Sample records for cell sorting applications

  1. Bio optofluidics cell sorter: cell-BOCS concept and applications

    NASA Astrophysics Data System (ADS)

    Roth, Tue; Glückstad, Jesper

    2012-03-01

    The cell-BOCS is a novel microfluidics based cell-sorting instrument utilizing next generation optical trapping technology developed at the Technical University of Denmark. It is targeted emerging bio-medical research and diagnostics markets where it for certain applications offers a number of advantages over conventional fluorescence activated cell-sorting (FACSTM) technology. Advantages include gentle handling of cells, sterile sorting, easy operation, small footprint and lower cost allowing out-of-core-facility use. Application examples are found within sorting of fragile transfected cells, high value samples and primary cell lines, where traditional FACS technology has limited application due to it's droplet-based approach to cell-sorting. In the diagnostics field, in particular applying the cell-BOCS for isolating pure populations of circulating tumor cells is an area that has generated a lot of interest.

  2. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter.

    PubMed

    Schmid, Lothar; Weitz, David A; Franke, Thomas

    2014-10-07

    We describe a versatile microfluidic fluorescence-activated cell sorter that uses acoustic actuation to sort cells or drops at ultra-high rates. Our acoustic sorter combines the advantages of traditional fluorescence-activated cell (FACS) and droplet sorting (FADS) and is applicable for a multitude of objects. We sort aqueous droplets, at rates as high as several kHz, into two or even more outlet channels. We can also sort cells directly from the medium without prior encapsulation into drops; we demonstrate this by sorting fluorescently labeled mouse melanoma cells in a single phase fluid. Our acoustic microfluidic FACS is compatible with standard cell sorting cytometers, yet, at the same time, enables a rich variety of more sophisticated applications.

  3. Identification and genetic analysis of cancer cells with PCR-activated cell sorting

    PubMed Central

    Eastburn, Dennis J.; Sciambi, Adam; Abate, Adam R.

    2014-01-01

    Cell sorting is a central tool in life science research for analyzing cellular heterogeneity or enriching rare cells out of large populations. Although methods like FACS and FISH-FC can characterize and isolate cells from heterogeneous populations, they are limited by their reliance on antibodies, or the requirement to chemically fix cells. We introduce a new cell sorting technology that robustly sorts based on sequence-specific analysis of cellular nucleic acids. Our approach, PCR-activated cell sorting (PACS), uses TaqMan PCR to detect nucleic acids within single cells and trigger their sorting. With this method, we identified and sorted prostate cancer cells from a heterogeneous population by performing >132 000 simultaneous single-cell TaqMan RT-PCR reactions targeting vimentin mRNA. Following vimentin-positive droplet sorting and downstream analysis of recovered nucleic acids, we found that cancer-specific genomes and transcripts were significantly enriched. Additionally, we demonstrate that PACS can be used to sort and enrich cells via TaqMan PCR reactions targeting single-copy genomic DNA. PACS provides a general new technical capability that expands the application space of cell sorting by enabling sorting based on cellular information not amenable to existing approaches. PMID:25030902

  4. Spontaneous cell sorting of fibroblasts and keratinocytes creates an organotypic human skin equivalent.

    PubMed

    Wang, C K; Nelson, C F; Brinkman, A M; Miller, A C; Hoeffler, W K

    2000-04-01

    We show that an inherent ability of two distinct cell types, keratinocytes and fibroblasts, can be relied upon to accurately reconstitute full-thickness human skin including the dermal-epidermal junction by a cell-sorting mechanism. A cell slurry containing both cell types added to silicone chambers implanted on the backs of severe combined immunodeficient mice sorts out to reconstitute a clearly defined dermis and stratified epidermis within 2 wk, forming a cell-sorted skin equivalent. Immunostaining of the cell-sorted skin equivalent with human cell markers showed patterns similar to those of normal full-thickness skin. We compared the cell-sorted skin equivalent model with a composite skin model also made on severe combined immunodeficient mice. The composite grafts were constructed from partially differentiated keratinocyte sheets placed on top of a dermal equivalent constructed of devitalized dermis. Electron microscopy revealed that both models formed ample numbers of normal appearing hemidesmosomes. The cell-sorted skin equivalent model, however, had greater numbers of keratin intermediate filaments within the basal keratinocytes that connected to hemidesmosomes, and on the dermal side both collagen filaments and anchoring fibril connections to the lamina densa were more numerous compared with the composite model. Our results may provide some insight into why, in clinical applications for treating burns and other wounds, composite grafts may exhibit surface instability and blistering for up to a year following grafting, and suggest the possible usefulness of the cell-sorted skin equivalent in future grafting applications.

  5. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution

    NASA Astrophysics Data System (ADS)

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-01

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.

  6. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution.

    PubMed

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-06

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.

  7. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution

    PubMed Central

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-01

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining. PMID:28059147

  8. Size-based cell sorting with a resistive pulse sensor and an electromagnetic pump in a microfluidic chip.

    PubMed

    Song, Yongxin; Li, Mengqi; Pan, Xinxiang; Wang, Qi; Li, Dongqing

    2015-02-01

    An electrokinetic microfluidic chip is developed to detect and sort target cells by size from human blood samples. Target-cell detection is achieved by a differential resistive pulse sensor (RPS) based on the size difference between the target cell and other cells. Once a target cell is detected, the detected RPS signal will automatically actuate an electromagnetic pump built in a microchannel to push the target cell into a collecting channel. This method was applied to automatically detect and sort A549 cells and T-lymphocytes from a peripheral fingertip blood sample. The viability of A549 cells sorted in the collecting well was verified by Hoechst33342 and propidium iodide staining. The results show that as many as 100 target cells per minute can be sorted out from the sample solution and thus is particularly suitable for sorting very rare target cells, such as circulating tumor cells. The actuation of the electromagnetic valve has no influence on RPS cell detection and the consequent cell-sorting process. The viability of the collected A549 cell is not impacted by the applied electric field when the cell passes the RPS detection area. The device described in this article is simple, automatic, and label-free and has wide applications in size-based rare target cell sorting for medical diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells.

    PubMed

    Wang, Xixian; Ren, Lihui; Su, Yetian; Ji, Yuetong; Liu, Yaoping; Li, Chunyu; Li, Xunrong; Zhang, Yi; Wang, Wei; Hu, Qiang; Han, Danxiang; Xu, Jian; Ma, Bo

    2017-11-21

    Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.

  10. HLA-targeted flow cytometric sorting of blood cells allows separation of pure and viable microchimeric cell populations.

    PubMed

    Drabbels, Jos J M; van de Keur, Carin; Kemps, Berit M; Mulder, Arend; Scherjon, Sicco A; Claas, Frans H J; Eikmans, Michael

    2011-11-10

    Microchimerism is defined by the presence of low levels of nonhost cells in a person. We developed a reliable method for separating viable microchimeric cells from the host environment. For flow cytometric cell sorting, HLA antigens were targeted with human monoclonal HLA antibodies (mAbs). Optimal separation of microchimeric cells (present at a proportion as low as 0.01% in artificial mixtures) was obtained with 2 different HLA mAbs, one targeting the chimeric cells and the other the background cells. To verify purity of separated cell populations, flow-sorted fractions of 1000 cells were processed for DNA analysis by HLA-allele-specific and Y-chromosome-directed real-time quantitative PCR assays. After sorting, PCR signals of chimeric DNA markers in the positive fractions were significantly enhanced compared with those in the presort samples, and they were similar to those in 100% chimeric control samples. Next, we demonstrate applicability of HLA-targeted FACS sorting after pregnancy by separating chimeric maternal cells from child umbilical cord mononuclear cells. Targeting allelic differences with anti-HLA mAbs with FACS sorting allows maximal enrichment of viable microchimeric cells from a background cell population. The current methodology enables reliable microchimeric cell detection and separation in clinical specimens.

  11. Sorting cells by their density

    PubMed Central

    Norouzi, Nazila; Bhakta, Heran C.

    2017-01-01

    Sorting cells by their type is an important capability in biological research and medical diagnostics. However, most cell sorting techniques rely on labels or tags, which may have limited availability and specificity. Sorting different cell types by their different physical properties is an attractive alternative to labels because all cells intrinsically have these physical properties. But some physical properties, like cell size, vary significantly from cell to cell within a cell type; this makes it difficult to identify and sort cells based on their sizes alone. In this work we continuously sort different cells types by their density, a physical property with much lower cell-to-cell variation within a cell type (and therefore greater potential to discriminate different cell types) than other physical properties. We accomplish this using a 3D-printed microfluidic chip containing a horizontal flowing micron-scale density gradient. As cells flow through the chip, Earth’s gravity makes each cell move vertically to the point where the cell’s density matches the surrounding fluid’s density. When the horizontal channel then splits, cells with different densities are routed to different outlets. As a proof of concept, we use our density sorter chip to sort polymer microbeads by their material (polyethylene and polystyrene) and blood cells by their type (white blood cells and red blood cells). The chip enriches the fraction of white blood cells in a blood sample from 0.1% (in whole blood) to nearly 98% (in the output of the chip), a 1000x enrichment. Any researcher with access to a 3D printer can easily replicate our density sorter chip and use it in their own research using the design files provided as online Supporting Information. Additionally, researchers can simulate the performance of a density sorter chip in their own applications using the Python-based simulation software that accompanies this work. The simplicity, resolution, and throughput of this technique make it suitable for isolating even rare cell types in complex biological samples, in a wide variety of different research and clinical applications. PMID:28723908

  12. Rare cancer cell analyzer for whole blood applications: microcytometer cell counting and sorting subcircuits.

    PubMed

    Lancaster, C; Kokoris, M; Nabavi, M; Clemmens, J; Maloney, P; Capadanno, J; Gerdes, J; Battrell, C F

    2005-09-01

    We demonstrate sorting of rare cancer cells from blood using a thin ribbon monolayer of cells within a credit-card sized, microfluidic laboratory-on-a-card ("lab card") structure. This enables higher cell throughput per minute thereby speeding up cell interrogation. In this approach, multiple cells are viewed and sorted, not individually, but as a whole cell row or section of the ribbon at a time. Gated selection of only the cell rows containing a tagged rare cell provides enrichment of the rare cell relative to background blood cells. We also designed the cell injector for laminar flow antibody labeling within 20s. The approach combines rapid laminar flow cell labeling with monolayer cell sorting thereby enabling rare cell target detection at sensitivity levels 1000 to 10,000 times that of existing flow cytometers. Using this method, total cell labeling and data acquisition time on card may be reduced to a few minutes compared to 30-60 min for standard flow methods.

  13. A novel method for isolating podocytes using magnetic activated cell sorting.

    PubMed

    Murakami, Ayumi; Oshiro, Hisashi; Kanzaki, Seiichi; Yamaguchi, Akira; Yamanaka, Shoji; Furuya, Mitsuko; Miura, Satoshi; Kanno, Hiroshi; Nagashima, Yoji; Aoki, Ichiro; Nagahama, Kiyotaka

    2010-12-01

    A large body of accumulated data has now revealed that podocytes play a major role in the development of proteinuria. However, the mechanisms of podocyte injury, leading to foot process effacement and proteinuria, are still unclear partly due to the current lack of an appropriate strategy for preparing podocytes. In this study, we have developed a novel method of rapid isolation of podocytes from mice using magnetic activated cell sorting with an anti-nephrin antibody. After endothelial cell depletion using anti-CD31 antibody, nephrin-positive cells were prepared from mouse kidneys using magnetic activated cell sorting with polyclonal rabbit anti-nephrin antibody. Purity of the positively sorted cells was determined by confocal microscopy and fluorescence-activated cell sorting (FACS) analysis. Expression profiles of podocyte-specific molecules in the sorted fractions were characterized by qualitative PCR and immunoblot analysis. Nephrin-positive cells, isolated from mouse kidneys within 6 h, showed dual positivity for synaptopodin and rabbit IgG on confocal microscopy. FACS analysis revealed that the purity of the positively sorted fractions was ∼75%. The nephrin-positive cells sorted by this approach showed a significantly higher expression of podocyte-specific molecules compared with nephrin-negative fractions. These data strongly suggest that our novel method for isolating podocytes has great utility for various downstream applications such as genomic analysis, proteomics and transcriptomics to elucidate molecular profiling of podocyte biology in vivo compared with conventional methods as our approach requires only several hours to complete and no tissue culture.

  14. A monolithic glass chip for active single-cell sorting based on mechanical phenotyping.

    PubMed

    Faigle, Christoph; Lautenschläger, Franziska; Whyte, Graeme; Homewood, Philip; Martín-Badosa, Estela; Guck, Jochen

    2015-03-07

    The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custom-built optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.

  15. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    PubMed

    Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng

    2018-01-01

    Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  16. Raman tweezers in microfluidic systems for analysis and sorting of living cells

    NASA Astrophysics Data System (ADS)

    Pilát, Zdeněk.; Ježek, Jan; Kaňka, Jan; Zemánek, Pavel

    2014-12-01

    We have devised an analytical and sorting system combining optical trapping with Raman spectroscopy in microfluidic environment, dedicated to identification and sorting of biological objects, such as living cells of various unicellular organisms. Our main goal was to create a robust and universal platform for non-destructive and non-contact sorting of micro-objects based on their Raman spectral properties. This approach allowed us to collect spectra containing information about the chemical composition of the objects, such as the presence and composition of pigments, lipids, proteins, or nucleic acids, avoiding artificial chemical probes such as fluorescent markers. The non-destructive nature of this optical analysis and manipulation allowed us to separate individual living cells of our interest in a sterile environment and provided the possibility to cultivate the selected cells for further experiments. We used a mixture of polystyrene micro-particles and algal cells to test and demonstrate the function of our analytical and sorting system. The devised system could find its use in many medical, biotechnological, and biological applications.

  17. Raman tweezers in microfluidic systems for analysis and sorting of living cells

    NASA Astrophysics Data System (ADS)

    Pilát, Zdenëk; Ježek, Jan; Kaňka, Jan; Zemánek, Pavel

    2014-03-01

    We have devised an analytical and sorting system combining optical trapping with Raman spectroscopy in microfluidic environment in order to identify and sort biological objects, such as living cells of various prokaryotic and eukaryotic organisms. Our main objective was to create a robust and universal platform for non-contact sorting of microobjects based on their Raman spectral properties. This approach allowed us to collect information about the chemical composition of the objects, such as the presence and composition of lipids, proteins, or nucleic acids without using artificial chemical probes such as fluorescent markers. The non-destructive and non-contact nature of this optical analysis and manipulation allowed us to separate individual living cells of our interest in a sterile environment and provided the possibility to cultivate the selected cells for further experiments. We used differently treated cells of algae to test and demonstrate the function of our analytical and sorting system. The devised system could find its use in many medical, biotechnological, and biological applications.

  18. High-throughput cell analysis and sorting technologies for clinical diagnostics and therapeutics

    NASA Astrophysics Data System (ADS)

    Leary, James F.; Reece, Lisa M.; Szaniszlo, Peter; Prow, Tarl W.; Wang, Nan

    2001-05-01

    A number of theoretical and practical limits of high-speed flow cytometry/cell sorting are important for clinical diagnostics and therapeutics. Three applications include: (1) stem cell isolation with tumor purging for minimal residual disease monitoring and treatment, (2) identification and isolation of human fetal cells from maternal blood for prenatal diagnostics and in-vitro therapeutics, and (3) high-speed library screening for recombinant vaccine production against unknown pathogens.

  19. Application of a novel sorting system for equine mesenchymal stem cells (MSCs)

    PubMed Central

    Radtke, Catherine L.; Nino-Fong, Rodolfo; Esparza Gonzalez, Blanca P.; McDuffee, Laurie A.

    2014-01-01

    The objective of this study was to validate non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs) into subpopulations, for use with MSCs derived from equine muscle tissue, periosteal tissue, bone marrow, and adipose tissue. Cells were collected from 6 young, adult horses, postmortem. Cells were isolated from left semitendinosus muscle tissue, periosteal tissue from the distomedial aspect of the right tibia, bone marrow aspirates from the fourth and fifth sternebrae, and left supragluteal subcutaneous adipose tissue. Aliquots of 800 × 103 MSCs from each tissue source were separated and injected into a ribbon-like capillary device by continuous flow (GrFFF proprietary system). Cells were sorted into 6 fractions and absorbencies [optical density (OD)] were read. Six fractions from each of the 6 aliquots were then combined to provide pooled fractions that had adequate cell numbers to seed at equal concentrations into assays. Equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells were consistently sorted into 6 fractions that remained viable for use in further assays. Fraction 1 had more cuboidal morphology in culture when compared to the other fractions. Statistical analysis of the fraction absorbencies (OD) revealed a P-value of < 0.05 when fractions 2 and 3 were compared to fractions 1, 4, 5, and 6. It was concluded that non-equilibrium GrFFF is a valid method for sorting equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells into subpopulations that remain viable, thus securing its potential for use in equine stem cell applications and veterinary medicine. PMID:25355998

  20. Developments in label-free microfluidic methods for single-cell analysis and sorting.

    PubMed

    Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L

    2018-04-24

    Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.

  1. Amniotic-Fluid Stem Cells: Growth Dynamics and Differentiation Potential after a CD-117-Based Selection Procedure

    PubMed Central

    Arnhold, S.; Glüer, S.; Hartmann, K.; Raabe, O.; Addicks, K.; Wenisch, S.; Hoopmann, M.

    2011-01-01

    Amniotic fluid (AF) has become an interesting source of fetal stem cells. However, AF contains heterogeneous and multiple, partially differentiated cell types. After isolation from the amniotic fluid, cells were characterized regarding their morphology and growth dynamics. They were sorted by magnetic associated cell sorting using the surface marker CD 117. In order to show stem cell characteristics such as pluripotency and to evaluate a possible therapeutic application of these cells, AF fluid-derived stem cells were differentiated along the adipogenic, osteogenic, and chondrogenic as well as the neuronal lineage under hypoxic conditions. Our findings reveal that magnetic associated cell sorting (MACS) does not markedly influence growth characteristics as demonstrated by the generation doubling time. There was, however, an effect regarding an altered adipogenic, osteogenic, and chondrogenic differentiation capacity in the selected cell fraction. In contrast, in the unselected cell population neuronal differentiation is enhanced. PMID:21437196

  2. Microfluidic devices for label-free separation of cells through transient interaction with asymmetric receptor patterns

    NASA Astrophysics Data System (ADS)

    Bose, S.; Singh, R.; Hollatz, M. H.; Lee, C.-H.; Karp, J.; Karnik, R.

    2012-02-01

    Cell sorting serves an important role in clinical diagnosis and biological research. Most of the existing microscale sorting techniques are either non-specific to antigen type or rely on capturing cells making sample recovery difficult. We demonstrate a simple; yet effective technique for isolating cells in an antigen specific manner by using transient interactions of the cell surface antigens with asymmetric receptor patterned surface. Using microfluidic devices incorporating P-selectin patterns we demonstrate separation of HL60 cells from K562 cells. We achieved a sorting purity above 90% and efficiency greater than 85% with this system. We also present a mathematical model incorporating flow mediated and adhesion mediated transport of cells in the microchannel that can be used to predict the performance of these devices. Lastly, we demonstrate the clinical significance of the method by demonstrating single step separation of neutrophils from whole blood. When whole blood is introduced in the device, the granulocyte population gets separated exclusively yielding neutrophils of high purity (<10% RBC contamination). To our knowledge, this is the first ever demonstration of continuous label free sorting of neutrophils from whole blood. We believe this technology will be useful in developing point-of-care diagnostic devices and also for a host of cell sorting applications.

  3. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters

    PubMed Central

    2012-01-01

    Background Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Methods Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. Results A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Discussion Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene-expression profiling and analysis. The approach outlined here results in substantially improved yield of GFP-expressing parasites, and requires decreased sorting time in comparison to standard methods. It is anticipated that this protocol will be useful for a wide range of applications involving rare events. PMID:22950515

  4. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting.

    PubMed

    Wu, Liang; Chen, Pu; Dong, Yingsong; Feng, Xiaojun; Liu, Bi-Feng

    2013-06-01

    Encapsulation of single cells is a challenging task in droplet microfluidics due to the random compartmentalization of cells dictated by Poisson statistics. In this paper, a microfluidic device was developed to improve the single-cell encapsulation rate by integrating droplet generation with fluorescence-activated droplet sorting. After cells were loaded into aqueous droplets by hydrodynamic focusing, an on-flight fluorescence-activated sorting process was conducted to isolate droplets containing one cell. Encapsulation of fluorescent polystyrene beads was investigated to evaluate the developed method. A single-bead encapsulation rate of more than 98 % was achieved under the optimized conditions. Application to encapsulate single HeLa cells was further demonstrated with a single-cell encapsulation rate of 94.1 %, which is about 200 % higher than those obtained by random compartmentalization. We expect this new method to provide a useful platform for encapsulating single cells, facilitating the development of high-throughput cell-based assays.

  5. Microfluidic Blood Cell Preparation: Now and Beyond

    PubMed Central

    Yu, Zeta Tak For; Yong, Koh Meng Aw; Fu, Jianping

    2014-01-01

    Blood plays an important role in homeostatic regulation with each of its cellular components having important therapeutic and diagnostic uses. Therefore, separation and sorting of blood cells has been of a great interest to clinicians and researchers. However, while conventional methods of processing blood have been successful in generating relatively pure fractions, they are time consuming, labor intensive, and are not optimal for processing small volume blood samples. In recent years, microfluidics has garnered great interest from clinicians and researchers as a powerful technology for separating blood into different cell fractions. As microfluidics involves fluid manipulation at the microscale level, it has the potential for achieving high-resolution separation and sorting of blood cells down to a single-cell level, with an added benefit of integrating physical and biological methods for blood cell separation and analysis on the same single chip platform. This paper will first review the conventional methods of processing and sorting blood cells, followed by a discussion on how microfluidics is emerging as an efficient tool to rapidly change the field of blood cell sorting for blood-based therapeutic and diagnostic applications. PMID:24515899

  6. Isolation of intact RNA from murine CD4+ T cells after intracellular cytokine staining and fluorescence-activated cell sorting.

    PubMed

    Kunnath-Velayudhan, Shajo; Porcelli, Steven A

    2018-05-01

    Intracellular cytokine staining (ICS) is a powerful method for identifying functionally distinct lymphocyte subsets, and for isolating these by fluorescence activated cell sorting (FACS). Although transcriptomic analysis of cells sorted on the basis of ICS has many potential applications, this is rarely performed because of the difficulty in isolating intact RNA from cells processed using standard fixation and permeabilization buffers for ICS. To address this issue, we compared three buffers shown previously to preserve RNA in nonhematopoietic cells subjected to intracellular staining for their effects on RNA isolated from T lymphocytes processed for ICS. Our results showed that buffers containing the recombinant ribonuclease inhibitor RNasin or high molar concentrations of salt yielded intact RNA from fixed and permeabilized T cells. As proof of principle, we successfully used the buffer containing RNasin to isolate intact RNA from CD4 + T cells that were sorted by FACS on the basis of specific cytokine production, thus demonstrating the potential of this approach for coupling ICS with transcriptomic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Raman sorting and identification of single living micro-organisms with optical tweezers

    NASA Astrophysics Data System (ADS)

    Xie, Changan; Chen, De; Li, Yong-Qing

    2005-07-01

    We report on a novel technique for sorting and identification of single biological cells and food-borne bacteria based on laser tweezers and Raman spectroscopy (LTRS). With this technique, biological cells of different physiological states in a sample chamber were identified by their Raman spectral signatures and then they were selectively manipulated into a clean collection chamber with optical tweezers through a microchannel. As an example, we sorted the live and dead yeast cells into the collection chamber and validated this with a standard staining technique. We also demonstrated that bacteria existing in spoiled foods could be discriminated from a variety of food particles based on their characteristic Raman spectra and then isolated with laser manipulation. This label-free LTRS sorting technique may find broad applications in microbiology and rapid examination of food-borne diseases.

  8. Biophotonics sensor acclimatization to stem cells environment

    NASA Astrophysics Data System (ADS)

    Mohamad Shahimin, Mukhzeer

    2017-11-01

    The ability to discriminate, characterise and purify biological cells from heterogeneous population of cells is fundamental to numerous prognosis and diagnosis applications; often forming the basis for current and emerging clinical protocols in stem cell therapy. Current sorting approaches exploit differences in cell density, specific immunologic targets, or receptor-ligand interactions to isolate particular cells. Identification of novel properties by which different cell types may be discerned and of new ways for their selective manipulation are clearly fundamental components for improving sorting methodologies. Biophotonics sensor developed by our team are potentially capable of discriminating cells according to their refractive index (which is highly dependable on the organelles inside the cell), size (indicator to cell stage) and shape (in certain cases as an indicator to cell type). The sensor, which already discriminate particles efficiently, is modified to acclimatize into biological environment, especially for stem cell applications.

  9. Improved method and apparatus for electrostatically sorting biological cells. [DOE patent application

    DOEpatents

    Merrill, J.T.

    An improved method of sorting biological cells in a conventional cell sorter apparatus includes generating a fluid jet containing cells to be sorted, measuring the distance between the centers of adjacent droplets in a zone thereof defined at the point where the fluid jet separates into descrete droplets, setting the distance between the center of a droplet in said separation zone and the position along said fluid jet at which the cell is optically sensed for specific characteristics to be an integral multiple of said center-to-center distance, and disabling a charger from electrically charging a specific droplet if a cell is detected by the optical sensor in a position wherein it will be in the neck area between droplets during droplet formation rather than within a predetermined distance from the droplet center.

  10. Microsystems for the Capture of Low-Abundance Cells

    NASA Astrophysics Data System (ADS)

    Dharmasiri, Udara; Witek, Małgorzata A.; Adams, Andre A.; Soper, Steven A.

    2010-07-01

    Efficient selection and enumeration of low-abundance biological cells are highly important in a variety of applications. For example, the clinical utility of circulating tumor cells (CTCs) in peripheral blood is recognized as a viable biomarker for the management of various cancers, in which the clinically relevant number of CTCs per 7.5 ml of blood is two to five. Although there are several methods for isolating rare cells from a variety of heterogeneous samples, such as immunomagnetic-assisted cell sorting and fluorescence-activated cell sorting, they are fraught with challenges. Microsystem-based technologies are providing new opportunities for selecting and isolating rare cells from complex, heterogeneous samples. Such approaches involve reductions in target-cell loss, process automation, and minimization of contamination issues. In this review, we introduce different application areas requiring rare cell analysis, conventional techniques for their selection, and finally microsystem approaches for low-abundance-cell isolation and enumeration.

  11. Isolation of Human Induced Pluripotent Stem Cell-Derived Dopaminergic Progenitors by Cell Sorting for Successful Transplantation

    PubMed Central

    Doi, Daisuke; Samata, Bumpei; Katsukawa, Mitsuko; Kikuchi, Tetsuhiro; Morizane, Asuka; Ono, Yuichi; Sekiguchi, Kiyotoshi; Nakagawa, Masato; Parmar, Malin; Takahashi, Jun

    2014-01-01

    Summary Human induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (DA) neurons for cell replacement therapy for Parkinson’s disease. However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. Here, we show that human iPSC-derived DA progenitor cells can be efficiently isolated by cell sorting using a floor plate marker, CORIN. We induced DA neurons using scalable culture conditions on human laminin fragment, and the sorted CORIN+ cells expressed the midbrain DA progenitor markers, FOXA2 and LMX1A. When transplanted into 6-OHDA-lesioned rats, the CORIN+ cells survived and differentiated into midbrain DA neurons in vivo, resulting in significant improvement of the motor behavior, without tumor formation. In particular, the CORIN+ cells in a NURR1+ cell-dominant stage exhibited the best survival and function as DA neurons. Our method is a favorable strategy in terms of scalability, safety, and efficiency and may be advantageous for clinical application. PMID:24672756

  12. Development of a novel cell sorting method that samples population diversity in flow cytometry.

    PubMed

    Osborne, Geoffrey W; Andersen, Stacey B; Battye, Francis L

    2015-11-01

    Flow cytometry based electrostatic cell sorting is an important tool in the separation of cell populations. Existing instruments can sort single cells into multi-well collection plates, and keep track of cell of origin and sorted well location. However currently single sorted cell results reflect the population distribution and fail to capture the population diversity. Software was designed that implements a novel sorting approach, "Slice and Dice Sorting," that links a graphical representation of a multi-well plate to logic that ensures that single cells are sampled and sorted from all areas defined by the sort region/s. Therefore the diversity of the total population is captured, and the more frequently occurring or rarer cell types are all sampled. The sorting approach was tested computationally, and using functional cell based assays. Computationally we demonstrate that conventional single cell sorting can sample as little as 50% of the population diversity dependant on the population distribution, and that Slice and Dice sorting samples much more of the variety present within a cell population. We then show by sorting single cells into wells using the Slice and Dice sorting method that there are cells sorted using this method that would be either rarely sorted, or not sorted at all using conventional single cell sorting approaches. The present study demonstrates a novel single cell sorting method that samples much more of the population diversity than current methods. It has implications in clonal selection, stem cell sorting, single cell sequencing and any areas where population heterogeneity is of importance. © 2015 International Society for Advancement of Cytometry.

  13. Magnetic-Activated Cell Sorting for the Fast and Efficient Separation of Human and Rodent Schwann Cells from Mixed Cell Populations.

    PubMed

    Ravelo, Kristine M; Andersen, Natalia D; Monje, Paula V

    2018-01-01

    To date, magnetic-activated cell sorting (MACS) remains a powerful method to isolate distinct cell populations based on differential cell surface labeling. Optimized direct and indirect MACS protocols for cell immunolabeling are presented here as methods to divest Schwann cell (SC) cultures of contaminating cells (specifically, fibroblast cells) and isolate SC populations at different stages of differentiation. This chapter describes (1) the preparation of single-cell suspensions from established human and rat SC cultures, (2) the design and application of cell selection strategies using SC-specific (p75 NGFR , O4, and O1) and fibroblast-specific (Thy-1) markers, and (3) the characterization of both the pre- and post-sorting cell populations. A simple protocol for the growth of hybridoma cell cultures as a source of monoclonal antibodies for cell surface immunolabeling of SCs and fibroblasts is provided as a cost-effective alternative for commercially available products. These steps allow for the timely and efficient recovery of purified SC populations without compromising the viability and biological activity of the cells.

  14. Phenotypic and functional characterization of earthworm coelomocyte subsets: Linking light scatter-based cell typing and imaging of the sorted populations.

    PubMed

    Engelmann, Péter; Hayashi, Yuya; Bodó, Kornélia; Ernszt, Dávid; Somogyi, Ildikó; Steib, Anita; Orbán, József; Pollák, Edit; Nyitrai, Miklós; Németh, Péter; Molnár, László

    2016-12-01

    Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Improved Isolation, Proliferation, and Differentiation Capacity of Mouse Ovarian Putative Stem Cells.

    PubMed

    Yazdekhasti, Hossein; Hosseini, Marzieh Agha; Rajabi, Zahra; Parvari, Soraya; Salehnia, Mojdeh; Koruji, Morteza; Izadyar, Fariborz; Aliakbari, Fereshte; Abbasi, Mehdi

    2017-04-01

    The recent discovery of ovarian stem cells in postnatal mammalian ovaries, also referred to as putative stem cells (PSCs), and their roles in mammalian fertility has challenged the long-existing theory that women are endowed with a certain number of germ cells. The rare amount of PSCs is the major limitation for utilizing them through different applications. Therefore, this study was conducted in six phases to find a way to increase the number of Fragilis- and mouse vasa homolog (MVH)-positive sorted cells from 14-day-old NMRI strain mice. Results showed that there is a population of Fragilis- and MVH-positive cells with pluripotent stem cell characteristics, which can be isolated and expanded for months in vitro. PSCs increase their proliferation capacity under the influence of some mitogenic agents, and our results showed that different doses of stem cell factor (SCF) induce PSC proliferation with the maximum increase observed at 50 ng/mL. SCF was also able to increase the number of Fragilis- and MVH-positive cells after sorting by magnetic-activated cell sorting and enhance colony formation efficiency in sorted cells. Differentiation capacity assay indicated that there is a basic level of spontaneous differentiation toward oocyte-like cells during 3 days of culture. However, relative gene expression was significantly higher in the follicle-stimulating hormone-treated groups, especially in the Fragilis- sorted PSCs. We suggest that higher number of PSCs provides us either a greater source of energy that can be injected into energy-impaired oocytes in women with a history of repeat IVF failure or a good source for research.

  16. Label-free cell separation and sorting in microfluidic systems

    PubMed Central

    Gossett, Daniel R.; Weaver, Westbrook M.; Mach, Albert J.; Hur, Soojung Claire; Tse, Henry Tat Kwong; Lee, Wonhee; Amini, Hamed

    2010-01-01

    Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible. Figure A wide range of microfluidic technologies have been developed to separate and sort cells by taking advantage of differences in their intrinsic biophysical properties PMID:20419490

  17. Fundamentals and Application of Magnetic Particles in Cell Isolation and Enrichment

    PubMed Central

    Plouffe, Brian D.; Murthy, Shashi K.; Lewis, Laura H.

    2014-01-01

    Magnetic sorting using magnetic beads has become a routine methodology for the separation of key cell populations from biological suspensions. Due to the inherent ability of magnets to provide forces at a distance, magnetic cell manipulation is now a standardized process step in numerous processes in tissue engineering, medicine, and in fundamental biological research. Herein we review the current status of magnetic particles to enable isolation and separation of cells, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles and on current applications of magnet-based cell separation in laboratory and clinical settings. We highlight the contribution of cell separation to biomedical research and medicine and detail modern cell separation methods (both magnetic and non-magnetic). In addition to a review of the current state-of-the-art in magnet-based cell sorting, we discuss current challenges and available opportunities for further research, development and commercialization of magnetic particle-based cell separation systems. PMID:25471081

  18. Safe sorting of GFP-transduced live cells for subsequent culture using a modified FACS vantage.

    PubMed

    Sørensen, T U; Gram, G J; Nielsen, S D; Hansen, J E

    1999-12-01

    A stream-in-air cell sorter enables rapid sorting to a high purity, but it is not well suited for sorting of infectious material due to the risk of airborne spread to the surroundings. A FACS Vantage cell sorter was modified for safe use with potentially HIV infected cells. Safety tests with bacteriophages were performed to evaluate the potential spread of biologically active material during cell sorting. Cells transduced with a retroviral vector carrying the gene for GFP were sorted on the basis of their GFP fluorescence, and GFP expression was followed during subsequent culture. The bacteriophage sorting showed that the biologically active material was confined to the sorting chamber. A failure mode simulating a nozzle blockage resulted in detectable droplets inside the sorting chamber, but no droplets could be detected when an additional air suction from the sorting chamber had been put on. The GFP transduced cells were sorted to 99% purity. Cells not expressing GFP at the time of sorting did not turn on the gene during subsequent culture. Un-sorted cells and cells sorted to be positive for GFP showed a decrease in the fraction of GFP positive cells during culture. Sorting of live infected cells can be performed safely and with no deleterious effects on vector expression using the modified FACS Vantage instrument. Copyright 1999 Wiley-Liss, Inc.

  19. Principles and applications of flow cytometry and cell sorting in companion animal medicine.

    PubMed

    Wilkerson, Melinda J

    2012-01-01

    Flow cytometry measures multiple characteristic of single cells using light scatter properties and fluorescence properties of fluorescent probes with specificity to cellular constituents. The use of flow cytometry in the veterinary clinical laboratory has become more routine in veterinary diagnostic laboratories and institutions (http://www.vet.k-state.edu/depts/dmp/service/immunology/index.htm), and reference laboratories. The most common applications in small animal medicine includes quantitation of erythrocytes and leukocytes in automated hematology instruments, detection of antibodies to erythrocytes and platelets in cases of immune-mediated diseases, immunophenotyping of leukocytes and lymphocytes in immunodeficiency syndromes, or leukemias and lymphomas. DNA content analysis to identify aneuploidy or replicating cells in tumor preparations has not gained routine acceptance because of the variability of prognostic results. Other applications including cell sorting and multiplexing using microspheres are potential assays of the future once they become validated and the instrumentation footprint becomes more and more compact, less expensive, and easier to use.

  20. Sorting cells of the microalga Chlorococcum littorale with increased triacylglycerol productivity.

    PubMed

    Cabanelas, Iago Teles Dominguez; van der Zwart, Mathijs; Kleinegris, Dorinde M M; Wijffels, René H; Barbosa, Maria J

    2016-01-01

    Despite extensive research in the last decades, microalgae are still only economically feasible for high valued markets. Strain improvement is a strategy to increase productivities, hence reducing costs. In this work, we focus on microalgae selection: taking advantage of the natural biological variability of species to select variations based on desired characteristics. We focused on triacylglycerol (TAG), which have applications ranging from biodiesel to high-value omega-3 fatty-acids. Hence, we demonstrated a strategy to sort microalgae cells with increased TAG productivity. 1. We successfully identified sub-populations of cells with increased TAG productivity using Fluorescence assisted cell sorting (FACS). 2. We sequentially sorted cells after repeated cycles of N-starvation, resulting in five sorted populations (S1-S5). 3. The comparison between sorted and original populations showed that S5 had the highest TAG productivity [0.34 against 0.18 g l(-1) day(-1) (original), continuous light]. 4. Original and S5 were compared in lab-scale reactors under simulated summer conditions confirming the increased TAG productivity of S5 (0.4 against 0.2 g l(-1) day(-1)). Biomass composition analyses showed that S5 produced more biomass under N-starvation because of an increase only in TAG content and, flow cytometry showed that our selection removed cells with lower efficiency in producing TAGs. All combined, our results present a successful strategy to improve the TAG productivity of Chlorococcum littorale, without resourcing to genetic manipulation or random mutagenesis. Additionally, the improved TAG productivity of S5 was confirmed under simulated summer conditions, highlighting the industrial potential of S5 for microalgal TAG production.

  1. Separation and sorting of cells in microsystems using physical principles

    NASA Astrophysics Data System (ADS)

    Lee, Gi-Hun; Kim, Sung-Hwan; Ahn, Kihoon; Lee, Sang-Hoon; Park, Joong Yull

    2016-01-01

    In the last decade, microfabrication techniques have been combined with microfluidics and applied to cell biology. Utilizing such new techniques, various cell studies have been performed for the research of stem cells, immune cells, cancer, neurons, etc. Among the various biological applications of microtechnology-based platforms, cell separation technology has been highly regarded in biological and clinical fields for sorting different types of cells, finding circulating tumor cells (CTCs), and blood cell separation, amongst other things. Many cell separation methods have been created using various physical principles. Representatively, these include hydrodynamic, acoustic, dielectrophoretic, magnetic, optical, and filtering methods. In this review, each of these methods will be introduced, and their physical principles and sample applications described. Each physical principle has its own advantages and disadvantages. The engineers who design the systems and the biologists who use them should understand the pros and cons of each method or principle, to broaden the use of microsystems for cell separation. Continuous development of microsystems for cell separation will lead to new opportunities for diagnosing CTCs and cancer metastasis, as well as other elements in the bloodstream.

  2. High-throughput autofluorescence flow cytometry of breast cancer metabolism (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shah, Amy T.; Cannon, Taylor M.; Higginbotham, Jim N.; Skala, Melissa C.

    2016-02-01

    Tumor heterogeneity poses challenges for devising optimal treatment regimens for cancer patients. In particular, subpopulations of cells can escape treatment and cause relapse. There is a need for methods to characterize tumor heterogeneity of treatment response. Cell metabolism is altered in cancer (Warburg effect), and cells use the autofluorescent cofactor NADH in numerous metabolic reactions. Previous studies have shown that microscopy measurements of NADH autofluorescence are sensitive to treatment response in breast cancer, and these techniques typically assess hundreds of cells per group. An alternative approach is flow cytometry, which measures fluorescence on a single-cell level and is attractive for characterizing tumor heterogeneity because it achieves high-throughput analysis and cell sorting in millions of cells per group. Current applications for flow cytometry rely on staining with fluorophores. This study characterizes flow cytometry measurements of NADH autofluorescence in breast cancer cells. Preliminary results indicate flow cytometry of NADH is sensitive to cyanide perturbation, which inhibits oxidative phosphorylation, in nonmalignant MCF10A cells. Additionally, flow cytometry is sensitive to higher NADH intensity for HER2-positive SKBr3 cells compared with triple-negative MDA-MB-231 cells. These results agree with previous microscopy studies. Finally, a mixture of SKBr3 and MDA-MB-231 cells were sorted into each cell type using NADH intensity. Sorted cells were cultured, and microscopy validation showed the expected morphology for each cell type. Ultimately, flow cytometry could be applied to characterize tumor heterogeneity based on treatment response and sort cell subpopulations based on metabolic profile. These achievements could enable individualized treatment strategies and improved patient outcomes.

  3. Surface acoustic wave actuated cell sorting (SAWACS).

    PubMed

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  4. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation.

    PubMed

    Shields, C Wyatt; Reyes, Catherine D; López, Gabriel P

    2015-03-07

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism.

  5. Microfluidic Cell Sorting: A Review of the Advances in the Separation of Cells from Debulking to Rare Cell Isolation

    PubMed Central

    Shields, C. Wyatt; Reyes, Catherine D.; López, Gabriel P.

    2015-01-01

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism. PMID:25598308

  6. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays.

    PubMed

    Saliba, Antoine-Emmanuel; Saias, Laure; Psychari, Eleni; Minc, Nicolas; Simon, Damien; Bidard, François-Clément; Mathiot, Claire; Pierga, Jean-Yves; Fraisier, Vincent; Salamero, Jean; Saada, Véronique; Farace, Françoise; Vielh, Philippe; Malaquin, Laurent; Viovy, Jean-Louis

    2010-08-17

    We propose a unique method for cell sorting, "Ephesia," using columns of biofunctionalized superparamagnetic beads self-assembled in a microfluidic channel onto an array of magnetic traps prepared by microcontact printing. It combines the advantages of microfluidic cell sorting, notably the application of a well controlled, flow-activated interaction between cells and beads, and those of immunomagnetic sorting, notably the use of batch-prepared, well characterized antibody-bearing beads. On cell lines mixtures, we demonstrated a capture yield better than 94%, and the possibility to cultivate in situ the captured cells. A second series of experiments involved clinical samples--blood, pleural effusion, and fine needle aspirates--issued from healthy donors and patients with B-cell hematological malignant tumors (leukemia and lymphoma). The immunophenotype and morphology of B-lymphocytes were analyzed directly in the microfluidic chamber, and compared with conventional flow cytometry and visual cytology data, in a blind test. Immunophenotyping results using Ephesia were fully consistent with those obtained by flow cytometry. We obtained in situ high resolution confocal three-dimensional images of the cell nuclei, showing intranuclear details consistent with conventional cytological staining. Ephesia thus provides a powerful approach to cell capture and typing allowing fully automated high resolution and quantitative immunophenotyping and morphological analysis. It requires at least 10 times smaller sample volume and cell numbers than cytometry, potentially increasing the range of indications and the success rate of microbiopsy-based diagnosis, and reducing analysis time and cost.

  7. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays

    PubMed Central

    Saliba, Antoine-Emmanuel; Saias, Laure; Psychari, Eleni; Minc, Nicolas; Simon, Damien; Bidard, François-Clément; Mathiot, Claire; Pierga, Jean-Yves; Fraisier, Vincent; Salamero, Jean; Saada, Véronique; Farace, Françoise; Vielh, Philippe; Malaquin, Laurent; Viovy, Jean-Louis

    2010-01-01

    We propose a unique method for cell sorting, “Ephesia,” using columns of biofunctionalized superparamagnetic beads self-assembled in a microfluidic channel onto an array of magnetic traps prepared by microcontact printing. It combines the advantages of microfluidic cell sorting, notably the application of a well controlled, flow-activated interaction between cells and beads, and those of immunomagnetic sorting, notably the use of batch-prepared, well characterized antibody-bearing beads. On cell lines mixtures, we demonstrated a capture yield better than 94%, and the possibility to cultivate in situ the captured cells. A second series of experiments involved clinical samples—blood, pleural effusion, and fine needle aspirates— issued from healthy donors and patients with B-cell hematological malignant tumors (leukemia and lymphoma). The immunophenotype and morphology of B-lymphocytes were analyzed directly in the microfluidic chamber, and compared with conventional flow cytometry and visual cytology data, in a blind test. Immunophenotyping results using Ephesia were fully consistent with those obtained by flow cytometry. We obtained in situ high resolution confocal three-dimensional images of the cell nuclei, showing intranuclear details consistent with conventional cytological staining. Ephesia thus provides a powerful approach to cell capture and typing allowing fully automated high resolution and quantitative immunophenotyping and morphological analysis. It requires at least 10 times smaller sample volume and cell numbers than cytometry, potentially increasing the range of indications and the success rate of microbiopsy-based diagnosis, and reducing analysis time and cost. PMID:20679245

  8. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid by magnetic-activated cell sorting (MACS).

    PubMed

    Jia, Zhaofeng; Liang, Yujie; Xu, Xiao; Li, Xingfu; Liu, Qisong; Ou, Yangkan; Duan, Li; Zhu, Weimin; Lu, Wei; Xiong, Jianyi; Wang, Daping

    2018-03-01

    Mesenchymal stem cells (MSCs) are the primary source of cells used for cell-based therapy in tissue engineering. MSCs are found in synovial fluid, a source that could be conveniently used for cartilage tissue engineering. However, the purification and characterization of SF-MSCs has been poorly documented in the literature. Here, we outline an easy-to-perform approach for the isolation and culture of MSCs derived from human synovial fluid (hSF-MSCs). We have successfully purified hSF-MSCs using magnetic-activated cell sorting (MACS) using the MSC surface marker, CD90. Purified SF-MSCs demonstrate significant renewal capacity following several passages in culture. Furthermore, we demonstrated that MACS-sorted CD90 + cells could differentiated into osteoblasts, adipocytes, and chondrocytes in vitro. In addition, we show that these cells can generate cartilage tissue in micromass culture as well. This study demonstrates that MACS is a useful tool that can be used for the purification of hSF-MSCs from synovial fluid. The proliferation properties and ability to differentiate into chondrocytes make these hSF-MSCs a promising source of stem cells for applications in cartilage repair. © 2017 International Federation for Cell Biology.

  9. Making Polymeric Microspheres

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  10. Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms.

    PubMed

    Zhang, Qiang; Wang, Tingting; Zhou, Qian; Zhang, Peng; Gong, Yanhai; Gou, Honglei; Xu, Jian; Ma, Bo

    2017-01-23

    Wider application of single-cell analysis has been limited by the lack of an easy-to-use and low-cost strategy for single-cell isolation that can be directly coupled to single-cell sequencing and single-cell cultivation, especially for small-size microbes. Herein, a facile droplet microfluidic platform was developed to dispense individual microbial cells into conventional standard containers for downstream analysis. Functional parts for cell encapsulation, droplet inspection and sorting, as well as a chip-to-tube capillary interface were integrated on one single chip with simple architecture, and control of the droplet sorting was achieved by a low-cost solenoid microvalve. Using microalgal and yeast cells as models, single-cell isolation success rate of over 90% and single-cell cultivation success rate of 80% were demonstrated. We further showed that the individual cells isolated can be used in high-quality DNA and RNA analyses at both gene-specific and whole-genome levels (i.e. real-time quantitative PCR and genome sequencing). The simplicity and reliability of the method should improve accessibility of single-cell analysis and facilitate its wider application in microbiology researches.

  11. Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms

    PubMed Central

    Zhang, Qiang; Wang, Tingting; Zhou, Qian; Zhang, Peng; Gong, Yanhai; Gou, Honglei; Xu, Jian; Ma, Bo

    2017-01-01

    Wider application of single-cell analysis has been limited by the lack of an easy-to-use and low-cost strategy for single-cell isolation that can be directly coupled to single-cell sequencing and single-cell cultivation, especially for small-size microbes. Herein, a facile droplet microfluidic platform was developed to dispense individual microbial cells into conventional standard containers for downstream analysis. Functional parts for cell encapsulation, droplet inspection and sorting, as well as a chip-to-tube capillary interface were integrated on one single chip with simple architecture, and control of the droplet sorting was achieved by a low-cost solenoid microvalve. Using microalgal and yeast cells as models, single-cell isolation success rate of over 90% and single-cell cultivation success rate of 80% were demonstrated. We further showed that the individual cells isolated can be used in high-quality DNA and RNA analyses at both gene-specific and whole-genome levels (i.e. real-time quantitative PCR and genome sequencing). The simplicity and reliability of the method should improve accessibility of single-cell analysis and facilitate its wider application in microbiology researches. PMID:28112223

  12. New technology for ultrasensitive detection and isolation of rare cells for clinical diagnostics and therapeutics

    NASA Astrophysics Data System (ADS)

    Leary, James F.; McLaughlin, Scott R.

    1995-04-01

    A high-speed, 11-parameter, 6-color fluorescence, laser flow cytometer/cell sorter with a number of special and unique features has been built for ultrasensitive detection and isolation of rare cells for clinical diagnostics and therapeutics. The software for real-time data acquisition and sort control, written as C++ programming language modules with a WindowsTM graphical user interface, runs on a 66-MHz 80486 computer joined by an extended bus to 23 sophisticated multi-layered boards of special data acquisition and sorting electronics. Special features include: high-speed (> 100,000 cells/sec) real-time data classification module (U.S. Patent 5,204,884 (1993)); real-time principal component cell sorting; multi-queue signal-processing system with multiple hardware and software event buffers to reduce instrument dead time, LUT charge-pulse definition, high-resolution `flexible' sorting for optimal yield/purity sort strategies (U.S. Patent 5,199,576); pre-focusing optical wavelength correction for a second laser beam; and two trains of three fluorescence detectors-- each adjustable for spatial separation to interrogate only one of two laser beams, syringe- driven or pressure-driven fluidics, and time-windowed parameters. The system has been built to be both expandable and versatile through the use of LUT's and a modular hardware and software design. The instrument is especially useful at detection and isolation of rare cell subpopulations for which our laboratory is well-known. Cell subpopulations at frequencies as small as 10-7 have been successfully studied with this system. Current applications in clinical diagnostics and therapeutics include detection and isolation of (1) fetal cells from material blood for prenatal diagnosis of birth defects, (2) hematopoietic stem and precursor cells for autologous bone marrow transplantation, (3) metastatic breast cancer cells for molecular characterization, and (4) HIV-infected maternal cells in newborn blood to study mother-to-infant vertical transmission of AIDS.

  13. Separation of active and inactive fractions from starved culture of Vibrio parahaemolyticus by density dependent cell sorting.

    PubMed

    Nayak, Binaya Bhusan; Kamiya, Eriko; Nishino, Tomohiko; Wada, Minoru; Nishimura, Masahiko; Kogure, Kazuhiro

    2005-01-01

    The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.

  14. Automated single cell sorting and deposition in submicroliter drops

    NASA Astrophysics Data System (ADS)

    Salánki, Rita; Gerecsei, Tamás; Orgovan, Norbert; Sándor, Noémi; Péter, Beatrix; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-08-01

    Automated manipulation and sorting of single cells are challenging, when intact cells are needed for further investigations, e.g., RNA or DNA sequencing. We applied a computer controlled micropipette on a microscope admitting 80 PCR (Polymerase Chain Reaction) tubes to be filled with single cells in a cycle. Due to the Laplace pressure, fluid starts to flow out from the micropipette only above a critical pressure preventing the precise control of drop volume in the submicroliter range. We found an anomalous pressure additive to the Laplace pressure that we attribute to the evaporation of the drop. We have overcome the problem of the critical dropping pressure with sequentially operated fast fluidic valves timed with a millisecond precision. Minimum drop volume was 0.4-0.7 μl with a sorting speed of 15-20 s per cell. After picking NE-4C neuroectodermal mouse stem cells and human primary monocytes from a standard plastic Petri dish we could gently deposit single cells inside tiny drops. 94 ± 3% and 54 ± 7% of the deposited drops contained single cells for NE-4C and monocytes, respectively. 7.5 ± 4% of the drops contained multiple cells in case of monocytes. Remaining drops were empty. Number of cells deposited in a drop could be documented by imaging the Petri dish before and after sorting. We tuned the adhesion force of cells to make the manipulation successful without the application of microstructures for trapping cells on the surface. We propose that our straightforward and flexible setup opens an avenue for single cell isolation, critically needed for the rapidly growing field of single cell biology.

  15. Screening of Peptide Libraries against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge

    PubMed Central

    Kogot, Joshua M.; Zhang, Yanting; Moore, Stephen J.; Pagano, Paul; Stratis-Cullum, Dimitra N.; Chang-Yen, David; Turewicz, Marek; Pellegrino, Paul M.; de Fusco, Andre; Soh, H. Tom; Stagliano, Nancy E.

    2011-01-01

    Bacterial surface peptide display has gained popularity as a method of affinity reagent generation for a wide variety of applications ranging from drug discovery to pathogen detection. In order to isolate the bacterial clones that express peptides with high affinities to the target molecule, multiple rounds of manual magnetic activated cell sorting (MACS) followed by multiple rounds of fluorescence activated cell sorting (FACS) are conventionally used. Although such manual methods are effective, alternative means of library screening which improve the reproducibility, reduce the cost, reduce cross contamination, and minimize exposure to hazardous target materials are highly desired for practical application. Toward this end, we report the first semi-automated system demonstrating the potential for screening bacterially displayed peptides using disposable microfluidic cartridges. The Micro-Magnetic Separation platform (MMS) is capable of screening a bacterial library containing 3×1010 members in 15 minutes and requires minimal operator training. Using this system, we report the isolation of twenty-four distinct peptide ligands that bind to the protective antigen (PA) of Bacilus anthracis in three rounds of selection. A consensus motif WXCFTC was found using the MMS and was also found in one of the PA binders isolated by the conventional MACS/FACS approach. We compared MMS and MACS rare cell recovery over cell populations ranging from 0.1% to 0.0000001% and found that both magnetic sorting methods could recover cells down to 0.0000001% initial cell population, with the MMS having overall lower standard deviation of cell recovery. We believe the MMS system offers a compelling approach towards highly efficient, semi-automated screening of molecular libraries that is at least equal to manual magnetic sorting methods and produced, for the first time, 15-mer peptide binders to PA protein that exhibit better affinity and specificity than peptides isolated using conventional MACS/FACS. PMID:22140433

  16. Adipose Tissue-Derived Pericytes for Cartilage Tissue Engineering.

    PubMed

    Zhang, Jinxin; Du, Chunyan; Guo, Weimin; Li, Pan; Liu, Shuyun; Yuan, Zhiguo; Yang, Jianhua; Sun, Xun; Yin, Heyong; Guo, Quanyi; Zhou, Chenfu

    2017-01-01

    Mesenchymal stem cells (MSCs) represent a promising alternative source for cartilage tissue engineering. However, MSC culture is labor-intensive, so these cells cannot be applied immediately to regenerate cartilage for clinical purposes. Risks during the ex vivo expansion of MSCs, such as infection and immunogenicity, can be a bottleneck in their use in clinical tissue engineering. As a novel stem cell source, pericytes are generally considered to be the origin of MSCs. Pericytes do not have to undergo time-consuming ex vivo expansion because they are uncultured cells. Adipose tissue is another optimal stem cell reservoir. Because adipose tissue is well vascularized, a considerable number of pericytes are located around blood vessels in this accessible and dispensable tissue, and autologous pericytes can be applied immediately for cartilage regeneration. Thus, we suggest that adipose tissue-derived pericytes are promising seed cells for cartilage regeneration. Many studies have been performed to develop isolation methods for the adipose tissuederived stromal vascular fraction (AT-SVF) using lipoaspiration and sorting pericytes from AT-SVF. These methods are useful for sorting a large number of viable pericytes for clinical therapy after being combined with automatic isolation using an SVF device and automatic magnetic-activated cell sorting. These tools should help to develop one-step surgery for repairing cartilage damage. However, the use of adipose tissue-derived pericytes as a cell source for cartilage tissue engineering has not drawn sufficient attention and preclinical studies are needed to improve cell purity, to increase sorting efficiency, and to assess safety issues of clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. [CD34(+)/CD123(+) cell sorting from the patients with leukemia by Midi MACS method].

    PubMed

    Wang, Guang-Ping; Cao, Xin-Yu; Xin, Hong-Ya; Li, Qun; Qi, Zhen-Hua; Chen, Fang-Ping

    2006-10-01

    The aim of this study was to sort the CD34(+)/CD123(+) cells from the bone marrow cells of patients with acute myeloid leukemia (AML) by Midi MACS method. Firstly, the bone marrow mononuclear cells (BMMNC) were isolated from the patients with AML with Ficoll Paque, CD34(+) cells were then isolated by Midi MACS method followed by the isolation of CD34(+)/CD123(+) cells from the fraction of CD34(+) cells. The enrichment and recovery of CD34(+) and CD34(+)/CD123(+) cells were assayed by FACS technique. The results showed that the enrichment of CD34(+) cells was up to 98.73%, its average enrichment was 95.6%, and the recovery of CD34(+) was 84.6%, its average recovery was 51% after the first round sorting, by the second round sorting, the enrichment of CD34(+)/CD123(+) cells was up to 99.23%, its average enrichment was 83%. With regard to BMMNCs before sorting, the recovery of CD34(+)/CD123(+) was 34%. But, on the CD34(+) cells obtained by the first round sorting, its recovery was 56%. In conclusion, these results confirmed that the method of Midi MACS sorting can be applied to sort CD34(+)/CD123(+) cells from the bone marrow cells of AML patients, which give rise to the similar enrichment and recovery of the sorted cells with that of literature reported by the method of FACS.

  18. Deformability and size-based cancer cell separation using an integrated microfluidic device.

    PubMed

    Pang, Long; Shen, Shaofei; Ma, Chao; Ma, Tongtong; Zhang, Rui; Tian, Chang; Zhao, Lei; Liu, Wenming; Wang, Jinyi

    2015-11-07

    Cell sorting by filtration techniques offers a label-free approach for cell separation on the basis of size and deformability. However, filtration is always limited by the unpredictable variation of the filter hydrodynamic resistance due to cell accumulation and clogging in the microstructures. In this study, we present a new integrated microfluidic device for cell separation based on the cell size and deformability by combining the microstructure-constricted filtration and pneumatic microvalves. Using this device, the cell populations sorted by the microstructures can be easily released in real time for subsequent analysis. Moreover, the periodical sort and release of cells greatly avoided cell accumulation and clogging and improved the selectivity. Separation of cancer cells (MCF-7, MDA-MB-231 and MDA231-LM2) with different deformability showed that the mixture of the less flexible cells (MCF-7) and the flexible cells (MDA-MB-231 and MDA231-LM2) can be well separated with more than 75% purity. Moreover, the device can be used to separate cancer cells from the blood samples with more than 90% cell recovery and more than 80% purity. Compared with the current filtration methods, the device provides a new approach for cancer cell separation with high collection recovery and purity, and also, possesses practical potential to be applied as a sample preparation platform for fundamental studies and clinical applications.

  19. Elastomeric microparticles for acoustic mediated bioseparations

    PubMed Central

    2013-01-01

    Background Acoustophoresis has been utilized successfully in applications including cell trapping, focusing, and purification. One current limitation of acoustophoresis for cell sorting is the reliance on the inherent physical properties of cells (e.g., compressibility, density) instead of selecting cells based upon biologically relevant surface-presenting antigens. Introducing an acoustophoretic cell sorting approach that allows biochemical specificity may overcome this limitation, thus advancing the value of acoustophoresis approaches for both the basic research and clinical fields. Results The results presented herein demonstrate the ability for negative acoustic contrast particles (NACPs) to specifically capture and transport positive acoustic contrast particles (PACPs) to the antinode of an ultrasound standing wave. Emulsification and post curing of pre-polymers, either polydimethylsiloxane (PDMS) or polyvinylmethylsiloxane (PVMS), within aqueous surfactant solution results in the formation of stable NACPs that focus onto pressure antinodes. We used either photochemical reactions with biotin-tetrafluorophenyl azide (biotin-TFPA) or end-functionalization of Pluronic F108 surfactant to biofunctionalize NACPs. These biotinylated NACPs bind specifically to streptavidin polystyrene microparticles (as cell surrogates) and transport them to the pressure antinode within an acoustofluidic chip. Conclusion To the best of our knowledge, this is the first demonstration of using NACPs as carriers for transport of PACPs in an ultrasound standing wave. By using different silicones (i.e., PDMS, PVMS) and curing chemistries, we demonstrate versatility of silicone materials for NACPs and advance the understanding of useful approaches for preparing NACPs. This bioseparation scheme holds potential for applications requiring rapid, continuous separations such as sorting and analysis of cells and biomolecules. PMID:23809852

  20. Jab1 regulates Schwann cell proliferation and axonal sorting through p27

    PubMed Central

    Porrello, Emanuela; Rivellini, Cristina; Dina, Giorgia; Triolo, Daniela; Del Carro, Ubaldo; Ungaro, Daniela; Panattoni, Martina; Feltri, Maria Laura; Wrabetz, Lawrence; Pardi, Ruggero; Quattrini, Angelo

    2014-01-01

    Axonal sorting is a crucial event in nerve formation and requires proper Schwann cell proliferation, differentiation, and contact with axons. Any defect in axonal sorting results in dysmyelinating peripheral neuropathies. Evidence from mouse models shows that axonal sorting is regulated by laminin211– and, possibly, neuregulin 1 (Nrg1)–derived signals. However, how these signals are integrated in Schwann cells is largely unknown. We now report that the nuclear Jun activation domain–binding protein 1 (Jab1) may transduce laminin211 signals to regulate Schwann cell number and differentiation during axonal sorting. Mice with inactivation of Jab1 in Schwann cells develop a dysmyelinating neuropathy with axonal sorting defects. Loss of Jab1 increases p27 levels in Schwann cells, which causes defective cell cycle progression and aberrant differentiation. Genetic down-regulation of p27 levels in Jab1-null mice restores Schwann cell number, differentiation, and axonal sorting and rescues the dysmyelinating neuropathy. Thus, Jab1 constitutes a regulatory molecule that integrates laminin211 signals in Schwann cells to govern cell cycle, cell number, and differentiation. Finally, Jab1 may constitute a key molecule in the pathogenesis of dysmyelinating neuropathies. PMID:24344238

  1. Label-free density difference amplification-based cell sorting.

    PubMed

    Song, Jihwan; Song, Minsun; Kang, Taewook; Kim, Dongchoul; Lee, Luke P

    2014-11-01

    The selective cell separation is a critical step in fundamental life sciences, translational medicine, biotechnology, and energy harvesting. Conventional cell separation methods are fluorescent activated cell sorting and magnetic-activated cell sorting based on fluorescent probes and magnetic particles on cell surfaces. Label-free cell separation methods such as Raman-activated cell sorting, electro-physiologically activated cell sorting, dielectric-activated cell sorting, or inertial microfluidic cell sorting are, however, limited when separating cells of the same kind or cells with similar sizes and dielectric properties, as well as similar electrophysiological phenotypes. Here we report a label-free density difference amplification-based cell sorting (dDACS) without using any external optical, magnetic, electrical forces, or fluidic activations. The conceptual microfluidic design consists of an inlet, hydraulic jump cavity, and multiple outlets. Incoming particles experience gravity, buoyancy, and drag forces in the separation chamber. The height and distance that each particle can reach in the chamber are different and depend on its density, thus allowing for the separation of particles into multiple outlets. The separation behavior of the particles, based on the ratio of the channel heights of the inlet and chamber and Reynolds number has been systematically studied. Numerical simulation reveals that the difference between the heights of only lighter particles with densities close to that of water increases with increasing the ratio of the channel heights, while decreasing Reynolds number can amplify the difference in the heights between the particles considered irrespective of their densities.

  2. Physical Mechanisms Driving Cell Sorting in Hydra.

    PubMed

    Cochet-Escartin, Olivier; Locke, Tiffany T; Shi, Winnie H; Steele, Robert E; Collins, Eva-Maria S

    2017-12-19

    Cell sorting, whereby a heterogeneous cell mixture organizes into distinct tissues, is a fundamental patterning process in development. Hydra is a powerful model system for carrying out studies of cell sorting in three dimensions, because of its unique ability to regenerate after complete dissociation into individual cells. The physicists Alfred Gierer and Hans Meinhardt recognized Hydra's self-organizing properties more than 40 years ago. However, what drives cell sorting during regeneration of Hydra from cell aggregates is still debated. Differential motility and differential adhesion have been proposed as driving mechanisms, but the available experimental data are insufficient to distinguish between these two. Here, we answer this longstanding question by using transgenic Hydra expressing fluorescent proteins and a multiscale experimental and numerical approach. By quantifying the kinematics of single cell and whole aggregate behaviors, we show that no differences in cell motility exist among cell types and that sorting dynamics follow a power law with an exponent of ∼0.5. Additionally, we measure the physical properties of separated tissues and quantify their viscosities and surface tensions. Based on our experimental results and numerical simulations, we conclude that tissue interfacial tensions are sufficient to explain cell sorting in aggregates of Hydra cells. Furthermore, we demonstrate that the aggregate's geometry during sorting is key to understanding the sorting dynamics and explains the exponent of the power law behavior. Our results answer the long standing question of the physical mechanisms driving cell sorting in Hydra cell aggregates. In addition, they demonstrate how powerful this organism is for biophysical studies of self-organization and pattern formation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Standard practice for cell sorting in a BSL-3 facility.

    PubMed

    Perfetto, Stephen P; Ambrozak, David R; Nguyen, Richard; Roederer, Mario; Koup, Richard A; Holmes, Kevin L

    2011-01-01

    Over the past decade, there has been a rapid growth in the number of BSL-3 and BSL-4 laboratories in the USA and an increase in demand for infectious cell sorting in BSL-3 laboratories. In 2007, the International Society for Advancement of Cytometry (ISAC) Biosafety Committee published standards for the sorting of unfixed cells and is an important resource for biosafety procedures when performing infectious cell sorting. Following a careful risk assessment, if it is determined that a cell sorter must be located within a BSL-3 laboratory, there are a variety of factors to be considered prior to the establishment of the laboratory. This chapter outlines procedures for infectious cell sorting in a BSL-3 environment to facilitate the establishment and safe operation of a BSL-3 cell sorting laboratory. Subjects covered include containment verification, remote operation, disinfection, personal protective equipment (PPE), and instrument-specific modifications for enhanced aerosol evacuation.

  4. Standard Practice for Cell Sorting in a BSL-3 Facility

    PubMed Central

    Perfetto, Stephen P.; Ambrozak, David R.; Nguyen, Richard; Roederer, Mario; Koup, Richard A.; Holmes, Kevin L.

    2016-01-01

    Over the past decade, there has been a rapid growth in the number of BSL-3 and BSL-4 laboratories in the USA and an increase in demand for infectious cell sorting in BSL-3 laboratories. In 2007, the International Society for Advancement of Cytometry (ISAC) Biosafety Committee published standards for the sorting of unfixed cells and is an important resource for biosafety procedures when performing infectious cell sorting. Following a careful risk assessment, if it is determined that a cell sorter must be located within a BSL-3 laboratory, there are a variety of factors to be considered prior to the establishment of the laboratory. This chapter outlines procedures for infectious cell sorting in a BSL-3 environment to facilitate the establishment and safe operation of a BSL-3 cell sorting laboratory. Subjects covered include containment verification, remote operation, disinfection, personal protective equipment (PPE), and instrument-specific modifications for enhanced aerosol evacuation. PMID:21116997

  5. Flow karyotyping and sorting of human chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.W.; Lucas, J.; Peters, D.

    1986-07-16

    Flow cytometry and sorting are becoming increasingly useful as tools for chromosome classfication and for the detection of numerical and structural chromosome aberrations. Chromosomes of a single type can be purified with these tools to facilitate gene mapping or production of chromosome specific recombinant DNA libraries. For analysis of chromosomes with flow cytometry, the chromosomes are extracted from mitotic cells, stained with one or more fluorescent dyes and classified one-by-one according to their dye content(s). Thus, the flow approach is fundamentally different than conventional karyotyping where chromosomes are classified within the context of a metaphase spread. Flow sorting allows purificationmore » of chromosomes that can be distinguished flow cytometrically. The authors describe the basic principles of flow cytometric chromosome classification i.e. flow karyotyping, and chromosome sorting and describe several applications. 30 refs., 8 figs.« less

  6. Imaging cell picker: A morphology-based automated cell separation system on a photodegradable hydrogel culture platform.

    PubMed

    Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji

    2018-06-09

    Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells.

    PubMed

    Lehnen, Daniela; Barral, Serena; Cardoso, Tiago; Grealish, Shane; Heuer, Andreas; Smiyakin, Andrej; Kirkeby, Agnete; Kollet, Jutta; Cremer, Harold; Parmar, Malin; Bosio, Andreas; Knöbel, Sebastian

    2017-10-10

    Human pluripotent stem cell (hPSC)-derived mesencephalic dopaminergic (mesDA) neurons can relieve motor deficits in animal models of Parkinson's disease (PD). Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP) is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP + mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA) neurons in vitro. Intrastriatal transplantation of IAP + cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP + mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies. Copyright © 2017 Miltenyi Biotec GmbH. Published by Elsevier Inc. All rights reserved.

  8. Fabrication of Carbon Nanotube Networks on Three-Dimensional Building Blocks and Their Applications

    DTIC Science & Technology

    2012-10-27

    increases the detection efficiency via sorting of analyte. There are some reports for sorting or separating blood cell, colloidal and bacteria by...the substrates for cyclic voltammetry (CV), pulsed bias of ECD was applied at -1.2 V during 90, 120 and 150 sec for 1, 3 and 5 μm pillar substrates...Deposition with Al2O3: The atomic layer deposition (ALD, Cyclic 4000, Genitech) was introduced to deposit the Al2O3 on the surfaces of network

  9. Comparison between immunofluorescence and immunomagnetic techniques of cytometry

    NASA Astrophysics Data System (ADS)

    Tchikov, V.; Schütze, S.; Krönke, M.

    1999-04-01

    Magnetophoresis and fluorescence activated cell sorting were used for evaluation of immunochemical properties of magnetic particles and fluorescent probes. The HLA-Bw6 antigen on surfaces of REH cells was detected with a primary monoclonal antibody and a secondary antibody coupled with fluorescent molecules or magnetic particles. Magnetophoresis can find applications in biology and medicine for measuring percentages of cell subpopulations.

  10. Viable cell sorting of dinoflagellates by multi-parametric flow cytometry.

    USDA-ARS?s Scientific Manuscript database

    Electronic cell sorting for isolation and culture of dinoflagellates and other marine eukaryotic phytoplankton was compared to the traditional method of manually picking of cells using a micropipette. Trauma to electronically sorted cells was not a limiting factor as fragile dinoflagellates, such a...

  11. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots

    PubMed Central

    Kuo, Chun-Ting; Thompson, Alison M.; Gallina, Maria Elena; Ye, Fangmao; Johnson, Eleanor S.; Sun, Wei; Zhao, Mengxia; Yu, Jiangbo; Wu, I-Che; Fujimoto, Bryant; DuFort, Christopher C.; Carlson, Markus A.; Hingorani, Sunil R.; Paguirigan, Amy L.; Radich, Jerald P.; Chiu, Daniel T.

    2016-01-01

    The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical ‘painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a ‘paintbrush' and the photoswitchable Pdots as the ‘paint', we select and ‘paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis. PMID:27118210

  12. Cloning of Plasmodium falciparum by single-cell sorting

    PubMed Central

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  13. A cell sorting and trapping microfluidic device with an interdigital channel

    NASA Astrophysics Data System (ADS)

    Tu, Jing; Qiao, Yi; Xu, Minghua; Li, Junji; Liang, Fupeng; Duan, Mengqin; Ju, An; Lu, Zuhong

    2016-12-01

    The growing interest in cell sorting and trapping is driving the demand for high performance technologies. Using labeling techniques or external forces, cells can be identified by a series of methods. However, all of these methods require complicated systems with expensive devices. Based on inherent differences in cellular morphology, cells can be sorted by specific structures in microfluidic devices. The weir filter is a basic and efficient cell sorting and trapping structure. However, in some existing weir devices, because of cell deformability and high flow velocity in gaps, trapped cells may become stuck or even pass through the gaps. Here, we designed and fabricated a microfluidic device with interdigital channels for cell sorting and trapping. The chip consisted of a sheet of silicone elastomer polydimethylsiloxane and a sheet of glass. A square-wave-like weir was designed in the middle of the channel, comprising the interdigital channels. The square-wave pattern extended the weir length by three times with the channel width remaining constant. Compared with a straight weir, this structure exhibited a notably higher trapping capacity. Interdigital channels provided more space to slow down the rate of the pressure decrease, which prevented the cells from becoming stuck in the gaps. Sorting a mixture K562 and blood cells to trap cells demonstrated the efficiency of the chip with the interdigital channel to sort and trap large and less deformable cells. With stable and efficient cell sorting and trapping abilities, the chip with an interdigital channel may be widely applied in scientific research fields.

  14. Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques.

    PubMed

    Xavier, Miguel; Oreffo, Richard O C; Morgan, Hywel

    2016-01-01

    Skeletal stem cells (SSC) are a sub-population of bone marrow stromal cells that reside in postnatal bone marrow with osteogenic, chondrogenic and adipogenic differentiation potential. SSCs reside only in the bone marrow and have organisational and regulatory functions in the bone marrow microenvironment and give rise to the haematopoiesis-supportive stroma. Their differentiation capacity is restricted to skeletal lineages and therefore the term SSC should be clearly distinguished from mesenchymal stem cells which are reported to exist in extra-skeletal tissues and, critically, do not contribute to skeletal development. SSCs are responsible for the unique regeneration capacity of bone and offer unlimited potential for application in bone regenerative therapies. A current unmet challenge is the isolation of homogeneous populations of SSCs, in vitro, with homogeneous regeneration and differentiation capacities. Challenges that limit SSC isolation include a) the scarcity of SSCs in bone marrow aspirates, estimated at between 1 in 10-100,000 mononuclear cells; b) the absence of specific markers and thus the phenotypic ambiguity of the SSC and c) the complexity of bone marrow tissue. Microfluidics provides innovative approaches for cell separation based on bio-physical features of single cells. Here we review the physical principles underlying label-free microfluidic sorting techniques and review their capacity for stem cell selection/sorting from complex (heterogeneous) samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels

    PubMed Central

    Nivedita, Nivedita; Ligrani, Phillip; Papautsky, Ian

    2017-01-01

    A wide range of microfluidic cell-sorting devices has emerged in recent years, based on both passive and active methods of separation. Curvilinear channel geometries are often used in these systems due to presence of secondary flows, which can provide high throughput and sorting efficiency. Most of these devices are designed on the assumption of two counter rotating Dean vortices present in the curved rectangular channels and existing in the state of steady rotation and amplitude. In this work, we investigate these secondary flows in low aspect ratio spiral rectangular microchannels and define their development with respect to the channel aspect ratio and Dean number. This work is the first to experimentally and numerically investigate Dean flows in microchannels for Re > 100, and show presence of secondary Dean vortices beyond a critical Dean number. We further demonstrate the impact of these multiple vortices on particle and cell focusing. Ultimately, this work offers new insights into secondary flow instabilities for low-aspect ratio, spiral microchannels, with improved flow models for design of more precise and efficient microfluidic devices for applications such as cell sorting and micromixing. PMID:28281579

  16. CellSort: a support vector machine tool for optimizing fluorescence-activated cell sorting and reducing experimental effort.

    PubMed

    Yu, Jessica S; Pertusi, Dante A; Adeniran, Adebola V; Tyo, Keith E J

    2017-03-15

    High throughput screening by fluorescence activated cell sorting (FACS) is a common task in protein engineering and directed evolution. It can also be a rate-limiting step if high false positive or negative rates necessitate multiple rounds of enrichment. Current FACS software requires the user to define sorting gates by intuition and is practically limited to two dimensions. In cases when multiple rounds of enrichment are required, the software cannot forecast the enrichment effort required. We have developed CellSort, a support vector machine (SVM) algorithm that identifies optimal sorting gates based on machine learning using positive and negative control populations. CellSort can take advantage of more than two dimensions to enhance the ability to distinguish between populations. We also present a Bayesian approach to predict the number of sorting rounds required to enrich a population from a given library size. This Bayesian approach allowed us to determine strategies for biasing the sorting gates in order to reduce the required number of enrichment rounds. This algorithm should be generally useful for improve sorting outcomes and reducing effort when using FACS. Source code available at http://tyolab.northwestern.edu/tools/ . k-tyo@northwestern.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. Non-linear optical measurements using a scanned, Bessel beam

    NASA Astrophysics Data System (ADS)

    Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.

    2015-03-01

    Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.

  18. Hoechst fluorescence intensity can be used to separate viable bromodeoxyuridine-labeled cells from viable non-bromodeoxyuridine-labeled cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.

    2000-01-01

    BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.

  19. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  20. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-09

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.

  1. Cloning of Plasmodium falciparum by single-cell sorting.

    PubMed

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Flow cytogenetics and chromosome sorting.

    PubMed

    Cram, L S

    1990-06-01

    This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.

  3. Practical selection methods for rat and mouse round spermatids without DNA staining by flow cytometric cell sorting.

    PubMed

    Hayama, Tomonari; Yamaguchi, Tomoyuki; Kato-Itoh, Megumi; Ishii, Yumiko; Mizuno, Naoaki; Umino, Ayumi; Sato, Hideyuki; Sanbo, Makoto; Hamanaka, Sanae; Masaki, Hideki; Hirabayashi, Masumi; Nakauchi, Hiromitsu

    2016-06-01

    Round spermatid injection (ROSI) into unfertilized oocytes enables a male with a severe spermatogenesis disorder to have children. One limitation of the application of this technique in the clinic is the identification and isolation of round spermatids from testis tissue. Here we developed an efficient and simple method to isolate rodent haploid round spermatids using flow cytometric cell sorting, based on DNA content (stained with Hoechst 33342 or Dye Cycle Violet) or by cell diameter and granularity (forward and side scatter). ROSI was performed with round spermatids selected by flow cytometry, and we obtained healthy offspring from unstained cells. This non-invasive method could therefore be an effective option for breeding domestic animals and human male infertility treatment. Mol. Reprod. Dev. 83: 488-496, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. FACS single cell index sorting is highly reliable and determines immune phenotypes of clonally expanded T cells.

    PubMed

    Penter, Livius; Dietze, Kerstin; Bullinger, Lars; Westermann, Jörg; Rahn, Hans-Peter; Hansmann, Leo

    2018-03-14

    FACS index sorting allows the isolation of single cells with retrospective identification of each single cell's high-dimensional immune phenotype. We experimentally determine the error rate of index sorting and combine the technology with T cell receptor sequencing to identify clonal T cell expansion in aplastic anemia bone marrow as an example. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microfabrication and Test of a Three-Dimensional Polymer Hydro-focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feeback, Daniel L.; Wang, Wanjun

    2004-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydro-focusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures.

  6. Microfabrication and Test of a Three-Dimensional Polymer Hydro-Focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feedback, Daniel L.; Wang, Wanjun

    2004-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was micro-fabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, micro-fabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily micro-fabricated and integrated with other polymer microfluidic structures.

  7. Application of advanced cytometric and molecular technologies to minimal residual disease monitoring

    NASA Astrophysics Data System (ADS)

    Leary, James F.; He, Feng; Reece, Lisa M.

    2000-04-01

    Minimal residual disease monitoring presents a number of theoretical and practical challenges. Recently it has been possible to meet some of these challenges by combining a number of new advanced biotechnologies. To monitor the number of residual tumor cells requires complex cocktails of molecular probes that collectively provide sensitivities of detection on the order of one residual tumor cell per million total cells. Ultra-high-speed, multi parameter flow cytometry is capable of analyzing cells at rates in excess of 100,000 cells/sec. Residual tumor selection marker cocktails can be optimized by use of receiver operating characteristic analysis. New data minimizing techniques when combined with multi variate statistical or neural network classifications of tumor cells can more accurately predict residual tumor cell frequencies. The combination of these techniques can, under at least some circumstances, detect frequencies of tumor cells as low as one cell in a million with an accuracy of over 98 percent correct classification. Detection of mutations in tumor suppressor genes requires insolation of these rare tumor cells and single-cell DNA sequencing. Rare residual tumor cells can be isolated at single cell level by high-resolution single-cell cell sorting. Molecular characterization of tumor suppressor gene mutations can be accomplished using a combination of single- cell polymerase chain reaction amplification of specific gene sequences followed by TA cloning techniques and DNA sequencing. Mutations as small as a single base pair in a tumor suppressor gene of a single sorted tumor cell have been detected using these methods. Using new amplification procedures and DNA micro arrays it should be possible to extend the capabilities shown in this paper to screening of multiple DNA mutations in tumor suppressor and other genes on small numbers of sorted metastatic tumor cells.

  8. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release.

    PubMed

    Zhang, Peiran; Ren, Lihui; Zhang, Xu; Shan, Yufei; Wang, Yun; Ji, Yuetong; Yin, Huabing; Huang, Wei E; Xu, Jian; Ma, Bo

    2015-02-17

    Raman-activated cell sorting (RACS) is a promising single-cell technology that holds several significant advantages, as RACS is label-free, information-rich, and potentially in situ. To date, the ability of the technique to identify single cells in a high-speed flow has been limited by inherent weakness of the spontaneous Raman signal. Here we present an alternative pause-and-sort RACS microfluidic system that combines positive dielectrophoresis (pDEP) for single-cell trap and release with a solenoid-valve-suction-based switch for cell separation. This has allowed the integration of trapping, Raman identification, and automatic separation of individual cells in a high-speed flow. By exerting a periodical pDEP field, single cells were trapped, ordered, and positioned individually to the detection point for Raman measurement. As a proof-of-concept demonstration, a mixture of two cell strains containing carotenoid-producing yeast (9%) and non-carotenoid-producing Saccharomyces cerevisiae (91%) was sorted, which enriched the former to 73% on average and showed a fast Raman-activated cell sorting at the subsecond level.

  9. Sensitivity of Breast Cancer Stem Cells to TRA-8 Anti-DR5 Monoclonal Antibody

    DTIC Science & Technology

    2012-02-01

    cytotoxicity and reduction in BrCSC marker expression. A. 2LMP cells were sorted using flow cytometry for CD44+/CD24-/ALDHhigh. Cells were pre...cells were sorted using flow cytometry for ALDH? cells and allowed to form primary tumorspheres for 3 days. After tumorspheres were mechanically...n =5 ) Day Fig. 5 Effect of ex vivo treatment of BrCSC enriched cells on tumorgenicity in NOD/SCID mice. 2LMP cells were sorted using flow cytometry

  10. Droplet electric separator microfluidic device for cell sorting

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Ji, Xing-Hu; Liu, Kan; He, Rong-Xiang; Zhao, Li-Bo; Guo, Zhi-Xiao; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong

    2010-05-01

    A simple and effective droplet electric separator microfluidic device was developed for cell sorting. The aqueous droplet without precharging operation was influenced to move a distance in the channel along the electric field direction by applying dc voltage on the electrodes beside the channel, which made the target droplet flowing to the collector. Single droplet can be isolated in a sorting rate of ˜100 Hz with microelectrodes under a required pulse. Single or multiple mammalian cell (HePG2) encapsulated in the surfactant free alginate droplet could be sorted out respectively. This method may be used for single cell operation or analysis.

  11. Coupling Bacterial Activity Measurements with Cell Sorting by Flow Cytometry.

    PubMed

    Servais; Courties; Lebaron; Troussellier

    1999-08-01

    > Abstract A new procedure to investigate the relationship between bacterial cell size and activity at the cellular level has been developed; it is based on the coupling of radioactive labeling of bacterial cells and cell sorting by flow cytometry after SYTO 13 staining. Before sorting, bacterial cells were incubated in the presence of tritiated leucine using a procedure similar to that used for measuring bacterial production by leucine incorporation and then stained with SYTO 13. Subpopulations of bacterial cells were sorted according to their average right-angle light scatter (RALS) and fluorescence. Average RALS was shown to be significantly related to the average biovolume. Experiments were performed on samples collected at different times in a Mediterranean seawater mesocosm enriched with nitrogen and phosphorus. At four sampling times, bacteria were sorted in two subpopulations (cells smaller and larger than 0.25 µm(3)). The results indicate that, at each sampling time, the growth rate of larger cells was higher than that of smaller cells. In order to confirm this tendency, cell sorting was performed on six subpopulations differing in average biovolume during the mesocosm follow-up. A clear increase of the bacterial growth rates was observed with increasing cell size for the conditions met in this enriched mesocosm.http://link.springer-ny.com/link/service/journals/00248/bibs/38n2p180.html

  12. Integration-deficient lentivectors: an effective strategy to purify and differentiate human embryonic stem cell-derived hepatic progenitors.

    PubMed

    Yang, Guanghua; Si-Tayeb, Karim; Corbineau, Sébastien; Vernet, Rémi; Gayon, Régis; Dianat, Noushin; Martinet, Clémence; Clay, Denis; Goulinet-Mainot, Sylvie; Tachdjian, Gérard; Tachdjian, Gérard; Burks, Deborah; Vallier, Ludovic; Bouillé, Pascale; Dubart-Kupperschmitt, Anne; Weber, Anne

    2013-07-19

    Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine. However, the safety of cell therapy using differentiated hPSC derivatives must be improved through methods that will permit the transplantation of homogenous populations of a specific cell type. To date, purification of progenitors and mature cells generated from either embryonic or induced pluripotent stem cells remains challenging with use of conventional methods. We used lentivectors encoding green fluorescent protein (GFP) driven by the liver-specific apoliprotein A-II (APOA-II) promoter to purify human hepatic progenitors. We evaluated both integrating and integration-defective lentivectors in combination with an HIV integrase inhibitor. A human embryonic stem cell line was differentiated into hepatic progenitors using a chemically defined protocol. Subsequently, cells were transduced and sorted at day 16 of differentiation to obtain a cell population enriched in hepatic progenitor cells. After sorting, more than 99% of these APOA-II-GFP-positive cells expressed hepatoblast markers such as α-fetoprotein and cytokeratin 19. When further cultured for 16 days, these cells underwent differentiation into more mature cells and exhibited hepatocyte properties such as albumin secretion. Moreover, they were devoid of vector DNA integration. We have developed an effective strategy to purify human hepatic cells from cultures of differentiating hPSCs, producing a novel tool that could be used not only for cell therapy but also for in vitro applications such as drug screening. The present strategy should also be suitable for the purification of a broad range of cell types derived from either pluripotent or adult stem cells.

  13. Trapping, focusing, and sorting of microparticles through bubble streaming

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha

    2010-11-01

    Ultrasound-driven oscillating microbubbles can set up vigorous steady streaming flows around the bubbles. In contrast to previous work, we make use of the interaction between the bubble streaming and the streaming induced around mobile particles close to the bubble. Our experiment superimposes a unidirectional Poiseuille flow containing a well-mixed suspension of neutrally buoyant particles with the bubble streaming. The particle-size dependence of the particle-bubble interaction selects which particles are transported and which particles are trapped near the bubbles. The sizes selected for can be far smaller than any scale imposed by the device geometry, and the selection mechanism is purely passive. Changing the amplitude and frequency of ultrasound driving, we can further control focusing and sorting of the trapped particles, leading to the emergence of sharply defined monodisperse particle streams within a much wider channel. Optimizing parameters for focusing and sorting are presented. The technique is applicable in important fields like cell sorting and drug delivery.

  14. Flow cytometric sex sorting affects CD4 membrane distribution and binding of exogenous DNA on bovine sperm cells.

    PubMed

    Domingues, William Borges; da Silveira, Tony Leandro Rezende; Komninou, Eliza Rossi; Monte, Leonardo Garcia; Remião, Mariana Härter; Dellagostin, Odir Antônio; Corcini, Carine Dahl; Varela Junior, Antônio Sergio; Seixas, Fabiana Kömmling; Collares, Tiago; Campos, Vinicius Farias

    2017-08-01

    Bovine sex-sorted sperm have been commercialized and successfully used for the production of transgenic embryos of the desired sex through the sperm-mediated gene transfer (SMGT) technique. However, sex-sorted sperm show a reduced ability to internalize exogenous DNA. The interaction between sperm cells and the exogenous DNA has been reported in other species to be a CD4-like molecule-dependent process. The flow cytometry-based sex-sorting process subjects the spermatozoa to different stresses causing changes in the cell membrane. The aim of this study was to elucidate the relationship between the redistribution of CD4-like molecules and binding of exogenous DNA to sex-sorted bovine sperm. In the first set of experiments, the membrane phospholipid disorder and the redistribution of the CD4 were evaluated. The second set of experiments was conducted to investigate the effect of CD4 redistribution on the mechanism of binding of exogenous DNA to sperm cells and the efficiency of lipofection in sex-sorted bovine sperm. Sex-sorting procedure increased the membrane phospholipid disorder and induced the redistribution of CD4-like molecules. Both X-sorted and Y-sorted sperm had decreased DNA bound to membrane in comparison with the unsorted sperm; however, the binding of the exogenous DNA was significantly increased with the addition of liposomes. Moreover, we demonstrated that the number of sperm-bound exogenous DNA was decreased when these cells were preincubated with anti-bovine CD4 monoclonal antibody, supporting our hypothesis that CD4-like molecules indeed play a crucial role in the process of exogenous DNA/bovine sperm cells interaction.

  15. Channel Allocation in Wireless Integrated Services Networks for Low-Bit-Rate Applications.

    DTIC Science & Technology

    1998-06-01

    server remains idle until the beginning of the next slot, even if cells arrive in the meanwhile.7 The server is assumed to be non - preemptive , i.e., it...If the ToE of the cell is smaller than 1/C^(the service time): i) Discard the cell. 2. Sort the remaining cells in the queue in a non -decreasing...126 Next, the cell-loss-probability ratios (CLPR) of non -empty sources (i.e., having at least one cell in the queue ) defined as ratios between the

  16. [Lentivirus-mediated RNA interference of CD133 inhibits the proliferation of CD133(+) liver cancer stem cells and increases their cisplatin chemosensitivity].

    PubMed

    Lan, Xi; Wang, Yong; Cao, Shu; Zou, Dongling; Li, Fang; Li, Shaolin

    2012-12-01

    To study the effects of CD133 suppression by lentivirus-mediated RNA interference (RNAi) on the proliferation and chemosensitivity of CD133(+) cancer stem cells (CSCs) sorted from HepG2 cell line. CD133(+) and CD133- cells were sorted from HepG2 cell line by flow cytometry, and the expression of CD133 before and after cell sorting were detected. The stem cell property of sorted CD133(+) cells were validated by sphere-forming assay in vitro and xenograft experiments in vivo. Lentivirus-mediated short hairpin RNA (shRNA) targeting CD133 were transfected into CD133(+) cells, and CD133 mRNA and protein expressions of the transfected cells were detected by RT-PCR and Western blotting, respectively. Before and after the transfection, the proliferative ability of CD133(+) cells was evaluated by colony formation assay, and the cell growth inhibition rate and apoptosis following cisplatin exposure were detected using CCK-8 assay and flow cytometry. The sorted CD133(+) cells showed a high purity of (88.74∓3.19)%, as compared with the purity of (3.36∓1.80)% before cell sorting. CD133(+) cells showed a high tumor sphere formation ability and tumorigenesis capacity compared with CD133- cells. CD133 shRNA transfection significantly inhibited CD133 mRNA and protein expressions in CD133(+) cells (P<0.01), resulting also in a significantly lowered cell proliferative ability (P<0.01) and an increased growth inhibition rate (P<0.01) and obviously increased cell apoptosis (P<0.05) after cisplatin exposure. Lentivirus-mediated RNAi for CD133 suppression inhibits the proliferation of CD133(+) liver cancer stem cells and increases their chemosensitivity to cisplatin.

  17. Microfluidic integrated acoustic waving for manipulation of cells and molecules.

    PubMed

    Barani, Alireza; Paktinat, Hossein; Janmaleki, Mohsen; Mohammadi, Aminollah; Mosaddegh, Peiman; Fadaei-Tehrani, Alireza; Sanati-Nezhad, Amir

    2016-11-15

    Acoustophoresis with its simple and low-cost fabrication, rapid and localized fluid actuation, compatibility with microfluidic components, and biocompatibility for cellular studies, has been extensively integrated into microfluidics to provide on-chip microdevices for a variety of applications in biology, bioengineering and chemistry. Among different applications, noninvasive manipulation of cells and biomolecules are significantly important, which are addressed by acoustic-based microfluidics. Here in this paper, we briefly explain the principles and different configurations of acoustic wave and acoustic streaming for the manipulation of cells and molecules and overview its applications for single cell isolation, cell focusing and sorting, cell washing and patterning, cell-cell fusion and communication, and tissue engineering. We further discuss the application of acoustic-based microfluidic systems for the mixing and transport of liquids, manipulation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules, followed by explanation on the present challenges of acoustic-based microfluidics for the handling of cells and molecules, and highlighting the future directions. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  18. One-step fabrication of 3D silver paste electrodes into microfluidic devices for enhanced droplet-based cell sorting

    NASA Astrophysics Data System (ADS)

    Rao, Lang; Cai, Bo; Yu, Xiao-Lei; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2015-05-01

    3D microelectrodes are one-step fabricated into a microfluidic droplet separator by filling conductive silver paste into PDMS microchambers. The advantages of 3D silver paste electrodes in promoting droplet sorting accuracy are systematically demonstrated by theoretical calculation, numerical simulation and experimental validation. The employment of 3D electrodes also helps to decrease the droplet sorting voltage, guaranteeing that cells encapsulated in droplets undergo chip-based sorting processes are at better metabolic status for further potential cellular assays. At last, target droplet containing single cell are selectively sorted out from others by an appropriate electric pulse. This method provides a simple and inexpensive alternative to fabricate 3D electrodes, and it is expected our 3D electrode-integrated microfluidic droplet separator platform can be widely used in single cell operation and analysis.

  19. Microfabrication and Test of a Three-Dimensional Polymer Hydro-focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feeback, Daniel L.; Wang, Wan-Jun

    2005-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures. Keywords: SU-8, three-dimensional hydro-focusing, microfluidic, microchannel, cytometer

  20. On-chip cell sorting via patterned magnetic traps

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Prikockis, Michael; Chen, Aaron; Miller, Brandon; Chalmers, Jeffrey; Sooryakumar, Ratnasingham

    2015-03-01

    Due to their importance in research for the diagnosis and treatment of cancer, numerous schemes have been developed to sort rare cell populations, e.g., circulating tumor cells (CTCs), from a larger ensemble of cells. Here, we improve upon a previously developed microfluidic device (Lab Chip 13, 1172, (2013)) to increase throughput and sorting purity of magnetically labeled cells. The separation mechanism involves controlling magnetic forces by manipulating the magnetic domain structures of embedded permalloy microdisks with weak external fields. These forces move labeled cells from the input flow stream into an adjacent buffer flow stream. Such magnetically activated transfer separates the magnetic entities from their non-magnetic counterparts as the two flow streams split apart and move toward their respective outputs. Purity of the magnetic output is modulated by the withdrawal rate of the non-magnetic output relative to the inputs. A proof of concept shows that CTCs from metastatic breast cancer patients can be sorted, recovered from the device, and confirmed as CTCs using separate immunofluorescence staining and analysis. With further optimizations, the channel could become a useful device for high purity final sorting of enriched patient cell samples.

  1. Biological cell controllable patch-clamp microchip

    NASA Astrophysics Data System (ADS)

    Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long

    2010-12-01

    A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.

  2. Purification of adult hepatic progenitor cells using green fluorescent protein (GFP)-transgenic mice and fluorescence-activated cell sorting.

    PubMed

    Fujikawa, Takahisa; Hirose, Tetsuro; Fujii, Hideaki; Oe, Shoshiro; Yasuchika, Kentaro; Azuma, Hisaya; Yamaoka, Yoshio

    2003-08-01

    Recent advances in stem cell research have revealed that hepatic stem/progenitor cells may play an important role in liver development and regeneration. However, a lack of detectable definitive markers in viable cells has hindered their primary culture from adult livers. Enzymatically dissociated liver cells from green fluorescent protein (GFP)-transgenic mice, which express GFP highly in liver endodermal cells, were sorted by GFP expression using a fluorescence-activated cell sorter. Sorted cells were characterized, and also low-density cultured for extended periods to determine their proliferation and clonal differentiation capacities. When CD45(-)TER119(-) side-scatter(low) GFP(high) cells were sorted, alpha-fetoprotein-positive immature endoderm-characterized cells, having high growth potential, were present in this population. Clonal analysis and electron microscopic evaluation revealed that each single cell of this population could differentiate not only into hepatocytes, but also into biliary epithelial cells, showing their bilineage differentiation activity. When surface markers were analyzed, they were positive for Integrin-alpha6 and -beta1, but negative for c-Kit and Thy1.1. Combination of GFP-transgenic mice and fluorescence-activated cell sorting enabled purification of hepatic progenitor cells from adult mouse liver. Further analysis of this population may lead to purification of their human correspondence that would be an ideal cell-source candidate for regenerative medicine.

  3. Novel Serial Positive Enrichment Technology Enables Clinical Multiparameter Cell Sorting

    PubMed Central

    Tschulik, Claudia; Piossek, Christine; Bet, Jeannette; Yamamoto, Tori N.; Schiemann, Matthias; Neuenhahn, Michael; Martin, Klaus; Schlapschy, Martin; Skerra, Arne; Schmidt, Thomas; Edinger, Matthias; Riddell, Stanley R.; Germeroth, Lothar; Busch, Dirk H.

    2012-01-01

    A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated from other cells by combinations of multiple markers, which is still difficult to achieve – especially for clinical cell products. Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4high/CD25high/CD45RAhigh ‘regulatory T cells’ and CD8high/CD62Lhigh/CD45RAneg ‘central memory T cells’, have been established to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell sorting as well as basic research. PMID:22545138

  4. Application of visible spectroscopy in waste sorting

    NASA Astrophysics Data System (ADS)

    Spiga, Philippe; Bourely, Antoine

    2011-10-01

    Today, waste recycling, (bottles, papers...), is a mechanical operation: the waste are crushed, fused and agglomerated in order to obtain new manufactured products (e.g. new bottles, clothes ...). The plastics recycling is the main application in the color sorting process. The colorless plastics recovered are more valuable than the colored plastics. Other emergent applications are in the paper sorting, where the main goal is to sort dyed paper from white papers. Up to now, Pellenc Selective Technologies has manufactured color sorting machines based on RGB cameras. Three dimensions (red, green and blue) are no longer sufficient to detect low quantities of dye in the considered waste. In order to increase the efficiency of the color detection, a new sorting machine, based on visible spectroscopy, has been developed. This paper presents the principles of the two approaches and their difference in terms of sorting performance, making visible spectroscopy a clear winner.

  5. Purifying, Separating, and Concentrating Cells From a Sample Low in Biomass

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; LaDuc, Myron T.; Diamond, Rochelle

    2012-01-01

    Frequently there is an inability to process and analyze samples of low biomass due to limiting amounts of relevant biomaterial in the sample. Furthermore, molecular biological protocols geared towards increasing the density of recovered cells and biomolecules of interest, by their very nature, also concentrate unwanted inhibitory humic acids and other particulates that have an adversarial effect on downstream analysis. A novel and robust fluorescence-activated cell-sorting (FACS)-based technology has been developed for purifying (removing cells from sampling matrices), separating (based on size, density, morphology), and concentrating cells (spores, prokaryotic, eukaryotic) from a sample low in biomass. The technology capitalizes on fluorescent cell-sorting technologies to purify and concentrate bacterial cells from a low-biomass, high-volume sample. Over the past decade, cell-sorting detection systems have undergone enhancements and increased sensitivity, making bacterial cell sorting a feasible concept. Although there are many unknown limitations with regard to the applicability of this technology to environmental samples (smaller cells, few cells, mixed populations), dogmatic principles support the theoretical effectiveness of this technique upon thorough testing and proper optimization. Furthermore, the pilot study from which this report is based proved effective and demonstrated this technology capable of sorting and concentrating bacterial endospore and bacterial cells of varying size and morphology. Two commercial off-the-shelf bacterial counting kits were used to optimize a bacterial stain/dye FACS protocol. A LIVE/DEAD BacLight Viability and Counting Kit was used to distinguish between the live and dead cells. A Bacterial Counting Kit comprising SYTO BC (mixture of SYTO dyes) was employed as a broad-spectrum bacterial counting agent. Optimization using epifluorescence microscopy was performed with these two dye/stains. This refined protocol was further validated using varying ratios and mixtures of cells to ensure homogenous staining compared to that of individual cells, and were utilized for flow analyzer and FACS labeling. This technology focuses on the purification and concentration of cells from low-biomass spacecraft assembly facility samples. Currently, purification and concentration of low-biomass samples plague planetary protection downstream analyses. Having a capability to use flow cytometry to concentrate cells out of low-biomass, high-volume spacecraft/ facility sample extracts will be of extreme benefit to the fields of planetary protection and astrobiology. Successful research and development of this novel methodology will significantly increase the knowledge base for designing more effective cleaning protocols, and ultimately lead to a more empirical and true account of the microbial diversity present on spacecraft surfaces. Refined cleaning and an enhanced ability to resolve microbial diversity may decrease the overall cost of spacecraft assembly and/or provide a means to begin to assess challenging planetary protection missions.

  6. Application of Cell-Specific Isolation to the Study of Dopamine Signaling in Drosophila

    PubMed Central

    Iyer, Eswar Prasad R.; Iyer, Srividya Chandramouli; Cox, Daniel N.

    2014-01-01

    Dopamine neurotransmission accounts for a number of important brain functions across species including memory formation, the anticipation of reward, cognitive facilities, and drug addiction. Despite this functional significance, relatively little is known of the cellular pathways associated with drug-induced molecular adaptations within individual neurons. Due to its genetic tractability, simplicity, and economy of scale, Drosophila melanogaster has become an important tool in the study of neurological disease states, including drug addiction. To facilitate high-resolution functional analyses of dopamine signaling, it is highly advantageous to obtain genetic material, such as RNA or protein, from a homogeneous cell source. This process can be particularly challenging in most organisms including small model system organisms such as Drosophila melanogaster. Magnetic bead-based cell sorting has emerged as a powerful tool that can be used to isolate select populations of cells, from a whole organism or tissue such as the brain, for genomic as well as proteomic expression profiling. Coupled with the temporal and spatial specificity of the GAL4/UAS system, we demonstrate the application of magnetic bead-based cell sorting towards the isolation of dopaminergic neurons from the Drosophila adult nervous system. RNA derived from these neurons is of high quality and suitable for downstream applications such as microarray expression profiling or quantitative rtPCR. The versatility of this methodology stems from the fact that the cell-specific isolation method employed can be used under a variety of experimental conditions designed to survey molecular adaptations in dopamine signaling neurons including in response to drugs of abuse. PMID:23296786

  7. Mouse A6-positive hepatic oval cells derived from embryonic stem cells.

    PubMed

    Yin, Dong-zhi; Cai, Ji-ye; Zheng, Qi-chang; Chen, Zheng-wei; Zhao, Jing-xian; Yuan, You-neng

    2014-02-01

    Oval cells have a potential to differentiate into a variety of cell lineages including hepatocytes and biliary epithelia. Several models have been established to activate the oval cells by incorporating a variety of toxins and carcinogens, alone or combined with surgical treatment. Those models are obviously not suitable for the study on human hepatic oval cells. It is necessary to establish a new and efficient model to study the human hepatic oval cells. In this study, the hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were used to induce differentiation of mouse embryonic stem (ES) cells into hepatic oval cells. We first confirmed that hepatic oval cells derived from ES cells, which are bipotential, do exist during the course of mouse ES cells' differentiation into hepatic parenchymal cells. RT-PCR and transmission electron microscopy were applied in this study. The ratio of Sca-1+/CD34+ cells sorted by FACS in the induction group was increased from day 4 and reached the maximum on the day 8, whereas that in the control group remained at a low level. The differentiation ratio of Sca-1+/CD34+ cells in the induction group was significantly higher than that in the control group. About 92.48% of the sorted Sca-1+/CD34+ cells on the day 8 were A6 positive. Highly purified A6+/Sca-1+/CD34+ hepatic oval cells derived from ES cells could be obtained by FACS. The differentiation ratio of hepatic oval cells in the induction group (up to 4.46%) was significantly higher than that in the control group. The number of hepatic oval cells could be increased significantly by HGF and EGF. The study also examined the ultrastructures of ES-derived hepatic oval cells' membrane surface by atomic force microscopy. The ES-derived hepatic oval cells cultured and sorted by our protocols may be available for the future clinical application.

  8. A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics

    NASA Astrophysics Data System (ADS)

    Lagus, Todd P.; Edd, Jon F.

    2013-03-01

    Most cell biology experiments are performed in bulk cell suspensions where cell secretions become diluted and mixed in a contiguous sample. Confinement of single cells to small, picoliter-sized droplets within a continuous phase of oil provides chemical isolation of each cell, creating individual microreactors where rare cell qualities are highlighted and otherwise undetectable signals can be concentrated to measurable levels. Recent work in microfluidics has yielded methods for the encapsulation of cells in aqueous droplets and hydrogels at kilohertz rates, creating the potential for millions of parallel single-cell experiments. However, commercial applications of high-throughput microdroplet generation and downstream sensing and actuation methods are still emerging for cells. Using fluorescence-activated cell sorting (FACS) as a benchmark for commercially available high-throughput screening, this focused review discusses the fluid physics of droplet formation, methods for cell encapsulation in liquids and hydrogels, sensors and actuators and notable biological applications of high-throughput single-cell droplet microfluidics.

  9. Proteome labelling and protein identification in specific tissues and at specific developmental stages in an animal

    PubMed Central

    Elliott, Thomas S.; Townsley, Fiona M.; Bianco, Ambra; Ernst, Russell J.; Sachdeva, Amit; Elsässer, Simon J.; Davis, Lloyd; Lang, Kathrin; Pisa, Rudolf; Greiss, Sebastian.; Lilley, Kathryn S.; Chin, Jason W.

    2014-01-01

    Identifying the proteins synthesized in defined cells at specific times in an animal will facilitate the study of cellular functions and dynamic processes. Here we introduce stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) to address this challenge. SORT-M involves modifying cells to express an orthogonal aminoacyl-tRNA synthetase/tRNA pair to enable the incorporation of chemically modifiable analogs of amino acids at diverse sense codons in cells in rich media. We apply SORT-M to Drosophila melanogaster fed standard food to label and image proteins in specific tissues at precise developmental stages with diverse chemistries, including cyclopropene-tetrazine inverse electron demand Diels-Alder cycloaddition reactions. We also use SORT-M to identify proteins synthesized in germ cells of the fly ovary without dissection. SORT-M will facilitate the definition of proteins synthesized in specific sets of cells to study development, and learning and memory in flies, and may be extended to other animals. PMID:24727715

  10. Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores

    NASA Technical Reports Server (NTRS)

    Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh

    2012-01-01

    This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.

  11. Caveolin Transfection Results in Caveolae Formation but Not Apical Sorting of Glycosylphosphatidylinositol (GPI)-anchored Proteins in Epithelial Cells

    PubMed Central

    Lipardi, Concetta; Mora, Rosalia; Colomer, Veronica; Paladino, Simona; Nitsch, Lucio; Rodriguez-Boulan, Enrique; Zurzolo, Chiara

    1998-01-01

    Most epithelial cells sort glycosylphosphatidylinositol (GPI)-anchored proteins to the apical surface. The “raft” hypothesis, based on data mainly obtained in the prototype cell line MDCK, postulates that apical sorting depends on the incorporation of apical proteins into cholesterol/glycosphingolipid (GSL) rafts, rich in the cholesterol binding protein caveolin/VIP21, in the Golgi apparatus. Fischer rat thyroid (FRT) cells constitute an ideal model to test this hypothesis, since they missort both endogenous and transfected GPI- anchored proteins to the basolateral plasma membrane and fail to incorporate them into cholesterol/glycosphingolipid clusters. Because FRT cells lack caveolin, a major component of the caveolar coat that has been proposed to have a role in apical sorting of GPI- anchored proteins (Zurzolo, C., W. Van't Hoff, G. van Meer, and E. Rodriguez-Boulan. 1994. EMBO [Eur. Mol. Biol. Organ.] J. 13:42–53.), we carried out experiments to determine whether the lack of caveolin accounted for the sorting/clustering defect of GPI- anchored proteins. We report here that FRT cells lack morphological caveolae, but, upon stable transfection of the caveolin1 gene (cav1), form typical flask-shaped caveolae. However, cav1 expression did not redistribute GPI-anchored proteins to the apical surface, nor promote their inclusion into cholesterol/GSL rafts. Our results demonstrate that the absence of caveolin1 and morphologically identifiable caveolae cannot explain the inability of FRT cells to sort GPI-anchored proteins to the apical domain. Thus, FRT cells may lack additional factors required for apical sorting or for the clustering with GSLs of GPI-anchored proteins, or express factors that inhibit these events. Alternatively, cav1 and caveolae may not be directly involved in these processes. PMID:9456321

  12. Derivation of sorting programs

    NASA Technical Reports Server (NTRS)

    Varghese, Joseph; Loganantharaj, Rasiah

    1990-01-01

    Program synthesis for critical applications has become a viable alternative to program verification. Nested resolution and its extension are used to synthesize a set of sorting programs from their first order logic specifications. A set of sorting programs, such as, naive sort, merge sort, and insertion sort, were successfully synthesized starting from the same set of specifications.

  13. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker.

    PubMed

    David, Robert; Groebner, Michael; Franz, Wolfgang-Michael

    2005-04-01

    Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.

  14. IB-LBM simulation on blood cell sorting with a micro-fence structure.

    PubMed

    Wei, Qiang; Xu, Yuan-Qing; Tian, Fang-bao; Gao, Tian-xin; Tang, Xiao-ying; Zu, Wen-Hong

    2014-01-01

    A size-based blood cell sorting model with a micro-fence structure is proposed in the frame of immersed boundary and lattice Boltzmann method (IB-LBM). The fluid dynamics is obtained by solving the discrete lattice Boltzmann equation, and the cells motion and deformation are handled by the immersed boundary method. A micro-fence consists of two parallel slope post rows which are adopted to separate red blood cells (RBCs) from white blood cells (WBCs), in which the cells to be separated are transported one after another by the flow into the passageway between the two post rows. Effected by the cross flow, RBCs are schemed to get through the pores of the nether post row since they are smaller and more deformable compared with WBCs. WBCs are required to move along the nether post row till they get out the micro-fence. Simulation results indicate that for a fix width of pores, the slope angle of the post row plays an important role in cell sorting. The cells mixture can not be separated properly in a small slope angle, while obvious blockages by WBCs will take place to disturb the continuous cell sorting in a big slope angle. As an optimal result, an adaptive slope angle is found to sort RBCs form WBCs correctly and continuously.

  15. Dielectrophoretic focusing integrated pulsed laser activated cell sorting

    NASA Astrophysics Data System (ADS)

    Zhu, Xiongfeng; Kung, Yu-Chun; Wu, Ting-Hsiang; Teitell, Michael A.; Chiou, Pei-Yu

    2017-08-01

    We present a pulsed laser activated cell sorter (PLACS) integrated with novel sheathless size-independent dielectrophoretic (DEP) focusing. Microfluidic fluorescence activated cell sorting (μFACS) systems aim to provide a fully enclosed environment for sterile cell sorting and integration with upstream and downstream microfluidic modules. Among them, PLACS has shown a great potential in achieving comparable performance to commercial aerosol-based FACS (>90% purity at 25,000 cells sec-1). However conventional sheath flow focusing method suffers a severe sample dilution issue. Here we demonstrate a novel dielectrophoresis-integrated pulsed laser activated cell sorter (DEP-PLACS). It consists of a microfluidic channel with 3D electrodes laid out to provide a tunnel-shaped electric field profile along a 4cmlong channel for sheathlessly focusing microparticles/cells into a single stream in high-speed microfluidic flows. All focused particles pass through the fluorescence detection zone along the same streamline regardless of their sizes and types. Upon detection of target fluorescent particles, a nanosecond laser pulse is triggered and focused in a neighboring channel to generate a rapidly expanding cavitation bubble for precise sorting. DEP-PLACS has achieved a sorting purity of 91% for polystyrene beads at a throughput of 1,500 particle/sec.

  16. Detection and isolation of rare cells by 2-step enrichment high-speed flow cytometry/cell sorting and single cell LEAP laser ablation

    NASA Astrophysics Data System (ADS)

    Zordan, M. D.; Leary, James F.

    2011-02-01

    The clonal isolation of rare cells, especially cancer and stem cells, in a population is important to the development of improved medical treatment. We have demonstrated that the Laser-Enabled Analysis and Processing (LEAP, Cyntellect Inc., San Diego, CA) instrument can be used to efficiently produce single cell clones by photoablative dilution. Additionally, we have also shown that cells present at low frequencies can be cloned by photoablative dilution after they are pre-enriched by flow cytometry based cell sorting. Circulating tumor cells were modeled by spiking isolated peripheral blood cells with cells from the lung carcinoma cell line A549. Flow cytometry based cell sorting was used to perform an enrichment sort of A549 cells directly into a 384 well plate. Photoablative dilution was performed with the LEAPTM instrument to remove any contaminating cells, and clonally isolate 1 side population cell per well. We were able to isolate and grow single clones of side population cells using this method at greater than 90% efficiency. We have developed a 2 step method that is able to perform the clonal isolation of rare cells based on a medically relevant functional phenotype.

  17. Development of a Pressure Switched Microfluidic Cell Sorter

    NASA Astrophysics Data System (ADS)

    Ozbay, Baris; Jones, Alex; Gibson, Emily

    2009-10-01

    Lab on a chip technology allows for the replacement of traditional cell sorters with microfluidic devices which can be produced less expensively and are more compact. Additionally, the compact nature of microfluidic cell sorters may lead to the realization of their application in point-of-care medical devices. Though techniques have been demonstrated previously for sorting in microfluidic devices with optical or electro-osmotic switching, both of these techniques are expensive and more difficult to implement than pressure switching. This microfluidic cell sorter design also allows for easy integration with optical spectroscopy for identification of cell type. Our current microfluidic device was fabricated with polydimethylsiloxane (PDMS), a polymer that houses the channels, which is then chemically bonded to a glass slide. The flow of fluid through the device is controlled by pressure controllers, and the switching of the cells is accomplished with the use of a high performance pressure controller interfaced with a computer. The cells are fed through the channels with the use of hydrodynamic focusing techniques. Once the experimental setup is fully functional the objective will be to determine switching rates, explore techniques to optimize these rates, and experiment with sorting of other biomolecules including DNA.

  18. Methods of cell purification: a critical juncture for laboratory research and translational science.

    PubMed

    Amos, Peter J; Cagavi Bozkulak, Esra; Qyang, Yibing

    2012-01-01

    Research in cell biology and the development of translational technologies are driven by competition, public expectations, and regulatory oversight, putting these fields at a critical juncture. Success in these fields is quickly becoming dependent on the ability of researchers to identify and isolate specific cell populations from heterogeneous mixtures accurately and efficiently. Many methods for cell purification have been developed, and each has advantages and disadvantages that must be considered in light of the intended application. Current cell separation strategies make use of surface proteins, genetic expression, and physics to isolate specific cells by phenotypic traits. Cell purification is also dependent on the cellular reagents available for use and the intended application, as these factors may preclude certain mechanisms used in the processes of labeling and sorting cells. Copyright © 2011 S. Karger AG, Basel.

  19. Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter†‡

    PubMed Central

    Wu, Ting-Hsiang; Chen, Yue; Park, Sung-Yong; Hong, Jason; Teslaa, Tara; Zhong, Jiang F.; Di Carlo, Dino; Teitell, Michael A.

    2014-01-01

    We report a high speed and high purity pulsed laser triggered fluorescence activated cell sorter (PLACS) with a sorting throughput up to 20 000 mammalian cells s−1 with 37% sorting purity, 90% cell viability in enrichment mode, and >90% purity in high purity mode at 1500 cells s−1 or 3000 beads s−1. Fast switching (30 μs) and a small perturbation volume (~90 pL) is achieved by a unique sorting mechanism in which explosive vapor bubbles are generated using focused laser pulses in a single layer microfluidic PDMS channel. PMID:22361780

  20. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-09-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.

  1. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    PubMed Central

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-01-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596

  2. Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Wu, Ting-Hsiang; Chung, Aram; Kung, Yu-Chung; Teitell, Michael A.; Di Carlo, Dino; Chiou, Pei-Yu

    2014-09-01

    We present a Pulsed Laser Activated Cell Sorter (PLACS) realized by exciting laser induced cavitation bubbles in a PDMS microfluidic channel to create high speed liquid jets to deflect detected fluorescent samples for high speed sorting. Pulse laser triggered cavitation bubbles can expand in few microseconds and provide a pressure higher than tens of MPa for fluid perturbation near the focused spot. This ultrafast switching mechanism has a complete on-off cycle less than 20 μsec. Two approaches have been utilized to achieve 3D sample focusing in PLACS. One is relying on multilayer PDMS channels to provide 3D hydrodynamic sheath flows. It offers accurate timing control of fast (2 m sec-1) passing particles so that synchronization with laser bubble excitation is possible, an critically important factor for high purity and high throughput sorting. PLACS with 3D hydrodynamic focusing is capable of sorting at 11,000 cells/sec with >95% purity, and 45,000 cells/sec with 45% purity using a single channel in a single step. We have also demonstrated 3D focusing using inertial flows in PLACS. This sheathless focusing approach requires 10 times lower initial cell concentration than that in sheath-based focusing and avoids severe sample dilution from high volume sheath flows. Inertia PLACS is capable of sorting at 10,000 particles sec-1 with >90% sort purity.

  3. Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis.

    PubMed

    Adams, Tayloria N G; Jiang, Alan Y L; Vyas, Prema D; Flanagan, Lisa A

    2018-01-15

    Whole cell membrane capacitance is an electrophysiological property of the plasma membrane that serves as a biomarker for stem cell fate potential. Neural stem and progenitor cells (NSPCs) that differ in ability to form neurons or astrocytes are distinguished by membrane capacitance measured by dielectrophoresis (DEP). Differences in membrane capacitance are sufficient to enable the enrichment of neuron- or astrocyte-forming cells by DEP, showing the separation of stem cells on the basis of fate potential by membrane capacitance. NSPCs sorted by DEP need not be labeled and do not experience toxic effects from the sorting procedure. Other stem cell populations also display shifts in membrane capacitance as cells differentiate to a particular fate, clarifying the value of sorting a variety of stem cell types by capacitance. Here, we describe methods developed by our lab for separating NSPCs on the basis of capacitance using several types of DEP microfluidic devices, providing basic information on the sorting procedure as well as specific advantages and disadvantages of each device. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Rapid Isolation of Antibody from a Synthetic Human Antibody Library by Repeated Fluorescence-Activated Cell Sorting (FACS)

    PubMed Central

    Yim, Sung Sun; Bang, Hyun Bae; Kim, Young Hwan; Lee, Yong Jae; Jeong, Gu Min; Jeong, Ki Jun

    2014-01-01

    Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS). First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv) was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show KD values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼106). These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required. PMID:25303314

  5. Cell-Surface Expression of Neuron-Glial Antigen 2 (NG2) and Melanoma Cell Adhesion Molecule (CD146) in Heterogeneous Cultures of Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Russell, Katie C.; Tucker, H. Alan; Bunnell, Bruce A.; Andreeff, Michael; Schober, Wendy; Gaynor, Andrew S.; Strickler, Karen L.; Lin, Shuwen; Lacey, Michelle R.

    2013-01-01

    Cellular heterogeneity of mesenchymal stem cells (MSCs) impedes their use in regenerative medicine. The objective of this research is to identify potential biomarkers for the enrichment of progenitors from heterogeneous MSC cultures. To this end, the present study examines variation in expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) on the surface of MSCs derived from human bone marrow in response to culture conditions and among cell populations. Multipotent cells isolated from heterogeneous MSC cultures exhibit a greater than three-fold increase in surface expression for NG2 and greater than two-fold increase for CD146 as compared with parental and lineage-committed MSCs. For both antigens, surface expression is downregulated by greater than or equal to six-fold when MSCs become confluent. During serial passage, maximum surface expression of NG2 and CD146 is associated with minimum doubling time. Upregulation of NG2 and CD146 during loss of adipogenic potential at early passage suggests some limits to their utility as potency markers. A potential relationship between proliferation and antigen expression was explored by sorting heterogeneous MSCs into rapidly and slowly dividing groups. Fluorescence-activated cell sorting revealed that rapidly dividing MSCs display lower scatter and 50% higher NG2 surface expression than slowly dividing cells, but CD146 expression is comparable in both groups. Heterogeneous MSCs were sorted based on scatter properties and surface expression of NG2 and CD146 into high (HI) and low (LO) groups. ScLONG2HI and ScLONG2HICD146HI MSCs have the highest proliferative potential of the sorted groups, with colony-forming efficiencies that are 1.5–2.2 times the value for the parental controls. The ScLO gate enriches for rapidly dividing cells. Addition of the NG2HI gate increases cell survival to 1.5 times the parental control. Further addition of the CD146HI gate does not significantly improve cell division or survival. The combination of low scatter and high NG2 surface expression is a promising selection criterion to enrich a proliferative phenotype from heterogeneous MSCs during ex vivo expansion, with potentially numerous applications. PMID:23611563

  6. Particle sorting by Paramecium cilia arrays.

    PubMed

    Mayne, Richard; Whiting, James G H; Wheway, Gabrielle; Melhuish, Chris; Adamatzky, Andrew

    Motile cilia are cell-surface organelles whose purposes, in ciliated protists and certain ciliated metazoan epithelia, include generating fluid flow, sensing and substance uptake. Certain properties of cilia arrays, such as beating synchronisation and manipulation of external proximate particulate matter, are considered emergent, but remain incompletely characterised despite these phenomena having being the subject of extensive modelling. This study constitutes a laboratory experimental characterisation of one of the emergent properties of motile cilia: manipulation of adjacent particulates. The work demonstrates through automated videomicrographic particle tracking that interactions between microparticles and somatic cilia arrays of the ciliated model organism Paramecium caudatum constitute a form of rudimentary 'sorting'. Small particles are drawn into the organism's proximity by cilia-induced fluid currents at all times, whereas larger particles may be held immobile at a distance from the cell margin when the cell generates characteristic feeding currents in the surrounding media. These findings can contribute to the design and fabrication of biomimetic cilia, with potential applications to the study of ciliopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. How to measure RNA expression in rare senescent cells expressing any specific protein such as p16Ink4a

    PubMed Central

    Jeyapalan, Jessie C.; Sedivy, John M.

    2013-01-01

    Here we describe a carefully optimized method for the preparation of high quality RNA by flow sorting of formaldehyde fixed senescent cells immunostained for any intracellular antigen. Replicative cellular senescence is a phenomenon of irreversible growth arrest triggered by the accumulation of a discrete number of cell divisions. The underlying cause of senescence due to replicative exhaustion is telomere shortening. We document here a spontaneous and apparently stochastic process that continuously generates senescent cells in cultures fully immortalized with telomerase. In the course of studying this phenomenon we developed a preparative fluorescence activated flow sorting method based on immunofluorescent staining of intracellular antigens that can also deliver RNA suitable for quantitative analysis of global gene expression. The protocols were developed using normal human diploid fibroblasts (HDF) and up to 5×107 cells could be conveniently processed in a single experiment. The methodology is based on formaldehyde crosslinking of cells, followed by permeabilization, antibody staining, flow sorting, reversal of the crosslinks, and recovery of the RNA. We explored key parameters such as crosslink reversal that affect the fragmentation of RNA. The recovered RNA is of high quality for downstream molecular applications based on short range sequence analysis, such qPCR, hybridization microarrays, and next generation sequencing. The RNA was analyzed by Affymetrix Gene Chip expression profiling and compared to RNA prepared by the direct lysis of cells. The correlation between the data sets was very high, indicating that the procedure does not introduce systematic changes in the mRNA transcriptome. The methods presented in this communication should be of interest to many investigators working in diverse model systems. PMID:23454889

  8. How to measure RNA expression in rare senescent cells expressing any specific protein such as p16Ink4a.

    PubMed

    Jeyapalan, Jessie C; Sedivy, John M

    2013-02-01

    Here we describe a carefully optimized method for the preparation of high quality RNA by flow sorting of formaldehyde fixed senescent cells immunostained for any intracellular antigen. Replicative cellular senescence is a phenomenon of irreversible growth arrest triggered by the accumulation of a discrete number of cell divisions. The underlying cause of senescence due to replicative exhaustion is telomere shortening. We document here a spontaneous and apparently stochastic process that continuously generates senescent cells in cultures fully immortalized with telomerase. In the course of studying this phenomenon we developed a preparative fluorescence activated flow sorting method based on immunofluorescent staining of intracellular antigens that can also deliver RNA suitable for quantitative analysis of global gene expression. The protocols were developed using normal human diploid fibroblasts (HDF) and up to 5x107 cells could be conveniently processed in a single experiment. The methodology is based on formaldehyde crosslinking of cells, followed by permeabilization, antibody staining, flow sorting, reversal of the crosslinks, and recovery of the RNA. We explored key parameters such as crosslink reversal that affect the fragmentation of RNA. The recovered RNA is of high quality for downstream molecular applications based on short range sequence analysis, such qPCR, hybridization microarrays, and next generation sequencing. The RNA was analyzed by Affymetrix Gene Chip expression profiling and compared to RNA prepared by the direct lysis of cells. The correlation between the data sets was very high, indicating that the procedure does not introduce systematic changes in the mRNA transcriptome. The methods presented in this communication should be of interest to many investigators working in diverse model systems.

  9. Semiconductor Quantum Dots for Biomedicial Applications

    PubMed Central

    Shao, Lijia; Gao, Yanfang; Yan, Feng

    2011-01-01

    Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690

  10. Recycling Endosomes of Polarized Epithelial Cells Actively Sort Apical and Basolateral Cargos into Separate Subdomains

    PubMed Central

    Thompson, Anthony; Nessler, Randy; Wisco, Dolora; Anderson, Eric; Winckler, Bettina

    2007-01-01

    The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B–dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity. PMID:17494872

  11. Comprehensive Study of Microgel Electrode for On-Chip Electrophoretic Cell Sorting

    NASA Astrophysics Data System (ADS)

    Akihiro Hattori,; Kenji Yasuda,

    2010-06-01

    We have developed an on-chip cell sorting system and microgel electrode for applying electrostatic force in microfluidic pathways in the chip. The advantages of agarose electrodes are 1) current-driven electrostatic force generation, 2) stability against pH change and chemicals, and 3) no bubble formation caused by electrolysis. We examined the carrier ion type and concentration dependence of microgel electrode impedance, and found that CoCl2 has less than 1/10 of the impedance from NaCl, and the reduction of the impedance of NaCl gel electrode was plateaued at 0.5 M. The structure control of the microgel electrode exploiting the surface tension of sol-state agarose was also introduced. The addition of 1% (w/v) trehalose into the microgel electrode allowed the frozen storage of the microgel electrode chip. The experimental results demonstrate the potential of our system and microgel electrode for practical applications in microfluidic chips.

  12. Selection of transduced CD34+ progenitors and enzymatic correction of cells from Gaucher patients, with bicistronic vectors.

    PubMed Central

    Migita, M; Medin, J A; Pawliuk, R; Jacobson, S; Nagle, J W; Anderson, S; Amiri, M; Humphries, R K; Karlsson, S

    1995-01-01

    The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected. Images Fig. 2 Fig. 3 PMID:8618847

  13. Single-cell analysis and sorting using droplet-based microfluidics.

    PubMed

    Mazutis, Linas; Gilbert, John; Ung, W Lloyd; Weitz, David A; Griffiths, Andrew D; Heyman, John A

    2013-05-01

    We present a droplet-based microfluidics protocol for high-throughput analysis and sorting of single cells. Compartmentalization of single cells in droplets enables the analysis of proteins released from or secreted by cells, thereby overcoming one of the major limitations of traditional flow cytometry and fluorescence-activated cell sorting. As an example of this approach, we detail a binding assay for detecting antibodies secreted from single mouse hybridoma cells. Secreted antibodies are detected after only 15 min by co-compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads coated with anti-mouse IgG antibodies in 50-pl droplets. The beads capture the secreted antibodies and, when the captured antibodies bind to the probe, the fluorescence becomes localized on the beads, generating a clearly distinguishable fluorescence signal that enables droplet sorting at ∼200 Hz as well as cell enrichment. The microfluidic system described is easily adapted for screening other intracellular, cell-surface or secreted proteins and for quantifying catalytic or regulatory activities. In order to screen ∼1 million cells, the microfluidic operations require 2-6 h; the entire process, including preparation of microfluidic devices and mammalian cells, requires 5-7 d.

  14. Single-cell analysis and sorting using droplet-based microfluidics

    PubMed Central

    Mazutis, Linas; Gilbert, John; Ung, W Lloyd; Weitz, David A; Griffiths, Andrew D; Heyman, John A

    2014-01-01

    We present a droplet-based microfluidics protocol for high-throughput analysis and sorting of single cells. compartmentalization of single cells in droplets enables the analysis of proteins released from or secreted by cells, thereby overcoming one of the major limitations of traditional flow cytometry and fluorescence-activated cell sorting. as an example of this approach, we detail a binding assay for detecting antibodies secreted from single mouse hybridoma cells. secreted antibodies are detected after only 15 min by co-compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads coated with anti-mouse IgG antibodies in 50-pl droplets. the beads capture the secreted antibodies and, when the captured antibodies bind to the probe, the fluorescence becomes localized on the beads, generating a clearly distinguishable fluorescence signal that enables droplet sorting at ~200 Hz as well as cell enrichment. the microfluidic system described is easily adapted for screening other intracellular, cell-surface or secreted proteins and for quantifying catalytic or regulatory activities. In order to screen ~1 million cells, the microfluidic operations require 2–6 h; the entire process, including preparation of microfluidic devices and mammalian cells, requires 5–7 d. PMID:23558786

  15. Application of Raman spectroscopy to identification and sorting of post-consumer plastics for recycling

    DOEpatents

    Sommer, Edward J.; Rich, John T.

    2001-01-01

    A high accuracy rapid system for sorting a plurality of waste products by polymer type. The invention involves the application of Raman spectroscopy and complex identification techniques to identify and sort post-consumer plastics for recycling. The invention reads information unique to the molecular structure of the materials to be sorted to identify their chemical compositions and uses rapid high volume sorting techniques to sort them into product streams at commercially viable throughput rates. The system employs a laser diode (20) for irradiating the material sample (10), a spectrograph (50) is used to determine the Raman spectrum of the material sample (10) and a microprocessor based controller (70) is employed to identify the polymer type of the material sample (10).

  16. DNA flow cytometry of human spermatozoa: consistent stoichiometric staining of sperm DNA using a novel decondensation protocol.

    PubMed

    Kovács, Tamás; Békési, Gyöngyi; Fábián, Akos; Rákosy, Zsuzsa; Horváth, Gábor; Mátyus, László; Balázs, Margit; Jenei, Attila

    2008-10-01

    Rapid flow cytometric measurement of the frequency of aneuploid human sperms is in increasing demand but development of an exploitable method is hindered by difficulties of stoichiometric staining of sperm DNA. An aggressive decondensation protocol is needed after which cell integrity still remains intact. We used flow cytometry to examine the effect of lithium diiodosalicylate (LIS, chaotropic agent) on fluorescence intensity of propidium iodide-treated human spermatozoa from 10 normozoospermic men. When flow cytometric identification of diploid spermatozoa was achieved, validation was performed after sorting by three-color FISH. In contrast with the extremely variable histograms of nondecondensed sperms, consistent identification of haploid and diploid spermatozoa was possible if samples were decondensed with LIS prior to flow cytometry. A 76-fold enrichment of diploid sperms was observed in the sorted fractions by FISH. A significant correlation was found between the proportion of sorted cells and of diploid sperms by FISH. Application of LIS during the preparation of sperm for flow cytometry appears to ensure the stoichiometric staining of sperm DNA, making quantification of aneuploid sperm percentage possible. To our knowledge this is the first report in terms of separating spermatozoa with confirmedly abnormal chromosomal content. High correlation between the proportion of cells identified as having double DNA content by flow cytometry and diploid sperm by FISH allows rapid calculation of diploidy rate. Copyright 2008 International Society for Advancement of Cytometry.

  17. Generation of multiple Bessel beams for a biophotonics workstation.

    PubMed

    Cizmár, T; Kollárová, V; Tsampoula, X; Gunn-Moore, F; Sibbett, W; Bouchal, Z; Dholakia, K

    2008-09-01

    We present a simple method using an axicon and spatial light modulator to create multiple parallel Bessel beams and precisely control their individual positions in three dimensions. This technique is tested as an alternative to classical holographic beam shaping commonly used now in optical tweezers. Various applications of precise control of multiple Bessel beams are demonstrated within a single microscope giving rise to new methods for three-dimensional positional control of trapped particles or active sorting of micro-objects as well as "focus-free" photoporation of living cells. Overall this concept is termed a 'biophotonics workstation' where users may readily trap, sort and porate material using Bessel light modes in a microscope.

  18. Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila.

    PubMed

    Bowman, G R; Turkewitz, A P

    2001-12-01

    The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation.

  19. Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila.

    PubMed Central

    Bowman, G R; Turkewitz, A P

    2001-01-01

    The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation. PMID:11779800

  20. International Society for Analytical Cytology biosafety standard for sorting of unfixed cells.

    PubMed

    Schmid, Ingrid; Lambert, Claude; Ambrozak, David; Marti, Gerald E; Moss, Delynn M; Perfetto, Stephen P

    2007-06-01

    Cell sorting of viable biological specimens has become very prevalent in laboratories involved in basic and clinical research. As these samples can contain infectious agents, precautions to protect instrument operators and the environment from hazards arising from the use of sorters are paramount. To this end the International Society of Analytical Cytology (ISAC) took a lead in establishing biosafety guidelines for sorting of unfixed cells (Schmid et al., Cytometry 1997;28:99-117). During the time period these recommendations have been available, they have become recognized worldwide as the standard practices and safety precautions for laboratories performing viable cell sorting experiments. However, the field of cytometry has progressed since 1997, and the document requires an update. Initially, suggestions about the document format and content were discussed among members of the ISAC Biosafety Committee and were incorporated into a draft version that was sent to all committee members for review. Comments were collected, carefully considered, and incorporated as appropriate into a draft document that was posted on the ISAC web site to invite comments from the flow cytometry community at large. The revised document was then submitted to ISAC Council for review. Simultaneously, further comments were sought from newly-appointed ISAC Biosafety committee members. This safety standard for performing viable cell sorting experiments was recently generated. The document contains background information on the biohazard potential of sorting and the hazard classification of infectious agents as well as recommendations on (1) sample handling, (2) operator training and personal protection, (3) laboratory design, (4) cell sorter set-up, maintenance, and decontamination, and (5) testing the instrument for the efficiency of aerosol containment. This standard constitutes an updated and expanded revision of the 1997 biosafety guideline document. It is intended to provide laboratories involved in cell sorting with safety practices that take into account the enhanced hazard potential of high-speed sorting. Most importantly, it states that droplet-based sorting of infectious or hazardous biological material requires a higher level of containment than the one recommended for the risk group classification of the pathogen. The document also provides information on safety features of novel instrumentation, new options for personal protective equipment, and recently developed methods for testing the efficiency of aerosol containment.

  1. Intracellular flow cytometry may be combined with good quality and high sensitivity RT-qPCR analysis.

    PubMed

    Sandstedt, Mikael; Jonsson, Marianne; Asp, Julia; Dellgren, Göran; Lindahl, Anders; Jeppsson, Anders; Sandstedt, Joakim

    2015-12-01

    Flow cytometry (FCM) has become a well-established method for analysis of both intracellular and cell-surface proteins, while quantitative RT-PCR (RT-qPCR) is used to determine gene expression with high sensitivity and specificity. Combining these two methods would be of great value. The effects of intracellular staining on RNA integrity and RT-qPCR sensitivity and quality have not, however, been fully examined. We, therefore, intended to assess these effects further. Cells from the human lung cancer cell line A549 were fixed, permeabilized and sorted by FCM. Sorted cells were analyzed using RT-qPCR. RNA integrity was determined by RNA quality indicator analysis. A549 cells were then mixed with cells of the mouse cardiomyocyte cell line HL-1. A549 cells were identified by the cell surface marker ABCG2, while HL-1 cells were identified by intracellular cTnT. Cells were sorted and analyzed by RT-qPCR. Finally, cell cultures from human atrial biopsies were used to evaluate the effects of fixation and permeabilization on RT-qPCR analysis of nonimmortalized cells stored prior to analysis by FCM. A large amount of RNA could be extracted even when cells had been fixed and permeabilized. Permeabilization resulted in increased RNA degradation and a moderate decrease in RT-qPCR sensitivity. Gene expression levels were also affected to a moderate extent. Sorted populations from the mixed A549 and HL-1 cell samples showed gene expression patterns that corresponded to FCM data. When samples were stored before FCM sorting, the RT-qPCR analysis could still be performed with high sensitivity and quality. In summary, our results show that intracellular FCM may be performed with only minor impairment of the RT-qPCR sensitivity and quality when analyzing sorted cells; however, these effects should be considered when comparing RT-qPCR data of not fixed samples with those of fixed and permeabilized samples. © 2015 International Society for Advancement of Cytometry.

  2. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    PubMed Central

    Nakatsu, Fubito; Hase, Koji; Ohno, Hiroshi

    2014-01-01

    The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP)-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis). Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells. PMID:25387275

  3. Microfabricated magnetic structures for future medicine: from sensors to cell actuators

    PubMed Central

    Vitol, Elina A; Novosad, Valentyn; Rozhkova, Elena A

    2013-01-01

    In this review, we discuss the prospective medical application of magnetic carriers microfabricated by top-down techniques. Physical methods allow the fabrication of a variety of magnetic structures with tightly controlled magnetic properties and geometry, which makes them very attractive for a cost-efficient mass-production in the fast growing field of nanomedicine. Stand-alone fabricated particles along with integrated devices combining lithographically defined magnetic structures and synthesized magnetic tags will be considered. Applications of microfabricated multifunctional magnetic structures for future medicinal purposes range from ultrasensitive in vitro diagnostic bioassays, DNA sequencing and microfluidic cell sorting to magnetomechanical actuation, cargo delivery, contrast enhancement and heating therapy. PMID:23148542

  4. Isolation and Applications of Prostate Side Population Cells Based on Dye Cycle Violet Efflux

    PubMed Central

    Gangavarapu, Kalyan J.; Huss, Wendy J.

    2011-01-01

    This unit describes methods for the digestion of human prostate clinical specimens, dye cycle violet (DCV) staining procedure for the identification, isolation, and quantitation of radiolabeled dihydrotestosterone (DHT) retention of side population cells. The principle of the side population assay is based on differential efflux of DCV, a cell membrane permeable fluorescent dye, by cells with high ATP binding cassette (ABC) transporter activity. Cells with high ABC transporter activity efflux DCV and fall in the lower left quadrant of a flow cytograph are designated as “side population” cells. This unit emphasizes tissue digestion, DCV staining, flow settings for sorting side population cells and quantitation of radiolabeled DHT retention. PMID:21400686

  5. How to develop a Standard Operating Procedure for sorting unfixed cells

    PubMed Central

    Schmid, Ingrid

    2012-01-01

    Written Standard Operating Procedures (SOPs) are an important tool to assure that recurring tasks in a laboratory are performed in a consistent manner. When the procedure covered in the SOP involves a high-risk activity such as sorting unfixed cells using a jet-in-air sorter, safety elements are critical components of the document. The details on sort sample handling, sorter set-up, validation, operation, troubleshooting, and maintenance, personal protective equipment (PPE), and operator training, outlined in the SOP are to be based on careful risk assessment of the procedure. This review provides background information on the hazards associated with sorting of unfixed cells and the process used to arrive at the appropriate combination of facility design, instrument placement, safety equipment, and practices to be followed. PMID:22381383

  6. Flow Sorting of Marine Bacterioplankton after Fluorescence In Situ Hybridization

    PubMed Central

    Sekar, Raju; Fuchs, Bernhard M.; Amann, Rudolf; Pernthaler, Jakob

    2004-01-01

    We describe an approach to sort cells from coastal North Sea bacterioplankton by flow cytometry after in situ hybridization with rRNA-targeted horseradish peroxidase-labeled oligonucleotide probes and catalyzed fluorescent reporter deposition (CARD-FISH). In a sample from spring 2003 >90% of the cells were detected by CARD-FISH with a bacterial probe (EUB338). Approximately 30% of the microbial assemblage was affiliated with the Cytophaga-Flavobacterium lineage of the Bacteroidetes (CFB group) (probe CF319a), and almost 10% was targeted by a probe for the β-proteobacteria (probe BET42a). A protocol was optimized to detach cells hybridized with EUB338, BET42a, and CF319a from membrane filters (recovery rate, 70%) and to sort the cells by flow cytometry. The purity of sorted cells was >95%. 16S rRNA gene clone libraries were constructed from hybridized and sorted cells (S-EUB, S-BET, and S-CF libraries) and from unhybridized and unsorted cells (UNHYB library). Sequences related to the CFB group were significantly more frequent in the S-CF library (66%) than in the UNHYB library (13%). No enrichment of β-proteobacterial sequence types was found in the S-BET library, but novel sequences related to Nitrosospira were found exclusively in this library. These bacteria, together with members of marine clade OM43, represented >90% of the β-proteobacteria in the water sample, as determined by CARD-FISH with specific probes. This illustrates that a combination of CARD-FISH and flow sorting might be a powerful approach to study the diversity and potentially the activity and the genomes of different bacterial populations in aquatic habitats. PMID:15466568

  7. Responses of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus to Simulated Food Processing Treatments, Determined Using Fluorescence-Activated Cell Sorting and Plate Counting▿

    PubMed Central

    Kennedy, Deirdre; Cronin, Ultan P.; Wilkinson, Martin G.

    2011-01-01

    Three common food pathogenic microorganisms were exposed to treatments simulating those used in food processing. Treated cell suspensions were then analyzed for reduction in growth by plate counting. Flow cytometry (FCM) and fluorescence-activated cell sorting (FACS) were carried out on treated cells stained for membrane integrity (Syto 9/propidium iodide) or the presence of membrane potential [DiOC2(3)]. For each microbial species, representative cells from various subpopulations detected by FCM were sorted onto selective and nonselective agar and evaluated for growth and recovery rates. In general, treatments giving rise to the highest reductions in counts also had the greatest effects on cell membrane integrity and membrane potential. Overall, treatments that impacted cell membrane permeability did not necessarily have a comparable effect on membrane potential. In addition, some bacterial species with extensively damaged membranes, as detected by FCM, appeared to be able to replicate and grow after sorting. Growth of sorted cells from various subpopulations was not always reflected in plate counts, and in some cases the staining protocol may have rendered cells unculturable. Optimized FCM protocols generated a greater insight into the extent of the heterogeneous bacterial population responses to food control measures than did plate counts. This study underlined the requirement to use FACS to relate various cytometric profiles generated by various staining protocols with the ability of cells to grow on microbial agar plates. Such information is a prerequisite for more-widespread adoption of FCM as a routine microbiological analytical technique. PMID:21602370

  8. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope

    PubMed Central

    Navarre, William Wiley; Schneewind, Olaf

    1999-01-01

    The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836

  9. Sorting of the Neuroendocrine Secretory Protein Secretogranin II into the Regulated Secretory Pathway

    PubMed Central

    Courel, Maïté; Vasquez, Michael S.; Hook, Vivian Y.; Mahata, Sushil K.; Taupenot, Laurent

    2008-01-01

    Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative α-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane. PMID:18299326

  10. Sorting of the neuroendocrine secretory protein Secretogranin II into the regulated secretory pathway: role of N- and C-terminal alpha-helical domains.

    PubMed

    Courel, Maïté; Vasquez, Michael S; Hook, Vivian Y; Mahata, Sushil K; Taupenot, Laurent

    2008-04-25

    Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative alpha-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane.

  11. Droplet-based microfluidic analysis and screening of single plant cells.

    PubMed

    Yu, Ziyi; Boehm, Christian R; Hibberd, Julian M; Abell, Chris; Haseloff, Jim; Burgess, Steven J; Reyna-Llorens, Ivan

    2018-01-01

    Droplet-based microfluidics has been used to facilitate high-throughput analysis of individual prokaryote and mammalian cells. However, there is a scarcity of similar workflows applicable to rapid phenotyping of plant systems where phenotyping analyses typically are time-consuming and low-throughput. We report on-chip encapsulation and analysis of protoplasts isolated from the emergent plant model Marchantia polymorpha at processing rates of >100,000 cells per hour. We use our microfluidic system to quantify the stochastic properties of a heat-inducible promoter across a population of transgenic protoplasts to demonstrate its potential for assessing gene expression activity in response to environmental conditions. We further demonstrate on-chip sorting of droplets containing YFP-expressing protoplasts from wild type cells using dielectrophoresis force. This work opens the door to droplet-based microfluidic analysis of plant cells for applications ranging from high-throughput characterisation of DNA parts to single-cell genomics to selection of rare plant phenotypes.

  12. Induction of lateral lumens through disruption of a monoleucine-based basolateral-sorting motif in betacellulin

    PubMed Central

    Singh, Bhuminder; Bogatcheva, Galina; Starchenko, Alina; Sinnaeve, Justine; Lapierre, Lynne A.; Williams, Janice A.; Goldenring, James R.; Coffey, Robert J.

    2015-01-01

    ABSTRACT Directed delivery of EGF receptor (EGFR) ligands to the apical or basolateral surface is a crucial regulatory step in the initiation of EGFR signaling in polarized epithelial cells. Herein, we show that the EGFR ligand betacellulin (BTC) is preferentially sorted to the basolateral surface of polarized MDCK cells. By using sequential truncations and site-directed mutagenesis within the BTC cytoplasmic domain, combined with selective cell-surface biotinylation and immunofluorescence, we have uncovered a monoleucine-based basolateral-sorting motif (EExxxL, specifically 156EEMETL161). Disruption of this sorting motif led to equivalent apical and basolateral localization of BTC. Unlike other EGFR ligands, BTC mistrafficking induced formation of lateral lumens in polarized MDCK cells, and this process was significantly attenuated by inhibition of EGFR. Additionally, expression of a cancer-associated somatic BTC mutation (E156K) led to BTC mistrafficking and induced lateral lumens in MDCK cells. Overexpression of BTC, especially mistrafficking forms, increased the growth of MDCK cells. These results uncover a unique role for BTC mistrafficking in promoting epithelial reorganization. PMID:26272915

  13. Mesenchymal Stem Cells in the Bone Marrow Provide a Supportive Niche for Early Disseminated Breast Tumor-Initiating Cells

    DTIC Science & Technology

    2011-04-01

    Differentiation of mouse embryonic stem cells Immunology: - Flow cytometry - Proliferation Assays - Chromium Release Assays - B...of metastatic cells in close proximation to hepatocytes in the liver. Additionally, re-expression of E-cadherin was observed in the membrane of the...profile CD44+/CD24low/ESA+ using fluorescence- activated cell sorting (FACS) [4]. Subcutaneous injection of low numbers of the sorted cell

  14. Method and apparatus for electrostatically sorting biological cells

    DOEpatents

    Merrill, John T.

    1982-01-01

    An improved method of sorting biological cells in a conventional cell sorter apparatus includes generating a fluid jet containing cells to be sorted, measuring the distance between the centers of adjacent droplets in a zone thereof defined at the point where the fluid jet separates into descrete droplets, setting the distance between the center of a droplet in said separation zone and the position along said fluid jet at which the cell is optically sensed for specific characteristics to be an integral multiple of said center-to-center distance, and disabling a charger from electrically charging a specific droplet if a cell is detected by the optical sensor in a position wherein it will be in the neck area between droplets during droplet formation rather than within a predetermined distance from the droplet center.

  15. The Case for Absolute Ligand Discrimination: Modeling Information Processing and Decision by Immune T Cells

    NASA Astrophysics Data System (ADS)

    François, Paul; Altan-Bonnet, Grégoire

    2016-03-01

    Some cells have to take decision based on the quality of surroundings ligands, almost irrespective of their quantity, a problem we name "absolute discrimination". An example of absolute discrimination is recognition of not-self by immune T Cells. We show how the problem of absolute discrimination can be solved by a process called "adaptive sorting". We review several implementations of adaptive sorting, as well as its generic properties such as antagonism. We show how kinetic proofreading with negative feedback implement an approximate version of adaptive sorting in the immune context. Finally, we revisit the decision problem at the cell population level, showing how phenotypic variability and feedbacks between population and single cells are crucial for proper decision.

  16. Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia

    PubMed Central

    Fujita, Kazutoshi; Ohta, Hiroshi; Tsujimura, Akira; Takao, Tetsuya; Miyagawa, Yasushi; Takada, Shingo; Matsumiya, Kiyomi; Wakayama, Teruhiko; Okuyama, Akihiko

    2005-01-01

    More than 70% of patients survive childhood leukemia, but chemotherapy and radiation therapy cause irreversible impairment of spermatogenesis. Although autotransplantation of germ cells holds promise for restoring fertility, contamination by leukemic cells may induce relapse. In this study, we isolated germ cells from leukemic mice by FACS sorting. The cell population in the high forward-scatter and low side-scatter regions of dissociated testicular cells from leukemic mice were analyzed by staining for MHC class I heavy chain (H-2Kb/H-2Db) and for CD45. Cells that did not stain positively for H-2Kb/H-2Db and CD45 were sorted as the germ cell–enriched fraction. The sorted germ cell–enriched fractions were transplanted into the testes of recipient mice exposed to alkylating agents. Transplanted germ cells colonized, and recipient mice survived. Normal progeny were produced by intracytoplasmic injection of sperm obtained from recipient testes. When unsorted germ cells from leukemic mice were transplanted into recipient testes, all recipient mice developed leukemia. The successful birth of offspring from recipient mice without transmission of leukemia to the recipients indicates the potential of autotransplantation of germ cells sorted by FACS to treat infertility secondary to anticancer treatment for childhood leukemia. PMID:15965502

  17. Uncovering stem-cell heterogeneity in the microniche with label-free microfluidics

    NASA Astrophysics Data System (ADS)

    Sohn, Lydia L.

    2013-03-01

    Better suited for large number of cells from bulk tissue, traditional cell-screening techniques, such as fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS), cannot easily screen stem or progenitor cells from minute populations found in their physiological niches. Furthermore, they rely upon irreversible antibody binding, potentially altering cell properties, including gene expression and regenerative capacity. We have developed a label-free, single-cell analysis microfluidic platform capable of quantifying cell-surface marker expression of functional organ stem cells directly isolated from their micro-anatomical niche. With this platform, we have screened single quiescent muscle stem (satellite) cells derived from single myofibers, and we have uncovered an important heterogeneity in the surface-marker expression of these cells. By sorting the screened cells with our microfluidic device, we have determined what this heterogeneity means in terms of muscle stem-cell functionality. For instance, we show that the levels of beta1-integrin can predict the differentiation capacity of quiescent satellite cells, and in contrast to recent literature, that some CXCR4 + cells are not myogenic. Our results provide the first direct demonstration of a microniche-specific variation in gene expression in stem cells of the same lineage. Overall, our label-free, single-cell analysis and cell-sorting platform could be extended to other systems involving rare-cell subsets. This work was funded by the W. M. Keck Foundation, NIH, and California Institute of Regenerative Medicine

  18. Development of a fluorescence-activated cell sorting method coupled with whole genome amplification to analyze minority and trace Dehalococcoides genomes in microbial communities.

    PubMed

    Lee, Patrick K H; Men, Yujie; Wang, Shanquan; He, Jianzhong; Alvarez-Cohen, Lisa

    2015-02-03

    Dehalococcoides mccartyi are functionally important bacteria that catalyze the reductive dechlorination of chlorinated ethenes. However, these anaerobic bacteria are fastidious to isolate, making downstream genomic characterization challenging. In order to facilitate genomic analysis, a fluorescence-activated cell sorting (FACS) method was developed in this study to separate D. mccartyi cells from a microbial community, and the DNA of the isolated cells was processed by whole genome amplification (WGA) and hybridized onto a D. mccartyi microarray for comparative genomics against four sequenced strains. First, FACS was successfully applied to a D. mccartyi isolate as positive control, and then microarray results verified that WGA from 10(6) cells or ∼1 ng of genomic DNA yielded high-quality coverage detecting nearly all genes across the genome. As expected, some inter- and intrasample variability in WGA was observed, but these biases were minimized by performing multiple parallel amplifications. Subsequent application of the FACS and WGA protocols to two enrichment cultures containing ∼10% and ∼1% D. mccartyi cells successfully enabled genomic analysis. As proof of concept, this study demonstrates that coupling FACS with WGA and microarrays is a promising tool to expedite genomic characterization of target strains in environmental communities where the relative concentrations are low.

  19. Disease-Causing Mutations in BEST1 Gene Are Associated with Altered Sorting of Bestrophin-1 Protein

    PubMed Central

    Doumanov, Jordan A.; Zeitz, Christina; Gimenez, Paloma Dominguez; Audo, Isabelle; Krishna, Abhay; Alfano, Giovanna; Diaz, Maria Luz Bellido; Moskova-Doumanova, Veselina; Lancelot, Marie-Elise; Sahel, José-Alain; Nandrot, Emeline F.; Bhattacharya, Shomi S.

    2013-01-01

    Mutations in BEST1 gene, encoding the bestrophin-1 (Best1) protein are associated with macular dystrophies. Best1 is predominantly expressed in the retinal pigment epithelium (RPE), and is inserted in its basolateral membrane. We investigated the cellular localization in polarized MDCKII cells of disease-associated Best1 mutant proteins to study specific sorting motifs of Best1. Real-time PCR and western blots for endogenous expression of BEST1 in MDCK cells were performed. Best1 mutant constructs were generated using site-directed mutagenesis and transfected in MDCK cells. For protein sorting, confocal microscopy studies, biotinylation assays and statistical methods for quantification of mislocalization were used. Analysis of endogenous expression of BEST1 in MDCK cells revealed the presence of BEST1 transcript but no protein. Confocal microscopy and quantitative analyses indicate that transfected normal human Best1 displays a basolateral localization in MDCK cells, while cell sorting of several Best1 mutants (Y85H, Q96R, L100R, Y227N, Y227E) was altered. In contrast to constitutively active Y227E, constitutively inactive Y227F Best1 mutant localized basolaterally similar to the normal Best1 protein. Our data suggest that at least three basolateral sorting motifs might be implicated in proper Best1 basolateral localization. In addition, non-phosphorylated tyrosine 227 could play a role for basolateral delivery. PMID:23880862

  20. Cell-Free Reconstitution of Multivesicular Body Formation and Receptor Sorting

    PubMed Central

    Sun, Wei; Vida, Thomas A.; Sirisaengtaksin, Natalie; Merrill, Samuel A.; Hanson, Phyllis I.; Bean, Andrew J.

    2010-01-01

    The number of surface membrane proteins and their residence time on the plasma membrane are critical determinants of cellular responses to cues that can control plasticity, growth and differentiation. After internalization, the ultimate fate of many plasma membrane proteins is dependent on whether they are sorted for internalization into the lumenal vesicles of multivesicular bodies (MVBs), an obligate step prior to lysosomal degradation. To help to elucidate the mechanisms underlying MVB sorting, we have developed a novel cell-free assay that reconstitutes the sorting of a prototypical membrane protein, the epidermal growth factor receptor, with which we have probed some of its molecular requirements. The sorting event measured is dependent on cytosol, ATP, time, temperature and an intact proton gradient. Depletion of Hrs inhibited biochemical and morphological measures of sorting that were rescued by inclusion of recombinant Hrs in the assay. Moreover, depletion of signal-transducing adaptor molecule (STAM), or addition of mutated ATPase-deficient Vps4, also inhibited sorting. This assay reconstitutes the maturation of late endosomes, including the formation of internal vesicles and the sorting of a membrane protein, and allows biochemical investigation of this process. PMID:20214752

  1. Rare Cell Capture in Microfluidic Devices

    PubMed Central

    Pratt, Erica D.; Huang, Chao; Hawkins, Benjamin G.; Gleghorn, Jason P.; Kirby, Brian J.

    2010-01-01

    This article reviews existing methods for the isolation, fractionation, or capture of rare cells in microfluidic devices. Rare cell capture devices face the challenge of maintaining the efficiency standard of traditional bulk separation methods such as flow cytometers and immunomagnetic separators while requiring very high purity of the target cell population, which is typically already at very low starting concentrations. Two major classifications of rare cell capture approaches are covered: (1) non-electrokinetic methods (e.g., immobilization via antibody or aptamer chemistry, size-based sorting, and sheath flow and streamline sorting) are discussed for applications using blood cells, cancer cells, and other mammalian cells, and (2) electrokinetic (primarily dielectrophoretic) methods using both electrode-based and insulative geometries are presented with a view towards pathogen detection, blood fractionation, and cancer cell isolation. The included methods were evaluated based on performance criteria including cell type modeled and used, number of steps/stages, cell viability, and enrichment, efficiency, and/or purity. Major areas for improvement are increasing viability and capture efficiency/purity of directly processed biological samples, as a majority of current studies only process spiked cell lines or pre-diluted/lysed samples. Despite these current challenges, multiple advances have been made in the development of devices for rare cell capture and the subsequent elucidation of new biological phenomena; this article serves to highlight this progress as well as the electrokinetic and non-electrokinetic methods that can potentially be combined to improve performance in future studies. PMID:21532971

  2. How to develop a standard operating procedure for sorting unfixed cells.

    PubMed

    Schmid, Ingrid

    2012-07-01

    Written standard operating procedures (SOPs) are an important tool to assure that recurring tasks in a laboratory are performed in a consistent manner. When the procedure covered in the SOP involves a high-risk activity such as sorting unfixed cells using a jet-in-air sorter, safety elements are critical components of the document. The details on sort sample handling, sorter set-up, validation, operation, troubleshooting, and maintenance, personal protective equipment (PPE), and operator training, outlined in the SOP are to be based on careful risk assessment of the procedure. This review provides background information on the hazards associated with sorting of unfixed cells and the process used to arrive at the appropriate combination of facility design, instrument placement, safety equipment, and practices to be followed. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Selective flow-induced vesicle rupture to sort by membrane mechanical properties

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Brooks, Nicholas J.; Seddon, John M.; Garbin, Valeria

    2015-08-01

    Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells.

  4. Selective flow-induced vesicle rupture to sort by membrane mechanical properties

    PubMed Central

    Pommella, Angelo; Brooks, Nicholas J.; Seddon, John M.; Garbin, Valeria

    2015-01-01

    Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells. PMID:26302783

  5. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Kasdan, Harvey L. (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  6. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor); Tai, Yu-Chong (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  7. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  8. Ultrasound-assisted liposuction provides a source for functional adipose-derived stromal cells.

    PubMed

    Duscher, Dominik; Maan, Zeshaan N; Luan, Anna; Aitzetmüller, Matthias M; Brett, Elizabeth A; Atashroo, David; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Houschyar, Khosrow S; Schilling, Arndt F; Machens, Hans-Guenther; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C

    2017-12-01

    Regenerative medicine employs human mesenchymal stromal cells (MSCs) for their multi-lineage plasticity and their pro-regenerative cytokine secretome. Adipose-derived mesenchymal stromal cells (ASCs) are concentrated in fat tissue, and the ease of harvest via liposuction makes them a particularly interesting cell source. However, there are various liposuction methods, and few have been assessed regarding their impact on ASC functionality. Here we study the impact of the two most popular ultrasound-assisted liposuction (UAL) devices currently in clinical use, VASER (Solta Medical) and Lysonix 3000 (Mentor) on ASCs. After lipoaspirate harvest and processing, we sorted for ASCs using fluorescent-assisted cell sorting based on an established surface marker profile (CD34 + CD31 - CD45 - ). ASC yield, viability, osteogenic and adipogenic differentiation capacity and in vivo regenerative performance were assessed. Both UAL samples demonstrated equivalent ASC yield and viability. VASER UAL ASCs showed higher osteogenic and adipogenic marker expression, but a comparable differentiation capacity was observed. Soft tissue healing and neovascularization were significantly enhanced via both UAL-derived ASCs in vivo, and there was no significant difference between the cell therapy groups. Taken together, our data suggest that UAL allows safe and efficient harvesting of the mesenchymal stromal cellular fraction of adipose tissue and that cells harvested via this approach are suitable for cell therapy and tissue engineering applications. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  10. Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer

    PubMed Central

    Cioffi, Michele; D’Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-01-01

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4+CD133+ within ovarian cancer cell lines. The sorted population CD133+CXCR4+ demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133+CXCR4+ sorted OVCAR-5 cells. Most strikingly CXCR4+CD133+ sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133−CXCR4−, CD133+CXCR4−, CD133−CXCR4+ cells. CXCR4+CD133+ OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target. PMID:26020117

  11. Fluorescent Dendritic Micro-Hydrogels: Synthesis, Analysis and Use in Single-Cell Detection.

    PubMed

    Christadore, Lisa; Grinstaff, Mark W; Schaus, Scott E

    2018-04-18

    Hydrogels are of keen interest for a wide range of medical and biotechnological applications including as 3D substrate structures for the detection of proteins, nucleic acids, and cells. Hydrogel parameters such as polymer wt % and crosslink density are typically altered for a specific application; now, fluorescence can be incorporated into such criteria by specific macromonomer selection. Intrinsic fluorescence was observed at λ max 445 nm from hydrogels polymerized from lysine and aldehyde- terminated poly(ethylene glycol) macromonomers upon excitation with visible light. The hydrogel’s photochemical properties are consistent with formation of a nitrone functionality. Printed hydrogels of 150 μm were used to detect individual cell adherence via a decreased in fluorescence. The use of such intrinsically fluorescent hydrogels as a platform for cell sorting and detection expands the current repertoire of tools available.

  12. The sorting of a small potassium channel in mammalian cells can be shifted between mitochondria and plasma membrane.

    PubMed

    von Charpuis, Charlotte; Meckel, Tobias; Moroni, Anna; Thiel, Gerhard

    2015-07-01

    The two small and similar viral K(+) channels Kcv and Kesv are sorted in mammalian cells and yeast to different destinations. Analysis of the sorting pathways shows that Kcv is trafficking via the secretory pathway to the plasma membrane, while Kesv is inserted via the TIM/TOM complex to the inner membrane of mitochondria. Studies with Kesv mutants show that an N-terminal mitochondrial targeting sequence in this channel is neither necessary nor sufficient for sorting of Kesv the mitochondria. Instead the sorting of Kesv can be redirected from the mitochondria to the plasma membrane by an insertion of ≥2 amino acids in a position sensitive manner into the C-terminal transmembrane domain (TMD2) of this channel. The available data advocate the presence of a C-terminal sorting signal in TMD2 of Kesv channel, which is presumably not determined by the length of this domain. Copyright © 2014. Published by Elsevier Ltd.

  13. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  14. Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model.

    PubMed

    Guzman, Raphael; De Los Angeles, Alejandro; Cheshier, Samuel; Choi, Raymond; Hoang, Stanley; Liauw, Jason; Schaar, Bruce; Steinberg, Gary

    2008-04-01

    Intravascular delivery of neural stem cells (NSCs) after stroke has been limited by the low efficiency of transendothelial migration. Vascular cell adhesion molecule-1 is an endothelial adhesion molecule known to be upregulated early after stroke and is responsible for the firm adhesion of inflammatory cells expressing the surface integrin, CD49d. We hypothesize that enriching for NSCs that express CD49d and injecting them into the carotid artery would improve targeted cell delivery to the injured brain. Mouse NSCs were analyzed for the expression of CD49d by fluorescence activated cell sorting. A CD49d-enriched (CD49d(+)) (>95%) and -depleted (CD49d(-); <5%) NSC population was obtained by cell sorting. C57/Bl6 mice underwent left-sided hypoxia-ischemia surgery and were assigned to receive 3 x 10(5) CD49d(+), CD49d(-) NSCs, or vehicle injection into the left common carotid artery 48 hours after stroke. Behavioral recovery was measured using a rotarod for 2 weeks after cell injection. Fluorescence activated cell sorting analysis revealed 25% CD49d(+) NSCs. In a static adhesion assay, NSCs adhered to vascular cell adhesion molecule-1 in a dose-dependent manner. Significantly more NSCs were found in the cortex, the hippocampus, and the subventricular zone in the ischemic hemisphere in animals receiving CD49d(+) NSCs as compared with CD49d(-) NSCs (P<0.05). Animals treated with CD49d(+) cells showed a significantly better behavioral recovery as compared with CD49d(-) and vehicle-treated animals. We show that enrichment of NSCs by fluorescence activated cell sorting for the surface integrin, CD49d, and intracarotid delivery promotes cell homing to the area of stroke in mice and improves behavioral recovery.

  15. Sorting Out the Ocean Crust Deep Biosphere with Single Cell Omics Approaches

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; D'Angelo, T.; Goordial, J.; Jones, R. M.; Carr, S. A.

    2017-12-01

    Although oceanic crust comprises a large habitat for subsurface life, the structure, function, and dynamics of microbial communities living on rocks in the subsurface are poorly understood. Single cell level approaches can overcome limitations of low biomass in subsurface systems. Coupled with incubation experiments with amino acid orthologs, single cell level sorting can reveal high resolution information about identity, functional potential, and growth. Leveraging collaboration with the Single Cell Genomics Center and the Facility for Aquatic Cytometry at Bigelow Laboratory, we present recent results from single cell level sorting and -omics sequencing from several crustal environments, including the Atlantis Massif and the Juan de Fuca Ridge flank. We will also highlight new experiments conducted with samples recovered from the flank of the Mid-Atlantic Ridge.

  16. Fractionation of Exosomes and DNA using Size-Based Separation at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wunsch, Benjamin; Smith, Joshua; Wang, Chao; Gifford, Stacey; Brink, Markus; Bruce, Robert; Solovitzky, Gustavo; Austin, Robert; Astier, Yann

    Exosomes, a key target of ``liquid biopsies'', are nano-vesicles found in nearly all biological fluids. Exosomes are secreted by eukaryotic and prokaryotic cells alike, and contain information about their originating cells, including surface proteins, cytoplasmic proteins, and nucleic acids. One challenge in studying exosome morphology is the difficulty of sorting exosomes by size and surface markers. Common separation techniques for exosomes include ultracentrifugation and ultrafiltration, for preparation of large volume samples, but these techniques often show contamination and significant heterogeneity between preparations. To date, deterministic lateral displacement (DLD) pillar arrays in silicon have proven an efficient technology to sort, separate, and enrich micron-scale particles including human parasites, eukaryotic cells, blood cells, and circulating tumor cells in blood; however, the DLD technology has never been translated to the true nanoscale, where it could function on bio-colloids such as exosomes. We have fabricated nanoscale DLD (nanoDLD) arrays capable of rapidly sorting colloids down to 20 nm in continuous flow, and demonstrated size sorting of individual exosome vesicles and dsDNA polymers, opening the potential for on-chip biomolecule separation and diagnosti

  17. Characterization of aerosols produced by cell sorters and evaluation of containment

    PubMed Central

    Holmes, Kevin L.

    2011-01-01

    In spite of the recognition by the flow cytometry community of potential aerosol hazards associated with cell sorting, there has been no previous study that has thoroughly characterized the aerosols that can be produced by cell sorters. In this study an Aerodynamic Particle Sizer was used to determine the concentration and aerodynamic diameter of aerosols produced by a FACS Aria II cell sorter under various conditions. Aerosol containment and evacuation was also evaluated using this novel methodology. The results showed that high concentrations of aerosols in the range of 1–3 μm can be produced in fail mode and that with decreased sheath pressure, aerosol concentration decreased and aerodynamic diameter increased. Although the engineering controls of the FACS Aria II for containment were effective, sort chamber evacuation of aerosols following a simulated nozzle obstruction was ineffective. However, simple modifications to the FACS Aria II are described that greatly improved sort chamber aerosol evacuation. The results of this study will facilitate the risk assessment of cell sorting potentially biohazardous samples by providing much needed data regarding aerosol production and containment. PMID:22052694

  18. Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi Network

    PubMed Central

    Santiago-Tirado, Felipe H.; Bretscher, Anthony

    2011-01-01

    Cell polarity in eukaryotes requires constant sorting, packaging, and transport of membrane-bound cargo within the cell. These processes occur in two sorting hubs: the recycling endosome for incoming material, and the trans-Golgi Network for outgoing. Phosphatidylinositol 3-phosphate and 4–5 phosphate are enriched at the endocytic and exocytic sorting hubs, respectively, where they act together with small GTPases to recruit factors to segregate cargo and regulate carrier formation and transport. In this review, we summarize the current understanding of how these lipids and GTPases directly regulate membrane trafficking, emphasizing the recent discoveries of phosphatidylinositol 4-phosphate functions at the trans-Golgi Network. PMID:21764313

  19. Rapid, high efficiency isolation of pancreatic ß-cells.

    PubMed

    Clardy, Susan M; Mohan, James F; Vinegoni, Claudio; Keliher, Edmund J; Iwamoto, Yoshiko; Benoist, Christophe; Mathis, Diane; Weissleder, Ralph

    2015-09-02

    The ability to isolate pure pancreatic ß-cells would greatly aid multiple areas of diabetes research. We developed a fluorescent exendin-4-like neopeptide conjugate for the rapid purification and isolation of functional mouse pancreatic β-cells. By targeting the glucagon-like peptide-1 receptor with the fluorescent conjugate, β-cells could be quickly isolated by flow cytometry and were >99% insulin positive. These studies were confirmed by immunostaining, microscopy and gene expression profiling on isolated cells. Gene expression profiling studies of cytofluorometrically sorted β-cells from 4 and 12 week old NOD mice provided new insights into the genetic programs at play of different stages of type-1 diabetes development. The described isolation method should have broad applicability to the β-cell field.

  20. A Novel Mechanism for the Pathogenesis of Nonmelanoma Skin Cancer Resulting from Early Exposure to Ultraviolet Light

    DTIC Science & Technology

    2014-09-01

    hybrid mice show a large population of cells that fluoresce with Tomato Red and few cells that fluoresce with GFP only or GFP/ Tomato Red double positive...percent of total cells Double Negative GFP Tomato Red Double Positive 15 Figure 3. Fluorescent activated cell sorting (FACS) shows slight...Negative Tomato Red Double Positive 17 Figure 5. Fluorescent activated cell sorting (FACS) shows no K14-GFP expressing cells and slight expression of

  1. High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening.

    PubMed

    Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S

    2004-03-01

    HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.

  2. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome

    PubMed Central

    Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz

    2013-01-01

    Sorting nexin 17 (SNX17) is an adaptor protein present in EEA1-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized MDCK cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. PMID:23593972

  3. Computational Modeling of Tissue Self-Assembly

    NASA Astrophysics Data System (ADS)

    Neagu, Adrian; Kosztin, Ioan; Jakab, Karoly; Barz, Bogdan; Neagu, Monica; Jamison, Richard; Forgacs, Gabor

    As a theoretical framework for understanding the self-assembly of living cells into tissues, Steinberg proposed the differential adhesion hypothesis (DAH) according to which a specific cell type possesses a specific adhesion apparatus that combined with cell motility leads to cell assemblies of various cell types in the lowest adhesive energy state. Experimental and theoretical efforts of four decades turned the DAH into a fundamental principle of developmental biology that has been validated both in vitro and in vivo. Based on computational models of cell sorting, we have developed a DAH-based lattice model for tissues in interaction with their environment and simulated biological self-assembly using the Monte Carlo method. The present brief review highlights results on specific morphogenetic processes with relevance to tissue engineering applications. Our own work is presented on the background of several decades of theoretical efforts aimed to model morphogenesis in living tissues. Simulations of systems involving about 105 cells have been performed on high-end personal computers with CPU times of the order of days. Studied processes include cell sorting, cell sheet formation, and the development of endothelialized tubes from rings made of spheroids of two randomly intermixed cell types, when the medium in the interior of the tube was different from the external one. We conclude by noting that computer simulations based on mathematical models of living tissues yield useful guidelines for laboratory work and can catalyze the emergence of innovative technologies in tissue engineering.

  4. Nanoparticle sorting in silicon waveguide arrays

    NASA Astrophysics Data System (ADS)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.

  5. Quaternary structure and apical membrane sorting of the mammalian NaSi-1 sulfate transporter in renal cell lines.

    PubMed

    Regeer, Ralf R; Nicke, Annette; Markovich, Daniel

    2007-01-01

    NaSi-1 encodes a Na(+)-sulfate cotransporter expressed on the apical membrane of renal proximal tubular cells, which is responsible for body sulfate homeostasis. Limited information is available on NaSi-1 protein structure and the mechanisms controlling its apical membrane sorting. The aims of this study were to biochemically determine the quaternary structure of the rat NaSi-1 protein and to characterize its expression in renal epithelial cell lines. Hexahistidyl-tagged NaSi-1 (NaSi-1-His) proteins expressed in Xenopus oocytes, appeared as two bands of about 60 and 75 kDa. PNGase F treatment shifted both bands to 57 kDa while endoglycosidase H treatment led to a downward shift of the lower molecular mass band only. Mutagenesis of a putative N-glycosylation site (N591S) produced a single band that was not shifted by endoglycosidase H or PNGase F, confirming a single glycosylation site at residue 591. Blue native-PAGE and cross-linking experiments revealed dimeric complexes, suggesting the native form of NaSi-1 to be a dimer. Transient transfection of EGFP/NaSi-1 in renal epithelial cells (OK, LLC-PK1 and MDCK) demonstrated apical membrane sorting, which was insensitive to tunicamycin. Transfection of the EGFP/NaSi-1 N591S glycosylation mutant also showed apical expression, suggesting N591 is not essential for apical sorting. Treatment with cholesterol depleting compounds did not disrupt apical sorting, but brefeldin A led to misrouting to the basolateral membrane, suggesting that NaSi-1 sorting is through the ER to Golgi pathway. Our data demonstrates that NaSi-1 forms a dimeric protein which is glycosylated at N591, whose sorting to the apical membrane in renal epithelial cells is brefeldin A-sensitive and independent of lipid rafts or glycosylation.

  6. Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications

    PubMed Central

    Petsche Connell, Jennifer; Camci-Unal, Gulden; Khademhosseini, Ali

    2013-01-01

    Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and nontumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the various methods of isolating, sorting, and culturing AFSC are compared, along with techniques for inducing differentiation into cardiac myocytes and endothelial cells. Although research has not demonstrated complete and high-yield cardiac differentiation, AFSC have been shown to effectively differentiate into endothelial cells and can effectively support cardiac tissue. Additionally, several tissue engineering and regenerative therapeutic approaches for the use of these cells in heart patches, injection after myocardial infarction, heart valves, vascularized scaffolds, and blood vessels are summarized. These applications show great promise in the treatment of congenital cardiovascular defects, and further studies of isolation, culture, and differentiation of AFSC will help to develop their use for tissue engineering, regenerative medicine, and cardiovascular therapies. PMID:23350771

  7. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    PubMed

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.

  8. Culture of somatic cells isolated from frozen-thawed equine semen using fluorescence-assisted cell sorting.

    PubMed

    Brom-de-Luna, Joao Gatto; Canesin, Heloísa Siqueira; Wright, Gus; Hinrichs, Katrin

    2018-03-01

    Nuclear transfer using somatic cells from frozen semen (FzSC) would allow cloning of animals for which no other genetic material is available. Horses are one of the few species for which cloning is commercially feasible; despite this, there is no information available on the culture of equine FzSC. After preliminary trials on equine FzSC, recovered by density-gradient centrifugation, resulted in no growth, we hypothesized that sperm in the culture system negatively affected cell proliferation. Therefore, we evaluated culture of FzSC isolated using fluorescence-assisted cell sorting. In Exp. 1, sperm were labeled using antibodies to a sperm-specific antigen, SP17, and unlabeled cells were collected. This resulted in high sperm contamination. In Exp. 2, FzSC were labeled using an anti-MHC class I antibody. This resulted in an essentially pure population of FzSC, 13-25% of which were nucleated. Culture yielded no proliferation in any of nine replicates. In Exp. 3, 5 × 10 3 viable fresh, cultured horse fibroblasts were added to the frozen-thawed, washed semen, then this suspension was labeled and sorted as for Exp. 2. The enriched population had a mean of five sperm per recovered somatic cell; culture yielded formation of monolayers. In conclusion, an essentially pure population of equine FzSC could be obtained using sorting for presence of MHC class I antigens. No equine FzSC grew in culture; however, the proliferation of fibroblasts subjected to the same processing demonstrated that the labeling and sorting methods, and the presence of few sperm in culture, were compatible with cell viability. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Canonical Wnt Signaling as a Specific Marker of Normal and Tumorigenic Mammary Stem Cells

    DTIC Science & Technology

    2013-02-01

    get enough sorted mammary cells for the transplantation experiments. We are currently working with our Flow Cytometry Core to sort Lin-/CD24+/CD49...activity our flow cytometry data suggests t here is a 2-fold increase in the number of FOG+ MEC’s in BATgal animals compared to contro ls which...this populat ion of cells is enriched for stem cell activity. Flow cytometry will determine the percentage of FOG+ cells within pre-neoplastic BATgai

  10. Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and Atherosclerosis

    PubMed Central

    Patel, Kevin M.; Strong, Alanna; Tohyama, Junichiro; Jin, Xueting; Morales, Carlos R.; Billheimer, Jeffery; Millar, John; Kruth, Howard; Rader, Daniel J.

    2015-01-01

    Rationale Non-coding gene variants at the SORT1 locus are strongly associated with LDL-C levels as well as with coronary artery disease (CAD). SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apoB-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macrophage uptake of LDL and in atherosclerosis independent of plasma LDL-C levels is unknown. Objective To determine the effect of macrophage sortilin expression on LDL uptake, foam cell formation, and atherosclerosis. Methods and Results We crossed Sort1−/− mice onto a ‘humanized’ Apobec1−/−; hAPOB Tg background and determined that Sort1 deficiency on this background had no effect on plasma LDL-C levels but dramatically reduced atherosclerosis in the aorta and aortic root. In order to test whether this effect was a result of macrophage sortilin deficiency, we transplanted Sort1−/−;LDLR−/− or Sort1+/+;LDLR−/− bone marrow into Ldlr−/− mice and observed a similar reduction in atherosclerosis in mice lacking hematopoetic sortilin without an effect on plasma LDL-C levels. In an effort to determine the mechanism by which hematopoetic sortilin deficiency reduced atherosclerosis, we found no effect of sortilin deficiency on macrophage recruitment or LPS-induced cytokine release in vivo. In contrast, sortilin deficient macrophages had significantly reduced uptake of native LDL ex vivo and reduced foam cell formation in vivo, whereas sortilin overexpression in macrophages resulted in increased LDL uptake and foam cell formation. Conclusions Macrophage sortilin deficiency protects against atherosclerosis by reducing macrophage uptake of LDL. Sortilin-mediated uptake of native LDL into macrophages may be an important mechanism of foam cell formation and contributor to atherosclerosis development. PMID:25593281

  11. Functional single-cell hybridoma screening using droplet-based microfluidics.

    PubMed

    El Debs, Bachir; Utharala, Ramesh; Balyasnikova, Irina V; Griffiths, Andrew D; Merten, Christoph A

    2012-07-17

    Monoclonal antibodies can specifically bind or even inhibit drug targets and have hence become the fastest growing class of human therapeutics. Although they can be screened for binding affinities at very high throughput using systems such as phage display, screening for functional properties (e.g., the inhibition of a drug target) is much more challenging. Typically these screens require the generation of immortalized hybridoma cells, as well as clonal expansion in microtiter plates over several weeks, and the number of clones that can be assayed is typically no more than a few thousand. We present here a microfluidic platform allowing the functional screening of up to 300,000 individual hybridoma cell clones within less than a day. This approach should also be applicable to nonimmortalized primary B-cells, as no cell proliferation is required: Individual cells are encapsulated into aqueous microdroplets and assayed directly for the release of antibodies inhibiting a drug target based on fluorescence. We used this system to perform a model screen for antibodies that inhibit angiotensin converting enzyme 1, a target for hypertension and congestive heart failure drugs. When cells expressing these antibodies were spiked into an unrelated hybridoma cell population in a ratio of 1:10,000 we observed a 9,400-fold enrichment after fluorescence activated droplet sorting. A wide variance in antibody expression levels at the single-cell level within a single hybridoma line was observed and high expressors could be successfully sorted and recultivated.

  12. Lentiviral gene ontology (LeGO) vectors equipped with novel drug-selectable fluorescent proteins: new building blocks for cell marking and multi-gene analysis.

    PubMed

    Weber, K; Mock, U; Petrowitz, B; Bartsch, U; Fehse, B

    2010-04-01

    Vector-encoded fluorescent proteins (FPs) facilitate unambiguous identification or sorting of gene-modified cells by fluorescence-activated cell sorting (FACS). Exploiting this feature, we have recently developed lentiviral gene ontology (LeGO) vectors (www.LentiGO-Vectors.de) for multi-gene analysis in different target cells. In this study, we extend the LeGO principle by introducing 10 different drug-selectable FPs created by fusing one of the five selection marker (protecting against blasticidin, hygromycin, neomycin, puromycin and zeocin) and one of the five FP genes (Cerulean, eGFP, Venus, dTomato and mCherry). All tested fusion proteins allowed both fluorescence-mediated detection and drug-mediated selection of LeGO-transduced cells. Newly generated codon-optimized hygromycin- and neomycin-resistance genes showed improved expression as compared with their ancestors. New LeGO constructs were produced at titers >10(6) per ml (for non-concentrated supernatants). We show efficient combinatorial marking and selection of various cells, including mesenchymal stem cells, simultaneously transduced with different LeGO constructs. Inclusion of the cytomegalovirus early enhancer/chicken beta-actin promoter into LeGO vectors facilitated robust transgene expression in and selection of neural stem cells and their differentiated progeny. We suppose that the new drug-selectable markers combining advantages of FACS and drug selection are well suited for numerous applications and vector systems. Their inclusion into LeGO vectors opens new possibilities for (stem) cell tracking and functional multi-gene analysis.

  13. Seamless Combination of Fluorescence-Activated Cell Sorting and Hanging-Drop Networks for Individual Handling and Culturing of Stem Cells and Microtissue Spheroids.

    PubMed

    Birchler, Axel; Berger, Mischa; Jäggin, Verena; Lopes, Telma; Etzrodt, Martin; Misun, Patrick Mark; Pena-Francesch, Maria; Schroeder, Timm; Hierlemann, Andreas; Frey, Olivier

    2016-01-19

    Open microfluidic cell culturing devices offer new possibilities to simplify loading, culturing, and harvesting of individual cells or microtissues due to the fact that liquids and cells/microtissues are directly accessible. We present a complete workflow for microfluidic handling and culturing of individual cells and microtissue spheroids, which is based on the hanging-drop network concept: The open microfluidic devices are seamlessly combined with fluorescence-activated cell sorting (FACS), so that individual cells, including stem cells, can be directly sorted into specified culturing compartments in a fully automated way and at high accuracy. Moreover, already assembled microtissue spheroids can be loaded into the microfluidic structures by using a conventional pipet. Cell and microtissue culturing is then performed in hanging drops under controlled perfusion. On-chip drop size control measures were applied to stabilize the system. Cells and microtissue spheroids can be retrieved from the chip by using a parallelized transfer method. The presented methodology holds great promise for combinatorial screening of stem-cell and multicellular-spheroid cultures.

  14. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia

    PubMed Central

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle; Malmstrom, Rex R.; Woyke, Tanja; Orphan, Victoria J.

    2016-01-01

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought. PMID:27357680

  15. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia

    DOE PAGES

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle; ...

    2016-06-28

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probemore » the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of > 16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought.« less

  16. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probemore » the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of > 16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought.« less

  17. Liver repopulation by c-Met-positive stem/progenitor cells isolated from the developing rat liver.

    PubMed

    Suzuki, Atsushi; Zheng, Yun-wen; Fukao, Katashi; Nakauchi, Hiromitsu; Taniguchi, Hideki

    2004-01-01

    Self-renewing stem cells responsible for tissue or organ development and regeneration have been recently described. To isolate such cells using flow cytometry, it should be required to find molecules expressing on their cell surfaces. We have previously reported that, on cells fulfilling the criteria for hepatic stem cells, the hepatocyte growth factor receptor c-Met is expressed specifically in the developing mouse liver. In this study, to determine whether c-Met is an essential marker for hepatic stem cells in other animal strains, we examined the potential for in vivo liver-repopulation in sorted fetal rat-derived c-Met+ cells using the retrorsine model. Using flow cytometry and monoclonal antibodies for c-Met and leukocyte common antigen CD45, fetal rat liver cells were fractionated according to the expression of these molecules. Then, cells in each cell subpopulation were sorted and transplanted into the retrorsine-treated adult rats with two-third hepatectomy. At 9 months post transplant, frequency of liver-repopulation was examined by qualitative and quantitative analyses. When we transplanted c-Met+ CD45- sorted cells, many donor-derived cells formed colonies that included mature hepatocytes expressing albumin and containing abundant glycogen in their cytoplasm. In contrast, c-Met- cells and CD45+ cells could not repopulate damaged recipient livers. High enrichment of liver-repopulating cells was conducted by sorting of c-Met+ cells from the developing rat liver. This result suggests that c-Met/HGF interaction plays a crucial role for stem cell growth, differentiation, and self-renewal in rat liver organogenesis. Since the c-Met is also expressed in the fetal mouse-derived hepatic stem cells, this molecule could be expected to be an essential marker for such cell population in the various animal strains, including human.

  18. The emerging role of retromer in neuroprotection.

    PubMed

    McMillan, Kirsty J; Korswagen, Hendrick C; Cullen, Peter J

    2017-08-01

    Efficient sorting and transportation of integral membrane proteins, such as ion channels, nutrient transporters, signalling receptors, cell-cell and cell-matrix adhesion molecules is essential for the function of cellular organelles and hence organism development and physiology. Retromer is a master controller of integral membrane protein sorting and transport through one of the major sorting station within eukaryotic cells, the endosomal network. Subtle de-regulation of retromer is an emerging theme in the pathoetiology of Parkinson's disease. Here we summarise recent advances in defining the neuroprotective role of retromer and how its de-regulation may contribute to Parkinson's disease by interfering with: lysosomal health and protein degradation, association with accessory proteins including the WASH complex and mitochondrial health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Bubbly vertex dynamics: A dynamical and geometrical model for epithelial tissues with curved cell shapes

    NASA Astrophysics Data System (ADS)

    Ishimoto, Yukitaka; Morishita, Yoshihiro

    2014-11-01

    In order to describe two-dimensionally packed cells in epithelial tissues both mathematically and physically, there have been developed several sorts of geometrical models, such as the vertex model, the finite element model, the cell-centered model, and the cellular Potts model. So far, in any case, pressures have not neatly been dealt with and the curvatures of the cell boundaries have been even omitted through their approximations. We focus on these quantities and formulate them in the vertex model. Thus, a model with the curvatures is constructed, and its algorithm for simulation is provided. The possible extensions and applications of this model are also discussed.

  20. Clathrin Terminal Domain-Ligand Interactions Regulate Sorting of Mannose 6-Phosphate Receptors Mediated by AP-1 and GGA Adaptors*

    PubMed Central

    Stahlschmidt, Wiebke; Robertson, Mark J.; Robinson, Phillip J.; McCluskey, Adam; Haucke, Volker

    2014-01-01

    Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane. PMID:24407285

  1. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    PubMed Central

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  2. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells

    PubMed Central

    Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C.; Hanson, Buck T.; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M.; Fowler, Patrick W.; Huang, Wei E.; Wagner, Michael

    2015-01-01

    Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics. PMID:25550518

  3. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome.

    PubMed

    Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz

    2013-07-01

    Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin-Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Concise Review: Cell Surface N-Linked Glycoproteins as Potential Stem Cell Markers and Drug Targets.

    PubMed

    Boheler, Kenneth R; Gundry, Rebekah L

    2017-01-01

    Stem cells and their derivatives hold great promise to advance regenerative medicine. Critical to the progression of this field is the identification and utilization of antibody-accessible cell-surface proteins for immunophenotyping and cell sorting-techniques essential for assessment and isolation of defined cell populations with known functional and therapeutic properties. Beyond their utility for cell identification and selection, cell-surface proteins are also major targets for pharmacological intervention. Although comprehensive cell-surface protein maps are highly valuable, they have been difficult to define until recently. In this review, we discuss the application of a contemporary targeted chemoproteomic-based technique for defining the cell-surface proteomes of stem and progenitor cells. In applying this approach to pluripotent stem cells (PSCs), these studies have improved the biological understanding of these cells, led to the enhanced use and development of antibodies suitable for immunophenotyping and sorting, and contributed to the repurposing of existing drugs without the need for high-throughput screening. The utility of this latter approach was first demonstrated with human PSCs (hPSCs) through the identification of small molecules that are selectively toxic to hPSCs and have the potential for eliminating confounding and tumorigenic cells in hPSC-derived progeny destined for research and transplantation. Overall, the cutting-edge technologies reviewed here will accelerate the development of novel cell-surface protein targets for immunophenotyping, new reagents to improve the isolation of therapeutically qualified cells, and pharmacological studies to advance the treatment of intractable diseases amenable to cell-replacement therapies. Stem Cells Translational Medicine 2017;6:131-138. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  5. An extensible infrastructure for fully automated spike sorting during online experiments.

    PubMed

    Santhanam, Gopal; Sahani, Maneesh; Ryu, Stephen; Shenoy, Krishna

    2004-01-01

    When recording extracellular neural activity, it is often necessary to distinguish action potentials arising from distinct cells near the electrode tip, a process commonly referred to as "spike sorting." In a number of experiments, notably those that involve direct neuroprosthetic control of an effector, this cell-by-cell classification of the incoming signal must be achieved in real time. Several commercial offerings are available for this task, but all of these require some manual supervision per electrode, making each scheme cumbersome with large electrode counts. We present a new infrastructure that leverages existing unsupervised algorithms to sort and subsequently implement the resulting signal classification rules for each electrode using a commercially available Cerebus neural signal processor. We demonstrate an implementation of this infrastructure to classify signals from a cortical electrode array, using a probabilistic clustering algorithm (described elsewhere). The data were collected from a rhesus monkey performing a delayed center-out reach task. We used both sorted and unsorted (thresholded) action potentials from an array implanted in pre-motor cortex to "predict" the reach target, a common decoding operation in neuroprosthetic research. The use of sorted spikes led to an improvement in decoding accuracy of between 3.6 and 6.4%.

  6. Mesenchymal Stem Cells for Vascular Target Discovery in Breast Cancer-Associated Angiogenesis

    DTIC Science & Technology

    2004-09-01

    Matrigel plug and sorted by flow cytometry . Sorting of these retrieved cells based on co-expression of the GFP marker and cell- surface endothelial...express the green fluorescent protein (GFP) and clonal MSC populations can be isolated and phenotypically and genotypically analyzed by flow cytometry ...monoclonal populations of these GFP+ murine MSCs and conducted flow cytometry analysis to determine their phenotype. Specifically, we determined if

  7. Early Detection of NSCLC Using Stromal Markers in Peripheral Blood

    DTIC Science & Technology

    2016-09-01

    circulating myeloid cells, flow cytometry, RNA -sequencing, expression profiling. 3. ACCOMPLISHMENTS:  What were the major goals of the project...Subtask 2: Flow cytometry sorting of circulating myeloid cells. Subtask 3: RNA -Sequencing Subtask 4: RNA -seq data analysis Subtask 5: Feasible RT-PCR...accomplished the patient recruitment, flow cytometry sorting of circulating myeloid cells, RNA -sequencing of the samples. During the RNA - seq data analysis, we

  8. Rab1a regulates sorting of early endocytic vesicles

    PubMed Central

    Mukhopadhyay, Aparna; Quiroz, Jose A.

    2014-01-01

    We previously reported that Rab1a is associated with asialoorosomucoid (ASOR)-containing early endocytic vesicles, where it is required for their microtubule-based motility. In Rab1a knockdown (KD) cell lines, ASOR failed to segregate from its receptor and, consequently, did not reach lysosomes for degradation, indicating a defect in early endosome sorting. Although Rab1 is required for Golgi/endoplasmic reticulum trafficking, this process was unaffected, likely due to retained expression of Rab1b in these cells. The present study shows that Rab1a has a more general role in endocytic vesicle processing that extends to EGF and transferrin (Tfn) trafficking. Compared with results in control Huh7 cells, EGF accumulated in aggregates within Rab1a KD cells, failing to reach lysosomal compartments. Tfn, a prototypical example of recycling cargo, accumulated in a Rab11-mediated slow-recycling compartment in Rab1a KD cells, in contrast to control cells, which sort Tfn into a fast-recycling Rab4 compartment. These data indicate that Rab1a is an important regulator of early endosome sorting for multiple cargo species. The effectors and accessory proteins recruited by Rab1a to early endocytic vesicles include the minus-end-directed kinesin motor KifC1, while others remain to be discovered. PMID:24407591

  9. Trafficking to the Apical and Basolateral Membranes in Polarized Epithelial Cells

    PubMed Central

    Stoops, Emily H.

    2014-01-01

    Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type–specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells. PMID:24652803

  10. PBMC are as good a source of tumor-reactive T lymphocytes as TIL after selection by Melan-A/A2 multimer immunomagnetic sorting.

    PubMed

    Labarrière, Nathalie; Gervois, Nadine; Bonnin, Annabelle; Bouquié, Régis; Jotereau, Francine; Lang, François

    2008-02-01

    Choosing a reliable source of tumor-specific T lymphocytes and an efficient method to isolate these cells still remains a critical issue in adoptive cellular therapy (ACT). In this study, we assessed the capacity of MHC/peptide based immunomagnetic sorting followed by polyclonal T cell expansion to derive pure polyclonal and tumor-reactive Melan-A specific T cell populations from melanoma patient's PBMC and TIL. We first demonstrated that this approach was extremely efficient and reproducible. We then used this procedure to compare PBMC and TIL-derived cells from three melanoma patients in terms of avidity for Melan-A A27L analog, Melan-A(26-35)and Melan-A(27-35), tumor reactivity (lysis and cytokine production) and repertoire. Regardless of their origin, i.e., fresh PBMC, peptide stimulated PBMC or TIL, all sorted populations (from the three patients) were cytotoxic against HLA-A2+ melanoma cell lines expressing Melan-A. Although some variability in peptide avidity, lytic activity and cytokine production was observed between populations of different origins in a given patient, it differed from one patient to another and thus no correlation could be drawn between T cell source and reactivity. Analysis of Vbeta usage within the sorted populations showed the recurrence of Vbeta3 and Vbeta14 subfamilies in the three patients but differences in the rest of the Melan-A repertoire. In addition, in two patients, we observed major repertoire differences between populations sorted from the three sources. We especially documented that in vitro peptide stimulation of PBMC, used to facilitate the sort by enriching in specific T lymphocytes, could significantly alter their repertoire and reactivity towards tumor cells. We conclude that PBMC which are easily obtained from all melanoma patients, can be as good a source as TIL to derive high amounts of tumor-reactive Melan-A specific T cells, with this selection/amplification procedure. However, the conditions of peptide stimulation should be improved to prevent a possible loss of reactive clonotypes.

  11. A Binary Array Asynchronous Sorting Algorithm with Using Petri Nets

    NASA Astrophysics Data System (ADS)

    Voevoda, A. A.; Romannikov, D. O.

    2017-01-01

    Nowadays the tasks of computations speed-up and/or their optimization are actual. Among the approaches on how to solve these tasks, a method applying approaches of parallelization and asynchronization to a sorting algorithm is considered in the paper. The sorting methods are ones of elementary methods and they are used in a huge amount of different applications. In the paper, we offer a method of an array sorting that based on a division into a set of independent adjacent pairs of numbers and their parallel and asynchronous comparison. And this one distinguishes the offered method from the traditional sorting algorithms (like quick sorting, merge sorting, insertion sorting and others). The algorithm is implemented with the use of Petri nets, like the most suitable tool for an asynchronous systems description.

  12. DIE-RNA: A Reproducible Strategy for the Digestion of Normal and Injured Pancreas, Isolation of Pancreatic Cells from Genetically Engineered Mouse Models and Extraction of High Quality RNA

    PubMed Central

    Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick

    2018-01-01

    The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells. PMID:29535635

  13. DIE-RNA: A Reproducible Strategy for the Digestion of Normal and Injured Pancreas, Isolation of Pancreatic Cells from Genetically Engineered Mouse Models and Extraction of High Quality RNA.

    PubMed

    Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick

    2018-01-01

    The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells.

  14. Review: Semen sexing - current state of the art with emphasis on bovine species.

    PubMed

    Vishwanath, R; Moreno, J F

    2018-06-01

    It is approaching three decades since the first public evidence of sex-sorting of semen. The technology has progressed considerably since then with a number of institutions and researchers collaborating to eventually bring this to application. The technical challenges have been quite substantial and in the early years the application was limited to only heifer inseminations. Comparable fertility of sex-sorted semen with conventional semen has been an aspirational benchmark for the industry for many years. Significant investment in research in the primary biology of sex-sorted sperm and associated sorting equipment ensured steady progress over the years and current methods particularly the new SexedULTRA-4M™ seems to have now mostly bridged this fertility gap. The dairy and beef industry have adopted this technology quite rapidly. Other animal industries are progressively testing it for application in their specific niches and environments. The current state of the art in the fundamentals of sex-sorting, the biology of the process as well as new developments in machinery are described in this review.

  15. Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos.

    PubMed

    Liu, Na; Liu, Lin; Pan, Xinghua

    2014-07-01

    Cellular heterogeneity within a cell population is a common phenomenon in multicellular organisms, tissues, cultured cells, and even FACS-sorted subpopulations. Important information may be masked if the cells are studied as a mass. Transcriptome profiling is a parameter that has been intensively studied, and relatively easier to address than protein composition. To understand the basis and importance of heterogeneity and stochastic aspects of the cell function and its mechanisms, it is essential to examine transcriptomes of a panel of single cells. High-throughput technologies, starting from microarrays and now RNA-seq, provide a full view of the expression of transcriptomes but are limited by the amount of RNA for analysis. Recently, several new approaches for amplification and sequencing the transcriptome of single cells or a limited low number of cells have been developed and applied. In this review, we summarize these major strategies, such as PCR-based methods, IVT-based methods, phi29-DNA polymerase-based methods, and several other methods, including their principles, characteristics, advantages, and limitations, with representative applications in cancer stem cells, early development, and embryonic stem cells. The prospects for development of future technology and application of transcriptome analysis in a single cell are also discussed.

  16. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    PubMed

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

  17. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy

    PubMed Central

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-01-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account. PMID:23940503

  18. Characterization of pancreatic stem cells derived from adult human pancreas ducts by fluorescence activated cell sorting.

    PubMed

    Lin, Han-Tso; Chiou, Shih-Hwa; Kao, Chung-Lan; Shyr, Yi-Ming; Hsu, Chien-Jen; Tarng, Yih-Wen; Ho, Larry L-T; Kwok, Ching-Fai; Ku, Hung-Hai

    2006-07-28

    To isolate putative pancreatic stem cells (PSCs) from human adult tissues of pancreas duct using serum-free, conditioned medium. The characterization of surface phenotype of these PSCs was analyzed by flow cytometry. The potential for pancreatic lineage and the capability of beta-cell differentiation in these PSCs were evaluated as well. By using serum-free medium supplemented with essential growth factors, we attempted to isolate the putative PSCs which has been reported to express nestin and pdx-1. The Matrigel(TM) was employed to evaluate the differential capacity of isolated cells. Dithizone staining, insulin content/secretion measurement, and immunohistochemistry staining were used to monitor the differentiation. Fluorescence activated cell sorting (FACS) was used to detect the phenotypic markers of putative PSCs. A monolayer of spindle-like cells was cultivated. The putative PSCs expressed pdx-1 and nestin. They were also able to differentiate into insulin-, glucagon-, and somatostatin-positive cells. The spectrum of phenotypic markers in PSCs was investigated; a similarity was revealed when using human bone marrow-derived stem cells as the comparative experiment, such as CD29, CD44, CD49, CD50, CD51, CD62E, PDGFR-alpha, CD73 (SH2), CD81, CD105(SH3). In this study, we successfully isolated PSCs from adult human pancreatic duct by using serum-free medium. These PSCs not only expressed nestin and pdx-1 but also exhibited markers attributable to mesenchymal stem cells. Although work is needed to elucidate the role of these cells, the application of these PSCs might be therapeutic strategies for diabetes mellitus.

  19. Radiation Response of Cancer Stem-Like Cells From Established Human Cell Lines After Sorting for Surface Markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Assar, Osama; Muschel, Ruth J.; Mantoni, Tine S.

    2009-11-15

    Purpose: A subpopulation of cancer stem-like cells (CSLC) is hypothesized to exist in different cancer cell lines and to mediate radioresistance in solid tumors. Methods and Materials: Cells were stained for CSLC markers and sorted (fluorescence-activated cell sorter/magnetic beads) to compare foci and radiosensitivity of phosphorylated histone H2AX at Ser 139 (gamma-H2AX) in sorted vs. unsorted populations in eight cell lines from different organs. CSLC properties were examined using anchorage-independent growth and levels of activated Notch1. Validation consisted of testing tumorigenicity and postirradiation enrichment of CSLC in xenograft tumors. Results: The quantity of CSLC was generally in good agreement withmore » primary tumors. CSLC from MDA-MB-231 (breast) and Panc-1 and PSN-1 (both pancreatic) cells had fewer residual gamma-H2AX foci than unsorted cells, pointing to radioresistance of CSLC. However, only MDA-MB-231 CSLC were more radioresistant than unsorted cells. Furthermore, MDA-MB-231 CSLC showed enhanced anchorage-independent growth and overexpression of activated Notch1 protein. The expression of cancer stem cell surface markers in the MDA-MB-231 xenograft model was increased after exposure to fractionated radiation. In contrast to PSN-1 cells, a growth advantage for MDA-MB-231 CSLC xenograft tumors was found compared to tumors arising from unsorted cells. Conclusions: CSLC subpopulations showed no general radioresistant phenotype, despite the quantities of CSLC subpopulations shown to correspond relatively well in other reports. Likewise, CSLC characteristics were found in some but not all of the tested cell lines. The reported problems in testing for CSLC in cell lines may be overcome by additional techniques, beyond sorting for markers.« less

  20. From Molecules to Cells to Organisms: Understanding Health and Disease with Multidimensional Single-Cell Methods

    NASA Astrophysics Data System (ADS)

    Candia, Julián

    2013-03-01

    The multidimensional nature of many single-cell measurements (e.g. multiple markers measured simultaneously using Fluorescence-Activated Cell Sorting (FACS) technologies) offers unprecedented opportunities to unravel emergent phenomena that are governed by the cooperative action of multiple elements across different scales, from molecules and proteins to cells and organisms. We will discuss an integrated analysis framework to investigate multicolor FACS data from different perspectives: Singular Value Decomposition to achieve an effective dimensional reduction in the data representation, machine learning techniques to separate different patient classes and improve diagnosis, as well as a novel cell-similarity network analysis method to identify cell subpopulations in an unbiased manner. Besides FACS data, this framework is versatile: in this vein, we will demonstrate an application to the multidimensional single-cell shape analysis of healthy and prematurely aged cells.

  1. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding.

    PubMed

    Lan, Freeman; Demaree, Benjamin; Ahmed, Noorsher; Abate, Adam R

    2017-07-01

    The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.

  2. A Novel Strategy for Isolation, Molecular and Functional Characterization of Embryonic Mammary Stem Cells Using Molecular Genetics and Microfluidic Sorting

    DTIC Science & Technology

    2008-06-01

    Geoffrey M. Wahl, Ph.D. CONTRACTING ORGANIZATION: The Salk Institute for Biological Studies La Jolla, CA 92037-1099...PERFORMING ORGANIZATION REPORT NUMBER The Salk Institute for Biological Studies La Jolla, CA 92037-1099 9. SPONSORING...validated the use of a micro- volume cell sorter ( Celula , Inc.). This instrument is capable of sorting as few as 150 GFP positive cells from a sample

  3. Bacterial Microcolonies in Gel Beads for High-Throughput Screening of Libraries in Synthetic Biology.

    PubMed

    Duarte, José M; Barbier, Içvara; Schaerli, Yolanda

    2017-11-17

    Synthetic biologists increasingly rely on directed evolution to optimize engineered biological systems. Applying an appropriate screening or selection method for identifying the potentially rare library members with the desired properties is a crucial step for success in these experiments. Special challenges include substantial cell-to-cell variability and the requirement to check multiple states (e.g., being ON or OFF depending on the input). Here, we present a high-throughput screening method that addresses these challenges. First, we encapsulate single bacteria into microfluidic agarose gel beads. After incubation, they harbor monoclonal bacterial microcolonies (e.g., expressing a synthetic construct) and can be sorted according their fluorescence by fluorescence activated cell sorting (FACS). We determine enrichment rates and demonstrate that we can measure the average fluorescent signals of microcolonies containing phenotypically heterogeneous cells, obviating the problem of cell-to-cell variability. Finally, we apply this method to sort a pBAD promoter library at ON and OFF states.

  4. Computer simulations of the energy dissipation rate in a fluorescence-activated cell sorter: Implications to cells.

    PubMed

    Mollet, Mike; Godoy-Silva, Ruben; Berdugo, Claudia; Chalmers, Jeffrey J

    2008-06-01

    Fluorescence activated cell sorting, FACS, is a widely used method to sort subpopulations of cells to high purities. To achieve relatively high sorting speeds, FACS instruments operate by forcing suspended cells to flow in a single file line through a laser(s) beam(s). Subsequently, this flow stream breaks up into individual drops which can be charged and deflected into multiple collection streams. Previous work by Ma et al. (2002) and Mollet et al. (2007; Biotechnol Bioeng 98:772-788) indicates that subjecting cells to hydrodynamic forces consisting of both high extensional and shear components in micro-channels results in significant cell damage. Using the fluid dynamics software FLUENT, computer simulations of typical fluid flow through the nozzle of a BD FACSVantage indicate that hydrodynamic forces, quantified using the scalar parameter energy dissipation rate, are similar in the FACS nozzle to levels reported to create significant cell damage in micro-channels. Experimental studies in the FACSVantage, operated under the same conditions as the simulations confirmed significant cell damage in two cell lines, Chinese Hamster Ovary cells (CHO) and THP1, a human acute monocytic leukemia cell line.

  5. A Quartz Crystal Microbalance Immunosensor for Stem Cell Selection and Extraction

    PubMed Central

    Costanzo, Salvatore; Zambrano, Gerardo; Mauro, Marco; Battaglia, Raffaele; Ferrini, Gianluca; Nastri, Flavia; Pavone, Vincenzo

    2017-01-01

    A cost-effective immunosensor for the detection and isolation of dental pulp stem cells (DPSCs) based on a quartz crystal microbalance (QCM) has been developed. The recognition mechanism relies on anti-CD34 antibodies, DPSC-specific monoclonal antibodies that are anchored on the surface of the quartz crystals. Due to its high specificity, real time detection, and low cost, the proposed technology has a promising potential in the field of cell biology, for the simultaneous detection and sorting of stem cells from heterogeneous cell samples. The QCM surface was properly tailored through a biotinylated self-assembled monolayer (SAM). The biotin–avidin interaction was used to immobilize the biotinylated anti-CD34 antibody on the gold-coated quartz crystal. After antibody immobilization, a cellular pellet, with a mixed cell population, was analyzed; the results indicated that the developed QCM immunosensor is highly specific, being able to detect and sort only CD34+ cells. Our study suggests that the proposed technology can detect and efficiently sort any kind of cell from samples with high complexity, being simple, selective, and providing for more convenient and time-saving operations. PMID:29182568

  6. Identification of residual leukemic cells by flow cytometry in childhood B-cell precursor acute lymphoblastic leukemia: verification of leukemic state by flow-sorting and molecular/cytogenetic methods.

    PubMed

    Øbro, Nina F; Ryder, Lars P; Madsen, Hans O; Andersen, Mette K; Lausen, Birgitte; Hasle, Henrik; Schmiegelow, Kjeld; Marquart, Hanne V

    2012-01-01

    Reduction in minimal residual disease, measured by real-time quantitative PCR or flow cytometry, predicts prognosis in childhood B-cell precursor acute lymphoblastic leukemia. We explored whether cells reported as minimal residual disease by flow cytometry represent the malignant clone harboring clone-specific genomic markers (53 follow-up bone marrow samples from 28 children with B-cell precursor acute lymphoblastic leukemia). Cell populations (presumed leukemic and non-leukemic) were flow-sorted during standard flow cytometry-based minimal residual disease monitoring and explored by PCR and/or fluorescence in situ hybridization. We found good concordance between flow cytometry and genomic analyses in the individual flow-sorted leukemic (93% true positive) and normal (93% true negative) cell populations. Four cases with discrepant results had plausible explanations (e.g. partly informative immunophenotype and antigen modulation) that highlight important methodological pitfalls. These findings demonstrate that with sufficient experience, flow cytometry is reliable for minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia, although rare cases require supplementary PCR-based monitoring.

  7. The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Hwang, Bohyun; Kim, Byungkyu

    2016-12-01

    Originally introduced by H. A. Pohl in 1951, dielectrophoretic (DEP) force has been used as a striking tool for biological particle manipulation (or separation) for the last few decades. In particular, dielectrophoresis activated cell sorters (DACSes) have been developed for applications in various biomedical fields. These applications include cell replacement therapy, drug screening and medical diagnostics. Since a DACS does not require a specific bio-marker, it is able to function as a biological particle sorting tool with numerous configurations for various cells [e.g. red blood cells (RBCs), white blood cells (WBCs), circulating tumor cells, leukemia cells, breast cancer cells, bacterial cells, yeast cells and sperm cells]. This article explores current DACS capabilities worldwide, and it also looks at recent developments intended to overcome particular limitations. First, the basic theories are reviewed. Then, representative DACSes based on DEP trapping, traveling wave DEP systems, DEP field-flow fractionation and DEP barriers are introduced, and the strong and weak points of each DACS are discussed. Finally, for the purposes of commercialization, prerequisites regarding throughput, efficiency and recovery rates are discussed in detail through comparisons with commercial cell sorters (e.g. fluorescent activated and magnetic activated cell sorters).

  8. Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations.

    PubMed

    Grasso, Carole; Anaka, Matthew; Hofmann, Oliver; Sompallae, Ramakrishna; Broadley, Kate; Hide, Winston; Berridge, Michael V; Cebon, Jonathan; Behren, Andreas; McConnell, Melanie J

    2016-09-09

    The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma.

  9. Denni Algorithm An Enhanced Of SMS (Scan, Move and Sort) Algorithm

    NASA Astrophysics Data System (ADS)

    Aprilsyah Lubis, Denni; Salim Sitompul, Opim; Marwan; Tulus; Andri Budiman, M.

    2017-12-01

    Sorting has been a profound area for the algorithmic researchers, and many resources are invested to suggest a more working sorting algorithm. For this purpose many existing sorting algorithms were observed in terms of the efficiency of the algorithmic complexity. Efficient sorting is important to optimize the use of other algorithms that require sorted lists to work correctly. Sorting has been considered as a fundamental problem in the study of algorithms that due to many reasons namely, the necessary to sort information is inherent in many applications, algorithms often use sorting as a key subroutine, in algorithm design there are many essential techniques represented in the body of sorting algorithms, and many engineering issues come to the fore when implementing sorting algorithms., Many algorithms are very well known for sorting the unordered lists, and one of the well-known algorithms that make the process of sorting to be more economical and efficient is SMS (Scan, Move and Sort) algorithm, an enhancement of Quicksort invented Rami Mansi in 2010. This paper presents a new sorting algorithm called Denni-algorithm. The Denni algorithm is considered as an enhancement on the SMS algorithm in average, and worst cases. The Denni algorithm is compared with the SMS algorithm and the results were promising.

  10. Tracking heavy water (D 2O) incorporation for identifying and sorting active microbial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, David; Mader, Esther; Lee, Tae Kwon

    Here, microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. Here in this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D 2O) combined with Raman microspectroscopy. Incorporation of D 2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labelingmore » pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D 2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D 2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.« less

  11. Tracking heavy water (D 2O) incorporation for identifying and sorting active microbial cells

    DOE PAGES

    Berry, David; Mader, Esther; Lee, Tae Kwon; ...

    2014-12-30

    Here, microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. Here in this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D 2O) combined with Raman microspectroscopy. Incorporation of D 2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labelingmore » pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D 2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D 2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.« less

  12. Continuous high throughput molecular adhesion based cell sorting using ridged microchannels

    NASA Astrophysics Data System (ADS)

    Tasadduq, Bushra; Wang, Gonghao; Alexeev, Alexander; Sarioglu, Ali Fatih; Sulchek, Todd

    2016-11-01

    Cell molecular interactions govern important physiological processes such as stem cell homing, inflammation and cancer metastasis. But due to a lack of effective separation technologies selective to these interactions it is challenging to specifically sort cells. Other label free separation techniques based on size, stiffness and shape do not provide enough specificity to cell type, and correlation to clinical condition. We propose a novel microfluidic device capable of high throughput molecule dependent separation of cells by flowing them through a microchannel decorated with molecule specific coated ridges. The unique aspect of this sorting design is the use of optimized gap size which is small enough to lightly squeeze the cells while flowing under the ridged part of the channel to increase the surface area for interaction between the ligand on cell surface and coated receptor molecule but large enough so that biomechanical markers, stiffness and viscoelasticity, do not dominate the cell separation mechanism. We are able to separate Jurkat cells based on its expression of PSGL-1ligand using ridged channel coated with P selectin at a flow rate of 0.045ml/min and achieve 2-fold and 5-fold enrichment of PSGL-1 positive and negative Jurkat cells respectively.

  13. Cryptosporidium as a testbed for single cell genome characterization of unicellular eukaryotes.

    PubMed

    Troell, Karin; Hallström, Björn; Divne, Anna-Maria; Alsmark, Cecilia; Arrighi, Romanico; Huss, Mikael; Beser, Jessica; Bertilsson, Stefan

    2016-06-23

    Infectious disease involving multiple genetically distinct populations of pathogens is frequently concurrent, but difficult to detect or describe with current routine methodology. Cryptosporidium sp. is a widespread gastrointestinal protozoan of global significance in both animals and humans. It cannot be easily maintained in culture and infections of multiple strains have been reported. To explore the potential use of single cell genomics methodology for revealing genome-level variation in clinical samples from Cryptosporidium-infected hosts, we sorted individual oocysts for subsequent genome amplification and full-genome sequencing. Cells were identified with fluorescent antibodies with an 80 % success rate for the entire single cell genomics workflow, demonstrating that the methodology can be applied directly to purified fecal samples. Ten amplified genomes from sorted single cells were selected for genome sequencing and compared both to the original population and a reference genome in order to evaluate the accuracy and performance of the method. Single cell genome coverage was on average 81 % even with a moderate sequencing effort and by combining the 10 single cell genomes, the full genome was accounted for. By a comparison to the original sample, biological variation could be distinguished and separated from noise introduced in the amplification. As a proof of principle, we have demonstrated the power of applying single cell genomics to dissect infectious disease caused by closely related parasite species or subtypes. The workflow can easily be expanded and adapted to target other protozoans, and potential applications include mapping genome-encoded traits, virulence, pathogenicity, host specificity and resistance at the level of cells as truly meaningful biological units.

  14. Optically enhanced acoustophoresis

    NASA Astrophysics Data System (ADS)

    McDougall, Craig; O'Mahoney, Paul; McGuinn, Alan; Willoughby, Nicholas A.; Qiu, Yongqiang; Demore, Christine E. M.; MacDonald, Michael P.

    2017-08-01

    Regenerative medicine has the capability to revolutionise many aspects of medical care, but for it to make the step from small scale autologous treatments to larger scale allogeneic approaches, robust and scalable label free cell sorting technologies are needed as part of a cell therapy bioprocessing pipeline. In this proceedings we describe several strategies for addressing the requirements for high throughput without labeling via: dimensional scaling, rare species targeting and sorting from a stable state. These three approaches are demonstrated through a combination of optical and ultrasonic forces. By combining mostly conservative and non-conservative forces from two different modalities it is possible to reduce the influence of flow velocity on sorting efficiency, hence increasing robustness and scalability. One such approach can be termed "optically enhanced acoustophoresis" which combines the ability of acoustics to handle large volumes of analyte with the high specificity of optical sorting.

  15. Lovastatin-induced cholesterol depletion affects both apical sorting and endocytosis of aquaporin-2 in renal cells.

    PubMed

    Procino, G; Barbieri, C; Carmosino, M; Rizzo, F; Valenti, G; Svelto, M

    2010-02-01

    Vasopressin causes the redistribution of the water channel aquaporin-2 (AQP2) from cytoplasmic storage vesicles to the apical plasma membrane of collecting duct principal cells, leading to urine concentration. The molecular mechanisms regulating the selective apical sorting of AQP2 are only partially uncovered. In this work, we investigate whether AQP2 sorting/trafficking is regulated by its association with membrane rafts. In both MCD4 cells and rat kidney, AQP2 preferentially associated with Lubrol WX-insoluble membranes regardless of its presence in the storage compartment or at the apical membrane. Block-and-release experiments indicate that 1) AQP2 associates with detergent-resistant membranes early in the biosynthetic pathway; 2) strong cholesterol depletion delays the exit of AQP2 from the trans-Golgi network. Interestingly, mild cholesterol depletion promoted a dramatic accumulation of AQP2 at the apical plasma membrane in MCD4 cells in the absence of forskolin stimulation. An internalization assay showed that AQP2 endocytosis was clearly reduced under this experimental condition. Taken together, these data suggest that association with membrane rafts may regulate both AQP2 apical sorting and endocytosis.

  16. Ion pump sorting in polarized renal epithelial cells.

    PubMed

    Caplan, M J

    2001-08-01

    The plasma membranes of renal epithelial cells are divided into distinct apical and basolateral domains, which contain different inventories of ion transport proteins. Without this polarity vectorial ion and fluid transport would not be possible. Little is known of the signals and mechanisms that renal epithelial cells use to establish and maintain polarized distributions of their ion transport proteins. Analysis of ion pump sorting reveals that multiple complex signals participate in determining and regulating these proteins' subcellular localizations.

  17. Non-invasive sex assessment in bovine semen by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    De Luca, A. C.; Managó, S.; Ferrara, M. A.; Rendina, I.; Sirleto, L.; Puglisi, R.; Balduzzi, D.; Galli, A.; Ferraro, P.; Coppola, G.

    2014-05-01

    X- and Y-chromosome-bearing sperm cell sorting is of great interest, especially for animal production management systems and genetic improvement programs. Here, we demonstrate an optical method based on Raman spectroscopy to separate X- and Y-chromosome-bearing sperm cells, overcoming many of the limitations associated with current sex-sorting protocols. A priori Raman imaging of bull spermatozoa was utilized to select the sampling points (head-neck region), which were then used to discriminate cells based on a spectral classification model. Main variations of Raman peaks associated with the DNA content were observed together with a variation due to the sex membrane proteins. Next, we used principal component analysis to determine the efficiency of our device as a cell sorting method. The results (>90% accuracy) demonstrated that Raman spectroscopy is a powerful candidate for the development of a highly efficient, non-invasive, and non-destructive tool for sperm sexing.

  18. Isolation of CD4+CD25+ regulatory T cells for clinical trials.

    PubMed

    Hoffmann, Petra; Boeld, Tina J; Eder, Ruediger; Albrecht, Julia; Doser, Kristina; Piseshka, Biserka; Dada, Ashraf; Niemand, Claudia; Assenmacher, Mario; Orsó, Evelyn; Andreesen, Reinhard; Holler, Ernst; Edinger, Matthias

    2006-03-01

    The adoptive transfer of donor CD4+CD25+ regulatory T cells has been shown to protect from lethal graft-versus-host disease after allogeneic bone marrow transplantation in murine disease models. Efficient isolation strategies that comply with good manufacturing practice (GMP) guidelines are prerequisites for the clinical application of human CD4+CD25+ regulatory T cells. Here we describe the isolation of CD4+CD25+ T cells with regulatory function from standard leukapheresis products by using a 2-step magnetic cell-separation protocol performed under GMP conditions. The generated cell products contained on average 49.5% CD4+CD25high T cells that phenotypically and functionally represented natural CD4+CD25+ regulatory T cells and showed a suppressive activity comparable to that of CD4+CD25+ regulatory T-cell preparations purified by non-GMP-approved fluorescence-activated cell sorting.

  19. A degradation-based sorting method for lithium-ion battery reuse.

    PubMed

    Chen, Hao; Shen, Julia

    2017-01-01

    In a world where millions of people are dependent on batteries to provide them with convenient and portable energy, battery recycling is of the utmost importance. In this paper, we developed a new method to sort 18650 Lithium-ion batteries in large quantities and in real time for harvesting used cells with enough capacity for battery reuse. Internal resistance and capacity tests were conducted as a basis for comparison with a novel degradation-based method based on X-ray radiographic scanning and digital image contrast computation. The test results indicate that the sorting accuracy of the test cells is about 79% and the execution time of our algorithm is at a level of 200 milliseconds, making our method a potential real-time solution for reusing the remaining capacity in good used cells.

  20. Droplet based microfluidics for highthroughput screening of antibody secreting cells

    NASA Astrophysics Data System (ADS)

    Cai, Liheng; Heyman, John; Mazutis, Linas; Ung, Lloyd; Guerra, Rodrigo; Aubrecht, Donald; Weitz, David

    2014-03-01

    We present a droplet based microfluidic platform that allows highthroughput screening of antibody secreting cells. We coencapsulate single cells, fluorescent probes, and detection beads into emulsion droplets with diameter of 40 micron. The beads capture antibodies secreted by cells, resulting in a pronounced fluorescent signal that activates dielectrophoresis sorting at rate about 500 droplets per second. Moreover, we demonstrate that Reverse Transcription Polymerase Chain Reaction (RT-PCR) can be successfully applied to the cell encapsulated in a single sorted droplet. Our work highlights the potential of droplet based microfluidics as a platform to generate recombinant antibodies.

  1. Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium.

    PubMed

    Letouzey, Vincent; Tan, Ker Sin; Deane, James A; Ulrich, Daniela; Gurung, Shanti; Ong, Y Rue; Gargett, Caroline E

    2015-01-01

    Mesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation. Ovine endometrium was obtained from hysterectomised ewes following progesterone synchronisation, dissociated into single cell suspensions and tested for MSC surface markers and key stem cell properties. Purified stromal cells were obtained by flow cytometry sorting with CD49f and CD45 to remove epithelial cells and leukocytes respectively, and MSC properties investigated. There was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells. This is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.

  2. Controlling particle trajectories using oscillating microbubbles

    NASA Astrophysics Data System (ADS)

    Jalikop, Shreyas; Wang, Cheng; Hilgenfeldt, Sascha

    2010-11-01

    In many applications of microfluidics and biotechnology, such as cytometry and drug delivery, it is vital to manipulate the trajectories of microparticles such as vesicles or cells. On this small scale, inertial or gravitational effects are often too weak to exploit. We propose a mechanism to selectively trap and direct particles based on their size in creeping transport flows (Re1). We employ Rayleigh-Nyborg-Westervelt (RNW) streaming generated by an oscillating microbubble, which in turn generates a streaming flow component around the mobile particles. The result is an attractive interaction that draws the particle closer to the bubble. The impenetrability of the bubble interface destroys time-reversal symmetry and forces the particles onto either narrow trajectory bundles or well-defined closed trajectories, where they are trapped. The effect is dependent on particle size and thus allows for the passive focusing and sorting of selected sizes, on scales much smaller than the geometry of the microfluidic device. The device could eliminate the need for complicated microchannel designs with external magnetic or electric fields in applications such as particle focusing and size-based sorting.

  3. Sorting of Pmel17 to melanosomes through the plasma membrane by AP1 and AP2: evidence for the polarized nature of melanocytes

    PubMed Central

    Valencia, Julio C.; Watabe, Hidenori; Chi, An; Rouzaud, Francois; Chen, Kevin G.; Vieira, Wilfred D.; Takahashi, Kaoruko; Yamaguchi, Yuji; Berens, Werner; Nagashima, Kunio; Shabanowitz, Jeffrey; Hunt, Donald F.; Appella, Ettore; Hearing, Vincent J.

    2015-01-01

    Summary Adaptor proteins (AP) play important roles in the sorting of proteins from the trans-Golgi network, but how they function in the sorting of various melanosome-specific proteins such as Pmel17, an essential structural component of melanosomes, in melanocytes is unknown. We characterized the processing and trafficking of Pmel17 via adaptor protein complexes within melanocytic cells. Proteomics analysis detected Pmel17, AP1 and AP2, but not AP3 or AP4 in early melanosomes. Real-time PCR, immunolabeling and tissue in-situ hybridization confirmed the coexpression of AP1 isoforms μ1A and μ1B (expressed only in polarized cells) in melanocytes and keratinocytes, but expression of μ1B is missing in some melanoma cell lines. Transfection with AP1 isoforms (μ1A or μ1B) showed two distinct distribution patterns that involved Pmel17, and only μ1B was able to restore the sorting of Pmel17 to the plasma membrane in cells lacking μ1B expression. Finally, we established that expression of μ1B is regulated physiologically in melanocytes by UV radiation or DKK1. These results show that Pmel17 is sorted to melanosomes by various intracellular routes, directly or indirectly through the plasma membrane, and the presence of basolateral elements in melanocytes suggests their polarized nature. PMID:16492709

  4. Preparation of myeloid derived suppressor cells (MDSC) from naive and pancreatic tumor-bearing mice using flow cytometry and automated magnetic activated cell sorting (AutoMACS).

    PubMed

    Nelson, Nadine; Szekeres, Karoly; Cooper, Denise; Ghansah, Tomar

    2012-06-18

    MDSC are a heterogeneous population of immature macrophages, dendritic cells and granulocytes that accumulate in lymphoid organs in pathological conditions including parasitic infection, inflammation, traumatic stress, graft-versus-host disease, diabetes and cancer. In mice, MDSC express Mac-1 (CD11b) and Gr-1 (Ly6G and Ly6C) surface antigens. It is important to note that MDSC are well studied in various tumor-bearing hosts where they are significantly expanded and suppress anti-tumor immune responses compared to naïve counterparts. However, depending on the pathological condition, there are different subpopulations of MDSC with distinct mechanisms and targets of suppression. Therefore, effective methods to isolate viable MDSC populations are important in elucidating their different molecular mechanisms of suppression in vitro and in vivo. Recently, the Ghansah group has reported the expansion of MDSC in a murine pancreatic cancer model. Our tumor-bearing MDSC display a loss of homeostasis and increased suppressive function compared to naïve MDSC. MDSC percentages are significantly less in lymphoid compartments of naïve vs. tumor-bearing mice. This is a major caveat, which often hinders accurate comparative analyses of these MDSC. Therefore, enriching Gr-1(+) leukocytes from naïve mice prior to Fluorescence Activated Cell Sorting (FACS) enhances purity, viability and significantly reduces sort time. However, enrichment of Gr-1(+) leukocytes from tumor-bearing mice is optional as these are in abundance for quick FACS sorting. Therefore, in this protocol, we describe a highly efficient method of immunophenotyping MDSC and enriching Gr-1(+) leukocytes from spleens of naïve mice for sorting MDSC in a timely manner. Immunocompetent C57BL/6 mice are inoculated with murine Panc02 cells subcutaneously whereas naïve mice receive 1XPBS. Approximately 30 days post inoculation; spleens are harvested and processed into single-cell suspensions using a cell dissociation sieve. Splenocytes are then Red Blood Cell (RBC) lysed and an aliquot of these leukocytes are stained using fluorochrome-conjugated antibodies against Mac-1 and Gr-1 to immunophenotype MDSC percentages using Flow Cytometry. In a parallel experiment, whole leukocytes from naïve mice are stained with fluorescent-conjugated Gr-1 antibodies, incubated with PE-MicroBeads and positively selected using an automated Magnetic Activated Cell Sorting (autoMACS) Pro Separator. Next, an aliquot of Gr-1(+) leukocytes are stained with Mac-1 antibodies to identify the increase in MDSC percentages using Flow Cytometry. Now, these Gr1(+) enriched leukocytes are ready for FACS sorting of MDSC to be used in comparative analyses (naïve vs. tumor- bearing) in in vivo and in vitro assays.

  5. Trafficking to the apical and basolateral membranes in polarized epithelial cells.

    PubMed

    Stoops, Emily H; Caplan, Michael J

    2014-07-01

    Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type-specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells. Copyright © 2014 by the American Society of Nephrology.

  6. MetaSort untangles metagenome assembly by reducing microbial community complexity

    PubMed Central

    Ji, Peifeng; Zhang, Yanming; Wang, Jinfeng; Zhao, Fangqing

    2017-01-01

    Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities. PMID:28112173

  7. Realization of Minimum and Maximum Gate Function in Ta2O5-based Memristive Devices

    NASA Astrophysics Data System (ADS)

    Breuer, Thomas; Nielen, Lutz; Roesgen, Bernd; Waser, Rainer; Rana, Vikas; Linn, Eike

    2016-04-01

    Redox-based resistive switching devices (ReRAM) are considered key enablers for future non-volatile memory and logic applications. Functionally enhanced ReRAM devices could enable new hardware concepts, e.g. logic-in-memory or neuromorphic applications. In this work, we demonstrate the implementation of ReRAM-based fuzzy logic gates using Ta2O5 devices to enable analogous Minimum and Maximum operations. The realized gates consist of two anti-serially connected ReRAM cells offering two inputs and one output. The cells offer an endurance up to 106 cycles. By means of exemplary input signals, each gate functionality is verified and signal constraints are highlighted. This realization could improve the efficiency of analogous processing tasks such as sorting networks in the future.

  8. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils

    DOE PAGES

    Eichorst, Stephanie A.; Strasser, Florian; Woyke, Tanja; ...

    2015-08-31

    The combined approach of incubating environmental samples with stable isotope-labeled substrates followed by single-cell analyses through high-resolution secondary ion mass spectrometry (NanoSIMS) or Raman microspectroscopy provides insights into the in situ function of microorganisms. This approach has found limited application in soils presumably due to the dispersal of microbial cells in a large background of particles. We developed a pipeline for the efficient preparation of cell extracts from soils for subsequent single-cell methods by combining cell detachment with separation of cells and soil particles followed by cell concentration. The procedure was evaluated by examining its influence on cell recoveries andmore » microbial community composition across two soils. This approach generated a cell fraction with considerably reduced soil particle load and of sufficient small size to allow single-cell analysis by NanoSIMS, as shown when detecting active N2-fixing and cellulose-responsive microorganisms via 15N2 and 13C-UL-cellulose incubations, respectively. The same procedure was also applicable for Raman microspectroscopic analyses of soil microorganisms, assessed via microcosm incubations with a 13C-labeled carbon source and deuterium oxide (D2O, a general activity marker). Lastly, the described sample preparation procedure enables single-cell analysis of soil microorganisms using NanoSIMS and Raman microspectroscopy, but should also facilitate single-cell sorting and sequencing.« less

  9. IB-LBM study on cell sorting by pinched flow fractionation.

    PubMed

    Ma, Jingtao; Xu, Yuanqing; Tian, Fangbao; Tang, Xiaoying

    2014-01-01

    Separation of two categories of cells in pinched flow fractionation(PFF) device is simulated by employing IB-LBM. The separation performances at low Reynolds number (about 1) under different pinched segment widths, flow ratios, cell features, and distances between neighboring cells are studied and the results are compared with those predicted by the empirical formula. The simulation indicates that the diluent flow rate should approximate to or more than the flow rate of particle solution in order to get a relatively ideal separation performance. The discrepancy of outflow position between numerical simulation and the empirical prediction enlarges, when the cells become more flexible. Too short distance between two neighboring cells could lead to cell banding which would result in incomplete separation, and the relative position of two neighboring cells influences the banding of cells. The present study will probably provide some new applications of PFF, and make some suggestions on the design of PFF devices.

  10. Gene expression profiling of immunomagnetically separated cells directly from stabilized whole blood for multicenter clinical trials

    PubMed Central

    2014-01-01

    Background Clinically useful biomarkers for patient stratification and monitoring of disease progression and drug response are in big demand in drug development and for addressing potential safety concerns. Many diseases influence the frequency and phenotype of cells found in the peripheral blood and the transcriptome of blood cells. Changes in cell type composition influence whole blood gene expression analysis results and thus the discovery of true transcript level changes remains a challenge. We propose a robust and reproducible procedure, which includes whole transcriptome gene expression profiling of major subsets of immune cell cells directly sorted from whole blood. Methods Target cells were enriched using magnetic microbeads and an autoMACS® Pro Separator (Miltenyi Biotec). Flow cytometric analysis for purity was performed before and after magnetic cell sorting. Total RNA was hybridized on HGU133 Plus 2.0 expression microarrays (Affymetrix, USA). CEL files signal intensity values were condensed using RMA and a custom CDF file (EntrezGene-based). Results Positive selection by use of MACS® Technology coupled to transcriptomics was assessed for eight different peripheral blood cell types, CD14+ monocytes, CD3+, CD4+, or CD8+ T cells, CD15+ granulocytes, CD19+ B cells, CD56+ NK cells, and CD45+ pan leukocytes. RNA quality from enriched cells was above a RIN of eight. GeneChip analysis confirmed cell type specific transcriptome profiles. Storing whole blood collected in an EDTA Vacutainer® tube at 4°C followed by MACS does not activate sorted cells. Gene expression analysis supports cell enrichment measurements by MACS. Conclusions The proposed workflow generates reproducible cell-type specific transcriptome data which can be translated to clinical settings and used to identify clinically relevant gene expression biomarkers from whole blood samples. This procedure enables the integration of transcriptomics of relevant immune cell subsets sorted directly from whole blood in clinical trial protocols. PMID:25984272

  11. Application of Thin Film Photovoltaic CIGS Cells to Extend the Endurance of Small Unmanned Aerial Systems

    DTIC Science & Technology

    2017-06-01

    Sherif Michael Second Reader: James Calusdian THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188...Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89...States Military utilizes an extensive variety of UAVs, whether electric or fossil fuel propulsion. In this section, we review the distinctive sorts of

  12. Physiology of spermatozoa at high dilution rates: the influence of seminal plasma.

    PubMed

    Maxwell, W M; Johnson, L A

    1999-12-01

    Extensive dilution of spermatozoa, as occurs during flow-cytometric sperm sorting, can reduce their motility and viability. These effects may be minimized by the use of appropriate dilution and collection media, containing balanced salts, energy sources, egg yolk and some protein. Dilution and flow-cytometric sorting of spermatozoa, which involves the removal of seminal plasma, also destabilizes sperm membranes leading to functional capacitation. This membrane destabilization renders the spermatozoa immediately capable of fertilization in vitro, or in vivo after deposition close to the site of fertilization, but shortens their lifespan, resulting in premature death if the cells are deposited in the female tract distant from the site of fertilization or are held in vitro at standard storage temperatures. This functional capacitation can be reversed in boar spermatozoa by inclusion of seminal plasma in the medium used to collect the cells from the cell sorter and, consequently, reduces their in vitro fertility. It has yet to be determined whether seminal plasma would have similar effects on flow cytometrically sorted spermatozoa of other species, and what its effects might be on the in vivo fertility of flow sorted boar.

  13. The PKD domain distinguishes the trafficking and amyloidogenic properties of the pigment cell protein PMEL and its homologue GPNMB

    PubMed Central

    Theos, Alexander C.; Watt, Brenda; Harper, Dawn C.; Janczura, Karolina J.; Theos, Sarah C.; Herman, Kathryn E.; Marks, Michael S.

    2013-01-01

    SUMMARY Proteolytic fragments of the pigment cell-specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue-restricted glycoprotein with substantial sequence homology to PMEL but no known function, and was proposed to localize to non-fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL-containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its PKD domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N-glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB, and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis. PMID:23452376

  14. Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting.

    PubMed

    Beuret, Nicole; Hasler, Franziska; Prescianotto-Baschong, Cristina; Birk, Julia; Rutishauser, Jonas; Spiess, Martin

    2017-01-26

    Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.

  15. An integrated microfluidic cell for detection, manipulation, and sorting of single micron-sized magnetic beads

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Llandro, J.; Mitrelias, T.; Bland, J. A. C.

    2006-04-01

    A lab-on-a-chip integrated microfluidic cell has been developed for magnetic biosensing, which is comprised of anisotropic magnetoresistance (AMR) sensors optimized for the detection of single magnetic beads and electrodes to manipulate and sort the beads, integrated into a microfluidic channel. The device is designed to read out the real-time signal from 9 μm diameter magnetic beads moving over AMR sensors patterned into 18×4.5 μm rectangles and 10 μm diameter rings and arranged in Wheatstone bridges. The beads are moved over the sensors along a 75×75 μm wide channel patterned in SU8. Beads of different magnetic moments can be sorted through a magnetostatic sorting gate into different branches of the microfluidic channel using a magnetic field gradient applied by lithographically defined 120 nm thick Cu striplines carrying 0.2 A current.

  16. International Society for the Advancement of Cytometry Cell Sorter Biosafety Standards

    PubMed Central

    Holmes, Kevin L.; Fontes, Benjamin; Hogarth, Philip; Konz, Richard; Monard, Simon; Pletcher, Charles H.; Wadley, Robert B.; Schmid, Ingrid; Perfetto, Stephen P.

    2014-01-01

    Flow cytometric cell sorting of biological specimens has become prevalent in basic and clinical research laboratories. These specimens may contain known or unknown infectious agents, necessitating precautions to protect instrument operators and the environment from biohazards arising from the use of sorters. To this end the International Society of Analytical Cytology (ISAC) was proactive in establishing biosafety guidelines in 1997 (Schmid et al., Cytometry 1997;28:99–117) and subsequently published revised biosafety standards for cell sorting of unfixed samples in 2007 (Schmid et al., Cytometry Part A J Int Soc Anal Cytol 2007;71A:414–437). Since their publication, these documents have become recognized worldwide as the standard of practice and safety precautions for laboratories performing cell sorting experiments. However, the field of cytometry has progressed since 2007, and the document requires an update. The new Standards provides guidance: (1) for laboratory design for cell sorter laboratories; (2) for the creation of laboratory or instrument specific Standard Operating Procedures (SOP); and (3) on procedures for the safe operation of cell sorters, including personal protective equipment (PPE) and validation of aerosol containment. PMID:24634405

  17. Immobilization of Microbes for Bioremediation of Crude Oil Polluted Environments: A Mini Review

    PubMed Central

    Bayat, Zeynab; Hassanshahian, Mehdi; Cappello, Simone

    2015-01-01

    Petroleum hydrocarbons are the most common environmental pollutants in the world and oil spills pose a great hazard to terrestrial and marine ecosystems. Oil pollution may arise either accidentally or operationally whenever oil is produced, transported, stored and processed or used at sea or on land. Oil spills are a major menace to the environment as they severely damage the surrounding ecosystems. To improve the survival and retention of the bioremediation agents in the contaminated sites, bacterial cells must be immobilized. Immobilized cells are widely tested for a variety of applications. There are many types of support and immobilization techniques that can be selected based on the sort of application. In this review article, we have discussed the potential of immobilized microbial cells to degrade petroleum hydrocarbons. In some studies, enhanced degradation with immobilized cells as compared to free living bacterial cells for the treatment of oil contaminated areas have been shown. It was demonstrated that immobilized cell to be effective and is better, faster, and can be occurred for a longer period PMID:26668662

  18. Do Vouchers Lead to Sorting under Random Private-School Selection? Evidence from the Milwaukee Voucher Program. Staff Report No. 379

    ERIC Educational Resources Information Center

    Chakrabarti, Rajashri

    2011-01-01

    This paper analyzes the impact of voucher design on student sorting in the application and enrollment phases of parental choice. More specifically, it investigates whether there are feasible ways of designing vouchers that can reduce or eliminate student sorting in these phases. Much of the existing literature investigates the question of…

  19. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System.

    PubMed

    Li, Shenglan; Xue, Haipeng; Wu, Jianbo; Rao, Mahendra S; Kim, Dong H; Deng, Wenbin; Liu, Ying

    2015-12-15

    Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼ 33% correctly targeted clones) compared to conventional targeting protocol (∼ 3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations.

  20. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System

    PubMed Central

    Li, Shenglan; Xue, Haipeng; Wu, Jianbo; Rao, Mahendra S.; Kim, Dong H.; Deng, Wenbin

    2015-01-01

    Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼33% correctly targeted clones) compared to conventional targeting protocol (∼3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations. PMID:26414932

  1. Droplet sorting based on the number of encapsulated particles using a solenoid valve.

    PubMed

    Cao, Zhenning; Chen, Fangyuan; Bao, Ning; He, Huacheng; Xu, Peisheng; Jana, Saikat; Jung, Sunghwan; Lian, Hongzhen; Lu, Chang

    2013-01-07

    Droplet microfluidics provides a high-throughput platform for screening subjects and conditions involved in biology. Droplets with encapsulated beads and cells have been increasingly used for studying molecular and cellular biology. Droplet sorting is needed to isolate and analyze the subject of interest during such screening. The vast majority of current sorting techniques use fluorescence intensity emitted by each droplet as the only criterion. However, due to the randomness and imperfections in the encapsulation process, typically a mixed population of droplets with an uneven number of encapsulated particles results and is used for screening. Thus droplet sorting based on the number of encapsulated particles becomes necessary for isolating or enriching droplets with a specific occupancy. In this work, we developed a fluorescence-activated microfluidic droplet sorter that integrated a simple deflection mechanism based on the use of a solenoid valve and a sophisticated signal processing system with a microcontroller as the core. By passing droplets through a narrow interrogation channel, the encapsulated particles were detected individually. The microcontroller conducted the computation to determine the number of encapsulated particles in each droplet and made the sorting decision accordingly that led to actuation of the solenoid valve. We tested both fluorescent beads and stained cells and our results showed high efficiency and accuracy for sorting and enrichment.

  2. Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer

    PubMed Central

    Hillebrand, Larissa E.; Bengsch, Fee; Hochrein, Jochen; Hülsdünker, Jan; Bender, Julia; Follo, Marie; Busch, Hauke; Boerries, Melanie; Reinheckel, Thomas

    2016-01-01

    Tumor initiating cells (TICs) have been identified and functionally characterized in hematological malignancies as well as in solid tumors such as breast cancer. In addition to their high tumor-initiating potential, TICs are founder cells for metastasis formation and are involved in chemotherapy resistance. In this study we explored molecular pathways which enable this tumor initiating potential for a cancer cell subset of the transgenic MMTV-PyMT mouse model for metastasizing breast cancer. The cell population, characterized by the marker profile CD24+CD90+CD45−, showed a high tumorigenicity compared to non-CD24+CD90+CD45− cancer cells in colony formation assays, as well as upon orthotopic transplantation into the mammary fat pad of mice. In addition, these orthotopically grown CD24+CD90+CD45− TICs metastasized to the lungs. The transcriptome of TICs freshly isolated from primary tumors by cell sorting was compared with that of sorted non-CD24+CD90+CD45− cancer cells by RNA-seq. In addition to more established TIC signatures, such as epithelial-to-mesenchymal transition or mitogen signaling, an upregulated gene set comprising several classes of proteolytic enzymes was uncovered in the TICs. Accordingly, TICs showed high intra- and extracellular proteolytic activity. Application of a broad range of protease inhibitors to TICs in a colony formation assay reduced anchorage independent growth and had an impact on colony morphology in 3D cell culture assays. We conclude that CD24+CD90+CD45− cells of the MMTV- PyMT mouse model possess an upregulated proteolytic signature which could very well represent a functional hallmark of metastatic TICs from mammary carcinomas. PMID:27542270

  3. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle.

    PubMed

    Tamaki, Tetsuro; Akatsuka, Akira; Ando, Kiyoshi; Nakamura, Yoshihiko; Matsuzawa, Hideyuki; Hotta, Tomomitsu; Roy, Roland R; Edgerton, V Reggie

    2002-05-13

    Putative myogenic and endothelial (myo-endothelial) cell progenitors were identified in the interstitial spaces of murine skeletal muscle by immunohistochemistry and immunoelectron microscopy using CD34 antigen. Enzymatically isolated cells were characterized by fluorescence-activated cell sorting on the basis of cell surface antigen expression, and were sorted as a CD34+ and CD45- fraction. Cells in this fraction were approximately 94% positive for Sca-1, and mostly negative (<3% positive) for CD14, 31, 49, 144, c-kit, and FLK-1. The CD34+/45- cells formed colonies in clonal cell cultures and colony-forming units displayed the potential to differentiate into adipocytes, endothelial, and myogenic cells. The CD34+/45- cells fully differentiated into vascular endothelial cells and skeletal muscle fibers in vivo after transplantation. Immediately after sorting, CD34+/45- cells expressed only c-met mRNA, and did not express any other myogenic cell-related markers such as MyoD, myf-5, myf-6, myogenin, M-cadherin, Pax-3, and Pax-7. However, after 3 d of culture, these cells expressed mRNA for all myogenic markers. CD34+/45- cells were distinct from satellite cells, as they expressed Bcrp1/ABCG2 gene mRNA (Zhou et al., 2001). These findings suggest that myo-endothelial progenitors reside in the interstitial spaces of mammalian skeletal muscles, and that they can potentially contribute to postnatal skeletal muscle growth.

  4. A degradation-based sorting method for lithium-ion battery reuse

    PubMed Central

    Chen, Hao

    2017-01-01

    In a world where millions of people are dependent on batteries to provide them with convenient and portable energy, battery recycling is of the utmost importance. In this paper, we developed a new method to sort 18650 Lithium-ion batteries in large quantities and in real time for harvesting used cells with enough capacity for battery reuse. Internal resistance and capacity tests were conducted as a basis for comparison with a novel degradation-based method based on X-ray radiographic scanning and digital image contrast computation. The test results indicate that the sorting accuracy of the test cells is about 79% and the execution time of our algorithm is at a level of 200 milliseconds, making our method a potential real-time solution for reusing the remaining capacity in good used cells. PMID:29023485

  5. Intracellular trafficking of silicon particles and logic-embedded vectors

    NASA Astrophysics Data System (ADS)

    Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.

    2010-08-01

    Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments.Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments. Electronic supplementary information (ESI) available: Confocal microscopy image showing internalized negative particles, and movie of the intracellular migration of silicon particles. See DOI: 10.1039/c0nr00227e

  6. Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on the single cell level.

    PubMed

    Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian

    2013-12-01

    Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Numerical and experimental evaluation of microfluidic sorting devices.

    PubMed

    Taylor, Jay K; Ren, Carolyn L; Stubley, G D

    2008-01-01

    The development of lab-on-a-chip devices calls for the isolation or separation of specific bioparticles or cells. The design of a miniaturized cell-sorting device for handheld operation must follow the strict parameters associated with lab-on-a-chip technology. The limitations include applied voltage, high efficiency of cell-separation, reliability, size, flow control, and cost, among others. Currently used designs have achieved successful levels of cell isolation; however, further improvements in the microfluidic chip design are important to incorporate into larger systems. This study evaluates specific design modifications that contribute to the reduction of required applied potential aiming for developing portable devices, improved operation reliability by minimizing induced pressure disturbance when electrokinetic pumping is employed, and improved flow control by incorporating directing streams achieving dynamic sorting and counting. The chip designs fabricated in glass and polymeric materials include asymmetric channel widths for sample focusing, nonuniform channel depth for minimizing induced pressure disturbance, directing streams to assist particle flow control, and online filters for reducing channel blockage. Fluorescence-based visualization experimental results of electrokinetic focusing, flow field phenomena, and dynamic sorting demonstrate the advantages of the chip design. Numerical simulations in COMSOL are validated by the experimental data and used to investigate the effects of channel geometry and fluid properties on the flow field.

  8. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: consequences for microfluidic cell sorting.

    PubMed

    Xavier, Miguel; de Andrés, María C; Spencer, Daniel; Oreffo, Richard O C; Morgan, Hywel

    2017-08-01

    The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. © 2017 The Authors.

  9. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: consequences for microfluidic cell sorting

    PubMed Central

    2017-01-01

    The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. PMID:28835540

  10. A Visual Guide to Sorting Electrophysiological Recordings Using 'SpikeSorter'.

    PubMed

    Swindale, Nicholas V; Mitelut, Catalin; Murphy, Timothy H; Spacek, Martin A

    2017-02-10

    Few stand-alone software applications are available for sorting spikes from recordings made with multi-electrode arrays. Ideally, an application should be user friendly with a graphical user interface, able to read data files in a variety of formats, and provide users with a flexible set of tools giving them the ability to detect and sort extracellular voltage waveforms from different units with some degree of reliability. Previously published spike sorting methods are now available in a software program, SpikeSorter, intended to provide electrophysiologists with a complete set of tools for sorting, starting from raw recorded data file and ending with the export of sorted spikes times. Procedures are automated to the extent this is currently possible. The article explains and illustrates the use of the program. A representative data file is opened, extracellular traces are filtered, events are detected and then clustered. A number of problems that commonly occur during sorting are illustrated, including the artefactual over-splitting of units due to the tendency of some units to fire spikes in pairs where the second spike is significantly smaller than the first, and over-splitting caused by slow variation in spike height over time encountered in some units. The accuracy of SpikeSorter's performance has been tested with surrogate ground truth data and found to be comparable to that of other algorithms in current development.

  11. Application of sperm sorting and associated reproductive technology for wildlife management and conservation.

    PubMed

    O'Brien, J K; Steinman, K J; Robeck, T R

    2009-01-01

    Efforts toward the conservation and captive breeding of wildlife can be enhanced by sperm sorting and associated reproductive technologies such as sperm cryopreservation and artificial insemination (AI). Sex ratio management is of particular significance to species which naturally exist in female-dominated social groups. A bias of the sex ratio towards females of these species will greatly assist in maintaining socially cohesive groups and minimizing male-male aggression. Another application of this technology potentially exists for endangered species, as the preferential production of females can enable propagation of those species at a faster rate. The particular assisted reproductive technology (ART) used in conjunction with sperm sorting for the production of offspring is largely determined by the quality and quantity of spermatozoa following sorting and preservation processes. Regardless of the ART selected, breeding decisions involving sex-sorted spermatozoa should be made in conjunction with appropriate genetic management. Zoological-based research on reproductive physiology and assisted reproduction, including sperm sorting, is being conducted on numerous terrestrial and marine mammals. The wildlife species for which the technology has undergone the most advance is the bottlenose dolphin. AI using sex-sorted fresh or frozen-thawed spermatozoa has become a valuable tool for the genetic and reproductive management of captive bottlenose dolphins with six pre-sexed calves, all of the predetermined sex born to date.

  12. Rmax: A systematic approach to evaluate instrument sort performance using center stream catch☆

    PubMed Central

    Riddell, Andrew; Gardner, Rui; Perez-Gonzalez, Alexis; Lopes, Telma; Martinez, Lola

    2015-01-01

    Sorting performance can be evaluated with regard to Purity, Yield and/or Recovery of the sorted fraction. Purity is a check on the quality of the sample and the sort decisions made by the instrument. Recovery and Yield definitions vary with some authors regarding both as how efficient the instrument is at sorting the target particles from the original sample, others distinguishing Recovery from Yield, where the former is used to describe the accuracy of the instrument’s sort count. Yield and Recovery are often neglected, mostly due to difficulties in their measurement. Purity of the sort product is often cited alone but is not sufficient to evaluate sorting performance. All of these three performance metrics require re-sampling of the sorted fraction. But, unlike Purity, calculating Yield and/or Recovery calls for the absolute counting of particles in the sorted fraction, which may not be feasible, particularly when dealing with rare populations and precious samples. In addition, the counting process itself involves large errors. Here we describe a new metric for evaluating instrument sort Recovery, defined as the number of particles sorted relative to the number of original particles to be sorted. This calculation requires only measuring the ratios of target and non-target populations in the original pre-sort sample and in the waste stream or center stream catch (CSC), avoiding re-sampling the sorted fraction and absolute counting. We called this new metric Rmax, since it corresponds to the maximum expected Recovery for a particular set of instrument parameters. Rmax is ideal to evaluate and troubleshoot the optimum drop-charge delay of the sorter, or any instrument related failures that will affect sort performance. It can be used as a daily quality control check but can be particularly useful to assess instrument performance before single-cell sorting experiments. Because we do not perturb the sort fraction we can calculate Rmax during the sort process, being especially valuable to check instrument performance during rare population sorts. PMID:25747337

  13. Hydrodynamic lift of vesicles and red blood cells in flow--from Fåhræus & Lindqvist to microfluidic cell sorting.

    PubMed

    Geislinger, Thomas M; Franke, Thomas

    2014-06-01

    Hydrodynamic lift forces acting on cells and particles in fluid flow receive ongoing attention from medicine, mathematics, physics and engineering. The early findings of Fåhræus & Lindqvist on the viscosity change of blood with the diameter of capillaries motivated extensive studies both experimentally and theoretically to illuminate the underlying physics. We review this historical development that led to the discovery of the inertial and non-inertial lift forces and elucidate the origins of these forces that are still not entirely clear. Exploiting microfluidic techniques induced a tremendous amount of new insights especially into the more complex interactions between the flow field and deformable objects like vesicles or red blood cells. We trace the way from the investigation of single cell dynamics to the recent developments of microfluidic techniques for particle and cell sorting using hydrodynamic forces. Such continuous and label-free on-chip cell sorting devices promise to revolutionize medical analyses for personalized point-of-care diagnosis. We present the state-of-the-art of different hydrodynamic lift-based techniques and discuss their advantages and limitations. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Static optical sorting in a laser interference field

    NASA Astrophysics Data System (ADS)

    Jákl, Petr; Čižmár, Tomáš; Šerý, Mojmír; Zemánek, Pavel

    2008-04-01

    We present a unique technique for optical sorting of heterogeneous suspensions of microparticles, which does not require the flow of the immersion medium. The method employs the size-dependent response of suspended dielectric particles to the optical field of three intersecting beams that form a fringelike interference pattern. We experimentally demonstrate sorting of a polydisperse suspension of polystyrene beads of diameters 1, 2, and 5.2μm and living yeast cells.

  15. Genetic profiling of putative breast cancer stem cells from malignant pleural effusions.

    PubMed

    Tiran, Verena; Stanzer, Stefanie; Heitzer, Ellen; Meilinger, Michael; Rossmann, Christopher; Lax, Sigurd; Tsybrovskyy, Oleksiy; Dandachi, Nadia; Balic, Marija

    2017-01-01

    A common symptom during late stage breast cancer disease is pleural effusion, which is related to poor prognosis. Malignant cells can be detected in pleural effusions indicating metastatic spread from the primary tumor site. Pleural effusions have been shown to be a useful source for studying metastasis and for isolating cells with putative cancer stem cell (CSC) properties. For the present study, pleural effusion aspirates from 17 metastatic breast cancer patients were processed to propagate CSCs in vitro. Patient-derived aspirates were cultured under sphere forming conditions and isolated primary cultures were further sorted for cancer stem cell subpopulations ALDH1+ and CD44+CD24-/low. Additionally, sphere forming efficiency of CSC and non-CSC subpopulations was determined. In order to genetically characterize the different tumor subpopulations, DNA was isolated from pleural effusions before and after cell sorting, and compared with corresponding DNA copy number profiles from primary tumors or bone metastasis using low-coverage whole genome sequencing (SCNA-seq). In general, unsorted cells had a higher potential to form spheres when compared to CSC subpopulations. In most cases, cell sorting did not yield sufficient cells for copy number analysis. A total of five from nine analyzed unsorted pleura samples (55%) showed aberrant copy number profiles similar to the respective primary tumor. However, most sorted subpopulations showed a balanced profile indicating an insufficient amount of tumor cells and low sensitivity of the sequencing method. Finally, we were able to establish a long term cell culture from one pleural effusion sample, which was characterized in detail. In conclusion, we confirm that pleural effusions are a suitable source for enrichment of putative CSC. However, sequencing based molecular characterization is impeded due to insufficient sensitivity along with a high number of normal contaminating cells, which are masking genetic alterations of rare cancer (stem) cells.

  16. GSE, data management system programmers/User' manual

    NASA Technical Reports Server (NTRS)

    Schlagheck, R. A.; Dolerhie, B. D., Jr.; Ghiglieri, F. J.

    1974-01-01

    The GSE data management system is a computerized program which provides for a central storage source for key data associated with the mechanical ground support equipment (MGSE). Eight major sort modes can be requested by the user. Attributes that are printed automatically with each sort include the GSE end item number, description, class code, functional code, fluid media, use location, design responsibility, weight, cost, quantity, dimensions, and applicable documents. Multiple subsorts are available for the class code, functional code, fluid media, use location, design responsibility, and applicable document categories. These sorts and how to use them are described. The program and GSE data bank may be easily updated and expanded.

  17. Golgi sorting regulates organization and activity of GPI-proteins at apical membranes

    PubMed Central

    Tivodar, Simona; Formiggini, Fabio; Ossato, Giulia; Gratton, Enrico; Tramier, Marc; Coppey-Moisan, Maïté; Zurzolo, Chiara

    2014-01-01

    Here, we combined classical biochemistry with novel biophysical approaches to study with high spatial and temporal resolution the organization of GPI-anchored proteins (GPI-APs) at the plasma membrane of polarized epithelial cells. We show that in polarized MDCK cells, following sorting in the Golgi, each GPI-AP reaches the apical surface in homo-clusters. Golgi-derived homo-clusters are required for their subsequent plasma membrane organization into cholesterol-dependent hetero-clusters. By contrast, in non-polarized MDCK cells GPI-APs are delivered to the surface as monomers in an unpolarized manner and are not able to form hetero-clusters. We further demonstrate that this GPI-AP organization is regulated by the content of cholesterol in the Golgi apparatus and is required to maintain the functional state of the protein at the apical membrane. Thus, different from fibroblasts, in polarized epithelial cells a selective cholesterol-dependent sorting mechanism in the Golgi regulates both the organization and the function of GPI-APs at the apical surface. PMID:24681536

  18. A role for the ESCRT system in cell division in archaea.

    PubMed

    Samson, Rachel Y; Obita, Takayuki; Freund, Stefan M; Williams, Roger L; Bell, Stephen D

    2008-12-12

    Archaea are prokaryotic organisms that lack endomembrane structures. However, a number of hyperthermophilic members of the Kingdom Crenarchaea, including members of the Sulfolobus genus, encode homologs of the eukaryotic endosomal sorting system components Vps4 and ESCRT-III (endosomal sorting complex required for transport-III). We found that Sulfolobus ESCRT-III and Vps4 homologs underwent regulation of their expression during the cell cycle. The proteins interacted and we established the structural basis of this interaction. Furthermore, these proteins specifically localized to the mid-cell during cell division. Overexpression of a catalytically inactive mutant Vps4 in Sulfolobus resulted in the accumulation of enlarged cells, indicative of failed cell division. Thus, the archaeal ESCRT system plays a key role in cell division.

  19. Purification of human induced pluripotent stem cell-derived neural precursors using magnetic activated cell sorting.

    PubMed

    Rodrigues, Gonçalo M C; Fernandes, Tiago G; Rodrigues, Carlos A V; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-01-01

    Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs), and their neuronal progeny, will play an important role in disease modeling, drug screening tests, central nervous system development studies, and may even become valuable for regenerative medicine treatments. Nonetheless, it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs, and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here, we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days, and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS), leaving the NP population nearly free of PSCs.

  20. Prions amplify through degradation of the VPS10P sorting receptor sortilin.

    PubMed

    Uchiyama, Keiji; Tomita, Mitsuru; Yano, Masashi; Chida, Junji; Hara, Hideyuki; Das, Nandita Rani; Nykjaer, Anders; Sakaguchi, Suehiro

    2017-06-01

    Prion diseases are a group of fatal neurodegenerative disorders caused by prions, which consist mainly of the abnormally folded isoform of prion protein, PrPSc. A pivotal pathogenic event in prion disease is progressive accumulation of prions, or PrPSc, in brains through constitutive conformational conversion of the cellular prion protein, PrPC, into PrPSc. However, the cellular mechanism by which PrPSc is progressively accumulated in prion-infected neurons remains unknown. Here, we show that PrPSc is progressively accumulated in prion-infected cells through degradation of the VPS10P sorting receptor sortilin. We first show that sortilin interacts with PrPC and PrPSc and sorts them to lysosomes for degradation. Consistently, sortilin-knockdown increased PrPSc accumulation in prion-infected cells. In contrast, overexpression of sortilin reduced PrPSc accumulation in prion-infected cells. These results indicate that sortilin negatively regulates PrPSc accumulation in prion-infected cells. The negative role of sortilin in PrPSc accumulation was further confirmed in sortilin-knockout mice infected with prions. The infected mice had accelerated prion disease with early accumulation of PrPSc in their brains. Interestingly, sortilin was reduced in prion-infected cells and mouse brains. Treatment of prion-infected cells with lysosomal inhibitors, but not proteasomal inhibitors, increased the levels of sortilin. Moreover, sortilin was reduced following PrPSc becoming detectable in cells after infection with prions. These results indicate that PrPSc accumulation stimulates sortilin degradation in lysosomes. Taken together, these results show that PrPSc accumulation of itself could impair the sortilin-mediated sorting of PrPC and PrPSc to lysosomes for degradation by stimulating lysosomal degradation of sortilin, eventually leading to progressive accumulation of PrPSc in prion-infected cells.

  1. Rapid discovery of peptide capture candidates with demonstrated specificity for structurally similar toxins

    NASA Astrophysics Data System (ADS)

    Sarkes, Deborah A.; Hurley, Margaret M.; Coppock, Matthew B.; Farrell, Mikella E.; Pellegrino, Paul M.; Stratis-Cullum, Dimitra N.

    2016-05-01

    Peptides have emerged as viable alternatives to antibodies for molecular-based sensing due to their similarity in recognition ability despite their relative structural simplicity. Various methods for peptide capture reagent discovery exist, including phage display, yeast display, and bacterial display. One of the primary advantages of peptide discovery by bacterial display technology is the speed to candidate peptide capture agent, due to both rapid growth of bacteria and direct utilization of the sorted cells displaying each individual peptide for the subsequent round of biopanning. We have previously isolated peptide affinity reagents towards protective antigen of Bacillus anthracis using a commercially available automated magnetic sorting platform with improved enrichment as compared to manual magnetic sorting. In this work, we focus on adapting our automated biopanning method to a more challenging sort, to demonstrate the specificity possible with peptide capture agents. This was achieved using non-toxic, recombinant variants of ricin and abrin, RiVax and abrax, respectively, which are structurally similar Type II ribosomal inactivating proteins with significant sequence homology. After only two rounds of biopanning, enrichment of peptide capture candidates binding abrax but not RiVax was achieved as demonstrated by Fluorescence Activated Cell Sorting (FACS) studies. Further sorting optimization included negative sorting against RiVax, proper selection of autoMACS programs for specific sorting rounds, and using freshly made buffer and freshly thawed protein target for each round of biopanning for continued enrichment over all four rounds. Most of the resulting candidates from biopanning for abrax binding peptides were able to bind abrax but not RiVax, demonstrating that short peptide sequences can be highly specific even at this early discovery stage.

  2. Mesenchymal Stem Cells for Vascular Target Discovery in Breast Cancer-Associated Angiogenesis

    DTIC Science & Technology

    2005-09-01

    demonstrating this marker as demonstrated by flow cytometry . These GFP+ MSCs were subsequently analyzed for expression of commonly reported markers of...phenotypically and genotypically analyzed by flow cytometry and gene chip analysis, respectively. We have also shown that MSCs can then be stimulated to...positive MSCs retrieved by collagenase digestion of the Matrigel plug and sorted by flow cytometry . Sorting of these retrieved cells based on co-expression

  3. PCR-activated cell sorting as a general, cultivation-free method for high-throughput identification and enrichment of virus hosts

    PubMed Central

    Lim, Shaun W.; Lance, Shea T.; Stedman, Kenneth M.; Abate, Adam R.

    2017-01-01

    Characterizing virus-host relationships is critical for understanding the impact of a virus on an ecosystem, but is challenging with existing techniques, particularly for uncultivable species. We present a general, cultivation-free approach for identifying phage-associated bacterial cells. Using PCR-activated cell sorting, we interrogate millions of individual bacteria for the presence of specific phage nucleic acids. If the nucleic acids are present, the bacteria are recovered via sorting and their genomes analyzed. This allows targeted recovery of all possible host species in a diverse population associated with a specific phage, and can be easily targeted to identify the hosts of different phages by modifying the PCR primers used for detection. Moreover, this technique allows quantification of free phage particles, as benchmarked against the “gold standard” of virus enumeration, the plaque assay. PMID:28042018

  4. PCR-activated cell sorting as a general, cultivation-free method for high-throughput identification and enrichment of virus hosts.

    PubMed

    Lim, Shaun W; Lance, Shea T; Stedman, Kenneth M; Abate, Adam R

    2017-04-01

    Characterizing virus-host relationships is critical for understanding the impact of a virus on an ecosystem, but is challenging with existing techniques, particularly for uncultivable species. We present a general, cultivation-free approach for identifying phage-associated bacterial cells. Using PCR-activated cell sorting, we interrogate millions of individual bacteria for the presence of specific phage nucleic acids. If the nucleic acids are present, the bacteria are recovered via sorting and their genomes analyzed. This allows targeted recovery of all possible host species in a diverse population associated with a specific phage, and can be easily targeted to identify the hosts of different phages by modifying the PCR primers used for detection. Moreover, this technique allows quantification of free phage particles, as benchmarked against the "gold standard" of virus enumeration, the plaque assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Applications of microfluidics in microalgae biotechnology: A review.

    PubMed

    Juang, Yi-Je; Chang, Jo-Shu

    2016-03-01

    Microalgae have been one of the important sources for biofuel production owing to their competitive advantages such as no need to tap into the global food supply chain, higher energy density, and absorbing carbon dioxide to mitigate global warming. One of the key factors to ensure successful biofuel production is that it requires not only bioprospecting of the microalgae with high lipid content, high growth rate and tolerance to environmental parameters but also on-site monitoring of the cultivation process and optimization of the culturing conditions. However, as the conventional techniques usually involve in complicated procedures, or are time-consuming or labor intensive, microfluidics technology offers an attractive alternative to resolve these issues. In this review, applications of microfluidics to bioprospecting in microalgae biotechnology were discussed such as cell identification, cell sorting/screening, cell culturing and cell disruption. In addition, utilization of microalgae in micro-sized fuel cells and microfluidic platforms for biosensing was addressed. This review reports the recent studies and offers a look into how microfluidics is exploited to tackle the issues encountered in the microalgae biotechnology. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Application of the laser capture microdissection technique for molecular definition of skeletal cell differentiation in vivo.

    PubMed

    Benayahu, Dafna; Socher, Rina; Shur, Irena

    2008-01-01

    Laser capture microdissection (LCM) method allows selection of individual or clustered cells from intact tissues. This technology enables one to pick cells from tissues that are difficult to study individually, sort the anatomical complexity of these tissues, and make the cells available for molecular analyses. Following the cells' extraction, the nucleic acids and proteins can be isolated and used for multiple applications that provide an opportunity to uncover the molecular control of cellular fate in the natural microenvironment. Utilization of LCM for the molecular analysis of cells from skeletal tissues will enable one to study differential patterns of gene expression in the native intact skeletal tissue with reliable interpretation of function for known genes as well as to discover novel genes. Variability between samples may be caused either by differences in the tissue samples (different areas isolated from the same section) or some variances in sample handling. LCM is a multi-task technology that combines histology, microscopy work, and dedicated molecular biology. The LCM application will provide results that will pave the way toward high throughput profiling of tissue-specific gene expression using Gene Chip arrays. Detailed description of in vivo molecular pathways will make it possible to elaborate on control systems to apply for the repair of genetic or metabolic diseases of skeletal tissues.

  7. Analysis of Cellular DNA Content by Flow Cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Huang, Xuan; Zhao, Hong

    2017-10-02

    Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described. Also presented are methods for staining cell nuclei isolated from paraffin-embedded tissues. Available algorithms are listed for deconvolution of DNA-content-frequency histograms to estimate percentage of cells in major phases of the cell cycle and frequency of apoptotic cells with fractional DNA content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  8. Analysis of Cellular DNA Content by Flow Cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Huang, Xuan; Zhao, Hong

    2017-11-01

    Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described. Also presented are methods for staining cell nuclei isolated from paraffin-embedded tissues. Available algorithms are listed for deconvolution of DNA-content-frequency histograms to estimate percentage of cells in major phases of the cell cycle and frequency of apoptotic cells with fractional DNA content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  9. Diagnostic Utility of the Shortened Version of the Wisconsin Card Sorting Test in Patients With Sporadic Late Onset Alzheimer Disease.

    PubMed

    Sánchez, Juan Luis; Martín, Javier; López, Carolina

    2017-12-01

    The classic version of the Wisconsin Card Sorting Test (WCST) consists of correctly sorting 128 cards according to changing sorting criteria. Its application is costly in terms of the time employed, with all the negative consequences this entails (decrease in motivation, frustration, and fatigue). The main objective of this study was to test the usefulness of the shortened version of the WCST as compared to the full test by analyzing the equivalence between the two decks comprising the full 128-card version on a sample of patients diagnosed with sporadic late onset Alzheimer disease (SLOAD) and to check its clinical usefulness. The variables showed equivalence between the two decks and their ability to differentiate between the control group (CG) and the Alzheimer disease (AD) group. The scores obtained suggest equivalence between decks and that the application of only the first deck is sufficient.

  10. Self-assembled Targeting of Cancer Cells by Iron(III)-doped, Silica Nanoparticles.

    PubMed

    Mitchell, K K Pohaku; Sandoval, S; Cortes-Mateos, M J; Alfaro, J G; Kummel, A C; Trogler, W C

    2014-12-07

    Iron(III)-doped silica nanoshells are shown to possess an in vitro cell-receptor mediated targeting functionality for endocytosis. Compared to plain silica nanoparticles, iron enriched ones are shown to be target-specific, a property that makes them potentially better vehicles for applications, such as drug delivery and tumor imaging, by making them more selective and thereby reducing the nanoparticle dose. Iron(III) in the nanoshells can interact with endogenous transferrin, a serum protein found in mammalian cell culture media, which subsequently promotes transport of the nanoshells into cells by the transferrin receptor-mediated endocytosis pathway. The enhanced uptake of the iron(III)-doped nanoshells relative to undoped silica nanoshells by a transferrin receptor-mediated pathway was established using fluorescence and confocal microscopy in an epithelial breast cancer cell line. This process was also confirmed using fluorescence activated cell sorting (FACS) measurements that show competitive blocking of nanoparticle uptake by added holo-transferrin.

  11. Precision toxicology based on single cell sequencing: an evolving trend in toxicological evaluations and mechanism exploration.

    PubMed

    Zhang, Boyang; Huang, Kunlun; Zhu, Liye; Luo, Yunbo; Xu, Wentao

    2017-07-01

    In this review, we introduce a new concept, precision toxicology: the mode of action of chemical- or drug-induced toxicity can be sensitively and specifically investigated by isolating a small group of cells or even a single cell with typical phenotype of interest followed by a single cell sequencing-based analysis. Precision toxicology can contribute to the better detection of subtle intracellular changes in response to exogenous substrates, and thus help researchers find solutions to control or relieve the toxicological effects that are serious threats to human health. We give examples for single cell isolation and recommend laser capture microdissection for in vivo studies and flow cytometric sorting for in vitro studies. In addition, we introduce the procedures for single cell sequencing and describe the expected application of these techniques to toxicological evaluations and mechanism exploration, which we believe will become a trend in toxicology.

  12. Looking at the Cell Once Again.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1993-01-01

    Summarizes current information on the cell for the following topics: mitochondria from the male, moving cells, the cell cycle, the kinetics of kinetechore, nuclear structure, and sorting and secretion. (PR)

  13. Virtual sorting hat™ technology for the matching of candidates to residency training programs.

    PubMed

    Gouda, Pishoy; Cormican, Martin

    2016-12-01

    The matching of medical students and trainees to appropriate training programmes poses many challenges, including financial cost and applicant stress. There are few studies that have examined alternatives to the current process of matching candidates to specialist training. Case reports from Hogwarts School of Witchcraft and Wizardry ™ have suggested that wearable technology may be used to assign individuals with particular sets of skills and virtues to an appropriate house. Investigators developed a modified sorting hat in the form of an online, cross-sectional survey. The virtual sorting hat was delivered to medical students at the National University of Ireland, Galway, and medical practitioners practising in the associated hospitals and communities. Pearson's chi-square was used to demonstrate correlations between the allocation of participants to Hogwarts' houses by virtual sorting hat technology and expressed higher specialist training preference. Virtual sorting hat technology, applied to medical undergraduates and postgraduates, allocated most participants to Hufflepuff ™ (44%) and Ravenclaw ™ (32%). Allocation to Gryffindor was associated with preference for surgery and allocation to Slytherin ™ with preference for psychiatry. Virtual sorting hat technology requires significant refinement before application to medical muggles ™ . © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  14. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    PubMed

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  15. Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells: role of conserved N- and C-terminal peptides.

    PubMed

    Montero-Hadjadje, Maité; Elias, Salah; Chevalier, Laurence; Benard, Magalie; Tanguy, Yannick; Turquier, Valérie; Galas, Ludovic; Yon, Laurent; Malagon, Maria M; Driouich, Azeddine; Gasman, Stéphane; Anouar, Youssef

    2009-05-01

    Chromogranin A (CgA) has been proposed to play a major role in the formation of dense-core secretory granules (DCGs) in neuroendocrine cells. Here, we took advantage of unique features of the frog CgA (fCgA) to assess the role of this granin and its potential functional determinants in hormone sorting during DCG biogenesis. Expression of fCgA in the constitutively secreting COS-7 cells induced the formation of mobile vesicular structures, which contained cotransfected peptide hormones. The fCgA and the hormones coexpressed in the newly formed vesicles could be released in a regulated manner. The N- and C-terminal regions of fCgA, which exhibit remarkable sequence conservation with their mammalian counterparts were found to be essential for the formation of the mobile DCG-like structures in COS-7 cells. Expression of fCgA in the corticotrope AtT20 cells increased pro-opiomelanocortin levels in DCGs, whereas the expression of N- and C-terminal deletion mutants provoked retention of the hormone in the Golgi area. Furthermore, fCgA, but not its truncated forms, promoted pro-opiomelanocortin sorting to the regulated secretory pathway. These data demonstrate that CgA has the intrinsic capacity to induce the formation of mobile secretory granules and to promote the sorting and release of peptide hormones. The conserved terminal peptides are instrumental for these activities of CgA.

  16. International Society for the Advancement of Cytometry cell sorter biosafety standards.

    PubMed

    Holmes, Kevin L; Fontes, Benjamin; Hogarth, Philip; Konz, Richard; Monard, Simon; Pletcher, Charles H; Wadley, Robert B; Schmid, Ingrid; Perfetto, Stephen P

    2014-05-01

    Flow cytometric cell sorting of biological specimens has become prevalent in basic and clinical research laboratories. These specimens may contain known or unknown infectious agents, necessitating precautions to protect instrument operators and the environment from biohazards arising from the use of sorters. To this end the International Society of Analytical Cytology (ISAC) was proactive in establishing biosafety guidelines in 1997 (Schmid et al., Cytometry 1997;28:99-117) and subsequently published revised biosafety standards for cell sorting of unfixed samples in 2007 (Schmid et al., Cytometry Part A J Int Soc Anal Cytol 2007;71A:414-437). Since their publication, these documents have become recognized worldwide as the standard of practice and safety precautions for laboratories performing cell sorting experiments. However, the field of cytometry has progressed since 2007, and the document requires an update. The new Standards provides guidance: (1) for laboratory design for cell sorter laboratories; (2) for the creation of laboratory or instrument specific Standard Operating Procedures (SOP); and (3) on procedures for the safe operation of cell sorters, including personal protective equipment (PPE) and validation of aerosol containment. Published © 2014 Wiley Periodicals Inc.

  17. Multivesicular bodies: co-ordinated progression to maturity

    PubMed Central

    Woodman, Philip G; Futter, Clare E

    2008-01-01

    Multivesicular endosomes/bodies (MVBs) sort endocytosed proteins to different destinations. Many lysosomally directed membrane proteins are sorted onto intralumenal vesicles, whilst recycling proteins remain on the perimeter membrane from where they are removed via tubular extensions. MVBs move to the cell centre during this maturation process and, when all recycling proteins have been removed, fuse with lysosomes. Recent advances have identified endosomal-sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways in intralumenal vesicle formation and mechanisms for sorting recycling cargo into tubules. Cytoskeletal motors, through interactions with these machineries and by regulating MVB movement, help to co-ordinate events leading to a mature, fusion-competent MVB. PMID:18502633

  18. High-throughput microfluidic device for rare cell isolation

    NASA Astrophysics Data System (ADS)

    Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L.

    2015-06-01

    Enumerating and analyzing circulating tumor cells (CTCs)—cells that have been shed from primary solid tumors—can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs.

  19. High-Throughput Microfluidic Device for Rare Cell Isolation.

    PubMed

    Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L

    2015-05-04

    Enumerating and analyzing circulating tumor cells (CTCs)-cells that have been shed from primary solid tumors-can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs.

  20. Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis.

    PubMed

    Bienvenue, Joan M; Duncalf, Natalie; Marchiarullo, Daniel; Ferrance, Jerome P; Landers, James P

    2006-03-01

    The current backlog of casework is among the most significant challenges facing crime laboratories at this time. While the development of next-generation microchip-based technology for expedited forensic casework analysis offers one solution to this problem, this will require the adaptation of manual, large-volume, benchtop chemistry to small volume microfluidic devices. Analysis of evidentiary materials from rape kits where semen or sperm cells are commonly found represents a unique set of challenges for on-chip cell lysis and DNA extraction that must be addressed for successful application. The work presented here details the development of a microdevice capable of DNA extraction directly from sperm cells for application to the analysis of sexual assault evidence. A variety of chemical lysing agents are assessed for inclusion in the extraction protocol and a method for DNA purification from sperm cells is described. Suitability of the extracted DNA for short tandem repeat (STR) analysis is assessed and genetic profiles shown. Finally, on-chip cell lysis methods are evaluated, with results from fluorescence visualization of cell rupture and DNA extraction from an integrated cell lysis and purification with subsequent STR amplification presented. A method for on-chip cell lysis and DNA purification is described, with considerations toward inclusion in an integrated microdevice capable of both differential cell sorting and DNA extraction. The results of this work demonstrate the feasibility of incorporating microchip-based cell lysis and DNA extraction into forensic casework analysis.

  1. Streptococcus pyogenes Sortase Mutants Are Highly Susceptible to Killing by Host Factors Due to Aberrant Envelope Physiology

    PubMed Central

    Raz, Assaf; Tanasescu, Ana-Maria; Zhao, Anna M.; Serrano, Anna; Alston, Tricia; Sol, Asaf; Bachrach, Gilad; Fischetti, Vincent A.

    2015-01-01

    Cell wall anchored virulence factors are critical for infection and colonization of the host by Gram-positive bacteria. Such proteins have an N-terminal leader sequence and a C-terminal sorting signal, composed of an LPXTG motif, a hydrophobic stretch, and a few positively charged amino acids. The sorting signal halts translocation across the membrane, allowing sortase to cleave the LPXTG motif, leading to surface anchoring. Deletion of sortase prevents the anchoring of virulence factors to the wall; the effects on bacterial physiology however, have not been thoroughly characterized. Here we show that deletion of Streptococcus pyogenes sortase A leads to accumulation of sorting intermediates, particularly at the septum, altering cellular morphology and physiology, and compromising membrane integrity. Such cells are highly sensitive to cathelicidin, and are rapidly killed in blood and plasma. These phenomena are not a loss-of-function effect caused by the absence of anchored surface proteins, but specifically result from the accumulation of sorting intermediates. Reduction in the level of sorting intermediates leads to a return of the sortase mutant to normal morphology, while expression of M protein with an altered LPXTG motif in wild type cells leads to toxicity in the host environment, similar to that observed in the sortase mutant. These unanticipated effects suggest that inhibition of sortase by small-molecule inhibitors could similarly lead to the rapid elimination of pathogens from an infected host, making such inhibitors much better anti-bacterial agents than previously believed. PMID:26484774

  2. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    PubMed

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells.

    PubMed

    Dubois, Nicole C; Craft, April M; Sharma, Parveen; Elliott, David A; Stanley, Edouard G; Elefanty, Andrew G; Gramolini, Anthony; Keller, Gordon

    2011-10-23

    To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.

  4. Cell identification using Raman spectroscopy in combination with optical trapping and microfluidics

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Dochow, Sebastian; Beleites, Claudia; Popp, Jürgen

    2014-03-01

    Cell identification by Raman spectroscopy has evolved to be an attractive complement to established optical techniques. Raman activated cell sorting (RACS) offers prospects to complement the widely applied fluorescence activated cell sorting. RACS can be realized by combination with optical traps and microfluidic devices. The progress of RACS is reported for a cellular model system that can be found in peripheral blood of tumor patients. Lymphocytes and erythrocytes were extracted from blood samples. Breast carcinoma derived tumor cells (MCF-7, BT-20) and acute myeloid leukemia cells (OCI-AML3) were grown in cell cultures. First, Raman images were collected from dried cells on calcium fluoride slides. Support vector machines (SVM) classified 99.7% of the spectra to the correct cell type. Second, a 785 nm laser was used for optical trapping of single cells in aqueous buffer and for excitation of the Raman spectrum. SVM distinguished 1210 spectra of tumor and normal cells with a sensitivity of >99.7% and a specificity of >99.5%. Third, a microfluidic glass chip was designed to inject single cells, modify the flow speed, accommodate fibers of an optical trap and sort single cells after Raman based identification with 514 nm for excitation. Forth, the microfluidic chip was fabricated by quartz which improved cell identification results with 785 nm excitation. Here, partial least squares discriminant analysis gave classification rates of 98%. Finally, a Raman-on-chip approach was developed that integrates fibers for trapping, Raman excitation and signal detection in a single compact unit.

  5. Intracellular Trafficking of Silicon Particles and Logic-Embedded Vectors

    PubMed Central

    Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.

    2010-01-01

    Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments. PMID:20820744

  6. Lipid phosphate phosphatase activity regulates dispersal and bilateral sorting of embryonic germ cells in Drosophila

    PubMed Central

    Renault, Andrew D.; Kunwar, Prabhat S.; Lehmann, Ruth

    2010-01-01

    In Drosophila, germ cell survival and directionality of migration are controlled by two lipid phosphate phosphatases (LPP), wunen (wun) and wunen-2 (wun2). wun wun2 double mutant analysis reveals that the two genes, hereafter collectively called wunens, act redundantly in primordial germ cells. We find that wunens mediate germ cell-germ cell repulsion and that this repulsion is necessary for germ cell dispersal and proper transepithelial migration at the onset of migration and for the equal sorting of the germ cells between the two embryonic gonads during their migration. We propose that this dispersal function optimizes adult fecundity by assuring maximal germ cell occupancy of both gonads. Furthermore, we find that the requirement for wunens in germ cell survival can be eliminated by blocking germ cell migration. We suggest that this essential function of Wunen is needed to maintain cell integrity in actively migrating germ cells. PMID:20431117

  7. Low power and high accuracy spike sorting microprocessor with on-line interpolation and re-alignment in 90 nm CMOS process.

    PubMed

    Chen, Tung-Chien; Ma, Tsung-Chuan; Chen, Yun-Yu; Chen, Liang-Gee

    2012-01-01

    Accurate spike sorting is an important issue for neuroscientific and neuroprosthetic applications. The sorting of spikes depends on the features extracted from the neural waveforms, and a better sorting performance usually comes with a higher sampling rate (SR). However for the long duration experiments on free-moving subjects, the miniaturized and wireless neural recording ICs are the current trend, and the compromise on sorting accuracy is usually made by a lower SR for the lower power consumption. In this paper, we implement an on-chip spike sorting processor with integrated interpolation hardware in order to improve the performance in terms of power versus accuracy. According to the fabrication results in 90nm process, if the interpolation is appropriately performed during the spike sorting, the system operated at the SR of 12.5 k samples per second (sps) can outperform the one not having interpolation at 25 ksps on both accuracy and power.

  8. Analysis of cellular autofluorescence in touch samples by flow cytometry: implications for front end separation of trace mixture evidence.

    PubMed

    Katherine Philpott, M; Stanciu, Cristina E; Kwon, Ye Jin; Bustamante, Eduardo E; Greenspoon, Susan A; Ehrhardt, Christopher J

    2017-07-01

    The goal of this study was to survey optical and biochemical variation in cell populations deposited onto a surface through touch or contact and identify specific features that may be used to distinguish and then sort cell populations from separate contributors in a trace biological mixture. Although we were not able to detect meaningful biochemical variation in touch samples deposited by different contributors through preliminary antibody surveys, we did observe distinct differences in red autofluorescence emissions (650-670 nm), with as much as a tenfold difference in mean fluorescence intensities observed between certain pairs of donors. Results indicate that the level of red autofluorescence in touch samples can be influenced by a donor's contact with specific material prior to handling the substrate from which cells were collected. In particular, we observed increased red autofluorescence in cells deposited subsequent to handling laboratory gloves, plant material, and certain types of marker ink, which could be easily visualized microscopically or using flow cytometry, and persisted after hand washing. To test whether these observed optical differences could potentially be used as the basis for a cell separation workflow, a controlled two-person touch mixture was separated into two fractions via fluorescence-activated cell sorting (FACS) using gating criteria based on intensity of 650-670 nm emissions and then subjected to DNA analysis. Genetic analysis of the sorted fractions provided partial DNA profiles that were consistent with separation of individual contributors from the mixture suggesting that variation in autofluorescence signatures, even if driven by extrinsic factors, may nonetheless be a useful means of isolating contributors to some touch mixtures. Graphical Abstract Conceptual workflow diagram. Trace biological mixtures containing cells from multiple individuals are analyzed by flow cytometry. Cells are then physically separated into two populations based on intensity of red autofluorescence using Fluorescence Activated Cell Sorting. Each isolated cell fraction is subjected to DNA analysis resulting in a DNA profile for each contributor.

  9. Multiple motifs regulate apical sorting of p75 via a mechanism that involves dimerization and higher-order oligomerization

    PubMed Central

    Youker, Robert T.; Bruns, Jennifer R.; Costa, Simone A.; Rbaibi, Youssef; Lanni, Frederick; Kashlan, Ossama B.; Teng, Haibing; Weisz, Ora A.

    2013-01-01

    The sorting signals that direct proteins to the apical surface of polarized epithelial cells are complex and can include posttranslational modifications, such as N- and O-linked glycosylation. Efficient apical sorting of the neurotrophin receptor p75 is dependent on its O-glycosylated membrane proximal stalk, but how this domain mediates targeting is unknown. Protein oligomerization or clustering has been suggested as a common step in the segregation of all apical proteins. Like many apical proteins, p75 forms dimers, and we hypothesized that formation of higher-order clusters mediated by p75 dimerization and interactions of the stalk facilitate its apical sorting. Using fluorescence fluctuation techniques (photon-counting histogram and number and brightness analyses) to study p75 oligomerization status in vivo, we found that wild-type p75–green fluorescent protein forms clusters in the trans-Golgi network (TGN) but not at the plasma membrane. Disruption of either the dimerization motif or the stalk domain impaired both clustering and polarized delivery. Manipulation of O-glycan processing or depletion of multiple galectins expressed in Madin-Darby canine kidney cells had no effect on p75 sorting, suggesting that the stalk domain functions as a structural prop to position other determinants in the lumenal domain of p75 for oligomerization. Additionally, a p75 mutant with intact dimerization and stalk motifs but with a dominant basolateral sorting determinant (Δ250 mutant) did not form oligomers, consistent with a requirement for clustering in apical sorting. Artificially enhancing dimerization restored clustering to the Δ250 mutant but was insufficient to reroute this mutant to the apical surface. Together these studies demonstrate that clustering in the TGN is required for normal biosynthetic apical sorting of p75 but is not by itself sufficient to reroute a protein to the apical surface in the presence of a strong basolateral sorting determinant. Our studies shed new light on the hierarchy of polarized sorting signals and on the mechanisms by which newly synthesized proteins are segregated in the TGN for eventual apical delivery. PMID:23637462

  10. Establishment of optimized MDCK cell lines for reliable efflux transport studies.

    PubMed

    Gartzke, Dominik; Fricker, Gert

    2014-04-01

    Madin-Darby canine kidney (MDCK) cells transfected with human MDR1 gene (MDCK-MDR1) encoding for P-glycoprotein (hPgp, ABCB1) are widely used for transport studies to identify drug candidates as substrates of this efflux protein. Therefore, it is necessary to rely on constant and comparable expression levels of Pgp to avoid false negative or positive results. We generated a cell line with homogenously high and stable expression of hPgp through sorting single clones from a MDCK-MDR1 cell pool using fluorescence-activated cell sorting (FACS). To obtain control cell lines for evaluation of cross-interactions with endogenous canine Pgp (cPgp) wild-type cells were sorted with a low expression pattern of cPgp in comparison with the MDCK-MDR1. Expression of other transporters was also characterized in both cell lines by quantitative real-time PCR and Western blot. Pgp function was investigated applying the Calcein-AM assay as well as bidirectional transport assays using (3) H-Digoxin, (3) H-Vinblastine, and (3) H-Quinidine as substrates. Generated MDCK-MDR1 cell lines showed high expression of hPgp. Control MDCK-WT cells were optimized in showing a comparable expression level of cPgp in comparison with MDCK-MDR1 cell lines. Generated cell lines showed higher and more selective Pgp transport compared with parental cells. Therefore, they provide a significant improvement in the performance of efflux studies yielding more reliable results. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Platforms for Single-Cell Collection and Analysis.

    PubMed

    Valihrach, Lukas; Androvic, Peter; Kubista, Mikael

    2018-03-11

    Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS). In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments.

  12. Platforms for Single-Cell Collection and Analysis

    PubMed Central

    Valihrach, Lukas; Androvic, Peter; Kubista, Mikael

    2018-01-01

    Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS). In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments. PMID:29534489

  13. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald; Colston, Jr, Billy W.

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  14. Single-Cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells.

    PubMed

    Shembekar, Nachiket; Hu, Hongxing; Eustace, David; Merten, Christoph A

    2018-02-20

    Monoclonal antibodies are a main player in modern drug discovery. Many antibody screening formats exist, each with specific advantages and limitations. Nonetheless, it remains challenging to screen antibodies for the binding of cell-surface receptors (the most important class of all drug targets) or for the binding to target cells rather than purified proteins. Here, we present a high-throughput droplet microfluidics approach employing dual-color normalized fluorescence readout to detect antibody binding. This enables us to obtain quantitative data on target cell recognition, using as little as 33 fg of IgG per assay. Starting with an excess of hybridoma cells releasing unspecific antibodies, individual clones secreting specific binders (of target cells co-encapsulated into droplets) could be enriched 220-fold after sorting 80,000 clones in a single experiment. This opens the way for therapeutic antibody discovery, especially since the single-cell approach is in principle also applicable to primary human plasma cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Digital Microfluidics for Manipulation and Analysis of a Single Cell.

    PubMed

    He, Jie-Long; Chen, An-Te; Lee, Jyong-Huei; Fan, Shih-Kang

    2015-09-15

    The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF), the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed.

  16. Digital Microfluidics for Manipulation and Analysis of a Single Cell

    PubMed Central

    He, Jie-Long; Chen, An-Te; Lee, Jyong-Huei; Fan, Shih-Kang

    2015-01-01

    The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF), the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed. PMID:26389890

  17. Screening and identification of genetic loci involved in producing more/denser inclusion bodies in Escherichia coli

    PubMed Central

    2013-01-01

    Background Many proteins and peptides have been used in therapeutic or industrial applications. They are often produced in microbial production hosts by fermentation. Robust protein production in the hosts and efficient downstream purification are two critical factors that could significantly reduce cost for microbial protein production by fermentation. Producing proteins/peptides as inclusion bodies in the hosts has the potential to achieve both high titers in fermentation and cost-effective downstream purification. Manipulation of the host cells such as overexpression/deletion of certain genes could lead to producing more and/or denser inclusion bodies. However, there are limited screening methods to help to identify beneficial genetic changes rendering more protein production and/or denser inclusion bodies. Results We report development and optimization of a simple density gradient method that can be used for distinguishing and sorting E. coli cells with different buoyant densities. We demonstrate utilization of the method to screen genetic libraries to identify a) expression of glyQS loci on plasmid that increased expression of a peptide of interest as well as the buoyant density of inclusion body producing E. coli cells; and b) deletion of a host gltA gene that increased the buoyant density of the inclusion body produced in the E. coli cells. Conclusion A novel density gradient sorting method was developed to screen genetic libraries. Beneficial host genetic changes could be exploited to improve recombinant protein expression as well as downstream protein purification. PMID:23638724

  18. Screening and identification of genetic loci involved in producing more/denser inclusion bodies in Escherichia coli.

    PubMed

    Pandey, Neeraj; Sachan, Annapurna; Chen, Qi; Ruebling-Jass, Kristin; Bhalla, Ritu; Panguluri, Kiran Kumar; Rouviere, Pierre E; Cheng, Qiong

    2013-05-02

    Many proteins and peptides have been used in therapeutic or industrial applications. They are often produced in microbial production hosts by fermentation. Robust protein production in the hosts and efficient downstream purification are two critical factors that could significantly reduce cost for microbial protein production by fermentation. Producing proteins/peptides as inclusion bodies in the hosts has the potential to achieve both high titers in fermentation and cost-effective downstream purification. Manipulation of the host cells such as overexpression/deletion of certain genes could lead to producing more and/or denser inclusion bodies. However, there are limited screening methods to help to identify beneficial genetic changes rendering more protein production and/or denser inclusion bodies. We report development and optimization of a simple density gradient method that can be used for distinguishing and sorting E. coli cells with different buoyant densities. We demonstrate utilization of the method to screen genetic libraries to identify a) expression of glyQS loci on plasmid that increased expression of a peptide of interest as well as the buoyant density of inclusion body producing E. coli cells; and b) deletion of a host gltA gene that increased the buoyant density of the inclusion body produced in the E. coli cells. A novel density gradient sorting method was developed to screen genetic libraries. Beneficial host genetic changes could be exploited to improve recombinant protein expression as well as downstream protein purification.

  19. Exploring viral reservoir: The combining approach of cell sorting and droplet digital PCR.

    PubMed

    Gibellini, Lara; Pecorini, Simone; De Biasi, Sara; Pinti, Marcello; Bianchini, Elena; De Gaetano, Anna; Digaetano, Margherita; Pullano, Rosalberta; Lo Tartaro, Domenico; Iannone, Anna; Mussini, Cristina; Cossarizza, Andrea; Nasi, Milena

    2018-02-01

    Combined antiretroviral therapy (cART) blocks different steps of HIV replication and maintains plasma viral RNA at undetectable levels. The virus can remain in long-living cells and create a reservoir where HIV can restart replicating after cART discontinuation. A persistent viral production triggers and maintains a persistent immune activation, which is a well-known feature of chronic HIV infection, and contributes either to precocious aging, or to the increased incidence of morbidity and mortality of HIV positive patients. The new frontier of the treatment of HIV infection is nowadays eradication of the virus from all host cells and tissues. For this reason, it is crucial to have a clear and precise idea of where the virus hides, and which are the cells that keep it silent. Important efforts have been made to improve the detection of viral reservoirs, and new techniques are now giving the opportunity to characterize viral reservoirs. Among these techniques, a strategic approach based upon cell sorting and droplet digital PCR (ddPCR) is opening new horizons and opportunities of research. This review provides an overview of the methods that combine cell sorting and ddPCR for the quantification of HIV DNA in different cell types, and for the detection of its maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Spectrum of benzo[a]pyrene-induced mutations in the Pig-a gene of L5178YTk+/- cells identified with next generation sequencing.

    PubMed

    Revollo, Javier; Wang, Yiying; McKinzie, Page; Dad, Azra; Pearce, Mason; Heflich, Robert H; Dobrovolsky, Vasily N

    2017-12-01

    We used Sanger sequencing and next generation sequencing (NGS) for analysis of mutations in the endogenous X-linked Pig-a gene of clonally expanded L5178YTk +/- cells. The clones developed from single cells that were sorted on a flow cytometer based upon the expression pattern of the GPI-anchored marker, CD90, on their surface. CD90-deficient and CD90-proficient cells were sorted from untreated cultures and CD90-deficient cells were sorted from cultures treated with benzo[a]pyrene (B[a]P). Pig-a mutations were identified in all clones developed from CD90-deficient cells; no Pig-a mutations were found in clones of CD90-proficient cells. The spectrum of B[a]P-induced Pig-a mutations was dominated by basepair substitutions, small insertions and deletions at G:C, or at sequences rich in G:C content. We observed high concordance between Pig-a mutations determined by Sanger sequencing and by NGS, but NGS was able to identify mutations in samples that were difficult to analyze by Sanger sequencing (e.g., mixtures of two mutant clones). Overall, the NGS method is a cost and labor efficient high throughput approach for analysis of a large number of mutant clones. Published by Elsevier B.V.

  1. Data parallel sorting for particle simulation

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1992-01-01

    Sorting on a parallel architecture is a communications intensive event which can incur a high penalty in applications where it is required. In the case of particle simulation, only integer sorting is necessary, and sequential implementations easily attain the minimum performance bound of O (N) for N particles. Parallel implementations, however, have to cope with the parallel sorting problem which, in addition to incurring a heavy communications cost, can make the minimun performance bound difficult to attain. This paper demonstrates how the sorting problem in a particle simulation can be reduced to a merging problem, and describes an efficient data parallel algorithm to solve this merging problem in a particle simulation. The new algorithm is shown to be optimal under conditions usual for particle simulation, and its fieldwise implementation on the Connection Machine is analyzed in detail. The new algorithm is about four times faster than a fieldwise implementation of radix sort on the Connection Machine.

  2. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.

    PubMed

    Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold

    2016-08-25

    Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. © 2016 by The American Society of Hematology.

  3. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction.

    PubMed

    Vasanth, Karunamoorthy; Ilango, Kaliappan; MohanKumar, Ramasamy; Agrawal, Aruna; Dubey, Govind Prasad

    2014-05-01

    Silver nanomaterial plays a crucial role in the growing field of nanotechnology as there is an increasing commercial demand for silver nanoparticles (AgNPs) owing to their wide biological applications. The present investigation aims at developing anti-cancerous colloidal silver using Moringa olifera stem bark extract. Electron and atomic force microscopic images were taken to analyze the surface morphology of the synthesized AgNPs. The effects of synthesized AgNPs were tested against human cervical carcinoma cells (HeLa) and cell morphology was further evaluated using 4,6-diamidino-2-phenylindole (DAPI) staining. The efficiency of green synthesized AgNPs was studied with the help of fluorescence activated cell sorting (FACS) and was shown to induce apoptosis through reactive oxygen species (ROS) generation in HeLa cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. DLK1 as a potential target against cancer stem/progenitor cells of hepatocellular carcinoma.

    PubMed

    Xu, Xiao; Liu, Rui-Fang; Zhang, Xin; Huang, Li-Yu; Chen, Fei; Fei, Qian-Lan; Han, Ze-Guang

    2012-03-01

    Delta-like 1 homolog (DLK1; Drosophila) is a hepatic stem/progenitor cell marker in fetal livers that plays a vital role in oncogenesis of hepatocellular carcinoma (HCC). The aim of this study is to investigate whether DLK1 could serve as a potential therapeutic target against cancer stem/progenitor cells of HCC. DLK1(+) and DLK1(-) cells were sorted by fluorescence-activated cell sorting and magnetic-activated cell sorting, respectively, and then were evaluated by flow cytometry. The biological behaviors of these isolated cells and those with DLK1 knockdown were assessed by growth curve, colony formation assay, spheroid colony formation, chemoresistance, and in vivo tumorigenicity. Adenovirus-mediated RNA interference was used to knockdown the endogenous DLK1. We found that DLK1(+) population was less than 10% in almost all 17 HCC cell lines examined. DLK1(+) HCC cells showed stronger ability of chemoresistance, colony formation, spheroid colony formation, and in vivo tumorigenicity compared with DLK1(-) cells. The DLK1(+) HCC cells could generate the progeny without DLK1 expression. Furthermore, DLK1 knockdown could suppress the ability of proliferation, colony formation, spheroid colony formation, and in vivo tumorigenicity of Hep3B and Huh-7 HCC cells. Our data suggested that DLK1(+) HCC cells have characteristics similar to those of cancer stem/progenitor cells. RNA interference against DLK1 can suppress the malignant behaviors of HCC cells, possibly through directly disrupting cancer stem/progenitor cells, which suggested that DLK1 could be a potential therapeutic target against the HCC stem/progenitor cells.

  5. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity.

    PubMed

    LaMontagne, Erica D; Heese, Antje

    2017-12-01

    In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses. Copyright © 2017. Published by Elsevier Ltd.

  6. Quantitative Detection of Low-Abundance Transcripts at Single-Cell Level in Human Epidermal Keratinocytes by Digital Droplet Reverse Transcription-Polymerase Chain Reaction.

    PubMed

    Auvré, Frédéric; Coutier, Julien; Martin, Michèle T; Fortunel, Nicolas O

    2018-05-08

    Genetic and epigenetic characterization of the large cellular diversity observed within tissues is essential to understanding the molecular networks that ensure the regulation of homeostasis, repair, and regeneration, but also pathophysiological processes. Skin is composed of multiple cell lineages and is therefore fully concerned by this complexity. Even within one particular lineage, such as epidermal keratinocytes, different immaturity statuses or differentiation stages are represented, which are still incompletely characterized. Accordingly, there is presently great demand for methods and technologies enabling molecular investigation at single-cell level. Also, most current methods used to analyze gene expression at RNA level, such as RT-qPCR, do not directly provide quantitative data, but rather comparative ratios between two conditions. A second important need in skin biology is thus to determine the number of RNA molecules in a given cell sample. Here, we describe a workflow that we have set up to meet these specific needs, by means of transcript quantification in cellular micro-samples using flow cytometry sorting and reverse transcription-digital droplet polymerase chain reaction. As a proof-of-principle, the workflow was tested for the detection of transcription factor transcripts expressed at low levels in keratinocyte precursor cells. A linear correlation was found between quantification values and keratinocyte input numbers in a low quantity range from 40 cells to 1 cell. Interpretable signals were repeatedly obtained from single-cell samples corresponding to estimated expression levels as low as 10-20 transcript copies per keratinocyte or less. The present workflow may have broad applications for the detection and quantification of low-abundance nucleic acid species in single cells, opening up perspectives for the study of cell-to-cell genetic and molecular heterogeneity. Interestingly, the process described here does not require internal references such as house-keeping gene expression, as it is initiated with defined cell numbers, precisely sorted by flow cytometry.

  7. Fluorescence and confocal imaging of mammalian cells using conjugated oligoelectrolytes with phenylenevinylene core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milczarek, Justyna; Pawlowska, Roza; Zurawinski, Remigiusz

    Over the last few years, considerable efforts are taken, in order to find a molecular fluorescent probe fulfilling their applicability requirements. Due to a good optical properties and affinity to biological structures conjugated oligoelectrolytes (COEs) can be considered as a promising dyes for application in fluorescence-based bioimaging. In this work, we synthetized COEs with phenylenevinylene core (PV-COEs) and applied as fluorescent membranous-specific probes. Cytotoxicity effects of each COE were probed on cancerous and non-cancerous cell types and little to no toxicity effects were observed at the high range of concentrations. The intensity of cell fluorescence following the COE staining wasmore » determined by the photoluminescence analysis and fluorescence activated cell sorting method (FACS). Intercalation of tested COEs into mammalian cell membranes was revealed by fluorescent and confocal microscopy colocalization with commercial dyes specific for cellular structures including mitochondria, Golgi apparatus and endoplasmic reticulum. The phenylenevinylene conjugated oligoelectrolytes have been found to be suitable for fluorescent bioimaging of mammalian cells and membrane-rich organelles. Due to their water solubility coupled with spontaneous intercalation into cells, favorable photophysical features, ease of cell staining, low cytotoxicity and selectivity for membranous structures, PV-COEs can be applied as markers for fluorescence imaging of a variety of cell types.« less

  8. Chronology of Islet Differentiation Revealed By Temporal Cell Labeling

    PubMed Central

    Miyatsuka, Takeshi; Li, Zhongmei; German, Michael S.

    2009-01-01

    OBJECTIVE Neurogenin 3 plays a pivotal role in pancreatic endocrine differentiation. Whereas mouse models expressing reporters such as eGFP or LacZ under the control of the Neurog3 gene enable us to label cells in the pancreatic endocrine lineage, the long half-life of most reporter proteins makes it difficult to distinguish cells actively expressing neurogenin 3 from differentiated cells that have stopped transcribing the gene. RESEARCH DESIGN AND METHODS In order to separate the transient neurogenin 3 –expressing endocrine progenitor cells from the differentiating endocrine cells, we developed a mouse model (Ngn3-Timer) in which DsRed-E5, a fluorescent protein that shifts its emission spectrum from green to red over time, was expressed transgenically from the NEUROG3 locus. RESULTS In the Ngn3-Timer embryos, green-dominant cells could be readily detected by microscopy or flow cytometry and distinguished from green/red double-positive cells. When fluorescent cells were sorted into three different populations by a fluorescence-activated cell sorter, placed in culture, and then reanalyzed by flow cytometry, green-dominant cells converted to green/red double-positive cells within 6 h. The sorted cell populations were then used to determine the temporal patterns of expression for 145 transcriptional regulators in the developing pancreas. CONCLUSIONS The precise temporal resolution of this model defines the narrow window of neurogenin 3 expression in islet progenitor cells and permits sequential analyses of sorted cells as well as the testing of gene regulatory models for the differentiation of pancreatic islet cells. PMID:19478145

  9. Clinical Applications of NanoVelcro Rare-Cell Assays for Detection and Characterization of Circulating Tumor Cells

    PubMed Central

    Chen, Jie-Fu; Zhu, Yazhen; Lu, Yi-Tsung; Hodara, Elisabeth; Hou, Shuang; Agopian, Vatche G.; Tomlinson, James S.; Posadas, Edwin M.; Tseng, Hsian-Rong

    2016-01-01

    Liquid biopsy of tumor through isolation of circulating tumor cells (CTCs) allows non-invasive, repetitive, and systemic sampling of disease. Although detecting and enumerating CTCs is of prognostic significance in metastatic cancer, it is conceivable that performing molecular and functional characterization on CTCs will reveal unprecedented insight into the pathogenic mechanisms driving lethal disease. Nanomaterial-embedded cancer diagnostic platforms, i.e., NanoVelcro CTC Assays represent a unique rare-cell sorting method that enables detection isolation, and characterization of CTCs in peripheral blood, providing an opportunity to noninvasively monitor disease progression in individual cancer patients. Over the past decade, a series of NanoVelcro CTC Assays has been demonstrated for exploring the full potential of CTCs as a clinical biomarker, including CTC enumeration, phenotyping, genotyping and expression profiling. In this review article, the authors will briefly introduce the development of three generations of NanoVelcro CTC Assays, and highlight the clinical applications of each generation for various types of solid cancers, including prostate cancer, pancreatic cancer, lung cancer, and melanoma. PMID:27375790

  10. Highly multiplexed targeted DNA sequencing from single nuclei.

    PubMed

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  11. Targeted sorting of single virus-infected cells of the coccolithophore Emiliania huxleyi.

    PubMed

    Martínez Martínez, Joaquín; Poulton, Nicole J; Stepanauskas, Ramunas; Sieracki, Michael E; Wilson, William H

    2011-01-01

    Discriminating infected from healthy cells is the first step to understanding the mechanisms and ecological implications of viral infection. We have developed a method for detecting, sorting, and performing molecular analysis of individual, infected cells of the important microalga Emiliania huxleyi, based on known physiological responses to viral infection. Of three fluorescent dyes tested, FM 1-43 (for detecting membrane blebbing) gave the most unequivocal and earliest separation of cells. Furthermore, we were able to amplify the genomes of single infected cells using Multiple Displacement Amplification. This novel method to reliably discriminate infected from healthy cells in cultures will allow researchers to answer numerous questions regarding the mechanisms and implications of viral infection of E. huxleyi. The method may be transferable to other virus-host systems.

  12. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    PubMed Central

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment. PMID:21124918

  13. Clathrin and AP1 are required for apical sorting of glycosyl phosphatidyl inositol-anchored proteins in biosynthetic and recycling routes in Madin-Darby canine kidney cells.

    PubMed

    Castillon, Guillaume A; Burriat-Couleru, Patricia; Abegg, Daniel; Criado Santos, Nina; Watanabe, Reika

    2018-03-01

    Recently, studies in animal models demonstrate potential roles for clathrin and AP1 in apical protein sorting in epithelial tissue. However, the precise functions of these proteins in apical protein transport remain unclear. Here, we reveal mistargeting of endogenous glycosyl phosphatidyl inositol-anchored proteins (GPI-APs) and soluble secretory proteins in Madin-Darby canine kidney (MDCK) cells upon clathrin heavy chain or AP1 subunit knockdown (KD). Using a novel directional endocytosis and recycling assay, we found that these KD cells are not only affected for apical sorting of GPI-APs in biosynthetic pathway but also for their apical recycling and basal-to-apical transcytosis routes. The apical distribution of the t-SNARE syntaxin 3, which is known to be responsible for selective targeting of various apical-destined cargo proteins in both biosynthetic and endocytic routes, is compromised suggesting a molecular explanation for the phenotype in KD cells. Our results demonstrate the importance of biosynthetic and endocytic routes for establishment and maintenance of apical localization of GPI-APs in polarized MDCK cells. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The tetraspanin CD63 regulates ESCRT-independent and dependent endosomal sorting during melanogenesis

    PubMed Central

    van Niel, Guillaume; Charrin, Stéphanie; Simoes, Sabrina; Romao, Maryse; Rochin, Leila; Saftig, Paul; Marks, Michael S.; Rubinstein, Eric; Raposo, Graça

    2011-01-01

    Summary Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for numerous physiological processes including lysosome-related organelle (LRO) biogenesis. PMEL – a component of melanocyte LROs (melanosomes) – is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis. PMID:21962903

  15. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles

    PubMed Central

    Topalidou, Irini; Cattin-Ortolá, Jérôme; MacCoss, Michael J.

    2016-01-01

    The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. PMID:27191843

  16. Purification of Bone Marrow Clonal Cells from Patients with Myelodysplastic Syndrome via IGF-IR

    PubMed Central

    He, Qi; Chang, Chun-Kang; Xu, Feng; Zhang, Qing-Xia; Shi, Wen-Hui; Li, Xiao

    2015-01-01

    Malignant clonal cells purification can greatly benefit basic and clinical studies in myelodysplastic syndrome (MDS). In this study, we investigated the potential of using type 1 insulin-like growth factor receptor (IGF-IR) as a marker for purification of malignant bone marrow clonal cells from patients with MDS. The average percentage of IGF-IR expression in CD34+ bone marrow cells among 15 normal controls was 4.5%, 70% of which also express the erythroid lineage marker CD235a. This indicates that IGF-IR mainly express in erythropoiesis. The expression of IGF-IR in CD34+ cells of 55 MDS patients was significantly higher than that of cells from the normal controls (54.0 vs. 4.5%). Based on the pattern of IGF-IR expression in MDS patients and normal controls, sorting of IGF-IR-positive and removal of CD235a-positive erythroid lineage cells with combination of FISH detection were performed on MDS samples with chromosomal abnormalities. The percentage of malignant clonal cells significantly increased after sorting. The enrichment effect was more significant in clonal cells with a previous percentage lower than 50%. This enrichment effect was present in samples from patients with +8, 5q-/-5, 20q-/-20 or 7q-/-7 chromosomal abnormalities. These data suggest that IGF-IR can be used as a marker for MDS bone marrow clonal cells and using flow cytometry for positive IGF-IR sorting may effectively purify MDS clonal cells. PMID:26469401

  17. Genomic Insights into Geothermal Spring Community Members using a 16S Agnostic Single-Cell Approach

    NASA Astrophysics Data System (ADS)

    Bowers, R. M.

    2016-12-01

    INSTUTIONS (ALL): DOE Joint Genome Institute, Walnut Creek, CA USA. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME USA. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada. ABSTRACT BODY: With recent advances in DNA sequencing, rapid and affordable screening of single-cell genomes has become a reality. Single-cell sequencing is a multi-step process that takes advantage of any number of single-cell sorting techniques, whole genome amplification (WGA), and 16S rRNA gene based PCR screening to identify the microbes of interest prior to shotgun sequencing. However, the 16S PCR based screening step is costly and may lead to unanticipated losses of microbial diversity, as cells that do not produce a clean 16S amplicon are typically omitted from downstream shotgun sequencing. While many of the sorted cells that fail the 16S PCR step likely originate from poor quality amplified DNA, some of the cells with good WGA kinetics may instead represent bacteria or archaea with 16S genes that fail to amplify due to primer mis-matches or the presence of intervening sequences. Using cell material from Dewar Creek, a hot spring in British Columbia, we sequenced all sorted cells with good WGA kinetics irrespective of their 16S amplification success. We show that this high-throughput approach to single-cell sequencing (i) can reduce the overall cost of single-cell genome production, and (ii). may lead to the discovery of previously unknown branches on the microbial tree of life.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Takayuki; Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575; Murata, Kazuko, E-mail: murata-k@iwakimu.ac.jp

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examinedmore » the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs{sup flox/flox};mb1{sup cre/+}:Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes.« less

  19. Modular nucleic acid assembled p/MHC microarrays for multiplexed sorting of antigen-specific T cells.

    PubMed

    Kwong, Gabriel A; Radu, Caius G; Hwang, Kiwook; Shu, Chengyi J; Ma, Chao; Koya, Richard C; Comin-Anduix, Begonya; Hadrup, Sine Reker; Bailey, Ryan C; Witte, Owen N; Schumacher, Ton N; Ribas, Antoni; Heath, James R

    2009-07-22

    The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called "Nucleic Acid Cell Sorting (NACS)", single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection.

  20. Characterization of cancer stem-like cells derived from a side population of a human gallbladder carcinoma cell line, SGC-996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xin-xing; Wang, Jian, E-mail: dr_wangjian@yahoo.com.cn; Wang, Hao-lu

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. Black-Right-Pointing-Pointer SP cells displayed higher proliferation and stronger clonal-generating capability. Black-Right-Pointing-Pointer SP cells showed more migratory and invasive abilities. Black-Right-Pointing-Pointer SP cells were more resistant and tumorigenic than non-SP counterparts. Black-Right-Pointing-Pointer ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substratemore » Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.« less

  1. Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes.

    PubMed

    Bruder, Lena M; Dörkes, Marcel; Fuchs, Bernhard M; Ludwig, Wolfgang; Liebl, Wolfgang

    2016-10-01

    The gut microbiome represents a key contributor to human physiology, metabolism, immune function, and nutrition. Elucidating the composition and genetics of the gut microbiota under various conditions is essential to understand how microbes function individually and as a community. Metagenomic analyses are increasingly used to study intestinal microbiota. However, for certain scientific questions it is sufficient to examine taxon-specific submetagenomes, covering selected bacterial genera in a targeted manner. Here we established a new variant of fluorescence in situ hybridization (FISH) combined with fluorescence-activated cell sorting (FACS), providing access to the genomes of specific taxa belonging to the complex community of the intestinal microbiota. In contrast to standard oligonucleotide probes, the RNA polynucleotide probe used here, which targets domain III of the 23S rRNA gene, extends the resolution power in environmental samples by increasing signal intensity. Furthermore, cells hybridized with the polynucleotide probe are not subjected to harsh pretreatments, and their genetic information remains intact. The protocol described here was tested on genus-specifically labeled cells in various samples, including complex fecal samples from different laboratory mouse types that harbor diverse intestinal microbiota. Specifically, as an example for the protocol described here, RNA polynucleotide probes could be used to label Enterococcus cells for subsequent sorting by flow cytometry. To detect and quantify enterococci in fecal samples prior to enrichment, taxon-specific PCR and qPCR detection systems have been developed. The accessibility of the genomes from taxon-specifically sorted cells for subsequent molecular analyses was demonstrated by amplification of functional genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure.

    PubMed

    Wacker, Irene; Chockley, Peter; Bartels, Carolin; Spomer, Waldemar; Hofmann, Andreas; Gengenbach, Ulrich; Singh, Sachin; Thaler, Marlene; Grabher, Clemens; Schröder, Rasmus R

    2015-08-01

    For 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells. In addition, arrays were used for quantification of cell populations with respect to the various cell types they contained. The detection of immunological synapses in cocultures of cell populations from thymus or WKM with cancer cells helped to identify the cytotoxic nature of these cells. Our results demonstrate the practicality and benefit of AT for high-throughput ultrastructural imaging of substantial volumes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  3. Optical Deformability as New Diagnostic Cell Marker

    NASA Astrophysics Data System (ADS)

    Guck, Jochen; Lincoln, Bryan; Schinkinger, Stefan; Wottawah, Falk; Moore, Samantha; Ananthakrishnan, Revathi; Kas, Josef

    2002-03-01

    The optical stretcher is a novel laser tool that can deform individual cells in rapid succession. When a cell is trapped between two counterpropagating laser beams the optically induced surface forces stretch the cell along the laser axis. The degree of stretching depends on the optical properties, which determine the forces, as well as the mechanical properties, which govern the response of the cell to the forces. Our results show that different cells can be distinguished based on their optical deformability, which naturally suggests using the optical deformability of cells as a novel cell marker. Many diseases are reflected in an altered cytoskeleton, which leads to a different optical deformability. An important example is the malignant transformation of cells, which is accompanied by a decrease in cytoskeletal integrity and, consequently, cell elasticity. Using optical deformability as cell marker holds the promise of earlier detection and improved diagnosis of cancer. In this context, the optical stretcher can be used as a diagnostic device to detect and sort abnormal cells. Future applications in the study of the normal differentiation of cells from stem cells to mature cells are envisioned.

  4. Swimming With the Natives: Cultural Immersion and Its Applications to Naval Special Warfare

    DTIC Science & Technology

    2004-09-01

    refer to as the “Struggle against the ‘Great Demon’ or ‘Great Satan ’”—which in turn refers to the western forces and their coalitions. The cell...the Cairo Bulletin, which is a sort of bible to them. (Wilson, 1990, p. 949) 28 As he had intended, Lawrence was able to use his cultural immersion...21, 2004, from http://www.oft.osd.mil/library/ library_files/document_377_National%20Military%20Strategy%2013%20May% 2004. pdf Johnson, C. (1982

  5. Opto electronic tweezers based smart sweeper for cells/micro-particles sorting

    NASA Astrophysics Data System (ADS)

    Verma, R. S.; Kumar, N.

    2018-04-01

    We report on use of opto-electronic tweezers based sorting approach, termed as smart sweepers, for sorting the microscopic particles by using the Dielectrophoretic (DEP) force response of cells on applied a.c. bias frequency. The applied a.c. bias was kept in negative DEP region, close to the crossover frequency of one of the particles. A line shaped intensity pattern, generated by a cylindrical lens, was scanned across the mixture sample. The particles whose cross over frequency was close to the applied bias frequency, experienced negligible negative DEP(n-DEP) force. On the other hand, the other type of particle experienced large repelling force and were forced to move along the scanning direction of the line shaped intensity profile. We, as a proof of concept, demonstrated the working principle of opto electronic smart sweepers by sweeping out the polystyrene particles from a mixture consisting of polystyrene microspheres (PSM) and red blood cells (RBCs) and leaving RBCs in the region of interest.

  6. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  7. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells

    PubMed Central

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N.; Luan, Anna; Brett, Elizabeth A.; Barrera, Janos; Khong, Sacha M.; Zielins, Elizabeth R.; Whittam, Alexander J.; Hu, Michael S.; Walmsley, Graham G.; Pollhammer, Michael S.; Schmidt, Manfred; Schilling, Arndt F.; Machens, Hans-Günther; Huemer, Georg M.; Wan, Derrick C.; Longaker, Michael T.

    2016-01-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31−/CD45−), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency, diverse cytokine profile, and ease of harvest via liposuction. Alternative approaches to classical suction-assisted liposuction are gaining popularity; however, little evidence exists regarding the impact of different liposuction methods on the regenerative functionality of ASCs. Human ASC characteristics and regenerative capacity were assessed when harvested via ultrasound-assisted (UAL) versus standard suction-assisted liposuction. ASCs obtained via UAL were of equal quality when directly compared with the current gold standard harvest method. UAL is an adjunctive source of fully functional mesenchymal stem cells for applications in basic research and clinical therapy. PMID:26702129

  8. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    PubMed

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency, diverse cytokine profile, and ease of harvest via liposuction. Alternative approaches to classical suction-assisted liposuction are gaining popularity; however, little evidence exists regarding the impact of different liposuction methods on the regenerative functionality of ASCs. Human ASC characteristics and regenerative capacity were assessed when harvested via ultrasound-assisted (UAL) versus standard suction-assisted liposuction. ASCs obtained via UAL were of equal quality when directly compared with the current gold standard harvest method. UAL is an adjunctive source of fully functional mesenchymal stem cells for applications in basic research and clinical therapy. ©AlphaMed Press.

  9. Clonogenic colony-forming ability of flow cytometrically isolated hepatic progenitor cells in the murine fetal liver.

    PubMed

    Taniguchi, H; Kondo, R; Suzuki, A; Zheng, Y W; Takada, Y; Fukunaga, K; Seino, K; Yuzawa, K; Otsuka, M; Fukao, K; Nakauchi, H

    2000-01-01

    Stem cells are defined as cells having multilineage differentiation potential and self-renewal capability. Hepatic stem cells have aroused considerable interest not only because of their developmental importance but also for their therapeutic potential. However, their presence in the liver has not yet been demonstrated. With the use of a fluorescence-activated cell sorter (FACS) and monoclonal antibodies, we attempted to ascertain whether hepatic stem cells are present in the murine fetal liver. For this purpose, we optimized a cell isolation technique for FACS sorting of fetal liver cells. When isolated CD45 TER119 cells (the non-blood cell fraction in the fetal liver) were tested for their clonogenic colony-forming ability, mechanical dissociation (pipetting) was the most suitable cell isolation technique for FACS sorting. We confirmed that these colonies contained not only cells expressing hepatocyte markers but also cells expressing cholangiocyte markers. To identify hepatic stem cells, studies must focus on CD45TER119- cells in the murine fetal liver.

  10. Galectin-3 modulates the polarized surface delivery of β1-integrin in epithelial cells.

    PubMed

    Hönig, Ellena; Ringer, Karina; Dewes, Jenny; von Mach, Tobias; Kamm, Natalia; Kreitzer, Geri; Jacob, Ralf

    2018-05-10

    Epithelial cells require a precise intracellular transport and sorting machinery in order to establish and maintain their polarized architecture. This machinery includes beta-galactoside binding galectins for glycoprotein targeting to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analyzed the role of galectin-3 in the polarized distribution of β1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of β1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of β1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized β1-integrin to the apical membrane and promotes apical delivery of β1-integrin internalized from the basolateral membrane. In parallel, galectin-3 knockout results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of β1-integrin and affects the morphogenesis of polarized cells. © 2018. Published by The Company of Biologists Ltd.

  11. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.

    PubMed

    Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A

    2017-07-07

    The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.

  12. Microfluidics for food, agriculture and biosystems industries.

    PubMed

    Neethirajan, Suresh; Kobayashi, Isao; Nakajima, Mitsutoshi; Wu, Dan; Nandagopal, Saravanan; Lin, Francis

    2011-05-07

    Microfluidics, a rapidly emerging enabling technology has the potential to revolutionize food, agriculture and biosystems industries. Examples of potential applications of microfluidics in food industry include nano-particle encapsulation of fish oil, monitoring pathogens and toxins in food and water supplies, micro-nano-filtration for improving food quality, detection of antibiotics in dairy food products, and generation of novel food structures. In addition, microfluidics enables applications in agriculture and animal sciences such as nutrients monitoring and plant cells sorting for improving crop quality and production, effective delivery of biopesticides, simplified in vitro fertilization for animal breeding, animal health monitoring, vaccination and therapeutics. Lastly, microfluidics provides new approaches for bioenergy research. This paper synthesizes information of selected microfluidics-based applications for food, agriculture and biosystems industries. © The Royal Society of Chemistry 2011

  13. An Unsupervised Online Spike-Sorting Framework.

    PubMed

    Knieling, Simeon; Sridharan, Kousik S; Belardinelli, Paolo; Naros, Georgios; Weiss, Daniel; Mormann, Florian; Gharabaghi, Alireza

    2016-08-01

    Extracellular neuronal microelectrode recordings can include action potentials from multiple neurons. To separate spikes from different neurons, they can be sorted according to their shape, a procedure referred to as spike-sorting. Several algorithms have been reported to solve this task. However, when clustering outcomes are unsatisfactory, most of them are difficult to adjust to achieve the desired results. We present an online spike-sorting framework that uses feature normalization and weighting to maximize the distinctiveness between different spike shapes. Furthermore, multiple criteria are applied to either facilitate or prevent cluster fusion, thereby enabling experimenters to fine-tune the sorting process. We compare our method to established unsupervised offline (Wave_Clus (WC)) and online (OSort (OS)) algorithms by examining their performance in sorting various test datasets using two different scoring systems (AMI and the Adamos metric). Furthermore, we evaluate sorting capabilities on intra-operative recordings using established quality metrics. Compared to WC and OS, our algorithm achieved comparable or higher scores on average and produced more convincing sorting results for intra-operative datasets. Thus, the presented framework is suitable for both online and offline analysis and could substantially improve the quality of microelectrode-based data evaluation for research and clinical application.

  14. Abnormal proliferation of CD4- CD8+ gammadelta+ T cells with chromosome 6 anomaly: role of Fas ligand expression in spontaneous regression of the cells.

    PubMed

    Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K

    1999-04-01

    We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.

  15. Preparation of cherry-picked combinatorial libraries by string synthesis.

    PubMed

    Furka, Arpád; Dibó, Gábor; Gombosuren, Naran

    2005-03-01

    String synthesis [1-3] is an efficient and cheap manual method for preparation of combinatorial libraries by using macroscopic solid support units. Sorting the units between two synthetic steps is an important operation of the procedure. The software developed to guide sorting can be used only when complete combinatorial libraries are prepared. Since very often only selected components of the full libraries are needed, new software was constructed that guides sorting in preparation of non-complete combinatorial libraries. Application of the software is described in details.

  16. Isolation of circulating tumor cells by immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS) for molecular profiling.

    PubMed

    Magbanua, Mark Jesus M; Park, John W

    2013-12-01

    Circulating tumor cells (CTCs) are cells shed by the primary tumor into the blood stream capable of initiating distant metastasis. In the past decade, numerous assays have been developed to reliably detect these extremely rare cells. However, methods for purification of CTCs with little or no contamination of normal blood cells for molecular profiling are limited. We have developed a novel protocol to isolate CTCs by combining immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS). The two-part assay includes (1) immunomagnetic capture using magnetic beads conjugated to monoclonal antibody against an epithelial cell adhesion marker (EpCAM) to enrich for tumor cells; and (2) FACS analysis using EpCAM to purify tumor cells away from mononuclear cells of hematopoietic lineage. Downstream molecular analyses of single and pooled cells confirmed the isolation of highly pure CTCs with characteristics typical that of malignant cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Activation of epidermal growth factor receptor mediates receptor axon sorting and extension in the developing olfactory system of the moth Manduca sexta.

    PubMed

    Gibson, Nicholas J; Tolbert, Leslie P

    2006-04-10

    During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. Copyright 2006 Wiley-Liss, Inc.

  18. Activation of EGF Receptor Mediates Receptor Axon Sorting and Extension in the Developing Olfactory System of the Moth Manduca sexta

    PubMed Central

    Gibson, Nicholas J.; Tolbert, Leslie P.

    2008-01-01

    During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally-derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies that indicate that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer, as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. PMID:16498681

  19. Sorting of Streptomyces Cell Pellets Using a Complex Object Parametric Analyzer and Sorter

    PubMed Central

    Petrus, Marloes L. C.; van Veluw, G. Jerre; Wösten, Han A. B.; Claessen, Dennis

    2014-01-01

    Streptomycetes are filamentous soil bacteria that are used in industry for the production of enzymes and antibiotics. When grown in bioreactors, these organisms form networks of interconnected hyphae, known as pellets, which are heterogeneous in size. Here we describe a method to analyze and sort mycelial pellets using a Complex Object Parametric Analyzer and Sorter (COPAS). Detailed instructions are given for the use of the instrument and the basic statistical analysis of the data. We furthermore describe how pellets can be sorted according to user-defined settings, which enables downstream processing such as the analysis of the RNA or protein content. Using this methodology the mechanism underlying heterogeneous growth can be tackled. This will be instrumental for improving streptomycetes as a cell factory, considering the fact that productivity correlates with pellet size. PMID:24561666

  20. Crystal structure of the Streptomyces coelicolor sortase E1 transpeptidase provides insight into the binding mode of the novel class E sorting signal

    DOE PAGES

    Kattke, Michele D.; Chan, Albert H.; Duong, Andrew; ...

    2016-12-09

    Here, many species of Gram-positive bacteria use sortase transpeptidases to covalently affix proteins to their cell wall or to assemble pili. Sortase-displayed proteins perform critical and diverse functions for cell survival, including cell adhesion, nutrient acquisition, and morphological development, among others. Based on their amino acid sequences, there are at least six types of sortases (class A to F enzymes); however, class E enzymes have not been extensively studied. Class E sortases are used by soil and freshwater-dwelling Actinobacteria to display proteins that contain a non-canonical LAXTG sorting signal, which differs from 90% of known sorting signals by substitution ofmore » alanine for proline. Here we report the first crystal structure of a class E sortase, the 1.93 Å resolution structure of the SrtE1 enzyme from Streptomyces coelicolor. The active site is bound to a tripeptide, providing insight into the mechanism of substrate binding. SrtE1 possesses β3/β4 and β6/β7 active site loops that contact the LAXTG substrate and are structurally distinct from other classes. We propose that SrtE1 and other class E sortases employ a conserved tyrosine residue within their β3/β4 loop to recognize the amide nitrogen of alanine at position P3 of the sorting signal through a hydrogen bond, as seen here. Incapability of hydrogen-bonding with canonical proline-containing sorting signals likely contributes to class E substrate specificity. Furthermore, we demonstrate that surface anchoring of proteins involved in aerial hyphae formation requires an N-terminal segment in SrtE1 that is presumably positioned within the cytoplasm. Combined, our results reveal unique features within class E enzymes that enable them to recognize distinct sorting signals, and could facilitate the development of substrate-based inhibitors of this important enzyme family.« less

  1. Identifying genes that extend life span using a high-throughput screening system.

    PubMed

    Chen, Cuiying; Contreras, Roland

    2007-01-01

    We developed a high-throughput functional genomic screening system that allows identification of genes prolonging lifespan in the baker's yeast Saccharomyces cerevisiae. The method is based on isolating yeast mother cells with a higher than average number of cell divisions as indicated by the number of bud scars on their surface. Fluorescently labeled wheat germ agglutinin (WGA) was used for specific staining of chitin, a major component of bud scars. The critical new steps in our bud-scar-sorting system are the use of small microbeads, which allows successive rounds of purification and regrowth of the mother cells (M-cell), and utilization of flow cytometry to sort and isolate cells with a longer lifespan based on the number of bud scars specifically labeled with WGA.

  2. Sorting Rotating Micromachines by Variations in Their Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Howell, Taylor A.; Osting, Braxton; Abbott, Jake J.

    2018-05-01

    We consider sorting for the broad class of micromachines (also known as microswimmers, microrobots, micropropellers, etc.) propelled by rotating magnetic fields. We present a control policy that capitalizes on the variation in magnetic properties between otherwise-homogeneous micromachines to enable the sorting of a select fraction of a group from the remainder and prescribe its net relative movement, using a uniform magnetic field that is applied equally to all micromachines. The method enables us to accomplish this sorting task using open-loop control, without relying on a structured environment or localization information of individual micromachines. With our method, the control time to perform the sort is invariant to the number of micromachines. The method is verified through simulations and scaled experiments. Finally, we include an extended discussion about the limitations of the method and address open questions related to its practical application.

  3. Culture of Cells from Amphibian Embryos.

    ERIC Educational Resources Information Center

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  4. Selective Expansion of Skeletal Muscle Stem Cells from Bulk Muscle Cells in Soft Three‐Dimensional Fibrin Gel

    PubMed Central

    Zhu, Pei; Zhou, Yalu; Wu, Furen; Hong, Yuanfan; Wang, Xin; Shekhawat, Gajendra; Mosenson, Jeffrey

    2017-01-01

    Abstract Muscle stem cells (MuSCs) exhibit robust myogenic potential in vivo, thus providing a promising curative treatment for muscle disorders. Ex vivo expansion of adult MuSCs is highly desired to achieve a therapeutic cell dose because of their scarcity in limited muscle biopsies. Sorting of pure MuSCs is generally required for all the current culture systems. Here we developed a soft three‐dimensional (3D) salmon fibrin gel culture system that can selectively expand mouse MuSCs from bulk skeletal muscle preparations without cell sorting and faithfully maintain their regenerative capacity in culture. Our study established a novel platform for convenient ex vivo expansion of MuSCs, thus greatly advancing stem cell‐based therapies for various muscle disorders. Stem Cells Translational Medicine 2017;6:1412–1423 PMID:28244269

  5. Breast epithelium procurement from stereotactic core biopsy washings: flow cytometry-sorted cell count analysis.

    PubMed

    Stoler, Daniel L; Stewart, Carleton C; Stomper, Paul C

    2002-02-01

    Molecular studies of breast lesions have been constrained by difficulties in procuring adequate tissues for analyses. Standard procedures are restricted to larger, palpable masses or the use of paraffin-embedded materials, precluding facile procurement of fresh specimens of early lesions. We describe a study to determine the yield and characteristics of sorted cell populations retrieved in core needle biopsy specimen rinses from a spectrum of breast lesions. Cells from 114 consecutive stereotactic core biopsies of mammographic lesions released into saline washes were submitted for flow cytometric analysis. For each specimen, epithelial cells were separated from stromal and blood tissue based on the presence of cytokeratin 8 and 18 markers. Epithelial cell yields based on pathological diagnoses of the biopsy specimen, patient age, and mammographic appearance of the lesion were determined. Biopsies containing malignant lesions yielded significantly higher numbers of cells than were obtained from benign lesion biopsies. Significantly greater cell counts were observed from lesions from women age 50 or above compared with those of younger women. Mammographic density surrounding the biopsy site, the mammographic appearance of the lesion, and the number of cores taken at the time of biopsy appeared to have little effect on the yield of epithelial cells. We demonstrate the use of flow cytometric sorting of stereotactic core needle biopsy washes from lesions spanning the spectrum of breast pathology to obtain epithelial cells in sufficient numbers to meet the requirements of a variety of molecular and genetic analyses.

  6. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of. beta. -glucuronidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Grubb, J.H.; Sly, W.S.

    1990-10-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functionalmore » receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.« less

  7. Delineating functional principles of the bow tie structure of a kinase-phosphatase network in the budding yeast.

    PubMed

    Abd-Rabbo, Diala; Michnick, Stephen W

    2017-03-16

    Kinases and phosphatases (KP) form complex self-regulating networks essential for cellular signal processing. In spite of having a wealth of data about interactions among KPs and their substrates, we have very limited models of the structures of the directed networks they form and consequently our ability to formulate hypotheses about how their structure determines the flow of information in these networks is restricted. We assembled and studied the largest bona fide kinase-phosphatase network (KP-Net) known to date for the yeast Saccharomyces cerevisiae. Application of the vertex sort (VS) algorithm on the KP-Net allowed us to elucidate its hierarchical structure in which nodes are sorted into top, core and bottom layers, forming a bow tie structure with a strongly connected core layer. Surprisingly, phosphatases tend to sort into the top layer, implying they are less regulated by phosphorylation than kinases. Superposition of the widest range of KP biological properties over the KP-Net hierarchy shows that core layer KPs: (i), receive the largest number of inputs; (ii), form bottlenecks implicated in multiple pathways and in decision-making; (iii), and are among the most regulated KPs both temporally and spatially. Moreover, top layer KPs are more abundant and less noisy than those in the bottom layer. Finally, we showed that the VS algorithm depends on node degrees without biasing the biological results of the sorted network. The VS algorithm is available as an R package ( https://cran.r-project.org/web/packages/VertexSort/index.html ). The KP-Net model we propose possesses a bow tie hierarchical structure in which the top layer appears to ensure highest fidelity and the core layer appears to mediate signal integration and cell state-dependent signal interpretation. Our model of the yeast KP-Net provides both functional insight into its organization as we understand today and a framework for future investigation of information processing in yeast and eukaryotes in general.

  8. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).

    PubMed

    Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il

    2011-03-21

    Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications. This journal is © The Royal Society of Chemistry 2011

  9. Agricultural produce grading and sorting system using color CCD and new color identification algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng; Zou, Jizuo; Yang, Yunping; Dong, Jianhua; Zhang, Yuanxiang

    1996-10-01

    A high-speed automatic agricultural produce grading and sorting system using color CCD and new color identification algorithm has been developed. In a typical application, the system can sort almonds into tow output grades according to their color. Almonds ar rich in 18 kinds of amino acids and 13 kinds of micro minerals and vitamins and can be made into almond drink. In order to ensure the drink quality, almonds must be sorted carefully before being made into a drink. Using this system, almonds can be sorted into two grades: up to grade and below grade almonds or foreign materials. A color CCD inspects the almonds passing on a conveyor of rotating rollers, a color identification algorithm grades almonds and distinguishes foreign materials from almonds. Employing an elaborately designed mechanism, the below grade almonds and foreign materials can be removed effectively from the raw almonds. This system can be easily adapted for inspecting and sorting other kinds of agricultural produce such as peanuts, beans tomatoes and so on.

  10. Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: application to the capture of epithelial cancer cells.

    PubMed

    Horák, Daniel; Svobodová, Zuzana; Autebert, Julien; Coudert, Benoit; Plichta, Zdeněk; Královec, Karel; Bílková, Zuzana; Viovy, Jean-Louis

    2013-01-01

    Monodisperse (4 μm) macroporous crosslinked poly(glycidyl methacrylate) (PGMA) microspheres for use in microfluidic immunomagnetic cell sorting, with a specific application to the capture of circulating tumor cells (CTCs), were prepared by multistep swelling polymerization in the presence of cyclohexyl acetate porogen and hydrolyzed and ammonolyzed. Iron oxide was then precipitated in the microspheres to render them magnetic. Repeated precipitation made possible to raise the iron oxide content to more than 30 wt %. To minimize nonspecific adsorption of the microspheres in a microchannel and of cells on the microspheres, they were coated with albumin crosslinked with glutaraldehyde. Antibodies of epithelial cell adhesion molecule (anti-EpCAM) were then immobilized on the albumin-coated magnetic microspheres using the carbodiimide method. Capture of breast cancer MCF7 cells as a model of CTCs by the microspheres with immobilized anti-EpCAM IgG was performed in a batch experiment. Finally, MCF7 cells were captured by the anti-EpCAM-immobilized albumin-coated magnetic microspheres in an Ephesia chip. A very good rejection of lymphocytes was achieved. Thus, albumin-coated monodisperse magnetic PGMA microspheres with immobilized anti-EpCAM seem to be promising for capture of CTCs in a microfluidic device. Copyright © 2012 Wiley Periodicals, Inc.

  11. Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros.

    PubMed

    Ng, Elizabeth S; Azzola, Lisa; Bruveris, Freya F; Calvanese, Vincenzo; Phipson, Belinda; Vlahos, Katerina; Hirst, Claire; Jokubaitis, Vanta J; Yu, Qing C; Maksimovic, Jovana; Liebscher, Simone; Januar, Vania; Zhang, Zhen; Williams, Brenda; Conscience, Aude; Durnall, Jennifer; Jackson, Steven; Costa, Magdaline; Elliott, David; Haylock, David N; Nilsson, Susan K; Saffery, Richard; Schenke-Layland, Katja; Oshlack, Alicia; Mikkola, Hanna K A; Stanley, Edouard G; Elefanty, Andrew G

    2016-11-01

    The ability to generate hematopoietic stem cells from human pluripotent cells would enable many biomedical applications. We find that hematopoietic CD34 + cells in spin embryoid bodies derived from human embryonic stem cells (hESCs) lack HOXA expression compared with repopulation-competent human cord blood CD34 + cells, indicating incorrect mesoderm patterning. Using reporter hESC lines to track the endothelial (SOX17) to hematopoietic (RUNX1C) transition that occurs in development, we show that simultaneous modulation of WNT and ACTIVIN signaling yields CD34 + hematopoietic cells with HOXA expression that more closely resembles that of cord blood. The cultures generate a network of aorta-like SOX17 + vessels from which RUNX1C + blood cells emerge, similar to hematopoiesis in the aorta-gonad-mesonephros (AGM). Nascent CD34 + hematopoietic cells and corresponding cells sorted from human AGM show similar expression of cell surface receptors, signaling molecules and transcription factors. Our findings provide an approach to mimic in vitro a key early stage in human hematopoiesis for the generation of AGM-derived hematopoietic lineages from hESCs.

  12. Stochastic Model of Clogging in a Microfluidic Cell Sorter

    NASA Astrophysics Data System (ADS)

    Fai, Thomas; Rycroft, Chris

    2016-11-01

    Microfluidic devices for sorting cells by deformability show promise for various medical purposes, e.g. detecting sickle cell anemia and circulating tumor cells. One class of such devices consists of a two-dimensional array of narrow channels, each column containing several identical channels in parallel. Cells are driven through the device by an applied pressure or flow rate. Such devices allows for many cells to be sorted simultaneously, but cells eventually clog individual channels and change the device properties in an unpredictable manner. In this talk, we propose a stochastic model for the failure of such microfluidic devices by clogging and present preliminary theoretical and computational results. The model can be recast as an ODE that exhibits finite time blow-up under certain conditions. The failure time distribution is investigated analytically in certain limiting cases, and more realistic versions of the model are solved by computer simulation.

  13. Very Low Abundance Single-Cell Transcript Quantification with 5-Plex ddPCRTM Assays.

    PubMed

    Karlin-Neumann, George; Zhang, Bin; Litterst, Claudia

    2018-01-01

    Gene expression studies have provided one of the most accessible windows for understanding the molecular basis of cell and tissue phenotypes and how these change in response to stimuli. Current PCR-based and next generation sequencing methods offer great versatility in allowing the focused study of the roles of small numbers of genes or comprehensive profiling of the entire transcriptome of a sample at one time. Marrying of these approaches to various cell sorting technologies has recently enabled the profiling of expression in single cells, thereby increasing the resolution and sensitivity and strengthening the inferences from observed expression levels and changes. This chapter presents a quick and efficient 1-day workflow for sorting single cells with a small laboratory cell-sorter followed by an ultrahigh sensitivity, multiplexed digital PCR method for quantitative tracking of changes in 5-10 genes per single cell.

  14. Recent progress on the structure separation of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cui, Jiaming; Yang, Dehua; Zeng, Xiang; Zhou, Naigen; Liu, Huaping

    2017-11-01

    The mass production of single-structure, single-wall carbon nanotubes (SWCNTs) with identical properties is critical for their basic research and technical applications in the fields of electronics, optics and optoelectronics. Great efforts have been made to control the structures of SWCNTs since their discovery. Recently, the structure separation of SWCNTs has been making great progress. Various solution-sorting methods have been developed to achieve not only the separation of metallic and semiconducting species, but also the sorting of distinct (n, m) single-chirality species and even their enantiomers. This progress would dramatically accelerate the application of SWCNTs in the next-generation electronic devices. Here, we review the recent progress in the structure sorting of SWCNTs and outline the challenges and prospects of the structure separation of SWCNTs.

  15. Sorting on the basis of deformability of single cells in a femtosecond laser fabricated optofluidic device

    NASA Astrophysics Data System (ADS)

    Bragheri, F.; Paiè, P.; Yang, T.; Nava, G.; Martınez Vázquez, R.; Di Tano, M.; Veglione, M.; Minzioni, P.; Mondello, C.; Cristiani, I.; Osellame, R.

    2015-03-01

    Optical stretching is a powerful technique for the mechanical phenotyping of single suspended cells that exploits cell deformability as an inherent functional marker. Dual-beam optical trapping and stretching of cells is a recognized tool to investigate their viscoelastic properties. The optical stretcher has the ability to deform cells through optical forces without physical contact or bead attachment. In addition, it is the only method that can be combined with microfluidic delivery, allowing for the serial, high-throughput measurement of the optical deformability and the selective sorting of single specific cells. Femtosecond laser micromachining can fabricate in the same chip both the microfluidic channel and the optical waveguides, producing a monolithic device with a very precise alignment between the components and very low sensitivity to external perturbations. Femtosecond laser irradiation in a fused silica chip followed by chemical etching in hydrofluoric acid has been used to fabricate the microfluidic channels where the cells move by pressure-driven flow. With the same femtosecond laser source two optical waveguides, orthogonal to the microfluidic channel and opposing each other, have been written inside the chip. Here we present an optimized writing process that provides improved wall roughness of the micro-channels allowing high-quality imaging. In addition, we will show results on cell sorting on the basis of mechanical properties in the same device: the different deformability exhibited by metastatic and tumorigenic cells has been exploited to obtain a metastasis-cells enriched sample. The enrichment is verified by exploiting, after cells collection, fluorescence microscopy.

  16. Functional cell-surface display of a lipase-specific chaperone.

    PubMed

    Wilhelm, Susanne; Rosenau, Frank; Becker, Stefan; Buest, Sebastian; Hausmann, Sascha; Kolmar, Harald; Jaeger, Karl-Erich

    2007-01-02

    Lipases are important enzymes in biotechnology. Extracellular bacterial lipases from Pseudomonads and related species require the assistance of specific chaperones, designated "Lif" proteins (lipase specific foldases). Lifs, a unique family of steric chaperones, are anchored to the periplasmic side of the inner membrane where they convert lipases into their active conformation. We have previously shown that the autotransporter protein EstA from P. aeruginosa can be used to direct a variety of proteins to the cell surface of Escherichia coli. Here we demonstrate for the first time the functional cell-surface display of the Lif chaperone and FACS (fluorescence-activated cell sorting)-based analysis of bacterial cells that carried foldase-lipase complexes. The model Lif protein, LipH from P. aeruginosa, was displayed at the surface of E. coli cells. Surface exposed LipH was functional and efficiently refolded chemically denatured lipase. The foldase autodisplay system reported here can be used for a variety of applications including the ultrahigh-throughput screening of large libraries of foldase variants generated by directed evolution.

  17. Sorting of endocytosed transferrin and asialoglycoprotein occurs immediately after internalization in HepG2 cells

    PubMed Central

    1987-01-01

    After receptor-mediated uptake, asialoglycoproteins are routed to lysosomes, while transferrin is returned to the medium as apotransferrin. This sorting process was analyzed using 3,3'- diaminobenzidine (DAB) cytochemistry, followed by Percoll density gradient cell fractionation. A conjugate of asialoorosomucoid (ASOR) and horseradish peroxidase (HRP) was used as a ligand for the asialoglycoprotein receptor. Cells were incubated at 0 degree C in the presence of both 131I-transferrin and 125I-ASOR/HRP. Endocytosis of prebound 125I-ASOR/HRP and 131I-transferrin was monitored by cell fractionation on Percoll density gradients. Incubation of the cell homogenate in the presence of DAB and H2O2 before cell fractionation gave rise to a density shift of 125I-ASOR/HRP-containing vesicles due to HRP-catalyzed DAB polymerization. An identical change in density for 125I-transferrin and 125I-ASOR/HRP, induced by DAB cytochemistry, is taken as evidence for the concomitant presence of both ligands in the same compartment. At 37 degrees C, sorting of the two ligands occurred with a half-time of approximately 2 min, and was nearly completed within 10 min. The 125I-ASOR/HRP-induced shift of 131I-transferrin was completely dependent on the receptor-mediated uptake of 125I-ASOR/HRP in the same compartment. In the presence of a weak base (0.3 mM primaquine), the recycling of transferrin receptors was blocked. The cell surface transferrin receptor population was decreased within 6 min to 15% of its original size. DAB cytochemistry showed that sorting between endocytosed 131I-transferrin and 125I-ASOR/HRP was also blocked in the presence of primaquine. These results indicate that transferrin and asialoglycoprotein are taken up via the same compartments and that segregation of the transferrin-receptor complex and asialoglycoprotein occurs very efficiently soon after uptake. PMID:3032986

  18. Magnetic apatite for structural insights on the plasma membrane

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  19. Magnetic apatite for structural insights on the plasma membrane.

    PubMed

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  20. Thermometry in dielectrophoresis chips for contact-free cell handling

    NASA Astrophysics Data System (ADS)

    Jaeger, M. S.; Mueller, T.; Schnelle, T.

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells.

  1. Rab15 Effector Protein: A Novel Protein for Receptor Recycling from the Endocytic Recycling CompartmentD⃞

    PubMed Central

    Strick, David J.; Elferink, Lisa A.

    2005-01-01

    Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways. PMID:16195351

  2. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function.

    PubMed

    Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E

    2018-03-07

    The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Endosomal sorting complexes required for ESCRTing cells toward death during neurogenesis, neurodevelopment and neurodegeneration.

    PubMed

    Kaul, Zenia; Chakrabarti, Oishee

    2018-03-25

    The endosomal sorting complexes required for transport (ESCRT) proteins help in the recognition, sorting and degradation of ubiquitinated cargoes from the cell surface, long-lived proteins or aggregates, and aged organelles present in the cytosol. These proteins take part in the endo-lysosomal system of degradation. The ESCRT proteins also play an integral role in cytokinesis, viral budding and mRNA transport. Many neurodegenerative diseases are caused by toxic accumulation of cargo in the cell, which causes stress and ultimately leads to neuronal death. This accumulation of cargo occurs because of defects in the endo-lysosomal degradative pathway-loss of function of ESCRTs has been implicated in this mechanism. ESCRTs also take part in many survival processes, lack of which can culminate in neuronal cell death. While the role played by the ESCRT proteins in maintaining healthy neurons is known, their role in neurodegenerative diseases is still poorly understood. In this review, we highlight the importance of ESCRTs in maintaining healthy neurons and then suggest how perturbations in many of the survival mechanisms governed by these proteins could eventually lead to cell death; quite often these correlations are not so obviously laid out. Extensive neuronal death eventually culminates in neurodegeneration. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics.

    PubMed

    Sarkar, Aniruddh; Hou, Han Wei; Mahan, Alison E; Han, Jongyoon; Alter, Galit

    2016-03-30

    Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary 'bind-elute' separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets-cells or proteins-bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients.

  5. Pumps for microfluidic cell culture.

    PubMed

    Byun, Chang Kyu; Abi-Samra, Kameel; Cho, Yoon-Kyoung; Takayama, Shuichi

    2014-02-01

    In comparison to traditional in vitro cell culture in Petri dishes or well plates, cell culture in microfluidic-based devices enables better control over chemical and physical environments, higher levels of experimental automation, and a reduction in experimental materials. Over the past decade, the advantages associated with cell culturing in microfluidic-based platforms have garnered significant interest and have led to a plethora of studies for high throughput cell assays, organs-on-a-chip applications, temporal signaling studies, and cell sorting. A clear concern for performing cell culture in microfluidic-based devices is deciding on a technique to deliver and pump media to cells that are encased in a microfluidic device. In this review, we summarize recent advances in pumping techniques for microfluidic cell culture and discuss their advantages and possible drawbacks. The ultimate goal of our review is to distill the large body of information available related to pumps for microfluidic cell culture in an effort to assist current and potential users of microfluidic-based devices for advanced in vitro cellular studies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. FACS-based Isolation of Neural and Glioma Stem Cell Populations from Fresh Human Tissues Utilizing EGF Ligand

    PubMed Central

    Tome-Garcia, Jessica; Doetsch, Fiona; Tsankova, Nadejda M.

    2018-01-01

    Direct isolation of human neural and glioma stem cells from fresh tissues permits their biological study without prior culture and may capture novel aspects of their molecular phenotype in their native state. Recently, we demonstrated the ability to prospectively isolate stem cell populations from fresh human germinal matrix and glioblastoma samples, exploiting the ability of cells to bind the Epidermal Growth Factor (EGF) ligand in fluorescence-activated cell sorting (FACS). We demonstrated that FACS-isolated EGF-bound neural and glioblastoma populations encompass the sphere-forming colonies in vitro, and are capable of both self-renewal and multilineage differentiation. Here we describe in detail the purification methodology of EGF-bound (i.e., EGFR+) human neural and glioma cells with stem cell properties from fresh postmortem and surgical tissues. The ability to prospectively isolate stem cell populations using native ligand-binding ability opens new doors for understanding both normal and tumor cell biology in uncultured conditions, and is applicable for various downstream molecular sequencing studies at both population and single-cell resolution. PMID:29516026

  7. Long Term Liver Engraftment of Functional Hepatocytes Obtained from Germline Cell-Derived Pluripotent Stem Cells

    PubMed Central

    Fagoonee, Sharmila; Famulari, Elvira Smeralda; Silengo, Lorenzo; Tolosano, Emanuela; Altruda, Fiorella

    2015-01-01

    One of the major hurdles in liver gene and cell therapy is availability of ex vivo-expanded hepatocytes. Pluripotent stem cells are an attractive alternative. Here, we show that hepatocyte precursors can be isolated from male germline cell-derived pluripotent stem cells (GPSCs) using the hepatoblast marker, Liv2, and induced to differentiate into hepatocytes in vitro. These cells expressed hepatic-specific genes and were functional as demonstrated by their ability to secrete albumin and produce urea. When transplanted in the liver parenchyma of partially hepatectomised mice, Liv2-sorted cells showed regional and heterogeneous engraftment in the injected lobe. Moreover, approximately 50% of Y chromosome-positive, GPSC-derived cells were found in the female livers, in the region of engraftment, even one month after cell injection. This is the first study showing that Liv2-sorted GPSCs-derived hepatocytes can undergo long lasting engraftment in the mouse liver. Thus, GPSCs might offer promise for regenerative medicine. PMID:26323094

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kattke, Michele D.; Chan, Albert H.; Duong, Andrew

    Here, many species of Gram-positive bacteria use sortase transpeptidases to covalently affix proteins to their cell wall or to assemble pili. Sortase-displayed proteins perform critical and diverse functions for cell survival, including cell adhesion, nutrient acquisition, and morphological development, among others. Based on their amino acid sequences, there are at least six types of sortases (class A to F enzymes); however, class E enzymes have not been extensively studied. Class E sortases are used by soil and freshwater-dwelling Actinobacteria to display proteins that contain a non-canonical LAXTG sorting signal, which differs from 90% of known sorting signals by substitution ofmore » alanine for proline. Here we report the first crystal structure of a class E sortase, the 1.93 Å resolution structure of the SrtE1 enzyme from Streptomyces coelicolor. The active site is bound to a tripeptide, providing insight into the mechanism of substrate binding. SrtE1 possesses β3/β4 and β6/β7 active site loops that contact the LAXTG substrate and are structurally distinct from other classes. We propose that SrtE1 and other class E sortases employ a conserved tyrosine residue within their β3/β4 loop to recognize the amide nitrogen of alanine at position P3 of the sorting signal through a hydrogen bond, as seen here. Incapability of hydrogen-bonding with canonical proline-containing sorting signals likely contributes to class E substrate specificity. Furthermore, we demonstrate that surface anchoring of proteins involved in aerial hyphae formation requires an N-terminal segment in SrtE1 that is presumably positioned within the cytoplasm. Combined, our results reveal unique features within class E enzymes that enable them to recognize distinct sorting signals, and could facilitate the development of substrate-based inhibitors of this important enzyme family.« less

  9. Endocytosis and Endosomal Trafficking in Plants.

    PubMed

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  10. Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles*

    PubMed Central

    Haurat, M. Florencia; Aduse-Opoku, Joseph; Rangarajan, Minnie; Dorobantu, Loredana; Gray, Murray R.; Curtis, Michael A.; Feldman, Mario F.

    2011-01-01

    In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions. PMID:21056982

  11. Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies.

    PubMed

    Haimon, Zhana; Volaski, Alon; Orthgiess, Johannes; Boura-Halfon, Sigalit; Varol, Diana; Shemer, Anat; Yona, Simon; Zuckerman, Binyamin; David, Eyal; Chappell-Maor, Louise; Bechmann, Ingo; Gericke, Martin; Ulitsky, Igor; Jung, Steffen

    2018-06-01

    Transcriptome profiling is widely used to infer functional states of specific cell types, as well as their responses to stimuli, to define contributions to physiology and pathophysiology. Focusing on microglia, the brain's macrophages, we report here a side-by-side comparison of classical cell-sorting-based transcriptome sequencing and the 'RiboTag' method, which avoids cell retrieval from tissue context and yields translatome sequencing information. Conventional whole-cell microglial transcriptomes were found to be significantly tainted by artifacts introduced by tissue dissociation, cargo contamination and transcripts sequestered from ribosomes. Conversely, our data highlight the added value of RiboTag profiling for assessing the lineage accuracy of Cre recombinase expression in transgenic mice. Collectively, this study indicates method-based biases, reveals observer effects and establishes RiboTag-based translatome profiling as a valuable complement to standard sorting-based profiling strategies.

  12. CD137+CD154− Expression As a Regulatory T Cell (Treg)-Specific Activation Signature for Identification and Sorting of Stable Human Tregs from In Vitro Expansion Cultures

    PubMed Central

    Nowak, Anna; Lock, Dominik; Bacher, Petra; Hohnstein, Thordis; Vogt, Katrin; Gottfreund, Judith; Giehr, Pascal; Polansky, Julia K.; Sawitzki, Birgit; Kaiser, Andrew; Walter, Jörn; Scheffold, Alexander

    2018-01-01

    Regulatory T cells (Tregs) are an attractive therapeutic tool for several different immune pathologies. Therapeutic Treg application often requires prolonged in vitro culture to generate sufficient Treg numbers or to optimize their functionality, e.g., via genetic engineering of their antigen receptors. However, purity of clinical Treg expansion cultures is highly variable, and currently, it is impossible to identify and separate stable Tregs from contaminating effector T cells, either ex vivo or after prior expansion. This represents a major obstacle for quality assurance of expanded Tregs and raises significant safety concerns. Here, we describe a Treg activation signature that allows identification and sorting of epigenetically imprinted Tregs even after prolonged in vitro culture. We show that short-term reactivation resulted in expression of CD137 but not CD154 on stable FoxP3+ Tregs that displayed a demethylated Treg-specific demethylated region, high suppressive potential, and lack of inflammatory cytokine expression. We also applied this Treg activation signature for rapid testing of chimeric antigen receptor functionality in human Tregs and identified major differences in the signaling requirements regarding CD137 versus CD28 costimulation. Taken together, CD137+CD154− expression emerges as a universal Treg activation signature ex vivo and upon in vitro expansion allowing the identification and isolation of epigenetically stable antigen-activated Tregs and providing a means for their rapid functional testing in vitro. PMID:29467769

  13. CD137+CD154- Expression As a Regulatory T Cell (Treg)-Specific Activation Signature for Identification and Sorting of Stable Human Tregs from In Vitro Expansion Cultures.

    PubMed

    Nowak, Anna; Lock, Dominik; Bacher, Petra; Hohnstein, Thordis; Vogt, Katrin; Gottfreund, Judith; Giehr, Pascal; Polansky, Julia K; Sawitzki, Birgit; Kaiser, Andrew; Walter, Jörn; Scheffold, Alexander

    2018-01-01

    Regulatory T cells (Tregs) are an attractive therapeutic tool for several different immune pathologies. Therapeutic Treg application often requires prolonged in vitro culture to generate sufficient Treg numbers or to optimize their functionality, e.g., via genetic engineering of their antigen receptors. However, purity of clinical Treg expansion cultures is highly variable, and currently, it is impossible to identify and separate stable Tregs from contaminating effector T cells, either ex vivo or after prior expansion. This represents a major obstacle for quality assurance of expanded Tregs and raises significant safety concerns. Here, we describe a Treg activation signature that allows identification and sorting of epigenetically imprinted Tregs even after prolonged in vitro culture. We show that short-term reactivation resulted in expression of CD137 but not CD154 on stable FoxP3+ Tregs that displayed a demethylated Treg-specific demethylated region, high suppressive potential, and lack of inflammatory cytokine expression. We also applied this Treg activation signature for rapid testing of chimeric antigen receptor functionality in human Tregs and identified major differences in the signaling requirements regarding CD137 versus CD28 costimulation. Taken together, CD137+CD154- expression emerges as a universal Treg activation signature ex vivo and upon in vitro expansion allowing the identification and isolation of epigenetically stable antigen-activated Tregs and providing a means for their rapid functional testing in vitro .

  14. Knee point search using cascading top-k sorting with minimized time complexity.

    PubMed

    Wang, Zheng; Tseng, Shian-Shyong

    2013-01-01

    Anomaly detection systems and many other applications are frequently confronted with the problem of finding the largest knee point in the sorted curve for a set of unsorted points. This paper proposes an efficient knee point search algorithm with minimized time complexity using the cascading top-k sorting when a priori probability distribution of the knee point is known. First, a top-k sort algorithm is proposed based on a quicksort variation. We divide the knee point search problem into multiple steps. And in each step an optimization problem of the selection number k is solved, where the objective function is defined as the expected time cost. Because the expected time cost in one step is dependent on that of the afterwards steps, we simplify the optimization problem by minimizing the maximum expected time cost. The posterior probability of the largest knee point distribution and the other parameters are updated before solving the optimization problem in each step. An example of source detection of DNS DoS flooding attacks is provided to illustrate the applications of the proposed algorithm.

  15. 3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter

    PubMed Central

    Chen, Yue; Wu, Ting-Hsiang; Kung, Yu-Chun; Teitell, Michael A.; Chiou, Pei-Yu

    2014-01-01

    We report a 3D microfluidic pulsed laser-triggered fluorescence-activated cell sorter capable of sorting at a throughput of 23,000 cells sec−1 with 90% purity in high-purity mode and at a throughput of 45,000 cells sec−1 with 45% purity in enrichment mode in one stage and in a single channel. This performance is realized by exciting laser-induced cavitation bubbles in a 3D PDMS microfluidic channel to generate high-speed liquid jets that deflect detected fluorescent cells and particles focused by 3D sheath flows. The ultrafast switching mechanism (20 μsec complete on-off cycle), small liquid jet perturbation volume, and three-dimensional sheath flow focusing for accurate timing control of fast (1.5 m sec−1) passing cells and particles are three critical factors enabling high-purity sorting at high-throughput in this sorter. PMID:23844418

  16. Technologies for Single-Cell Isolation

    PubMed Central

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-01-01

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field. PMID:26213926

  17. Technologies for Single-Cell Isolation.

    PubMed

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-07-24

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  18. Interval linear programming model for long-term planning of vehicle recycling in the Republic of Serbia under uncertainty.

    PubMed

    Simic, Vladimir; Dimitrijevic, Branka

    2015-02-01

    An interval linear programming approach is used to formulate and comprehensively test a model for optimal long-term planning of vehicle recycling in the Republic of Serbia. The proposed model is applied to a numerical case study: a 4-year planning horizon (2013-2016) is considered, three legislative cases and three scrap metal price trends are analysed, availability of final destinations for sorted waste flows is explored. Potential and applicability of the developed model are fully illustrated. Detailed insights on profitability and eco-efficiency of the projected contemporary equipped vehicle recycling factory are presented. The influences of the ordinance on the management of end-of-life vehicles in the Republic of Serbia on the vehicle hulks procuring, sorting generated material fractions, sorted waste allocation and sorted metals allocation decisions are thoroughly examined. The validity of the waste management strategy for the period 2010-2019 is tested. The formulated model can create optimal plans for procuring vehicle hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Obtained results are valuable for supporting the construction and/or modernisation process of a vehicle recycling system in the Republic of Serbia. © The Author(s) 2015.

  19. Downregulation of Melanoma Cell Adhesion Molecule (MCAM/CD146) Accelerates Cellular Senescence in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells.

    PubMed

    Jin, Hye Jin; Kwon, Ji Hye; Kim, Miyeon; Bae, Yun Kyung; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Jeon, Hong Bae

    2016-04-01

    Therapeutic applications of mesenchymal stem cells (MSCs) for treating various diseases have increased in recent years. To ensure that treatment is effective, an adequate MSC dosage should be determined before these cells are used for therapeutic purposes. To obtain a sufficient number of cells for therapeutic applications, MSCs must be expanded in long-term cell culture, which inevitably triggers cellular senescence. In this study, we investigated the surface markers of human umbilical cord blood-derived MSCs (hUCB-MSCs) associated with cellular senescence using fluorescence-activated cell sorting analysis and 242 cell surface-marker antibodies. Among these surface proteins, we selected the melanoma cell adhesion molecule (MCAM/CD146) for further study with the aim of validating observed expression differences and investigating the associated implications in hUCB-MSCs during cellular senescence. We observed that CD146 expression markedly decreased in hUCB-MSCs following prolonged in vitro expansion. Using preparative sorting, we found that hUCB-MSCs with high CD146 expression displayed high growth rates, multilineage differentiation, expression of stemness markers, and telomerase activity, as well as significantly lower expression of the senescence markers p16, p21, p53, and senescence-associated β-galactosidase, compared with that observed in hUCB-MSCs with low-level CD146 expression. In contrast, CD146 downregulation with small interfering RNAs enhanced the senescence phenotype. In addition, CD146 suppression in hUCB-MSCs caused downregulation of other cellular senescence regulators, including Bmi-1, Id1, and Twist1. Collectively, our results suggest that CD146 regulates cellular senescence; thus, it could be used as a therapeutic marker to identify senescent hUCB-MSCs. One of the fundamental requirements for mesenchymal stem cell (MSC)-based therapies is the expansion of MSCs during long-term culture because a sufficient number of functional cells is required. However, long-term growth inevitably induces cellular senescence, which potentially causes poor clinical outcomes by inducing growth arrest and the loss of stem cell properties. Thus, the identification of markers for evaluating the status of MSC senescence during long-term culture may enhance the success of MSC-based therapy. This study provides strong evidence that CD146 is a novel and useful marker for predicting senescence in human umbilical cord blood-derived MSCs (hUCB-MSCs), and CD146 can potentially be applied in quality-control assessments of hUCB-MSC-based therapy. ©AlphaMed Press.

  20. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm

    NASA Astrophysics Data System (ADS)

    Austin, Robert; Wunsch, Benjamin; Smith, Joshua; Gifford, Stacey; Wang, Chao; Brink, Markus; Bruce, Robert; Stolovitzky, Gustavo; Astier, Yann

    Deterministic lateral displacement (DLD) pillar arrays are an efficient technology to sort, separate and enrich micrometre-scale particles, which include parasites1, bacteria2, blood cells3 and circulating tumour cells in blood4. However, this technology has not been translated to the true nanoscale, where it could function on biocolloids, such as exosomes. Exosomes, a key target of liquid biopsies, are secreted by cells and contain nucleic acid and protein information about their originating tissue5. One challenge in the study of exosome biology is to sort exosomes by size and surface markers6, 7. We use manufacturable silicon processes to produce nanoscale DLD (nano-DLD) arrays of uniform gap sizes ranging from 25 to 235 nm. We show that at low Péclet (Pe) numbers, at which diffusion and deterministic displacement compete, nano-DLD arrays separate particles between 20 to 110 nm based on size with sharp resolution. Further, we demonstrate the size-based displacement of exosomes, and so open up the potential for on-chip sorting and quantification of these important biocolloids.

  1. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm

    NASA Astrophysics Data System (ADS)

    Wunsch, Benjamin H.; Smith, Joshua T.; Gifford, Stacey M.; Wang, Chao; Brink, Markus; Bruce, Robert L.; Austin, Robert H.; Stolovitzky, Gustavo; Astier, Yann

    2016-11-01

    Deterministic lateral displacement (DLD) pillar arrays are an efficient technology to sort, separate and enrich micrometre-scale particles, which include parasites, bacteria, blood cells and circulating tumour cells in blood. However, this technology has not been translated to the true nanoscale, where it could function on biocolloids, such as exosomes. Exosomes, a key target of 'liquid biopsies', are secreted by cells and contain nucleic acid and protein information about their originating tissue. One challenge in the study of exosome biology is to sort exosomes by size and surface markers. We use manufacturable silicon processes to produce nanoscale DLD (nano-DLD) arrays of uniform gap sizes ranging from 25 to 235 nm. We show that at low Péclet (Pe) numbers, at which diffusion and deterministic displacement compete, nano-DLD arrays separate particles between 20 to 110 nm based on size with sharp resolution. Further, we demonstrate the size-based displacement of exosomes, and so open up the potential for on-chip sorting and quantification of these important biocolloids.

  2. Concocting that Magic Elixir: Successful Grant Application Writing in Dissemination and Implementation Research.

    PubMed

    Brownson, Ross C; Colditz, Graham A; Dobbins, Maureen; Emmons, Karen M; Kerner, Jon F; Padek, Margaret; Proctor, Enola K; Stange, Kurt C

    2015-12-01

    This paper reports core competencies for dissemination and implementation (D&I) grant application writing and provides tips for writing a successful proposal. Two related phases were used to collect the data: a card sorting process among D&I researchers and an expert review among a smaller set of researchers. Card sorting was completed by 123 respondents. In the second phase, a series of grant application writing tips were developed based on the combined 170 years of grant review experience of the writing team. The card sorting resulted in 12 core competencies for D&I grant application writing that covered the main sections in a grant application to the US National Institutes of Health: (a) specific aims that provide clear rationale, objectives, and an overview of the research plan; (b) significance that frames and justifies the importance of a D&I question; (c) innovation that articulates novel products and new knowledge; and (d) approach that uses a relevant D&I model, addresses measurement and the D&I context, and includes an analysis plan well-tied to the aims and measures. Writing a successful D&I grant application is a skill that can be learned with experience and attention to the core competencies articulated in this paper. © 2015 Wiley Periodicals, Inc.

  3. Concocting that Magic Elixir: Successful Grant Application Writing in Dissemination and Implementation Research

    PubMed Central

    Colditz, Graham A.; Dobbins, Maureen; Emmons, Karen M.; Kerner, Jon F.; Padek, Margaret; Proctor, Enola K.; Stange, Kurt C.

    2015-01-01

    Abstract Background This paper reports core competencies for dissemination and implementation (D&I) grant application writing and provides tips for writing a successful proposal. Methods Two related phases were used to collect the data: a card sorting process among D&I researchers and an expert review among a smaller set of researchers. Card sorting was completed by 123 respondents. In the second phase, a series of grant application writing tips were developed based on the combined 170 years of grant review experience of the writing team. Results The card sorting resulted in 12 core competencies for D&I grant application writing that covered the main sections in a grant application to the US National Institutes of Health: (a) specific aims that provide clear rationale, objectives, and an overview of the research plan; (b) significance that frames and justifies the importance of a D&I question; (c) innovation that articulates novel products and new knowledge; and (d) approach that uses a relevant D&I model, addresses measurement and the D&I context, and includes an analysis plan well‐tied to the aims and measures. Conclusions Writing a successful D&I grant application is a skill that can be learned with experience and attention to the core competencies articulated in this paper. PMID:26577630

  4. Isolation and Quantitative Immunocytochemical Characterization of Primary Myogenic Cells and Fibroblasts from Human Skeletal Muscle

    PubMed Central

    Agley, Chibeza C.; Rowlerson, Anthea M.; Velloso, Cristiana P.; Lazarus, Norman L.; Harridge, Stephen D. R.

    2015-01-01

    The repair and regeneration of skeletal muscle requires the action of satellite cells, which are the resident muscle stem cells. These can be isolated from human muscle biopsy samples using enzymatic digestion and their myogenic properties studied in culture. Quantitatively, the two main adherent cell types obtained from enzymatic digestion are: (i) the satellite cells (termed myogenic cells or muscle precursor cells), identified initially as CD56+ and later as CD56+/desmin+ cells and (ii) muscle-derived fibroblasts, identified as CD56– and TE-7+. Fibroblasts proliferate very efficiently in culture and in mixed cell populations these cells may overrun myogenic cells to dominate the culture. The isolation and purification of different cell types from human muscle is thus an important methodological consideration when trying to investigate the innate behavior of either cell type in culture. Here we describe a system of sorting based on the gentle enzymatic digestion of cells using collagenase and dispase followed by magnetic activated cell sorting (MACS) which gives both a high purity (>95% myogenic cells) and good yield (~2.8 x 106 ± 8.87 x 105 cells/g tissue after 7 days in vitro) for experiments in culture. This approach is based on incubating the mixed muscle-derived cell population with magnetic microbeads beads conjugated to an antibody against CD56 and then passing cells though a magnetic field. CD56+ cells bound to microbeads are retained by the field whereas CD56– cells pass unimpeded through the column. Cell suspensions from any stage of the sorting process can be plated and cultured. Following a given intervention, cell morphology, and the expression and localization of proteins including nuclear transcription factors can be quantified using immunofluorescent labeling with specific antibodies and an image processing and analysis package. PMID:25650991

  5. Protein sorting, targeting and trafficking in photoreceptor cells

    PubMed Central

    Pearring, Jillian N.; Salinas, Raquel Y.; Baker, Sheila A.; Arshavsky, Vadim Y.

    2013-01-01

    Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins. PMID:23562855

  6. Label-Free, High-Throughput Purification of Satellite Cells Using Microfluidic Inertial Separation.

    PubMed

    Syverud, Brian C; Lin, Eric; Nagrath, Sunitha; Larkin, Lisa M

    2018-01-01

    Skeletal muscle satellite cells have tremendous therapeutic potential in cell therapy or skeletal muscle tissue engineering. Obtaining a sufficiently pure satellite cell population, however, presents a significant challenge. We hypothesized that size differences between satellite cells and fibroblasts, two primary cell types obtained from skeletal muscle dissociation, would allow for label-free, inertial separation in a microfluidic device, termed a "Labyrinth," and that these purified satellite cells could be used to engineer skeletal muscle. Throughout tissue fabrication, Labyrinth-purified cells were compared with unsorted controls to assess the efficiency of this novel sorting process and to examine potential improvements in myogenic proliferation, differentiation, and tissue function. Immediately after dissociation and Labyrinth sorting, cells were immunostained to identify myogenic cells and fibroblast progenitors. Remaining cells were cultured for 14 days to form a confluent monolayer that was induced to delaminate and was captured as a 3D skeletal muscle construct. During monolayer development, myogenic proliferation (BrdU assay on Day 4), differentiation and myotube fusion index (α-actinin on Day 11), and myotube structural development (light microscopy on Day 14) were assessed. Isometric tetanic force production was measured in 3D constructs on Day 16. Immediately following sorting, unsorted cells exhibited a myogenic purity of 39.9% ± 3.99%, and this purity was enriched approximately two-fold to 75.5% ± 1.59% by microfluidic separation. The BrdU assay on Day 4 similarly showed significantly enhanced myogenic proliferation: in unsorted controls 47.0% ± 2.77% of proliferating cells were myogenic, in comparison to 61.7% ± 2.55% following purification. Myogenic differentiation and fusion, assessed by fusion index quantification, showed improvement from 82.7% ± 3.74% in control to 92.3% ± 2.04% in the purified cell population. Myotube density in unsorted controls, 18.6 ± 3.26 myotubes/mm 2 , was significantly enriched in the purified cell population to 33.9 ± 3.74 myotubes/mm 2 . Constructs fabricated from Labyrinth-purified cells also produced significantly greater tetanic forces (143.6 ± 16.9 μN) than unsorted controls (70.7 ± 8.03 μN). These results demonstrate the promise of microfluidic sorting in purifying isolated satellite cells. This unique technology could assist researchers in translating the regenerative potential of satellite cells to cell therapies and engineered tissues.

  7. The Isolation and Enrichment of Large Numbers of Highly Purified Mouse Spleen Dendritic Cell Populations and Their In Vitro Equivalents.

    PubMed

    Vremec, David

    2016-01-01

    Dendritic cells (DCs) form a complex network of cells that initiate and orchestrate immune responses against a vast array of pathogenic challenges. Developmentally and functionally distinct DC subtypes differentially regulate T-cell function. Importantly it is the ability of DC to capture and process antigen, whether from pathogens, vaccines, or self-components, and present it to naive T cells that is the key to their ability to initiate an immune response. Our typical isolation procedure for DC from murine spleen was designed to efficiently extract all DC subtypes, without bias and without alteration to their in vivo phenotype, and involves a short collagenase digestion of the tissue, followed by selection for cells of light density and finally negative selection for DC. The isolation procedure can accommodate DC numbers that have been artificially increased via administration of fms-like tyrosine kinase 3 ligand (Flt3L), either directly through a series of subcutaneous injections or by seeding with an Flt3L secreting murine melanoma. Flt3L may also be added to bone marrow cultures to produce large numbers of in vitro equivalents of the spleen DC subsets. Total DC, or their subsets, may be further purified using immunofluorescent labeling and flow cytometric cell sorting. Cell sorting may be completely bypassed by separating DC subsets using a combination of fluorescent antibody labeling and anti-fluorochrome magnetic beads. Our procedure enables efficient separation of the distinct DC subsets, even in cases where mouse numbers or flow cytometric cell sorting time is limiting.

  8. Glycoprotein production for structure analysis with stable, glycosylation mutant CHO cell lines established by fluorescence-activated cell sorting.

    PubMed

    Wilke, Sonja; Krausze, Joern; Gossen, Manfred; Groebe, Lothar; Jäger, Volker; Gherardi, Ermanno; van den Heuvel, Joop; Büssow, Konrad

    2010-06-01

    Stable mammalian cell lines are excellent tools for the expression of secreted and membrane glycoproteins. However, structural analysis of these molecules is generally hampered by the complexity of N-linked carbohydrate side chains. Cell lines with mutations are available that result in shorter and more homogenous carbohydrate chains. Here, we use preparative fluorescence-activated cell sorting (FACS) and site-specific gene excision to establish high-yield glycoprotein expression for structural studies with stable clones derived from the well-established Lec3.2.8.1 glycosylation mutant of the Chinese hamster ovary (CHO) cell line. We exemplify the strategy by describing novel clones expressing single-chain hepatocyte growth factor/scatter factor (HGF/SF, a secreted glycoprotein) and a domain of lysosome-associated membrane protein 3 (LAMP3d). In both cases, stable GFP-expressing cell lines were established by transfection with a genetic construct including a GFP marker and two rounds of cell sorting after 1 and 2 weeks. The GFP marker was subsequently removed by heterologous expression of Flp recombinase. Production of HGF/SF and LAMP3d was stable over several months. 1.2 mg HGF/SF and 0.9 mg LAMP3d were purified per litre of culture, respectively. Homogenous glycoprotein preparations were amenable to enzymatic deglycosylation under native conditions. Purified and deglycosylated LAMP3d protein was readily crystallized. The combination of FACS and gene excision described here constitutes a robust and fast procedure for maximizing the yield of glycoproteins for structural analysis from glycosylation mutant cell lines.

  9. Interference-free Micro/nanoparticle Cell Engineering by Use of High-Throughput Microfluidic Separation.

    PubMed

    Yeo, David C; Wiraja, Christian; Zhou, Yingying; Tay, Hui Min; Xu, Chenjie; Hou, Han Wei

    2015-09-23

    Engineering cells with active-ingredient-loaded micro/nanoparticles is becoming increasingly popular for imaging and therapeutic applications. A critical yet inadequately addressed issue during its implementation concerns the significant number of particles that remain unbound following the engineering process, which inadvertently generate signals and impart transformative effects onto neighboring nontarget cells. Here we demonstrate that those unbound micro/nanoparticles remaining in solution can be efficiently separated from the particle-labeled cells by implementing a fast, continuous, and high-throughput Dean flow fractionation (DFF) microfluidic device. As proof-of-concept, we applied the DFF microfluidic device for buffer exchange to sort labeled suspension cells (THP-1) from unbound fluorescent dye and dye-loaded micro/nanoparticles. Compared to conventional centrifugation, the depletion efficiency of free dyes or particles was improved 20-fold and the mislabeling of nontarget bystander cells by free particles was minimized. The microfluidic device was adapted to further accommodate heterogeneous-sized mesenchymal stem cells (MSCs). Complete removal of unbound nanoparticles using DFF led to the usage of engineered MSCs without exerting off-target transformative effects on the functional properties of neighboring endothelial cells. Apart from its effectiveness in removing free particles, this strategy is also efficient and scalable. It could continuously process cell solutions with concentrations up to 10(7) cells·mL(-1) (cell densities commonly encountered during cell therapy) without observable loss of performance. Successful implementation of this technology is expected to pave the way for interference-free clinical application of micro/nanoparticle engineered cells.

  10. Postnatal extra-embryonic tissues as a source of multiple cell types for regenerative medicine applications.

    PubMed

    Gubar, O S; Rodnichenko, A E; Vasyliev, R G; Zlatska, A V; Zubov, D O

    2017-09-01

    We aimed to isolate and characterize the cell types which could be obtained from postnatal extra-embryonic tissues. Fresh tissues (no more than 12 h after delivery) were used for enzymatic or explants methods of cell isolation. Obtained cultures were further maintained at 5% oxygen. At P3 cell phenotype was assessed by fluorescence-activated cell sorting, population doubling time was calculated and the multilineage differentiation assay was performed. We have isolated multiple cell types from postnatal tissues. Namely, placental mesenchymal stromal cells from placenta chorionic disc, chorionic membrane mesenchymal stromal cells (ChM-MSC) from free chorionic membrane, umbilical cord MSC (UC-MSC) from whole umbilical cord, human umbilical vein endothelial cells (HUVEC) from umbilical vein, amniotic epithelial cells (AEC) and amniotic MSC (AMSC) from amniotic membrane. All isolated cell types displayed high proliferation rate together with the typical MSC phenotype: CD73 + CD90 + CD105 + CD146 + CD166+CD34 - CD45 - HLA-DR - . HUVEC constitutively expressed key markers CD31 and CD309. Most MSC and AEC were capable of osteogenic and adipogenic differentiation. We have shown that a wide variety of cell types can be easily isolated from extra-embryonic tissues and expanded ex vivo for regenerative medicine applications. These cells possess typical MSC properties and can be considered an alternative for adult MSC obtained from bone marrow or fat, especially for allogeneic use.

  11. Encapsulins: microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science.

    PubMed

    Giessen, Tobias W

    2016-10-01

    Compartmentalization is one of the defining features of life. Cells use protein compartments to exert spatial control over their metabolism, store nutrients and create unique microenvironments needed for essential physiological processes. Encapsulins are a recently discovered class of protein nanocompartments found in bacteria and archaea that naturally encapsulate cargo proteins. A short C-terminal targeting sequence directs the highly specific encapsulation process in vivo. Here, I will initially discuss the properties, diversity and putative function of encapsulins. The unique characteristics and potential uses of the self-sorting cargo-packaging process found in encapsulin systems will then be highlighted. Examples for the application of encapsulins as cell-specific optical nanoprobes and targeted therapeutic delivery systems will be discussed with an emphasis on the ability to integrate multiple functionalities within a single nanodevice. By fusing targeting sequences to non-native proteins, encapsulins can also be used as specific nanocontainers and enzymatic nanoreactors in vivo. I will end by briefly discussing future avenues for encapsulin research related to both basic microbial metabolism and applications in biomedicine, catalysis and materials science. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Meng, Long; Cai, Feiyan; Chen, Juanjuan; Niu, Lili; Li, Yanming; Wu, Junru; Zheng, Hairong

    2012-04-01

    A microfluidic device is developed to transport microbubbles (MBs) along a desired trajectory in fluid by introducing the phase-shift to a planar standing surface acoustic wave (SSAW). The radiation force of SSAW due to the acoustic pressure gradient modulated by a phase-shift can move MBs to anticipated potential wells in a programmable manner. The resolution of the transportation is approximately 2.2 µm and the estimated radiation force on the MBs is on the order of 10-9 N. This device can be used for manipulation of bioparticles, cell sorting, tissue engineering, and other biomedical applications.

  13. Encapsulation of sex sorted boar semen: sperm membrane status and oocyte penetration parameters.

    PubMed

    Spinaci, Marcella; Chlapanidas, Theodora; Bucci, Diego; Vallorani, Claudia; Perteghella, Sara; Lucconi, Giulia; Communod, Ricardo; Vigo, Daniele; Galeati, Giovanna; Faustini, Massimo; Torre, Maria Luisa

    2013-03-01

    Although sorted semen is experimentally used for artificial, intrauterine, and intratubal insemination and in vitro fertilization, its commercial application in swine species is still far from a reality. This is because of the low sort rate and the large number of sperm required for routine artificial insemination in the pig, compared with other production animals, and the greater susceptibility of porcine spermatozoa to stress induced by the different sex sorting steps and the postsorting handling protocols. The encapsulation technology could overcome this limitation in vivo, protecting and allowing the slow release of low-dose sorted semen. The aim of this work was to evaluate the impact of the encapsulation process on viability, acrosome integrity, and on the in vitro fertilizing potential of sorted boar semen. Our results indicate that the encapsulation technique does not damage boar sorted semen; in fact, during a 72-hour storage, no differences were observed between liquid-stored sorted semen and encapsulated sorted semen in terms of plasma membrane (39.98 ± 14.38% vs. 44.32 ± 11.72%, respectively) and acrosome integrity (74.32 ± 12.17% vs. 66.07 ± 10.83%, respectively). Encapsulated sorted spermatozoa presented a lower penetration potential than nonencapsulated ones (47.02% vs. 24.57%, respectively, P < 0.0001), and a significant reduction of polyspermic fertilization (60.76% vs. 36.43%, respectively, polyspermic ova/total ova; P < 0.0001). However, no difference (P > 0.05) was observed in terms of total efficiency of fertilization expressed as normospermic oocytes/total oocytes (18.45% vs. 15.43% for sorted diluted and sorted encapsulated semen, respectively). The encapsulation could be an alternative method of storing of pig sex sorted spermatozoa and is potentially a promising technique in order to optimize the use of low dose of sexed spermatozoa in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting.

    PubMed

    Liu, Ling; Cheung, Tom H; Charville, Gregory W; Rando, Thomas A

    2015-10-01

    The prospective isolation of purified stem cell populations has dramatically altered the field of stem cell biology, and it has been a major focus of research across tissues in different organisms. Muscle stem cells (MuSCs) are now among the most intensely studied stem cell populations in mammalian systems, and the prospective isolation of these cells has allowed cellular and molecular characterizations that were not dreamed of a decade ago. In this protocol, we describe how to isolate MuSCs from limb muscles of adult mice by fluorescence-activated cell sorting (FACS). We provide a detailed description of the physical and enzymatic dissociation of mononucleated cells from limb muscles, a procedure that is essential in order to maximize cell yield. We also describe a FACS-based method that is used subsequently to obtain highly pure populations of either quiescent or activated MuSCs (VCAM(+)CD31(-)CD45(-)Sca1(-)). The isolation process takes ∼5-6 h to complete. The protocol also allows for the isolation of endothelial cells, hematopoietic cells and mesenchymal stem cells from muscle tissue.

  15. Controlled evacuation using the biocompatible and energy efficient microfluidic ejector.

    PubMed

    Lad, V N; Ralekar, Swati

    2016-10-01

    Development of controlled vacuum is having many applications in the realm of biotechnology, cell transfer, gene therapy, biomedical engineering and other engineering activities involving separation or chemical reactions. Here we show the controlled vacuum generation through a biocompatible, energy efficient, low-cost and flexible miniature device. We have designed and fabricated microfluidic devices from polydimethylsiloxane which are capable of producing vacuum at a highly controlled rate by using water as a motive fluid. Scrupulous removal of infected fluid/body fluid from the internal hemorrhage affected parts during surgical operations, gene manipulation, cell sorting, and other biomedical activities require complete isolation of the delicate cells or tissues adjacent to the targeted location. We demonstrate the potential of the miniature device to obtain controlled evacuation without the use of highly pressurized motive fluids. Water has been used as a motive liquid to eject vapor and liquid at ambient conditions through the microfluidic devices prepared using a low-cost fabrication method. The proposed miniature device may find applications in vacuum generation especially where the controlled rate of evacuation, and limited vacuum generation are of utmost importance in order to precisely protect the cells in the nearby region of the targeted evacuated area.

  16. Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory.

    PubMed

    Boyde, Lars; Ekpenyong, Andrew; Whyte, Graeme; Guck, Jochen

    2012-11-20

    We present two electromagnetic frameworks to compare the surface stresses on spheroidal particles in the optical stretcher (a dual-beam laser trap that can be used to capture and deform biological cells). The first model is based on geometrical optics (GO) and limited in its applicability to particles that are much greater than the incident wavelength. The second framework is more sophisticated and hinges on the generalized Lorenz-Mie theory (GLMT). Despite the difference in complexity between both theories, the stress profiles computed with GO and GLMT are in good agreement with each other (relative errors are on the order of 1-10%). Both models predict a diminishing of the stresses for larger wavelengths and a strong increase of the stresses for shorter laser-cell distances. Results indicate that surface stresses on a spheroid with an aspect ratio of 1.2 hardly differ from the stresses on a sphere of similar size. Knowledge of the surface stresses and whether or not they redistribute during the stretching process is of crucial importance in real-time applications of the stretcher that aim to discern the viscoelastic properties of cells for purposes of cell characterization, sorting, and medical diagnostics.

  17. In situ real-time imaging of self-sorted supramolecular nanofibres

    NASA Astrophysics Data System (ADS)

    Onogi, Shoji; Shigemitsu, Hajime; Yoshii, Tatsuyuki; Tanida, Tatsuya; Ikeda, Masato; Kubota, Ryou; Hamachi, Itaru

    2016-08-01

    Self-sorted supramolecular nanofibres—a multicomponent system that consists of several types of fibre, each composed of distinct building units—play a crucial role in complex, well-organized systems with sophisticated functions, such as living cells. Designing and controlling self-sorting events in synthetic materials and understanding their structures and dynamics in detail are important elements in developing functional artificial systems. Here, we describe the in situ real-time imaging of self-sorted supramolecular nanofibre hydrogels consisting of a peptide gelator and an amphiphilic phosphate. The use of appropriate fluorescent probes enabled the visualization of self-sorted fibres entangled in two and three dimensions through confocal laser scanning microscopy and super-resolution imaging, with 80 nm resolution. In situ time-lapse imaging showed that the two types of fibre have different formation rates and that their respective physicochemical properties remain intact in the gel. Moreover, we directly visualized stochastic non-synchronous fibre formation and observed a cooperative mechanism.

  18. A Problem-Sorting Task Detects Changes in Undergraduate Biological Expertise over a Single Semester.

    PubMed

    Hoskinson, Anne-Marie; Maher, Jessica Middlemis; Bekkering, Cody; Ebert-May, Diane

    2017-01-01

    Calls for undergraduate biology reform share similar goals: to produce people who can organize, use, connect, and communicate about biological knowledge. Achieving these goals requires students to gain disciplinary expertise. Experts organize, access, and apply disciplinary knowledge differently than novices, and expertise is measurable. By asking introductory biology students to sort biological problems, we investigated whether they changed how they organized and linked biological ideas over one semester of introductory biology. We administered the Biology Card Sorting Task to 751 students enrolled in their first or second introductory biology course focusing on either cellular-molecular or organismal-population topics, under structured or unstructured sorting conditions. Students used a combination of superficial, deep, and yet-uncharacterized ways of organizing and connecting biological knowledge. In some cases, this translated to more expert-like ways of organizing knowledge over a single semester, best predicted by whether students were enrolled in their first or second semester of biology and by the sorting condition completed. In addition to illuminating differences between novices and experts, our results show that card sorting is a robust way of detecting changes in novices' biological expertise-even in heterogeneous populations of novice biology students over the time span of a single semester. © 2017 A.-M. Hoskinson et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License(http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Parkin mediates the ubiquitination of VPS35 and modulates retromer-dependent endosomal sorting.

    PubMed

    Williams, Erin T; Glauser, Liliane; Tsika, Elpida; Jiang, Haisong; Islam, Shariful; Moore, Darren J

    2018-06-11

    Mutations in a number of genes cause familial forms of Parkinson's disease (PD), including mutations in the vacuolar protein sorting 35 ortholog (VPS35) and parkin genes. In this study, we identify a novel functional interaction between parkin and VPS35. We demonstrate that parkin interacts with and robustly ubiquitinates VPS35 in human neural cells. Familial parkin mutations are impaired in their ability to ubiquitinate VPS35. Parkin mediates the attachment of an atypical poly-ubiquitin chain to VPS35 with three lysine residues identified within the C-terminal region of VPS35 that are covalently modified by ubiquitin. Notably, parkin-mediated VPS35 ubiquitination does not promote the proteasomal degradation of VPS35. Furthermore, parkin does not influence the steady-state levels or turnover of VPS35 in neural cells and VPS35 levels are normal in the brains of parkin knockout mice. These data suggest that ubiquitination of VPS35 by parkin may instead serve a non-degradative cellular function potentially by regulating retromer-dependent sorting. Accordingly, we find that components of the retromer-associated WASH complex are markedly decreased in the brain of parkin knockout mice, suggesting that parkin may modulate WASH complex-dependent retromer sorting. Parkin gene silencing in primary cortical neurons selectively disrupts the vesicular sorting of the autophagy receptor ATG9A, a WASH-dependent retromer cargo. Parkin is not required for dopaminergic neurodegeneration induced by the expression of PD-linked D620N VPS35 in mice, consistent with VPS35 being located downstream of parkin function. Our data reveal a novel functional interaction of parkin with VPS35 that may be important for retromer-mediated endosomal sorting and PD.

  20. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2

    PubMed Central

    Takasugi, Masaki; Okada, Ryo; Takahashi, Akiko; Virya Chen, David; Watanabe, Sugiko; Hara, Eiji

    2017-01-01

    Cellular senescence prevents the proliferation of cells at risk for neoplastic transformation. However, the altered secretome of senescent cells can promote the growth of the surrounding cancer cells. Although extracellular vesicles (EVs) have emerged as new players in intercellular communication, their role in the function of senescent cell secretome has been largely unexplored. Here, we show that exosome-like small EVs (sEVs) are important mediators of the pro-tumorigenic function of senescent cells. sEV-associated EphA2 secreted from senescent cells binds to ephrin-A1, that is, highly expressed in several types of cancer cells and promotes cell proliferation through EphA2/ephrin-A1 reverse signalling. sEV sorting of EphA2 is increased in senescent cells because of its enhanced phosphorylation resulting from oxidative inactivation of PTP1B phosphatase. Our results demonstrate a novel mechanism of reactive oxygen species (ROS)-regulated cargo sorting into sEVs, which is critical for the potentially deleterious growth-promoting effect of the senescent cell secretome. PMID:28585531

  2. Sorting of tropomyosin isoforms in synchronised NIH 3T3 fibroblasts: evidence for distinct microfilament populations.

    PubMed

    Percival, J M; Thomas, G; Cock, T A; Gardiner, E M; Jeffrey, P L; Lin, J J; Weinberger, R P; Gunning, P

    2000-11-01

    The nonmuscle actin cytoskeleton consists of multiple networks of actin microfilaments. Many of these filament systems are bound by the actin-binding protein tropomyosin (Tm). We investigated whether Tm isoforms could be cell cycle regulated during G0 and G1 phases of the cell cycle in synchronised NIH 3T3 fibroblasts. Using Tm isoform-specific antibodies, we investigated protein expression levels of specific Tms in G0 and G1 phases and whether co-expressed isoforms could be sorted into different compartments. Protein levels of Tms 1, 2, 5a, 6, from the alpha Tm(fast) and beta-Tm genes increased approximately 2-fold during mid-late G1. Tm 3 levels did not change appreciably during G1 progression. In contrast, Tm 5NM gene isoform levels (Tm 5NM-1-11) increased 2-fold at 5 h into G1 and this increase was maintained for the following 3 h. However, Tm 5NM-1 and -2 levels decreased by a factor of three during this time. Comparison of the staining of the antibodies CG3 (detects all Tm 5NM gene products), WS5/9d (detects only two Tms from the Tm 5NM gene, Tm 5NM-1 and -2) and alpha(f)9d (detects specific Tms from the alpha Tm(fast) and beta-Tm genes) antibodies revealed 3 spatially distinct microfilament systems. Tm isoforms detected by alpha(f)9d were dramatically sorted from isoforms from the Tm 5NM gene detected by CG3. Tm 5NM-1 and Tm 5NM-2 were not incorporated into stress fibres, unlike other Tm 5NM isoforms, and marked a discrete, punctate, and highly polarised compartment in NIH 3T3 fibroblasts. All microfilament systems, excluding that detected by the WS5/9d antibody, were observed to coalign into parallel stress fibres at 8 h into G1. However, Tms detected by the CG3 and alpha(f)9d antibodies were incorporated into filaments at different times indicating distinct temporal control mechanisms. Microfilaments in NIH 3T3 cells containing Tm 5NM isoforms were more resistant to cytochalasin D-mediated actin depolymerisation than filaments containing isoforms from the alpha Tm(fast) and beta-Tm genes. This suggests that Tm 5NM isoforms may be in different microfilaments to alpha Tm(fast) and beta-Tm isoforms even when present in the same stress fibre. Staining of primary mouse fibroblasts showed identical Tm sorting patterns to those seen in cultured NIH 3T3 cells. Furthermore, we demonstrate that sorting of Tms is not restricted to cultured cells and can be observed in human columnar epithelial cells in vivo. We conclude that the expression and localisation of Tm isoforms are differentially regulated in G0 and G1 phase of the cell cycle. Tms mark multiple microfilament compartments with restricted tropomyosin composition. The creation of distinct microfilament compartments by differential sorting of Tm isoforms is observable in primary fibroblasts, cultured 3T3 cells and epithelial cells in vivo. Copyright 2000 Wiley-Liss, Inc.

  3. High accuracy indirect optical manipulation of live cells with functionalized microtools

    NASA Astrophysics Data System (ADS)

    Vizsnyiczai, Gaszton; Aekbote, Badri L.; Buzás, András.; Grexa, István.; Ormos, Pál.; Kelemen, Lóránd

    2016-09-01

    Optical micro manipulation of live cells has been extensively used to study a wide range of cellular phenomena with relevance in basic research or in diagnostics. The approaches span from manipulation of many cells for high throughput measurement or sorting, to more elaborated studies of intracellular events on trapped single cells when coupled with modern imaging techniques. In case of direct cell trapping the damaging effects of light-cell interaction must be minimized, for instance with the choice of proper laser wavelength. Microbeads have already been used for trapping cells indirectly thereby reducing the irradiation damage and increasing trapping efficiency with their high refractive index contrast. We show here that such intermediate objects can be tailor-made for indirect cell trapping to further increase cell-to-focal spot distance while maintaining their free and fast maneuverability. Carefully designed structures were produced with two-photon polymerization with shapes optimized for effective manipulation and cell attachment. Functionalization of the microstructures is also presented that enables cell attachment to them within a few seconds with strength much higher that the optical forces. Fast cell actuation in 6 degrees of freedom is demonstrated with the outlook to possible applications in cell imaging.

  4. Single-cell printer: automated, on demand, and label free.

    PubMed

    Gross, Andre; Schöndube, Jonas; Niekrawitz, Sonja; Streule, Wolfgang; Riegger, Lutz; Zengerle, Roland; Koltay, Peter

    2013-12-01

    Within the past years, single-cell analysis has developed into a key topic in cell biology to study cellular functions that are not accessible by investigation of larger cell populations. Engineering approaches aiming to access single cells to extract information about their physiology, phenotype, and genotype at the single-cell level are going manifold ways, meanwhile allowing separation, sorting, culturing, and analysis of individual cells. Based on our earlier research toward inkjet-like printing of single cells, this article presents further characterization results obtained with a fully automated prototype instrument for printing of single living cells in a noncontact inkjet-like manner. The presented technology is based on a transparent microfluidic drop-on-demand dispenser chip coupled with a camera-assisted automatic detection system. Cells inside the chip are detected and classified with this detection system before they are expelled from the nozzle confined in microdroplets, thus enabling a "one cell per droplet" printing mode. To demonstrate the prototype instrument's suitability for biological and biomedical applications, basic experiments such as printing of single-bead and cell arrays as well as deposition and culture of single cells in microwell plates are presented. Printing efficiencies greater than 80% and viability rates about 90% were achieved.

  5. Robust spike sorting of retinal ganglion cells tuned to spot stimuli.

    PubMed

    Ghahari, Alireza; Badea, Tudor C

    2016-08-01

    We propose an automatic spike sorting approach for the data recorded from a microelectrode array during visual stimulation of wild type retinas with tiled spot stimuli. The approach first detects individual spikes per electrode by their signature local minima. With the mixture probability distribution of the local minima estimated afterwards, it applies a minimum-squared-error clustering algorithm to sort the spikes into different clusters. A template waveform for each cluster per electrode is defined, and a number of reliability tests are performed on it and its corresponding spikes. Finally, a divisive hierarchical clustering algorithm is used to deal with the correlated templates per cluster type across all the electrodes. According to the measures of performance of the spike sorting approach, it is robust even in the cases of recordings with low signal-to-noise ratio.

  6. Quantum Dots for Live Cell and In Vivo Imaging

    PubMed Central

    Walling, Maureen A; Novak, Jennifer A; Shepard, Jason R. E

    2009-01-01

    In the past few decades, technology has made immeasurable strides to enable visualization, identification, and quantitation in biological systems. Many of these technological advancements are occurring on the nanometer scale, where multiple scientific disciplines are combining to create new materials with enhanced properties. The integration of inorganic synthetic methods with a size reduction to the nano-scale has lead to the creation of a new class of optical reporters, called quantum dots. These semiconductor quantum dot nanocrystals have emerged as an alternative to organic dyes and fluorescent proteins, and are brighter and more stable against photobleaching than standard fluorescent indicators. Quantum dots have tunable optical properties that have proved useful in a wide range of applications from multiplexed analysis such as DNA detection and cell sorting and tracking, to most recently demonstrating promise for in vivo imaging and diagnostics. This review provides an in-depth discussion of past, present, and future trends in quantum dot use with an emphasis on in vivo imaging and its related applications. PMID:19333416

  7. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  8. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  9. Application of cryopreservation to genetic analyses of a photosynthetic picoeukaryote community.

    PubMed

    Kawachi, Masanobu; Kataoka, Takafumi; Sato, Mayumi; Noël, Mary-Hélène; Kuwata, Akira; Demura, Mikihide; Yamaguchi, Haruyo

    2016-02-01

    Cryopreservation is useful for long-term maintenance of living strains in microbial culture collections. We applied this technique to environmental specimens from two monitoring sites at Sendai Bay, Japan and compared the microbial diversity of photosynthetic picoeukaryotes in samples before and after cryopreservation. Flow cytometry (FCM) showed no considerable differences between specimens. We used 2500 cells sorted with FCM for next-generation sequencing of 18S rRNA gene amplicons and after removing low-quality sequences obtained 10,088-37,454 reads. Cluster analysis and comparative correlation analysis of observed high-level operational taxonomic units indicated similarity between specimens before and after cryopreservation. The effects of cryopreservation on cells were assessed with representative culture strains, including fragile cryptophyte cells. We confirmed the usefulness of cryopreservation for genetic studies on environmental specimens, and found that small changes in FCM cytograms after cryopreservation may affect biodiversity estimation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Optical trapping for complex fluid microfluidics

    NASA Astrophysics Data System (ADS)

    Vestad, Tor; Oakey, John; Marr, David W. M.

    2004-10-01

    Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.

  11. Efficient genome editing by FACS enrichment of paired D10A Cas9 nickases coupled with fluorescent proteins.

    PubMed

    Gopalappa, Ramu; Song, Myungjae; Chandrasekaran, Arun Pandian; Das, Soumyadip; Haq, Saba; Koh, Hyun Chul; Ramakrishna, Suresh

    2018-05-31

    Targeted genome editing by clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) raised concerns over off-target effects. The use of double-nicking strategy using paired Cas9 nickase has been developed to minimize off-target effects. However, it was reported that the efficiency of paired nickases were comparable or lower than that of either corresponding nuclease alone. Recently, we conducted a systematic comparison of the efficiencies of several paired Cas9 with their corresponding Cas9 nucleases and showed that paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. However, sometimes the designed paired Cas9 nickases exhibited significantly lower mutation frequencies than nucleases, hampering the generation of cells containing paired Cas9 nickase-induced mutations. Here we implemented IRES peptide-conjugation of fluorescent protein to Cas9 nickase and subjected for fluorescence-activated cell sorting. The sorted cell populations are highly enriched with cells containing paired Cas9 nickase-induced mutations, by a factor of up to 40-fold as compared with the unsorted population. Furthermore, gene-disrupted single cell clones using paired nickases followed by FACS sorting strategy were generated highly efficiently, without compromising with its low off-target effects. We envision that our fluorescent protein coupled paired nickase-mediated gene disruption, facilitating efficient and highly specific genome editing in medical research.

  12. Sorting nexin 27 (SNX27) regulates the trafficking and activity of the glutamine transporter ASCT2.

    PubMed

    Yang, Zhe; Follett, Jordan; Kerr, Markus C; Clairfeuille, Thomas; Chandra, Mintu; Collins, Brett M; Teasdale, Rohan D

    2018-05-04

    Alanine-, serine-, cysteine-preferring transporter 2 (ASCT2, SLC1A5) is responsible for the uptake of glutamine into cells, a major source of cellular energy and a key regulator of mammalian target of rapamycin (mTOR) activation. Furthermore, ASCT2 expression has been reported in several human cancers, making it a potential target for both diagnostic and therapeutic purposes. Here we identify ASCT2 as a membrane-trafficked cargo molecule, sorted through a direct interaction with the PDZ domain of sorting nexin 27 (SNX27). Using both membrane fractionation and subcellular localization approaches, we demonstrate that the majority of ASCT2 resides at the plasma membrane. This is significantly reduced within CrispR-mediated SNX27 knockout (KO) cell lines, as it is missorted into the lysosomal degradation pathway. The reduction of ASCT2 levels in SNX27 KO cells leads to decreased glutamine uptake, which, in turn, inhibits cellular proliferation. SNX27 KO cells also present impaired activation of the mTOR complex 1 (mTORC1) pathway and enhanced autophagy. Taken together, our data reveal a role for SNX27 in glutamine uptake and amino acid-stimulated mTORC1 activation via modulation of ASCT2 intracellular trafficking. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Basolateral Sorting of Furin in MDCK Cells Requires a Phenylalanine-Isoleucine Motif Together with an Acidic Amino Acid Cluster

    PubMed Central

    Simmen, Thomas; Nobile, Massimo; Bonifacino, Juan S.; Hunziker, Walter

    1999-01-01

    Furin is a subtilisin-related endoprotease which processes a wide range of bioactive proteins. Furin is concentrated in the trans-Golgi network (TGN), where proteolytic activation of many precursor proteins takes place. A significant fraction of furin, however, cycles among the TGN, the plasma membrane, and endosomes, indicating that the accumulation in the TGN reflects a dynamic localization process. The cytosolic domain of furin is necessary and sufficient for TGN localization, and two signals are responsible for retrieval of furin to the TGN. A tyrosine-based (YKGL) motif mediates internalization of furin from the cell surface into endosomes. An acidic cluster that is part of two casein kinase II phosphorylation sites (SDSEEDE) is then responsible for retrieval of furin from endosomes to the TGN. In addition, the acidic EEDE sequence also mediates endocytic activity. Here, we analyzed the sorting of furin in polarized epithelial cells. We show that furin is delivered to the basolateral surface of MDCK cells, from where a significant fraction of the protein can return to the TGN. A phenylalanine-isoleucine motif together with the acidic EEDE cluster is required for basolateral sorting and constitutes a novel signal regulating intracellular traffic of furin. PMID:10082580

  14. Digital hydraulic drive for microfluidics and miniaturized cell culture devices based on shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Han; Wu, Xuanye; Kuan, Da-Han; Zimmermann, Stefan; Zengerle, Roland; Koltay, Peter

    2018-08-01

    In order to culture and analyze individual living cells, microfluidic cultivation and manipulation of cells become an increasingly important topic. Such microfluidic systems allow for exploring the phenotypic differences between thousands of genetically identical cells or pharmacological tests in parallel, which is impossible to achieve by traditional macroscopic cell culture methods. Therefore, plenty of microfluidic systems and devices have been developed for cell biological studies like cell culture, cell sorting, and cell lysis in the past. However, these microfluidic systems are still limited by the external pressure sources which most of the time are large in size and have to be connected by fluidic tubing leading to complex and delicate systems. In order to provide a miniaturized, more robust actuation system a novel, compact and low power consumption digital hydraulic drive (DHD) has been developed that is intended for use in portable and automated microfluidic systems for various applications. The DHD considered in this work consists of a shape memory alloy (SMA) actuator and a pneumatic cylinder. The switching time of the digital modes (pressure ON versus OFF) can be adjusted from 1 s to min. Thus, the DHDs might have many applications for driving microfluidic devices. In this work, different implementations of DHDs are presented and their performance is characterized by experiments. In particular, it will be shown that DHDs can be used for microfluidic large-scale integration (mLSI) valve control (256 valves in parallel) as well as potentially for droplet-based microfluidic systems. As further application example, high-throughput mixing of cell cultures (96 wells in parallel) is demonstrated employing the DHD to drive a so-called ‘functional lid’ (FL), to enable a miniaturized micro bioreactor in a regular 96-well micro well plate.

  15. Assessment of FUN-1 vital dye staining: Yeast with a block in the vacuolar sorting pathway have impaired ability to form CIVS when stained with FUN-1 fluorescent dye.

    PubMed

    Essary, Brandin D; Marshall, Pamela A

    2009-08-01

    FUN-1 [2-chloro-4-(2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene)-1-phenylquinolinium iodide] is a fluorescent dye used in studies of yeast and other fungi to monitor cell viability in the research lab and to assay for active fungal infection in the clinical setting. When the plasma membrane is intact, fungal cells internalize FUN-1 and the dye is seen as diffuse green cytosolic fluorescence. FUN-1 is then transported to the vacuole in metabolically active wild type cells and subsequently is compacted into fluorescent red cylindrical intravacuolar structures (CIVS) by an unknown transport pathway. This dye is used to determine yeast viability, as only live cells form CIVS. However, in live Saccharomyces cerevisiae with impaired protein sorting to the yeast vacuole, we report decreased to no CIVS formation, depending on the cellular location of the block in the sorting pathway. Cells with a block in vesicle-mediated transport from the Golgi to prevacuolar compartment (PVC) or with a block in recycling from the PVC to the Golgi demonstrate a substantial impairment in CIVS formation. Instead, the FUN-1 dye is seen either in small punctate structures under fluorescence or as diffuse red cytosol under white light. Thus, researchers using FUN-1 should be cognizant of the limitations of this procedure in determining cell viability as there are viable yeast mutants with impaired CIVS formation.

  16. Method for rapid isolation of sensitive mutants

    DOEpatents

    Freyer, James P.

    1997-01-01

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned.

  17. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    PubMed

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  18. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting

    PubMed Central

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R.

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase. PMID:19729042

  19. Method for rapid isolation of sensitive mutants

    DOEpatents

    Freyer, J.P.

    1997-07-29

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned. 15 figs.

  20. Application of Quality Function Deployment (QFD) method and kano model to redesign fresh fruit bunches sorting tool

    NASA Astrophysics Data System (ADS)

    Anizar; Siregar, I.; Yahya, I.; Yesika, N.

    2018-02-01

    The activity of lowering fresh fruit bunches (FFB) from truck to sorting floor is performed manually by workers using a sorting tool. Previously, the sorting tool used is a pointed iron bar with a T-shaped handle. Changes made to the sorting tool causes several complaints on worker and affect the time to lower the fruit. The purpose of this article is to obtain the design of an FFB sorting tool that suits the needs of these workers by applying the Quality Function Deployment (QFD) and Kano Model methods. Both of the two methods will be integrated to find the design that matches workers’ image and psychological feeling. The main parameters are to obtain the customer requirements of the palm fruit loading workers, to find the most important technical characteristics and critical part affecting the quality of the FFB sorting tool. The customer requirements of the palm loading workers are the following : the color of the coating paint is gray, the bar material is made of stainless pipe, the main grip coating material is made of grip, the tip material is made of the spring steel, the additional grip is made of rubber and the handle is of triangular shape.

  1. BayesMotif: de novo protein sorting motif discovery from impure datasets.

    PubMed

    Hu, Jianjun; Zhang, Fan

    2010-01-18

    Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms. We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences. Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances. We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which may help to overcome the limitations of PWM (position weight matrix) motif model.

  2. Cellular and Molecular Effect of MEHP Involving LXRα in Human Fetal Testis and Ovary

    PubMed Central

    Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N’Tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie

    2012-01-01

    Background Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Methodology/Principal Findings Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10−4M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. Conclusions/Significance We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells. PMID:23118965

  3. Cellular and molecular effect of MEHP Involving LXRα in human fetal testis and ovary.

    PubMed

    Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N'tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie

    2012-01-01

    Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10(-4)M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.

  4. Cell purification: a new challenge for biobanks.

    PubMed

    Almeida, Maria; García-Montero, Andres C; Orfao, Alberto

    2014-01-01

    Performing '-omics' analyses on heterogeneous biological tissue samples, such as blood or bone marrow, can lead to biased or even erroneous results, particularly when the targeted cells and/or molecules are present at relatively low percentages/amounts. In such cases, whole sample analysis will most probably dilute and mask the features of the cell and/or molecules of interest, and this will negatively impact the results and their interpretation. Therefore, frequently it is critically important to have well-characterized and high-quality purified cell populations for the reliable detection of subtle variations in their specific features, such as gene expression profile, protein expression pattern and metabolic status. Biobanks are technological platforms which aim to provide researchers access to a large number of high-quality biological samples and their associated data, particularly to support high-quality scientific and clinical research projects, and such projects will benefit enormously by having access to high-quality purified cell populations or their biological components (e.g. DNA, RNA, proteins). Therefore, a clear opportunity exists for preparative cell sorting techniques in biobanks. Although multiple different cell purification approaches exist or are under development (e.g. cell purification techniques based on cell adherence, density and/or cell size properties, methods based on antibody binding as well as new lab-on-a-chip purification techniques), the choice for a specific technology depends on multiple variables, including cell recovery, purity and yield, among others. In addition, most cell purification approaches are not well suited for high-throughput (HT) purification of multiple cell populations coexisting in a sample. Here we review the most (currently) used cell sorting methods that may be applied for sample preparation in biobanks. For the different approaches, technical considerations about their advantages and limitations are highlighted, and the requirements to be met by a HT cell sorting technology to be used in biobanks are also discussed.

  5. Combining magnetic sorting of mother cells and fluctuation tests to analyze genome instability during mitotic cell aging in Saccharomyces cerevisiae.

    PubMed

    Patterson, Melissa N; Maxwell, Patrick H

    2014-10-16

    Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.

  6. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.

    PubMed

    Regalia, Giulia; Coelli, Stefania; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting "building blocks" into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis.

  7. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis

    PubMed Central

    Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting “building blocks” into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis. PMID:27239191

  8. Automated Cell Enrichment of Cytomegalovirus-specific T cells for Clinical Applications using the Cytokine-capture System.

    PubMed

    Kumaresan, Pappanaicken; Figliola, Mathew; Moyes, Judy S; Huls, M Helen; Tewari, Priti; Shpall, Elizabeth J; Champlin, Richard; Cooper, Laurence J N

    2015-10-05

    The adoptive transfer of pathogen-specific T cells can be used to prevent and treat opportunistic infections such as cytomegalovirus (CMV) infection occurring after allogeneic hematopoietic stem-cell transplantation. Viral-specific T cells from allogeneic donors, including third party donors, can be propagated ex vivo in compliance with current good manufacturing practice (cGMP), employing repeated rounds of antigen-driven stimulation to selectively propagate desired T cells. The identification and isolation of antigen-specific T cells can also be undertaken based upon the cytokine capture system of T cells that have been activated to secrete gamma-interferon (IFN-γ). However, widespread human application of the cytokine capture system (CCS) to help restore immunity has been limited as the production process is time-consuming and requires a skilled operator. The development of a second-generation cell enrichment device such as CliniMACS Prodigy now enables investigators to generate viral-specific T cells using an automated, less labor-intensive system. This device separates magnetically labeled cells from unlabeled cells using magnetic activated cell sorting technology to generate clinical-grade products, is engineered as a closed system and can be accessed and operated on the benchtop. We demonstrate the operation of this new automated cell enrichment device to manufacture CMV pp65-specific T cells obtained from a steady-state apheresis product obtained from a CMV seropositive donor. These isolated T cells can then be directly infused into a patient under institutional and federal regulatory supervision. All the bio-processing steps including removal of red blood cells, stimulation of T cells, separation of antigen-specific T cells, purification, and washing are fully automated. Devices such as this raise the possibility that T cells for human application can be manufactured outside of dedicated good manufacturing practice (GMP) facilities and instead be produced in blood banking facilities where staff can supervise automated protocols to produce multiple products.

  9. Efficient sampling of parsimonious inversion histories with application to genome rearrangement in Yersinia.

    PubMed

    Miklós, István; Darling, Aaron E

    2009-06-22

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.

  10. Interleukin-12 in patients with cancer is synthesized by peripheral helper T lymphocytes.

    PubMed

    Michelin, Marcia A; Montes, Leticia; Nomelini, Rosekeila S; Abdalla, Douglas R; Aleixo, Andre A R; Murta, Eddie F C

    2015-09-01

    The production of cytokines by helper T lymphocytes is a critical event in the immune response, as alterations in the regulation of this process may result in an appropriate immune response, persistent infection or the development of autoimmune disease. Previously, this group has used flow cytometry to demonstrate the expression of interleukin-12 (IL-12) in peripheral blood CD4+ T lymphocytes from patients and mice with advanced cancer. The aim of the present study was to investigate whether CD4+ T lymphocytes from the peripheral blood (PB) of patients with cancer produce IL-12, using molecular approaches, flow cytometry and cellular imaging techniques. CD3+ and CD4+ cells, and cells producing IL-12, were isolated from the PB obtained from patients with cancer, using a cell sorting flow cytometry technique. The positivity of cells for CD3, CD4 and IL-12, which were identified by cell sorting, was visualized using immunofluorescent cellular imaging. Total RNA was extracted from the CD3+CD4+IL-12+ cells, obtained by cell sorting, for confirmation of the presence of IL-12 mRNA, using reverse transcription-polymerase chain reaction (RT-PCR). RT-PCR demonstrated the presence of IL-12 mRNA in all patients (n=14), in contrast to the control group, in whom IL-12 expression was not detected. Immunofluorescent analysis of CD4+ T lymphocytes showed positive intracytoplasmatic IL-12 staining. These results demonstrated that CD3+CD4+ T lymphocytes in the PB of patients with cancer have the capacity to synthesize and express IL-12.

  11. Interleukin-12 in patients with cancer is synthesized by peripheral helper T lymphocytes

    PubMed Central

    MICHELIN, MARCIA A.; MONTES, LETICIA; NOMELINI, ROSEKEILA S.; ABDALLA, DOUGLAS R.; ALEIXO, ANDRE A. R.; MURTA, EDDIE F. C.

    2015-01-01

    The production of cytokines by helper T lymphocytes is a critical event in the immune response, as alterations in the regulation of this process may result in an appropriate immune response, persistent infection or the development of autoimmune disease. Previously, this group has used flow cytometry to demonstrate the expression of interleukin-12 (IL-12) in peripheral blood CD4+ T lymphocytes from patients and mice with advanced cancer. The aim of the present study was to investigate whether CD4+ T lymphocytes from the peripheral blood (PB) of patients with cancer produce IL-12, using molecular approaches, flow cytometry and cellular imaging techniques. CD3+ and CD4+ cells, and cells producing IL-12, were isolated from the PB obtained from patients with cancer, using a cell sorting flow cytometry technique. The positivity of cells for CD3, CD4 and IL-12, which were identified by cell sorting, was visualized using immunofluorescent cellular imaging. Total RNA was extracted from the CD3+CD4+IL-12+ cells, obtained by cell sorting, for confirmation of the presence of IL-12 mRNA, using reverse transcription-polymerase chain reaction (RT-PCR). RT-PCR demonstrated the presence of IL-12 mRNA in all patients (n=14), in contrast to the control group, in whom IL-12 expression was not detected. Immunofluorescent analysis of CD4+ T lymphocytes showed positive intracytoplasmatic IL-12 staining. These results demonstrated that CD3+CD4+ T lymphocytes in the PB of patients with cancer have the capacity to synthesize and express IL-12. PMID:26622702

  12. Accelerating a Particle-in-Cell Simulation Using a Hybrid Counting Sort

    NASA Astrophysics Data System (ADS)

    Bowers, K. J.

    2001-11-01

    In this article, performance limitations of the particle advance in a particle-in-cell (PIC) simulation are discussed. It is shown that the memory subsystem and cache-thrashing severely limit the speed of such simulations. Methods to implement a PIC simulation under such conditions are explored. An algorithm based on a counting sort is developed which effectively eliminates PIC simulation cache thrashing. Sustained performance gains of 40 to 70 percent are measured on commodity workstations for a minimal 2d2v electrostatic PIC simulation. More complete simulations are expected to have even better results as larger simulations are usually even more memory subsystem limited.

  13. Quality control in the secretory assembly line.

    PubMed Central

    Helenius, A

    2001-01-01

    As a rule, only proteins that have reached a native, folded and assembled structure are transported to their target organelles and compartments within the cell. In the secretory pathway of eukaryotic cells, this type of sorting is particularly important. A variety of molecular mechanisms are involved that distinguish between folded and unfolded proteins, modulate their intracellular transport, and induce degradation if they fail to fold. This phenomenon, called quality control, occurs at several levels and involves different types of folding sensors. The quality control system provides a stringent and versatile molecular sorting system that guaranties fidelity of protein expression in the secretory pathway. PMID:11260794

  14. Geldanamycin Enhances Retrograde Transport of Shiga Toxin in HEp-2 Cells

    PubMed Central

    Simm, Roger; Torgersen, Maria Lyngaas; Sandvig, Kirsten

    2015-01-01

    The heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA) has been shown to alter endosomal sorting, diverting cargo destined for the recycling pathway into the lysosomal pathway. Here we investigated whether GA also affects the sorting of cargo into the retrograde pathway from endosomes to the Golgi apparatus. As a model cargo we used the bacterial toxin Shiga toxin, which exploits the retrograde pathway as an entry route to the cytosol. Indeed, GA treatment of HEp-2 cells strongly increased the Shiga toxin transport to the Golgi apparatus. The enhanced Golgi transport was not due to increased endocytic uptake of the toxin or perturbed recycling, suggesting that GA selectively enhances endosomal sorting into the retrograde pathway. Moreover, GA activated p38 and both inhibitors of p38 or its substrate MK2 partially counteracted the GA-induced increase in Shiga toxin transport. Thus, our data suggest that GA-induced p38 and MK2 activation participate in the increased Shiga toxin transport to the Golgi apparatus. PMID:26017782

  15. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification

    PubMed Central

    Hummer, Blake H.; de Leeuw, Noah F.; Burns, Christian; Chen, Lan; Joens, Matthew S.; Hosford, Bethany; Fitzpatrick, James A. J.; Asensio, Cedric S.

    2017-01-01

    Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN. PMID:29074564

  16. Magnetic Nickel iron Electroformed Trap (MagNET): a master/replica fabrication strategy for ultra-high throughput (>100 mL h−1) immunomagnetic sorting†

    PubMed Central

    Ko, Jina; Yelleswarapu, Venkata; Singh, Anup; Shah, Nishal

    2016-01-01

    Microfluidic devices can sort immunomagnetically labeled cells with sensitivity and specificity much greater than that of conventional methods, primarily because the size of microfluidic channels and micro-scale magnets can be matched to that of individual cells. However, these small feature sizes come at the expense of limited throughput (ϕ < 5 mL h−1) and susceptibility to clogging, which have hindered current microfluidic technology from processing relevant volumes of clinical samples, e.g. V > 10 mL whole blood. Here, we report a new approach to micromagnetic sorting that can achieve highly specific cell separation in unprocessed complex samples at a throughput (ϕ > 100 mL h−1) 100× greater than that of conventional microfluidics. To achieve this goal, we have devised a new approach to micromagnetic sorting, the magnetic nickel iron electroformed trap (MagNET), which enables high flow rates by having millions of micromagnetic traps operate in parallel. Our design rotates the conventional microfluidic approach by 90° to form magnetic traps at the edges of pores instead of in channels, enabling millions of the magnetic traps to be incorporated into a centimeter sized device. Unlike previous work, where magnetic structures were defined using conventional microfabrication, we take inspiration from soft lithography and create a master from which many replica electroformed magnetic micropore devices can be economically manufactured. These free-standing 12 µm thick permalloy (Ni80Fe20) films contain micropores of arbitrary shape and position, allowing the device to be tailored for maximal capture efficiency and throughput. We demonstrate MagNET's capabilities by fabricating devices with both circular and rectangular pores and use these devices to rapidly (ϕ = 180 mL h−1) and specifically sort rare tumor cells from white blood cells. PMID:27170379

  17. Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells.

    PubMed

    Hardy, W Reef; Moldovan, Nicanor I; Moldovan, Leni; Livak, Kenneth J; Datta, Krishna; Goswami, Chirayu; Corselli, Mirko; Traktuev, Dmitry O; Murray, Iain R; Péault, Bruno; March, Keith

    2017-05-01

    Adipose tissue is a rich source of multipotent mesenchymal stem-like cells, located in the perivascular niche. Based on their surface markers, these have been assigned to two main categories: CD31 - /CD45 - /CD34 + /CD146 - cells (adventitial stromal/stem cells [ASCs]) and CD31 - /CD45 - /CD34 - /CD146 + cells (pericytes [PCs]). These populations display heterogeneity of unknown significance. We hypothesized that aldehyde dehydrogenase (ALDH) activity, a functional marker of primitivity, could help to better define ASC and PC subclasses. To this end, the stromal vascular fraction from a human lipoaspirate was simultaneously stained with fluorescent antibodies to CD31, CD45, CD34, and CD146 antigens and the ALDH substrate Aldefluor, then sorted by fluorescence-activated cell sorting. Individual ASCs (n = 67) and PCs (n = 73) selected from the extremities of the ALDH-staining spectrum were transcriptionally profiled by Fluidigm single-cell quantitative polymerase chain reaction for a predefined set (n = 429) of marker genes. To these single-cell data, we applied differential expression and principal component and clustering analysis, as well as an original gene coexpression network reconstruction algorithm. Despite the stochasticity at the single-cell level, covariation of gene expression analysis yielded multiple network connectivity parameters suggesting that these perivascular progenitor cell subclasses possess the following order of maturity: (a) ALDH br ASC (most primitive); (b) ALDH dim ASC; (c) ALDH br PC; (d) ALDH dim PC (least primitive). This order was independently supported by specific combinations of class-specific expressed genes and further confirmed by the analysis of associated signaling pathways. In conclusion, single-cell transcriptional analysis of four populations isolated from fat by surface markers and enzyme activity suggests a developmental hierarchy among perivascular mesenchymal stem cells supported by markers and coexpression networks. Stem Cells 2017;35:1273-1289. © 2017 AlphaMed Press.

  18. Cell sorting using efficient light shaping approaches

    NASA Astrophysics Data System (ADS)

    Bañas, Andrew; Palima, Darwin; Villangca, Mark; Glückstad, Jesper

    2016-03-01

    Early detection of diseases can save lives. Hence, there is emphasis in sorting rare disease-indicating cells within small dilute quantities such as in the confines of lab-on-a-chip devices. In our work, we use optical forces to isolate red blood cells detected by machine vision. This approach is gentler, less invasive and more economical compared to conventional FACS systems. As cells are less responsive to plastic or glass beads commonly used in the optical manipulation literature, and since laser safety would be an issue in clinical use, we develop efficient approaches in utilizing lasers and light modulation devices. The Generalized Phase Contrast (GPC) method that can be used for efficiently illuminating spatial light modulators or creating well-defined contiguous optical traps is supplemented by diffractive techniques capable of integrating the available light and creating 2D or 3D beam distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam's propagation and its interaction with the catapulted cells.

  19. Patterned Disordered Cell Motion Ensures Vertebral Column Symmetry.

    PubMed

    Das, Dipjyoti; Chatti, Veena; Emonet, Thierry; Holley, Scott A

    2017-07-24

    The biomechanics of posterior embryonic growth must be dynamically regulated to ensure bilateral symmetry of the spinal column. Throughout vertebrate trunk elongation, motile mesodermal progenitors undergo an order-to-disorder transition via an epithelial-to-mesenchymal transition and sort symmetrically into the left and right paraxial mesoderm. We combine theoretical modeling of cell migration in a tail-bud-like geometry with experimental data analysis to assess the importance of ordered and disordered cell motion. We find that increasing order in cell motion causes a phase transition from symmetric to asymmetric body elongation. In silico and in vivo, overly ordered cell motion converts normal anisotropic fluxes into stable vortices near the posterior tail bud, contributing to asymmetric cell sorting. Thus, disorder is a physical mechanism that ensures the bilateral symmetry of the spinal column. These physical properties of the tissue connect across scales such that patterned disorder at the cellular level leads to the emergence of organism-level order. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Identification of a human erythroid progenitor cell population which expresses the CD34 antigen and binds the plant lectin Ulex europaeus I.

    PubMed

    Unverzagt, K L; Martinson, J; Lee, W; Stiff, P J; Williams, S; Bender, J G

    1996-01-01

    Two and three color flow cytometry of normal human bone marrow was used to identify CD34+ progenitor cells and examine their binding to the plant lectin Ulex europaeus I (Ulex). In normal bone marrow, 48.48 +/- 17.4% of the CD34+ cells bind to Ulex. Two color flow cytometry was used to sort CD34 + cells, and subsets of CD34+ cells, CD34+ Ulex+ and CD34+ Ulex-. These populations were sorted into colony assays to assess myeloid (CFU-GM) and erythroid (BFU-E) progenitors. The CD34+ Ulex+ subset was 84 +/- 14% BFU-E colonies (mean +/- S.D.) and had the highest cloning efficiency of 28 +/- 13%. Three color analysis of CD34+ Ulex+ cells showed staining with other erythroid (CD71, GlyA) antibodies and lack of stain. ing with myeloid (CD13, CD45RA) antibodies. These studies confirmed the erythroid characteristics of this subpopulation.

  1. Update on sexed semen technology in cattle.

    PubMed

    Seidel, G E

    2014-05-01

    The technology in current use for sexing sperm represents remarkable feats of engineering. These flow cytometer/cell sorters can make over 30 000 consecutive evaluations of individual sperm each second for each nozzle and sort the sperm into three containers: X-sperm, Y-sperm and unsexable plus dead sperm. Even at these speeds it is not economical to package sperm at standard numbers per inseminate. However, with excellent management, pregnancy rates in cattle with 2 million sexed sperm per insemination dose are about 80% of those with conventional semen at normal sperm doses. This lowered fertility, in part due to damage to sperm during sorting, plus the extra cost of sexed semen limits the applications that are economically feasible. Even so, on the order of 2 million doses of bovine semen are sexed annually in the United States. The main application is for dairy heifers to have heifer calves, either for herd expansion or for sale as replacements, often for eventual export. Breeders of purebred cattle often use sexed semen for specific matings; thawing and then sexing frozen semen and immediately using the few resulting sexed sperm for in vitro fertilization is done with increasing frequency. Beef cattle producers are starting to use sexed semen to produce crossbred female replacements. Proprietary improvements in sperm sexing procedures, implemented in 2013, are claimed to improve fertility between 4 and 6 percentage points, or about 10%.

  2. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment.

    PubMed

    Faraghat, Shabnam A; Hoettges, Kai F; Steinbach, Max K; van der Veen, Daan R; Brackenbury, William J; Henslee, Erin A; Labeed, Fatima H; Hughes, Michael P

    2017-05-02

    Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.

  3. Secretory cargo sorting by Ca2+-dependent Cab45 oligomerization at the trans-Golgi network

    PubMed Central

    Blank, Birgit; Maiser, Andreas; Emin, Derya; Prescher, Jens; Beck, Gisela; Kienzle, Christine; Bartnik, Kira; Habermann, Bianca; Pakdel, Mehrshad; Leonhardt, Heinrich; Lamb, Don C.

    2016-01-01

    Sorting and export of transmembrane cargoes and lysosomal hydrolases at the trans-Golgi network (TGN) are well understood. However, elucidation of the mechanism by which secretory cargoes are segregated for their release into the extracellular space remains a challenge. We have previously demonstrated that, in a reaction that requires Ca2+, the soluble TGN-resident protein Cab45 is necessary for the sorting of secretory cargoes at the TGN. Here, we report that Cab45 reversibly assembles into oligomers in the presence of Ca2+. These Cab45 oligomers specifically bind secretory proteins, such as COMP and LyzC, in a Ca2+-dependent manner in vitro. In intact cells, mutation of the Ca2+-binding sites in Cab45 impairs oligomerization, as well as COMP and LyzC sorting. Superresolution microscopy revealed that Cab45 colocalizes with secretory proteins and the TGN Ca2+ pump (SPCA1) in specific TGN microdomains. These findings reveal that Ca2+-dependent changes in Cab45 mediate sorting of specific cargo molecules at the TGN. PMID:27138253

  4. The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome

    PubMed Central

    Xie, Shuwei; Bahl, Kriti; Reinecke, James B.; Hammond, Gerald R. V.; Naslavsky, Naava; Caplan, Steve

    2016-01-01

    The endocytic recycling compartment (ERC) is a series of perinuclear tubular and vesicular membranes that regulates recycling to the plasma membrane. Despite evidence that cargo is sorted at the early/sorting endosome (SE), whether cargo mixes downstream at the ERC or remains segregated is an unanswered question. Here we use three-dimensional (3D) structured illumination microscopy and dual-channel and 3D direct stochastic optical reconstruction microscopy (dSTORM) to obtain new information about ERC morphology and cargo segregation. We show that cargo internalized either via clathrin-mediated endocytosis (CME) or independently of clathrin (CIE) remains segregated in the ERC, likely on distinct carriers. This suggests that no further sorting occurs upon cargo exit from SE. Moreover, 3D dSTORM data support a model in which some but not all ERC vesicles are tethered by contiguous “membrane bridges.” Furthermore, tubular recycling endosomes preferentially traffic CIE cargo and may originate from SE membranes. These findings support a significantly altered model for endocytic recycling in mammalian cells in which sorting occurs in peripheral endosomes and segregation is maintained at the ERC. PMID:26510502

  5. Programmable neural processing on a smartdust for brain-computer interfaces.

    PubMed

    Yuwen Sun; Shimeng Huang; Oresko, Joseph J; Cheng, Allen C

    2010-10-01

    Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing unit, or via custom application-specific integrated circuits that lack the programmability to perform different algorithms and upgrades. In this research, we propose and test the feasibility of performing on-chip, real-time spike sorting on a programmable smartdust, including feature extraction, classification, compression, and wireless transmission. A detailed power/performance tradeoff analysis using DVFS is presented. Our experimental results show that the execution time and power density meet the requirements to perform real-time spike sorting and wireless transmission on a single neural channel.

  6. Fruit Sorting Using Fuzzy Logic Techniques

    NASA Astrophysics Data System (ADS)

    Elamvazuthi, Irraivan; Sinnadurai, Rajendran; Aftab Ahmed Khan, Mohamed Khan; Vasant, Pandian

    2009-08-01

    Fruit and vegetables market is getting highly selective, requiring their suppliers to distribute the goods according to very strict standards of quality and presentation. In the last years, a number of fruit sorting and grading systems have appeared to fulfill the needs of the fruit processing industry. However, most of them are overly complex and too costly for the small and medium scale industry (SMIs) in Malaysia. In order to address these shortcomings, a prototype machine was developed by integrating the fruit sorting, labeling and packing processes. To realise the prototype, many design issues were dealt with. Special attention is paid to the electronic weighing sub-system for measuring weight, and the opto-electronic sub-system for determining the height and width of the fruits. Specifically, this paper discusses the application of fuzzy logic techniques in the sorting process.

  7. Experimental investigation of gravity effects on sediment sorting on Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Gartmann, Andres

    2014-05-01

    Sorting of sedimentary rocks is a proxy for the environmental conditions at the time of deposition, in particular the runoff that moved and deposited the material forming the rocks. Settling of sediment is strongly influenced by the gravity of a planetary body. As a consequence, sorting of a sedimentary rock varies with gravity for a given depth and velocity of surface runoff. Theoretical considerations for spheres indicate that sorting is more uniform on Mars than on Earth for runoff of identical depth. In reality, such considerations have to be applied with great caution because the shape of a particle strongly influences drag. Drag itself can only be calculated directly for an irregularly shaped particle with great computational effort, if at all. Therefore, even for terrestrial applications, sediment settling velocities are often determined directly, e.g. by measurements using settling tubes. In this study the results of settling tube tests conducted under reduced gravity during three experimental flights conducted in November 2012 and 2013 are presented. Nine types of sediment, ranging in size, shape and density were tested in custom-designed settling tubes during parabolas of Martian gravity lasting 20 to 25 seconds. Based on the observed settling velocities, the applicability of empirical relationships developed on Earth to assess particle settling on Mars are discussed. In addition, the potential effects of reduced gravity on the sorting of sedimentary rocks and their use as a proxy for runoff and thus environmental conditions on Mars are examined.

  8. Regenerative therapy in experimental parkinsonism: mixed population of differentiated mouse embryonic stem cells, rather than magnetically sorted and enriched dopaminergic cells provide neuroprotection.

    PubMed

    Tripathy, Debasmita; Verma, Poonam; Nthenge-Ngumbau, Dominic N; Banerjee, Meghna; Mohanakumar, Kochupurackal P

    2014-08-01

    The objective of the study was to develop regenerative therapy by transplanting varied populations of dopaminergic neurons, differentiated from mouse embryonic stem cells (mES) in the striatum for correcting experimental parkinsonism in rats. mES differentiated by default for 7 days in serum-free media (7D), or by enhanced differentiation of 7D in retinoic acid (7R), or dopaminergic neurons enriched by manual magnetic sorting from 7D (SSEA-) were characterized and transplanted in the ipsilateral striatum of 6-hydroxydopamine-induced hemiparkinsonian rats. Neurochemical, neuronal, glial and neurobehavioral recoveries were examined. 7R and SSEA- contained significantly reduced NANOG and high MAP2 mRNA and protein levels as revealed, respectively, by reverse transcriptase-PCR and immunocytochemistry, compared with 7D. Striatal engraftment of 7D resulted in a significantly better behavioral and neurochemical recovery, as compared to the animals that received either 7R or SSEA-. The 7R transplanted animals showed improvement neither in behavior nor in striatal dopamine level. The grafted striatum revealed increased GFAP staining intensity in 7D and SSEA-, but not in 7R cells transplanted group, suggesting a vital role played by glial cells in the recovery. Substantia nigra ipsilateral to the side of the striatum, which received transplants showed more tyrosine hydroxylase immunostained neurons, as compared to 6-hydroxydopamine-infused animals. These results demonstrate that default differentiated mixed population of cells are better than sorted, enriched dopaminergic cells, or cells containing more mature neurons for transplantation recovery in hemiparkinsonian rats. © 2014 John Wiley & Sons Ltd.

  9. Isolation and characterization of living circulating tumor cells in patients by immunomagnetic negative enrichment coupled with flow cytometry.

    PubMed

    Lu, Yusheng; Liang, Haiyan; Yu, Ting; Xie, Jingjing; Chen, Shuming; Dong, Haiyan; Sinko, Patrick J; Lian, Shu; Xu, Jianguo; Wang, Jichuang; Yu, Suhong; Shao, Jingwei; Yuan, Bo; Wang, Lie; Jia, Lee

    2015-09-01

    This study was aimed at establishing a sensitive and specific isolation, characterization, and enumeration method for living circulating tumor cells (CTCs) in patients with colorectal carcinoma. Quantitative isolation and characterization of CTCs were performed through a combination of immunomagnetic negative enrichment and fluorescence-activated cell sorting. Isolated CTCs were identified by immunofluorescence staining. The viability and purity of the sorted cells were determined by flow cytometry. Blood samples spiked with HCT116 cells (range, 3-250 cells) were used to determine specificity, recovery, and sensitivity. The method was used to enumerate, characterize, and isolate living CTCs in 10 mL of blood from patients with colorectal carcinoma. The average recovery of HCT116 cells was 61% or more at each spiking level, and the correlation coefficient was 0.992. An analysis of samples from all 18 patients with colorectal carcinoma revealed that 94.4% were positive for CTCs with an average of 33 ± 24 CTCs per 10 mL of blood and with a diameter of 14 to 20 μm (vs 8-12 μm for lymphoma). All patients were CD47(+) , with only 4.3% to 61.2% being CD44(+) . The number of CTCs was well correlated with the patient TNM stage and could be detected in patients at an early cancer stage. The sorted cells could be recultured, and their viability was preserved. This method provides a novel technique for highly sensitive and specific detection and isolation of CTCs in patients with colorectal carcinoma. This method complements the existing approaches for the de novo functional identification of a wide variety of CTC types. It is likely to help in predicting a patient's disease progression and potentially in selecting the appropriate treatment. © 2015 American Cancer Society.

  10. Critical assessment of the efficiency of CD34 and CD133 antibodies for enrichment of rabbit hematopoietic stem cells.

    PubMed

    Vašíček, Jaromír; Shehata, Medhat; Schnabl, Susanne; Hilgarth, Martin; Hubmann, Rainer; Jäger, Ulrich; Bauer, Miroslav; Chrenek, Peter

    2018-06-08

    Rabbits have many hereditary diseases common to humans and are therefore a valuable model for regenerative disease and hematopoietic stem cell (HSC) therapies. Currently, there is no substantial data on the isolation and/or enrichment of rabbit HSCs. This study was initiated to evaluate the efficiency of the commercially available anti-CD34 and anti-CD133 antibodies for the detection and potential enrichment of rabbit HSCs from peripheral blood. PBMCs from rabbit and human blood were labelled with different clones of anti-human CD34 monoclonal antibodies (AC136, 581 and 8G12) and rabbit polyclonal CD34 antibody (pCD34) and anti-human CD133 monoclonal antibodies (AC133 and 293C3). Flow cytometry showed a higher percentage of rabbit CD34 + cells labelled by AC136 in comparison to the clone 581 and pCD34 (P<0.01). A higher percentage of rabbit CD133 + cells were also detected by 293C3 compared to the AC133 clone (P<0.01). Therefore, AC136 clone was used for the indirect immunomagnetic enrichment of rabbit CD34 + cells using magnetic-activated cell sorting (MACS). The enrichment of the rabbit CD34 + cells after sorting was low in comparison to human samples (2.4% vs. 39.6%). PCR analyses confirmed the efficient enrichment of human CD34 + cells and the low expression of CD34 mRNA in rabbit positive fraction. In conclusion, the tested antibodies might be suitable for detection, but not for sorting the rabbit CD34 + HSCs and new specific anti-rabbit CD34 antibodies are needed for efficient enrichment of rabbit HSCs. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  11. Microfluidic Droplet Sorting with a High Frequency Ultrasound Beam

    PubMed Central

    Lee, Changyang; Lee, Jungwoo; Kim, Hyung Ham; Teh, Shia-Yen; Lee, Abraham; Chung, In-Young; Park, Jae Yeong; Shung, K. Kirk

    2012-01-01

    This paper presents experimental results demonstrating the feasibility of high frequency ultrasonic sensing and sorting for screening single oleic acid (lipid or oil) droplets under continuous flow in a microfluidic channel. In these experiments, hydrodynamically focused lipid droplets of two different diameters (50 μm and 100 μm) are centered along the middle of the channel that is filled with deionized (DI) water. A 30 MHz lithium niobate (LiNbO3) transducer, placed outside the channel, first transmits short sensing pulses to non-invasively determine acoustic scattering properties of individual droplets that are passing through the beam’s focus. Integrated backscatter (IB) coefficients, utilized as a sorting criterion, are measured by analyzing received echo signals from each droplet. When the IB values corresponding to 100 μm droplets are obtained, a custom-built LabVIEW panel commands the transducer to emit sinusoidal burst signals to commence the sorting operation. The number of droplets tested for the sorting is 139 for 50 μm droplets and 95 for 100 μm droplets. The sensing efficiencies are estimated to be 98.6 % and 99.0 %, respectively. The sorting is carried out by applying acoustic radiation forces to 100 μm droplets to direct them towards the upper sheath flow, thus separating them from the centered droplet flow. The sorting efficiencies are 99.3 % for 50 μm droplets and 85.3 % for 100 μm droplets. The results suggest that this proposed technique has the potential to be further developed into a cost-effective and efficient cell/microparticle sorting instrument. PMID:22643737

  12. Rapid 3D Refractive‐Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation

    PubMed Central

    Habaza, Mor; Kirschbaum, Michael; Guernth‐Marschner, Christian; Dardikman, Gili; Barnea, Itay; Korenstein, Rafi; Duschl, Claus

    2016-01-01

    A major challenge in the field of optical imaging of live cells is achieving rapid, 3D, and noninvasive imaging of isolated cells without labeling. If successful, many clinical procedures involving analysis and sorting of cells drawn from body fluids, including blood, can be significantly improved. A new label‐free tomographic interferometry approach is presented. This approach provides rapid capturing of the 3D refractive‐index distribution of single cells in suspension. The cells flow in a microfluidic channel, are trapped, and then rapidly rotated by dielectrophoretic forces in a noninvasive and precise manner. Interferometric projections of the rotated cell are acquired and processed into the cellular 3D refractive‐index map. Uniquely, this approach provides full (360°) coverage of the rotation angular range around any axis, and knowledge on the viewing angle. The experimental demonstrations presented include 3D, label‐free imaging of cancer cells and three types of white blood cells. This approach is expected to be useful for label‐free cell sorting, as well as for detection and monitoring of pathological conditions resulting in cellular morphology changes or occurrence of specific cell types in blood or other body fluids. PMID:28251046

  13. Size-amplified acoustofluidic separation of circulating tumor cells with removable microbeads

    NASA Astrophysics Data System (ADS)

    Liu, Huiqin; Ao, Zheng; Cai, Bo; Shu, Xi; Chen, Keke; Rao, Lang; Luo, Changliang; Wang, Fu-Bin; Liu, Wei; Bondesson, Maria; Guo, Shishang; Guo, Feng

    2018-06-01

    Isolation and analysis of rare circulating tumor cells (CTCs) is of great interest in cancer diagnosis, prognosis, and treatment efficacy evaluation. Acoustofluidic cell separation becomes an attractive method due to its contactless, noninvasive, simple, and versatile features. However, the indistinctive physical difference between CTCs and normal blood cells limits the purity of CTCs using current acoustic methods. Herein, we demonstrate a size-amplified acoustic separation and release of CTCs with removable microbeads. CTCs selectively bound to size-amplifiers (40 μm-diameter anti-EpCAM/gelatin-coated SiO2 microbeads) have significant physical differences (size and mechanics) compared to normal blood cells, resulting in an amplification of acoustic radiation force approximately a hundredfold over that of bare CTCs or normal blood cells. Therefore, CTCs can be efficiently sorted out with size-amplifiers in a traveling surface acoustic wave microfluidic device and released from size-amplifiers by enzymatic degradation for further purification or downstream analysis. We demonstrate a cell separation from blood samples with a total efficiency (E total) of ∼ 77%, purity (P) of ∼ 96%, and viability (V) of ∼83% after releasing cells from size-amplifiers. Our method substantially improves the emerging application of rare cell purification for translational medicine.

  14. Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.

    PubMed

    Zhang, Xinjie; Zhu, Zhixian; Xiang, Nan; Long, Feifei; Ni, Zhonghua

    2018-03-20

    Microfluidic technologies for cell separation were reported frequently in recent years. However, a compact microfluidic instrument enabling thoroughly automated cell separation is still rarely reported until today due to the difficult hybrid between the macrosized fluidic control system and the microsized microfluidic device. In this work, we propose a novel and automated microfluidic instrument to realize size-based separation of cancer cells in a label-free and high-throughput manner. Briefly, the instrument is equipped with a fully integrated microfluidic device and a set of robust fluid-driven and control units, and the instrument functions of precise fluid infusion and high-throughput cell separation are guaranteed by a flow regulatory chip and two cell separation chips which are the key components of the microfluidic device. With optimized control programs, the instrument is successfully applied to automatically sort human breast adenocarcinoma cell line MCF-7 from 5 mL of diluted human blood with a high recovery ratio of ∼85% within a rapid processing time of ∼23 min. We envision that our microfluidic instrument will be potentially useful in many biomedical applications, especially cell separation, enrichment, and concentration for the purpose of cell culture and analysis.

  15. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles.

    PubMed

    Stepanauskas, Ramunas; Fergusson, Elizabeth A; Brown, Joseph; Poulton, Nicole J; Tupper, Ben; Labonté, Jessica M; Becraft, Eric D; Brown, Julia M; Pachiadaki, Maria G; Povilaitis, Tadas; Thompson, Brian P; Mascena, Corianna J; Bellows, Wendy K; Lubys, Arvydas

    2017-07-20

    Microbial single-cell genomics can be used to provide insights into the metabolic potential, interactions, and evolution of uncultured microorganisms. Here we present WGA-X, a method based on multiple displacement amplification of DNA that utilizes a thermostable mutant of the phi29 polymerase. WGA-X enhances genome recovery from individual microbial cells and viral particles while maintaining ease of use and scalability. The greatest improvements are observed when amplifying high G+C content templates, such as those belonging to the predominant bacteria in agricultural soils. By integrating WGA-X with calibrated index-cell sorting and high-throughput genomic sequencing, we are able to analyze genomic sequences and cell sizes of hundreds of individual, uncultured bacteria, archaea, protists, and viral particles, obtained directly from marine and soil samples, in a single experiment. This approach may find diverse applications in microbiology and in biomedical and forensic studies of humans and other multicellular organisms.Single-cell genomics can be used to study uncultured microorganisms. Here, Stepanauskas et al. present a method combining improved multiple displacement amplification and FACS, to obtain genomic sequences and cell size information from uncultivated microbial cells and viral particles in environmental samples.

  16. Ubiquitylation of a Melanosomal Protein by HECT-E3 Ligases Serves as Sorting Signal for Lysosomal DegradationD⃞

    PubMed Central

    Lévy, Frédéric; Muehlethaler, Katja; Salvi, Suzanne; Peitrequin, Anne-Lise; Lindholm, Cecilia K.; Cerottini, Jean-Charles; Rimoldi, Donata

    2005-01-01

    The production of pigment by melanocytic cells of the skin involves a series of enzymatic reactions that take place in specialized organelles called melanosomes. Melan-A/MART-1 is a melanocytic transmembrane protein with no enzymatic activity that accumulates in vesicles at the trans side of the Golgi and in melanosomes. We show here that, in melanoma cells, Melan-A associates with two homologous to E6-AP C-terminus (HECT)-E3 ubiquitin ligases, NEDD4 and Itch, and is ubiquitylated. Both NEDD4 and Itch participate in the degradation of Melan-A. A mutant Melan-A lacking ubiquitin-acceptor residues displays increased half-life and, in pigmented cells, accumulates in melanosomes. These results suggest that ubiquitylation regulates the lysosomal sorting and degradation of Melan-A/MART-1 from melanosomes in melanocytic cells. PMID:15703212

  17. Method and system rapid piece handling

    DOEpatents

    Spletzer, Barry L.

    1996-01-01

    The advent of high-speed fabric cutters has made necessary the development of automated techniques for the collection and sorting of garment pieces into collated piles of pieces ready for assembly. The present invention enables a new method for such handling and sorting of garment parts, and to apparatus capable of carrying out this new method. The common thread is the application of computer-controlled shuttling bins, capable of picking up a desired piece of fabric and dropping it in collated order for assembly. Such apparatus with appropriate computer control relieves the bottleneck now presented by the sorting and collation procedure, thus greatly increasing the overall rate at which garments can be assembled.

  18. Plasmodium yoelii yoelii 17XNL constitutively expressing GFP throughout the life cycle.

    PubMed

    Ono, Takeshi; Tadakuma, Takushi; Rodriguez, Ana

    2007-03-01

    Plasmodium yoelii is a rodent parasite commonly used as a model to study malaria infection. It is the preferred model parasite for liver-stage immunological studies and is also widely used to study hepatocyte, erythrocyte and mosquito infection. We have generated a P. yoelii yoelii 17XNL line that is stably transfected with the green fluorescent protein (gfp) gene. This parasite line constitutively expresses high levels of GFP during the complete parasite life cycle including liver, blood and mosquito stages. These fluorescent parasites can be used in combination with fluorescence activated cell sorting or live microscopy for a wide range of experimental applications.

  19. Incomplete Psychometric Equivalence of Scores Obtained on the Manual and the Computer Version of the Wisconsin Card Sorting Test?

    ERIC Educational Resources Information Center

    Steinmetz, Jean-Paul; Brunner, Martin; Loarer, Even; Houssemand, Claude

    2010-01-01

    The Wisconsin Card Sorting Test (WCST) assesses executive and frontal lobe function and can be administered manually or by computer. Despite the widespread application of the 2 versions, the psychometric equivalence of their scores has rarely been evaluated and only a limited set of criteria has been considered. The present experimental study (N =…

  20. Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum.

    PubMed Central

    Mullen, R T; Lisenbee, C S; Miernyk, J A; Trelease, R N

    1999-01-01

    The peroxisomal isoform of ascorbate peroxidase (APX) is a novel membrane isoform that functions in the regeneration of NAD(+) and protection against toxic reactive oxygen species. The intracellular localization and sorting of peroxisomal APX were examined both in vivo and in vitro. Epitope-tagged peroxisomal APX, which was expressed transiently in tobacco BY-2 cells, localized to a reticular/circular network that resembled endoplasmic reticulum (ER; 3,3'-dihexyloxacarbocyanine iodide-stained membranes) and to peroxisomes. The reticular network did not colocalize with other organelle marker proteins, including three ER reticuloplasmins. However, in vitro, peroxisomal APX inserted post-translationally into the ER but not into other purified organelle membranes (including peroxisomal membranes). Insertion into the ER depended on the presence of molecular chaperones and ATP. These results suggest that regions of the ER serve as a possible intermediate in the sorting pathway of peroxisomal APX. Insight into this hypothesis was obtained from in vivo experiments with brefeldin A (BFA), a toxin that blocks vesicle-mediated protein export from ER. A transiently expressed chloramphenicol acetyltransferase-peroxisomal APX (CAT-pAPX) fusion protein accumulated only in the reticular/circular network in BFA-treated cells; after subsequent removal of BFA from these cells, the CAT-pAPX was distributed to preexisting peroxisomes. Thus, plant peroxisomal APX, a representative enzymatic peroxisomal membrane protein, is sorted to peroxisomes through an indirect pathway involving a preperoxisomal compartment with characteristics of a distinct subdomain of the ER, possibly a peroxisomal ER subdomain. PMID:10559442

  1. Flow cytometric characterization of the response of Fanconi's anemia cells to mitomycin C treatment.

    PubMed

    Kaiser, T N; Lojewski, A; Dougherty, C; Juergens, L; Sahar, E; Latt, S A

    1982-03-01

    DNA flow histogram analysis, using 33342 Hoechst as a stain, has been used to detect the effect of the potentially bifunctional alkylating agent, mitomycin C (MMC) on dermal fibroblasts from patients with Fanconi's anemia (FA), a hereditary human disease characterized by pancytopenia, hypersensitivity to DNA-crosslinking agents, congenital abnormalities and a predisposition for neoplasia. At 24 or 48 hr after a 2-hr exposure to 0.05 or 0.10 micrograms/ml MMC, (3)HdT incorporation was reduced to a greater extent in FA cells than in normal cells. Cells sorted from the last half of S phase showed a slightly greater inhibition of (3)HdT incorporation than did those sorted from the first half of S. Fanconi's anemia cells exhibited a marked accumulation in the G(2) + M peak of flow histograms following exposure to MMC. Twenty-four hr after treatment with .0.5 micrograms/ml MMC, the G(2) + M fraction of FA cells (eight lines) increased to more than 0.5 from a control value of approximately 0.02. Both normals (six lines) and heterozygotes (eight lines) showed, on the average, much less of a G(2) + M increment than did FA cells, even after exposure to 0.1 micrograms/ml MMC. Examination of cells sorted from the G(2) + M peak revealed that MMC-treated FA cells were blocked prior to mitosis. To determine whether the response of FA cells was specific for bifunctional alkylating agent, cells were also treated with ethylmethanesulfonate, a monofunctional agent. Twenty-four hours after exposure to 0.25 or 0.5 mg/ml ethylmethanesulfonate, FA and normal cells showed similar, small increases in the G(2) + M peak. The results suggest the utility of flow cytometry in the diagnostic evaluation of fibroblasts from patients suspected of having Fanconi's anemia.

  2. Improved cell therapy protocol for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC and non-human primate iPSC-derived DA neurons

    PubMed Central

    Maria, Sundberg; Helle, Bogetofte; Tristan, Lawson; Gaynor, Smith; Arnar, Astradsson; Michele, Moore; Teresia, Osborn; Oliver, Cooper; Roger, Spealman; Penelope, Hallett; Ole, Isacson

    2013-01-01

    The main motor symptoms of Parkinson’s disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson’s disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA-neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for pre-clinical evaluation of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate-iPSC (PiPSC)-derived DA neurons. According to our results, NCAM+/CD29low sorting enriched VM DA-neurons from pluripotent stem cell-derived neural cell populations. NCAM+/CD29low DA-neurons were positive for FOXA2/TH and EN1/TH and this cell population had increased expression levels of FOXA2, LMX1A, TH, GIRK2, PITX3, EN1, NURR1 mRNA compared to unsorted neural cell populations. PiPSC-derived NCAM+/CD29low DA-neurons were able to restore motor function of 6-OHDA lesioned rats 16 weeks after transplantation. The transplanted sorted cells also integrated in the rodent brain tissue, with robust TH+/hNCAM+ neuritic innervation of the host striatum. One year after autologous transplantation, the primate iPSC-derived neural cells survived in the striatum of one primate without any immunosuppression. These neural cell grafts contained FOXA2/TH-positive neurons in the graft site. This is an important proof of concept for the feasibility and safety of iPSC-derived cell transplantation therapies in the future. PMID:23666606

  3. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions.

    PubMed

    Medrano, Jose V; Rombaut, Charlotte; Simon, Carlos; Pellicer, Antonio; Goossens, Ellen

    2016-11-01

    To study the ability of human spermatogonial stem cells (hSSCs) to proliferate in vitro under mouse spermatogonial stem cell (mSSC) culture conditions. Experimental basic science study. Reproductive biology laboratory. Cryopreserved testicular tissue with normal spermatogenesis obtained from three donors subjected to orchiectomy due to a prostate cancer treatment. Testicular cells used to create in vitro cell cultures corresponding to the following groups: [1] unsorted human testicular cells, [2] differentially plated human testicular cells, and [3] cells enriched with major histocompatibility complex class 1 (HLA - )/epithelial cell surface antigen (EPCAM + ) in coculture with inactivated testicular feeders from the same patient. Analyses and characterization including immunocytochemistry and quantitative reverse-transcription polymerase chain reaction for somatic and germ cell markers, testosterone and inhibin B quantification, and TUNEL assay. Putative hSSCs appeared in singlets, doublets, or small groups of up to four cells in vitro only when testicular cells were cultured in StemPro-34 medium supplemented with glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF). Fluorescence-activated cell sorting with HLA - /EPCAM + resulted in an enrichment of 27% VASA + /UTF1 + hSSCs, compared to 13% in unsorted controls. Coculture of sorted cells with inactivated testicular feeders gave rise to an average density of 112 hSSCs/cm 2 after 2 weeks in vitro compared with unsorted cells (61 hSSCs/cm 2 ) and differentially plated cells (49 hSSCS/cm 2 ). However, putative hSSCs rarely stained positive for the proliferation marker Ki67, and their presence was reduced to the point of almost disappearing after 4 weeks in vitro. We found that hSSCs show limited proliferation in vitro under mSSC culture conditions. Coculture of HLA - /EPCAM + sorted cells with testicular feeders improved the germ cell/somatic cell ratio. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Cancer diagnostics using neural network sorting of processed images

    NASA Astrophysics Data System (ADS)

    Wyman, Charles L.; Schreeder, Marshall; Grundy, Walt; Kinser, Jason M.

    1996-03-01

    A combination of image processing with neural network sorting was conducted to demonstrate feasibility of automated cervical smear screening. Nuclei were isolated to generate a series of data points relating to the density and size of individual nuclei. This was followed by segmentation to isolate entire cells for subsequent generation of data points to bound the size of the cytoplasm. Data points were taken on as many as ten cells per image frame and included correlation against a series of filters providing size and density readings on nuclei. Additional point data was taken on nuclei images to refine size information and on whole cells to bound the size of the cytoplasm, twenty data points per assessed cell were generated. These data point sets, designated as neural tensors, comprise the inputs for training and use of a unique neural network to sort the images and identify those indicating evidence of disease. The neural network, named the Fast Analog Associative Memory, accumulates data and establishes lookup tables for comparison against images to be assessed. Six networks were trained to differentiate normal cells from those evidencing various levels abnormality that may lead to cancer. A blind test was conducted on 77 images to evaluate system performance. The image set included 31 positives (diseased) and 46 negatives (normal). Our system correctly identified all 31 positives and 41 of the negatives with 5 false positives. We believe this technology can lead to more efficient automated screening of cervical smears.

  5. Expression and function of orphan nuclear receptor TLX in adult neural stem cells.

    PubMed

    Shi, Yanhong; Chichung Lie, D; Taupin, Philippe; Nakashima, Kinichi; Ray, Jasodhara; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2004-01-01

    The finding of neurogenesis in the adult brain led to the discovery of adult neural stem cells. TLX was initially identified as an orphan nuclear receptor expressed in vertebrate forebrains and is highly expressed in the adult brain. The brains of TLX-null mice have been reported to have no obvious defects during embryogenesis; however, mature mice suffer from retinopathies, severe limbic defects, aggressiveness, reduced copulation and progressively violent behaviour. Here we show that TLX maintains adult neural stem cells in an undifferentiated, proliferative state. We show that TLX-expressing cells isolated by fluorescence-activated cell sorting (FACS) from adult brains can proliferate, self-renew and differentiate into all neural cell types in vitro. By contrast, TLX-null cells isolated from adult mutant brains fail to proliferate. Reintroducing TLX into FACS-sorted TLX-null cells rescues their ability to proliferate and to self-renew. In vivo, TLX mutant mice show a loss of cell proliferation and reduced labelling of nestin in neurogenic areas in the adult brain. TLX can silence glia-specific expression of the astrocyte marker GFAP in neural stem cells, suggesting that transcriptional repression may be crucial in maintaining the undifferentiated state of these cells.

  6. Correlations between the Dielectric Properties and Exterior Morphology of Cells Revealed by Dielectrophoretic Field-Flow Fractionation

    PubMed Central

    Gascoyne, Peter R. C.; Shim, Sangjo; Noshari, Jamileh; Becker, Frederick F.; Stemke-Hale, Katherine

    2013-01-01

    Although dielectrophoresis (DEP) has great potential for addressing clinical cell isolation problems based on cell dielectric differences, a biological basis for predicting the DEP behavior of cells has been lacking. Here, the dielectric properties of the NCI-60 panel of tumor cell types have been measured by dielectrophoretic (DEP) field-flow fractionation, correlated with the exterior morphologies of the cells during growth, and compared with the dielectric and morphological characteristics of the subpopulations of peripheral blood. In agreement with earlier findings, cell total capacitance varied with both cell size and plasma membrane folding and the dielectric properties of the NCI-60 cell types in suspension reflected the plasma membrane area and volume of the cells at their growth sites. Therefore, the behavior of cells in DEP-based manipulations is largely determined by their exterior morphological characteristics prior to release into suspension. As a consequence, DEP is able to discriminate between cells of similar size having different morphological origins, offering a significant advantage over size-based filtering for isolating circulating tumor cells, for example. The findings provide a framework for anticipating cell dielectric behavior on the basis of structure-function relationships and suggest that DEP should be widely applicable as a surface marker-independent method for sorting cells. PMID:23172680

  7. Efficient Sampling of Parsimonious Inversion Histories with Application to Genome Rearrangement in Yersinia

    PubMed Central

    Darling, Aaron E.

    2009-01-01

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called “MC4Inversion.” We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique. PMID:20333186

  8. Programmable In Vitro Coencapsidation of Guest Proteins for Intracellular Delivery by Virus-like Particles.

    PubMed

    Dashti, Noor H; Abidin, Rufika S; Sainsbury, Frank

    2018-05-22

    Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages are being developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both in vitro and in vivo cell engineering. However, there is a lack of bionanotechnology platforms that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for in vivo self-sorting of cargo-linked capsomeres of murine polyomavirus (MPyV) that enables controlled encapsidation of guest proteins by in vitro self-assembly. Using Förster resonance energy transfer, we demonstrate the flexibility in this system to support coencapsidation of multiple proteins. Complementing these ensemble measurements with single-particle analysis by super-resolution microscopy shows that the stochastic nature of coencapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable coencapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.

  9. Real-Time Pattern Recognition - An Industrial Example

    NASA Astrophysics Data System (ADS)

    Fitton, Gary M.

    1981-11-01

    Rapid advancements in cost effective sensors and micro computers are now making practical the on-line implementation of pattern recognition based systems for a variety of industrial applications requiring high processing speeds. One major application area for real time pattern recognition is in the sorting of packaged/cartoned goods at high speed for automated warehousing and return goods cataloging. While there are many OCR and bar code readers available to perform these functions, it is often impractical to use such codes (package too small, adverse esthetics, poor print quality) and an approach which recognizes an item by its graphic content alone is desirable. This paper describes a specific application within the tobacco industry, that of sorting returned cigarette goods by brand and size.

  10. Applications of single kernel conventional and hyperspectral imaging near infrared spectroscopy in cereals.

    PubMed

    Fox, Glen; Manley, Marena

    2014-01-30

    Single kernel (SK) near infrared (NIR) reflectance and transmittance technologies have been developed during the last two decades for a range of cereal grain physical quality and chemical traits as well as detecting and predicting levels of toxins produced by fungi. Challenges during the development of single kernel near infrared (SK-NIR) spectroscopy applications are modifications of existing NIR technology to present single kernels for scanning as well as modifying reference methods for the trait of interest. Numerous applications have been developed, and cover almost all cereals although most have been for key traits including moisture, protein, starch and oil in the globally important food grains, i.e. maize, wheat, rice and barley. An additional benefit in developing SK-NIR applications has been to demonstrate the value in sorting grain infected with a fungus or mycotoxins such as deoxynivalenol, fumonisins and aflatoxins. However, there is still a need to develop cost-effective technologies for high-speed sorting which can be used for small grain samples such as those from breeding programmes or commercial sorting; capable of sorting tonnes per hour. Development of SK-NIR technologies also includes standardisation of SK reference methods to analyse single kernels. For protein content, the use of the Dumas method would require minimal standardisation; for starch or oil content, considerable development would be required. SK-NIR, including the use of hyperspectral imaging, will improve our understanding of grain quality and the inherent variation in the range of a trait. In the area of food safety, this technology will benefit farmers, industry and consumers if it enables contaminated grain to be removed from the human food chain. © 2013 Society of Chemical Industry.

  11. IDENTIFICATION AND CHARACTERIZATION OF INFECTIOUS AND NON-INFECTIOUS SUB-POPULATIONS OF ENCEPHALITIZOON INTESTINALIS SPORES PURIFIED FROM IN VITRO CELL CULTURE

    EPA Science Inventory

    Background: Encephalitizoon intestinalis spores were propagated in rabbit kidney (RK-13) cells and were purified using density gradient (Percoll [registered trademark]) centrifugation. Purified spores were enumeraged and aliquotted using flow cytometry with cell sorting for use...

  12. The Role of IQGAP1 in Breast Carcinoma

    DTIC Science & Technology

    2011-10-01

    study! of! the! pathogenesis! of! breast! cancer.! These! include! analysis ! of! intracellular! signaling!by!Western!blotting,! determination!of! cell...proliferation!by! sulforhodamine!B! staining,! fluorescence: activated!cell!sorting!(FACS)! analysis ,!stable!cell!line!generation,!production!of!and...transduction!using!retroviral! and!lentiviral!supernatants,! immunocytochemistry!and!confocal! laser!microscopy,! immunohistochemistry,!and! analysis

  13. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation.

    PubMed

    Kulterer, Birgit; Friedl, Gerald; Jandrositz, Anita; Sanchez-Cabo, Fatima; Prokesch, Andreas; Paar, Christine; Scheideler, Marcel; Windhager, Reinhard; Preisegger, Karl-Heinz; Trajanoski, Zlatko

    2007-03-12

    Human mesenchymal stem cells (MSC) with the capacity to differentiate into osteoblasts provide potential for the development of novel treatment strategies, such as improved healing of large bone defects. However, their low frequency in bone marrow necessitate ex vivo expansion for further clinical application. In this study we asked if MSC are developing in an aberrant or unwanted way during ex vivo long-term cultivation and if artificial cultivation conditions exert any influence on their stem cell maintenance. To address this question we first developed human oligonucleotide microarrays with 30.000 elements and then performed large-scale expression profiling of long-term expanded MSC and MSC during differentiation into osteoblasts. The results showed that MSC did not alter their osteogenic differentiation capacity, surface marker profile, and the expression profiles of MSC during expansion. Microarray analysis of MSC during osteogenic differentiation identified three candidate genes for further examination and functional analysis: ID4, CRYAB, and SORT1. Additionally, we were able to reconstruct the three developmental phases during osteoblast differentiation: proliferation, matrix maturation, and mineralization, and illustrate the activation of the SMAD signaling pathways by TGF-beta2 and BMPs. With a variety of assays we could show that MSC represent a cell population which can be expanded for therapeutic applications.

  14. A Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification

    PubMed Central

    Huh, Dongeun; Bahng, Joong Hwan; Ling, Yibo; Wei, Hsien-Hung; Kripfgans, Oliver D.; Fowlkes, J. Brian; Grotberg, James B.; Takayama, Shuichi

    2008-01-01

    This paper describes a simple microfluidic sorting system that can perform size-profiling and continuous mass-dependent separation of particles through combined use of gravity (1g) and hydrodynamic flows capable of rapidly amplifying sedimentation-based separation between particles. Operation of the device relies on two microfluidic transport processes: i) initial hydrodynamic focusing of particles in a microchannel oriented parallel to gravity, ii) subsequent sample separation where positional difference between particles with different mass generated by sedimentation is further amplified by hydrodynamic flows whose streamlines gradually widen out due to the geometry of a widening microchannel oriented perpendicular to gravity. The microfluidic sorting device was fabricated in poly(dimethylsiloxane) (PDMS), and hydrodynamic flows in microchannels were driven by gravity without using external pumps. We conducted theoretical and experimental studies on fluid dynamic characteristics of laminar flows in widening microchannels and hydrodynamic amplification of particle separation. Direct trajectory monitoring, collection, and post-analysis of separated particles were performed using polystyrene microbeads with different sizes to demonstrate rapid (< 1 min) and high-purity (> 99.9 %) separation. Finally, we demonstrated biomedical applications of our system by isolating small-sized (diameter < 6 μm) perfluorocarbon liquid droplets from polydisperse droplet emulsions, which is crucial in preparing contrast agents for safe, reliable ultrasound medical imaging, tracers for magnetic resonance imaging, or transpulmonary droplets used in ultrasound-based occlusion therapy for cancer treatment. Our method enables straightforward, rapid real-time size-monitoring and continuous separation of particles in simple stand-alone microfabricated devices without the need for bulky and complex external power sources. We believe that this system will provide a useful tool o separate colloids and particles for various analytical and preparative applications, and may hold 3 potential for separation of cells or development of diagnostic tools requiring point-of-care sample preparation or testing. PMID:17297936

  15. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  16. A Polarized Cell Model for Chikungunya Virus Infection: Entry and Egress of Virus Occurs at the Apical Domain of Polarized Cells

    PubMed Central

    Lim, Pei Jin; Chu, Justin Jang Hann

    2014-01-01

    Chikungunya virus (CHIKV) has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals. PMID:24587455

  17. Microfluidic, marker-free isolation of circulating tumor cells from blood samples

    PubMed Central

    Karabacak, Nezihi Murat; Spuhler, Philipp S; Fachin, Fabio; Lim, Eugene J; Pai, Vincent; Ozkumur, Emre; Martel, Joseph M; Kojic, Nikola; Smith, Kyle; Chen, Pin-i; Yang, Jennifer; Hwang, Henry; Morgan, Bailey; Trautwein, Julie; Barber, Thomas A; Stott, Shannon L; Maheswaran, Shyamala; Kapur, Ravi; Haber, Daniel A; Toner, Mehmet

    2014-01-01

    The ability to isolate and analyze rare circulating tumor cells (CTCs) has the potential to further our understanding of cancer metastasis and enhance the care of cancer patients. In this protocol, we describe the procedure for isolating rare CTCs from blood samples by using tumor antigen–independent microfluidic CTC-iChip technology. The CTC-iChip uses deterministic lateral displacement, inertial focusing and magnetophoresis to sort up to 107 cells/s. By using two-stage magnetophoresis and depletion antibodies against leukocytes, we achieve 3.8-log depletion of white blood cells and a 97% yield of rare cells with a sample processing rate of 8 ml of whole blood/h. The CTC-iChip is compatible with standard cytopathological and RNA-based characterization methods. This protocol describes device production, assembly, blood sample preparation, system setup and the CTC isolation process. Sorting 8 ml of blood sample requires 2 h including setup time, and chip production requires 2–5 d. PMID:24577360

  18. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis

    PubMed Central

    Delevoye, Cédric; Hurbain, Ilse; Tenza, Danièle; Sibarita, Jean-Baptiste; Uzan-Gafsou, Stéphanie; Ohno, Hiroshi; Geerts, Willie J.C.; Verkleij, Arie J.; Salamero, Jean; Marks, Michael S.

    2009-01-01

    Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type–specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1– and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type–specific positioning of endosomes that facilitate endosome–LRO contacts and are required for organelle maturation. PMID:19841138

  19. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse.

    PubMed

    Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W; Kam, Lance C; Stokes, David L; Dustin, Michael L

    2014-03-06

    The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.

  20. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse

    NASA Astrophysics Data System (ADS)

    Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W.; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W.; Kam, Lance C.; Stokes, David L.; Dustin, Michael L.

    2014-03-01

    The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.

Top