
Tardigrades represent one of the main animal groups with anhydrobiotic capacity at any stage of their life cycle. The ability of tardigrades to survive repeated cycles of anhydrobiosis has rarely been studied but is of interest to understand the factors constraining anhydrobiotic survival. The main objective of this study was to investigate the patterns of survival of the eutardigrade Richtersius coronifer under repeated cycles of desiccation, and the potential effect of repeated desiccation on size, shape and number of storage cells. We also analyzed potential change in body size, gut content and frequency of mitotic storage cells. Specimens were kept under non-cultured conditions and desiccated under controlled relative humidity. After each desiccation cycle 10 specimens were selected for analysis of morphometric characteristics and mitosis. The study demonstrates that tardigrades may survive up to 6 repeated desiccations, with declining survival rates with increased number of desiccations. We found a significantly higher proportion of animals that were unable to contract properly into a tun stage during the desiccation process at the 5th and 6th desiccations. Also total number of storage cells declined at the 5th and 6th desiccations, while no effect on storage cell size was observed. The frequency of mitotic storage cells tended to decline with higher number of desiccation cycles. Our study shows that the number of consecutive cycles of anhydrobiosis that R. coronifer may undergo is limited, with increased inability for tun formation and energetic constraints as possible causal factors.
Experimentally Induced Repeated Anhydrobiosis in the Eutardigrade Richtersius coronifer
2016-01-01
Tardigrades represent one of the main animal groups with anhydrobiotic capacity at any stage of their life cycle. The ability of tardigrades to survive repeated cycles of anhydrobiosis has rarely been studied but is of interest to understand the factors constraining anhydrobiotic survival. The main objective of this study was to investigate the patterns of survival of the eutardigrade Richtersius coronifer under repeated cycles of desiccation, and the potential effect of repeated desiccation on size, shape and number of storage cells. We also analyzed potential change in body size, gut content and frequency of mitotic storage cells. Specimens were kept under non-cultured conditions and desiccated under controlled relative humidity. After each desiccation cycle 10 specimens were selected for analysis of morphometric characteristics and mitosis. The study demonstrates that tardigrades may survive up to 6 repeated desiccations, with declining survival rates with increased number of desiccations. We found a significantly higher proportion of animals that were unable to contract properly into a tun stage during the desiccation process at the 5th and 6th desiccations. Also total number of storage cells declined at the 5th and 6th desiccations, while no effect on storage cell size was observed. The frequency of mitotic storage cells tended to decline with higher number of desiccation cycles. Our study shows that the number of consecutive cycles of anhydrobiosis that R. coronifer may undergo is limited, with increased inability for tun formation and energetic constraints as possible causal factors. PMID:27828978
Potential Polyunsaturated Aldehydes in the Strait of Gibraltar under Two Tidal Regimes
Morillo-García, Soledad; Valcárcel-Pérez, Nerea; Cózar, Andrés; Ortega, María J.; Macías, Diego; Ramírez-Romero, Eduardo; García, Carlos M.; Echevarría, Fidel; Bartual, Ana
2014-01-01
Diatoms, a major component of the large-sized phytoplankton, are able to produce and release polyunsaturated aldehydes after cell disruption (potential PUAs or pPUA). These organisms are dominant in the large phytoplankton fraction (>10 µm) in the Strait of Gibraltar, the only connection between the Mediterranean Sea and the Atlantic Ocean. In this area, the hydrodynamics exerts a strong control on the composition and physiological state of the phytoplankton. This environment offers a great opportunity to analyze and compare the little known distribution of larger sized PUA producers in nature and, moreover, to study how environmental variables could affect the ranges and potential distribution of these compounds. Our results showed that, at both tidal regimes studied (Spring and Neap tides), diatoms in the Strait of Gibraltar are able to produce three aldehydes: Heptadienal, Octadienal and Decadienal, with a significant dominance of Decadienal production. The PUA released by mechanical cell disruption of large-sized collected cells (pPUA) ranged from 0.01 to 12.3 pmol from cells in 1 L, and from 0.1 to 9.8 fmol cell−1. Tidal regime affected the abundance, distribution and the level of physiological stress of diatoms in the Strait. During Spring tides, diatoms were more abundant, usually grouped nearer the coastal basin and showed less physiological stress than during Neap tides. Our results suggest a significant general increase in the pPUA productivity with increasing physiological stress for the cell also significantly associated to low nitrate availability. PMID:24633248
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei
2016-05-04
Lead thiocyanate in the perovskite precursor can increase the grain size of a perovskite thin film and reduce the conductivity of the grain boundaries, leading to perovskite solar cells with reduced hysteresis and enhanced fill factor. A planar perovskite solar cell with grain boundary and interface passivation achieves a steady-state efficiency of 18.42%.
Smetana, K; Karban, J; Trneny, M
2010-01-01
The present study was undertaken to provide more information on nucleoli in lymphocytes of B - chronic lymphocytic leukemia. The computer assisted nucleolar and cytoplasmic RNA image densitometry, reflecting the nucleolar and cytoplasmic RNA concentration at the single cell level, demonstrated a remarkable stability during the differentiation and maturation of B- lymphocytes. In contrast, as it was expected, the nucleolar diameter during the lymphocytic development markedly decreased. Thus the nucleolar RNA content of leukemic B-lymphocytes was apparently related to the nucleolar size. In both immature and mature lymphocytes, the cytostatic treatment increased the incidence of micronucleoli, which represent the "inactive" type of nucleoli. However, the decreased values of the nucleolar diameter were statistically significant only in mature lymphocytes of treated patients. On the other hand, despite such observation, it must be mentioned that "large active" and "ring shaped resting" nucleoli were still present in immature and mature lymphocytes after the cytostatic therapy and such cells might represent a potential pool of proliferating cells. As it is generally accepted "large active nucleoli" with multiple fibrillar centers are known to be characteristic for proliferating cells. "Ring shaped resting nucleoli" are present in sleeping cells, which may be stimulated to return to the cell cycle and to proliferate again. In addition, the nucleolar RNA distribution also indicated that Gumprecht ghosts mostly originated from mature lymphocytes. Increased ratio of the nucleolar to cytoplasmic RNA density in Gumprecht ghosts or apoptotic cells and apoptotic bodies of the lymphocytic origin was related to the decreased cytoplasmic RNA concentration. The increased nucleolar size together with the markedly decreased cytoplasmic RNA concentration characteristic for Gumprecht ghosts just reflected the spreading of lymphocytes during smear preparations. In apoptotic cells or bodies of the lymphocytic origin, the "frozen" nucleolar RNA concentration accompanied by a reduced RNA concentration in the cytoplasm exhibited a remarkable similarity to the apoptotic process induced in vitro by the cytostatic treatment. B-chronic lymphocytic leukemia; lymphocytes; nucleolar classes; size; nucleolar RNA image density -concentration.
Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02
NASA Astrophysics Data System (ADS)
Liu, Pengpeng; Guan, Rongfa; Ye, Xingqian; Jiang, Jiaxin; Liu, Mingqi; Huang, Guangrong; Chen, Xiaoting
2011-07-01
Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure). The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 μg·mL-1. LDH leakage significantly increased in cells exposed to Ag NPs (>= 25 μg mL-1) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 μg·mL-1). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage. Though the exact mechanism behind Ag NPs toxicity is suggested oxidative stress and lipid peroxidation playing an important role in Ag NPs elicited cell membrane disruption, DNA damage, protein damage and subsequent cell death. Our preliminary data suggest that oxidative stress might contribute to Ag NPs cytotoxicity. To reveal whether apoptosis involved in Ag NPs toxicity, further studies are underway.
Distinct Effects of Adipose-Derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy.
Anjanappa, Manjushree; Burnett, Riesa; Zieger, Michael A; Merfeld-Clauss, Stephanie; Wooden, William; March, Keith; Tholpady, Sunil; Nakshatri, Harikrishna
2016-07-01
Adipose-derived stem cells (ASC) have received considerable attention in oncology because of the known direct link between obesity and cancer as well as the use of ASCs in reconstructive surgery after tumor ablation. Previous studies have documented how cancer cells commandeer ASCs to support their survival by altering extracellular matrix composition and stiffness, migration, and metastasis. This study focused on delineating the effects of ASCs and adipocytes on the self-renewal of stem/progenitor cells and hierarchy of breast epithelial cells. The immortalized breast epithelial cell line MCF10A, ductal carcinoma in situ (DCIS) cell lines MCF10DCIS.com and SUM225, and MCF10A-overexpressing SRC oncogene were examined using a mammosphere assay and flow cytometry for the effects of ASCs on their self-renewal and stem-luminal progenitor-differentiated cell surface marker profiles. Interestingly, ASCs promoted the self-renewal of all cell types except SUM225. ASC coculture or treatment with ASC conditioned media altered the number of CD49f(high)/EpCAM(low) basal/stem-like and CD49f(medium)/EpCAM(medium) luminal progenitor cells. Among multiple factors secreted by ASCs, IFNγ and hepatocyte growth factor (HGF) displayed unique actions on epithelial cell hierarchy. IFNγ increased stem/progenitor-like cells while simultaneously reducing the size of mammospheres, whereas HGF increased the size of mammospheres with an accompanying increase in luminal progenitor cells. ASCs expressed higher levels of HGF, whereas adipocytes expressed higher levels of IFNγ. As luminal progenitor cells are believed to be prone for transformation, IFNγ and HGF expression status of ASCs may influence susceptibility for developing breast cancer as well as on outcomes of autologous fat transplantation on residual/dormant tumor cells. This study suggests that the ratio of ASCs to adipocytes influences cancer cell hierarchy, which may impact incidence and progression. Mol Cancer Res; 14(7); 660-71. ©2016 AACR. ©2016 American Association for Cancer Research.
Scaling of number, size, and metabolic rate of cells with body size in mammals.
Savage, Van M; Allen, Andrew P; Brown, James H; Gillooly, James F; Herman, Alexander B; Woodruff, William H; West, Geoffrey B
2007-03-13
The size and metabolic rate of cells affect processes from the molecular to the organismal level. We present a quantitative, theoretical framework for studying relationships among cell volume, cellular metabolic rate, body size, and whole-organism metabolic rate that helps reveal the feedback between these levels of organization. We use this framework to show that average cell volume and average cellular metabolic rate cannot both remain constant with changes in body size because of the well known body-size dependence of whole-organism metabolic rate. Based on empirical data compiled for 18 cell types in mammals, we find that many cell types, including erythrocytes, hepatocytes, fibroblasts, and epithelial cells, follow a strategy in which cellular metabolic rate is body size dependent and cell volume is body size invariant. We suggest that this scaling holds for all quickly dividing cells, and conversely, that slowly dividing cells are expected to follow a strategy in which cell volume is body size dependent and cellular metabolic rate is roughly invariant with body size. Data for slowly dividing neurons and adipocytes show that cell volume does indeed scale with body size. From these results, we argue that the particular strategy followed depends on the structural and functional properties of the cell type. We also discuss consequences of these two strategies for cell number and capillary densities. Our results and conceptual framework emphasize fundamental constraints that link the structure and function of cells to that of whole organisms.
Safety and efficacy of cell-based therapy on critical limb ischemia: A meta-analysis.
Ai, Min; Yan, Chang-Fu; Xia, Fu-Chun; Zhou, Shuang-Lu; He, Jian; Li, Cui-Ping
2016-06-01
Critical limb ischemia (CLI) is a major health problem worldwide, affecting approximately 500-1000 people per million per annum. Cell-based therapy has given new hope for the treatment of limb ischemia. This study assessed the safety and efficacy of cellular therapy CLI treatment. We searched the PubMed, Embase and Cochrane databases through October 20, 2015, and selected the controlled trials with cell-based therapy for CLI treatment compared with cell-free treatment. We assessed the results by meta-analysis using a variety of outcome measures, as well as the association of mononuclear cell dosage with treatment effect by dose-response meta-analysis. Twenty-five trials were included. For the primary evaluation index, cell-based therapy significantly reduced the rate of major amputation (odds ratio [OR] 0.44, 95% confidence interval [CI] 0.32-0.60, P = 0.000) and significantly increased the rate of amputation-free survival (OR 2.80, 95% CI 1.70-4.61, P = 0.000). Trial sequence analysis indicated that optimal sample size (n = 3374) is needed to detect a plausible treatment effect in all-cause mortality. Cell-based therapy significantly improves ankle brachial index, increases the rate of ulcer healing, increases the transcutaneous pressure of oxygen, reduces limb pain and improves movement ability. Subgroup analysis indicated heterogeneity is caused by type of control, design bias and transplant route. In the dose-response analysis, there was no significant correlation between cell dosage and the therapeutic effect. Cell-based therapy has a significant therapeutic effect on CLI, but randomized double-blind placebo-controlled trials are needed to improve the credibility of this conclusion. Assessment of all-cause mortality also requires a larger sample size to arrive at a strong conclusion. In dose-response analysis, increasing the dosage of cell injections does not significantly improve the therapeutic effects of cell-based therapy. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Shear and mixing effects on cells in agitated microcarrier tissue culture reactors
NASA Technical Reports Server (NTRS)
Cherry, Robert S.; Papoutsakis, E. Terry
1987-01-01
Tissue cells are known to be sensitive to mechanical stresses imposed on them by agitation in bioreactors. The amount of agitation provided in a microcarrier or suspension bioreactor should be only enough to provide effective homogeneity. Three distinct flow regions can be identified in the reactor: bulk turbulent flow, bulk laminar flow and boundary-layer flows. Possible mechanisms of cell damage are examined by analyzing the motion of microcarriers or free cells relative to the surrounding fluid, to each other and to moving or stationary solid surfaces. The primary mechanisms of cell damage appear to result from: (1) direct interaction between microcarriers and turbulent eddies; (2) collisions between microcarriers in turbulent flow; and (3) collisions against the impeller or other stationary surfaces. If the smallest eddies of turbulent flow are of the same size as the microcarrier beads, they may cause high shear stresses on the cells. Eddies the size of the average interbead spacing may cause bead-bead collisions which damage cells. The severity of the collisions increases when the eddies are also of the same size as the beads. Impeller collisions occur when beads cannot avoid the impeller leading edge as it advances through the liquid. The implications of the results of this analysis on the design and operation of tissue culture reactors are discussed.
NASA Astrophysics Data System (ADS)
Polyanskaya, L. M.; Pinchuk, I. P.; Zvyagintsev, D. G.
2015-03-01
Soddy-podzolic, gray forest, brown forest, primitive Antarctic soils, typical chernozems, and solonchaks were studied. Many ultrafine bacterial cells, along with fine ones, were found in all the soils studied. The gray forest, brown forest, and primitive Antarctic soils were especially distinguished in this respect. Formerly, in the works on soil microbiology, the fact of the cell size reduction was insufficiently taken into account because of the absence of reliable methods. A decrease in the number and biomass of bacteria down the profile in all the soils, except for the solonchak, was shown. In the solonchak, the bacterial number and biomass increases with decreasing salinity of the soil horizons. The bacterial biomass mainly depends on the predominance of cells of definite sizes (0.38 and 0.23 μm). In the B1fungi horizon of the primitive Antarctic soil, a considerable number of large (1.85 μm) bacterial cells was recorded, and this resulted in the maximal microbial biomass in this horizon. The data on the average volume of a cell correlate with those on the number and biomass of bacteria. The largest diameters of cells were registered in the humus and B1fungi horizons of the primitive Antarctic soil.
Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo
2015-12-01
The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production.
Sakai, Daisuke; Dixon, Jill; Dixon, Michael J; Trainor, Paul A
2012-01-01
The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1(+/-) mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly.
Sakai, Daisuke; Dixon, Jill; Dixon, Michael J.; Trainor, Paul A.
2012-01-01
The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1 +/− mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly. PMID:22479190
TPC2 controls pigmentation by regulating melanosome pH and size.
Ambrosio, Andrea L; Boyle, Judith A; Aradi, Al E; Christian, Keith A; Di Pietro, Santiago M
2016-05-17
Melanin is responsible for pigmentation of skin and hair and is synthesized in a specialized organelle, the melanosome, in melanocytes. A genome-wide association study revealed that the two pore segment channel 2 (TPCN2) gene is strongly linked to pigmentation variations. TPCN2 encodes the two-pore channel 2 (TPC2) protein, a cation channel. Nevertheless, how TPC2 regulates pigmentation remains unknown. Here, we show that TPC2 is expressed in melanocytes and localizes to the melanosome-limiting membrane and, to a lesser extent, to endolysosomal compartments by confocal fluorescence and immunogold electron microscopy. Immunomagnetic isolation of TPC2-containing organelles confirmed its coresidence with melanosomal markers. TPCN2 knockout by means of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 gene editing elicited a dramatic increase in pigment content in MNT-1 melanocytic cells. This effect was rescued by transient expression of TPC2-GFP. Consistently, siRNA-mediated knockdown of TPC2 also caused a substantial increase in melanin content in both MNT-1 cells and primary human melanocytes. Using a newly developed genetically encoded pH sensor targeted to melanosomes, we determined that the melanosome lumen in TPC2-KO MNT-1 cells and primary melanocytes subjected to TPC2 knockdown is less acidic than in control cells. Fluorescence and electron microscopy analysis revealed that TPC2-KO MNT-1 cells have significantly larger melanosomes than control cells, but the number of organelles is unchanged. TPC2 likely regulates melanosomes pH and size by mediating Ca(2+) release from the organelle, which is decreased in TPC2-KO MNT-1 cells, as determined with the Ca(2+) sensor tyrosinase-GCaMP6. Thus, our data show that TPC2 regulates pigmentation through two fundamental determinants of melanosome function: pH and size.
Combining growth-promoting genes leads to positive epistasis in Arabidopsis thaliana
Vanhaeren, Hannes; Gonzalez, Nathalie; Coppens, Frederik; De Milde, Liesbeth; Van Daele, Twiggy; Vermeersch, Mattias; Eloy, Nubia B; Storme, Veronique; Inzé, Dirk
2014-01-01
Several genes positively influence final leaf size in Arabidopsis when mutated or overexpressed. The connections between these growth regulators are still poorly understood although such knowledge would further contribute to understand the processes driving leaf growth. In this study, we performed a combinatorial screen with 13 transgenic Arabidopsis lines with an increased leaf size. We found that from 61 analyzed combinations, 39% showed an additional increase in leaf size and most resulted from a positive epistasis on growth. Similar to what is found in other organisms in which such an epistasis assay was performed, only few genes were highly connected in synergistic combinations as we observed a positive epistasis in the majority of the combinations with samba, BRI1OE or SAUR19OE. Furthermore, positive epistasis was found with combinations of genes with a similar mode of action, but also with genes which affect distinct processes, such as cell proliferation and cell expansion. DOI: http://dx.doi.org/10.7554/eLife.02252.001 PMID:24843021
Tuning optical properties of water-soluble CdTe quantum dots for biological applications
NASA Astrophysics Data System (ADS)
Schulze, Anne S.; Tavernaro, Isabella; Machka, Friederike; Dakischew, Olga; Lips, Katrin S.; Wickleder, Mathias S.
2017-02-01
In this study, two different synthetic methods in aqueous solution are presented to tune the optical properties of CdTe and CdSe semiconductor nanoparticles. Additionally, the influence of different temperatures, pressures, precursor ratios, surface ligands, bases, and core components in the synthesis was investigated with regard to the particle sizes and optical properties. As a result, a red shift of the emission and absorption maxima with increasing reaction temperature (100 to 220°C), pressure (1 to 25 bar), and different ratios of core components of alloyed semiconductor nanoparticles could be observed without a change of the particle size. An increase in particle size from 2.5 to 5 nm was only achieved by variation of the mercaptocarboxylic acid ligands in combination with the reaction time and used base. To get a first hint on the cytotoxic effects and cell uptake of the synthesized quantum dots, in vitro tests mesenchymal stem cells (MSCs) were carried out.
Vapor bubble generation around gold nano-particles and its application to damaging of cells
Kitz, M.; Preisser, S.; Wetterwald, A.; Jaeger, M.; Thalmann, G. N.; Frenz, M.
2011-01-01
We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage. PMID:21339875
Feridooni, Tiam; Hotchkiss, Adam; Baguma-Nibasheka, Mark; Zhang, Feixiong; Allen, Brittney; Chinni, Sarita; Pasumarthi, Kishore B S
2017-05-01
β-Adrenergic receptors (β-ARs) and catecholamines are present in rodents as early as embryonic day (E)10.5. However, it is not known whether β-AR signaling plays any role in the proliferation and differentiation of ventricular cells in the embryonic heart. Here, we characterized expression profiles of β-AR subtypes and established dose-response curves for the nonselective β-AR agonist isoproterenol (ISO) in the developing mouse ventricular cells. Furthermore, we investigated the effects of ISO on cell cycle activity and differentiation of cultured E11.5 ventricular cells. ISO treatment significantly reduced tritiated thymidine incorporation and cell proliferation rates in both cardiac progenitor cell and cardiomyocyte populations. The ISO-mediated effects on DNA synthesis could be abolished by cotreatment of E11.5 cultures with either metoprolol (a β 1 -AR antagonist) or ICI-118,551 (a β 2 -AR antagonist). In contrast, ISO-mediated effects on cell proliferation could be abolished only by metoprolol. Furthermore, ISO treatment significantly increased the percentage of differentiated cardiomyocytes compared with that in control cultures. Additional experiments revealed that β-AR stimulation leads to downregulation of Erk and Akt phosphorylation followed by significant decreases in cyclin D1 and cyclin-dependent kinase 4 levels in E11.5 ventricular cells. Consistent with in vitro results, we found that chronic stimulation of recipient mice with ISO after intracardiac cell transplantation significantly decreased graft size, whereas metoprolol protected grafts from the inhibitory effects of systemic catecholamines. Collectively, these results underscore the effects of β-AR signaling in cardiac development as well as graft expansion after cell transplantation. NEW & NOTEWORTHY β-Adrenergic receptor (β-AR) stimulation can decrease the proliferation of embryonic ventricular cells in vitro and reduce the graft size after intracardiac cell transplantation. In contrast, β 1 -AR antagonists can abrogate the antiproliferative effects mediated by β-AR stimulation and increase graft size. These results highlight potential interactions between adrenergic drugs and cell transplantation. Copyright © 2017 the American Physiological Society.
Kanelidis, Anthony J; Premer, Courtney; Lopez, Juan; Balkan, Wayne; Hare, Joshua M
2017-03-31
Accumulating data support a therapeutic role for mesenchymal stem cell (MSC) therapy; however, there is no consensus on the optimal route of delivery. We tested the hypothesis that the route of MSC delivery influences the reduction in infarct size and improvement in left ventricular ejection fraction (LVEF). We performed a meta-analysis investigating the effect of MSC therapy in acute myocardial infarction (AMI) and chronic ischemic cardiomyopathy preclinical studies (58 studies; n=1165 mouse, rat, swine) which revealed a reduction in infarct size and improvement of LVEF in all animal models. Route of delivery was analyzed in AMI swine studies and clinical trials (6 clinical trials; n=334 patients). In AMI swine studies, transendocardial stem cell injection reduced infarct size (n=49, 9.4% reduction; 95% confidence interval, -15.9 to -3.0), whereas direct intramyocardial injection, intravenous infusion, and intracoronary infusion indicated no improvement. Similarly, transendocardial stem cell injection improved LVEF (n=65, 9.1% increase; 95% confidence interval, 3.7 to 14.5), as did direct intramyocardial injection and intravenous infusion, whereas intracoronary infusion demonstrated no improvement. In humans, changes of LVEF paralleled these results, with transendocardial stem cell injection improving LVEF (n=46, 7.0% increase; 95% confidence interval, 2.7 to 11.3), as did intravenous infusion, but again intracoronary infusion demonstrating no improvement. MSC therapy improves cardiac function in animal models of both AMI and chronic ischemic cardiomyopathy. The route of delivery seems to play a role in modulating the efficacy of MSC therapy in AMI swine studies and clinical trials, suggesting the superiority of transendocardial stem cell injection because of its reduction in infarct size and improvement of LVEF, which has important implications for the design of future studies. © 2016 American Heart Association, Inc.
Automated measurement of diatom size
Spaulding, Sarah A.; Jewson, David H.; Bixby, Rebecca J.; Nelson, Harry; McKnight, Diane M.
2012-01-01
Size analysis of diatom populations has not been widely considered, but it is a potentially powerful tool for understanding diatom life histories, population dynamics, and phylogenetic relationships. However, measuring cell dimensions on a light microscope is a time-consuming process. An alternative technique has been developed using digital flow cytometry on a FlowCAM® (Fluid Imaging Technologies) to capture hundreds, or even thousands, of images of a chosen taxon from a single sample in a matter of minutes. Up to 30 morphological measures may be quantified through post-processing of the high resolution images. We evaluated FlowCAM size measurements, comparing them against measurements from a light microscope. We found good agreement between measurement of apical cell length in species with elongated, straight valves, including small Achnanthidium minutissimum (11-21 µm) and largeDidymosphenia geminata (87–137 µm) forms. However, a taxon with curved cells, Hannaea baicalensis (37–96 µm), showed differences of ~ 4 µm between the two methods. Discrepancies appear to be influenced by the choice of feret or geodesic measurement for asymmetric cells. We describe the operating conditions necessary for analysis of size distributions and present suggestions for optimal instrument conditions for size analysis of diatom samples using the FlowCAM. The increased speed of data acquisition through use of imaging flow cytometers like the FlowCAM is an essential step for advancing studies of diatom populations.
Analysis of the conductivity of plasmodesmata by microinjection.
Kragler, Friedrich
2015-01-01
Pressure microinjection can be used to introduce fluorescent dyes and labeled macromolecules into single cells. The method allows measuring transport activity of macromolecules such as proteins and RNA molecules within and between cells. Routinely, plant mesophyll cells are injected with fluorescent dextran molecules of specific sizes to measure an increase of the size exclusion limit of plasmodesmata in the presence of a co-injected or expressed protein. The mobility of a macromolecule can also be addressed directly by injecting a recombinant protein that itself is labeled with fluorescent dye and following its transport to neighboring cells. This chapter describes a pressure microinjection protocol successfully applied to Nicotiana leaves. This protocol requires basic skills and experience in handling a microscope equipped with an imaging system, a micromanipulator, and a microinjection system attached to an upright microscope. Using this equipment, a trained person can inject approximately 10-20 mesophyll cells per hour.
Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation.
Gerstein, Aleeza C; Fu, Man Shun; Mukaremera, Liliane; Li, Zhongming; Ormerod, Kate L; Fraser, James A; Berman, Judith; Nielsen, Kirsten
2015-10-13
Cryptococcus neoformans is a major life-threatening fungal pathogen. In response to the stress of the host environment, C. neoformans produces large polyploid titan cells. Titan cell production enhances the virulence of C. neoformans, yet whether the polyploid aspect of titan cells is specifically influential remains unknown. We show that titan cells were more likely to survive and produce offspring under multiple stress conditions than typical cells and that even their normally sized daughters maintained an advantage over typical cells in continued exposure to stress. Although polyploid titan cells generated haploid daughter cell progeny upon in vitro replication under nutrient-replete conditions, titan cells treated with the antifungal drug fluconazole produced fluconazole-resistant diploid and aneuploid daughter cells. Interestingly, a single titan mother cell was capable of generating multiple types of aneuploid daughter cells. The increased survival and genomic diversity of titan cell progeny promote rapid adaptation to new or high-stress conditions. The ability to adapt to stress is a key element for survival of pathogenic microbes in the host and thus plays an important role in pathogenesis. Here we investigated the predominantly haploid human fungal pathogen Cryptococcus neoformans, which is capable of ploidy and cell size increases during infection through production of titan cells. The enlarged polyploid titan cells are then able to rapidly undergo ploidy reduction to generate progeny with reduced ploidy and/or aneuploidy. Under stressful conditions, titan cell progeny have a growth and survival advantage over typical cell progeny. Understanding how titan cells enhance the rate of cryptococcal adaptation under stress conditions may assist in the development of novel drugs aimed at blocking ploidy transitions. Copyright © 2015 Gerstein et al.
Asymmetric cell division requires specific mechanisms for adjusting global transcription.
Mena, Adriana; Medina, Daniel A; García-Martínez, José; Begley, Victoria; Singh, Abhyudai; Chávez, Sebastián; Muñoz-Centeno, Mari C; Pérez-Ortín, José E
2017-12-01
Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Transcellular ion flow in Escherichia coli B and electrical sizing of bacterias.
Zimmermann, U; Schulz, J; Pilwat, G
1973-10-01
Dielectric breakdown of cell membranes and, in response, transcellular ion flows were measured in Escherichia coli B 163 and B 525 using a Coulter counter as the detector with a hydrodynamic jet focusing close to the orifice of the counter. Plotting the relative pulse height for compensated amplification of a certain size of the cells against increasing detector current, a rather sharp bend within the linear function was found, which did not occur when measuring fixed cells or polystyrene latex. The start current for transcellular ion flow causing the change of the slope is different for the potassium-deficient mutant B 525 in comparison with the wild-type B 163, indicating a change in the membrane structure of B 525 by mutation and demonstrating the sensitivity of the method for studying slight changes in membrane structure in general. The theoretical size distributions for two current values in the range of transcellular ion flow were constructed from the true size distribution at low detector currents, assuming an idealized sharp changeover of the bacterial conductivity from zero to one-third of the electrolyte conductivity.
Transcellular Ion Flow in Escherichia coli B and Electrical Sizing of Bacterias
Zimmermann, U.; Schulz, J.; Pilwat, G.
1973-01-01
Dielectric breakdown of cell membranes and, in response, transcellular ion flows were measured in Escherichia coli B 163 and B 525 using a Coulter counter as the detector with a hydrodynamic jet focusing close to the orifice of the counter. Plotting the relative pulse height for compensated amplification of a certain size of the cells against increasing detector current, a rather sharp bend within the linear function was found, which did not occur when measuring fixed cells or polystyrene latex. The start current for transcellular ion flow causing the change of the slope is different for the potassium-deficient mutant B 525 in comparison with the wild-type B 163, indicating a change in the membrane structure of B 525 by mutation and demonstrating the sensitivity of the method for studying slight changes in membrane structure in general. The theoretical size distributions for two current values in the range of transcellular ion flow were constructed from the true size distribution at low detector currents, assuming an idealized sharp changeover of the bacterial conductivity from zero to one-third of the electrolyte conductivity. PMID:4583964
Role of Estrogens in the Size of Neuronal Somata of Paravaginal Ganglia in Ovariectomized Rabbits
Hernández-Aragón, Laura G.; García-Villamar, Verónica; Carrasco-Ruiz, María de los Ángeles; Nicolás-Toledo, Leticia; Ortega, Arturo; Cuevas-Romero, Estela; Martínez-Gómez, Margarita
2017-01-01
We aimed to determine the role of estrogens in modulating the size of neuronal somata of paravaginal ganglia. Rabbits were allocated into control (C), ovariectomized (OVX), and OVX treated with estradiol benzoate (OVX + EB) groups to evaluate the neuronal soma area; total serum estradiol (E2) and testosterone (T) levels; the percentage of immunoreactive (ir) neurons anti-aromatase, anti-estrogen receptor (ERα, ERβ) and anti-androgen receptor (AR); the intensity of the immunostaining anti-glial cell line-derived neurotrophic factor (GDNF) and the GDNF family receptor alpha type 1 (GFRα1); and the number of satellite glial cells (SGCs) per neuron. There was a decrease in the neuronal soma size for the OVX group, which was associated with low T, high percentages of aromatase-ir and neuritic AR-ir neurons, and a strong immunostaining anti-GDNF and anti-GFRα1. The decrease in the neuronal soma size was prevented by the EB treatment that increased the E2 without affecting the T levels. Moreover, there was a high percentage of neuritic AR-ir neurons, a strong GDNF immunostaining in the SGC, and an increase in the SGCs per neuron. Present findings show that estrogens modulate the soma size of neurons of the paravaginal ganglia, likely involving the participation of the SGC. PMID:28316975
de Mooij, Tim; Schediwy, Kira; Wijffels, René H; Janssen, Marcel
2016-12-20
Under high light conditions, microalgae are oversaturated with light which significantly reduces the light use efficiency. Microalgae with a reduced pigment content, antenna size mutants, have been proposed as a potential solution to increase the light use efficiency. The goal of this study was to investigate the competition between antenna size mutants and wild type microalgae in mass cultures. Using a kinetic model and literature-derived experimental data from wild type Chlorella sorokiniana, the productivity and competition of wild type cells and antenna size mutants were simulated. Cultivation was simulated in an outdoor microalgal raceway pond production system which was assumed to be limited by light only. Light conditions were based on a Mediterranean location (Tunisia) and a more temperate location (the Netherlands). Several wild type contamination levels were simulated in each mutant culture separately to predict the effect on the productivity over the cultivation time of a hypothetical summer season of 100days. The simulations demonstrate a good potential of antenna size reduction to increase the biomass productivity of microalgal cultures. However, it was also found that after a contamination with wild type cells the mutant cultures will be rapidly overgrown resulting in productivity loss. Copyright © 2016 Elsevier B.V. All rights reserved.
Barrow, Michael; Taylor, Arthur; García Carrión, Jaime; Mandal, Pranab; Park, B Kevin; Poptani, Harish; Murray, Patricia; Rosseinsky, Matthew J; Adams, Dave J
2016-09-01
Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as contrast agents for stem cell tracking using magnetic resonance imaging (MRI). The total mass of iron oxide that can be internalised into cells without altering their viability or phenotype is an important criterion for the generation of contrast, with SPIONs designed for efficient labelling of stem cells allowing for an increased sensitivity of detection. Although changes in the ratio of polymer and iron salts in co-precipitation reactions are known to affect the physicochemical properties of SPIONs, particularly core size, the effects of these synthesis conditions on stem cell labelling and magnetic resonance (MR) contrast have not been established. Here, we synthesised a series of cationic SPIONs with very similar hydrodynamic diameters and surface charges, but different polymer content. We have investigated how the amount of polymer in the co-precipitation reaction affects core size and modulates not only the magnetic properties of the SPIONs but also their uptake into stem cells. SPIONs with the largest core size and lowest polymer content presented the highest magnetisation and relaxivity. These particles also had the greatest uptake efficiency without any deleterious effect on either the viability or function of the stem cells. However, for all particles internalised in cells, the T 2 and T 2 * relaxivity was independent of the SPION's core size. Our results indicate that the relative mass of iron taken up by cells is the major determinant of MR contrast generation and suggest that the extent of SPION uptake can be regulated by the amount of polymer used in co-precipitation reactions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
High-Efficiency Crystalline Photovoltaics | Photovoltaic Research | NREL
. We are key players in developing low-cost, manufacturable techniques for further increasing the also a driving force in two industry-relevant areas: low-cost III-V photovoltaic cells for 1-sun and are developing a >23%-efficiency, low-cost industrial-size cell on n-Cz wafer by 2018. Silicon
Increasing seed size and quality by manipulating BIG SEEDS1 in legume species
Ge, Liangfa; Yu, Jianbin; Wang, Hongliang; Luth, Diane; Bai, Guihua; Wang, Kan
2016-01-01
Plant organs, such as seeds, are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a conserved role for the BIG SEEDS1 (BS1) gene in the control of seed size and weight in the model legume Medicago truncatula and the grain legume soybean (Glycine max). BS1 encodes a plant-specific transcription regulator and plays a key role in the control of the size of plant organs, including seeds, seed pods, and leaves, through a regulatory module that targets primary cell proliferation. Importantly, down-regulation of BS1 orthologs in soybean by an artificial microRNA significantly increased soybean seed size, weight, and amino acid content. Our results provide a strategy for the increase in yield and seed quality in legumes. PMID:27791139
Shifts in growth strategies reflect tradeoffs in cellular economics
Molenaar, Douwe; van Berlo, Rogier; de Ridder, Dick; Teusink, Bas
2009-01-01
The growth rate-dependent regulation of cell size, ribosomal content, and metabolic efficiency follows a common pattern in unicellular organisms: with increasing growth rates, cell size and ribosomal content increase and a shift to energetically inefficient metabolism takes place. The latter two phenomena are also observed in fast growing tumour cells and cell lines. These patterns suggest a fundamental principle of design. In biology such designs can often be understood as the result of the optimization of fitness. Here we show that in basic models of self-replicating systems these patterns are the consequence of maximizing the growth rate. Whereas most models of cellular growth consider a part of physiology, for instance only metabolism, the approach presented here integrates several subsystems to a complete self-replicating system. Such models can yield fundamentally different optimal strategies. In particular, it is shown how the shift in metabolic efficiency originates from a tradeoff between investments in enzyme synthesis and metabolic yields for alternative catabolic pathways. The models elucidate how the optimization of growth by natural selection shapes growth strategies. PMID:19888218
CLUH couples mitochondrial distribution to the energetic and metabolic status.
Wakim, Jamal; Goudenege, David; Perrot, Rodolphe; Gueguen, Naig; Desquiret-Dumas, Valerie; Chao de la Barca, Juan Manuel; Dalla Rosa, Ilaria; Manero, Florence; Le Mao, Morgane; Chupin, Stephanie; Chevrollier, Arnaud; Procaccio, Vincent; Bonneau, Dominique; Logan, David C; Reynier, Pascal; Lenaers, Guy; Khiati, Salim
2017-06-01
Mitochondrial dynamics and distribution are critical for supplying ATP in response to energy demand. CLUH is a protein involved in mitochondrial distribution whose dysfunction leads to mitochondrial clustering, the metabolic consequences of which remain unknown. To gain insight into the role of CLUH on mitochondrial energy production and cellular metabolism, we have generated CLUH-knockout cells using CRISPR/Cas9. Mitochondrial clustering was associated with a smaller cell size and with decreased abundance of respiratory complexes, resulting in oxidative phosphorylation (OXPHOS) defects. This energetic impairment was found to be due to the alteration of mitochondrial translation and to a metabolic shift towards glucose dependency. Metabolomic profiling by mass spectroscopy revealed an increase in the concentration of some amino acids, indicating a dysfunctional Krebs cycle, and increased palmitoylcarnitine concentration, indicating an alteration of fatty acid oxidation, and a dramatic decrease in the concentrations of phosphatidylcholine and sphingomyeline, consistent with the decreased cell size. Taken together, our study establishes a clear function for CLUH in coupling mitochondrial distribution to the control of cell energetic and metabolic status. © 2017. Published by The Company of Biologists Ltd.
Fujikura, Ushio; Horiguchi, Gorou; Tsukaya, Hirokazu
2007-02-01
Leaf development relies on cell proliferation, post-mitotic cell expansion and the coordination of these processes. In several Arabidopsis thaliana mutants impaired in cell proliferation, such as angustifolia3 (an3), leaf cells are larger than normal at their maturity. This phenomenon, which we call compensated cell enlargement, suggests the presence of such coordination in leaf development. To dissect genetically the cell expansion system(s) underlying this compensation seen in the an3 mutant, we isolated and utilized 10 extra-small sisters (xs) mutant lines that show decreased cell size but normal cell numbers in leaves. In the xs single mutants, the palisade cell sizes in mature leaves are about 20-50% smaller than those of wild-type cells. Phenotypes of the palisade cell sizes in all combinations of xs an3 double mutants fall into three classes. In the first class, the compensated cell enlargement was significantly suppressed. Conversely, in the second class, the defective cell expansion conferred by the xs mutations was significantly suppressed by the an3 mutation. The residual xs mutations had effects additive to those of the an3 mutation on cell expansion. The endopolyploidy levels in the first class of mutants were decreased, unaffected or increased, as compared with those in wild-type, suggesting that the abnormally enhanced cell expansion observed in an3 could be mediated, at least in part, by ploidy-independent mechanisms. Altogether, these results clearly showed that a defect in cell proliferation in leaf primordia enhances a part of the network that regulates cell expansion, which is required for normal leaf expansion.
How do changes in parental investment influence development in echinoid echinoderms?
Alcorn, Nicholas J; Allen, Jonathan D
2009-01-01
Understanding the relationship between egg size, development time, and juvenile size is critical to explaining patterns of life-history evolution in marine invertebrates. Currently there is conflicting information about the effects of changes in egg size on the life histories of echinoid echinoderms. We sought to resolve this conflict by manipulating egg size and food level during the development of two planktotrophic echinoid echinoderms: the green sea urchin, Strongylocentrotus droebachiensis and the sand dollar, Echinarachnius parma. Based on comparative datasets, we predicted that decreasing food availability and egg size would increase development time and reduce juvenile size. To test our prediction, blastomere separations were performed in both species at the two-cell stage to reduce egg volume by 50%, producing whole- and half-size larvae that were reared to metamorphosis under high or low food levels. Upon settlement, age at metamorphosis, juvenile size, spine number, and spine length were measured. As predicted, reducing egg size and food availability significantly increased age at metamorphosis and reduced juvenile quality. Along with previous egg size manipulations in other echinoids, this study suggests that the relationship between egg size, development time, and juvenile size is strongly dependent upon the initial size of the egg.
Stroncek, David F; Byrne, Karen M; Noguchi, Constance T; Schechter, Alan N; Leitman, Susan F
2004-09-01
BACKGROUND Red blood cell (RBC) components from donors with sickle cell trait (Hb AS) often occlude white blood cell (WBC) reduction filters. Techniques were investigated to successfully filter Hb AS donor blood by increasing the Hb oxygen saturation with storage bags and conditions suitable for transfusion products. Oxygenation kinetics were measured over 3 days in whole-blood units stored in standard-sized 600-mL polyvinylchloride (PVC) bags and whole-blood units divided into three equal parts and stored in standard-sized blood bags made from PVC, tri-2-(ethylhexyl)trimellitate (CLX) plastic, or Teflon. The filterability of Hb AS blood stored for 3 days was tested with whole-blood filters. Oxygen saturation levels did not increase in full whole-blood units from donors without sickle cell trait during 3 days of storage in 600-mL PVC bags. In divided Hb AS whole-blood units stored for 3 days, oxygen saturation levels increased from baseline levels of 45 to 56, 66, and 94 percent after storage in 600-mL PVC, CLX, and Teflon bags, respectively (n = 5, p < 0.02), and all components filtered completely. When full Hb AS whole-blood units from eight donors were stored for 3 days in 1.5-L CLX bags, all units filtered completely, but one had a high residual WBC count. Storage of Hb AS whole blood in large-capacity oxygen-permeable bags increases oxygen tension and allows more effective WBC reduction by filtration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai
Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Z.; Aghoram, K.; Outlaw, W.H. Jr.
Plants regulate water loss and CO{sub 2} gain by modulating the aperture sizes of stomata that penetrate the epidermis. Aperture size itself is increased by osmolyte accumulation and consequent turgor increase in the pair of guard cells that flank each stoma. Guard-cell phosphoenolpyruvate carboxylase, which catalyzes the regulated step leading to malate synthesis, is crucial for charge and pH maintenance during osmolyte accumulation. Regulation of this cytosolic enzyme by effectors is well documented, but additional regulation by posttranslational modification is predicted by the alteration of PEPC kinetics during stomatal opening. In this study, the authors have investigated whether this alterationmore » is associated with the phosphorylation status of this enzyme. Using sonicated epidermal peels (isolated guard cells) pre-loaded with {sub 32}PO{sub 4}, the authors induced stomatal opening and guard-cell malate accumulation by incubation with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with the FC antagonist, 10 {micro}M abscisic acid (ABA). The phosphorylation status of PEPC was assessed by immunoprecipitation, electrophoresis, immunoblotting, and autoradiography. PEPC was phosphorylated when stomata were stimulated to open, and phosphorylation was lessened by incubation with ABA.« less
Jiang, Xueliang; Yang, Zhen; Wang, Zhijie; Zhang, Fuqing; You, Feng
2018-01-01
Barium titanate/nitrile butadiene rubber (BT/NBR) and polyurethane (PU) foam were combined to prepare a sound-absorbing material with an alternating multilayered structure. The effects of the cell size of PU foam and the alternating unit number on the sound absorption property of the material were investigated. The results show that the sound absorption efficiency at a low frequency increased when decreasing the cell size of PU foam layer. With the increasing of the alternating unit number, the material shows the sound absorption effect in a wider bandwidth of frequency. The BT/NBR-PU foam composites with alternating multilayered structure have an excellent sound absorption property at low frequency due to the organic combination of airflow resistivity, resonance absorption, and interface dissipation. PMID:29565321
Jiang, Xueliang; Yang, Zhen; Wang, Zhijie; Zhang, Fuqing; You, Feng; Yao, Chu
2018-03-22
Barium titanate/nitrile butadiene rubber (BT/NBR) and polyurethane (PU) foam were combined to prepare a sound-absorbing material with an alternating multilayered structure. The effects of the cell size of PU foam and the alternating unit number on the sound absorption property of the material were investigated. The results show that the sound absorption efficiency at a low frequency increased when decreasing the cell size of PU foam layer. With the increasing of the alternating unit number, the material shows the sound absorption effect in a wider bandwidth of frequency. The BT/NBR-PU foam composites with alternating multilayered structure have an excellent sound absorption property at low frequency due to the organic combination of airflow resistivity, resonance absorption, and interface dissipation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherwin, R.P.; Richters, V.
1982-09-01
Swiss Webster male mice were exposed to intermittent 0.34 ppm nitrogen dioxide for 6 wk. Quantitative image analysis showed increased Type 2 cell numbers in each of the three lobes measured, with and without adjustment to alveolar wall measurements for lung volume normalization (e.g., P < .037 for Type 2 cell number adjusted to alveolar wall perimeters, combined lobe analysis of variance). The exposed animals dominated the upper quartile ranking of the cell number/alveolar area ratio computations (P < .025), which implied the presence of an especially susceptible subpopulation of animals. The Type 2 cell increase is believed to resultmore » from damage and loss of Type 1 cells, the reversibility and progression of which are presently unknown. The data also suggest an increased size of the Type 2 cell, and possibly slight atelectasis and/or edema of the alveolar walls.« less
Acoustic Purification of Extracellular Microvesicles
Lee, Kyungheon; Shao, Huilin; Weissleder, Ralph; Lee, Hakho
2015-01-01
Microvesicles (MVs) are an increasingly important source for biomarker discovery and clinical diagnostics. The small size of MVs and their presence in complex biological environment, however, pose practical technical challenges, particularly when sample volumes are small. We herein present an acoustic nano-filter system that size-specifically separates MVs in a continuous and contact-free manner. The separation is based on ultrasound standing waves that exert differential acoustic force on MVs according to their size and density. By optimizing the design of the ultrasound transducers and underlying electronics, we were able to achieve a high separation yield and resolution. The “filter size-cutoff” can be controlled electronically in situ and enables versatile MV-size selection. We applied the acoustic nano-filter to isolate nanoscale (<200 nm) vesicles from cell culture media as well as MVs in stored red blood cell products. With the capacity for rapid and contact-free MV isolation, the developed system could become a versatile preparatory tool for MV analyses. PMID:25672598
Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study.
Chevillotte, Fabien; Perrot, Camille
2017-08-01
The purpose of this work is to systematically study the effect of the throat and the pore sizes on the sound absorbing properties of open-cell foams. The three-dimensional idealized unit cell used in this work enables to mimic the acoustical macro-behavior of a large class of cellular solid foams. This study is carried out for a normal incidence and also for a diffuse field excitation, with a relatively large range of sample thicknesses. The transport and sound absorbing properties are numerically studied as a function of the throat size, the pore size, and the sample thickness. The resulting diagrams show the ranges of the specific throat sizes and pore sizes where the sound absorption grading is maximized due to the pore morphology as a function of the sample thickness, and how it correlates with the corresponding transport parameters. These charts demonstrate, together with typical examples, how the morphological characteristics of foam could be modified in order to increase the visco-thermal dissipation effects.
NASA Astrophysics Data System (ADS)
Gezgin, Serap Yiǧit; Kepceoǧlu, Abdullah; Kılıç, Hamdi Şükür
2017-02-01
Noble metal nano-structures such as Ag, Cu, Au are used commonly to increase power conversion efficiency of the solar cell by using their surface plasmons. The plasmonic metal nanoparticles of Ag among others that have strong LSPR in near UV range. They increase photon absorbance via embedding in the active semiconductor of the solar cell. Thin films of Ag are grown in the desired particle size and interparticle distance easily and at low cost by PLD technique. Ag nanoparticle thin films were grown on micro slide glass at 25-36 mJ laser pulse energies under by PLD using ns-Nd:YAG laser. The result of this work have been presented by carrying out UV-VIS and AFM analysis. It was concluded that a laser energy increases, the density and size of Ag-NPs arriving on the substrate increases, and the interparticle distance was decreases. Therefore, LSPR wavelength shifts towards to longer wavelength region.
Love, Sara A; Liu, Zhen; Haynes, Christy L
2012-07-07
As nanoparticles enjoy increasingly widespread use in commercial applications, the potential for unintentional exposure has become much more likely during any given day. Researchers in the field of nanotoxicity are working to determine the physicochemical nanoparticle properties that lead to toxicity in an effort to establish safe design rules. This work explores the effects of noble metal nanoparticle exposure in murine chromaffin cells, focusing on examining the effects of size and surface functionality (coating) in silver and gold, respectively. Carbon-fibre microelectrode amperometry was utilized to examine the effect of exposure on exocytosis function, at the single cell level, and provided new insights into the compromised functions of cells. Silver nanoparticles of varied size, between 15 and 60 nm diameter, were exposed to cells and found to alter the release kinetics of exocytosis for those cells exposed to the smallest examined size. Effects of gold were examined after modification with two commonly used 'bio-friendly' polymers, either heparin or poly (ethylene glycol), and gold nanoparticles were found to induce altered cellular adhesion or the number of chemical messenger molecules released, respectively. These results support the body of work suggesting that noble metal nanoparticles perturb exocytosis, typically altering the number of molecules and kinetics of release, and supports a direct disruption of the vesicle matrix by the nanoparticle. Overall, it is clear that various nanoparticle physicochemical properties, including size and surface coating, do modulate changes in cellular communication via exocytosis.
Gehrke, Helge; Pelka, Joanna; Hartinger, Christian G; Blank, Holger; Bleimund, Felix; Schneider, Reinhard; Gerthsen, Dagmar; Bräse, Stefan; Crone, Marlene; Türk, Michael; Marko, Doris
2011-07-01
Three differently sized, highly dispersed platinum nanoparticle (Pt-NP) preparations were generated by supercritical fluid reactive deposition (SFRD) and deposited on a β-cyclodextrin matrix. The average particle size and size distribution were steered by the precursor reduction conditions, resulting in particle preparations of <20, <100 and >100 nm as characterised by TEM and SEM. As reported previously, these Pt-NPs were found to cause DNA strand breaks in human colon carcinoma cells (HT29) in a concentration- and time-dependent manner and a distinct size dependency. Here, we addressed the question whether Pt-NPs might affect directly DNA integrity in these cells and thus behave analogous to platinum-based chemotherapeutics such as cisplatin. Therefore, DNA-associated Pt as well as the translocation of Pt-NPs through a Caco-2 monolayer was quantified by ICP-MS. STEM imaging demonstrated that Pt-NPs were taken up into HT29 cells in their particulate and aggregated form, but appear not to translocate into the nucleus or interact with mitochondria. The platinum content of the DNA of HT29 cells was found to increase in a time- and concentration-dependent manner with a maximal effect at 1,000 ng/cm(2). ICP-MS analysis of the cell culture medium indicated the formation of soluble Pt species, although to a limited extent. The observations suggest that DNA strand breaks mediated by metallic Pt-NPs are caused by Pt ions forming during the incubation of cells with these nanoparticles.
In Vitro Cell Proliferation and Mechanical Behaviors Observed in Porous Zirconia Ceramics
Li, Jing; Wang, Xiaobei; Lin, Yuanhua; Deng, Xuliang; Li, Ming; Nan, Cewen
2016-01-01
Zirconia ceramics with porous structure have been prepared by solid-state reaction using yttria-stabilized zirconia and stearic acid powders. Analysis of its microstructure and phase composition revealed that a pure zirconia phase can be obtained. Our results indicated that its porosity and pore size as well as the mechanical characteristics can be tuned by changing the content of stearic acid powder. The optimal porosity and pore size of zirconia ceramic samples can be effective for the increase of surface roughness, which results in higher cell proliferation values without destroying the mechanical properties. PMID:28773341
Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders
2013-09-07
The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.
Werner, Jeremie; Barraud, Loris; Walter, Arnaud; ...
2016-07-30
Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm 2), is still far from standard industrial sizes. Here, we present a 1 cm 2 near-infrared transparent perovskite solar cell with 14.5% steadystate efficiency, as compared to 16.4% on 0.25 cm 2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency ofmore » 25.2%, with a 0.25 cm 2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm 2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, Jeremie; Barraud, Loris; Walter, Arnaud
Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm 2), is still far from standard industrial sizes. Here, we present a 1 cm 2 near-infrared transparent perovskite solar cell with 14.5% steadystate efficiency, as compared to 16.4% on 0.25 cm 2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency ofmore » 25.2%, with a 0.25 cm 2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm 2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.« less
Non-linear optical measurements using a scanned, Bessel beam
NASA Astrophysics Data System (ADS)
Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.
2015-03-01
Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.
Nestling immunocompetence and testosterone covary with brood size in a songbird.
Naguib, Marc; Riebel, Katharina; Marzal, Alfonso; Gil, Diego
2004-01-01
The social and ecological conditions that individuals experience during early development have marked effects on their developmental trajectory. In songbirds, brood size is a key environmental factor affecting development, and experimental increases in brood size have been shown to have negative effects on growth, condition and fitness. Possible causes of decreased growth in chicks from enlarged broods are nutritional stress, crowding and increased social competition, i.e. environmental factors known to affect adult steroid levels (especially of testosterone and corticosteroids) in mammals and birds. Little, however, is known about environmental effects on steroid synthesis in nestlings. We addressed this question by following the development of zebra finch (Taeniopygia guttata) chicks that were cross-fostered and raised in different brood sizes. In line with previous findings, nestling growth and cell-mediated immunocompetence were negatively affected by brood size. Moreover, nestling testosterone levels covaried with treatment: plasma testosterone increased with experimental brood size. This result provides experimental evidence that levels of circulating testosterone in nestlings can be influenced by their physiological response to environmental conditions. PMID:15255102
Cell-size distribution in epithelial tissue formation and homeostasis
Primo, Luca; Celani, Antonio
2017-01-01
How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. PMID:28330988
Cell-size distribution in epithelial tissue formation and homeostasis.
Puliafito, Alberto; Primo, Luca; Celani, Antonio
2017-03-01
How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. © 2017 The Author(s).
Pandita, Tej K.
2013-01-01
Ataxia telangiectasia patients develop lymphoid malignancies of both B- and T-cell origin. Similarly, ataxia telangiectasia mutated (Atm)-deficient mice exhibit severe defects in T-cell maturation and eventually develop thymomas. The function of ATM is known to be influenced by the mammalian orthologue of the Drosophila MOF (males absent on the first) gene. Here, we report the effect of T-cell-specific ablation of the mouse Mof (Mof) gene on leucocyte trafficking and survival. Conditional Mof Flox/Flox (Mof F/F) mice expressing Cre recombinase under control of the T-cell-specific Lck proximal promoter (Mof F/F/Lck-Cre +) display a marked reduction in thymus size compared with Mof F/F/Lck-Cre – mice. In contrast, the spleen size of Mof F/F/Lck-Cre + mice was increased compared with control Mof F/F/Lck-Cre – mice. The thymus of Mof F/F/Lck-Cre + mice contained significantly reduced T cells, whereas thymic B cells were elevated. Within the T-cell population, CD4+CD8+ double-positive T-cell levels were reduced, whereas the immature CD4–CD8– double-negative (DN) population was elevated. Defective T-cell differentiation is also evident as an increased DN3 (CD44–CD25+) population, the cell stage during which T-cell receptor rearrangement takes place. The differentiation defect in T cells and reduced thymus size were not rescued in a p53-deficient background. Splenic B-cell distributions were similar between Mof F/F/Lck-Cre + and Mof F/F/Lck-Cre – mice except for an elevation of the κ light-chain population, suggestive of an abnormal clonal expansion. T cells from Mof F/F/Lck-Cre + mice did not respond to phytohaemagglutinin (PHA) stimulation, whereas LPS-stimulated B cells from Mof F/F/Lck-Cre + mice demonstrated spontaneous genomic instability. Mice with T-cell-specific loss of MOF had shorter lifespans and decreased survival following irradiation than did Mof F/F/Lck-Cre – mice. These observations suggest that Mof plays a critical role in T-cell differentiation and that depletion of Mof in T cells reduces T-cell numbers and, by an undefined mechanism, induces genomic instability in B cells through bystander mechanism. As a result, these mice have a shorter lifespan and reduced survival after irradiation. PMID:23386701
Gupta, Arun; Hunt, Clayton R; Pandita, Raj K; Pae, Juhee; Komal, K; Singh, Mayank; Shay, Jerry W; Kumar, Rakesh; Ariizumi, Kiyoshi; Horikoshi, Nobuo; Hittelman, Walter N; Guha, Chandan; Ludwig, Thomas; Pandita, Tej K
2013-05-01
Ataxia telangiectasia patients develop lymphoid malignancies of both B- and T-cell origin. Similarly, ataxia telangiectasia mutated (Atm)-deficient mice exhibit severe defects in T-cell maturation and eventually develop thymomas. The function of ATM is known to be influenced by the mammalian orthologue of the Drosophila MOF (males absent on the first) gene. Here, we report the effect of T-cell-specific ablation of the mouse Mof (Mof) gene on leucocyte trafficking and survival. Conditional Mof(Flox/Flox) (Mof (F/F)) mice expressing Cre recombinase under control of the T-cell-specific Lck proximal promoter (Mof(F/F)/Lck-Cre(+)) display a marked reduction in thymus size compared with Mof(F/F)/Lck-Cre(-) mice. In contrast, the spleen size of Mof(F/F)/Lck-Cre(+) mice was increased compared with control Mof(F/F)/Lck-Cre(-) mice. The thymus of Mof(F/F)/Lck-Cre(+) mice contained significantly reduced T cells, whereas thymic B cells were elevated. Within the T-cell population, CD4(+)CD8(+) double-positive T-cell levels were reduced, whereas the immature CD4(-)CD8(-) double-negative (DN) population was elevated. Defective T-cell differentiation is also evident as an increased DN3 (CD44(-)CD25(+)) population, the cell stage during which T-cell receptor rearrangement takes place. The differentiation defect in T cells and reduced thymus size were not rescued in a p53-deficient background. Splenic B-cell distributions were similar between Mof(F/F)/Lck-Cre(+) and Mof(F/F)/Lck-Cre(-) mice except for an elevation of the κ light-chain population, suggestive of an abnormal clonal expansion. T cells from Mof(F/F)/Lck-Cre(+) mice did not respond to phytohaemagglutinin (PHA) stimulation, whereas LPS-stimulated B cells from Mof(F/F)/Lck-Cre(+) mice demonstrated spontaneous genomic instability. Mice with T-cell-specific loss of MOF had shorter lifespans and decreased survival following irradiation than did Mof(F/F)/Lck-Cre(-) mice. These observations suggest that Mof plays a critical role in T-cell differentiation and that depletion of Mof in T cells reduces T-cell numbers and, by an undefined mechanism, induces genomic instability in B cells through bystander mechanism. As a result, these mice have a shorter lifespan and reduced survival after irradiation.
Dynamic Bioreactor Culture of High Volume Engineered Bone Tissue
Nguyen, Bao-Ngoc B.; Ko, Henry; Moriarty, Rebecca A.; Etheridge, Julie M.
2016-01-01
Within the field of tissue engineering and regenerative medicine, the fabrication of tissue grafts of any significant size—much less a whole organ or tissue—remains a major challenge. Currently, tissue-engineered constructs cultured in vitro have been restrained in size primarily due to the diffusion limit of oxygen and nutrients to the center of these grafts. Previously, we developed a novel tubular perfusion system (TPS) bioreactor, which allows the dynamic culture of bead-encapsulated cells and increases the supply of nutrients to the entire cell population. More interestingly, the versatility of TPS bioreactor allows a large range of engineered tissue volumes to be cultured, including large bone grafts. In this study, we utilized alginate-encapsulated human mesenchymal stem cells for the culture of a tissue-engineered bone construct in the size and shape of the superior half of an adult human femur (∼200 cm3), a 20-fold increase over previously reported volumes of in vitro engineered bone grafts. Dynamic culture in TPS bioreactor not only resulted in high cell viability throughout the femur graft, but also showed early signs of stem cell differentiation through increased expression of osteogenic genes and proteins, consistent with our previous models of smaller bone constructs. This first foray into full-scale bone engineering provides the foundation for future clinical applications of bioengineered bone grafts. PMID:26653703
EFFECTS OF DEUTERIUM OXIDE UPON POLIOVIRUS MULTIPLICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carp, R.I.; Kritchevsky, D.; Koprowski, H.
1960-09-01
The effects of deuterium oxide on the multiplication of CHAT, an attenuated type of poliomyeliths virus, was studied in cells of HeLa and of monkey kidney cells in primary cultures. Yields of virus obtained from deuterated cells were consistently higher than those obtained from controls. The incorporation of deuterium oxide in the growth media resulted in an increase in the average plague size of polio virus. (C.H.)
Fuster, José J; MacLauchlan, Susan; Zuriaga, María A; Polackal, Maya N; Ostriker, Allison C; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A B; Cooper, Matthew A; Andrés, Vicente; Hirschi, Karen K; Martin, Kathleen A; Walsh, Kenneth
2017-02-24
Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2 -mutant cells in atherosclerosis-prone, low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome-mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. Copyright © 2017, American Association for the Advancement of Science.
Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice
Fuster, José J.; MacLauchlan, Susan; Zuriaga, María A.; Polackal, Maya N.; Ostriker, Allison C.; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A. B.; Cooper, Matthew A.; Andrés, Vicente; Hirschi, Karen K.; Martin, Kathleen A.; Walsh, Kenneth
2017-01-01
Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2-mutant cells in atherosclerosis-prone, low-density lipoprotein receptor–deficient (Ldlr−/−) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome–mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. PMID:28104796
Studies on the erythron and the ferrokinetic responses in beagles adapted to hypergravity
NASA Technical Reports Server (NTRS)
Beckman, D. A.; Evans, J. W.; Oyama, J.
1978-01-01
Red cell survival, ferrokinetics, and hematologic parameters were investigated in beagle dogs exposed to chronic hypergravity (2.6 Gx). Ineffective erythropoiesis, red cell mass, plasma volume, and Cr-51-elution were significantly increased; maximum Fe-59 incorporation was decreased; and there was no change in the mean erythrocyte life span following autologous injection of Cr-51-labeled red cells and Fe-59-labeled transferrin. Red cell count, F(cells), total body hemoglobin (Hb), susceptability to osmotic lysis, and differential reticulocyte count were increased. White blood cell count, venous blood %Hb, mean cell volume, mean cell Hb, mean cell Hb concentration, and serum iron were decreased. No changes were observed for body mass, mg Fe per g Hb, iron binding capacity, percent saturation of iron carrying capacity, or the electrophoretic mobility of purified Hb. This study indicated that chronic exposure to hypergravity induced changes in red cell size, volume, total mass, and membrane permeability.
Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.
Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf
2017-08-22
The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Hata, Ryu-Ichiro; Izukuri, Kazuhito; Kato, Yasumasa; Sasaki, Soichiro; Mukaida, Naofumi; Maehata, Yojiro; Miyamoto, Chihiro; Akasaka, Tetsu; Yang, Xiaoyan; Nagashima, Yoji; Takeda, Kazuyoshi; Kiyono, Tohru; Taniguchi, Masaru
2015-03-13
Cancer progression involves carcinogenesis, an increase in tumour size, and metastasis. Here, we investigated the effect of overexpressed CXC chemokine ligand 14 (CXCL14) on these processes by using CXCL14/BRAK (CXCL14) transgenic (Tg) mice. The rate of AOM/DSS-induced colorectal carcinogenesis in these mice was significantly lower compared with that for isogenic wild type C57BL/6 (Wt) mice. When tumour cells were injected into these mice, the size of the tumours that developed and the number of metastatic nodules in the lungs of the animals were always significantly lower in the Tg mice than in the Wt ones. Injection of anti-asialo-GM1 antibodies to the mice before and after injection of tumour cells attenuated the suppressing effects of CXCL14 on the tumor growth and metastasis, suggesting that NK cell activity played an important role during CXCL14-mediated suppression of tumour growth and metastasis. The importance of NK cells on the metastasis was also supported when CXCL14 was expressed in B16 melanoma cells. Further, the survival rates after tumour cell injection were significantly increased for the Tg mice. As these Tg mice showed no obvious abnormality, we propose that CXCL14 to be a promising molecular target for cancer suppression/prevention.
Matsushita, A; Arikawa, K
1997-09-01
In the crab Hemigrapsus sanguineus, maintained under a 12 h:12 h light:dark cycle, the amount of vesicular smooth endoplasmic reticulum (vesicular sER) in the photoreceptor cell body increases after the light is turned off. This paper demonstrates that actin filaments in the photoreceptor cell body are involved in the transport of vesicular sER towards the rhabdom. To specify the time of actin contribution to rhabdom synthesis, we disrupted the organization of actin filaments in the cell body with cytochalasin D at various time around dusk. We then measured the rhabdom size and also examined the ultrastructure of the photoreceptor cell body 3 h after extinguishing the light. When cytochalasin D was applied from either 1 h before or immediately after extinguishing the light, the rhabdom size did not increase, whereas vesicular sER accumulated in the cell body. In contrast, cytochalasin D applied to the eyes from 20 min after turning the light off did not inhibit rhabdom synthesis. These results indicate that the first 20 min after the light is turned off is particularly important for the transport of vesicular sER towards the rhabdom by the cell body actin filaments.
Micro-Nanostructures of Cellulose-Collagen for Critical Sized Bone Defect Healing.
Aravamudhan, Aja; Ramos, Daisy M; Nip, Jonathan; Kalajzic, Ivo; Kumbar, Sangamesh G
2018-02-01
Bone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix. Type I collagen is then allowed to self-assemble on these microstructures to create a natural polymer-based, micro-nanostructured matrix (CAc). Poly (lactic-co-glycolic acid) matrices with identical microstructures serve as controls. Significantly higher number of implanted host cells are distributed in the natural polymer based micro-nanostructures with greater bone density and more uniform cell distribution. Additionally, a twofold increase in collagen content is observed with natural polymer based scaffolds. This study establishes the benefits of natural polymer derived micro-nanostructures in combination with donor derived BMSCs to repair and regenerate critical sized bone defects. Natural polymer based materials with mechanically competent micro-nanostructures may serve as an alternative material platform for bone regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Titanium-containing zeolites and microporous molecular sieves as photovoltaic solar cells.
Atienzar, Pedro; Valencia, Susana; Corma, Avelino; García, Hermenegildo
2007-05-14
Four titanium-containing zeolites and microporous molecular sieves differing on the crystal structure and particle size (Ti/Beta, Ti/Beta-60, TS-1 and ETS-10) are prepared, and their activity for solar cells after incorporating N3 (a commercially available ruthenium polypyridyl dye) is tested. All the zeolites exhibit photovoltaic activity, and the photoresponse is quite independent of the zeolite pore dimensions or particle size. The photoresponse increases with titanium content in the range 1-7% wt. In this way, cells are obtained that have open-circuit voltage Voc=560 mV and maximum short-circuit photocurrent density Isc=100 microA, measured for 1x1 cm2 surfaces with a solar simulator at 1000 W through and AM 1.5 filter. These values are promising and comparable to those obtained for current dye-sensitized titania solar cells.
Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo
2014-01-01
A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.
Kou, Kuang-Yang; Huang, Yu-En; Chen, Chien-Hsun; Feng, Shih-Wei
2016-01-01
The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.
Okuwa, Takako; Katayama, Takahiro; Takano, Akinori; Yasukawa, Hiroo
2002-10-01
Genes for the cell-counting factors in Dictyostelium discoideum, countin and countin2, are considered to control the size of the multicellular structure of this organism. A novel gene, countin3, that is homologous to countin and countin2 genes (49 and 39% identity in amino acid sequence, respectively) was identified in the D. discoideum genome. The expression of countin3 was observed in the vegetatively growing cells, decreased in the aggregating stage, increased in the mid-developmental stage and decreased again in subsequent stages. This expression pattern is different from that of countin and countin2. The distinct expression kinetics of three genes suggests that they would have unique roles in size control of D. discoideum.
Breast cancer mitosis detection in histopathological images with spatial feature extraction
NASA Astrophysics Data System (ADS)
Albayrak, Abdülkadir; Bilgin, Gökhan
2013-12-01
In this work, cellular mitosis detection in histopathological images has been investigated. Mitosis detection is very expensive and time consuming process. Development of digital imaging in pathology has enabled reasonable and effective solution to this problem. Segmentation of digital images provides easier analysis of cell structures in histopathological data. To differentiate normal and mitotic cells in histopathological images, feature extraction step is very crucial step for the system accuracy. A mitotic cell has more distinctive textural dissimilarities than the other normal cells. Hence, it is important to incorporate spatial information in feature extraction or in post-processing steps. As a main part of this study, Haralick texture descriptor has been proposed with different spatial window sizes in RGB and La*b* color spaces. So, spatial dependencies of normal and mitotic cellular pixels can be evaluated within different pixel neighborhoods. Extracted features are compared with various sample sizes by Support Vector Machines using k-fold cross validation method. According to the represented results, it has been shown that separation accuracy on mitotic and non-mitotic cellular pixels gets better with the increasing size of spatial window.
Lazarus, David B; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N
2009-06-09
It has been hypothesized that increased water column stratification has been an abiotic "universal driver" affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change--size and silicification--of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P < 0.001), from approximately 0.18 (shell volume fraction) in the basal Cenozoic to modern values of approximately 0.06. A third of the total change occurred rapidly at 35 Ma, in correlation to major increases in water column stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from approximately 0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians.