Sample records for cell specific differential

  1. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression

    PubMed Central

    Ruijtenberg, Suzan; van den Heuvel, Sander

    2016-01-01

    ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227

  2. Research progress on the proliferation and differentiation of

    NASA Astrophysics Data System (ADS)

    An, A.; Tan, B.

    Space environments such as microgravity magnetic field radiation and heavy metal ions affects the development and functions of human and mammalian cells To study these influences and the corresponding metabolisms is in favour of knowing about the development and differentiation process of organism cells In recent years researches on the differentiation of stem cells induced in vitro provide a new pathway for the repair of tissue lesion and therapy of human diseases Stem cells are potential in capable of differentiating into different functional cells But there has no reliable methods to induce the stem cells differentiating forward specific cells and to gain enough cells for transplantation which limited their application on clinical therapy It has been indicated that microgravity influenced embryonic development hematopoietic and mesenchymal stem cells and so on Hematopoietic stem cell migration and its differentiation were affected by microgravity The specific differentiation of hematopoietic stem cells was inhibited under microgravity The expression of proteins regulating cell cycle period also changed Mesenchymal stem cells provide a source of cells for the repair of musculoskeletal tissue in ground experiment While under microgravity the proliferation and differentiation of mesenchymal stem cells were influenced along with the differentiated cells function changed Furthermore in the differentiation process of stem cells under microgravity the mechanism of signal transport was also affected and the specific differentiation

  3. Differentiating Human Multipotent Mesenchymal Stromal Cells Regulate microRNAs: Prediction of microRNA Regulation by PDGF During Osteogenesis

    PubMed Central

    Goff, Loyal A.; Boucher, Shayne; Ricupero, Christopher L.; Fenstermacher, Sara; Swerdel, Mavis; Chase, Lucas; Adams, Christopher; Chesnut, Jonathan; Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Objective Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self renewal and differentiation. We propose that specific intracellular signalling pathways modulate gene expression during differentiation by regulating microRNA expression. Methods Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with PDGF signalling. Results The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted towards specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signalling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signalling was experimentally confirmed by direct PDGF inhibition. Conclusion Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. PMID:18657893

  4. Identifying States along the Hematopoietic Stem Cell Differentiation Hierarchy with Single Cell Specificity via Raman Spectroscopy.

    PubMed

    Ilin, Yelena; Choi, Ji Sun; Harley, Brendan A C; Kraft, Mary L

    2015-11-17

    A major challenge for expanding specific types of hematopoietic cells ex vivo for the treatment of blood cell pathologies is identifying the combinations of cellular and matrix cues that direct hematopoietic stem cells (HSC) to self-renew or differentiate into cell populations ex vivo. Microscale screening platforms enable minimizing the number of rare HSCs required to screen the effects of numerous cues on HSC fate decisions. These platforms create a strong demand for label-free methods that accurately identify the fate decisions of individual hematopoietic cells at specific locations on the platform. We demonstrate the capacity to identify discrete cells along the HSC differentiation hierarchy via multivariate analysis of Raman spectra. Notably, cell state identification is accurate for individual cells and independent of the biophysical properties of the functionalized polyacrylamide gels upon which these cells are cultured. We report partial least-squares discriminant analysis (PLS-DA) models of single cell Raman spectra enable identifying four dissimilar hematopoietic cell populations across the HSC lineage specification. Successful discrimination was obtained for a population enriched for long-term repopulating HSCs (LT-HSCs) versus their more differentiated progeny, including closely related short-term repopulating HSCs (ST-HSCs) and fully differentiated lymphoid (B cells) and myeloid (granulocytes) cells. The lineage-specific differentiation states of cells from these four subpopulations were accurately identified independent of the stiffness of the underlying biomaterial substrate, indicating subtle spectral variations that discriminated these populations were not masked by features from the culture substrate. This approach enables identifying the lineage-specific differentiation stages of hematopoietic cells on biomaterial substrates of differing composition and may facilitate correlating hematopoietic cell fate decisions with the extrinsic cues that elicited them.

  5. Regulation of H3K4me3 at Transcriptional Enhancers Characterizes Acquisition of Virus-Specific CD8+ T Cell-Lineage-Specific Function.

    PubMed

    Russ, Brendan E; Olshansky, Moshe; Li, Jasmine; Nguyen, Michelle L T; Gearing, Linden J; Nguyen, Thi H O; Olson, Matthew R; McQuilton, Hayley A; Nüssing, Simone; Khoury, Georges; Purcell, Damian F J; Hertzog, Paul J; Rao, Sudha; Turner, Stephen J

    2017-12-19

    Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs), we mapped the dynamics of ∼25,000 putative CD8 + T cell transcriptional enhancers (TEs) differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3 + ) chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8 + T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8 + T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation

    PubMed Central

    Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo

    2016-01-01

    Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate corneal epithelial cell-specific differentiation. PMID:27583466

  7. Diversity in TAF proteomics: consequences for cellular differentiation and migration.

    PubMed

    Kazantseva, Jekaterina; Palm, Kaia

    2014-09-19

    Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of "core transcription machinery" during cell differentiation, given that general transcription factors and their spatiotemporally patterned activity govern different aspects of cell function. In this review, we focus on the role of TATA-box associated factor 4 (TAF4) and its functional isoforms generated by alternative splicing in controlling lineage-specific differentiation of normal mesenchymal stem cells and cancer stem cells. In the light of our recent findings, induction, control and maintenance of cell differentiation status implies diversification of the transcription initiation apparatus orchestrated by alternative splicing.

  8. (beta)-catenin mediates the specification of endoderm cells in ascidian embryos.

    PubMed

    Imai, K; Takada, N; Satoh, N; Satou, Y

    2000-07-01

    In the present study, we addressed the role of (beta)-catenin in the specification of embryonic cells of the ascidians Ciona intestinalis and C. savignyi and obtained the following results: (1) During cleavages, (beta)-catenin accumulated in the nuclei of vegetal blastomeres, suggesting that it plays a role in the specification of endoderm. (2) Mis- and/or overexpression of (beta)-catenin induced the development of an endoderm-specific alkaline phosphatase (AP) in presumptive notochord cells and epidermis cells without affecting differentiation of primary lineage muscle cells. (3) Downregulation of (beta)-catenin induced by the overexpression of cadherin resulted in the suppression of endoderm cell differentiation. This suppression was compensated for by the differentiation of extra epidermis cells. (4) Specification of notochord cells did not take place in the absence of endoderm differentiation. Both the overexpression of (beta)-catenin in presumptive notochord cells and the downregulation of (beta)-catenin in presumptive endoderm cells led to the suppression of Brachyury gene expression, resulting in the failure of notochord specification. These results suggest that the accumulation of (beta)-catenin in the nuclei of endoderm progenitor cells is the first step in the process of ascidian endoderm specification.

  9. TOPICAL REVIEW: Artificial extracellular matrix for embryonic stem cell cultures: a new frontier of nanobiomaterials

    NASA Astrophysics Data System (ADS)

    Amranul Haque, Md; Nagaoka, Masato; Hexig, Bayar; Akaike, Toshihiro

    2010-02-01

    Nanobiomaterials can play a central role in regenerative medicine and tissue engineering by facilitating cellular behavior and function, such as those where extracellular matrices (ECMs) direct embryonic stem (ES) cell morphogenesis, proliferation, differentiation and apoptosis. However, controlling ES cell proliferation and differentiation using matrices from natural sources is still challenging due to complex and heterogeneous culture conditions. Moreover, the systemic investigation of the regulation of self-renewal and differentiation to lineage specific cells depends on the use of defined and stress-free culture conditions. Both goals can be achieved by the development of biomaterial design targeting ECM or growth factors for ES cell culture. This targeted application will benefit from expansion of ES cells for transplantation, as well as the production of a specific differentiated cell type either by controlling the differentiation in a very specific pathway or by elimination of undesirable cell types.

  10. Accounting for cell lineage and sex effects in the identification of cell-specific DNA methylation using a Bayesian model selection algorithm.

    PubMed

    White, Nicole; Benton, Miles; Kennedy, Daniel; Fox, Andrew; Griffiths, Lyn; Lea, Rodney; Mengersen, Kerrie

    2017-01-01

    Cell- and sex-specific differences in DNA methylation are major sources of epigenetic variation in whole blood. Heterogeneity attributable to cell type has motivated the identification of cell-specific methylation at the CpG level, however statistical methods for this purpose have been limited to pairwise comparisons between cell types or between the cell type of interest and whole blood. We developed a Bayesian model selection algorithm for the identification of cell-specific methylation profiles that incorporates knowledge of shared cell lineage and allows for the identification of differential methylation profiles in one or more cell types simultaneously. Under the proposed methodology, sex-specific differences in methylation by cell type are also assessed. Using publicly available, cell-sorted methylation data, we show that 51.3% of female CpG markers and 61.4% of male CpG markers identified were associated with differential methylation in more than one cell type. The impact of cell lineage on differential methylation was also highlighted. An evaluation of sex-specific differences revealed differences in CD56+NK methylation, within both single and multi- cell dependent methylation patterns. Our findings demonstrate the need to account for cell lineage in studies of differential methylation and associated sex effects.

  11. Differentiating Mouse Embryonic Stem Cells into Embryoid Bodies by Hanging-Drop Cultures.

    PubMed

    Behringer, Richard; Gertsenstein, Marina; Nagy, Kristina Vintersten; Nagy, Andras

    2016-12-01

    Embryonic stem (ES) cells can develop into many types of differentiated tissues if they are placed into a differentiating environment. This can occur in vivo when the ES cells are injected into or aggregated with an embryo, or in vitro if their culture conditions are modified to induce differentiation. There are an increasing number of differentiating culture conditions that can bias the differentiation of ES cells into desired cell types. Determining the mechanisms that control ES cell differentiation into therapeutically important cell types is a quickly growing area of research. Knowledge gained from these studies may eventually lead to the use of stem cells to repair specific damaged tissues. Many times ES cell differentiation proceeds through an intermediate stage called the embryoid body (EB). EBs are round structures composed of ES cells that have undergone some of the initial stages of differentiation. EBs can then be manipulated further to generate more specific cell types. This protocol describes a method to differentiate ES cells into EBs. It produces EBs of comparable size. This aspect is important because the differentiation processes taking place inside an EB are influenced by its size. © 2016 Cold Spring Harbor Laboratory Press.

  12. Role of alpha- and beta-adrenergic receptors in cardiomyocyte differentiation from murine-induced pluripotent stem cells.

    PubMed

    Li, Xiao-Li; Zeng, Di; Chen, Yan; Ding, Lu; Li, Wen-Ju; Wei, Ting; Ou, Dong-Bo; Yan, Song; Wang, Bin; Zheng, Qiang-Sun

    2017-02-01

    Induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a promising source of cells for regenerative heart disease therapies, but progress towards their use has been limited by their low differentiation efficiency and high cellular heterogeneity. Previous studies have demonstrated expression of adrenergic receptors (ARs) in stem cells after differentiation; however, roles of ARs in fate specification of stem cells, particularly in cardiomyocyte differentiation and development, have not been characterized. Murine-induced pluripotent stem cells (miPSCs) were cultured in hanging drops to form embryoid bodies, cells of which were then differentiated into cardiomyocytes. To determine whether ARs regulated miPSC differentiation into cardiac lineages, effects of the AR agonist, epinephrine (EPI), on miPSC differentiation and underlying signalling mechanisms, were evaluated. Treatment with EPI, robustly enhanced miPSC cardiac differentiation, as indicated by increased expression levels of cardiac-specific markers, GATA4, Nkx2.5 and Tnnt2. Although β-AR signalling is the foremost signalling pathway in cardiomyocytes, EPI-enhanced cardiac differentiation depended more on α-AR signalling than β-AR signalling. In addition, selective activation of α 1 -AR signalling with specific agonists induced vigorous cardiomyocyte differentiation, whereas selective activation of α 2 - or β-AR signalling induced no or less differentiation, respectively. EPI- and α 1 -AR-dependent cardiomyocyte differentiation from miPSCs occurred through specific promotion of CPC proliferation via the MEK-ERK1/2 pathway and regulation of miPS cell-cycle progression. These results demonstrate that activation of ARs, particularly of α 1 -ARs, promoted miPSC differentiation into cardiac lineages via MEK-ERK1/2 signalling. © 2016 John Wiley & Sons Ltd.

  13. Developmental Regulation of Nucleolus Size during Drosophila Eye Differentiation

    PubMed Central

    Baker, Nicholas E.

    2013-01-01

    When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals. PMID:23472166

  14. Developmental regulation of nucleolus size during Drosophila eye differentiation.

    PubMed

    Baker, Nicholas E

    2013-01-01

    When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.

  15. Characteristics of mesenchymal stem cells isolated from bone marrow of giant panda.

    PubMed

    Liu, Yuliang; Liu, Yang; Yie, Shangmian; Lan, Jingchao; Pi, Jinkui; Zhang, Zhihe; Huang, He; Cai, Zhigang; Zhang, Ming; Cai, Kailai; Wang, Hairui; Hou, Rong

    2013-09-01

    In present study, we report on bone marrow (BM) mesenchymal stem cells (MSCs) that are isolated from giant pandas. Cells were collected from the BM of two stillborn giant pandas. The cells were cultured and expanded in 10% fetal bovine serum medium. Cell morphology was observed under an inverted microscopy, and the proliferation potential of the cells was evaluated by counting cell numbers for eight consecutive days. Differentiation potentials of the cells were determined by using a variety of differentiation protocols for osteocytes, adipocytes, neuron cells, and cardiomyocytes. Meanwhile, the specific gene expressions for MSCs or differentiated cells were analyzed by RT-PCR. The isolated cells exhibited a fibroblast-like morphology; expressed mesenchymal specific markers such as cluster of differentiation 73 (CD73), SRY (sex determining region Y)-box 2 (SOX-2), guanine nucleotide-binding protein-like 3 (GNL3), and stem cell factor receptor (SCFR); and could be differentiated into osteocytes and adipocytes that were characterized by Alizarin Red and Oil Red O staining. Under appropriate induction conditions, these cells were also able to differentiate into neuroglial-like or myocardial-like cells that expressed specific myocardial markers such as GATA transcription factors 4 (GATA-4), cardiac troponin T (cTnT), and myosin heavy chain 7B (MYH7B), or neural specific markers such as Nestin and glial fibrillary acidic protein (GFAP). This study demonstrated stem cells recovery and growth from giant pandas. The findings suggest that cells isolated from the BM of giant pandas have a high proliferative capacity and multiple differentiation potential in vitro which might aid conservation efforts.

  16. Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin

    PubMed Central

    Wiese, Cornelia; Nikolova, Teodora; Zahanich, Ihor; Sulzbacher, Sabine; Fuchs, Joerg; Yamanaka, Satoshi; Graf, Eva; Ravens, Ursula; Boheler, Kenneth R.; Wobus, Anna M.

    2015-01-01

    Background Embryonic stem (ES) cells differentiate into cardiac phenotypes representing early pacemaker-, atrial-, ventricular-, and sinus node-like cells, however, ES-derived specification into sinus nodal cells is not yet known. By using the naphthylamine derivative of urea, suramin, we were able to follow the process of cardiac specialization into sinus node-like cells. Methods Differentiating mouse ES cells were treated with suramin (500 μM) from day 5 to 7 of embryoid body formation, and cells were analysed for their differentiation potential via morphological analysis, flow cytometry, RT-PCR, immunohistochemistry and patch clamp analysis. Results Application of suramin resulted in an increased number of cardiac cells, but inhibition of neuronal, skeletal muscle and definitive endoderm differentiation. Immediately after suramin treatment, a decreased mesendoderm differentiation was found. Brachyury, FGF10, Wnt8 and Wnt3a transcript levels were significantly down-regulated, followed by a decrease in mesoderm- and cardiac progenitor-specific markers BMP2, GATA4/5, Wnt11, Isl1, Nkx2.5 and Tbx5 immediately after removal of the substance. With continued differentiation, a significant up-regulation of Brachyury, FGF10 and GATA5 transcript levels was observed, whereas Nkx2.5, Isl1, Tbx5, BMP2 and Wnt11 levels were normalized to control levels. At advanced differentiation stages, sinus node-specific HCN4, Tbx2 and Tbx3 transcript levels were significantly up-regulated. Immunofluorescence and patch-clamp analysis confirmed the increased number of sinus node-like cells, and electrophysiological analysis revealed a lower number of atrial- and ventricular-like cardiomyocytes following suramin treatment. Conclusion We conclude that the interference of suramin with the cardiac differentiation process modified mesoderm- and cardiac-specific gene expression resulting in enhanced formation of sinus node-like cells. PMID:19775764

  17. A Method for the Direct Identification of Differentiating Muscle Cells by a Fluorescent Mitochondrial Dye

    PubMed Central

    Miyake, Tetsuaki; McDermott, John C.; Gramolini, Anthony O.

    2011-01-01

    Identification of differentiating muscle cells generally requires fixation, antibodies directed against muscle specific proteins, and lengthy staining processes or, alternatively, transfection of muscle specific reporter genes driving GFP expression. In this study, we examined the possibility of using the robust mitochondrial network seen in maturing muscle cells as a marker of cellular differentiation. The mitochondrial fluorescent tracking dye, MitoTracker, which is a cell-permeable, low toxicity, fluorescent dye, allowed us to distinguish and track living differentiating muscle cells visually by epi-fluorescence microscopy. MitoTracker staining provides a robust and simple detection strategy for living differentiating cells in culture without the need for fixation or biochemical processing. PMID:22174849

  18. In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates.

    PubMed

    Qi, Hao; Huang, Guoyou; Han, Yu Long; Lin, Wang; Li, Xiujun; Wang, Shuqi; Lu, Tian Jian; Xu, Feng

    2016-01-01

    With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.

  19. Prohibitin 2 Regulates the Proliferation and Lineage-Specific Differentiation of Mouse Embryonic Stem Cells in Mitochondria

    PubMed Central

    Komazaki, Shinji; Enomoto, Kei; Seki, Yasuhiro; Wang, Ying Ying; Ishigaki, Yohei; Ninomiya, Naoto; Noguchi, Taka-aki K.; Kokubu, Yuko; Ohnishi, Keigoh; Nakajima, Yoshiro; Kato, Kaoru; Intoh, Atsushi; Takada, Hitomi; Yamakawa, Norio; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2014-01-01

    Background The pluripotent state of embryonic stem (ES) cells is controlled by a network of specific transcription factors. Recent studies also suggested the significant contribution of mitochondria on the regulation of pluripotent stem cells. However, the molecules involved in these regulations are still unknown. Methodology/Principal Findings In this study, we found that prohibitin 2 (PHB2), a pleiotrophic factor mainly localized in mitochondria, is a crucial regulatory factor for the homeostasis and differentiation of ES cells. PHB2 was highly expressed in undifferentiated mouse ES cells, and the expression was decreased during the differentiation of ES cells. Knockdown of PHB2 induced significant apoptosis in pluripotent ES cells, whereas enhanced expression of PHB2 contributed to the proliferation of ES cells. However, enhanced expression of PHB2 strongly inhibited ES cell differentiation into neuronal and endodermal cells. Interestingly, only PHB2 with intact mitochondrial targeting signal showed these specific effects on ES cells. Moreover, overexpression of PHB2 enhanced the processing of a dynamin-like GTPase (OPA1) that regulates mitochondrial fusion and cristae remodeling, which could induce partial dysfunction of mitochondria. Conclusions/Significance Our results suggest that PHB2 is a crucial mitochondrial regulator for homeostasis and lineage-specific differentiation of ES cells. PMID:24709813

  20. Differentiation of embryonic stem cells into hepatocytes that coexpress coagulation factors VIII and IX.

    PubMed

    Cao, Jun; Shang, Chang-zhen; Lü, Li-hong; Qiu, De-chuan; Ren, Meng; Chen, Ya-jin; Min, Jun

    2010-11-01

    To establish an efficient culture system to support embryonic stem (ES) cell differentiation into hepatocytes that coexpress F-VIII and F-IX. Mouse E14 ES cells were cultured in differentiation medium containing sodium butyrate (SB), basic fibroblast growth factor (bFGF), and/or bone morphogenetic protein 4 (BMP4) to induce the differentiation of endoderm cells and hepatic progenitor cells. Hepatocyte growth factor, oncostatin M, and dexamethasone were then used to induce the maturation of ES cell-derived hepatocytes. The mRNA expression levels of endoderm-specific genes and hepatocyte-specific genes, including the levels of F-VIII and F-IX, were detected by RT-PCR and real-time PCR during various stages of differentiation. Protein expression was examined by immunofluorescence and Western blot. At the final stage of differentiation, flow cytometry was performed to determine the percentage of cells coexpressing F-VIII and F-IX, and ELISA was used to detect the levels of F-VIII and F-IX protein secreted into the culture medium. The expression of endoderm-specific and hepatocyte-specific markers was upregulated to highest level in response to the combination of SB, bFGF, and BMP4. Treatment with the three inducers during hepatic progenitor differentiation significantly enhanced the mRNA and protein levels of F-VIII and F-IX in ES cell-derived hepatocytes. More importantly, F-VIII and F-IX were coexpressed with high efficiency at the final stage of differentiation, and they were also secreted into the culture medium. We have established a novel in vitro differentiation protocol for ES-derived hepatocytes that coexpress F-VIII and F-IX that may provide a foundation for stem cell replacement therapy for hemophilia.

  1. Brca1 regulates in vitro differentiation of mammary epithelial cells.

    PubMed

    Kubista, Marion; Rosner, Margit; Kubista, Ernst; Bernaschek, Gerhard; Hengstschläger, Markus

    2002-07-18

    Murine Brca1 is widely expressed during development in different tissues. Why alterations of BRCA1 lead specifically to breast and ovarian cancer is currently not clarified. Here we show that Brca1 protein expression is upregulated during mammary epithelial differentiation of HC11 cells, during differentiation of C2C12 myoblasts into myotubes and during neuronal differentiation of N1E-115 cells. Ectopic overexpression of BRCA1 and downregulation of endogenous Brca1 expression specifically affect the regulation of mammary epithelial cell differentiation. Accelerated mammary epithelial cell differentiation upon high ectopic BRCA1 expression is not a consequence of the anti-proliferative capacity of this tumor suppressor and independent of functional p53. Overexpression of the BRCA1 variant lacking the large central exon 11 has no effects on mammary epithelial cell differentiation. These data provide new insights into the cellular role of Brca1.

  2. Cardiomyocyte differentiation of rat bone marrow multipotent progenitor cells is associated with downregulation of Oct-4 expression.

    PubMed

    Lu, Tiewei; Pelacho, Beatriz; Hao, Hong; Luo, Min; Zhu, Jing; Verfaillie, Catherine M; Tian, Jie; Liu, Zhenguo

    2010-10-01

    This study was to determine if bone marrow multipotent adult progenitor cells (MAPCs) underwent cardiac specification and Oct-4 expression during their cardiomyocyte differentiation in vitro. MAPCs were isolated from rat bone marrow, treated with 5-azacytidine (5-aza, 1μM) for 24h, and cultured in a serum-free medium for cardiac differentiation for up to 35 days. The cells started to express early cardiac-specific genes Nkx2.5 and GATA-4 with a significant increase in their mRNA level within 24h after 5-aza treatment. Western blotting analysis and immunofluorescence staining revealed that the cardiac-specific proteins connexin-43 and troponin I were expressed in the cells 7 days after 5-aza treatment. Flow cytometry analysis demonstrated that over 37% of the cells were positive for troponin I by 35 days of differentiation, although the cells did not display spontaneous contraction. On the other hand, the undifferentiated MAPCs expressed a significant level of the stem-cell-specific marker Oct-4 that was dramatically decreased in the cells shortly after the initiation of cardiomyocyte differentiation as evaluated using real-time (RT)-polymerase chain reaction, Western blotting, immunofluorescence staining, and flow cytometry. These data indicated that MAPCs were able to effectively differentiate into cardiomyocyte-like cells after 5-aza induction in association with downregulation of Oct-4 expression.

  3. Molecular biological features of male germ cell differentiation

    PubMed Central

    HIROSE, MIKA; TOKUHIRO, KEIZO; TAINAKA, HITOSHI; MIYAGAWA, YASUSHI; TSUJIMURA, AKIRA; OKUYAMA, AKIHIKO; NISHIMUNE, YOSHITAKE

    2007-01-01

    Somatic cell differentiation is required throughout the life of a multicellular organism to maintain homeostasis. In contrast, germ cells have only one specific function; to preserve the species by conveying the parental genes to the next generation. Recent studies of the development and molecular biology of the male germ cell have identified many genes, or isoforms, that are specifically expressed in the male germ cell. In the present review, we consider the unique features of male germ cell differentiation. (Reprod Med Biol 2007; 6: 1–9) PMID:29699260

  4. Key Transcription Factors in the Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Almalki, Sami G.; Agrawal, Devendra K.

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that represent a promising source for regenerative medicine. MSCs are capable of osteogenic, chondrogenic, adipogenic and myogenic differentiation. Efficacy of differentiated MSCs to regenerate cells in the injured tissues requires the ability to maintain the differentiation toward the desired cell fate. Since MSCs represent an attractive source for autologous transplantation, cellular and molecular signaling pathways and micro-environmental changes have been studied in order to understand the role of cytokines, chemokines, and transcription factors on the differentiation of MSCs. The differentiation of MSC into a mesenchymal lineage is genetically manipulated and promoted by specific transcription factors associated with a particular cell lineage. Recent studies have explored the integration of transcription factors, including Runx2, Sox9, PPARγ, MyoD, GATA4, and GATA6 in the differentiation of MSCs. Therefore, the overexpression of a single transcription factor in MSCs may promote trans-differentiation into specific cell lineage, which can be used for treatment of some diseases. In this review, we critically discussed and evaluated the role of transcription factors and related signaling pathways that affect the differentiation of MSCs toward adipocytes, chondrocytes, osteocytes, skeletal muscle cells, cardiomyocytes, and smooth muscle cells. PMID:27012163

  5. Derivation, propagation and differentiation of human embryonic stem cells.

    PubMed

    Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard

    2004-04-01

    Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug discovery, drug testing and repair of damaged or diseased tissues via transplantation.

  6. Adult human pancreas-derived cells expressing stage-specific embryonic antigen 4 differentiate into Sox9-expressing and Ngn3-expressing pancreatic ducts in vivo.

    PubMed

    Lee, Song; Lee, Chan Mi; Kim, Song Cheol

    2016-11-11

    Tissue-specific stem/progenitor cells are found in various adult tissues and may have the capacity for lineage-specific differentiation, facilitating applications in autologous transplantation. Stage-specific embryonic antigen 4 (SSEA-4), an early embryonic glycolipid antigen, is expressed in cells derived from adult human pancreas exocrine tissue. Here, we examined the characteristics and lineage-specific differentiation capacity of SSEA-4 + cells. Human adult partial pancreas tissues were obtained from different donors and cultured in vitro. SSEA-4 + and CA19-9 + cells were isolated from adult human pancreas exocrine cells using magnetic-activated cell sorting, and gene expression was validated by quantitative polymerase chain reaction. To confirm in-vivo differentiation, SSEA-4 + and CA19-9 + cells were transplanted into the dorsal subcutaneous region of mice. Finally, morphological features of differentiated areas were confirmed by immunostaining and morphometric analysis. SSEA-4-expressing cells were detected in isolated pancreas exocrine cells from adult humans. These SSEA-4 + cells exhibited coexpression of CA19-9, a marker of pancreatic duct cells, but not amylase expression, as shown by immunostaining and flow cytometry. SSEA-4 + cells exhibited higher relative expression of Oct4, Nanog, Klf4, Sox2, and c-Myc mRNAs than CA19-9 + cells. Pancreatic intralobular ducts (PIDs) were generated from SSEA-4 + or CA19-9 + cells in vivo at 5 weeks after transplantation. However, newly formed PIDs from CA19-9 + cells were less abundant and showed an incomplete PID morphology. In contrast, newly formed PIDs from SSEA-4 + cells were abundant in the transplanted area and showed a crowded morphology, typical of PIDs. Sox9 and Ngn3, key transcription factors associated with pancreatic development and regeneration, were expressed in PIDs from SSEA-4 + cells. SSEA-4-expressing cells in the adult human pancreas may have the potential for regeneration of the pancreas and may be used as a source of stem/progenitor cells for pancreatic cell lineage-specific differentiation.

  7. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells

    PubMed Central

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N.; McGinnis, Christopher S.; Zhou, Joseph X.; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-01-01

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or “tipping point” at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations. PMID:28167799

  8. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells.

    PubMed

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N; McGinnis, Christopher S; Zhou, Joseph X; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-02-28

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations.

  9. Inhibition of T Helper Cell Type 2 Cell Differentiation and Immunoglobulin E Response by Ligand-Activated Vα14 Natural Killer T Cells

    PubMed Central

    Cui, Junqing; Watanabe, Naohiro; Kawano, Tetsu; Yamashita, Masakatsu; Kamata, Tohru; Shimizu, Chiori; Kimura, Motoko; Shimizu, Eiko; Koike, Jyunzo; Koseki, Haruhiko; Tanaka, Yujiro; Taniguchi, Masaru; Nakayama, Toshinori

    1999-01-01

    Murine Vα14 natural killer T (NKT) cells are thought to play a crucial role in various immune responses, including infectious, allergic, and autoimmune diseases. Because Vα14 NKT cells produce large amounts of both interleukin (IL)-4 and interferon (IFN)-γ upon in vivo stimulation with a specific ligand, α-galactosylceramide (α-GalCer), or after treatment with anti-CD3 antibody, a regulatory role on helper T (Th) cell differentiation has been proposed for these cells. However, the identity of the cytokine produced by Vα14 NKT cells that play a dominant role on the Th cell differentiation still remains controversial. Here, we demonstrate by using Vα14 NKT-deficient mice that Vα14 NKT cells are dispensable for the induction of antigen-specific immunoglobulin (Ig)E responses induced by ovalbumin immunization or Nippostrongylus brasiliensis infection. However, upon in vivo activation with α-GalCer, Vα14 NKT cells are found to suppress antigen-specific IgE production. The suppression appeared to be IgE specific, and was not detected in either Vα14 NKT– or IFN-γ–deficient mice. Consistent with these results, we also found that ligand-activated Vα14 NKT cells inhibited Th2 cell differentiation in an in vitro induction culture system. Thus, it is likely that activated Vα14 NKT cells exert a potent inhibitory effect on Th2 cell differentiation and subsequent IgE production by producing a large amount of IFN-γ. In marked contrast, our studies have revealed that IL-4 produced by Vα14 NKT cells has only a minor effect on Th2 cell differentiation. PMID:10499917

  10. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook

    2007-06-29

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types,more » including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.« less

  11. Integrated Transcriptomic and Epigenomic Analysis of Primary Human Lung Epithelial Cell Differentiation

    PubMed Central

    Marconett, Crystal N.; Zhou, Beiyun; Rieger, Megan E.; Selamat, Suhaida A.; Dubourd, Mickael; Fang, Xiaohui; Lynch, Sean K.; Stueve, Theresa Ryan; Siegmund, Kimberly D.; Berman, Benjamin P.

    2013-01-01

    Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. PMID:23818859

  12. Microarray Detection Call Methodology as a Means to Identify and Compare Transcripts Expressed within Syncytial Cells from Soybean (Glycine max) Roots Undergoing Resistant and Susceptible Reactions to the Soybean Cyst Nematode (Heterodera glycines)

    PubMed Central

    Klink, Vincent P.; Overall, Christopher C.; Alkharouf, Nadim W.; MacDonald, Margaret H.; Matthews, Benjamin F.

    2010-01-01

    Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populations of plant root cells. Results. The analyses identified the presence of 13,291 transcripts between the 4 different sample types. The transcripts filtered down into a total of 6,267 that were detected as being present in one or more sample types. A comparative analysis of DCM and differential expression methods showed a group of genes that were not differentially expressed, but were expressed at detectable amounts within specific cell types. Conclusion. The DCM has identified patterns of gene expression not shown by differential expression analyses. DCM has identified genes that are possibly cell-type specific and/or involved in important aspects of plant nematode interactions during the resistance response, revealing the uniqueness of a particular cell population at a particular point during its differentiation process. PMID:20508855

  13. Differentiation of Symbiotic Cells and Endosymbionts in Medicago truncatula Nodulation Are Coupled to Two Transcriptome-Switches

    PubMed Central

    Maunoury, Nicolas; Redondo-Nieto, Miguel; Bourcy, Marie; Van de Velde, Willem; Alunni, Benoit; Laporte, Philippe; Durand, Patricia; Agier, Nicolas; Marisa, Laetitia; Vaubert, Danièle; Delacroix, Hervé; Duc, Gérard; Ratet, Pascal; Aggerbeck, Lawrence; Kondorosi, Eva; Mergaert, Peter

    2010-01-01

    The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix− nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this “nodule-specific transcriptome” were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic cells and also displayed a root-like transcriptome. A correlation thus exists between the differentiation of symbiotic nodule cells and the first wave of nodule specific gene activation and between differentiation of rhizobia to bacteroids and the second transcriptome wave in nodules. The differentiation of symbiotic cells and of bacteroids may therefore constitute signals for the execution of these transcriptome-switches. PMID:20209049

  14. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals.

    PubMed

    Frankenberg, Stephen; Shaw, Geoff; Freyer, Claudia; Pask, Andrew J; Renfree, Marilyn B

    2013-03-01

    Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals.

  15. Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation.

    PubMed

    Homma, Kohei; Usui, Sumiko; Kaneda, Makoto

    2017-03-01

    Fluorescent reporter gene knock-in induced pluripotent stem cell (iPSC) lines have been used to evaluate the efficiency of differentiation into specific cell lineages. Here, we report a knock-in strategy for the generation of human iPSC reporter lines in which a 2A peptide sequence and a red fluorescent protein (E2-Crimson) gene were inserted at the termination codon of the cone-rod homeobox (Crx) gene, a photoreceptor-specific transcriptional factor gene. The knock-in iPSC lines were differentiated into fluorescence-expressing cells in 3D retinal differentiation culture, and the fluorescent cells also expressed Crx specifically in the nucleus. We found that the fluorescence intensity was positively correlated with the expression levels of Crx mRNA and that fluorescent cells expressed rod photoreceptor-specific genes in the later stage of differentiation. Finally, we treated the fluorescent cells with DAPT, a Notch inhibitor, and found that DAPT-enhanced retinal differentiation was associated with up-regulation of Crx, Otx2 and NeuroD1, and down-regulation of Hes5 and Ngn2. These suggest that this knock-in strategy at the 3'-end of the target gene, combined with the 2A peptide linked to fluorescent proteins, offers a useful tool for labeling specific cell lineages or monitoring expression of any marker genes without affecting the function of the target gene. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  16. Anatomical gradients in proliferation and differentiation of embryonic rat CNS accessed by buoyant density fractionation: alpha 3, beta 3 and gamma 2 GABAA receptor subunit co-expression by post-mitotic neocortical neurons correlates directly with cell buoyancy.

    PubMed

    Maric, D; Maric, I; Ma, W; Lahojuji, F; Somogyi, R; Wen, X; Sieghart, W; Fritschy, J M; Barker, J L

    1997-03-01

    Development of the CNS occurs as a complex cascade of pre-programmed events involving distinct phases of cell proliferation and differentiation. Here we show these phases correlate with cells of specific buoyant densities which can be readily accessed by density gradient fractionation. Sprague-Dawley dams were pulse-labelled with bromodeoxyuridine (BrdU) and selected regions of embryonic (E) CNS tissues at E11-22 dissociated with papain into single-cell suspensions. Proliferative cell populations were assessed by anti-BrdU and propidium iodide staining using flow cytometry. Cell differentiation was evaluated using molecular and immunocytochemical probes against mRNAs and antigens differentiating the neuroepithelial, neuronal and glial cell lineages. The results show the emergence of distinctive spatiotemporal changes in BrdU+ populations throughout the CNS during embryonic development, which were followed by corresponding changes in the cellular distributions of antigens distinguishing specific cell types. Fractionation of neocortical cells using discontinuous Percoll gradients revealed that an increasing number of cells increase their buoyancy during corticogenesis. Immunocytochemical and molecular characterization showed that the proliferative and progenitor cell populations are for the most part associated with lower buoyancy or higher specific buoyant densities (> 1.056 g/ml) whereas the post-mitotic, differentiated neurons generally separated into fractions of higher buoyancy or lower specific buoyant densities (< 1.043 g/ml). Immunostaining with antibodies against several GABAA receptor subunits (alpha 3, beta 3, gamma 2) revealed that the highest percent (70-90%) of immunopositive cells could be identified in the most buoyant, differentiating neurons found in the cortical plate/subplate regions, with the lowest percent of the immunopositive cells found in the least buoyant, proliferative and progenitor cell populations originating from the ventricular/subventricular zones. Taken together, these results indicate that buoyant density is a distinguishing characteristic of embryonic CNS cells transforming from primarily proliferative to mainly differentiating, and that fractionation of these cells according to their buoyant densities provides rapid access to the properties of specific cell lineages during the prenatal period of CNS development.

  17. Effects of irradiation on stem cell response to differentiation inhibitors in the Planarian Dugesia etrusca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, V.E.; Lange, C.S.

    1976-07-01

    The planarian owes its extensive powers of regeneration to the possession of a totipotential stem cell system. The survival of the animal after irradiation depends mainly upon this system. In this respect the planarian is analogous to mammalian organ systems such as bone marrow or gut epithelium. The differentiated cells control the course of stem cell mediated tissue renewal by the secretion of differentiator and/or inhibitor substances. One such inhibitor substance, present in extracts prepared from homogenized whole planarians, specifically inhibits brain formation. This substance is organ specific, but not species specific. The differentiative integrity of the stem cells aftermore » irradiation is measured by comparing the regenerated brain volumes resulting from the presence or absence of the brain inhibitory extract during the regeneration period. Our data suggest that increasing doses of x irradiation decreases the ability of the stem cells to respond to differentiative substances. The data presented also explore the possibility of altering the postirradiation recovery pattern by shifting the differentiative demands placed on the stem cells. The final proportions of animals (one-half regenerated with, and one-half without, the extract) surviving after 60 days were not significantly different.« less

  18. Mtb-specific CD27low CD4 T cells as markers of lung tissue destruction during pulmonary tuberculosis in humans.

    PubMed

    Nikitina, Irina Yu; Kondratuk, Natalya A; Kosmiadi, George A; Amansahedov, Rasul B; Vasilyeva, Irina A; Ganusov, Vitaly V; Lyadova, Irina V

    2012-01-01

    Effector CD4 T cells represent a key component of the host's anti-tuberculosis immune defense. Successful differentiation and functioning of effector lymphocytes protects the host against severe M. tuberculosis (Mtb) infection. On the other hand, effector T cell differentiation depends on disease severity/activity, as T cell responses are driven by antigenic and inflammatory stimuli released during infection. Thus, tuberculosis (TB) progression and the degree of effector CD4 T cell differentiation are interrelated, but the relationships are complex and not well understood. We have analyzed an association between the degree of Mtb-specific CD4 T cell differentiation and severity/activity of pulmonary TB infection. The degree of CD4 T cell differentiation was assessed by measuring the percentages of highly differentiated CD27(low) cells within a population of Mtb- specific CD4 T lymphocytes ("CD27(low)IFN-γ(+)" cells). The percentages of CD27(low)IFN-γ+ cells were low in healthy donors (median, 33.1%) and TB contacts (21.8%) but increased in TB patients (47.3%, p<0.0005). Within the group of patients, the percentages of CD27(low)IFN-γ(+) cells were uniformly high in the lungs (>76%), but varied in blood (12-92%). The major correlate for the accumulation of CD27(low)IFN-γ(+) cells in blood was lung destruction (r = 0.65, p = 2.7 × 10(-7)). A cutoff of 47% of CD27(low)IFN-γ(+) cells discriminated patients with high and low degree of lung destruction (sensitivity 89%, specificity 74%); a decline in CD27(low)IFN-γ(+)cells following TB therapy correlated with repair and/or reduction of lung destruction (p<0.01). Highly differentiated CD27(low) Mtb-specific (CD27(low)IFN-γ(+)) CD4 T cells accumulate in the lungs and circulate in the blood of patients with active pulmonary TB. Accumulation of CD27(low)IFN-γ(+) cells in the blood is associated with lung destruction. The findings indicate that there is no deficiency in CD4 T cell differentiation during TB; evaluation of CD27(low)IFN-γ(+) cells provides a valuable means to assess TB activity, lung destruction, and tissue repair following TB therapy.

  19. Modeling human infertility with pluripotent stem cells.

    PubMed

    Chen, Di; Gell, Joanna J; Tao, Yu; Sosa, Enrique; Clark, Amander T

    2017-05-01

    Human fertility is dependent upon the correct establishment and differentiation of the germline. This is because no other cell type in the body is capable of passing a genome and epigenome from parent to child. Terminally differentiated germline cells in the adult testis and ovary are called gametes. However, the initial specification of germline cells occurs in the embryo around the time of gastrulation. Most of our knowledge regarding the cell and molecular events that govern human germline specification involves extrapolating scientific principles from model organisms, most notably the mouse. However, recent work using next generation sequencing, gene editing and differentiation of germline cells from pluripotent stem cells has revealed that the core molecular mechanisms that regulate human germline development are different from rodents. Here, we will discuss the major molecular pathways required for human germline differentiation and how pluripotent stem cells have revolutionized our ability to study the earliest steps in human embryonic lineage specification in order to understand human fertility. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Thermogelling 3D Systems towards Stem Cell-Based Tissue Regeneration Therapies.

    PubMed

    Wang, Xiaoyuan; Young, David James; Wu, Yun-Long; Loh, Xian Jun

    2018-03-02

    Stem cell culturing and differentiation is a very important research direction for tissue engineering. Thermogels are well suited for encapsulating cells because of their non-biotoxic nature and mild sol-gel transition as temperature increases. In particular, thermogels provide a 3D growth environment for stem cell growth, which is more similar to the extracellular matrix than flat substrates, so thermogels as a medium can overcome many of the cell abnormalities caused by 2D cell growth. In this review, we summarize the applications of thermogels in cell and stem cell culture in recent years. We also elaborate on the methods to induce stem cell differentiation by using thermogel-based 3D scaffolds. In particular, thermogels, encapsulating specific differentiation-inducing factor and having specific structures and moduli, can induce the differentiation into the desired tissue cells. Three dimensional thermogel scaffolds that control the growth and differentiation of cells will undoubtedly have a bright future in regenerative medicine.

  1. Identification of distinct topographical surface microstructures favoring either undifferentiated expansion or differentiation of murine embryonic stem cells.

    PubMed

    Markert, Lotte D'Andrea; Lovmand, Jette; Foss, Morten; Lauridsen, Rune Hoff; Lovmand, Michael; Füchtbauer, Ernst-Martin; Füchtbauer, Annette; Wertz, Karin; Besenbacher, Flemming; Pedersen, Finn Skou; Duch, Mogens

    2009-11-01

    The potential of embryonic stem (ES) cells for both self-renewal and differentiation into cells of all three germ layers has generated immense interest in utilizing these cells for tissue engineering or cell-based therapies. However, the ability to culture undifferentiated ES cells without the use of feeder cells as well as means to obtain homogeneous, differentiated cell populations devoid of residual pluripotent ES cells still remain major challenges. Here we have applied murine ES cells to topographically microstructured surface libraries, BioSurface Structure Arrays (BSSA), and investigated whether these could be used to (i) identify topographically microstructured growth supports alleviating the need for feeder cells for expansion of undifferentiated ES cells and (ii) identify specific types of microstructures enforcing differentiation of ES cells. The BSSA surfaces arrays consisted of 504 different topographical microstructures each located in a tester field of 3 x 3 mm. The murine ES cell lines CJ7 and KH2 were seeded upon the BSSA libraries and specific topographical structures facilitating either undifferentiated ES cell growth or enhancing spreading indicative of differentiation of the ES cells were identified. Secondly serial passage of undifferentiated CJ7 ES cells on selected microstructures, identified in the screening of these BSSA libraries, showed that these cells had retained germ-line potential. These results indicate that one specific type of topographical surface microstructures, identified by the BSSA technology, can substitute for feeder cells and that another subset may be used to eliminate undifferentiated ES cells from a population of differentiated ES cells.

  2. Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation

    PubMed Central

    García, Andrés J.; Vega, María D.; Boettiger, David

    1999-01-01

    Integrin-mediated cell adhesion to extracellular matrices provides signals essential for cell cycle progression and differentiation. We demonstrate that substrate-dependent changes in the conformation of adsorbed fibronectin (Fn) modulated integrin binding and controlled switching between proliferation and differentiation. Adsorption of Fn onto bacterial polystyrene (B), tissue culture polystyrene (T), and collagen (C) resulted in differences in Fn conformation as indicated by antibody binding. Using a biochemical method to quantify bound integrins in cultured cells, we found that differences in Fn conformation altered the quantity of bound α5 and β1 integrin subunits but not αv or β3. C2C12 myoblasts grown on these Fn-coated substrates proliferated to different levels (B > T > C). Immunostaining for muscle-specific myosin revealed minimal differentiation on B, significant levels on T, and extensive differentiation on C. Differentiation required binding to the RGD cell binding site in Fn and was blocked by antibodies specific for this site. Switching between proliferation and differentiation was controlled by the levels of α5β1 integrin bound to Fn, and differentiation was inhibited by anti-α5, but not anti-αv, antibodies, suggesting distinct integrin-mediated signaling pathways. Control of cell proliferation and differentiation through conformational changes in extracellular matrix proteins represents a versatile mechanism to elicit specific cellular responses for biological and biotechnological applications. PMID:10069818

  3. Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.

    PubMed

    Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa

    2015-05-01

    Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level. © 2015 International Federation for Cell Biology.

  4. Loss of Anterior Gradient 2 (Agr2) Expression Results in Hyperplasia and Defective Lineage Maturation in the Murine Stomach*

    PubMed Central

    Gupta, Aparna; Wodziak, Dariusz; Tun, May; Bouley, Donna M.; Lowe, Anson W.

    2013-01-01

    Recent studies of epithelial tissues have revealed the presence of tissue-specific stem cells that are able to establish multiple cell lineages within an organ. The stem cells give rise to progenitors that replicate before differentiating into specific cell lineages. The mechanism by which homeostasis is established between proliferating stem or progenitor cells and terminally differentiated cells is unclear. This study demonstrates that Agr2 expression by mucous neck cells in the stomach promotes the differentiation of multiple cell lineages while also inhibiting the proliferation of stem or progenitor cells. When Agr2 expression is absent, gastric mucous neck cells increased in number as does the number of proliferating cells. Agr2 expression loss also resulted in the decline of terminally differentiated cells, which was supplanted by cells that exhibited nuclear SOX9 labeling. Sox9 expression has been associated with progenitor and stem cells. Similar effects of the Agr2 null on cell proliferation in the intestine were also observed. Agr2 consequently serves to maintain the balance between proliferating and differentiated epithelial cells. PMID:23209296

  5. Forced expression of Hnf4a induces hepatic gene activation through directed differentiation.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Fathi, Fardin

    2016-08-05

    Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Enhancement of neuronal differentiation by using small molecules modulating Nodal/Smad, Wnt/β-catenin, and FGF signaling.

    PubMed

    Song, Yonghee; Lee, Somyung; Jho, Eek-Hoon

    2018-06-08

    Pluripotent embryonic stem cells are one of the best modalities for the disease treatment due to their potential for self-renewal and differentiation into various cell types. Induction of stem cell differentiation into specific cell lineages has been investigated for decades, especially in vitro neuronal differentiation of embryonic stem cells. However, in vitro differentiation methods do not yield sufficient amounts of neurons for use in the therapeutic treatment of neurological disorders. Here, we provide an improved neuronal differentiation method based on a combination of small regulatory molecules for specific signaling pathways (FGF4 for FGF signaling, SB431542 for Nodal/Smad signaling, and XAV939 and BIO for Wnt signaling) in N2B27 media. We found that FGF4 was required for neural induction, SB431542 accelerated neural precursor differentiation, and treatment with XAV939 and BIO at different periods enhanced neuronal differentiation. These optimized neuronal differentiation conditions may allow a greater neuron cell yield within a shorter time than current methods and be the basis for treatment of neurological dysfunction using stem cells. Copyright © 2018. Published by Elsevier Inc.

  7. Fine regulation of RhoA and Rock is required for skeletal muscle differentiation.

    PubMed

    Castellani, Loriana; Salvati, Erica; Alemà, Stefano; Falcone, Germana

    2006-06-02

    The RhoA GTPase controls a variety of cell functions such as cell motility, cell growth, and gene expression. Previous studies suggested that RhoA mediates signaling inputs that promote skeletal myogenic differentiation. We show here that levels and activity of RhoA protein are down-regulated in both primary avian myoblasts and mouse satellite cells undergoing differentiation, suggesting that a fine regulation of this GTPase is required. In addition, ectopic expression of activated RhoA in primary quail myocytes, but not in mouse myocytes, inhibits accumulation of muscle-specific proteins and cell fusion. By disrupting RhoA signaling with specific inhibitors, we have shown that this GTPase, although required for cell identity in proliferating myoblasts, is not essential for commitment to terminal differentiation and muscle gene expression. Ectopic expression of an activated form of its downstream effector, Rock, impairs differentiation of both avian and mouse myoblasts. Conversely, Rock inhibition with specific inhibitors and small interfering RNA-mediated gene silencing leads to accelerated progression in the lineage and enhanced cell fusion, underscoring a negative regulatory function of Rock in myogenesis. Finally, we have reported that Rock acts independently from RhoA in preventing myoblast exit from the cell cycle and commitment to differentiation and may receive signaling inputs from Raf-1 kinase.

  8. The differentiation directions of the bone marrow stromal cells under modeling microgravity

    NASA Astrophysics Data System (ADS)

    Nesterenko, Olga; Rodionova, Natalia; Katkova, Olena

    Within experiments on rats simulating microgravity by base load remove from back limbs (duration of the experiment 1,5 months) on marrow stromal cells cultures (ex vivo, in vitro) comprising osteogenic cells-predecessors, extracted from femurs, studied their peculiarities of the colony formation ablity, the cell structure, some cytological and ultra-structural characteristics and differentiation direction. It was found that that under microgravity conditions there is a decline of the stromal cells colony formation intensity, decrease of the colonies size and cells mitotic activity that indicates decrease of their growth potential. Both in control and in experiment the colonies were presented by population of low-differentiated cells, differentiated cells and mature cells. The comparative cytological and morphometric analysis have shown that the studied stromal cells in colonies have the smaller sizes, more elongated shape, and higher nucleocytoplasmic ratio. Cells composition in the experiment colonies is reliably different by the ratio of the low-differentiating to being differentiated cells; a ratio of low-differentiated to already differentiated cells; ratio of differentiated cells to total number of all cells. In comparison with control group, amount of the cells passed trough a differentiation stage and mature cells in colonies is decreased by 3 to 4 times. Among the differentiated stromal cells in colonies increasing amount of adipocytes was revealed. The analysis of electron microscope microphotographs showed that in osteogenic cells differentiated under microgravity conditions, there is a reduction of the specific volume of a granular endoplasmic reticulum, Golgi's complex and quantity of nuclei reduction that indicates depression of the specific biosyntheses process intensity in cells. The increase of lysosomes and myelinic structures quantity is linked to organelles partial reduction. Consolidation of mitochondrias is an evidence of the cells’ energy metabolism disorder. In differentiated cells, disorganization and a cytoskeleton destruction was observed. Results showed that under microgravity conditions proliferative and differentiation (including osteogenic) potentialities of low-differentiated marrow stromal cells decreased, induction of their adipocytic differentiation was observes as well. Obtained results make a new contribution into gravitation sensitivity mechanisms understanding for stromal cells of the bone marrow which contain osteogenic cells- predecessors, features of the osteoporosis development.

  9. The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells.

    PubMed

    Froldi, Francesca; Szuperak, Milan; Weng, Chen-Fang; Shi, Wei; Papenfuss, Anthony T; Cheng, Louise Y

    2015-01-15

    Cellular dedifferentiation is the regression of a cell from a specialized state to a more multipotent state and is implicated in cancer. However, the transcriptional network that prevents differentiated cells from reacquiring stem cell fate is so far unclear. Neuroblasts (NBs), the Drosophila neural stem cells, are a model for the regulation of stem cell self-renewal and differentiation. Here we show that the Drosophila zinc finger transcription factor Nervous fingers 1 (Nerfin-1) locks neurons into differentiation, preventing their reversion into NBs. Following Prospero-dependent neuronal specification in the ganglion mother cell (GMC), a Nerfin-1-specific transcriptional program maintains differentiation in the post-mitotic neurons. The loss of Nerfin-1 causes reversion to multipotency and results in tumors in several neural lineages. Both the onset and rate of neuronal dedifferentiation in nerfin-1 mutant lineages are dependent on Myc- and target of rapamycin (Tor)-mediated cellular growth. In addition, Nerfin-1 is required for NB differentiation at the end of neurogenesis. RNA sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) analysis show that Nerfin-1 administers its function by repression of self-renewing-specific and activation of differentiation-specific genes. Our findings support the model of bidirectional interconvertibility between neural stem cells and their post-mitotic progeny and highlight the importance of the Nerfin-1-regulated transcriptional program in neuronal maintenance. © 2015 Froldi et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-Thrombospondin-1 axis

    PubMed Central

    Lee, Joo-Hyeon; Bhang, Dong Ha; Beede, Alexander; Huang, Tian Lian; Stripp, Barry R.; Bloch, Kenneth D.; Wagers, Amy J.; Tseng, Yu-Hua; Ryeom, Sandra; Kim, Carla F.

    2014-01-01

    SUMMARY Lung stem cells are instructed to produce lineage-specific progeny through unknown factors in their microenvironment. We used clonal three-dimensional (3D) co-cultures of endothelial cells and distal lung stem cells, bronchioalveolar stem cells (BASCs), to probe the instructive mechanisms. Single BASCs had bronchiolar and alveolar differentiation potential in lung endothelial cell co-cultures. Gain and loss of function experiments showed BMP4-Bmpr1a signaling triggers calcineurin/NFATc1-dependent expression of Thrombospondin-1 (Tsp1) in lung endothelial cells to drive alveolar lineage-specific BASC differentiation. Tsp1-null mice exhibited defective alveolar injury repair, confirming a crucial role for the BMP4-NFATc1-TSP1 axis in lung epithelial differentiation and regeneration in vivo. Discovery of this pathway points to methods to direct the derivation of specific lung epithelial lineages from multipotent cells. These findings elucidate a pathway that may be a critical target in lung diseases and provide new tools to understand the mechanisms of respiratory diseases at the single cell level. PMID:24485453

  11. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2

    PubMed Central

    Bylund, Jeffery B.; Trinh, Linh T.; Awgulewitsch, Cassandra P.; Paik, David T.; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B.; Kamp, Timothy J.

    2017-01-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling. PMID:28125926

  12. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2.

    PubMed

    Bylund, Jeffery B; Trinh, Linh T; Awgulewitsch, Cassandra P; Paik, David T; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B; Kamp, Timothy J; Hatzopoulos, Antonis K

    2017-05-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling.

  13. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamano, Noriko; Kimura, Tohru, E-mail: tkimura@patho.med.osaka-u.ac.jp; Watanabe-Kushima, Shoko

    Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were culturedmore » on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.« less

  14. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells

    PubMed Central

    Kobayashi, Hideki; Butler, Jason M.; O'Donnell, Rebekah; Kobayashi, Mariko; Ding, Bi-Sen; Bonner, Bryant; Chiu, Vi K.; Nolan, Daniel J.; Shido, Koji; Benjamin, Laura; Rafii, Shahin

    2010-01-01

    Endothelial cells establish an instructive vascular niche that reconstitutes haematopoietic stem and progenitor cells (HSPCs) through release of specific paracrine growth factors, known as angiocrine factors. However, the mechanism by which endothelial cells balance the rate of proliferation and lineage-specific differentiation of HSPCs is unknown. Here, we demonstrate that Akt activation in endothelial cells, through recruitment of mTOR, but not the FoxO pathway, upregulates specific angiocrine factors that support expansion of CD34−Flt3− KLS HSPCs with long-term haematopoietic stem cell (LT-HSC) repopulation capacity. Conversely, co-activation of Akt-stimulated endothelial cells with p42/44 MAPK shifts the balance towards maintenance and differentiation of the HSPCs. Selective activation of Akt1 in the endothelial cells of adult mice increased the number of colony forming units in the spleen and CD34−Flt3− KLS HSPCs with LT-HSC activity in the bone marrow, accelerating haematopoietic recovery. Therefore, the activation state of endothelial cells modulates reconstitution of HSPCs through the upregulation of angiocrine factors, with Akt–mTOR-activated endothelial cells supporting the self-renewal of LT-HSCs and expansion of HSPCs, whereas MAPK co-activation favours maintenance and lineage-specific differentiation of HSPCs. PMID:20972423

  15. Cytokines and the regulation of fungus-specific CD4 T cell differentiation

    PubMed Central

    Espinosa, Vanessa; Rivera, Amariliz

    2011-01-01

    CD4 T cells play important and non-redundant roles in protection against infection with diverse fungi. Distinct CD4 T cell subsets can mediate protection against fungal disease where Th1 and Th17 CD4 T cell subsets have been found to promote fungal clearance and protective immunity against diverse fungal pathogens. The differentiation of naïve CD4 T cells into Th1 or Th17 cells is crucially controlled by their interaction with dendritic cells and instructed by cytokines. IL-12 and IFN-γ promote Th1 differentiation while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote Th17 differentiation and maintenance. The production of these cytokines by DCs is in turn regulated by innate receptors triggered in response to fungal infection. In this review we will discuss the contributions of cytokines found to influence fungus-specific CD4 T cell differentiation and their role in defense against fungal disease. We will also highlight the contributions of innate receptors involved in recognition of fungi and how they shape cytokine secretion and CD4 T cell differentiation. PMID:22133343

  16. Signaling hierarchy regulating human endothelial cell development.

    PubMed

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  17. Viral Superantigen Drives Extrafollicular and Follicular B Cell Differentiation Leading to Virus-specific Antibody Production

    PubMed Central

    Luther, Sanjiv A.; Gulbranson-Judge, Adam; Acha-Orbea, Hans; MacLennan, Ian C.M.

    1997-01-01

    Mouse mammary tumor virus (MMTV[SW]) encodes a superantigen expressed by infected B cells. It evokes an antibody response specific for viral envelope protein, indicating selective activation of antigen-specific B cells. The response to MMTV(SW) in draining lymph nodes was compared with the response to haptenated chicken gamma globulin (NP-CGG) using flow cytometry and immunohistology. T cell priming occurs in both responses, with T cells proliferating in association with interdigitating dendritic cells in the T zone. T cell proliferation continues in the presence of B cells in the outer T zone, and B blasts then undergo exponential growth and differentiation into plasma cells in the medullary cords. Germinal centers develop in both responses, but those induced by MMTV(SW) appear later and are smaller. Most T cells activated in the T zone and germinal centers in the MMTV(SW) response are superantigen specific and these persist for weeks in lymph nodes draining the site MMTV(SW) injection; this contrasts with the selective loss of superantigen-specific T cells from other secondary lymphoid tissues. The results indicate that this viral superantigen, when expressed by professional antigen-presenting cells, drives extrafollicular and follicular B cell differentiation leading to virus-specific antibody production. PMID:9053455

  18. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    PubMed

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sexually dimorphic differentiation of a C. elegans hub neuron is cell-autonomously controlled by a conserved transcription factor

    PubMed Central

    Serrano-Saiz, Esther; Oren-Suissa, Meital; Bayer, Emily A.; Hobert, Oliver

    2018-01-01

    SUMMARY Functional and anatomical sexual dimorphisms in the brain are either the result of cells that are generated only in one sex, or a manifestation of sex-specific differentiation of neurons present in both sexes. The PHC neurons of the nematode C. elegans differentiate in a strikingly sex-specific manner. While in hermaphrodites the PHC neurons display a canonical pattern of synaptic connectivity similar to that of other sensory neurons, PHC differentiates into a densely connected hub sensory/interneuron in males, integrating a large number of male-specific synaptic inputs and conveying them to both male-specific and sex-shared circuitry. We show that the differentiation into such a hub neuron involves the sex-specific scaling of several components of the synaptic vesicle machinery, including the vesicular glutamate transporter eat-4/VGLUT, induction of neuropeptide expression, changes in axonal projection morphology and a switch in neuronal function. We demonstrate that these molecular and anatomical remodeling events are controlled cell-autonomously by the phylogenetically conserved Doublesex homolog dmd-3, which is both required and sufficient for sex-specific PHC differentiation. Cellular specificity of dmd-3 action is ensured by its collaboration with non-sex specific terminal selector-type transcription factors whereas sex-specificity of dmd-3 action is ensured by the hermaphrodite-specific, transcriptional master regulator of hermaphroditic cell identity, tra-1, which represses transcription of dmd-3 in hermaphrodite PHC. Taken together, our studies provide mechanistic insights into how neurons are specified in a sexually dimorphic manner. PMID:28065609

  20. Induction of hepatocyte-like cells from mouse embryonic stem cells by lentivirus-mediated constitutive expression of Foxa2/Hnf4a.

    PubMed

    Liu, Tao; Zhang, Shichang; Xiang, Dedong; Wang, Yingjie

    2013-11-01

    Hepatocytes can be generated from embryonic stem cells (ESCs) using inducers such as chemical compounds and cytokines, but issues related to low differentiation efficiencies remain to be resolved. Recent work has shown that overexpression of lineage-specific transcription factors can directly cause cells phenotypic changes, including differentiation, trans-differentiation, and de-differentiation. We hypothesized that lentivirus-mediated constitutive expression of forkhead box A2 (Foxa2) and hepatocyte nuclear factor 4 alpha (Hnf4a) could promote inducing mouse ESCs to hepatocyte-likes cells. First, ESC lines that stably expressed Foxa2, Hnf4a, or Foxa2/Hnf4a were constructed via lentiviral expression vectors. Second, observations of cell morphology changes were made during the cell culture process, followed by experiments examining teratoma formation. Then, the effects of constitutive expression of Foxa2 and Hnf4a on hepatic differentiation and maturation were determined by measuring the marker gene expression levels of Albumin, α-fetoprotein, Cytokeratin18, and α1-antitrypsin. The results indicate that constitutive expression of Foxa2 and Hnf4a does not affect ESCs culture, teratoma formation, or the expression levels of the specific hepatocyte genes under autonomous differentiation. However, with some assistance from inducing factors, Foxa2 significantly increased the hepatic differentiation of ESCs, whereas the expression of Hnf4a alone or Foxa2/Hnf4a could not. Differentiated CCE-Foxa2 cells were more superior in expressing several liver-specific markers and protein, storing glycogen than differentiated CCE cells. Therefore, our method employing the transduction of Foxa2 would be a valuable tool for the efficient generation of functional hepatocytes derived from ESCs. © 2013 Wiley Periodicals, Inc.

  1. Constitutive Uncoupling of Pathways of Gene Expression That Control Growth and Differentiation in Myeloid Leukemia: A Model for the Origin and Progression of Malignancy

    NASA Astrophysics Data System (ADS)

    Sachs, Leo

    1980-10-01

    Chemical carcinogens and tumor promoters have pleiotropic effects. Tumor initiators can produce a variety of mutations and tumor promoters can regulate a variety of physiological molecules that control growth and differentiation. The appropriate mutation and the regulation of the appropriate molecules to induce cell growth can initiate and promote the sequence of changes required for transformation of normal cells into malignant cells. After this sequence of changes, some tumors can still be induced to revert with a high frequency from a malignant phenotype to a nonmalignant phenotype. Results obtained from analysis of regulation of growth and differentiation in normal and leukemic myeloid cells, the phenotypic reversion of malignancy by induction of normal differentiation in myeloid leukemia, and the blocks in differentiation-defective leukemic cell mutants have been used to propose a general model for the origin and progression of malignancy. The model states that malignancy originates by changing specific pathways of gene expression required for growth from inducible to constitutive in cells that can still be induced to differentiate normally by the physiological inducer of differentiation. The malignant cells, unlike the normal cells, then no longer require the physiological inducer for growth. This changes the requirements for growth and uncouples growth from differentiation. Constitutive expression of other specific pathways can uncouple other controls, which then causes blocks in differentiation and the further progression of malignancy. The existence of specific constitutive pathways of gene expression that uncouple controls in malignant cells can also explain the expression of fetal proteins, hormones, and some other specialized products of normal development in various types of tumors.

  2. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    PubMed

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  3. Transcription factors in pancreatic development. Animal models.

    PubMed

    Martin, Merce; Hauer, Viviane; Messmer, Mélanie; Orvain, Christophe; Gradwohl, Gérard

    2007-01-01

    Through the analysis of genetically modified mice a hierarchy of transcription factors regulating pancreas specification, endocrine destiny as well as endocrine subtype specification and differentiation has been established. In addition to conventional approaches such as transgenic technologies and gene targeting, recombinase fate mapping in mice has been key in establishing the lineage relationship between progenitor cells and their progeny in understanding pancreas formation. Moreover, the design of specific mouse models to conditionally express transcription factors in different populations of progenitor cells has revealed to what extent transcription factors required for islet cell development are also sufficient to induce endocrine differentiation and the importance of the competence of progenitor cells to respond to the genetic program implemented by these factors. Taking advantage of this basic science knowledge acquired in rodents, immature insulin-producing cells have recently been differentiated in vitro from human embryonic stem cells. Taken together these major advances emphasize the need to gain further in-depth knowledge of the molecular and cellular mechanisms controlling beta-cell differentiation in mice to generate functional beta-cells in the future that could be used for cell therapy in diabetes.

  4. The differentiation of hepatocyte-like cells from monkey embryonic stem cells.

    PubMed

    Ma, Xiaocui; Duan, Yuyou; Jung, Christine J; Wu, Jian; VandeVoort, Catherine A; Zern, Mark A

    2008-12-01

    Embryonic stem cells (ESC) hold great potential for the treatment of liver diseases. Here, we report the differentiation of rhesus macaque ESC along a hepatocyte lineage. The undifferentiated monkey ESC line, ORMES-6, was cultured in an optimal culture condition in an effort to differentiate them into hepatocyte-like cells in vitro. The functional efficacy of the differentiated hepatic cells was evaluated using RT-PCR for the expression of hepatocyte specific genes, and Western blot analysis and immunocytochemistry for hepatic proteins such as alpha-fetoprotein (AFP), albumin and alpha1-antitrypsin (alpha1-AT). Functional assays were performed using the periodic acid schiff (PAS) reaction and ELISA. The final yield of ESC-derived hepatocyte-like cells was measured by flow cytometry for cells that were transduced with a liver-specific lentivirus vector containing the alpha1-AT promoter driving the expression of green fluorescence protein (GFP). The treatment of monkey ESC with an optimal culture condition yielded hepatocyte-like cells that expressed albumin, alpha1-AT, AFP, hepatocyte nuclear factor 3beta, glucose-6-phophatase, and cytochrome P450 genes and proteins as determined by RT-PCR and Western blot analysis. Immunofluorescent staining showed the cells positive for albumin, AFP, and alpha1-AT. PAS staining demonstrated that the differentiated cells showed hepatocyte functional activity. Albumin could be detected in the medium after 20 days of differentiation. Flow cytometry data showed that 6.5 +/- 1.0% of the total differentiated cells were positive for GFP. These results suggest that by using a specific, empirically determined, culture condition, we were able to direct monkey ESC toward a hepatocyte lineage.

  5. Cell fate determination by ubiquitin-dependent regulation of translation

    PubMed Central

    Werner, Achim; Iwasaki, Shintaro; McGourty, Colleen; Medina-Ruiz, Sofia; Teerikorpi, Nia; Fedrigo, Indro; Ingolia, Nicholas T.; Rape, Michael

    2015-01-01

    Metazoan development depends on accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates 1. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell fate determination is less well understood. Here, we have identified the vertebrate-specific ubiquitin ligase CUL3KBTBD8 as an essential regulator of neural crest specification. CUL3KBTBD8 monoubiquitylates NOLC1 and its paralog TCOF1, whose mutation underlies the neurocristopathy Treacher Collins Syndrome 2,3. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favor of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell fate determination. PMID:26399832

  6. In Vitro Germ Cell Differentiation from Cynomolgus Monkey Embryonic Stem Cells

    PubMed Central

    Yamauchi, Kaori; Hasegawa, Kouichi; Chuma, Shinichiro; Nakatsuji, Norio; Suemori, Hirofumi

    2009-01-01

    Background Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. Methods and Findings To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. Conclusion VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates. PMID:19399191

  7. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage.

    PubMed

    Lu, Chenggang; Fuller, Margaret T

    2015-12-01

    Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages.

  8. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis.

    PubMed

    López, Daniel; Kolter, Roberto

    2010-03-01

    The soil-dwelling bacterium Bacillus subtilis differentiates into distinct subpopulations of specialized cells that coexist within highly structured communities. The coordination and interplay between these cell types requires extensive extracellular communication driven mostly by sensing self-generated secreted signals. These extracellular signals activate a set of sensor kinases, which respond by phosphorylating three major regulatory proteins, Spo0A, DegU and ComA. Each phosphorylated regulator triggers a specific differentiation program while at the same time repressing other differentiation programs. This allows a cell to differentiate in response to a specific cue, even in the presence of other, possibly conflicting, signals. The sensor kinases involved respond to an eclectic group of extracellular signals, such as quorum-sensing molecules, natural products, temperature, pH or scarcity of nutrients. This article reviews the cascades of cell differentiation pathways that are triggered by sensing extracellular signals. We also present a tentative developmental model in which the diverse cell types sequentially differentiate to achieve the proper development of the bacterial community.

  9. Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold

    PubMed Central

    Feng, Yuping; Wang, Jiao; Ling, Shixin; Li, Zhuo; Li, Mingsheng; Li, Qiongyi; Ma, Zongren; Yu, Sijiu

    2014-01-01

    The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins, including βIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. PMID:25598779

  10. EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells.

    PubMed

    Volz, Ann-Cathrin; Huber, Birgit; Schwandt, Alina Maria; Kluger, Petra Juliane

    In vitro composed vascularized adipose tissue is and will continue to be in great demand e.g. for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Up to date, the lack of adequate culture conditions, mainly a culture medium, decelerates further achievements. In our study, we evaluated the influence of epidermal growth factor (EGF) and hydrocortisone (HC), often supplemented in endothelial cell (EC) specific media, on the co-culture of adipogenic differentiated adipose-derived stem cells (ASCs) and microvascular endothelial cells (mvECs). In ASCs, EGF and HC are thought to inhibit adipogenic differentiation and have lipolytic activities. Our results showed that in indirect co-culture for 14 days, adipogenic differentiated ASCs further incorporated lipids and partly gained an univacuolar morphology when kept in media with low levels of EGF and HC. In media with high EGF and HC levels, cells did not incorporate further lipids, on the contrary, cells without lipid droplets appeared. Glycerol release, to measure lipolysis, also increased with elevated amounts of EGF and HC in the culture medium. Adipogenic differentiated ASCs were able to release leptin in all setups. MvECs were functional and expressed the cell specific markers, CD31 and von Willebrand factor (vWF), independent of the EGF and HC content as long as further EC specific factors were present. Taken together, our study demonstrates that adipogenic differentiated ASCs can be successfully co-cultured with mvECs in a culture medium containing low or no amounts of EGF and HC, as long as further endothelial cell and adipocyte specific factors are available. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  11. Recent progress in stem cell differentiation directed by material and mechanical cues.

    PubMed

    Lin, Xunxun; Shi, Yuan; Cao, Yilin; Liu, Wei

    2016-02-02

    Stem cells play essential roles in tissue regeneration in vivo via specific lineage differentiation induced by environmental factors. In the past, biochemical signals were the focus of induced stem cell differentiation. As reported by Engler et al (2006 Cell 126 677-89), biophysical signal mediated stem cell differentiation could also serve as an important inducer. With the advancement of material science, it becomes a possible strategy to generate active biophysical signals for directing stem cell fate through specially designed material microstructures. In the past five years, significant progress has been made in this field, and these designed biophysical signals include material elasticity/rigidity, micropatterned structure, extracellular matrix (ECM) coated materials, material transmitted extracellular mechanical force etc. A large number of investigations involved material directed differentiation of mesenchymal stem cells, neural stem/progenitor cells, adipose derived stem cells, hematopoietic stem/progenitor cells, embryonic stem cells and other cells. Hydrogel based materials were commonly used to create varied mechanical properties via modifying the ratio of different components, crosslinking levels, matrix concentration and conjugation with other components. Among them, polyacrylamide (PAM) and polydimethylsiloxane (PDMS) hydrogels remained the major types of material. Specially designed micropatterning was not only able to create a unique topographical surface to control cell shape, alignment, cell-cell and cell-matrix contact for basic stem cell biology study, but also could be integrated with 3D bioprinting to generate micropattered 3D structure and thus to induce stem cell based tissue regeneration. ECM coating on a specific topographical structure was capable of inducing even more specific and potent stem cell differentiation along with soluble factors and mechanical force. The article overviews the progress of the past five years in this particular field.

  12. Efficient differentiation of mouse embryonic stem cells into motor neurons.

    PubMed

    Wu, Chia-Yen; Whye, Dosh; Mason, Robert W; Wang, Wenlan

    2012-06-09

    Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test). Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.

  13. A role for p21 (WAF1) in the cAMP-dependent differentiation of F9 teratocarcinoma cells into parietal endoderm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drdova, Blanka; Vachtenheim, Jiri

    2005-03-10

    Combined treatment of teratocarcinoma F9 cells with retinoic acid and dibutyryl-cAMP induces the differentiation into cells with a phenotype resembling parietal endoderm. We show that the levels of cyclin-dependent kinase inhibitor p21/WAF1/Cip1 (p21) protein and mRNA are dramatically elevated at the end of this differentiation, concomitantly with the appearance of p21 in the immunoprecipitated CDK2-cyclin E complex. The induction of differentiation markers could not be achieved by expression of ectopic p21 alone and still required treatment with differentiation agents. Clones of F9 cells transfected with sense or antisense p21 cDNA constructs revealed, upon differentiation, upregulated levels of mRNA for thrombomodulin,more » a parietal endoderm-specific marker, or increased fraction of cells in sub-G1 phase of the cell cycle, respectively. Consistent with this observation, whereas p21 was strictly nuclear in undifferentiated cells, a large proportion of differentiated cells had p21 localized also in the cytoplasm, a site associated with the antiapoptotic function of p21. Furthermore, p21 activated the thrombomodulin promoter in transient reporter assays and the p21 mutant defective in binding to cyclin E was equally efficient in activation. The promoter activity in differentiated cells was reduced by cotransfection of p21-specific siRNA or antisense cDNA. Coexpression of p21 increased the activity of the GAL-p300(1-1303) fusion protein on the GAL sites-containing TM promoter. This implies that p21 might act through a derepression of the p300 N-terminal-residing repression domain, thereby enhancing the p300 coactivator function. As differentiation of F9 cells into parietal endoderm-like cells requires the cAMP signaling, the results together suggest that the cyclin-dependent kinase inhibitor p21 may promote specifically this pathway in F9 cells.« less

  14. Lamin A/C Haploinsufficiency Modulates the Differentiation Potential of Mouse Embryonic Stem Cells

    PubMed Central

    Sehgal, Poonam; Chaturvedi, Pankaj; Kumaran, R. Ileng; Kumar, Satish; Parnaik, Veena K.

    2013-01-01

    Background Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. Methodology and Principal Findings We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells. Conclusions We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development. PMID:23451281

  15. All-Trans-Retinoic Acid Stimulates Overexpression of Tumor Protein D52 (TPD52, Isoform 3) and Neuronal Differentiation of IMR-32 Cells.

    PubMed

    Kotapalli, Sudha Sravanti; Dasari, Chandrashekhar; Duscharla, Divya; Kami Reddy, Karthik Reddy; Kasula, Manjula; Ummanni, Ramesh

    2017-12-01

    Tumor protein D52 (TPD52), a proto-oncogene is overexpressed in a variety of epithelial carcinomas and plays an important role in cell proliferation, migration, and cell death. In the present study we found that the treatment of IMR-32 neuroblastoma (NB) cells with retinoic acid (RA) stimulates an increase in expression of TPD52. TPD52 expression is detectable after 72 h, can be maintained till differentiation of NB cells suggesting that TPD52 is involved in differentiation. Here, we demonstrate that TPD52 is essential for RA to promote differentiation of NB cells. Our results show that exogenous expression of EGFP-TPD52 in IMR-32 cells resulted cell differentiation even without RA. RA by itself and with overexpression of TPD52 can increase the ability of NB cells differentiation. Interestingly, transfection of IMR-32 cells with a specific small hairpin RNA for efficient knockdown of TPD52 attenuated RA induced NB cells differentiation. Transcriptional and translational level expression of neurotropic (BDNF, NGF, Nestin) and differentiation (β III tubulin, NSE, TH) factors in NB cells with altered TPD52 expression and/or RA treatment confirmed essential function of TPD52 in cellular differentiation. Furthermore, we show that TPD52 protects cells from apoptosis and arrest cell proliferation by varying expression of p27Kip1, activation of Akt and ERK1/2 thus promoting cell differentiation. Additionally, inhibition of STAT3 activation by its specific inhibitor arrested NB cells differentiation by EGFP-TPD52 overexpression with or without RA. Taken together, our data reveal that TPD52 act through activation of JAK/STAT signaling pathway to undertake NB cells differentiation induced by RA. J. Cell. Biochem. 118: 4358-4369, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system

    PubMed Central

    Kutleša, Snježana; Zayas, Jennifer; Valle, Alexandra; Levy, Robert B.; Jurecic, Roland

    2011-01-01

    Objective Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. Materials and Methods EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. Results The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Tα, RAG-1, and T-cell receptor – Vβ genes; and 3) produced interferon-γ in response to T-cell receptor stimulation. Conclusions These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation. PMID:19447159

  17. T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system.

    PubMed

    Kutlesa, Snjezana; Zayas, Jennifer; Valle, Alexandra; Levy, Robert B; Jurecic, Roland

    2009-08-01

    Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Talpha, RAG-1, and T-cell receptor-Vbeta genes; and 3) produced interferon-gamma in response to T-cell receptor stimulation. These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation.

  18. A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow.

    PubMed

    Stops, A J F; Heraty, K B; Browne, M; O'Brien, F J; McHugh, P E

    2010-03-03

    Mesenchymal stem cell (MSC) differentiation can be influenced by biophysical stimuli imparted by the host scaffold. Yet, causal relationships linking scaffold strain magnitudes and inlet fluid velocities to specific cell responses are thus far underdeveloped. This investigation attempted to simulate cell responses in a collagen-glycosaminoglycan (CG) scaffold within a bioreactor. CG scaffold deformation was simulated using micro-computed tomography (CT) and an in-house finite element solver (FEEBE/linear). Similarly, the internal fluid velocities were simulated using the afore-mentioned microCT dataset with a computational fluid dynamics solver (ANSYS/CFX). From the ensuing cell-level mechanics, albeit octahedral shear strain or fluid velocity, the proliferation and differentiation of the representative cells were predicted from deterministic functions. Cell proliferation patterns concurred with previous experiments. MSC differentiation was dependent on the level of CG scaffold strain and the inlet fluid velocity. Furthermore, MSC differentiation patterns indicated that specific combinations of scaffold strains and inlet fluid flows cause phenotype assemblies dominated by single cell types. Further to typical laboratory procedures, this predictive methodology demonstrated loading-specific differentiation lineages and proliferation patterns. It is hoped these results will enhance in-vitro tissue engineering procedures by providing a platform from which the scaffold loading applications can be tailored to suit the desired tissue. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Regulation of mammalian cell differentiation by long non-coding RNAs

    PubMed Central

    Hu, Wenqian; Alvarez-Dominguez, Juan R; Lodish, Harvey F

    2012-01-01

    Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non-coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non-coding species can modulate gene-expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non-coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non-coding RNAs contribute to the regulation of mammalian development. PMID:23070366

  20. Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalova, Natalia, E-mail: kovalova@msu.edu

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant that activates the aryl hydrocarbon receptor (AhR) resulting in altered gene expression. In vivo, in vitro, and ex vivo studies have demonstrated that B cells are directly impaired by TCDD, and are a sensitive target as evidenced by suppression of antibody responses. The window of sensitivity to TCDD-induced suppression of IgM secretion among mouse, rat and human B cells is similar. Specifically, TCDD must be present within the initial 12 h post B cell stimulation, indicating that TCDD disrupts early signaling network(s) necessary for B lymphocyte activation and differentiation. Therefore, we hypothesized thatmore » TCDD treatment across three different species (mouse, rat and human) triggers a conserved, B cell-specific mechanism that is involved in TCDD-induced immunosuppression. RNA sequencing (RNA-Seq) was used to identify B cell-specific orthologous genes that are differentially expressed in response to TCDD in primary mouse, rat and human B cells. Time course studies identified TCDD-elicited differential expression of 515 human, 2371 mouse and 712 rat orthologous genes over the 24-h period. 28 orthologs were differentially expressed in response to TCDD in all three species. Overrepresented pathways enriched in all three species included cytokine-cytokine receptor interaction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton and pathways in cancer. Differentially expressed genes functionally associated with cell-cell signaling in humans, immune response in mice, and oxidation reduction in rats. Overall, these results suggest that despite the conservation of the AhR and its signaling mechanism, TCDD elicits species-specific gene expression changes. - Highlights: • Kovalova TAAP Highlights Nov. 2016 • RNA-Seq identified TCDD-induced gene expression in PWM-activated primary B cells. • TCDD elicited differential expression of 515 human, 2371 mouse and 712 rat orthologs. • 28 orthologs were differentially expressed in response to TCDD in all three species. • TCDD elicits mostly species-specific gene expression changes in activated B cells.« less

  1. Human Induced Hepatic Lineage-Oriented Stem Cells: Autonomous Specification of Human iPS Cells toward Hepatocyte-Like Cells without Any Exogenous Differentiation Factors

    PubMed Central

    Yanagi, Satoshi; Kato, Chika; Takashima, Ryokichi; Kobayashi, Eiji; Hagiwara, Keitaro; Ochiya, Takahiro

    2015-01-01

    Preparing targeted cells for medical applications from human induced pluripotent stem cells (hiPSCs) using growth factors, compounds, or gene transfer has been challenging. Here, we report that human induced hepatic lineage-oriented stem cells (hiHSCs) were generated and expanded as a new type of hiPSC under non-typical coculture with feeder cells in a chemically defined hiPSC medium at a very high density. Self-renewing hiHSCs expressed markers of both human embryonic stem cells (hESCs) and hepatocytes. Those cells were highly expandable, markedly enhancing gene expression of serum hepatic proteins and cytochrome P450 enzymes with the omission of FGF-2 from an undefined hiPSC medium. The hepatic specification of hiHSCs was not attributable to the genetic and epigenetic backgrounds of the starting cells, as they were established from distinct donors and different types of cells. Approximately 90% of hiHSCs autonomously differentiated to hepatocyte-like cells, even in a defined minimum medium without any of the exogenous growth factors necessary for hepatic specification. After 12 days of this culture, the differentiated cells significantly enhanced gene expression of serum hepatic proteins (ALB, SERPINA1, TTR, TF, FABP1, FGG, AGT, RBP4, and AHSG), conjugating enzymes (UGT2B4, UGT2B7, UGT2B10, GSTA2, and GSTA5), transporters (SULT2A1, SLC13A5, and SLCO2B1), and urea cycle-related enzymes (ARG1 and CPS1). In addition, the hepatocyte-like cells performed key functions of urea synthesis, albumin secretion, glycogen storage, indocyanine green uptake, and low-density lipoprotein uptake. The autonomous hepatic specification of hiHSCs was due to their culture conditions (coculture with feeder cells in a defined hiPSC medium at a very high density) in self-renewal rather than in differentiation. These results suggest the feasibility of preparing large quantities of hepatocytes as a convenient and inexpensive hiPSC differentiation. Our study also suggests the necessity of optimizing culture conditions to generate other specific lineage-oriented hiPSCs, allowing for a very simple differentiation. PMID:25875613

  2. Dissecting Embryonic Stem Cell Self-Renewal and Differentiation Commitment from Quantitative Models.

    PubMed

    Hu, Rong; Dai, Xianhua; Dai, Zhiming; Xiang, Qian; Cai, Yanning

    2016-10-01

    To model quantitatively embryonic stem cell (ESC) self-renewal and differentiation by computational approaches, we developed a unified mathematical model for gene expression involved in cell fate choices. Our quantitative model comprised ESC master regulators and lineage-specific pivotal genes. It took the factors of multiple pathways as input and computed expression as a function of intrinsic transcription factors, extrinsic cues, epigenetic modifications, and antagonism between ESC master regulators and lineage-specific pivotal genes. In the model, the differential equations of expression of genes involved in cell fate choices from regulation relationship were established according to the transcription and degradation rates. We applied this model to the Murine ESC self-renewal and differentiation commitment and found that it modeled the expression patterns with good accuracy. Our model analysis revealed that Murine ESC was an attractor state in culture and differentiation was predominantly caused by antagonism between ESC master regulators and lineage-specific pivotal genes. Moreover, antagonism among lineages played a critical role in lineage reprogramming. Our results also uncovered that the ordered expression alteration of ESC master regulators over time had a central role in ESC differentiation fates. Our computational framework was generally applicable to most cell-type maintenance and lineage reprogramming.

  3. Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.

    PubMed

    Bonakdar, Shahin; Mahmoudi, Morteza; Montazeri, Leila; Taghipoor, Mojtaba; Bertsch, Arnaud; Shokrgozar, Mohammad Ali; Sharifi, Shahriar; Majidi, Mohammad; Mashinchian, Omid; Hamrang Sekachaei, Mohammad; Zolfaghari, Pegah; Renaud, Philippe

    2016-06-08

    Differentiation of stem cells into mature cells through the use of physical approaches is of great interest. Here, we prepared smart nanoenvironments by cell-imprinted substrates based on chondrocytes, tenocytes, and semifibroblasts as templates and demonstrated their potential for differentiation, redifferentiation, and transdifferentiation. Analysis of shape and upregulation/downregulation of specific genes of stem cells, which were seeded on these cell-imprinted substrates, confirmed that imprinted substrates have the capability to induce specific shapes and molecular characteristics of the cell types that were used as templates for cell-imprinting. Interestingly, immunofluorescent staining of a specific protein in chondrocytes (i.e., collagen type II) confirmed that adipose-derived stem cells, semifibroblasts, and tenocytes can acquire the chondrocyte phenotype after a 14 day culture on chondrocyte-imprinted substrates. In summary, we propose that common polystyrene tissue culture plates can be replaced by this imprinting technique as an effective and promising way to regulate any cell phenotype in vitro with significant potential applications in regenerative medicine and cell-based therapies.

  4. Cell-fate determination by ubiquitin-dependent regulation of translation.

    PubMed

    Werner, Achim; Iwasaki, Shintaro; McGourty, Colleen A; Medina-Ruiz, Sofia; Teerikorpi, Nia; Fedrigo, Indro; Ingolia, Nicholas T; Rape, Michael

    2015-09-24

    Metazoan development depends on the accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell-fate determination is less well understood. Here we identify the ubiquitin ligase CUL3 in complex with its vertebrate-specific substrate adaptor KBTBD8 (CUL3(KBTBD8)) as an essential regulator of human and Xenopus tropicalis neural crest specification. CUL3(KBTBD8) monoubiquitylates NOLC1 and its paralogue TCOF1, the mutation of which underlies the neurocristopathy Treacher Collins syndrome. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favour of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell-fate determination.

  5. In vitro differentiated hepatic oval-like cells enhance hepatic regeneration in CCl4 -induced hepatic injury.

    PubMed

    Awan, Sana Javaid; Baig, Maria Tayyab; Yaqub, Faiza; Tayyeb, Asima; Ali, Gibran

    2017-01-01

    Hepatic oval cells are likely to be activated during advanced stage of liver fibrosis to reconstruct damaged hepatic tissue. However, their scarcity, difficulties in isolation, and in vitro expansion hampered their transplantation in fibrotic liver. This study was aimed to investigate the repair potential of in vitro differentiated hepatic oval-like cells in CCl 4 -induced liver fibrosis. BMSCs and oval cells were isolated and characterized from C57BL/6 GFP + mice. BMSCs were differentiated into oval cells by preconditioning with HGF, EGF, SCF, and LIF and analyzed for the oval cells-specific genes. Efficiency of oval cells to reduce hepatocyte injury was studied by determining cell viability, release of LDH, and biochemical tests in a co-culture system. Further, in vivo repair potential of differentiated oval cells was determined in CCl 4 -induced fibrotic model by gene expression analysis, biochemical tests, mason trichrome, and Sirius red staining. Differentiated oval cells expressed hepatic oval cells-specific markers AFP, ALB, CK8, CK18, CK19. These differentiated cells when co-cultured with injured hepatocytes showed significant hepato-protection as measured by reduction in apoptosis, LDH release, and improvement in liver functions. Transplantation of differentiated oval cells like cells in fibrotic livers exhibited enhanced homing, reduced liver fibrosis, and improved liver functions by augmenting hepatic microenvironment by improved liver functions. This preconditioning strategy to differentiate BMSCs into oval cell leads to improved survival and homing of transplanted cells. In addition, reduction in fibrosis and functional improvement in mice with CCl 4 -induced liver fibrosis was achieved. © 2016 International Federation for Cell Biology.

  6. Cross-Species Transcriptome Profiling Identifies New Alveolar Epithelial Type I Cell–Specific Genes

    PubMed Central

    Sunohara, Mitsuhiro; Pouldar, Tiffany M.; Wang, Hongjun; Liu, Yixin; Rieger, Megan E.; Tran, Evelyn; Flodby, Per; Siegmund, Kimberly D.; Crandall, Edward D.; Laird-Offringa, Ite A.

    2017-01-01

    Diseases involving the distal lung alveolar epithelium include chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung adenocarcinoma. Accurate labeling of specific cell types is critical for determining the contribution of each to the pathogenesis of these diseases. The distal lung alveolar epithelium is composed of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. Although cell type–specific markers, most prominently surfactant protein C, have allowed detailed lineage tracing studies of AT2 cell differentiation and the cells’ roles in disease, studies of AT1 cells have been hampered by a lack of genes with expression unique to AT1 cells. In this study, we performed genome-wide expression profiling of multiple rat organs together with purified rat AT2, AT1, and in vitro differentiated AT1-like cells, resulting in the identification of 54 candidate AT1 cell markers. Cross-referencing with genes up-regulated in human in vitro differentiated AT1-like cells narrowed the potential list to 18 candidate genes. Testing the top four candidate genes at RNA and protein levels revealed GRAM domain 2 (GRAMD2), a protein of unknown function, as highly specific to AT1 cells. RNA sequencing (RNAseq) confirmed that GRAMD2 is transcriptionally silent in human AT2 cells. Immunofluorescence verified that GRAMD2 expression is restricted to the plasma membrane of AT1 cells and is not expressed in bronchial epithelial cells, whereas reverse transcription–polymerase chain reaction confirmed that it is not expressed in endothelial cells. Using GRAMD2 as a new AT1 cell–specific gene will enhance AT1 cell isolation, the investigation of alveolar epithelial cell differentiation potential, and the contribution of AT1 cells to distal lung diseases. PMID:27749084

  7. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa.

    PubMed

    Wang, Nan-Kai; Tosi, Joaquin; Kasanuki, Jennifer Mie; Chou, Chai Lin; Kong, Jian; Parmalee, Nancy; Wert, Katherine J; Allikmets, Rando; Lai, Chi-Chun; Chien, Chung-Liang; Nagasaki, Takayuki; Lin, Chyuan-Sheng; Tsang, Stephen H

    2010-04-27

    To study whether C57BL/6J-Tyr/J (C2J) mouse embryonic stem (ES) cells can differentiate into retinal pigment epithelial (RPE) cells in vitro and then restore retinal function in a model for retinitis pigmentosa: Rpe65/Rpe65 C57BL6 mice. Yellow fluorescent protein (YFP)-labeled C2J ES cells were induced to differentiate into RPE-like structures on PA6 feeders. RPE-specific markers are expressed from differentiated cells in vitro. After differentiation, ES cell-derived RPE-like cells were transplanted into the subretinal space of postnatal day 5 Rpe65/Rpe65 mice. Live imaging of YFP-labeled C2J ES cells demonstrated survival of the graft. Electroretinograms (ERGs) were performed on transplanted mice to evaluate the functional outcome of transplantation. RPE-like cells derived from ES cells sequentially express multiple RPE-specific markers. After transplantation, YFP-labeled cells can be tracked with live imaging for as long as 7 months. Although more than half of the mice were complicated with retinal detachments or tumor development, one fourth of the mice showed increased electroretinogram responses in the transplanted eyes. Rpe65/Rpe65 mice transplanted with RPE-like cells showed significant visual recovery during a 7-month period, whereas those injected with saline, PA6 feeders, or undifferentiated ES cells showed no rescue. ES cells can differentiate, morphologically, and functionally, into RPE-like cells. Based on these findings, differentiated ES cells have the potential for the development of new therapeutic approaches for RPE-specific diseases such as certain forms of retinitis pigmentosa and macular degeneration. Nevertheless, stringent control of retinal detachment and teratoma development will be necessary before initiation of treatment trials.

  8. Direct reprogramming and biomaterials for controlling cell fate.

    PubMed

    Kim, Eunsol; Tae, Giyoong

    2016-01-01

    Direct reprogramming which changes the fate of matured cell is a very useful technique with a great interest recently. This approach can eliminate the drawbacks of direct usage of stem cells and allow the patient specific treatment in regenerative medicine. Overexpression of diverse factors such as general reprogramming factors or lineage specific transcription factors can change the fate of already differentiated cells. On the other hand, biomaterials can provide physical and topographical cues or biochemical cues on cells, which can dictate or significantly affect the differentiation of stem cells. The role of biomaterials on direct reprogramming has not been elucidated much, but will be potentially significant to improve the efficiency or specificity of direct reprogramming. In this review, the strategies for general direct reprogramming and biomaterials-guided stem cell differentiation are summarized with the addition of the up-to-date progress on biomaterials for direct reprogramming.

  9. Efficient production of erythroid, megakaryocytic and myeloid cells, using single cell-derived iPSC colony differentiation.

    PubMed

    Hansen, Marten; Varga, Eszter; Aarts, Cathelijn; Wust, Tatjana; Kuijpers, Taco; von Lindern, Marieke; van den Akker, Emile

    2018-04-28

    Hematopoietic differentiation of human induced pluripotent stem cells (iPSCs) provide opportunities not only for fundamental research and disease modelling/drug testing but also for large-scale production of blood effector cells for future clinical application. Although there are multiple ways to differentiate human iPSCs towards hematopoietic lineages, there is a need to develop reproducible and robust protocols. Here we introduce an efficient way to produce three major blood cell types using a standardized differentiation protocol that starts with a single hematopoietic initiation step. This system is feeder-free, avoids EB-formation, starts with a hematopoietic initiation step based on a novel single cell-derived iPSC colony differentiation and produces multi-potential progenitors within 8-10 days. Followed by lineage-specific growth factor supplementation these cells can be matured into well characterized erythroid, megakaryocytic and myeloid cells with high-purity, without transcription factor overexpression or any kind of pre-purification step. This standardized differentiation system provides a simple platform to produce specific blood cells in a reproducible manner for hematopoietic development studies, disease modelling, drug testing and the potential for future therapeutic applications. Copyright © 2018. Published by Elsevier B.V.

  10. Rapamycin and CHIR99021 Coordinate Robust Cardiomyocyte Differentiation From Human Pluripotent Stem Cells Via Reducing p53-Dependent Apoptosis.

    PubMed

    Qiu, Xiao-Xu; Liu, Yang; Zhang, Yi-Fan; Guan, Ya-Na; Jia, Qian-Qian; Wang, Chen; Liang, He; Li, Yong-Qin; Yang, Huang-Tian; Qin, Yong-Wen; Huang, Shuang; Zhao, Xian-Xian; Jing, Qing

    2017-10-02

    Cardiomyocytes differentiated from human pluripotent stem cells can serve as an unexhausted source for a cellular cardiac disease model. Although small molecule-mediated cardiomyocyte differentiation methods have been established, the differentiation efficiency is relatively unsatisfactory in multiple lines due to line-to-line variation. Additionally, hurdles including line-specific low expression of endogenous growth factors and the high apoptotic tendency of human pluripotent stem cells also need to be overcome to establish robust and efficient cardiomyocyte differentiation. We used the H9-human cardiac troponin T-eGFP reporter cell line to screen for small molecules that promote cardiac differentiation in a monolayer-based and growth factor-free differentiation model. We found that collaterally treating human pluripotent stem cells with rapamycin and CHIR99021 during the initial stage was essential for efficient and reliable cardiomyocyte differentiation. Moreover, this method maintained consistency in efficiency across different human embryonic stem cell and human induced pluripotent stem cell lines without specifically optimizing multiple parameters (the efficiency in H7, H9, and UQ1 human induced pluripotent stem cells is 98.3%, 93.3%, and 90.6%, respectively). This combination also increased the yield of cardiomyocytes (1:24) and at the same time reduced medium consumption by about 50% when compared with the previous protocols. Further analysis indicated that inhibition of the mammalian target of rapamycin allows efficient cardiomyocyte differentiation through overcoming p53-dependent apoptosis of human pluripotent stem cells during high-density monolayer culture via blunting p53 translation and mitochondrial reactive oxygen species production. We have demonstrated that mammalian target of rapamycin exerts a stage-specific and multifaceted regulation over cardiac differentiation and provides an optimized approach for generating large numbers of functional cardiomyocytes for disease modeling and in vitro drug screening. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  11. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells.

    PubMed

    Mellough, Carla B; Sernagor, Evelyne; Moreno-Gimeno, Inmaculada; Steel, David H W; Lako, Majlinda

    2012-04-01

    Recent successes in the stem cell field have identified some of the key chemical and biological cues which drive photoreceptor derivation from human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC); however, the efficiency of this process is variable. We have designed a three-step photoreceptor differentiation protocol combining previously published methods that direct the differentiation of hESC and hiPSC toward a retinal lineage, which we further modified with additional supplements selected on the basis of reports from the eye field and retinal development. We report that hESC and hiPSC differentiating under our regimen over a 60 day period sequentially acquire markers associated with neural, retinal field, retinal pigmented epithelium and photoreceptor cells, including mature photoreceptor markers OPN1SW and RHODOPSIN with a higher efficiency than previously reported. In addition, we report the ability of hESC and hiPSC cultures to generate neural and retinal phenotypes under minimal culture conditions, which may be linked to their ability to endogenously upregulate the expression of a range of factors important for retinal cell type specification. However, cultures that were differentiated with full supplementation under our photoreceptor-induction regimen achieve this within a significantly shorter time frame and show a substantial increase in the expression of photoreceptor-specific markers in comparison to cultures differentiated under minimal conditions. Interestingly, cultures supplemented only with B27 and/or N2 displayed comparable differentiation efficiency to those under full supplementation, indicating a key role for B27 and N2 during the differentiation process. Furthermore, our data highlight an important role for Dkk1 and Noggin in enhancing the differentiation of hESC and hiPSC toward retinal progenitor cells and photoreceptor precursors during the early stages of differentiation, while suggesting that further maturation of these cells into photoreceptors may not require additional factors and can ensue under minimal culture conditions. Copyright © 2012 AlphaMed Press.

  12. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    PubMed

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.

  13. Involvement of Retinoblastoma Protein and HBP1 in Histone H10 Gene Expression

    PubMed Central

    Lemercier, Claudie; Duncliffe, Kym; Boibessot, Isabelle; Zhang, Hui; Verdel, André; Angelov, Dimitar; Khochbin, Saadi

    2000-01-01

    The histone H10-encoding gene is expressed in vertebrates in differentiating cells during the arrest of proliferation. In the H10 promoter, a specific regulatory element, which we named the H4 box, exhibits features which implicate a role in mediating H10 gene expression in response to both differentiation and cell cycle control signals. For instance, within the linker histone gene family, the H4 box is found only in the promoters of differentiation-associated subtypes, suggesting that it is specifically involved in differentiation-dependent expression of these genes. In addition, an element nearly identical to the H4 box is conserved in the promoters of histone H4-encoding genes and is known to be involved in their cell cycle-dependent expression. The transcription factors interacting with the H10 H4 box were therefore expected to link differentiation-dependent expression of H10 to the cell cycle control machinery. The aim of this work was to identify such transcription factors and to obtain information concerning the regulatory pathway involved. Interestingly, our cloning strategy led to the isolation of a retinoblastoma protein (RB) partner known as HBP1. HBP1, a high-mobility group box transcription factor, interacted specifically with the H10 H4 box and moreover was expressed in a differentiation-dependent manner. We also showed that the HBP1-encoding gene is able to produce different forms of HBP1. Finally, we demonstrated that both HBP1 and RB were involved in the activation of H10 gene expression. We therefore propose that HBP1 mediates a link between the cell cycle control machinery and cell differentiation signals. Through modulating the expression of specific chromatin-associated proteins such as histone H10, HBP1 plays a vital role in chromatin remodeling events during the arrest of cell proliferation in differentiating cells. PMID:10958660

  14. Glimpse into Hox and tale regulation of cell differentiation and reprogramming.

    PubMed

    Cerdá-Esteban, Nuria; Spagnoli, Francesca M

    2014-01-01

    During embryonic development, cells become gradually restricted in their developmental potential and start elaborating lineage-specific transcriptional networks to ultimately acquire a unique differentiated state. Hox genes play a central role in specifying regional identities, thereby providing the cell with critical information on positional value along its differentiation path. The exquisite DNA-binding specificity of the Hox proteins is frequently dependent upon their interaction with members of the TALE family of homeodomain proteins. In addition to their function as Hox-cofactors, TALE homeoproteins control multiple crucial developmental processes through Hox-independent mechanisms. Here, we will review recent findings on the function of both Hox and TALE proteins in cell differentiation, referring mostly to vertebrate species. In addition, we will discuss the direct implications of this knowledge on cell plasticity and cell reprogramming. Copyright © 2013 Wiley Periodicals, Inc.

  15. 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34⁺ haematopoietic stem cells.

    PubMed

    Limb, Jin-Kyung; Song, Doona; Jeon, Mijeong; Han, So-Yeop; Han, Gyoonhee; Jhon, Gil-Ja; Bae, Yun Soo; Kim, Jaesang

    2015-04-01

    In this study we showed that 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient differentiation of megakaryocytes. Specifically, (R)-TEMOSPho induces cell cycle arrest, cell size increase and polyploidization from K562 and HEL cells, which are used extensively to model megakaryocytic differentiation. In addition, megakaryocyte-specific cell surface markers showed a dramatic increase in expression in response to (R)-TEMOSPho treatment. Importantly, we demonstrated that such megakaryocytic differentiation can also be induced from primary human CD34(+) haematopoietic stem cells. Activation of the PI3K-AKT pathway and, to a lesser extent, the MEK-ERK pathway appears to be required for this process, as blocking with specific inhibitors interferes with the differentiation of K562 cells. A subset of (R)-TEMOSPho-treated K562 cells undergoes spontaneous apoptosis and produces platelets that are apparently functional, as they bind to fibrinogen, express P-selectin and aggregate in response to SFLLRN and AYPGFK, the activating peptides for the PAR1 and PAR4 receptors, respectively. Taken together, these results indicate that (R)-TEMOSPho will be useful for dissecting the molecular mechanisms of megakaryocytic differentiation, and that this class of compounds represents potential therapeutic reagents for thrombocytopenia. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Dectin-1 diversifies Aspergillus fumigatus–specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation

    PubMed Central

    Hohl, Tobias M.; Collins, Nichole; Leiner, Ingrid; Gallegos, Alena; Saijo, Shinobu; Coward, Jesse W.; Iwakura, Yoichiro

    2011-01-01

    Pulmonary infection of mice with Aspergillus fumigatus induces concurrent T helper type 1 (Th1) and Th17 responses that depend on Toll-like receptor/MyD88 and Dectin-1, respectively. However, the mechanisms balancing Th1 and Th17 CD4 T cell populations during infection remain incompletely defined. In this study, we show that Dectin-1 deficiency disproportionally increases Th1 responses and decreases Th17 differentiation after A. fumigatus infection. Dectin-1 signaling in A. fumigatus–infected wild-type mice reduces IFN-γ and IL-12p40 expression in the lung, thereby decreasing T-bet expression in responding CD4 T cells and enhancing Th17 responses. Absence of IFN-γ or IL-12p35 in infected mice or T-bet in responding CD4 T cells enhances Th17 differentiation, independent of Dectin-1 expression, in A. fumigatus–infected mice. Transient deletion of monocyte-derived dendritic cells also reduces Th1 and boosts Th17 differentiation of A. fumigatus–specific CD4 T cells. Our findings indicate that Dectin-1–mediated signals alter CD4 T cell responses to fungal infection by decreasing the production of IL-12 and IFN-γ in innate cells, thereby decreasing T-bet expression in A. fumigatus–specific CD4 T cells and enabling Th17 differentiation. PMID:21242294

  17. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes.

    PubMed

    Vespa, Alisa; Darmon, Alison J; Turner, Christopher E; D'Souza, Sudhir J A; Dagnino, Lina

    2003-03-28

    Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.

  18. Evaluation of Motor Neuron-Like Cell Differentiation of hEnSCs on Biodegradable PLGA Nanofiber Scaffolds.

    PubMed

    Ebrahimi-Barough, Somayeh; Norouzi Javidan, Abbas; Saberi, Hoshangh; Joghataei, Mohammad Tghi; Rahbarghazi, Reza; Mirzaei, Esmaeil; Faghihi, Faezeh; Shirian, Sadegh; Ai, Armin; Ai, Jafar

    2015-12-01

    Human endometrium is a high-dynamic tissue that contains human endometrial stem cells (hEnSCs) which can be differentiated into a number of cell lineages. The differentiation of hEnSCs into many cell lineages such as osteoblast, adipocyte, and neural cells has been investigated previously. However, the differentiation of these stem cells into motor neuron-like cells has not been investigated yet. Different biochemical and topographical cues can affect the differentiation of stem cells into a specific cell. The aim of this study was to investigate the capability of hEnSCs to be differentiated into motor neuron-like cells under biochemical and topographical cues. The biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) electrospun nanofibrous scaffold was used as a topographical cue. Human EnSCs were cultured on the PLGA scaffold and tissue culture polystyrene (TCP), then differentiation of hEnSCs into motor neuron-like cells under induction media including retinoic acid (RA) and sonic hedgehog (Shh) were evaluated for 15 days. The proliferation rate of cells was assayed by using MTT assay. The morphology of cells was studied by scanning electron microscopy imaging, and the expression of motor neuron-specific markers by real-time PCR and immunocytochemistry. Results showed that survival and differentiation of hEnSCs into motor neuron-like cells on the PLGA scaffold were better than those on the TCP group. Taken together, the results suggest that differentiated hEnSCs on PLGA can provide a suitable, three-dimensional situation for neuronal survival and outgrowth for regeneration of the central nervous system, and these cells may be a potential candidate in cellular therapy for motor neuron diseases.

  19. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriguga,; Li, Xiao-Fei; Li, Yang

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependentmore » increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.« less

  20. Identification of p63+ keratinocyte progenitor cells in circulation and their matrix-directed differentiation to epithelial cells.

    PubMed

    Nair, Renjith P; Krishnan, Lissy K

    2013-04-11

    In the event of chronic diabetes or burn wounds, accomplishing skin regeneration is a major concern. Autologous skin grafting is the most effective remedy, but the tissue harvest may create more nonhealing wounds. Currently available skin substitutes have a limited clinical outcome because of immune reactions arising from the xenobiotic scaffold or allogenous cells. Autologous stem cells that can be collected without an additional injury may be a viable option for skin-tissue engineering. Presence of a low number of keratinocyte progenitor cells (KPCs) within the peripheral blood mononuclear cell (PBMNC) population has been indicated. Identification, isolation, expansion, and differentiation of KPCs is necessary before they are considered for skin regeneration, which is the focus of this study. Culture of isolated human PBMNCs on a cell-specific matrix was carried out to induce differentiation of KPCs. Flow cytometry and reverse transcriptase polymerase chain reaction were done for epithelial stem cell marker p63 and lineage markers cytokeratin 5 and cytokeratin 14, to track differentiation. Proliferation was confirmed by quantifying the proliferating cell nuclear antigen-expressing cells. Immunostaining with epithelial cell markers, involucrin and filaggrin, was carried out to establish terminal differentiation. Microscopic analysis confirmed growth and survival of KPCs on the dermal fibroblast monolayer and on a transplantable fibrin sheet. We demonstrated that KPCs are p63(+) and CD34-. The specifically designed composition of the extracellular matrix was found to support selective adhesion, proliferation, and differentiation of p63(+) KPCs. The PBMNC culture for 12 days under controlled conditions resulted in a homogenous population that expressed cytokeratins, and >90% of the cells were found to proliferate. Subculture for 5 days resulted in expression of filaggrin and involucrin, suggesting terminal differentiation. Transfer of matrix-selected KPCs to a dermal fibroblast monolayer or fibrin supported cell proliferation and showed typical hexagonal morphology of keratinocytes within 15 days. Circulating KPCs were identified with p63, which differentiated into keratinocytes with expression of the cytokeratins, involucrin and filaggrin. Components of the specifically designed matrix favored KPC attachment, directed differentiation, and may turn out to be a potential vehicle for cell transplantation.

  1. Identification of p63+ keratinocyte progenitor cells in circulation and their matrix-directed differentiation to epithelial cells

    PubMed Central

    2013-01-01

    Introduction In the event of chronic diabetes or burn wounds, accomplishing skin regeneration is a major concern. Autologous skin grafting is the most effective remedy, but the tissue harvest may create more nonhealing wounds. Currently available skin substitutes have a limited clinical outcome because of immune reactions arising from the xenobiotic scaffold or allogenous cells. Autologous stem cells that can be collected without an additional injury may be a viable option for skin-tissue engineering. Presence of a low number of keratinocyte progenitor cells (KPCs) within the peripheral blood mononuclear cell (PBMNC) population has been indicated. Identification, isolation, expansion, and differentiation of KPCs is necessary before they are considered for skin regeneration, which is the focus of this study. Methods Culture of isolated human PBMNCs on a cell-specific matrix was carried out to induce differentiation of KPCs. Flow cytometry and reverse transcriptase polymerase chain reaction were done for epithelial stem cell marker p63 and lineage markers cytokeratin 5 and cytokeratin 14, to track differentiation. Proliferation was confirmed by quantifying the proliferating cell nuclear antigen-expressing cells. Immunostaining with epithelial cell markers, involucrin and filaggrin, was carried out to establish terminal differentiation. Microscopic analysis confirmed growth and survival of KPCs on the dermal fibroblast monolayer and on a transplantable fibrin sheet. Results We demonstrated that KPCs are p63+ and CD34-. The specifically designed composition of the extracellular matrix was found to support selective adhesion, proliferation, and differentiation of p63+ KPCs. The PBMNC culture for 12 days under controlled conditions resulted in a homogenous population that expressed cytokeratins, and >90% of the cells were found to proliferate. Subculture for 5 days resulted in expression of filaggrin and involucrin, suggesting terminal differentiation. Transfer of matrix-selected KPCs to a dermal fibroblast monolayer or fibrin supported cell proliferation and showed typical hexagonal morphology of keratinocytes within 15 days. Conclusions Circulating KPCs were identified with p63, which differentiated into keratinocytes with expression of the cytokeratins, involucrin and filaggrin. Components of the specifically designed matrix favored KPC attachment, directed differentiation, and may turn out to be a potential vehicle for cell transplantation. PMID:23578397

  2. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells.

    PubMed

    Zhao, Qinjun; Ren, Hongying; Li, Xiyuan; Chen, Zhong; Zhang, Xiangyu; Gong, Wei; Liu, Yongjun; Pang, Tianxiang; Han, Zhong Chao

    2009-01-01

    Mesenchymal stromal cells (MSC) isolated from several human tissues have been known to differentiate into the hepatic lineage in vitro, but the immunogenicity of the differentiated hepatocyte-like cells (DHC) has not been reported. Umbilical cord (UC) MSC are thought to be an attractive cell source for cell therapy because of their young age and low infection rate compared with adult tissue MSC. Hepatic differentiation of UC-MSC was induced with a 2-step protocol. The expressions of hepatic markers were detected by RT-PCR and immunofluorescence staining. Albumin production and urea secretion were measured by ELISA and colorimetric assay respectively. The immunosuppressive properties of DHC was detected by mixed lymphocyte culture. After incubation with specific growth factors, including hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), UC MSC exhibited a high hepatic differentiation ability in an adherent culture condition. The differentiated UC MSC showed hepatocyte-like morphology and expressed several liver-specific markers at gene and protein levels. Furthermore, the DHC exhibited hepatocyte-specific functions, including albumin secretion, low-density lipoprotein uptake and urea production. More importantly, DHC did not express major histocompatibility complex (MHC) II antigen and were not able to induce lymphocyte proliferation in mixed lymphocyte culture, as undifferentiated UC MSC did. Our results indicate that UC MSC are able to differentiate into functional hepatocyte-like cells that still retain their low immunogenicity in vitro. More importantly, DHC incorporated into the parenchyma of liver when transplanted into mice with CCl(4)-induced liver injury. Therefore, DHC may be an ideal source for cell therapy of liver diseases.

  3. Transcription factor interplay in T helper cell differentiation.

    PubMed

    Evans, Catherine M; Jenner, Richard G

    2013-11-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.

  4. Early exposure to interleukin-21 limits rapidly generated anti-Epstein-Barr virus T-cell line differentiation.

    PubMed

    Orio, Julie; Carli, Cédric; Janelle, Valérie; Giroux, Martin; Taillefer, Julie; Goupil, Mathieu; Richaud, Manon; Roy, Denis-Claude; Delisle, Jean-Sébastien

    2015-04-01

    The adoptive transfer of ex vivo-expanded Epstein-Barr virus (EBV)-specific T-cell lines is an attractive strategy to treat EBV-related neoplasms. Current evidence suggests that for adoptive immunotherapy in general, clinical responses are superior if the transferred cells have not reached a late or terminal effector differentiation phenotype before infusion. The cytokine interleukin (IL)-21 has shown great promise at limiting late T-cell differentiation in vitro, but this remains to be demonstrated in anti-viral T-cell lines. We adapted a clinically validated protocol to rapidly generate EBV-specific T-cell lines in 12 to 14 days and tested whether the addition of IL-21 at the initiation of the culture would affect T-cell expansion and differentiation. We generated clinical-scale EBV-restricted T-cell line expansion with balanced T-cell subset ratios. The addition of IL-21 at the beginning of the culture decreased both T-cell expansion and effector memory T-cell accumulation, with a relative increase in less-differentiated T cells. Within CD4 T-cell subsets, exogenous IL-21 was notably associated with the cell surface expression of CD27 and high KLF2 transcript levels, further arguing for a role of IL-21 in the control of late T-cell differentiation. Our results show that IL-21 has profound effects on T-cell differentiation in a rapid T-cell line generation protocol and as such should be further explored as a novel approach to program anti-viral T cells with features associated with early differentiation and optimal therapeutic efficacy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Modeling to Optimize Terminal Stem Cell Differentiation

    PubMed Central

    Gallicano, G. Ian

    2013-01-01

    Embryonic stem cell (ESC), iPCs, and adult stem cells (ASCs) all are among the most promising potential treatments for heart failure, spinal cord injury, neurodegenerative diseases, and diabetes. However, considerable uncertainty in the production of ESC-derived terminally differentiated cell types has limited the efficiency of their development. To address this uncertainty, we and other investigators have begun to employ a comprehensive statistical model of ESC differentiation for determining the role of intracellular pathways (e.g., STAT3) in ESC differentiation and determination of germ layer fate. The approach discussed here applies the Baysian statistical model to cell/developmental biology combining traditional flow cytometry methodology and specific morphological observations with advanced statistical and probabilistic modeling and experimental design. The final result of this study is a unique tool and model that enhances the understanding of how and when specific cell fates are determined during differentiation. This model provides a guideline for increasing the production efficiency of therapeutically viable ESCs/iPSCs/ASC derived neurons or any other cell type and will eventually lead to advances in stem cell therapy. PMID:24278782

  6. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells.

    PubMed

    Suriguga; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. © 2013.

  7. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis

    PubMed Central

    Jiang, Ming; Ku, Wei-Yao; Zhou, Zhongren; Dellon, Evan S.; Falk, Gary W.; Nakagawa, Hiroshi; Wang, Mei-Lun; Liu, Kuancan; Wang, Jun; Katzka, David A.; Peters, Jeffrey H.; Lan, Xiaopeng; Que, Jianwen

    2015-01-01

    Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett’s intestinal differentiation; however, in mice, basal progenitor cell–specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE. PMID:25774506

  8. Trends in improving the embryonic stem cell test (EST): an overview.

    PubMed

    Buesen, Roland; Visan, Anke; Genschow, Elke; Slawik, Birgitta; Spielmann, Horst; Seiler, Andrea

    2004-01-01

    The embryonic stem cell test (EST) is an in vitro assay that has been developed to assess the teratogenic and embryotoxic potential of drugs and chemicals. It is based on the capacity of murine ES cells (cell line D3) to differentiate into contracting myocardial cells under specific cell culture conditions. The appearance of beating cardiomyocytes in embryoid body (EB) outgrowths is used as a toxicological endpoint to assess the embryotoxic potential of a test substance. Applying linear analysis of discriminance, a biostatistical prediction model (PM) was developed to assign test chemicals to three classes of embryotoxicity. In an international validation study the EST predicted the embryotoxic potential of chemicals and drugs with the same reliability as two other in vitro embryotoxicity tests, which employed embryonic cells and tissues from pregnant animals. In a joint research project with German pharmaceutical companies we have successfully improved the EST by establishing molecular endpoints of differentiation in cultured ES cells. The quantification of cardiac-specific protein expression by intracellular flow cytometry has been studied in the presence of chemicals of different embryotoxic potential. The results obtained using molecular endpoints specific for differentiated cardiomyocytes employing FACS (fluorescence-activated cell sorting) analysis will be presented in comparison to the validated endpoint - the microscopic analysis of beating areas. FACS analysis provides a more objective endpoint for predicting the embryotoxic potential of chemicals than the validated method. Furthermore, flow cytometry promises to be suitable for high-throughput screening systems (HTS). In addition, our partners from the joint project have improved the EST by developing protocols that stimulate differentiation of ES cells into neural and endothelial cells, chondrocytes and osteoblasts, because some substances might have embryotoxic effects on specific cell-types other than cardiomyocytes. These protocols have been successfully established at ZEBET and in the participating laboratories. Additionally, molecular endpoints have been established for the detection of specific differentiation pathways. Furthermore, new prediction models (PMs) have been developed using single endpoints of the EST.

  9. Formation of Cartilage and Synovial Tissue by Human Gingival Stem Cells

    PubMed Central

    Larjava, Hannu; Loison-Robert, Ludwig-Stanislas; Berbar, Tsouria; Owen, Gethin R.; Berdal, Ariane; Chérifi, Hafida; Gogly, Bruno; Häkkinen, Lari; Fournier, Benjamin P.J.

    2014-01-01

    Human gingival stem cells (HGSCs) can be easily isolated and manipulated in culture to investigate their multipotency. Osteogenic differentiation of bone-marrow-derived mesenchymal stem/stromal cells has been well documented. HGSCs derive from neural crests, however, and their differentiation capacity has not been fully established. The aim of the present report was to investigate whether HGSCs can be induced to differentiate to osteoblasts and chondrocytes. HGSCs were cultured either in a classical monolayer culture or in three-dimensional floating micromass pellet cultures in specific differentiation media. HGSC differentiation to osteogenic and chondrogenic lineages was determined by protein and gene expression analyses, and also by specific staining of cells and tissue pellets. HGSCs cultured in osteogenic differentiation medium showed induction of Runx2, alkaline phosphatase (ALPL), and osterix expression, and subsequently formed mineralized nodules consistent with osteogenic differentiation. Interestingly, HGSC micromass cultures maintained in chondrogenic differentiation medium showed SOX9-dependent differentiation to both chondrocyte and synoviocyte lineages. Chondrocytes at different stages of differentiation were identified by gene expression profiles and by histochemical and immunohistochemical staining. In 3-week-old cultures, peripheral cells in the micromass cultures organized in layers of cuboidal cells with villous structures facing the medium. These cells were strongly positive for cadherin-11, a marker of synoviocytes. In summary, the findings indicate that HGSCs have the capacity to differentiate to osteogenic, chondrogenic, and synoviocyte lineages. Therefore, HGSCs could serve as an alternative source for stem cell therapies in regenerative medicine for patients with cartilage and joint destructions, such as observed in rheumatoid arthritis. PMID:25003637

  10. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells.

    PubMed

    Chen, Li; Hu, Huimin; Qiu, Weimin; Shi, Kaikai; Kassem, Moustapha

    2018-05-01

    Human stromal stem cells (hMSCs) differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined the effect of direct modulation of actin microfilament dynamics on adipocyte differentiation. Stabilizing actin filaments in hMSCs by siRNA-mediated knock down of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) or treating the cells by Phalloidin reduced adipocyte differentiation as evidenced by decreased number of mature adipocytes and decreased adipocyte specific gene expression (ADIPOQ, LPL, PPARG, FABP4). In contrast, disruption of actin cytoskeleton by Cytochalasin D enhanced adipocyte differentiation. Follow up studies revealed that the effects of CFL1 on adipocyte differentiation depended on the activity of LIM domain kinase 1 (LIMK1) which is the major upstream kinase of CFL1. Inhibiting LIMK by its specific chemical inhibitor LIMKi inhibited the phosphorylation of CFL1 and actin polymerization, and enhanced the adipocyte differentiation. Moreover, treating hMSCs by Cytochalasin D inhibited ERK and Smad2 signaling and this was associated with enhanced adipocyte differentiation. On the other hand, Phalloidin enhanced ERK and Smad2 signaling, but inhibited adipocyte differentiation which was rescued by ERK specific chemical inhibitor U0126. Our data provide a link between restructuring of hMSCs cytoskeleton and hMSCs lineage commitment and differentiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis.

    PubMed

    Koshino-Kimura, Yoshihiro; Wada, Takuji; Tachibana, Tatsuhiko; Tsugeki, Ryuji; Ishiguro, Sumie; Okada, Kiyotaka

    2005-06-01

    Epidermal cell differentiation in Arabidopsis root is studied as a model system for understanding cell fate specification. Two types of MYB-related transcription factors are involved in this cell differentiation. One of these, CAPRICE (CPC), encoding an R3-type MYB protein, is a positive regulator of hair cell differentiation and is preferentially transcribed in hairless cells. We analyzed the regulatory mechanism of CPC transcription. Deletion analyses of the CPC promoter revealed that hairless cell-specific transcription of the CPC gene required a 69 bp sequence, and a tandem repeat of this region was sufficient for its expression in epidermis. This region includes two MYB-binding sites, and the epidermis-specific transcription of CPC was abolished when base substitutions were introduced in these sites. We showed by gel mobility shift experiments and by yeast one-hybrid assay that WEREWOLF (WER), which is an R2R3-type MYB protein, directly binds to this region. We showed that WER also binds to the GL2 promoter region, indicating that WER directly regulates CPC and GL2 transcription by binding to their promoter regions.

  12. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.

    PubMed

    Fridley, Krista M; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B; Roy, Krishnendu

    2010-11-01

    Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1(+) progenitors and spinner flasks generated more c-Kit(+) progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells.

  13. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility

    PubMed Central

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-01-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565

  14. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility.

    PubMed

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-08-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4(+) T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.

  15. Increased intracellular pH is necessary for adult epithelial and embryonic stem cell differentiation

    PubMed Central

    Azimova, Dinara R.

    2016-01-01

    Despite extensive knowledge about the transcriptional regulation of stem cell differentiation, less is known about the role of dynamic cytosolic cues. We report that an increase in intracellular pH (pHi) is necessary for the efficient differentiation of Drosophila adult follicle stem cells (FSCs) and mouse embryonic stem cells (mESCs). We show that pHi increases with differentiation from FSCs to prefollicle cells (pFCs) and follicle cells. Loss of the Drosophila Na+–H+ exchanger DNhe2 lowers pHi in differentiating cells, impairs pFC differentiation, disrupts germarium morphology, and decreases fecundity. In contrast, increasing pHi promotes excess pFC cell differentiation toward a polar/stalk cell fate through suppressing Hedgehog pathway activity. Increased pHi also occurs with mESC differentiation and, when prevented, attenuates spontaneous differentiation of naive cells, as determined by expression of microRNA clusters and stage-specific markers. Our findings reveal a previously unrecognized role of pHi dynamics for the differentiation of two distinct types of stem cell lineages, which opens new directions for understanding conserved regulatory mechanisms. PMID:27821494

  16. Retrogenic ICOS Expression Increases Differentiation of KLRG-1hi CD127lo CD8+ T Cells During Listeria Infection and Diminishes Recall Responses1

    PubMed Central

    Liu, Danya; Burd, Eileen M.; Coopersmith, Craig M.; Ford, Mandy L.

    2016-01-01

    Following T cell encounter with antigen, multiple signals are integrated to collectively induce distinct differentiation programs within antigen-specific CD8+ T cell populations. Several factors contribute to these cell fate decisions including the amount and duration of antigen, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The inducible costimulator (ICOS) is not expressed on resting T cells but is rapidly upregulated upon encounter with antigen. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study we therefore sought to determine the role of ICOS signaling on CD8+ T cell programmed differentiation. Through the creation of novel ICOS retrogenic antigen-specific TCR transgenic CD8+ T cells, we interrogated the phenotype, functionality, and recall potential of CD8+ T cells that receive early and sustained ICOS signaling during antigen exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of antigen-specific CD8+ T cells, resulting in increased frequencies of KLRG-1hiCD127lo cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared to empty vector controls. Interestingly, however, ICOS retrogenic CD8+ T cells also preferentially homed to non-lymphoid organs, and exhibited reduced multi-cytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response. PMID:26729800

  17. Retrogenic ICOS Expression Increases Differentiation of KLRG-1hiCD127loCD8+ T Cells during Listeria Infection and Diminishes Recall Responses.

    PubMed

    Liu, Danya; Burd, Eileen M; Coopersmith, Craig M; Ford, Mandy L

    2016-02-01

    Following T cell encounter with Ag, multiple signals are integrated to collectively induce distinct differentiation programs within Ag-specific CD8(+) T cell populations. Several factors contribute to these cell fate decisions, including the amount and duration of Ag, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The ICOS is not expressed on resting T cells but is rapidly upregulated upon encounter with Ag. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study, we therefore sought to determine the role of ICOS signaling on CD8(+) T cell programmed differentiation. Through the creation of novel ICOS retrogenic Ag-specific TCR-transgenic CD8(+) T cells, we interrogated the phenotype, functionality, and recall potential of CD8(+) T cells that receive early and sustained ICOS signaling during Ag exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of Ag-specific CD8(+) T cells, resulting in increased frequencies of KLRG-1(hi)CD127(lo) cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared with empty vector controls. Interestingly, however, ICOS retrogenic CD8(+) T cells also preferentially homed to nonlymphoid organs and exhibited reduced multicytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. Sex, stem cells and tumors in the Drosophila ovary.

    PubMed

    Salz, Helen K

    2013-01-01

    The Drosophila Sex-lethal (Sxl) gene encodes a female-specific RNA binding protein that in somatic cells globally regulates all aspects of female-specific development and behavior. Sxl also has a critical, but less well understood, role in female germ cells. Germ cells without Sxl protein can adopt a stem cell fate when housed in a normal ovary, but fail to successfully execute the self-renewal differentiation fate switch. The failure to differentiate is accompanied by the inappropriate expression of a set of male specific markers, continued proliferation, and formation of a tumor. The findings in Chau et al., (2012) identify the germline stem cell maintenance factor nanos as one of its target genes, and suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional downregulation of nanos expression. These studies provide the basis for a new model in which Sxl directly couples sexual identity with the self-renewal differentiation decision and raises several interesting questions about the genesis of the tumor phenotype.

  19. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis*

    PubMed Central

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang

    2016-01-01

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332

  20. Developmental characteristics of somatic cell hybrids between totipotent mouse teratocarcinoma and rat intestinal villus cells.

    PubMed

    van der Kamp, A W; Roza-de Jongh, E J; Houwen, R H; Magrane, G G; van Dongen, J M; Evans, M J

    1984-09-01

    Hybrids between mouse PCC4-azal teratocarcinoma cells and rat epithelial intestinal villus cells (PCI hybrids) are phenotypically teratocarcinoma cells. They express several teratocarcinoma-specific traits but do not express functions specific for differentiated cells. Tumour formation is partially or completely suppressed. Some of the hybrids show more extensive differentiation both in vitro and in vivo than the PCC4-azal parental line. The hybrids are capable of endoderm formation in monolayer cultures and of the formation of embryoid bodies in suspension cultures. Two of the tumour-forming hybrids generate derivatives of all three germ layers, whereas differentiation in the PCC4-azal tumours is restricted to the formation of primitive neuronal tissues.

  1. Ascl1-induced neuronal differentiation of P19 cells requires expression of a specific inhibitor protein of cAMP-dependent protein kinase

    PubMed Central

    Huang, Holly S.; Turner, David L.; Thompson, Robert C.; Uhler, Michael D.

    2011-01-01

    cAMP-dependent protein kinase (PKA) plays a critical role in nervous system development by modulating sonic hedgehog and bone morphogenetic protein signaling. In the current studies, P19 embryonic carcinoma cells were neuronally differentiated by expression of the proneural basic helix-loop-helix transcription factor Ascl1. After expression of Ascl1, but prior to expression of neuronal markers such as microtubule associated protein 2 and neuronal β-tubulin, P19 cells demonstrated a large, transient increase in both mRNA and protein for the endogenous protein kinase inhibitor (PKI)β. PKIβ-targeted shRNA constructs both reduced the levels of PKIβ expression and blocked the neuronal differentiation of P19 cells. This inhibition of differentiation was rescued by transfection of a shRNA-resistant expression vector for the PKIβ protein, and this rescue required the PKA-specific inhibitory sequence of the PKIβprotein. PKIβ played a very specific role in the Ascl1-mediated differentiation process since other PKI isoforms were unable to rescue the deficit conferred by shRNA-mediated knockdown of PKIβ. Our results define a novel requirement for PKIβ and its inhibition of PKA during neuronal differentiation of P19 cells. PMID:21623794

  2. Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells.

    PubMed

    Chung, HaeWon; Lee, Bum-Kyu; Uprety, Nadima; Shen, Wenwen; Lee, Jiwoon; Kim, Jonghwan

    2016-04-01

    Yap1 is a transcriptional co-activator of the Hippo pathway. The importance of Yap1 in early cell fate decision during embryogenesis has been well established, though its role in embryonic stem (ES) cells remains elusive. Here, we report that Yap1 plays crucial roles in normal differentiation rather than self-renewal of ES cells. Yap1-depleted ES cells maintain undifferentiated state with a typical colony morphology as well as robust alkaline phosphatase activity. These cells also retain comparable levels of the core pluripotent factors, such as Pou5f1 and Sox2, to the levels in wild-type ES cells without significant alteration of lineage-specific marker genes. Conversely, overexpression of Yap1 in ES cells promotes nuclear translocation of Yap1, resulting in disruption of self-renewal and triggering differentiation by up-regulating lineage-specific genes. Moreover, Yap1-deficient ES cells show impaired induction of lineage markers during differentiation. Collectively, our data demonstrate that Yap1 is a required factor for proper differentiation of mouse ES cells, while remaining dispensable for self-renewal. © 2016 The Authors.

  3. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    PubMed Central

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  4. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.

    PubMed

    Wittenburg, Gretel; Flade, Viktoria; Garbe, Annette I; Lauer, Günter; Labudde, Dirk

    2014-05-01

    We have analysed the growth and differentiation of mesenchymal stromal cells (MSC) from bone marrow, and of adipose derived stem cells (ASC) from murine abdominal fat tissue, of green fluorescent protein (GFP) transgenic animals grown directly on two types of hydroxyapatite ceramic bone substitutes. BONITmatrix® and NanoBone® have specific mechanical and physiochemical properties such as porosity and an inner surface that influence cellular growth. Both MSC and ASC were separately seeded on 200mg of each biomaterial and cultured for 3 weeks under osteogenic differentiation conditions. The degree of mineralisation was assessed by alizarin red dye and the specific alkaline phosphatase activity of the differentiated cells. The morphology of the cells was examined by scanning electron microscopy and confocal microscopy. The osteoblastic phenotype of the cells was confirmed by analysing the expression of bone-specific genes (Runx2, osteocalcin, osteopontin, and osteonectin) by semiquantitative reverse transcriptase polymerase chain reaction (PCR). Comparison of BONITmatrix® and NanoBone® showed cell type-specific preferences in terms of osteogenic differentiation. MSC-derived osteoblast-like cells spread optimally on the surface of NanoBone® but not BONITmatrix® granules. In contrast BONITmatrix® granules conditioned the growth of osteoblast-like cells derived from ASC. The osteoblastic phenotype of the cultured cells on all matrices was confirmed by specific gene expression. Our results show that the in vitro growth and osteogenic differentiation of murine MSC or ASC of GFP transgenic mice are distinctly influenced by the ceramic substratum. While NanoBone® granules support the proliferation and differentiation of murine MSC isolated from bone marrow, the growth of murine ASC is supported by BONITmatrix® granules. NanoBone® is therefore recommended for use as scaffold in tissue engineering that requires MSC, whereas ASC can be combined with BONITmatrix® for in vitro bone engineering. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells.

    PubMed

    Netea, Mihai G; Lewis, Eli C; Azam, Tania; Joosten, Leo A B; Jaekal, Jun; Bae, Su-Young; Dinarello, Charles A; Kim, Soo-Hyun

    2008-03-04

    After emigration from the bone marrow to the peripheral blood, monocytes enter tissues and differentiate into macrophages, the prototype scavenger of the immune system. By ingesting and killing microorganisms and removing cellular debris, macrophages also process antigens as a first step in mounting a specific immune response. IL-32 is a cytokine inducing proinflammatory cytokines and chemokines via p38-MAPK and NF-kappaB. In the present study, we demonstrate that IL-32 induces differentiation of human blood monocytes as well as THP-1 leukemic cells into macrophage-like cells with functional phagocytic activity for live bacteria. Muramyl dipepide (MDP), the ligand for the intracellular nuclear oligomerization domain (NOD) 2 receptor, has no effect on differentiation alone but augments the monocyte-to-macrophage differentiation by IL-32. Unexpectedly, IL-32 reversed GM-CSF/IL-4-induced dendritic cell differentiation to macrophage-like cells. Whereas the induction of TNFalpha, IL-1beta, and IL-6 by IL-32 is mediated by p38-MAPK, IL-32-induced monocyte-to-macrophage differentiation is mediated through nonapoptotic, caspase-3-dependent mechanisms. Thus, IL-32 not only contributes to host responses through the induction of proinflammatory cytokines but also directly affects specific immunity by differentiating monocytes into macrophage-like cells.

  6. miR-203 modulates epithelial differentiation of human embryonic stem cells towards epidermal stratification.

    PubMed

    Nissan, Xavier; Denis, Jérôme Alexandre; Saidani, Manoubia; Lemaitre, Gilles; Peschanski, Marc; Baldeschi, Christine

    2011-08-15

    The molecular mechanisms controlling the differentiation of human basal keratinocyte stem cells towards the epidermis are well characterized, whereas the earliest process leading to the specification of embryonic stem cells into keratinocytes is still not well understood. MicroRNAs are regulators of many cellular events, but evidence for microRNA acting on the differentiation of human embryonic stem cells into a specific lineage has been elusive. By using our recent protocol for obtaining functional keratinocytes from hESC, we attempted to analyze the role of microRNAs in the early stages of epidermal differentiation. Thus, we identified a set of 5 microRNAs, namely miR-200a, miR-200b, miR-203, miR-205 and miR-429, that are specifically overexpressed during the early stages of the differentiation process. Interestingly, our functional analyses revealed an instrumental role of miR-203, which had been previously shown to play a key role during the formation of the pluristratified epidermis by basal keratinocyte stem cells, in the early keratinocyte commitment. These results highlight the determinant and unique role of miR-203 during the entire process of epidermal development by extending its spectrum of action from the early commitment of embryonic stem cells to ultimate differentiation of the organ. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Differential marker expression by cultures rich in mesenchymal stem cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  8. In Vivo Exposure to Inorganic Arsenic Alters Differentiation-Specific Gene Expression of Adipose-Derived Mesenchymal Stem/Stromal Cells in C57BL/6J Mouse Model

    PubMed Central

    Shearer, Joseph J.; Figueiredo Neto, Manoel; Umbaugh, C. Samuel; Figueiredo, Marxa L.

    2017-01-01

    Abstract The number of mesenchymal stem cell (MSC) therapeutic modalities has grown in recent years. Adipose-derived mesenchymal stem/stromal cells (ASCs) can be isolated and expanded relatively easily as compared with their bone-marrow counterparts, making them a particularly promising source of MSCs. And although the biological mechanisms surrounding ASCs are actively being investigated, little is known about the effects that in vivo environmental exposures might have on their ability to properly differentiate. Therefore, we hypothesized that ASCs isolated from mice exposed to inorganic arsenic (iAs) would have an altered response towards adipogenic, osteogenic, and/or chondrogenic differentiation. To test this hypothesis, C57BL/6J male mice were provided drinking water containing 0, 300, or 1000 ppb iAs. ASCs were then isolated and differentiated, which was assessed by immunocytochemistry and real-time quantitative PCR (RT-qPCR). Our results showed that total urinary arsenic equilibrated within 1 week of exposure to iAs and was maintained throughout the study. ASCs isolated from each exposure group maintained differentiation capabilities for each lineage. The magnitude of differentiation-specific gene expression, however, appeared to be concentration dependent. For osteogenesis and chondrogenesis, differentiation-specific gene expression decreased, whereas adipogenesis showed a biphasic response with an initial decrease followed by an increase in adipogenic-related gene expression following iAs exposure. These results suggest that the level in which differentiation-specific genes are induced within these stromal cells might be sensitive to environmental contaminants. These findings highlight the need to take into account potential environmental exposures prior to selecting stromal cell donors, so ASCs can achieve optimal efficiency in regenerative therapy applications. PMID:28206643

  9. Testicular cell-conditioned medium supports embryonic stem cell differentiation toward germ lineage and to spermatocyte- and oocyte-like cells.

    PubMed

    Shah, Syed M; Saini, Neha; Singh, Manoj K; Manik, Radheysham; Singla, Suresh K; Palta, Prabhat; Chauhan, Manmohan S

    2016-08-01

    Testicular cells are believed to secrete various growth factors that activate signaling pathways finally leading to gametogenesis. In vitro gametogenesis is an obscure but paramountly important task primarily because of paucity of the precursor cells and first trimester gonadal tissues. To overcome these limitations for development of in vitro gametes, the present study was designed to induce differentiation of buffalo embryonic stem (ES) cells into germ lineage cells on stimulation by testicular cell-conditioned medium (TCM), on the basis of the assumption that ES cells have the intrinsic property to differentiate into any cell type and TCM would provide the necessary growth factors for differentiation toward germ cell lineage. For this purpose, buffalo ES cells were differentiated as embryoid bodies (EB) in floating cultures and as monolayer adherent cultures in different doses (10%, 20%, and 40%) of TCM for different culture intervals (4, 8, and 14 days), to identify the optimum dose-and-time period. We observed that 40% TCM dose induces highest expression of primordial germ cell-specific (DAZL, VASA, and PLZF), meiotic (SYCP3, MLH1, TNP1/2, and PRM2), spermatocyte-specific (BOULE and TEKT1), and oocyte-specific genes (GDF9 and ZP2/3) for a culture period of 14 days under both floating and adherent differentiation. Immunocytochemical analysis of EBs and adherent cultures revealed presence of primordial germ cell markers (c-KIT, DAZL, and VASA), meiotic markers (SYCP3, MLH1 and PROTAMINE1), spermatocyte markers (ACROSIN and HAPRIN), and oocyte markers (GDF9 and ZP4), indicating progression into post-meiotic gametogenesis. The detection of germ cell-specific proteins in Day 14 EBs like VASA, GDF9, and ZP4 by Western blotting further confirmed germ lineage differentiation. The significantly lower (P < 0.05) concentration of 5-methyl-2-deoxycytidine in optimally differentiated EBs is suggestive of the process of methylation erasure. Oocyte-like structures obtained in monolayer differentiation had a big nucleus and a surrounding ZP4 coat, the unique attributes of a female gamete. These oocyte-like structures, in extended cultures, showed embryonic development and progressed through two-cell, four-cell, eight-cell, morula, and blastocyst-like structures, indicative of their developmental competence. This, as per our knowledge, is first such study in higher mammals, especially farm animals, and assumes significance for its potential use in transgenic animal production, elite animal conservation and propagation, augmentation of reproductive performance in poor breeding buffalo species, and as a model for understanding human germ cell formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation.

    PubMed

    Xu, J G; Gong, T; Wang, Y Y; Zou, T; Heng, B C; Yang, Y Q; Zhang, C F

    2018-02-01

    Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.

  11. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels.

    PubMed

    Alexanian, Arshak R; Liu, Qing-song; Zhang, Zhiying

    2013-08-01

    Advances in cell reprogramming technologies to generate patient-specific cells of a desired type will revolutionize the field of regenerative medicine. While several cell reprogramming methods have been developed over the last decades, the majority of these technologies require the exposure of cell nuclei to reprogramming large molecules via transfection, transduction, cell fusion or nuclear transfer. This raises several technical, safety and ethical issues. Chemical genetics is an alternative approach for cell reprogramming that uses small, cell membrane penetrable substances to regulate multiple cellular processes including cell plasticity. Recently, using the combination of small molecules that are involved in the regulation chromatin structure and function and agents that favor neural differentiation we have been able to generate neural-like cells from human mesenchymal stem cells. In this study, to improve the efficiency of neuronal differentiation and maturation, two specific inhibitors of SMAD signaling (SMAD1/3 and SMAD3/5/8) that play an important role in neuronal differentiation of embryonic stem cells, were added to our previous neural induction recipe. Results demonstrated that human mesenchymal stem cells grown in this culture conditions exhibited higher expression of several mature neuronal genes, formed synapse-like structures and exerted electrophysiological properties of differentiating neural stem cells. Thus, an efficient method for production of mature neuronal-like cells from human adult bone marrow derived mesenchymal stem cells has been developed. We concluded that specific combinations of small molecules that target specific cell signaling pathways and chromatin modifying enzymes could be a promising approach for manipulation of adult stem cell plasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Physico-electrochemical Characterization of Pluripotent Stem Cells during Self-Renewal or Differentiation by a Multi-modal Monitoring System.

    PubMed

    Low, Karen; Wong, Lauren Y; Maldonado, Maricela; Manjunath, Chetas; Horner, Christopher B; Perez, Mark; Myung, Nosang V; Nam, Jin

    2017-05-09

    Monitoring pluripotent stem cell behaviors (self-renewal and differentiation to specific lineages/phenotypes) is critical for a fundamental understanding of stem cell biology and their translational applications. In this study, a multi-modal stem cell monitoring system was developed to quantitatively characterize physico-electrochemical changes of the cells in real time, in relation to cellular activities during self-renewal or lineage-specific differentiation, in a non-destructive, label-free manner. The system was validated by measuring physical (mass) and electrochemical (impedance) changes in human induced pluripotent stem cells undergoing self-renewal, or subjected to mesendodermal or ectodermal differentiation, and correlating them to morphological (size, shape) and biochemical changes (gene/protein expression). An equivalent circuit model was used to further dissect the electrochemical (resistive and capacitive) contributions of distinctive cellular features. Overall, the combination of the physico-electrochemical measurements and electrical circuit modeling collectively offers a means to longitudinally quantify the states of stem cell self-renewal and differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. A gene expression signature that correlates with CD8+T cell expansion in acute Epstein Barr virus infection1

    PubMed Central

    Greenough, Thomas C.; Straubhaar, Juerg R.; Kamga, Larisa; Weiss, Eric R.; Brody, Robin M.; McManus, Margaret M.; Lambrecht, Linda K.; Somasundaran, Mohan; Luzuriaga, Katherine F.

    2015-01-01

    Virus specific CD8+ T cells expand dramatically during acute Epstein Barr virus (EBV) infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8+ T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8+ T cells isolated from the peripheral blood of ten individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8+ T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8+ T cell expansion in response to an acute EBV infection. In EBV-specific CD8+ T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and Eomesodermin (Eomes), were upregulated and maintained at similar levels in both AIM and CONV; by contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Altogether, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8+ T cells in AIM are virus-specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and Eomes may help to maintain effector mechanisms in activated cells, and to enable proliferation and transition to earlier differentiation states in CONV. PMID:26416268

  14. A morphometric analysis of cellular differentiation in caps of primary and lateral roots of Helianthus annuus

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.

  15. The CCR4-NOT complex mediates deadenylation and degradation of stem cell mRNAs and promotes planarian stem cell differentiation.

    PubMed

    Solana, Jordi; Gamberi, Chiara; Mihaylova, Yuliana; Grosswendt, Stefanie; Chen, Chen; Lasko, Paul; Rajewsky, Nikolaus; Aboobaker, A Aziz

    2013-01-01

    Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology.

  16. The CCR4-NOT Complex Mediates Deadenylation and Degradation of Stem Cell mRNAs and Promotes Planarian Stem Cell Differentiation

    PubMed Central

    Solana, Jordi; Gamberi, Chiara; Mihaylova, Yuliana; Grosswendt, Stefanie; Chen, Chen; Lasko, Paul; Rajewsky, Nikolaus; Aboobaker, A. Aziz

    2013-01-01

    Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology. PMID:24367277

  17. Analysis of tissue specific progenitor cell differentiation using FT-IR

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-07-01

    Tissue specific progenitor cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-contact and non-destructive methods from the view point of safety. Or the analysis with small quantities of materials could be possible if the quantities of materials are acceptable. A non-contact and non-destructive quality control method has been required. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The changes in the cells and tissues, which are subtle and often not obvious in the histpathological studies, are shown to be well resolved using FT-IR. Moreover, although most techniques designed to detect one or a few changes, FT-IR is possible to identify the changes in the levels of various cellular biochemicals simultaneously under in vivo and in vitro conditions. The objective of this study is to establish the infrared spectroscopy of tissue specific progenitor cell differentiations as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examine the adipose differentiation kinetics of preadipose cells (3T3-L1) and the osteoblast differentiation kinetics of mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra.

  18. Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation

    PubMed Central

    Yu, Jing; Hirose-Yotsuya, Lisa; Take, Kazumi; Sun, Wei; Iwabu, Masato; Okada-Iwabu, Miki; Fujita, Takanori; Aoyama, Tomohisa; Tsutsumi, Shuichi; Ueki, Kohjiro; Kodama, Tatsuhiko; Sakai, Juro; Aburatani, Hiroyuki; Kadowaki, Takashi

    2011-01-01

    Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type–specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation) and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq). FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI) transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA–mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our study demonstrates the utility of FAIRE-seq in providing a global view of cell type–specific regulatory elements in the genome and in identifying transcriptional regulators of adipocyte differentiation. PMID:22028663

  19. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans.

    PubMed

    Gorrepati, Lakshmi; Krause, Michael W; Chen, Weiping; Brodigan, Thomas M; Correa-Mendez, Margarita; Eisenmann, David M

    2015-06-05

    The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells. Copyright © 2015 Gorrepati et al.

  20. Beyond generalized hair cells: Molecular cues for hair cell types

    PubMed Central

    Jahan, Israt; Pan, Ning; Kersigo, Jennifer; Fritzsch, Bernd

    2012-01-01

    Basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial for inner ear neurosensory development. The proneural TF Atoh1 regulates the differentiation of hair cells (HCs) whereas Neurog1 and Neurod1 regulate specification and differentiation of neurons, respectively, but also affect HC development. Expression of Delta and Jagged ligands in nascent HCs and Notch receptors in supporting cells induce supporting cell differentiation through the regulation of neurogenic bHLH TFs (such as Hes1, Hes5) and suppression of limited Atoh1 expression. In sensorineural hearing loss, HCs are lost followed by supporting cells and progressive degeneration of neurons, at least in rodents. Regaining complete hearing may require reconstituting the organ of Corti (OC) from scratch, including the two types of HCs, inner (IHC) and outer (OHC) hair cells with the precise sorting of two types of afferent (type I and II) and efferent (lateral, LOC and medial, MOC olivo-cochlear) innervation. We review effects of bHLH TF dosage and their cross-regulation to differentiate HC types in the OC. We categorize findings of specific gene expressions in HCs: 1. as markers without meaning for the regeneration task, 2. as stabilizers who are needed to maintain or complete differentiation, and 3. as decision making genes, expressed and acting early enough to be useful in this process. Only one TF has been characterized that fits the last aspect: Atoh1. We propose that temporal and intensity variations of Atoh1 are naturally modulated to differentiate specific types of HCs. Importantly, the molecular means to modify the Atoh1 expression are at least partially understood and can be readily implemented in the attempts to regenerate specific types of HCs. PMID:23201032

  1. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell.

    PubMed

    von Dassow, Peter; Ogata, Hiroyuki; Probert, Ian; Wincker, Patrick; Da Silva, Corinne; Audic, Stéphane; Claverie, Jean-Michel; de Vargas, Colomban

    2009-01-01

    Eukaryotes are classified as either haplontic, diplontic, or haplo-diplontic, depending on which ploidy levels undergo mitotic cell division in the life cycle. Emiliania huxleyi is one of the most abundant phytoplankton species in the ocean, playing an important role in global carbon fluxes, and represents haptophytes, an enigmatic group of unicellular organisms that diverged early in eukaryotic evolution. This species is haplo-diplontic. Little is known about the haploid cells, but they have been hypothesized to allow persistence of the species between the yearly blooms of diploid cells. We sequenced over 38,000 expressed sequence tags from haploid and diploid E. huxleyi normalized cDNA libraries to identify genes involved in important processes specific to each life phase (2N calcification or 1N motility), and to better understand the haploid phase of this prominent haplo-diplontic organism. The haploid and diploid transcriptomes showed a dramatic differentiation, with approximately 20% greater transcriptome richness in diploid cells than in haploid cells and only

  2. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell

    PubMed Central

    2009-01-01

    Background Eukaryotes are classified as either haplontic, diplontic, or haplo-diplontic, depending on which ploidy levels undergo mitotic cell division in the life cycle. Emiliania huxleyi is one of the most abundant phytoplankton species in the ocean, playing an important role in global carbon fluxes, and represents haptophytes, an enigmatic group of unicellular organisms that diverged early in eukaryotic evolution. This species is haplo-diplontic. Little is known about the haploid cells, but they have been hypothesized to allow persistence of the species between the yearly blooms of diploid cells. We sequenced over 38,000 expressed sequence tags from haploid and diploid E. huxleyi normalized cDNA libraries to identify genes involved in important processes specific to each life phase (2N calcification or 1N motility), and to better understand the haploid phase of this prominent haplo-diplontic organism. Results The haploid and diploid transcriptomes showed a dramatic differentiation, with approximately 20% greater transcriptome richness in diploid cells than in haploid cells and only ≤ 50% of transcripts estimated to be common between the two phases. The major functional category of transcripts differentiating haploids included signal transduction and motility genes. Diploid-specific transcripts included Ca2+, H+, and HCO3- pumps. Potential factors differentiating the transcriptomes included haploid-specific Myb transcription factor homologs and an unusual diploid-specific histone H4 homolog. Conclusions This study permitted the identification of genes likely involved in diploid-specific biomineralization, haploid-specific motility, and transcriptional control. Greater transcriptome richness in diploid cells suggests they may be more versatile for exploiting a diversity of rich environments whereas haploid cells are intrinsically more streamlined. PMID:19832986

  3. Differential 3’ processing of specific transcripts expands regulatory and protein diversity across neuronal cell types

    PubMed Central

    Jereb, Saša; Hwang, Hun-Way; Van Otterloo, Eric; Govek, Eve-Ellen; Fak, John J; Yuan, Yuan; Hatten, Mary E

    2018-01-01

    Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3’UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3’UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3’UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies. PMID:29578408

  4. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs).

    PubMed

    Cutts, Josh; Brookhouser, Nicholas; Brafman, David A

    2016-01-01

    Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population capable of long-term expansion and differentiation into a variety of neuronal subtypes. As such, NPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine. Current methods for the generation of NPCs results in cell populations homogenous for pan-neural markers such as SOX1 and SOX2 but heterogeneous with respect to regional identity. In order to use NPCs and their neuronal derivatives to investigate mechanisms of neurological disorders and develop more physiologically relevant disease models, methods for generation of regionally specific NPCs and neurons are needed. Here, we describe a protocol in which exogenous manipulation of WNT signaling, through either activation or inhibition, during neural differentiation of hPSCs, promotes the formation of regionally homogenous NPCs and neuronal cultures. In addition, we provide methods to monitor and characterize the efficiency of hPSC differentiation to these regionally specific cell identities.

  5. Technical and clinical performance of a new assay to detect squamous cell carcinoma antigen levels for the differential diagnosis of cervical, lung, and head and neck cancer.

    PubMed

    Holdenrieder, Stefan; Molina, Rafael; Qiu, Ling; Zhi, Xiuyi; Rutz, Sandra; Engel, Christine; Kasper-Sauer, Pia; Dayyani, Farshid; Korse, Catharina M

    2018-04-01

    In squamous cell carcinoma, squamous cell carcinoma antigen levels are often elevated. This multi-center study evaluated the technical performance of a new Elecsys ® squamous cell carcinoma assay, which measures serum squamous cell carcinoma antigen 1 and 2 levels in an equimolar manner, and investigated the potential of squamous cell carcinoma antigen for differential diagnosis of cervical, lung, and head and neck squamous cell carcinoma.Assay precision and method comparison experiments were performed across three European sites. Reference ranges for reportedly healthy individuals were determined using samples from banked European and Chinese populations. Differential diagnosis experiments determined whether cervical, lung, or head and neck cancer could be differentiated from apparently healthy, benign, or other malignant cohorts using squamous cell carcinoma antigen levels alone. Squamous cell carcinoma antigen cut-off levels were calculated based on squamous cell carcinoma antigen levels at 95% specificity. Repeatability coefficients of variation across nine analyte concentrations were ≤5.3%, and intermediate precision coefficients of variation were ≤10.3%. Method comparisons showed good correlations with Architect and Kryptor systems (slopes of 1.1 and 1.5, respectively). Reference ranges for 95th percentiles for apparently healthy individuals were 2.3 ng/mL (95% confidence interval: 1.9-3.8; European cohort, n = 153) and 2.7 ng/mL (95% confidence interval: 2.2-3.3; Chinese cohort, n = 146). Strongest differential diagnosis results were observed for cervical squamous cell carcinoma: receiver operating characteristic analysis showed that squamous cell carcinoma antigen levels (2.9 ng/mL cut-off) differentiate cervical squamous cell carcinoma (n = 127) from apparently healthy females (n = 286; area under the curve: 86.2%; 95% confidence interval: 81.8-90.6; sensitivity: 61.4%; specificity: 95.6%), benign diseases (n = 187; area under the curve: 86.3%; 95% confidence interval: 81.2-91.3; sensitivity: 61.4%; specificity: 95.0%), and other cervical cancers (n = 157; area under the curve: 78.9%; 95% confidence interval: 70.8-87.1; sensitivity: 61.4%; specificity: 86.7%). Squamous cell carcinoma may also aid in the differential diagnosis of lung cancer. The Elecsys squamous cell carcinoma assay exhibited good technical performance and is suitable for differential diagnosis of cervical squamous cell carcinoma in clinical practice.

  6. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans

    PubMed Central

    Gorrepati, Lakshmi; Krause, Michael W.; Chen, Weiping; Brodigan, Thomas M.; Correa-Mendez, Margarita; Eisenmann, David M.

    2015-01-01

    The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type–specific "mRNA tagging" to enrich for VPC and seam cell–specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type–specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells. PMID:26048561

  7. Arid3a is essential to execution of the first cell fate decision via direct embryonic and extraembryonic transcriptional regulation

    PubMed Central

    Rhee, Catherine; Lee, Bum-Kyu; Beck, Samuel; Anjum, Azeen; Cook, Kendra R.; Popowski, Melissa

    2014-01-01

    Despite their origin from the inner cell mass, embryonic stem (ES) cells undergo differentiation to the trophectoderm (TE) lineage by repression of the ES cell master regulator Oct4 or activation of the TE master regulator Caudal-type homeobox 2 (Cdx2). In contrast to the in-depth studies of ES cell self-renewal and pluripotency, few TE-specific regulators have been identified, thereby limiting our understanding of mechanisms underlying the first cell fate decision. Here we show that up-regulation and nuclear entry of AT-rich interactive domain 3a (Arid3a) drives TE-like transcriptional programs in ES cells, maintains trophoblast stem (TS) cell self-renewal, and promotes further trophoblastic differentiation both upstream and independent of Cdx2. Accordingly, Arid3a−/− mouse post-implantation placental development is severely impaired, resulting in early embryonic death. We provide evidence that Arid3a directly activates TE-specific and trophoblast lineage-specific genes while directly repressing pluripotency genes via differential regulation of epigenetic acetylation or deacetylation. Our results identify Arid3a as a critical regulator of TE and placental development through execution of the commitment and differentiation phases of the first cell fate decision. PMID:25319825

  8. Modulation of CD4(+) T cell-dependent specific cytotoxic CD8(+) T cells differentiation and proliferation by the timing of increase in the pathogen load.

    PubMed

    Tzelepis, Fanny; Persechini, Pedro M; Rodrigues, Mauricio M

    2007-04-25

    Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8(+) T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8(+) T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process. Using increasing doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8(+) T cells became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific CD8(+) cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8(+) cytotoxic T cells is in fact dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8(+) cytotoxic T cells was dependent on MHC class II restricted CD4(+) T cells. Our results are compatible with our initial hypothesis that the timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4(+) T cell-dependent expansion of pathogen-specific CD8(+) cytotoxic T cells.

  9. Cells in 3D-reconstitutued eccrine sweat gland cell spheroids differentiate into gross cystic disease fluid protein 15-expressing dark secretory cells and carbonic anhydrase II-expressing clear secretory cells.

    PubMed

    Li, Haihong; Chen, Liyun; Zhang, Mingjun; Zhang, Bingna

    2017-07-01

    Secretory coils of eccrine sweat glands are composed of myoepithelial cells, dark secretory cells and clear secretory cells. The two types of cells play important roles in sweat secretion. In our previous study, we demonstrated that the 3D-reconstituted eccrine sweat gland cell spheroids differentiate into secretory coil-like structures. However, whether the secretory coil-like structures further differentiate into dark secretory cells and clear secretory cells were is still unknown. In this study, we detected the differentiation of clear and dark secretory cells in the 3D-reconstituted eccrine sweat gland cell spheroids using the dark secretory cell-specific marker, GCDFP-15, and clear secretory cell-specific marker, CAII by immunofluorescence staining. Results showed that there were both GCDFP-15- and CAII-expressing cells in 12-week-old 3D spheroids, similar to native eccrine sweat glands, indicating that the spheroids possess a cellular structure capable of sweat secretion. We conclude that the 12-week 3D spheroids may have secretory capability. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Roles of CDX2 and EOMES in human induced trophoblast progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu; Wang, Kai; Gong, Yun Guo

    Highlights: ► CDX2 and EOMES play critical roles in human induced trophoblast progenitors (iTP). ► iTP cells directly transformed from fibroblasts. ► Differentiation of iTP cells into extravillous trophoblasts and syncytiotrophoblasts. -- Abstract: Abnormal trophoblast lineage proliferation and differentiation in early pregnancy have been associated with the pathogenesis of placenta diseases of pregnancy. However, there is still a gap in understanding the molecular mechanisms of early placental development due to the limited primary trophoblast cultures and fidelity of immortalized trophoblast lines. Trophoblasts stem (TS) cells, an in vitro model of trophectoderm that can differentiate into syncytiotrophoblasts and extravillous trophoblasts, canmore » be an attractive tool for early pregnancy research. TS cells are well established in mouse but not in humans due to insufficient knowledge of which trophoblast lineage-specific transcription factors are involved in human trophectoderm (TE) proliferation and differentiation. Here, we applied induced pluripotent stem cell technique to investigate the human trophoblast lineage-specific transcription factors. We established human induced trophoblast progenitor (iTP) cells by direct reprogramming the fibroblasts with a pool of mouse trophoblast lineage-specific transcription factors consisting of CDX2, EOMES, and ELF5. The human iTP cells exhibit epithelial morphology and can be maintained in vitro for more than 2 months. Gene expression profile of these cells was tightly clustered with human trophectoderm but not with human neuron progenitor cells, mesenchymal stem cells, or endoderm cells. These cells are capable of differentiating into cells with an invasive capacity, suggesting extravillous trophoblasts. They also form multi-nucleated cells which secrete human chorionic gonadotropin and estradiol, consistent with a syncytiotrophoblast phenotype. Our results provide the evidence that transcription factors CDX2 and EOMES may play critical roles in human iTP cell generation.« less

  11. HIV-TB coinfection impairs CD8(+) T-cell differentiation and function while dehydroepiandrosterone improves cytotoxic antitubercular immune responses.

    PubMed

    Suarez, Guadalupe V; Angerami, Matías T; Vecchione, María B; Laufer, Natalia; Turk, Gabriela; Ruiz, Maria J; Mesch, Viviana; Fabre, Bibiana; Maidana, Patricia; Ameri, Diego; Cahn, Pedro; Sued, Omar; Salomón, Horacio; Bottasso, Oscar A; Quiroga, María F

    2015-09-01

    Tuberculosis (TB) is the leading cause of death among HIV-positive patients. The decreasing frequencies of terminal effector (TTE ) CD8(+) T cells may increase reactivation risk in persons latently infected with Mycobacterium tuberculosis (Mtb). We have previously shown that dehydroepiandrosterone (DHEA) increases the protective antitubercular immune responses in HIV-TB patients. Here, we aimed to study Mtb-specific cytotoxicity, IFN-γ secretion, memory status of CD8(+) T cells, and their modulation by DHEA during HIV-TB coinfection. CD8(+) T cells from HIV-TB patients showed a more differentiated phenotype with diminished naïve and higher effector memory and TTE T-cell frequencies compared to healthy donors both in total and Mtb-specific CD8(+) T cells. Notably, CD8(+) T cells from HIV-TB patients displayed higher Terminal Effector (TTE ) CD45RA(dim) proportions with lower CD45RA expression levels, suggesting a not fully differentiated phenotype. Also, PD-1 expression levels on CD8(+) T cells from HIV-TB patients increased although restricted to the CD27(+) population. Interestingly, DHEA plasma levels positively correlated with TTE in CD8(+) T cells and in vitro DHEA treatment enhanced Mtb-specific cytotoxic responses and terminal differentiation in CD8(+) T cells from HIV-TB patients. Our data suggest that HIV-TB coinfection promotes a deficient CD8(+) T-cell differentiation, whereas DHEA may contribute to improving antitubercular immunity by enhancing CD8(+) T-cell functions during HIV-TB coinfection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microfluidic differential immunocapture biochip for specific leukocyte counting

    PubMed Central

    Hassan, Umer; Watkins, Nicholas N; Reddy, Bobby; Damhorst, Gregory; Bashir, Rashid

    2016-01-01

    Enumerating specific cell types from whole blood can be very useful for research and diagnostic purposes—e.g., for counting of cD4 and cD8 t cells in HIV/aIDs diagnostics. We have developed a biosensor based on a differential immunocapture technology to enumerate specific cells in 30 min using 10 µl of blood. this paper provides a comprehensive stepwise protocol to replicate our biosensor for cD4 and cD8 cell counts. the biochip can also be adapted to enumerate other specific cell types such as somatic cells or cells from tissue or liquid biopsies. capture of other specific cells requires immobilization of their corresponding antibodies within the capture chamber. therefore, this protocol is useful for research into areas surrounding immunocapture-based biosensor development. the biosensor production requires 24 h, a one-time cell capture optimization takes 6–9 h, and the final cell counting experiment in a laboratory environment requires 30 min to complete. PMID:26963632

  13. A gold@polydopamine core-shell nanoprobe for long-term intracellular detection of microRNAs in differentiating stem cells.

    PubMed

    Choi, Chun Kit K; Li, Jinming; Wei, Kongchang; Xu, Yang J; Ho, Lok Wai C; Zhu, Meiling; To, Kenneth K W; Choi, Chung Hang J; Bian, Liming

    2015-06-17

    The capability of monitoring the differentiation process in living stem cells is crucial to the understanding of stem cell biology and the practical application of stem-cell-based therapies, yet conventional methods for the analysis of biomarkers related to differentiation require a large number of cells as well as cell lysis. Such requirements lead to the unavoidable loss of cell sources and preclude real-time monitoring of cellular events. In this work, we report the detection of microRNAs (miRNAs) in living human mesenchymal stem cells (hMSCs) by using polydopamine-coated gold nanoparticles (Au@PDA NPs). The PDA shell facilitates the immobilization of fluorescently labeled hairpin DNA strands (hpDNAs) that can recognize specific miRNA targets. The gold core and PDA shell quench the fluorescence of the immobilized hpDNAs, and subsequent binding of the hpDNAs to the target miRNAs leads to their dissociation from Au@PDA NPs and the recovery of fluorescence signals. Remarkably, these Au@PDA-hpDNA nanoprobes can naturally enter stem cells, which are known for their poor transfection efficiency, without the aid of transfection agents. Upon cellular uptake of these nanoprobes, we observe intense and time-dependent fluorescence responses from two important osteogenic marker miRNAs, namely, miR-29b and miR-31, only in hMSCs undergoing osteogenic differentiation and living primary osteoblasts but not in undifferentiated hMSCs and 3T3 fibroblasts. Strikingly, our nanoprobes can afford long-term tracking of miRNAs (5 days) in the differentiating hMSCs without the need of continuously replenishing cell culture medium with fresh nanoprobes. Our results demonstrate the capability of our Au@PDA-hpDNA nanoprobes for monitoring the differentiation status of hMSCs (i.e., differentiating versus undifferentiated) via the detection of specific miRNAs in living stem cells. Our nanoprobes show great promise in the investigation of the long-term dynamics of stem cell differentiation, identification and isolation of specific cell types, and high-throughput drug screening.

  14. Generation of diverse neuronal subtypes in cloned populations of stem-like cells

    PubMed Central

    Varga, Balázs V; Hádinger, Nóra; Gócza, Elen; Dulberg, Vered; Demeter, Kornél; Madarász, Emília; Herberth, Balázs

    2008-01-01

    Background The central nervous tissue contains diverse subtypes of neurons with characteristic morphological and physiological features and different neurotransmitter phenotypes. The generation of neurons with defined neurotransmitter phenotypes seems to be governed by factors differently expressed along the anterior-posterior and dorsal-ventral body axes. The mechanisms of the cell-type determination, however, are poorly understood. Selected neuronal phenotypes had been generated from embryonic stem (ES) cells, but similar results were not obtained on more restricted neural stem cells, presumably due to the lack of homogeneous neural stem cell populations as a starting material. Results In the presented work, the establishment of different neurotransmitter phenotypes was investigated in the course of in vitro induced neural differentiation of a one-cell derived neuroectodermal cell line, in conjunction with the activation of various region-specific genes. For comparison, similar studies were carried out on the R1 embryonic stem (ES) and P19 multipotent embryonic carcinoma (EC) cells. In response to a short treatment with all-trans retinoic acid, all cell lines gave rise to neurons and astrocytes. Non-induced neural stem cells and self-renewing cells persisting in differentiated cultures, expressed "stemness genes" along with early embryonic anterior-dorsal positional genes, but did not express the investigated CNS region-specific genes. In differentiating stem-like cell populations, on the other hand, different region-specific genes, those expressed in non-overlapping regions along the body axes were activated. The potential for diverse regional specifications was induced in parallel with the initiation of neural tissue-type differentiation. In accordance with the wide regional specification potential, neurons with different neurotransmitter phenotypes developed. Mechanisms inherent to one-cell derived neural stem cell populations were sufficient to establish glutamatergic and GABAergic neuronal phenotypes but failed to manifest cathecolaminergic neurons. Conclusion The data indicate that genes involved in positional determination are activated along with pro-neuronal genes in conditions excluding any outside influences. Interactions among progenies of one cell derived neural stem cells are sufficient for the activation of diverse region specific genes and initiate different routes of neuronal specification. PMID:18808670

  15. Developing defined substrates for stem cell culture and differentiation.

    PubMed

    Hagbard, Louise; Cameron, Katherine; August, Paul; Penton, Christopher; Parmar, Malin; Hay, David C; Kallur, Therése

    2018-07-05

    Over the past few decades, a variety of different reagents for stem cell maintenance and differentiation have been commercialized. These reagents share a common goal in facilitating the manufacture of products suitable for cell therapy while reducing the amount of non-defined components. Lessons from developmental biology have identified signalling molecules that can guide the differentiation process in vitro , but less attention has been paid to the extracellular matrix used. With the introduction of more biologically relevant and defined matrices, that better mimic specific cell niches, researchers now have powerful resources to fine-tune their in vitro differentiation systems, which may allow the manufacture of therapeutically relevant cell types. In this review article, we revisit the basics of the extracellular matrix, and explore the important role of the cell-matrix interaction. We focus on laminin proteins because they help to maintain pluripotency and drive cell fate specification.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Authors.

  16. PI3 K/Akt/mTOR-mediated translational control regulates proliferation and differentiation of lineage-restricted RoSH stem cell lines

    PubMed Central

    Que, Jianwen; Lian, Qizhou; El Oakley, Reida M; Lim, Bing; Lim, Sai-Kiang

    2007-01-01

    Background We have previously derived highly similar lineage-restricted stem cell lines, RoSH and E-RoSH cell lines from mouse embryos and CD9hi SSEA-1- differentiated mouse embryonic stem cells, respectively. These cell lines are not pluripotent and differentiate readily into endothelial cells in vitro and in vivo. Results We investigated the signaling pathway that maintains proliferation of these cells in an undifferentiated state, and demonstrate that PI3 K/Akt/mTOR, but not Raf/MEK/Erk, signaling in these cells was active during proliferation and was downregulated during endothelial differentiation. Inhibition of PI3 K/Akt/mTOR signaling, but not Raf/MEK/Erk, reduced proliferation and induced expression of endothelial specific proteins. During differentiation or inhibition of PI3 K/Akt/mTOR signaling, cyclinD2 transcript abundance in ribosome-enriched RNA but not in total RNA was reduced with a corresponding reduction in protein level. In contrast, transcript abundance of endothelial-specific genes e.g. Kdr, Tek and Pdgfrα in ribosome-enriched RNA fraction was not reduced and their protein levels were increased. Together these observations suggested that translational control mediated by PI3K/Akt/mTOR signaling was critical in regulating proliferation and endothelial differentiation of lineage-restricted RoSH-like stem cell lines. Conclusion This study highlights translation regulation as a critical regulatory mechanism during proliferation and differentiation in stem cells. PMID:17892597

  17. Biphasic Role of Chondroitin Sulfate in Cardiac Differentiation of Embryonic Stem Cells through Inhibition of Wnt/β-Catenin Signaling

    PubMed Central

    Prinz, Robert D.; Willis, Catherine M.; van Kuppevelt, Toin H.; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury. PMID:24667694

  18. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    PubMed

    Prinz, Robert D; Willis, Catherine M; van Kuppevelt, Toin H; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  19. Molecular assessment, characterization, and differentiation of theca stem cells imply the presence of mesenchymal and pluripotent stem cells in sheep ovarian theca layer.

    PubMed

    Adib, Samane; Valojerdi, Mojtaba Rezazadeh

    2017-10-01

    The ability of ovarian theca stem cells to differentiate into oocyte and theca cells may lead to a major advancement in reproductive biology and infertility treatments. However, there is little information about function, growth and differentiation potential of these immature cells. In this study adult sheep theca stem cells (TSCs) characteristics, and differentiation potential into osteocyte-like cells (OSLCs), adipocyte-like cells (ALCs), theca progenitor-like cells (TPCs), and oocyte-like cells (OLCs) were investigated. TSCs were isolated, cultured, and compared with mesenchymal stem cells (MSCs), fibroblast cells (FCs), and pluripotent embryonic ovarian cells (EO). Adherent TSCs were morphologically similar to FCs. Cell cycle analysis showed high proliferation capacity of TSCs. TSCs were positive for the mesenchymal cells surface markers, and also expressed POU5F1. Differentiation potential of TSCs into OSLCs and ALCs were confirmed by alizarin red and oil red staining respectively. OSTEOCALCIN and COL1 were expressed in OSLCs. ALCs were positive for PPARα and LPL. TPCs expressed theca specific genes (GLI2, GLI3, PTCH1, CYP17A1, 3β-HSD and LHR) and secreted testosterone, dehydroepiandrostenedione (DHEA), androstenedione, progesterone and estradiol. Lipid droplets in these steroid cells were viewed by oil red staining. OLCs expressed oocyte-specific marker genes including, ZP3, ZP2, GDF9, SYCP3, PRDM1, STELLA, FRAGILIS, DAZL, as well as POU5F1, and showed separated sphere structure. Our results indicated that TSCs derived from ovarian follicles contain MSCs and pluripotent stem cells (PSCs) that can be differentiated into lineages of mesenchymal origin and are capable of differentiation into TPCs and OLCs under in vitro conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Two-Stage, In Silico Deconvolution of the Lymphocyte Compartment of the Peripheral Whole Blood Transcriptome in the Context of Acute Kidney Allograft Rejection

    PubMed Central

    Shannon, Casey P.; Balshaw, Robert; Ng, Raymond T.; Wilson-McManus, Janet E.; Keown, Paul; McMaster, Robert; McManus, Bruce M.; Landsberg, David; Isbel, Nicole M.; Knoll, Greg; Tebbutt, Scott J.

    2014-01-01

    Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical. Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations, and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection. The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-specificity of these differentially expressed probe-set lists is consistent with the originating tissue and their functional enrichment consistent with allograft rejection. Finally, we demonstrate that the strategy described here can be used to derive useful hypotheses by validating a cell type-specific ratio in an independent cohort using the nanoString nCounter assay. PMID:24733377

  1. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells.

    PubMed

    Fu, J; Tay, S S W; Ling, E A; Dheen, S T

    2006-05-01

    Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the basis for the defective neural tube patterning observed in embryos of diabetic pregnancies.

  2. Regulation of DNA replication during development

    PubMed Central

    Nordman, Jared; Orr-Weaver, Terry L.

    2012-01-01

    As development unfolds, DNA replication is not only coordinated with cell proliferation, but is regulated uniquely in specific cell types and organs. This differential regulation of DNA synthesis requires crosstalk between DNA replication and differentiation. This dynamic aspect of DNA replication is highlighted by the finding that the distribution of replication origins varies between differentiated cell types and changes with differentiation. Moreover, differential DNA replication in some cell types can lead to increases or decreases in gene copy number along chromosomes. This review highlights the recent advances and technologies that have provided us with new insights into the developmental regulation of DNA replication. PMID:22223677

  3. Regulation of the mouse Treacher Collins syndrome homolog (Tcof1) promoter through differential repression of constitutive expression.

    PubMed

    Shows, Kathryn H; Shiang, Rita

    2008-11-01

    Treacher Collins syndrome is an autosomal-dominant mandibulofacial dysostosis caused by haploinsufficiency of the TCOF1 gene product treacle. Mouse Tcof1 protein is approximately 61% identical and 71% similar to treacle, and heterozygous knockout of Tcof1 causes craniofacial malformation. Tcof1 expression is high in developing neural crest, but much lower in other tissues. To investigate this dual regulation, highly conserved regions upstream of TCOF1 homologs were tested through deletion and mutation reporter assays, and conserved predicted transcription factor binding sites were assessed through chromatin binding studies. Assays were performed in mouse P19 embryonic carcinoma cells and in HEK293 cells to determine differential activation in cell types at different stages of differentiation. Binding of Cebpb, Zfp161, and Sp1 transcription factors was specific to the Tcof1 regulatory region in P19 cells. The Zfp161 binding site demonstrated P19 cell-specific repression, while the Sp1/Sp3 candidate site demonstrated HEK293 cell-specific activation. Moreover, presence of c-myb and Zfp161 transcripts was specific to P19 cells. A minimal promoter fragment from -253 to +43 bp directs constitutive expression in both cell types, and dual regulation of Tcof1 appears to be through differential repression of this minimal promoter. The CpG island at the transcription start site remains unmethylated in P19 cells, 11.5 dpc mouse embryonic tissue, and adult mouse ear, which supports constitutive activation of the Tcof1 promoter.

  4. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians

    PubMed Central

    Saberi, Amir; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A.

    2016-01-01

    Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development. PMID:27163480

  5. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians.

    PubMed

    Saberi, Amir; Jamal, Ayana; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A

    2016-05-01

    Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development.

  6. How do culture media influence in vitro perivascular cell behavior?

    PubMed

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries. © 2015 International Federation for Cell Biology.

  7. A central role for Notch in effector CD8+ T cell differentiation

    PubMed Central

    Backer, Ronald A.; Helbig, Christina; Gentek, Rebecca; Kent, Andrew; Laidlaw, Brian J.; Dominguez, Claudia X.; de Souza, Yevan S.; van Trierum, Stella E.; van Beek, Ruud; Rimmelzwaan, Guus F.; ten Brinke, Anja; Willemsen, A. Marcel; van Kampen, Antoine H. C.; Kaech, Susan M.; Blander, J. Magarian; van Gisbergen, Klaas; Amsen, Derk

    2014-01-01

    Activated CD8+ T cells choose between terminal effector cell (TEC) or memory precursor cell (MPC) fates. We show that Notch controls this choice. Notch promoted differentiation of immediately protective TECs and was correspondingly required for clearance of an acute influenza virus infection. Notch activated a major portion of the TEC-specific gene expression program and suppressed the MPC-specific program. Expression of Notch receptors was induced on naïve CD8+ T cells by inflammatory mediators and interleukin 2 (IL-2) via mTOR and T-bet dependent pathways. These pathways were subsequently amplified downstream of Notch, creating a positive feedback loop. Notch thus functions as a central hub where information from different sources converges to match effector T cell differentiation to the demands of the infection. PMID:25344724

  8. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dissecting Stages of Human Kidney Development and Tumorigenesis with Surface Markers Affords Simple Prospective Purification of Nephron Stem Cells.

    PubMed

    Pode-Shakked, Naomi; Pleniceanu, Oren; Gershon, Rotem; Shukrun, Rachel; Kanter, Itamar; Bucris, Efrat; Pode-Shakked, Ben; Tam, Gal; Tam, Hadar; Caspi, Revital; Pri-Chen, Sara; Vax, Einav; Katz, Guy; Omer, Dorit; Harari-Steinberg, Orit; Kalisky, Tomer; Dekel, Benjamin

    2016-03-29

    When assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms' tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1(+)CD133(-) marks SIX2(+) multipotent renal stem cells transiting to NCAM1(+)CD133(+) differentiating segment-specific SIX2(-) epithelial progenitors and NCAM1(-)CD133(+) differentiated nephron cells. In tumorigenesis, NCAM1(+)CD133(-) marks SIX2(+) blastema that includes the ALDH1(+) WT cancer stem/initiating cells, while NCAM1(+)CD133(+) and NCAM1(-)CD133(+) specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1(+) nephron stem cells in normal and malignant nephrogenesis.

  10. Comparative Effect of Physicomechanical and Biomolecular Cues on Zone-Specific Chondrogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Moeinzadeh, Seyedsina; Shariati, Seyed Ramin Pajoum; Jabbari, Esmaiel

    2016-01-01

    Current tissue engineering approaches to regeneration of articular cartilage rarely restore the tissue to its normal state because the generated tissue lacks the intricate zonal organization of the native cartilage. Zonal regeneration of articular cartilage is hampered by the lack of knowledge for the relation between physical, mechanical, and biomolecular cues and zone-specific chondrogenic differentiation of progenitor cells. This work investigated in 3D the effect of TGF-β1, zone-specific growth factors, optimum matrix stiffness, and adding nanofibers on the expression of chondrogenic markers specific to the superficial, middle, and calcified zones of articular cartilage by the differentiating human mesenchymal stem cells (hMSCs). Growth factors included BMP-7, IGF-1, and hydroxyapatite (HA) for the superficial, middle, and calcified zones, respectively; optimum matrix stiffness was 80 kPa, 2.1 MPa, and 320 MPa; and nanofibers were aligned horizontal, random, and perpendicular to the gel surface. hMSCs with zone-specific cell densities were encapsulated in engineered hydrogels and cultured with or without TGF-β1, zone-specific growth factor, optimum matrix modulus, and fiber addition and cultured in basic chondrogenic medium. The expression of encapsulated cells was measured by mRNA, protein, and biochemical analysis. Results indicated that zone-specific matrix stiffness had a dominating effect on chondrogenic differentiation of hMSCs to the superficial and calcified zone phenotypes. Addition of aligned nanofibers parallel to the direction of gel surface significantly enhanced expression of Col II in the superficial zone chondrogenic differentiation of hMSCs. Conversely, biomolecular factor IGF-1 in combination with TGF-β1 had a dominating effect on the middle zone chondrogenic differentiation of hMSCs. Results of this work could potentially lead to the development of multilayer grafts mimicking the zonal organization of articular cartilage. PMID:27038568

  11. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro

    PubMed Central

    Zheng, Bei; Wang, Jiadan; Tang, Leilei; Tan, Chao; Zhao, Zhe; Xiao, Yi; Ge, Renshan; Zhu, Danyan

    2017-01-01

    Rictor is a key regulatory/structural subunit of the mammalian target of rapamycin complex 2 (mTORC2) and is required for phosphorylation of Akt at serine 473. It plays an important role in cell survival, actin cytoskeleton organization and other processes in embryogenesis. However, the role of Rictor/mTORC2 in the embryonic cardiac differentiation has been uncovered. In the present study, we examined a possible link between Rictor expression and cardiomyocyte differentiation of the mouse embryonic stem (mES) cells. Knockdown of Rictor by shRNA significantly reduced the phosphorylation of Akt at serine 473 followed by a decrease in cardiomyocyte differentiation detected by beating embryoid bodies. The protein levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein) and α-Actinin (cardiomyocyte biomarker) decreased in Rictor knockdown group during cardiogenesis. Furthermore, knockdown of Rictor specifically inhibited the ventricular-like cells differentiation of mES cells with reduced level of ventricular-specific protein, MLC-2v. Meanwhile, patch-clamp analysis revealed that shRNA-Rictor significantly increased the number of cardiomyocytes with abnormal electrophysiology. In addition, the expressions and distribution patterns of cell-cell junction proteins (Cx43/Desmoplakin/N-cadherin) were also affected in shRNA-Rictor cardiomyocytes. Taken together, the results demonstrated that Rictor/mTORC2 might play an important role in the cardiomyocyte differentiation of mES cells. Knockdown of Rictor resulted in inhibiting ventricular-like myocytes differentiation and induced arrhythmias symptom, which was accompanied by interfering the expression and distribution patterns of cell-cell junction proteins. Rictor/mTORC2 might become a new target for regulating cardiomyocyte differentiation and a useful reference for application of the induced pluripotent stem cells. PMID:28123351

  12. The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulosa->luteal transition.

    PubMed

    Tong, W; Kiyokawa, H; Soos, T J; Park, M S; Soares, V C; Manova, K; Pollard, J W; Koff, A

    1998-09-01

    The involvement of cyclin-dependent kinase inhibitors in differentiation remains unclear: are the roles of cyclin-dependent kinase inhibitors restricted to cell cycle arrest; or also required for completion of the differentiation program; or both? Here, we report that differentiation of luteal cells can be uncoupled from growth arrest in p27-deficient mice. In these mice, female-specific infertility correlates with a failure of embryos to implant at embryonic day 4.5. We show by ovarian transplant and hormone reconstitution experiments that failure to regulate luteal cell estradiol is one physiological mechanism for infertility in these mice. This failure is not due to a failure of p27-deficient granulosa cells to differentiate after hormonal stimulation; P450scc, a marker for luteal progesterone biosynthesis, is expressed and granulosa cell-specific cyclin D2 expression is reduced. However, unlike their wild-type counterparts, p27-deficient luteal cells continue to proliferate for up to 3.5 days after hormonal stimulation. By day 5.5, however, these cells withdraw from the cell cycle, suggesting that p27 plays a role in the early events regulating withdrawal of cells from the cell cycle. We have further shown that in the absence of this timely withdrawal, estradiol regulation is perturbed, explaining in part how fertility is compromised at the level of implantation. These data support the interpretation of our previous observations on oligodendrocyte differentiation about a role for p27 in establishing the nonproliferative state, which in some cases (oligodendrocytes) is required for differentiation, whereas in other cases it is required for the proper functioning of a differentiated cell (luteal cell).

  13. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells.

    PubMed

    Hakim, Farzana; Kaitsuka, Taku; Raeed, Jamiruddin Mohd; Wei, Fan-Yan; Shiraki, Nobuaki; Akagi, Tadayuki; Yokota, Takashi; Kume, Shoen; Tomizawa, Kazuhito

    2014-04-04

    Pluripotent stem cells have potential applications in regenerative medicine for diabetes. Differentiation of stem cells into insulin-producing cells has been achieved using various protocols. However, both the efficiency of the method and potency of differentiated cells are insufficient. Oxygen tension, the partial pressure of oxygen, has been shown to regulate the embryonic development of several organs, including pancreatic β-cells. In this study, we tried to establish an effective method for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells by culturing under high oxygen (O2) conditions. Treatment with a high O2 condition in the early stage of differentiation increased insulin-positive cells at the terminus of differentiation. We found that a high O2 condition repressed Notch-dependent gene Hes1 expression and increased Ngn3 expression at the stage of pancreatic progenitors. This effect was caused by inhibition of hypoxia-inducible factor-1α protein level. Moreover, a high O2 condition activated Wnt signaling. Optimal stage-specific treatment with a high O2 condition resulted in a significant increase in insulin production in both mouse embryonic stem cells and human iPSCs and yielded populations containing up to 10% C-peptide-positive cells in human iPSCs. These results suggest that culturing in a high O2 condition at a specific stage is useful for the efficient generation of insulin-producing cells.

  14. MAPK signaling pathways and HDAC3 activity are disrupted during differentiation of emerin-null myogenic progenitor cells

    PubMed Central

    Collins, Carol M.; Ellis, Joseph A.

    2017-01-01

    ABSTRACT Mutations in the gene encoding emerin cause Emery–Dreifuss muscular dystrophy (EDMD). Emerin is an integral inner nuclear membrane protein and a component of the nuclear lamina. EDMD is characterized by skeletal muscle wasting, cardiac conduction defects and tendon contractures. The failure to regenerate skeletal muscle is predicted to contribute to the skeletal muscle pathology of EDMD. We hypothesize that muscle regeneration defects are caused by impaired muscle stem cell differentiation. Myogenic progenitors derived from emerin-null mice were used to confirm their impaired differentiation and analyze selected myogenic molecular pathways. Emerin-null progenitors were delayed in their cell cycle exit, had decreased myosin heavy chain (MyHC) expression and formed fewer myotubes. Emerin binds to and activates histone deacetylase 3 (HDAC3). Here, we show that theophylline, an HDAC3-specific activator, improved myotube formation in emerin-null cells. Addition of the HDAC3-specific inhibitor RGFP966 blocked myotube formation and MyHC expression in wild-type and emerin-null myogenic progenitors, but did not affect cell cycle exit. Downregulation of emerin was previously shown to affect the p38 MAPK and ERK/MAPK pathways in C2C12 myoblast differentiation. Using a pure population of myogenic progenitors completely lacking emerin expression, we show that these pathways are also disrupted. ERK inhibition improved MyHC expression in emerin-null cells, but failed to rescue myotube formation or cell cycle exit. Inhibition of p38 MAPK prevented differentiation in both wild-type and emerin-null progenitors. These results show that each of these molecular pathways specifically regulates a particular stage of myogenic differentiation in an emerin-dependent manner. Thus, pharmacological targeting of multiple pathways acting at specific differentiation stages may be a better therapeutic approach in the future to rescue muscle regeneration in vivo. PMID:28188262

  15. Transcription factor interplay in T helper cell differentiation

    PubMed Central

    Evans, Catherine M.

    2013-01-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity. PMID:23878131

  16. Development of endosperm transfer cells in barley.

    PubMed

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC specification.

  17. Development of endosperm transfer cells in barley

    PubMed Central

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC specification. PMID:24723929

  18. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.

    PubMed

    Wile, Brian M; Ban, Kiwon; Yoon, Young-Sup; Bao, Gang

    2014-10-01

    Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.

  19. Lipopolysaccharide from Crypt-Specific Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance.

    PubMed

    Naito, Tomoaki; Mulet, Céline; De Castro, Cristina; Molinaro, Antonio; Saffarian, Azadeh; Nigro, Giulia; Bérard, Marion; Clerc, Mélanie; Pedersen, Amy B; Sansonetti, Philippe J; Pédron, Thierry

    2017-10-17

    We identified a crypt-specific core microbiota (CSCM) dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC) crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter , Delftia , and Stenotrophomonas ). Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS), through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4)-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage. IMPORTANCE The LPS from crypt-specific core microbiota controls intestinal epithelium proliferation through necroptosis of stem cells and enhances cell differentiation, mainly the goblet cell lineage. Copyright © 2017 Naito et al.

  20. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells.

    PubMed

    Hammer, Quirin; Rückert, Timo; Borst, Eva Maria; Dunst, Josefine; Haubner, André; Durek, Pawel; Heinrich, Frederik; Gasparoni, Gilles; Babic, Marina; Tomic, Adriana; Pietra, Gabriella; Nienen, Mikalai; Blau, Igor Wolfgang; Hofmann, Jörg; Na, Il-Kang; Prinz, Immo; Koenecke, Christian; Hemmati, Philipp; Babel, Nina; Arnold, Renate; Walter, Jörn; Thurley, Kevin; Mashreghi, Mir-Farzin; Messerle, Martin; Romagnani, Chiara

    2018-05-01

    Natural killer (NK) cells are innate lymphocytes that lack antigen-specific rearranged receptors, a hallmark of adaptive lymphocytes. In some people infected with human cytomegalovirus (HCMV), an NK cell subset expressing the activating receptor NKG2C undergoes clonal-like expansion that partially resembles anti-viral adaptive responses. However, the viral ligand that drives the activation and differentiation of adaptive NKG2C + NK cells has remained unclear. Here we found that adaptive NKG2C + NK cells differentially recognized distinct HCMV strains encoding variable UL40 peptides that, in combination with pro-inflammatory signals, controlled the population expansion and differentiation of adaptive NKG2C + NK cells. Thus, we propose that polymorphic HCMV peptides contribute to shaping of the heterogeneity of adaptive NKG2C + NK cell populations among HCMV-seropositive people.

  1. Integration-deficient lentivectors: an effective strategy to purify and differentiate human embryonic stem cell-derived hepatic progenitors.

    PubMed

    Yang, Guanghua; Si-Tayeb, Karim; Corbineau, Sébastien; Vernet, Rémi; Gayon, Régis; Dianat, Noushin; Martinet, Clémence; Clay, Denis; Goulinet-Mainot, Sylvie; Tachdjian, Gérard; Tachdjian, Gérard; Burks, Deborah; Vallier, Ludovic; Bouillé, Pascale; Dubart-Kupperschmitt, Anne; Weber, Anne

    2013-07-19

    Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine. However, the safety of cell therapy using differentiated hPSC derivatives must be improved through methods that will permit the transplantation of homogenous populations of a specific cell type. To date, purification of progenitors and mature cells generated from either embryonic or induced pluripotent stem cells remains challenging with use of conventional methods. We used lentivectors encoding green fluorescent protein (GFP) driven by the liver-specific apoliprotein A-II (APOA-II) promoter to purify human hepatic progenitors. We evaluated both integrating and integration-defective lentivectors in combination with an HIV integrase inhibitor. A human embryonic stem cell line was differentiated into hepatic progenitors using a chemically defined protocol. Subsequently, cells were transduced and sorted at day 16 of differentiation to obtain a cell population enriched in hepatic progenitor cells. After sorting, more than 99% of these APOA-II-GFP-positive cells expressed hepatoblast markers such as α-fetoprotein and cytokeratin 19. When further cultured for 16 days, these cells underwent differentiation into more mature cells and exhibited hepatocyte properties such as albumin secretion. Moreover, they were devoid of vector DNA integration. We have developed an effective strategy to purify human hepatic cells from cultures of differentiating hPSCs, producing a novel tool that could be used not only for cell therapy but also for in vitro applications such as drug screening. The present strategy should also be suitable for the purification of a broad range of cell types derived from either pluripotent or adult stem cells.

  2. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernemann, Inga, E-mail: bernemann@imp.uni-hannover.de; Mueller, Thomas; Blasczyk, Rainer

    Highlights: {yields} Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. {yields} Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. {yields} Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 {mu}m were optimal for cell seeding and cultivating. However, before clinical application andmore » transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential potential of marmoset MSCs in adipogenic, osteogenic and chondrogenic lineages and the suitability of collagen scaffolds as carrier material undisturbing differentiation of primate mesenchymal stem cells.« less

  3. Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells.

    PubMed

    Rostovskaya, Maria; Bredenkamp, Nicholas; Smith, Austin

    2015-10-19

    Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification. © 2015 The Authors.

  4. Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine

    PubMed Central

    Chung, Yeonseok

    2015-01-01

    Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366

  5. Activation of the mouse Oct4 promoter in medaka embryonic stem cells and its use for ablation of spontaneous differentiation.

    PubMed

    Hong, Yunhan; Winkler, Christoph; Liu, Tongming; Chai, Guixuan; Schartl, Manfred

    2004-07-01

    The determination and maintenance of the cell fate is ultimately due to differential gene activity. In the mouse, expression of the transcription factor Oct4 is high in totipotent inner cell mass, germ cells and undifferentiated embryonic stem (ES) cells, but dramatically reduced or extinct upon differentiation. Here, we show that medaka blastula embryos and cells of the ES cell line MES1 are able to activate the Oct4 promoter. Ectopic expression of a fusion gene for beta-galactosidase and neomycin resistance from the Oct4 promoter conferred resistance to G418. G418 selection led to a homogeneous population of undifferentiated ES cells which were able to undergo induced or directed differentiation into various cell types including neuron-like cells and melanocytes. Furthermore, GFP-labeled GOF18geo-MES1 cells after differentiation ablation were able to contribute to a wide variety of organ systems derived from all the three germ layers. Most importantly, we show that drug ablation of differentiation on the basis of Oct4 promoter is a useful tool to improve ES cell cultivation and chimera formation: MES1 cells after differentiation ablation appeared to be better donors than the parental MES1 line, as the permissive number of input donor cells increases from 100 to 200, resulting in an enhanced degree of chimerism. Taken together, some transcription factors and cis-acting regulatory sequences controlling totipotency-specific gene expression appear to be conserved between mammals and fish, and medaka ES cells offer an in vitro system for characterizing the expression of totipotency-specific genes such as putative Oct4 homologs from fish.

  6. Chitosan-Intercalated Montmorillonite/Poly(vinyl alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells.

    PubMed

    Ghasemi Hamidabadi, Hatef; Rezvani, Zahra; Nazm Bojnordi, Maryam; Shirinzadeh, Haji; Seifalian, Alexander M; Joghataei, Mohammad Taghi; Razaghpour, Mojgan; Alibakhshi, Abbas; Yazdanpanah, Abolfazl; Salimi, Maryam; Mozafari, Masoud; Urbanska, Aleksandra M; Reis, Rui L; Kundu, Subhas C; Gholipourmalekabadi, Mazaher

    2017-04-05

    In this study, we present a novel chitosan-intercalated montmorillonite/poly(vinyl alcohol) (OMMT/PVA) nanofibrous mesh as a microenvironment for guiding differentiation of human dental pulp stem cells (hDPSCs) toward neuronlike cells. The OMMT was prepared through ion exchange reaction between the montmorillonite (MMT) and chitosan. The PVA solutions containing various concentrations of OMMT were electrospun to form 3D OMMT-PVA nanofibrous meshes. The biomechanical and biological characteristics of the nanofibrous meshes were evaluated by ATR-FTIR, XRD, SEM, MTT, and LDH specific activity, contact angle, and DAPI staining. They were carried out for mechanical properties, overall viability, and toxicity of the cells. The hDPSCs were seeded on the prepared scaffolds and induced with neuronal specific differentiation media at two differentiation stages (2 days at preinduction stage and 6 days at induction stage). The neural differentiation of the cells cultured on the meshes was evaluated by determining the expression of Oct-4, Nestin, NF-M, NF-H, MAP2, and βIII-tubulin in the cells after preinduction, at induction stages by real-time PCR (RT-PCR) and immunostaining. All the synthesized nanofibers exhibited a homogeneous morphology with a favorable mechanical behavior. The population of the cells differentiated into neuronlike cells in all the experimental groups was significantly higher than that in control group. The expression level of the neuronal specific markers in the cells cultured on 5% OMMT/PVA meshes was significantly higher than the other groups. This study demonstrates the feasibility of the OMMT/PVA artificial nerve graft cultured with hDPSCs for regeneration of damaged neural tissues. These fabricated matrices may have a potential in neural tissue engineering applications.

  7. Review: Transcriptional Regulation of CD4+ T Cell Differentiation in Experimentally Induced Arthritis and Rheumatoid Arthritis.

    PubMed

    Kondo, Yuya; Yokosawa, Masahiro; Kaneko, Shunta; Furuyama, Kotona; Segawa, Seiji; Tsuboi, Hiroto; Matsumoto, Isao; Sumida, Takayuki

    2018-05-01

    Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation of the joint synovium and infiltration by activated inflammatory cells. CD4+ T cells form a large proportion of the inflammatory cells invading the synovial tissue, and are involved in the RA pathologic process. In general, CD4+ T cells differentiate into various T helper cell subsets and acquire the functional properties to respond to specific pathogens, and also mediate some autoimmune disorders such as RA. Because the differentiation of T helper cell subsets is determined by the expression of specific transcription factors in response to the cytokine environment, these transcription factors are considered to have a role in the pathology of RA. Treg cells control an excess of T cell-mediated immune response, and the transcription factor FoxP3 is critical for the differentiation and function of Treg cells. Treg cell dysfunction can result in the development of systemic autoimmunity. In this review, we summarize how the expression of transcription factors modulates T helper cell immune responses and the development of autoimmune diseases, especially in RA. Understanding the role of transcription factors in the pathogenesis of autoimmunity may lead to novel therapeutic strategies to control the differentiation and function of both T helper cells and Treg cells. © 2017 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.

  8. Effect of Microenvironment on Differentiation of Human Umbilical Cord Mesenchymal Stem Cells into Hepatocytes In Vitro and In Vivo

    PubMed Central

    Xue, Gai; Han, Xiaolei; Ma, Xin; Wu, Honghai; Qin, Yabin; Liu, Jianfang; Hu, Yuqin; Hong, Yang; Hou, Yanning

    2016-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are considered to be an ideal cell source for cell therapy of many diseases. The aim of this study was to investigate the contribution of the microenvironment to the hepatic differentiation potential of hUCMSCs in vitro and in vivo and to explore their therapeutic use in acute liver injury in rats. We established a new model to simulate the liver tissue microenvironment in vivo using liver homogenate supernatant (LHS) in vitro. This induced environment could drive hUCMSCs to differentiate into hepatocyte-like cells within 7 days. The differentiated cells expressed hepatocyte-specific markers and demonstrated hepatocellular functions. We also injected hUCMSCs into rats with CCl4-induced acute hepatic injury. The hUCMSCs were detected in the livers of recipient rats and expressed the human hepatocyte-specific markers, suggesting that hUCMSCs could differentiate into hepatocyte-like cells in vivo in the liver tissue microenvironment. Levels of biochemistry markers improved significantly after transplantation of hUCMSCs compared with the nontransplantation group (P < 0.05). In conclusion, this study demonstrated that the liver tissue microenvironment may contribute to the differentiation of hUCMSCs into hepatocytes both in vitro and in vivo. PMID:27088093

  9. Matrix-directed differentiation of human adipose-derived mesenchymal stem cells to dermal-like fibroblasts that produce extracellular matrix.

    PubMed

    Sivan, Unnikrishnan; Jayakumar, K; Krishnan, Lissy K

    2016-10-01

    Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Increased mitochondrial function downstream from KDM5A histone demethylase rescues differentiation in pRB-deficient cells

    PubMed Central

    Váraljai, Renáta; Islam, Abul B.M.M.K.; Beshiri, Michael L.; Rehman, Jalees; Lopez-Bigas, Nuria; Benevolenskaya, Elizaveta V.

    2015-01-01

    The retinoblastoma tumor suppressor protein pRb restricts cell growth through inhibition of cell cycle progression. Increasing evidence suggests that pRb also promotes differentiation, but the mechanisms are poorly understood, and the key question remains as to how differentiation in tumor cells can be enhanced in order to diminish their aggressive potential. Previously, we identified the histone demethylase KDM5A (lysine [K]-specific demethylase 5A), which demethylates histone H3 on Lys4 (H3K4), as a pRB-interacting protein counteracting pRB's role in promoting differentiation. Here we show that loss of Kdm5a restores differentiation through increasing mitochondrial respiration. This metabolic effect is both necessary and sufficient to induce the expression of a network of cell type-specific signaling and structural genes. Importantly, the regulatory functions of pRB in the cell cycle and differentiation are distinct because although restoring differentiation requires intact mitochondrial function, it does not necessitate cell cycle exit. Cells lacking Rb1 exhibit defective mitochondria and decreased oxygen consumption. Kdm5a is a direct repressor of metabolic regulatory genes, thus explaining the compensatory role of Kdm5a deletion in restoring mitochondrial function and differentiation. Significantly, activation of mitochondrial function by the mitochondrial biogenesis regulator Pgc-1α (peroxisome proliferator-activated receptor γ-coactivator 1α; also called PPARGC1A) a coactivator of the Kdm5a target genes, is sufficient to override the differentiation block. Overexpression of Pgc-1α, like KDM5A deletion, inhibits cell growth in RB-negative human cancer cell lines. The rescue of differentiation by loss of KDM5A or by activation of mitochondrial biogenesis reveals the switch to oxidative phosphorylation as an essential step in restoring differentiation and a less aggressive cancer phenotype. PMID:26314709

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Ki Shuk; Department of Neonatology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna; Rosner, Margit

    Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could representmore » a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.« less

  12. Inactivation of EGFR/AKT signaling enhances TSA-induced ovarian cancer cell differentiation.

    PubMed

    Shao, Genbao; Lai, Wensheng; Wan, Xiaolei; Xue, Jing; Wei, Ye; Jin, Jie; Zhang, Liuping; Lin, Qiong; Shao, Qixiang; Zou, Shengqiang

    2017-05-01

    Ovarian tumor is one of the most lethal gynecologic cancers, but differentiation therapy for this cancer is poorly characterized. Here, we show that thrichostatin A (TSA), the well known inhibitor of histone deacetylases (HDACs), can induce cell differentiation in HO8910 ovarian cancer cells. TSA-induced cell differentiation is characterized by typical morphological change, increased expression of the differentiation marker FOXA2, decreased expression of the pluripotency markers SOX2 and OCT4, suppressing cell proliferation, and cell cycle arrest in the G1 phase. TSA also induces an elevated expression of cell cycle inhibitory protein p21Cip1 along with a decrease in cell cycle regulatory protein cyclin D1. Significantly, blockage of epidermal growth factor receptor (EGFR) signaling pathway with specific inhibitors of this signaling cascade promotes the TSA-induced differentiation of HO8910 cells. These results imply that the EGFR cascade inhibitors in combination with TSA may represent a promising differentiation therapy strategy for ovarian cancer.

  13. Tracking the Spatial and Functional Gradient of Monocyte-To-Macrophage Differentiation in Inflamed Lung.

    PubMed

    Sen, Debasish; Jones, Stephen M; Oswald, Erin M; Pinkard, Henry; Corbin, Kaitlin; Krummel, Matthew F

    2016-01-01

    Myeloid-derived cells such as monocytes, dendritic cells (DCs), and macrophages are at the heart of the immune effector function in an inflammatory response. But because of the lack of an efficient imaging system to trace these cells live during their migration and maturation in their native environment at sub-cellular resolution, our knowledge is limited to data available from specific time-points analyzed by flow cytometry, histology, genomics and other immunological methods. Here, we have developed a ratiometric imaging method for measuring monocyte maturation in inflamed mouse lungs in situ using real-time using 2-photon imaging and complementary methods. We visualized that while undifferentiated monocytes were predominantly found only in the vasculature, a semi-differentiated monocyte/macrophage population could enter the tissue and resembled more mature and differentiated populations by morphology and surface phenotype. As these cells entered and differentiated, they were already selectively localized near inflamed airways and their entry was associated with changes in motility and morphology. We were able to visualize these during the act of differentiation, a process that can be demonstrated in this way to be faster on a per-cell basis under inflammatory conditions. Finally, our in situ analyses demonstrated increases, in the differentiating cells, for both antigen uptake and the ability to mediate interactions with T cells. This work, while largely confirming proposed models for in situ differentiation, provides important in situ data on the coordinated site-specific recruitment and differentiation of these cells and helps elaborate the predominance of immune pathology at the airways. Our novel imaging technology to trace immunogenic cell maturation in situ will complement existing information available on in situ differentiation deduced from other immunological methods, and assist better understanding of the spatio-temporal cellular behavior during an inflammatory response.

  14. Expression of Ulex europaeus agglutinin I lectin-binding sites in squamous cell carcinomas and their absence in basal cell carcinomas. Indicator of tumor type and differentiation.

    PubMed

    Heng, M C; Fallon-Friedlander, S; Bennett, R

    1992-06-01

    Lectins bind tightly to carbohydrate moieties on cell surfaces. Alterations in lectin binding have been reported to accompany epidermal cell differentiation, marking alterations in membrane sugars during this process. The presence of UEA I (Ulex europaeus agglutinin I) L-fucose-specific lectin-binding sites has been used as a marker for terminally differentiated (committed) keratinocytes. In this article, we report the presence of UEA-I-binding sites on squamous keratinocytes of well-differentiated squamous cell carcinomas, with patchy loss of UEA I positivity on poorly differentiated cells of squamous cell carcinomas, suggesting a possible use for this technique in the rapid assessment of less differentiated areas within the squamous cell tumor. The absence of UEA-I-binding sites on basal cell carcinomas may be related to an inability of cells comprising this tumor to convert the L-D-pyranosyl moiety on basal cells to the L-fucose moiety, resulting in an inability of basal cell carcinoma cell to undergo terminal differentiation into a committed keratinocyte.

  15. DNA replication fading as proliferating cells advance in their commitment to terminal differentiation.

    PubMed

    Estefanía, Monturus Ma; Ganier, Olivier; Hernández, Pablo; Schvartzman, Jorge B; Mechali, Marcel; Krimer, Dora B

    2012-01-01

    Terminal differentiation is the process by which cycling cells stop proliferating to start new specific functions. It involves dramatic changes in chromatin organization as well as gene expression. In the present report we used cell flow cytometry and genome wide DNA combing to investigate DNA replication during murine erythroleukemia-induced terminal cell differentiation. The results obtained indicated that the rate of replication fork movement slows down and the inter-origin distance becomes shorter during the precommitment and commitment periods before cells stop proliferating and accumulate in G1. We propose this is a general feature caused by the progressive heterochromatinization that characterizes terminal cell differentiation.

  16. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation

    PubMed Central

    Ross, Christina L.; Siriwardane, Mevan; Almeida-Porada, Graça; Porada, Christopher D.; Brink, Peter; Christ, George J.; Harrison, Benjamin S.

    2015-01-01

    Human bone marrow stromal cells (hBMSCs, also known as bone marrow-derived mesenchymal stem cells) are a population of progenitor cells that contain a subset of skeletal stem cells (hSSCs), able to recreate cartilage, bone, stroma that supports hematopoiesis and marrow adipocytes. As such, they have become an important resource in developing strategies for regenerative medicine and tissue engineering due to their self-renewal and differentiation capabilities. The differentiation of SSCs/BMSCs is dependent on exposure to biophysical and biochemical stimuli that favor early and rapid activation of the in vivo tissue repair process. Exposure to exogenous stimuli such as an electromagnetic field (EMF) can promote differentiation of SSCs/BMSCs via ion dynamics and small signaling molecules. The plasma membrane is often considered to be the main target for EMF signals and most results point to an effect on the rate of ion or ligand binding due to a receptor site acting as a modulator of signaling cascades. Ion fluxes are closely involved in differentiation control as stem cells move and grow in specific directions to form tissues and organs. EMF affects numerous biological functions such as gene expression, cell fate, and cell differentiation, but will only induce these effects within a certain range of low frequencies as well as low amplitudes. EMF has been reported to be effective in the enhancement of osteogenesis and chondrogenesis of hSSCs/BMSCs with no documented negative effects. Studies show specific EMF frequencies enhance hSSC/BMSC adherence, proliferation, differentiation, and viability, all of which play a key role in the use of hSSCs/BMSCs for tissue engineering. While many EMF studies report significant enhancement of the differentiation process, results differ depending on the experimental and environmental conditions. Here we review how specific EMF parameters (frequency, intensity, and time of exposure) significantly regulate hSSC/BMSC differentiation in vitro. We discuss optimal conditions and parameters for effective hSSC/BMSC differentiation using EMF treatment in an in vivo setting, and how these can be translated to clinical trials. PMID:26042793

  17. Bach2 is involved in neuronal differentiation of N1E-115 neuroblastoma cells.

    PubMed

    Shim, Ki Shuk; Rosner, Margit; Freilinger, Angelika; Lubec, Gert; Hengstschläger, Markus

    2006-07-15

    Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could represent a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.

  18. LIN28A enhances the therapeutic potential of cultured neural stem cells in a Parkinson's disease model.

    PubMed

    Rhee, Yong-Hee; Kim, Tae-Ho; Jo, A-Young; Chang, Mi-Yoon; Park, Chang-Hwan; Kim, Sang-Mi; Song, Jae-Jin; Oh, Sang-Min; Yi, Sang-Hoon; Kim, Hyeon Ho; You, Bo-Hyun; Nam, Jin-Wu; Lee, Sang-Hun

    2016-10-01

    The original properties of tissue-specific stem cells, regardless of their tissue origins, are inevitably altered during in vitro culturing, lessening the clinical and research utility of stem cell cultures. Specifically, neural stem cells derived from the ventral midbrain lose their dopamine neurogenic potential, ventral midbrain-specific phenotypes, and repair capacity during in vitro cell expansion, all of which are critical concerns in using the cultured neural stem cells in therapeutic approaches for Parkinson's disease. In this study, we observed that the culture-dependent changes of neural stem cells derived from the ventral midbrain coincided with loss of RNA-binding protein LIN28A expression. When LIN28A expression was forced and sustained during neural stem cell expansion using an inducible expression-vector system, loss of dopamine neurogenic potential and midbrain phenotypes after long-term culturing was blocked. Furthermore, dopamine neurons that differentiated from neural stem cells exhibited remarkable survival and resistance against toxic insults. The observed effects were not due to a direct action of LIN28A on the differentiated dopamine neurons, but rather its action on precursor neural stem cells as exogene expression was switched off in the differentiating/differentiated cultures. Remarkable and reproducible behavioural recovery was shown in all Parkinson's disease rats grafted with neural stem cells expanded with LIN28A expression, along with extensive engraftment of dopamine neurons expressing mature neuronal and midbrain-specific markers. These findings suggest that LIN28A expression during stem cell expansion could be used to prepare therapeutically competent donor cells. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice.

    PubMed

    Grinenko, Tatyana; Eugster, Anne; Thielecke, Lars; Ramasz, Beáta; Krüger, Anja; Dietz, Sevina; Glauche, Ingmar; Gerbaulet, Alexander; von Bonin, Malte; Basak, Onur; Clevers, Hans; Chavakis, Triantafyllos; Wielockx, Ben

    2018-05-15

    Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps and repeated cell divisions that involve the generation of lineage-committed progenitors. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67 RFP knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid, megakaryocyte-erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with the expression of lineage-specific genes and loss of multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells.

  20. Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells

    PubMed Central

    2012-01-01

    Liver infection with hepatitis B virus (HBV), a DNA virus of the Hepadnaviridae family, leads to severe disease, such as fibrosis, cirrhosis and hepatocellular carcinoma. The early steps of the viral life cycle are largely obscure and the host cell plasma membrane receptors are not known. HepaRG is the only proliferating cell line supporting HBV infection in vitro, following specific differentiation, allowing for investigation of new host host-cell factors involved in viral entry, within a more robust and reproducible environment. Viral infection generally begins with receptor recognition at the host cell surface, following highly specific cell-virus interactions. Most of these interactions are expected to take place at the plasma membrane of the HepaRG cells. In the present study, we used this cell line to explore changes between the plasma membrane of undifferentiated (−) and differentiated (+) cells and to identify differentially-regulated proteins or signaling networks that might potentially be involved in HBV entry. Our initial study identified a series of proteins that are differentially expressed in the plasma membrane of (−) and (+) cells and are good candidates for potential cell-virus interactions. To our knowledge, this is the first study using functional proteomics to study plasma membrane proteins from HepaRG cells, providing a platform for future experiments that will allow us to understand the cell-virus interaction and mechanism of HBV viral infection. PMID:22857383

  1. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yanfu; Chai, Jiake, E-mail: cjk304@126.com; Sun, Tianjun

    2011-10-07

    Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. Inmore » this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue-engineered dermis.« less

  2. A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells.

    PubMed

    Gallo, P; Grimaldi, S; Latronico, M V G; Bonci, D; Pagliuca, A; Gallo, P; Ausoni, S; Peschle, C; Condorelli, G

    2008-02-01

    Human embryonic stem cells (hESCs) may become important for cardiac repair due to their potentially unlimited ability to generate cardiomyocytes (CMCs). Moreover, genetic manipulation of hESC-derived CMCs would be a very promising technique for curing myocardial disorders. At the present time, however, inducing the differentiation of hESCs into CMCs is extremely difficult and, therefore, an easy and standardizable technique is needed to evaluate differentiation strategies. Vectors driving cardiac-specific expression may represent an important tool not only for monitoring new cardiac-differentiation strategies, but also for the manipulation of cardiac differentiation of ESCs. To this aim, we generated cardiac-specific lentiviral vectors (LVVs) in which expression is driven by a short fragment of the cardiac troponin-I proximal promoter (TNNI3) with a human cardiac alpha-actin enhancer, and tested its suitability in inducing tissue-specific gene expression and ability to track the CMC lineage during differentiation of ESCs. We determined that (1) TNNI3-LVVs efficiently drive cardiac-specific gene expression and mark the cardiomyogenic lineage in human and mouse ESC differentiation systems (2) the cardiac alpha-actin enhancer confers a further increase in gene-expression specificity of TNNI3-LVVs in hESCs. Although this technique may not be useful in tracking small numbers of cells, data suggested that TNNI3-based LVVs are a powerful tool for manipulating human ESCs and modifying hESC-derived CMCs.

  3. MicroRNA miR-124 Controls the Choice between Neuronal and Astrocyte Differentiation by Fine-tuning Ezh2 Expression*

    PubMed Central

    Neo, Wen Hao; Yap, Karen; Lee, Suet Hoay; Looi, Liang Sheng; Khandelia, Piyush; Neo, Sheng Xiong; Makeyev, Eugene V.; Su, I-hsin

    2014-01-01

    Polycomb group protein Ezh2 is a histone H3 Lys-27 histone methyltransferase orchestrating an extensive epigenetic regulatory program. Several nervous system-specific genes are known to be repressed by Ezh2 in stem cells and derepressed during neuronal differentiation. However, the molecular mechanisms underlying this regulation remain poorly understood. Here we show that Ezh2 levels are dampened during neuronal differentiation by brain-enriched microRNA miR-124. Expression of miR-124 in a neuroblastoma cells line was sufficient to up-regulate a significant fraction of nervous system-specific Ezh2 target genes. On the other hand, naturally elevated expression of miR-124 in embryonic carcinoma cells undergoing neuronal differentiation correlated with down-regulation of Ezh2 levels. Importantly, overexpression of Ezh2 mRNA with a 3′-untranslated region (3′-UTR) lacking a functional miR-124 binding site, but not with the wild-type Ezh2 3′-UTR, hampered neuronal and promoted astrocyte-specific differentiation in P19 and embryonic mouse neural stem cells. Overall, our results uncover a molecular mechanism that allows miR-124 to balance the choice between alternative differentiation possibilities through fine-tuning the expression of a critical epigenetic regulator. PMID:24878960

  4. MicroRNA miR-124 controls the choice between neuronal and astrocyte differentiation by fine-tuning Ezh2 expression.

    PubMed

    Neo, Wen Hao; Yap, Karen; Lee, Suet Hoay; Looi, Liang Sheng; Khandelia, Piyush; Neo, Sheng Xiong; Makeyev, Eugene V; Su, I-hsin

    2014-07-25

    Polycomb group protein Ezh2 is a histone H3 Lys-27 histone methyltransferase orchestrating an extensive epigenetic regulatory program. Several nervous system-specific genes are known to be repressed by Ezh2 in stem cells and derepressed during neuronal differentiation. However, the molecular mechanisms underlying this regulation remain poorly understood. Here we show that Ezh2 levels are dampened during neuronal differentiation by brain-enriched microRNA miR-124. Expression of miR-124 in a neuroblastoma cells line was sufficient to up-regulate a significant fraction of nervous system-specific Ezh2 target genes. On the other hand, naturally elevated expression of miR-124 in embryonic carcinoma cells undergoing neuronal differentiation correlated with down-regulation of Ezh2 levels. Importantly, overexpression of Ezh2 mRNA with a 3'-untranslated region (3'-UTR) lacking a functional miR-124 binding site, but not with the wild-type Ezh2 3'-UTR, hampered neuronal and promoted astrocyte-specific differentiation in P19 and embryonic mouse neural stem cells. Overall, our results uncover a molecular mechanism that allows miR-124 to balance the choice between alternative differentiation possibilities through fine-tuning the expression of a critical epigenetic regulator.

  5. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells

    PubMed Central

    Soucie, Erinn L.; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J.-C.; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H.

    2016-01-01

    Differentiated macrophages can self-renew in tissues and expand long-term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network controlling self-renewal. Single cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. PMID:26797145

  6. The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaynes, J.B.; Johnson, J.E.; Buskin, J.N.

    1988-01-01

    Muscle creatine kinase (MCK) is induced to high levels during skeletal muscle differentiation. The authors examined the upstream regulatory elements of the mouse MCK gene which specify its activation during myogenesis in culture. Fusion genes containing up to 3,300 nucleotides (nt) of MCK 5' flanking DNA in various positions and orientations relative to the bacterial chloramphenicol acetyltransferase (CAT) structural gene were transfected into cultured cells. Transient expression of CAT was compared between proliferating and differentiated MM14 mouse myoblasts and with nonmyogenic mouse L cells. The major effector of high-level expression was found to have the properties of a transcriptional enhancer.more » This element, located between 1,050 and 1,256 nt upstream of the transcription start site, was also found to have a major influence on the tissue and differentiation specificity of MCK expression; it activated either the MCK promoter or heterologous promoters only in differentiated muscle cells. Comparisons of viral and cellular enhancer sequences with the MCK enhancer revealed some similarities to essential regions of the simian virus 40 enhancer as well as to a region of the immunoglobulin heavy-chain enhancer, which has been implicated in tissue-specific protein binding. Even in the absence of the enhancer, low-level expression from a 776-nt MCK promoter retained differentiation specificity. In addition to positive regulatory elements, our data provide some evidence for negative regulatory elements with activity in myoblasts. These may contribute to the cell type and differentiation specificity of MCK expression.« less

  7. RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells.

    PubMed

    Pandolfini, Luca; Luzi, Ettore; Bressan, Dario; Ucciferri, Nadia; Bertacchi, Michele; Brandi, Rossella; Rocchiccioli, Silvia; D'Onofrio, Mara; Cremisi, Federico

    2016-05-06

    Embryonic stem cells are intrinsically unstable and differentiate spontaneously if they are not shielded from external stimuli. Although the nature of such instability is still controversial, growing evidence suggests that protein translation control may play a crucial role. We performed an integrated analysis of RNA and proteins at the transition between naïve embryonic stem cells and cells primed to differentiate. During this transition, mRNAs coding for chromatin regulators are specifically released from translational inhibition mediated by RNA-induced silencing complex (RISC). This suggests that, prior to differentiation, the propensity of embryonic stem cells to change their epigenetic status is hampered by RNA interference. The expression of these chromatin regulators is reinstated following acute inactivation of RISC and it correlates with loss of stemness markers and activation of early cell differentiation markers in treated embryonic stem cells. We propose that RISC-mediated inhibition of specific sets of chromatin regulators is a primary mechanism for preserving embryonic stem cell pluripotency while inhibiting the onset of embryonic developmental programs.

  8. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T cell differentiation

    PubMed Central

    Ding, Xilai; Chepelev, Iouri; Zhou, Xikun; Zhao, Wei; Wei, Gang; Cui, Jun; Zhao, Keji; Wang, Helen Y.; Wang, Rong-Fu

    2014-01-01

    Epigenetic factors have been implicated in the regulation of CD4+ T cell differentiation. Jmjd3 plays a role in many biological processes, but its in vivo function in T cell differentiation remains unknown. Here, we report that Jmjd3 ablation promotes CD4+ T cell differentiation into Th2 and Th17 cells in the small intestine and colon, and inhibits T cell differentiation into Th1 cells under different cytokine-polarizing conditions and in a Th1-dependent colitis model. Jmjd3 deficiency also restrains the plasticity of the conversion of Th2, Th17 or Treg cells to Th1 cells. The skewing of T cell differentiation is concomitant with changes in the expression of key transcription factors and cytokines. H3K27me3 and H3K4me3 levels in Jmjd3-deficient cells are correlated with altered gene expression through interactions with specific transcription factors. Our results identify Jmjd3 as an epigenetic factor in T cell differentiation via changes in histone methylation and target gene expression. PMID:25531312

  9. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid

    PubMed Central

    2013-01-01

    Background Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. Results We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. PMID:23597229

  10. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid.

    PubMed

    Andres, Devon; Keyser, Brian M; Petrali, John; Benton, Betty; Hubbard, Kyle S; McNutt, Patrick M; Ray, Radharaman

    2013-04-18

    Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.

  11. Improvement of Cell Survival During Human Pluripotent Stem Cell Definitive Endoderm Differentiation

    PubMed Central

    Wang, Han; Luo, Xie; Yao, Li; Lehman, Donna M.

    2015-01-01

    Definitive endoderm (DE) is a vital precursor for internal organs such as liver and pancreas. Efficient protocol to differentiate human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to DE is essential for regenerative medicine and for modeling diseases; yet, poor cell survival during DE differentiation remains unsolved. In this study, our use of B27 supplement in modified differentiation protocols has led to a substantial improvement. We used an SOX17-enhanced green fluorescent protein (eGFP) reporter hESC line to compare and modify established DE differentiation protocols. Both total live cell numbers and the percentages of eGFP-positive cells were used to assess differentiation efficiency. Among tested protocols, three modified protocols with serum-free B27 supplement were developed to generate a high number of DE cells. Massive cell death was avoided during DE differentiation and the percentage of DE cells remained high. When the resulting DE cells were further differentiated toward the pancreatic lineage, the expression of pancreatic-specific markers was significantly increased. Similar high DE differentiation efficiency was observed in H1 hESCs and iPSCs through the modified protocols. In B27 components, bovine serum albumin was found to facilitate DE differentiation and cell survival. Using our modified DE differentiation protocols, satisfactory quantities of quality DE can be produced as primary material for further endoderm lineage differentiation. PMID:26132288

  12. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene.

    PubMed

    Rezanejad, Habib; Soheili, Zahra-Soheila; Haddad, Farhang; Matin, Maryam M; Samiei, Shahram; Manafi, Ali; Ahmadieh, Hamid

    2014-04-01

    The neural retina is subjected to various degenerative conditions. Regenerative stem-cell-based therapy holds great promise for treating severe retinal degeneration diseases, although many drawbacks remain to be overcome. One important problem is to gain authentically differentiated cells for replacement. Paired box 6 protein (5a) (PAX6 (5a)) is a highly conserved master control gene that has an essential role in the development of the vertebrate visual system. Human adipose-tissue-derived stem cell (hADSC) isolation was performed by using fat tissues and was confirmed by the differentiation potential of the cells into adipocytes and osteocytes and by their surface marker profile. The coding region of the human PAX6 (5a) gene isoform was cloned and lentiviral particles were propagated in HEK293T. The differentiation of hADSCs into retinal cells was characterized by morphological characteristics, quantitative real-time reverse transcription plus the polymerase chain reaction (qPCR) and immunocytochemistry (ICC) for some retinal cell-specific and retinal pigmented epithelial (RPE) cell-specific markers. hADSCs were successfully isolated. Flow cytometric analysis of surface markers indicated the high purity (~97 %) of isolated hADSCs. After 30 h of post-transduction, cells gradually showed the characteristic morphology of neuronal cells and small axon-like processes emerged. qPCR and ICC confirmed the differentiation of some neural retinal cells and RPE cells. Thus, PAX6 (5a) transcription factor expression, together with medium supplemented with fibronectin, is able to induce the differentiation of hADSCs into retinal progenitors, RPE cells and photoreceptors.

  13. Self-Renewal and Differentiation Capacity of Urine-Derived Stem Cells after Urine Preservation for 24 Hours

    PubMed Central

    Shi, Yingai; Bharadwaj, Shantaram; Leng, Xiaoyan; Zhou, Xiaobo; Liu, Hong; Atala, Anthony; Zhang, Yuanyuan

    2013-01-01

    Despite successful approaches to preserve organs, tissues, and isolated cells, the maintenance of stem cell viability and function in body fluids during storage for cell distribution and transportation remains unexplored. The aim of this study was to characterize urine-derived stem cells (USCs) after optimal preservation of urine specimens for up to 24 hours. A total of 415 urine specimens were collected from 12 healthy men (age range 20–54 years old). About 6×104 cells shed off from the urinary tract system in 24 hours. At least 100 USC clones were obtained from the stored urine specimens after 24 hours and maintained similar biological features to fresh USCs. The stored USCs had a “rice grain” shape in primary culture, and expressed mesenchymal stem cell surface markers, high telomerase activity, and normal karyotypes. Importantly, the preserved cells retained bipotent differentiation capacity. Differentiated USCs expressed myogenic specific proteins and contractile function when exposed to myogenic differentiation medium, and they expressed urothelial cell-specific markers and barrier function when exposed to urothelial differentiation medium. These data demonstrated that up to 75% of fresh USCs can be safely persevered in urine for 24 hours and that these cells stored in urine retain their original stem cell properties, indicating that preserved USCs could be available for potential use in cell-based therapy or clinical diagnosis. PMID:23349776

  14. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase.

    PubMed Central

    Whalen, A M; Galasinski, S C; Shapiro, P S; Nahreini, T S; Ahn, N G

    1997-01-01

    The K562 erythroleukemia cell line was used to study the molecular mechanisms regulating lineage commitment of hematopoietic stem cells. Phorbol esters, which initiate megakaryocyte differentiation in this cell line, caused a rapid increase in extracellular-signal-regulated kinase (ERK), which remained elevated for 2 h and returned to near-basal levels by 24 h. In the absence of extracellular stimuli, ERK could be activated by expression of constitutively active mutants of mitogen-activated protein (MAP) kinase kinase (MKK), resulting in cell adhesion and spreading, increased cell size, inhibition of cell growth, and induction of the platelet-specific integrin alphaIIb beta3, all hallmarks of megakaryocytic differentiation. In contrast, expression of wild-type MKK had little effect. In addition, constitutively active MKK suppressed the expression of an erythroid marker, alpha-globin, indicating the ability to suppress cellular responses necessary for alternative cell lineages. The MKK inhibitor PD98059 blocked MKK/ERK activation and cellular responses to phorbol ester, demonstrating that activation of MKK is necessary and sufficient to induce a differentiation program along the megakaryocyte lineage. Thus, the MAP kinase cascade, which promotes cell growth and proliferation in many cell types, instead inhibits cell proliferation and initiates lineage-specific differentiation in K562 cells, establishing a model system to investigate the mechanisms by which this signal transduction pathway specifies cell fate and developmental processes. PMID:9121442

  15. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase.

    PubMed

    Whalen, A M; Galasinski, S C; Shapiro, P S; Nahreini, T S; Ahn, N G

    1997-04-01

    The K562 erythroleukemia cell line was used to study the molecular mechanisms regulating lineage commitment of hematopoietic stem cells. Phorbol esters, which initiate megakaryocyte differentiation in this cell line, caused a rapid increase in extracellular-signal-regulated kinase (ERK), which remained elevated for 2 h and returned to near-basal levels by 24 h. In the absence of extracellular stimuli, ERK could be activated by expression of constitutively active mutants of mitogen-activated protein (MAP) kinase kinase (MKK), resulting in cell adhesion and spreading, increased cell size, inhibition of cell growth, and induction of the platelet-specific integrin alphaIIb beta3, all hallmarks of megakaryocytic differentiation. In contrast, expression of wild-type MKK had little effect. In addition, constitutively active MKK suppressed the expression of an erythroid marker, alpha-globin, indicating the ability to suppress cellular responses necessary for alternative cell lineages. The MKK inhibitor PD98059 blocked MKK/ERK activation and cellular responses to phorbol ester, demonstrating that activation of MKK is necessary and sufficient to induce a differentiation program along the megakaryocyte lineage. Thus, the MAP kinase cascade, which promotes cell growth and proliferation in many cell types, instead inhibits cell proliferation and initiates lineage-specific differentiation in K562 cells, establishing a model system to investigate the mechanisms by which this signal transduction pathway specifies cell fate and developmental processes.

  16. Seven diverse human embryonic stem cell-derived chondrogenic clonal embryonic progenitor cell lines display site-specific cell fates.

    PubMed

    Sternberg, Hal; Kidd, Jennifer; Murai, James T; Jiang, Jianjie; Rinon, Ariel; Erickson, Isaac E; Funk, Walter D; Wang, Qian; Chapman, Karen B; Vangsness, C Thomas; West, Michael D

    2013-03-01

    The transcriptomes of seven diverse clonal human embryonic progenitor cell lines with chondrogenic potential were compared with that of bone marrow-derived mesenchymal stem cells (MSCs). The cell lines 4D20.8, 7PEND24, 7SMOO32, E15, MEL2, SK11 and SM30 were compared with MSCs using immunohistochemical methods, gene expression microarrays and quantitative real-time PCR. In the undifferentiated progenitor state, each line displayed unique combinations of site-specific markers, including AJAP1, ALDH1A2, BMP5, BARX1, HAND2, HOXB2, LHX1, LHX8, PITX1, TBX15 and ZIC2, but none of the lines expressed the MSC marker CD74. The lines showed diverse responses when differentiated in the presence of combinations of TGF-β3, BMP2, 4, 6 and 7 and GDF5, with the lines 4D20.8, SK11, SM30 and MEL2 showing osteogenic markers in some differentiation conditions. The line 7PEND24 showed evidence of regenerating articular cartilage and, in some conditions, markers of tendon differentiation. The scalability of site-specific clonal human embryonic stem cell-derived embryonic progenitor cell lines may provide novel models for the study of differentiation and methods for preparing purified and identified cells types for use in therapy.

  17. Continued Expression of GATA3 Is Necessary for Cochlear Neurosensory Development

    PubMed Central

    Duncan, Jeremy S.; Fritzsch, Bernd

    2013-01-01

    Hair cells of the developing mammalian inner ear are progressively defined through cell fate restriction. This process culminates in the expression of the bHLH transcription factor Atoh1, which is necessary for differentiation of hair cells, but not for their specification. Loss of several genes will disrupt ear morphogenesis or arrest of neurosensory epithelia development. We previously showed in null mutants that the loss of the transcription factor, Gata3, results specifically in the loss of all cochlear neurosensory development. Temporal expression of Gata3 is broad from the otic placode stage through the postnatal ear. It therefore remains unclear at which stage in development Gata3 exerts its effect. To better understand the stage specific effects of Gata3, we investigated the role of Gata3 in cochlear neurosensory specification and differentiation utilizing a LoxP targeted Gata3 line and two Cre lines. Foxg1Cre∶Gata3f/f mice show recombination of Gata3 around E8.5 but continue to develop a cochlear duct without differentiated hair cells and spiral ganglion neurons. qRT-PCR data show that Atoh1 was down-regulated but not absent in the duct whereas other hair cell specific genes such as Pou4f3 were completely absent. In addition, while Sox2 levels were lower in the Foxg1Cre:Gata3f/f cochlea, Eya1 levels remained normal. We conclude that Eya1 is unable to fully upregulate Atoh1 or Pou4f3, and drive differentiation of hair cells without Gata3. Pax2-Cre∶Gata3f/f mice show a delayed recombination of Gata3 in the ear relative to Foxg1Cre:Gata3f/f. These mice exhibited a cochlear duct containing patches of partially differentiated hair cells and developed only few and incorrectly projecting spiral ganglion neurons. Our conditional deletion studies reveal a major role of Gata3 in the signaling of prosensory genes and in the differentiation of cochlear neurosenory cells. We suggest that Gata3 may act in combination with Eya1, Six1, and Sox2 in cochlear prosensory gene signaling. PMID:23614009

  18. The transcription factors Thpok and LRF are necessary and partly redundant for T helper cell differentiation

    PubMed Central

    Carpenter, Andrea C.; Grainger, John R.; Xiong, Yumei; Kanno, Yuka; Chu, H. Hamlet; Wang, Lie; Naik, Shruti; dos Santos, Liliane; Wei, Lai; Jenkins, Marc K.; O’Shea, John J.; Belkaid, Yasmine; Bosselut, Rémy

    2014-01-01

    Summary T helper (Th) cells are critical for defenses against infection and recognize peptides bound to Class II Major Histocompatibility Complex (MHC-II) molecules. Although transcription factors have been identified that direct helper cells into specific effector fates, whether a ‘master’ regulator controls the developmental program common to all Th cells remains unclear. Here we showed that the two transcription factors Thpok and LRF share this function. Although disruption of both factors did not prevent the generation of MHC II-specific T cells, these cells failed to express Th cell genes or undergo Th cell differentiation in vivo. In contrast, T cells lacking Thpok only displayed LRF-dependent functions and contributed to multiple effector responses, both in vitro and in vivo, with the notable exception of Th2 cell responses that control extra-cellular parasites. These findings identify the Thpok-LRF pair as a core node of Th cell differentiation and function. PMID:23041065

  19. Derivation and characterization of Chinese human embryonic stem cell line with high potential to differentiate into pancreatic and hepatic cells.

    PubMed

    Shi, Cheng; Shen, Huan; Jiang, Wei; Song, Zhi-Hua; Wang, Cheng-Yan; Wei, Li-Hui

    2011-04-01

    Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability. Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propagate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells. We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line. This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo development research, along with clinical treatments for diabetes and some hepatic diseases.

  20. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation.

    PubMed

    Obier, Nadine; Bonifer, Constanze

    2016-11-01

    Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development. © 2016 Federation of European Biochemical Societies.

  1. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Hiromasa; Database Center for Life Science; Oki, Yoshinao

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed asmore » well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.« less

  2. Analysis of the early heterocyst Cys-proteome in the multicellular cyanobacterium Nostoc punctiforme reveals novel insights into the division of labor within diazotrophic filaments.

    PubMed

    Sandh, Gustaf; Ramström, Margareta; Stensjö, Karin

    2014-12-04

    In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts. Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme. The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments as compared to steady-state cultures. Therefore we conclude that by using our approach we are able to analyze a synchronized fraction of newly formed heterocysts, which enabled a better detection of proteins involved in the heterocyst specific physiology.

  3. Novel developmental biology-based protocol of embryonic stem cell differentiation to morphologically sound and functional yet immature hepatocytes.

    PubMed

    Bukong, Terence N; Lo, Tracie; Szabo, Gyongyi; Dolganiuc, Angela

    2012-05-01

    Liver diseases are common in the United States and often require liver transplantation; however, donated organs are limited and thus alternative sources for liver cells are in high demand. Embryonic stem cells (ESC) can provide a continuous and readily available source of liver cells. ESC differentiation to liver cells is yet to be fully understood and comprehensive differentiation protocols are yet to be defined. Here, we aimed to achieve human (h)ESC differentiation into mature hepatocytes using defined recombinant differentiation factors and metabolites. Embryonic stem cell H1 line was sub-cultured on feeder layer. We induced hESCs into endodermal differentiation succeeded by early/late hepatic specification and finally into hepatocyte maturation using step combinations of Activin A and fibroblast growth factor (FGF)-2 for 7 days; followed by FGF-4 and bone morphogenic protein 2 (BMP2) for 7 days, succeeded by FGF-10 + hepatocyte growth factor 4 + epidermal growth factor for 14 days. Specific inhibitors/stimulators were added sequentially throughout differentiation. Cells were analysed by PCR, flow cytometry, microscopy or functional assays. Our hESC differentiation protocol resulted in viable cells with hepatocyte shape and morphology. We observed gradual changes in cell transcriptome, including up-regulation of differentiation-promoting GATA4, GATA6, POU5F1 and HNF4 transcription factors, steady levels of stemness-promoting SOX-2 and low levels of Nanog, as defined by PCR. The hESC-derived hepatocytes expressed alpha-antitrypsin, CD81, cytokeratin 8 and low density lipoprotein (LDL) receptor. The levels of alpha-fetoprotein and proliferation marker Ki-67 in hESC-derived hepatocytes remained elevated. Unlike stem cells, the hESC-derived hepatocytes performed LDL uptake, produced albumin and alanine aminotransferase and had functional alcohol dehydrogenase. We report a novel protocol for hESC differentiation into morphological and functional yet immature hepatocytes as an alternative method for hepatocyte generation. © 2012 John Wiley & Sons A/S.

  4. Lead exposure delays the differentiation of oligodendroglial progenitors in vitro.

    PubMed

    Deng, W; McKinnon, R D; Poretz, R D

    2001-08-01

    Lead (Pb) is an environmental neurotoxicant that can cause hypo- and demyelination. Oligodendrocytes (OLs), the myelin-forming cells in the central nervous system, may be a possible target for Pb toxicity. The present study describes the effect of Pb on the maturation of rat OL progenitor (OP) cells and the developmental expression of myelin-specific galactolipids. Dose-response studies showed that OP cultures were more sensitive to Pb than mature OLs. Pb delayed the differentiation of OL progenitors, as demonstrated by cell morphology and immunostaining with a panel of stage-specific differentiation markers. Pb given prior to and during differentiation caused a decrease in the biosynthesis of galactolipids in both undifferentiated and differentiated OLs, as detected by metabolic radiolabeling with 3H-D-galactose. While the ratios of galacto/gluco-cerebrosides, hydroxy fatty acid/nonhydroxy fatty acid galactolipids, and galactocerebrosides/sulfatides increased in control cultures during cell differentiation, Pb treatment prevented these changes. The results suggest that chronic Pb exposure may impact brain development by interfering with the timely developmental maturation of OL progenitors. Copyright 2001 Academic Press.

  5. Cyclin-dependent kinase 4 signaling acts as a molecular switch between syngenic differentiation and neural transdifferentiation in human mesenchymal stem cells

    PubMed Central

    Lee, Janet; Baek, Jeong-Hwa; Choi, Kyu-Sil; Kim, Hyun-Soo; Park, Hye-Young; Ha, Geun-Hyoung; Park, Ho; Lee, Kyo-Won; Lee, Chang Geun; Yang, Dong-Yun; Moon, Hyo Eun; Paek, Sun Ha; Lee, Chang-Woo

    2013-01-01

    Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs. PMID:23324348

  6. Substrate stiffness affects skeletal myoblast differentiation in vitro

    NASA Astrophysics Data System (ADS)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  7. TGF-β signaling is required for maintenance of retinal ganglion cell differentiation and survival.

    PubMed

    Walshe, T E; Leach, L L; D'Amore, P A

    2011-08-25

    To determine the role of TGF-β1 in the maintenance of retinal ganglion cell line (RGC-5) differentiation and integrity. RGC-5 cells were differentiated in media conditioned by human non-pigmented ciliary epithelial cells (HNPE) for 4 days before treatment with TGF-β1 for 24 h. Cells were examined for morphological changes and harvested for western blot and real-time PCR analysis. For study of apoptosis, differentiated RGC-5 cells were grown in serum-free medium for 24 h in the presence or absence of TGF-β1 and collected for Annexin V/Propidium iodide FACs analysis. The role of MAPK pathways in TGF-β1-dependent signaling was determined by treatment with specific inhibitors of ERK, JNK and p38. Differentiation of RGC-5 cells in HNPE-conditioned media (CM) increased the neural cell markers, Brn-3c, NF-160, Thy1.2, Tau and PGP9.5. Treatment with TGF-β1 significantly increased the length of neurites extended by differentiated RGC-5s, concomitant with increased expression of NF-160 and PGP9.5, but not Brn-3c, Thy1.2 or Tau. TGF-β1 also decreased RGC-5 cell apoptosis in serum-free medium. p38 phosphorylation, but not smad2/3, JNK or ERK phosphorylation, was increased in TGF-β1 treated cells. Specific inhibition of p38 signaling reversed TGF-β1 induced neurite growth. These findings demonstrate the induction of RGC-5 cell differentiation by HNPE-derived CM and illustrate a role for TGF-β1 in maintaining RGC-5 cell survival and promoting neurite outgrowth through p38 MAPK. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Confined Sandwichlike Microenvironments Tune Myogenic Differentiation.

    PubMed

    Ballester-Beltrán, José; Trujillo, Sara; Alakpa, Enateri V; Compañ, Vicente; Gavara, Rafael; Meek, Dominic; West, Christopher C; Péault, Bruno; Dalby, Matthew J; Salmerón-Sánchez, Manuel

    2017-08-14

    Sandwichlike (SW) cultures are engineered as a multilayer technology to simultaneously stimulate dorsal and ventral cell receptors, seeking to mimic cell adhesion in three-dimensional (3D) environments in a reductionist manner. The effect of this environment on cell differentiation was investigated for several cell types cultured in standard growth media, which promotes proliferation on two-dimensional (2D) surfaces and avoids any preferential differentiation. First, murine C2C12 myoblasts showed specific myogenic differentiation. Human mesenchymal stem cells (hMSCs) of adipose and bone marrow origin, which can differentiate toward a wider variety of lineages, showed again myodifferentiation. Overall, this study shows myogenic differentiation in normal growth media for several cell types under SW conditions, avoiding the use of growth factors and cytokines, i.e., solely by culturing cells within the SW environment. Mechanistically, it provides further insights into the balance between integrin adhesion to the dorsal substrate and the confinement imposed by the SW system.

  9. Confined Sandwichlike Microenvironments Tune Myogenic Differentiation

    PubMed Central

    2017-01-01

    Sandwichlike (SW) cultures are engineered as a multilayer technology to simultaneously stimulate dorsal and ventral cell receptors, seeking to mimic cell adhesion in three-dimensional (3D) environments in a reductionist manner. The effect of this environment on cell differentiation was investigated for several cell types cultured in standard growth media, which promotes proliferation on two-dimensional (2D) surfaces and avoids any preferential differentiation. First, murine C2C12 myoblasts showed specific myogenic differentiation. Human mesenchymal stem cells (hMSCs) of adipose and bone marrow origin, which can differentiate toward a wider variety of lineages, showed again myodifferentiation. Overall, this study shows myogenic differentiation in normal growth media for several cell types under SW conditions, avoiding the use of growth factors and cytokines, i.e., solely by culturing cells within the SW environment. Mechanistically, it provides further insights into the balance between integrin adhesion to the dorsal substrate and the confinement imposed by the SW system. PMID:28824958

  10. Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis.

    PubMed

    Moguche, Albanus O; Musvosvi, Munyaradzi; Penn-Nicholson, Adam; Plumlee, Courtney R; Mearns, Helen; Geldenhuys, Hennie; Smit, Erica; Abrahams, Deborah; Rozot, Virginie; Dintwe, One; Hoff, Søren T; Kromann, Ingrid; Ruhwald, Morten; Bang, Peter; Larson, Ryan P; Shafiani, Shahin; Ma, Shuyi; Sherman, David R; Sette, Alessandro; Lindestam Arlehamn, Cecilia S; McKinney, Denise M; Maecker, Holden; Hanekom, Willem A; Hatherill, Mark; Andersen, Peter; Scriba, Thomas J; Urdahl, Kevin B

    2017-06-14

    CD4 T cells are critical for protective immunity against Mycobacterium tuberculosis (Mtb), the cause of tuberculosis (TB). Yet to date, TB vaccine candidates that boost antigen-specific CD4 T cells have conferred little or no protection. Here we examined CD4 T cell responses to two leading TB vaccine antigens, ESAT-6 and Ag85B, in Mtb-infected mice and in vaccinated humans with and without underlying Mtb infection. In both species, Mtb infection drove ESAT-6-specific T cells to be more differentiated than Ag85B-specific T cells. The ability of each T cell population to control Mtb in the lungs of mice was restricted for opposite reasons: Ag85B-specific T cells were limited by reduced antigen expression during persistent infection, whereas ESAT-6-specific T cells became functionally exhausted due to chronic antigenic stimulation. Our findings suggest that different vaccination strategies will be required to optimize protection mediated by T cells recognizing antigens expressed at distinct stages of Mtb infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Generation of iPS-derived model cells for analyses of hair shaft differentiation.

    PubMed

    Kido, Takumi; Horigome, Tomoatsu; Uda, Minori; Adachi, Naoki; Hirai, Yohei

    2017-09-01

    Biological evaluation of hair growth/differentiation activity in vitro has been a formidable challenge, primarily due to the lack of relevant model cell systems. To solve this problem, we generated a stable model cell line in which successive differentiation via epidermal progenitors to hair components is easily inducible and traceable. Mouse induced pluripotent stem (iPS) cell-derived cells were selected to stably express a tetracycline (Tet)-inducible bone morphogenic protein-4 (BMP4) expression cassette and a luciferase reporter driven by a hair-specific keratin 31 gene (krt31) promoter (Tet-BMP4-KRT31-Luc iPS). While Tet- BMP4-KRT31-Luc iPS cells could be maintained as stable iPS cells, the cells differentiated to produce luciferase luminescence in the presence of all-trans retinoic acid (RA) and doxycycline (Dox), and addition of a hair differentiation factor significantly increased luciferase fluorescence. Thus, this cell line may provide a reliable cell-based screening system to evaluate drug candidates for hair differentiation activity.

  12. Rapid and robust generation of long-term self-renewing human neural stem cells with the ability to generate mature astroglia.

    PubMed

    Palm, Thomas; Bolognin, Silvia; Meiser, Johannes; Nickels, Sarah; Träger, Claudia; Meilenbrock, Ralf-Leslie; Brockhaus, Johannes; Schreitmüller, Miriam; Missler, Markus; Schwamborn, Jens Christian

    2015-11-06

    Induced pluripotent stem cell bear the potential to differentiate into any desired cell type and hold large promise for disease-in-a-dish cell-modeling approaches. With the latest advances in the field of reprogramming technology, the generation of patient-specific cells has become a standard technology. However, directed and homogenous differentiation of human pluripotent stem cells into desired specific cell types remains an experimental challenge. Here, we report the development of a novel hiPSCs-based protocol enabling the generation of expandable homogenous human neural stem cells (hNSCs) that can be maintained under self-renewing conditions over high passage numbers. Our newly generated hNSCs retained differentiation potential as evidenced by the reliable generation of mature astrocytes that display typical properties as glutamate up-take and expression of aquaporin-4. The hNSC-derived astrocytes showed high activity of pyruvate carboxylase as assessed by stable isotope assisted metabolic profiling. Moreover, using a cell transplantation approach, we showed that grafted hNSCs were not only able to survive but also to differentiate into astroglial in vivo. Engraftments of pluripotent stem cells derived from somatic cells carry an inherent tumor formation potential. Our results demonstrate that hNSCs with self-renewing and differentiation potential may provide a safer alternative strategy, with promising applications especially for neurodegenerative disorders.

  13. Hepatocytic differentiation of mesenchymal stem cells in cocultures with fetal liver cells.

    PubMed

    Lange, Claudia; Bruns, Helge; Kluth, Dietrich; Zander, Axel-R; Fiegel, Henning-C

    2006-04-21

    To investigate the hepatocytic differentiation of mesenchymal stem cells (MSCs) in co-cultures with fetal liver cells (FLC) and the possibility to expand differentiated hepatocytic cells. MSCs were marked with green fluorescent protein (GFP) by retroviral gene transduction. Clonal marked MSCs were either cultured under liver stimulating conditions using fibronectin-coated culture dishes and medium supplemented with stem cell factor (SCF), hepatocyte growth factor (HGF), epidermal growth factor (EGF), and fibroblast growth factor 4 (FGF-4) alone, or in presence of freshly isolated FLC. Cells in co-cultures were harvested, and GFP+ or GFP- cells were separated using fluorescence activated cell sorting. Reverse transcription-polymerase chain reaction (RT-PCR) for the liver specific markers cytokeratin-18 (CK-18), albumin, and alpha-fetoprotein (AFP) was performed in different cell populations. Under the specified culture conditions, rat MSCs co-cultured with FLC expressed albumin, CK-18, and AFP-RNA over two weeks. At wk 3, MSCs lost hepatocytic gene expression, probably due to overgrowth of the cocultured FLC. FLC also showed a stable liver specific gene expression in the co-cultures and a very high growth potential. The rat MSCs from bone marrow can differentiate hepatocytic cells in the presence of FLC in vitro and the presence of MSCs in co-cultures also provides a beneficial environment for expansion and differentiation of FLC.

  14. Temporal Transcriptional Profiling of Somatic and Germ Cells Reveals Biased Lineage Priming of Sexual Fate in the Fetal Mouse Gonad

    PubMed Central

    Jameson, Samantha A.; Natarajan, Anirudh; Cool, Jonah; DeFalco, Tony; Maatouk, Danielle M.; Mork, Lindsey; Munger, Steven C.; Capel, Blanche

    2012-01-01

    The divergence of distinct cell populations from multipotent progenitors is poorly understood, particularly in vivo. The gonad is an ideal place to study this process, because it originates as a bipotential primordium where multiple distinct lineages acquire sex-specific fates as the organ differentiates as a testis or an ovary. To gain a more detailed understanding of the process of gonadal differentiation at the level of the individual cell populations, we conducted microarrays on sorted cells from XX and XY mouse gonads at three time points spanning the period when the gonadal cells transition from sexually undifferentiated progenitors to their respective sex-specific fates. We analyzed supporting cells, interstitial/stromal cells, germ cells, and endothelial cells. This work identified genes specifically depleted and enriched in each lineage as it underwent sex-specific differentiation. We determined that the sexually undifferentiated germ cell and supporting cell progenitors showed lineage priming. We found that germ cell progenitors were primed with a bias toward the male fate. In contrast, supporting cells were primed with a female bias, indicative of the robust repression program involved in the commitment to XY supporting cell fate. This study provides a molecular explanation reconciling the female default and balanced models of sex determination and represents a rich resource for the field. More importantly, it yields new insights into the mechanisms by which different cell types in a single organ adopt their respective fates. PMID:22438826

  15. Systematically labeling developmental stage-specific genes for the study of pancreatic β-cell differentiation from human embryonic stem cells.

    PubMed

    Liu, Haisong; Yang, Huan; Zhu, Dicong; Sui, Xin; Li, Juan; Liang, Zhen; Xu, Lei; Chen, Zeyu; Yao, Anzhi; Zhang, Long; Zhang, Xi; Yi, Xing; Liu, Meng; Xu, Shiqing; Zhang, Wenjian; Lin, Hua; Xie, Lan; Lou, Jinning; Zhang, Yong; Xi, Jianzhong; Deng, Hongkui

    2014-10-01

    The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP(+) cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro.

  16. [Therapeutic cloning. Biology, perspectives and alternatives].

    PubMed

    Maddox-Hyttel, Poul

    2003-02-24

    Certain diseases are caused by or cause irreversible loss of cells and may in the future be treated by cell-based therapies where spare cells are introduced into the body. Therapeutic cloning constitutes a scientifically and ethically challenging route to the generation of autologous patient specific spare cells: Stem cells for subsequent differentiation and transplantation are isolated from one week old embryos, which are produced by cloning by nuclear transfer from normal cells retrieved from a patient. Research in therapeutic cloning should be pursued in line with alternative strategies for obtaining stem cells. Finally, the molecular biology of cloning by nuclear transfer may hold the key to understanding trans-differentiation, which ultimately may allow for de-differentiation and subsequent re-differentiation of adult somatic cells for therapeutic purposes.

  17. Generation of stomach tissue from mouse embryonic stem cells.

    PubMed

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  18. An Optimized and Simplified System of Mouse Embryonic Stem Cell Cardiac Differentiation for the Assessment of Differentiation Modifiers

    PubMed Central

    Hartman, Matthew E.; Librande, Jason R.; Medvedev, Ivan O.; Ahmad, Rabiah N.; Moussavi-Harami, Farid; Gupta, Pritha P.; Chien, Wei-Ming; Chin, Michael T.

    2014-01-01

    Generating cardiomyocytes from embryonic stem cells is an important technique for understanding cardiovascular development, the origins of cardiovascular diseases and also for providing potential reagents for cardiac repair. Numerous methods have been published but often are technically challenging, complex, and are not easily adapted to assessment of specific gene contributions to cardiac myocyte differentiation. Here we report the development of an optimized protocol to induce the differentiation of mouse embryonic stem cells to cardiac myocytes that is simplified and easily adapted for genetic studies. Specifically, we made four critical findings that distinguish our protocol: 1) mouse embryonic stem cells cultured in media containing CHIR99021 and PD0325901 to maintain pluripotency will efficiently form embryoid bodies containing precardiac mesoderm when cultured in these factors at a reduced dosage, 2) low serum conditions promote cardiomyocyte differentiation and can be used in place of commercially prepared StemPro nutrient supplement, 3) the Wnt inhibitor Dkk-1 is dispensable for efficient cardiac differentiation and 4) tracking differentiation efficiency may be done with surface expression of PDGFRα alone. In addition, cardiac mesodermal precursors generated by this system can undergo lentiviral infection to manipulate the expression of specific target molecules to assess effects on cardiac myocyte differentiation and maturation. Using this approach, we assessed the effects of CHF1/Hey2 on cardiac myocyte differentiation, using both gain and loss of function. Overexpression of CHF1/Hey2 at the cardiac mesoderm stage had no apparent effect on cardiac differentiation, while knockdown of CHF1/Hey2 resulted in increased expression of atrial natriuretic factor and connexin 43, suggesting an alteration in the phenotype of the cardiomyocytes. In summary we have generated a detailed and simplified protocol for generating cardiomyocytes from mES cells that is optimized for investigating factors that affect cardiac differentiation. PMID:24667642

  19. Proteins involved in neuronal differentiation of neuroblastoma cell line N1E-115.

    PubMed

    Oh, Ji-Eun; Freilinger, Angelika; Gelpi, Ellen; Pollak, Arnold; Hengstschläger, Markus; Lubec, Gert

    2007-06-01

    Neuronal differentiation (ND) represents a well-defined phenomenon in biological terms but proteins involved have not been studied systematically. We therefore aimed to study ND by retinoic acid (RA) in a widely used neuroblastoma cell line by comparative proteomics. The ND was induced in the N1E-115 cell line by serum deprivation and RA treatment. Undifferentiated cells and cells undergoing serum deprivation served as controls. Protein extracts were run on 2-DE followed by MALDI-TOF or MALDI-TOF-TOF analysis. Quantification was carried out using specific software and stringent statistical analysis was performed. Tubulin beta 5, cat eye syndrome critical region protein 5 homolog, putative GTP-binding protein PTD004 homolog, and the metabolic proteins glyceraldehyde-3-phosphate dehydrogenase and transketolase were differentially regulated. Differential protein levels of cytoskeleton proteins including tubulins and metabolic proteins have been reported to be regulated by ND. Herein, specific signaling differences as reflected by putative GTP-binding protein PTD004 changes in differentiated cells are shown and a possible role for the Cat eye syndrome critical region protein 5 homolog is proposed. The protein disulfide isomerase associated 3 protein fits the already proposed findings of chaperon regulation by ND. The study forms the molecular basis for further evaluation of the functional roles of the differentially expressed proteins in ND.

  20. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.

    PubMed

    Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan

    2017-10-19

    Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-beta1.

    PubMed

    Haydont, Valérie; Riser, Bruce L; Aigueperse, Jocelyne; Vozenin-Brotons, Marie-Catherine

    2008-06-01

    The fibrogenic differentiation of resident mesenchymal cells is a key parameter in the pathogenesis of radiation fibrosis and is triggered by the profibrotic growth factors transforming growth factor (TGF)-beta1 and CCN2. TGF-beta1 is considered the primary inducer of fibrogenic differentiation and is thought to control its long-term maintenance, whereas CCN2 is considered secondary effector of TGF-beta1. Yet, in long-term established fibrosis like that associated with delayed radiation enteropathy, in situ TGF-beta1 deposition is low, whereas CCN2 expression is high. To explore this apparent paradox, cell response to increasing doses of TGF-beta1 was investigated in cells modeling initiation and maintenance of fibrosis, i.e., normal and fibrosis-derived smooth muscle cells, respectively. Activation of cell-specific signaling pathways by low TGF-beta1 doses was demonstrated with a main activation of the Rho/ROCK pathway in fibrosis-derived cells, whereas the Smad pathway was mainly activated in normal cells. This leads to subsequent and cell-specific regulation of the CCN2 gene. These results suggested a specific profibrotic role of CCN2 in fibrosis-initiated cells. Furthermore, the modulation of CCN2 expression by itself and the combination of TGF-beta1 and CCN2 was investigated in fibrosis-derived cells. In fibrosis-initiated cells CCN2 triggered its autoinduction; furthermore, low concentration of TGF-beta1-potentiated CCN2 autoinduction. Our findings showed a differential requirement and action of TGF-beta1 in the fibrogenic response of normal vs. fibrosis-derived cells. This study defines a novel Rho/ROCK but Smad3-independent mode of TGF-beta signaling that may operate during the chronic stages of fibrosis and provides evidence of both specific and combinatorial roles of low TGF-beta1 dose and CCN2.

  2. Selecting antagonistic antibodies that control differentiation through inducible expression in embryonic stem cells

    PubMed Central

    Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John

    2013-01-01

    Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130

  3. Carboxyl methylation of 21-23 kDa membrane proteins in intact neuroblastoma cells is increased with differentiation.

    PubMed

    Haklai, R; Kloog, Y

    1990-01-01

    Evidence is presented for specific enzymatic methylation of 21-23 kDa membrane proteins in intact neuroblastoma N1E 115 cells, which is increased in dimethylsulfoxide-induced differentiated cells. Methylation of these proteins has characteristics typical of enzymatic reactions in which base labile volatile methyl groups are incorporated into proteins, consistent with the formation of protein carboxyl methylesters. However, these methylesters of the 21-23 kDa proteins are relatively stable compared to other protein carboxyl methylesters. The 3-fold increase in methylated 21-23 kDa proteins in the differentiated cells suggest biological significance in differentiation of the cell membranes.

  4. Bestatin Inhibits Cell Growth, Cell Division, and Spore Cell Differentiation in Dictyostelium discoideum

    PubMed Central

    Poloz, Yekaterina; Catalano, Andrew

    2012-01-01

    Bestatin methyl ester (BME) is an inhibitor of Zn2+-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn2+-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA. PMID:22345351

  5. Down-regulation of the non-coding RNA H19 and its derived miR-675 is concomitant with up-regulation of insulin-like growth factor receptor type 1 during neural-like differentiation of human bone marrow mesenchymal stem cells.

    PubMed

    Farzi-Molan, Asghar; Babashah, Sadegh; Bakhshinejad, Babak; Atashi, Amir; Fakhr Taha, Masoumeh

    2018-03-07

    The differentiation of human bone marrow mesenchymal stem cells (BMSCs) into specific lineages offers new opportunities to use the therapeutic efficiency of these pluripotent cells in regenerative medicine. Multiple lines of evidence have revealed that non-coding RNAs play major roles in the differentiation of BMSCs into neural cells. Here, we applied a cocktail of neural inducing factors (NIFs) to differentiate BMSCs into neural-like cells. Our data demonstrated that during neurogenic induction, BMSCs obtained a neuron-like morphology. Also, the results of gene expression analysis by qRT-PCR showed progressively increasing expression levels of neuron-specific enolase (NSE) as well as microtubule-associated protein 2 (MAP-2) and immunocytochemical staining detected the expression of these neuron-specific markers along differentiated BMSC bodies and cytoplasmic processes, confirming the differentiation of BMSCs into neuronal lineages. We also compared differences in the expression levels of the long non-coding RNA (lncRNA) H19 and H19-derived miR-675 between undifferentiated and neurally differentiated BMSCs and found that during neural differentiation down-regulation of the lncRNA H19/miR-675 axis is concomitant with up-regulation of insulin-like growth factor type-1 (IGF-1R), a well-established target of miR-675 involved in neurogenesis. The findings of the current study provide support for the hypothesis that miR-675 may confer functionality to H19, suggesting a key role for this miRNA in the neural differentiation of BSMCs. However, further investigation is required to gain deeper insights into the biological roles of this miRNA in the complex process of neurogenesis. © 2018 International Federation for Cell Biology.

  6. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo.

    PubMed

    Marchetti, Sandrine; Gimond, Clotilde; Iljin, Kristiina; Bourcier, Christine; Alitalo, Kari; Pouysségur, Jacques; Pagès, Gilles

    2002-05-15

    Large scale purification of endothelial cells is of great interest as it could improve tissue transplantation, reperfusion of ischemic tissues and treatment of pathologies in which an endothelial cell dysfunction exists. In this study, we describe a novel genetic approach that selects for endothelial cells from differentiating embryonic stem (ES) cells. Our strategy is based on the establishment of ES-cell clones that carry an integrated puromycin resistance gene under the control of a vascular endothelium-specific promoter, tie-1. Using EGFP as a reporter gene, we first confirmed the endothelial specificity of the tie-1 promoter in the embryoid body model and in cells differentiated in 2D cultures. Subsequently, tie-1-EGFP ES cells were used as recipients for the tie-1-driven puror transgene. The resulting stable clones were expanded and differentiated for seven days in the presence of VEGF before puromycin selection. As expected, puromycin-resistant cells were positive for EGFP and also expressed several endothelial markers, including CD31, CD34, VEGFR-1, VEGFR-2, Tie-1, VE-cadherin and ICAM-2. Release from the puromycin selection resulted in the appearance of alpha-smooth muscle actin-positive cells. Such cells became more numerous when the population was cultured on laminin-1 or in the presence of TGF-beta1, two known inducers of smooth muscle cell differentiation. The hypothesis that endothelial cells or their progenitors may differentiate towards a smooth muscle cell phenotype was further supported by the presence of cells expressing both CD31 and alpha-smooth muscle actin markers. Finally, we show that purified endothelial cells can incorporate into the neovasculature of transplanted tumors in nude mice. Taken together, these results suggest that application of endothelial lineage selection to differentiating ES cells may become a useful approach for future pro-angiogenic and endothelial cell replacement therapies.

  7. Developmental effects of tobacco smoke exposure during human embryonic stem cell differentiation are mediated through the transforming growth factor-β superfamily member, Nodal

    PubMed Central

    Liszewski, Walter; Ritner, Carissa; Aurigui, Julian; Wong, Sharon S. Y.; Hussain, Naveed; Krueger, Winfried; Oncken, Cheryl; Bernstein, Harold S.

    2012-01-01

    While the pathologies associated with in utero smoke exposure are well established, their underlying molecular mechanisms are incompletely understood. We differentiated human embryonic stem cells in the presence of physiological concentrations of tobacco smoke and nicotine. Using post hoc microarray analysis, quantitative PCR, and immunoblot analysis, we demonstrated that tobacco smoke has lineage- and stage-specific effects on human embryonic stem cell differentiation, through both nicotine-dependent and -independent pathways. We show that three major stem cell pluripotency/differentiation pathways, Notch, canonical Wnt, and transforming growth factor-β, are affected by smoke exposure, and that Nodal signaling through SMAD2 is specifically impacted by effects on Lefty1, Nodal, and FoxH1. These events are associated with upregulation of microRNA-302a, a post-transcriptional silencer of Lefty1. The described studies provide insight into the mechanisms by which tobacco smoke influences fetal development at the cellular level, and identify specific transcriptional, post-transcriptional, and signaling pathways by which this likely occurs. PMID:22381624

  8. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts

    PubMed Central

    Doi, Akiko; Park, In-Hyun; Wen, Bo; Murakami, Peter; Aryee, Martin J; Irizarry, Rafael; Herb, Brian; Ladd-Acosta, Christine; Rho, Junsung; Loewer, Sabine; Miller, Justine; Schlaeger, Thorsten; Daley, George Q; Feinberg, Andrew P

    2010-01-01

    Induced pluripotent stem (iPS) cells are derived by epigenetic reprogramming, but their DNA methylation patterns have not yet been analyzed on a genome-wide scale. Here, we find substantial hypermethylation and hypomethylation of cytosine-phosphate-guanine (CpG) island shores in nine human iPS cell lines as compared to their parental fibroblasts. The differentially methylated regions (DMRs) in the reprogrammed cells (denoted R-DMRs) were significantly enriched in tissue-specific (T-DMRs; 2.6-fold, P < 10−4) and cancer-specific DMRs (C-DMRs; 3.6-fold, P < 10−4). Notably, even though the iPS cells are derived from fibroblasts, their R-DMRs can distinguish between normal brain, liver and spleen cells and between colon cancer and normal colon cells. Thus, many DMRs are broadly involved in tissue differentiation, epigenetic reprogramming and cancer. We observed colocalization of hypomethylated R-DMRs with hypermethylated C-DMRs and bivalent chromatin marks, and colocalization of hypermethylated R-DMRs with hypomethylated C-DMRs and the absence of bivalent marks, suggesting two mechanisms for epigenetic reprogramming in iPS cells and cancer. PMID:19881528

  9. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies.

    PubMed

    Podholová, Kristýna; Plocek, Vítězslav; Rešetárová, Stanislava; Kučerová, Helena; Hlaváček, Otakar; Váchová, Libuše; Palková, Zdena

    2016-03-29

    Mitochondrial retrograde signaling mediates communication from altered mitochondria to the nucleus and is involved in many normal and pathophysiological changes, including cell metabolic reprogramming linked to cancer development and progression in mammals. The major mitochondrial retrograde pathway described in yeast includes three activators, Rtg1p, Rtg2p and Rtg3p, and repressors, Mks1p and Bmh1p/Bmh2p. Using differentiated yeast colonies, we show that Mks1p-Rtg pathway regulation is complex and includes three branches that divergently regulate the properties and fate of three specifically localized cell subpopulations via signals from differently altered mitochondria. The newly identified RTG pathway-regulated genes ATO1/ATO2 are expressed in colonial upper (U) cells, the cells with active TORC1 that metabolically resemble tumor cells, while CIT2 is a typical target induced in one subpopulation of starving lower (L) cells. The viability of the second L cell subpopulation is strictly dependent on RTG signaling. Additional co-activators of Rtg1p-Rtg3p specific to particular gene targets of each branch are required to regulate cell differentiation.

  10. Chondrogenic Differentiation Increases Antidonor Immune Response to Allogeneic Mesenchymal Stem Cell Transplantation

    PubMed Central

    Ryan, Aideen E; Lohan, Paul; O'Flynn, Lisa; Treacy, Oliver; Chen, Xizhe; Coleman, Cynthia; Shaw, Georgina; Murphy, Mary; Barry, Frank; Griffin, Matthew D; Ritter, Thomas

    2014-01-01

    Allogeneic mesenchymal stem cells (allo-MSCs) have potent regenerative and immunosuppressive potential and are being investigated as a therapy for osteoarthritis; however, little is known about the immunological changes that occur in allo-MSCs after ex vivo induced or in vivo differentiation. Three-dimensional chondrogenic differentiation was induced in an alginate matrix, which served to immobilize and potentially protect MSCs at the site of implantation. We show that allogeneic differentiated MSCs lost the ability to inhibit T-cell proliferation in vitro, in association with reduced nitric oxide and prostaglandin E2 secretion. Differentiation altered immunogenicity as evidenced by induced proliferation of allogeneic T cells and increased susceptibility to cytotoxic lysis by allo-specific T cells. Undifferentiated or differentiated allo-MSCs were implanted subcutaneously, with and without alginate encapsulation. Increased CD3+ and CD68+ infiltration was evident in differentiated and splenocyte encapsulated implants only. Without encapsulation, increased local memory T-cell responses were detectable in recipients of undifferentiated and differentiated MSCs; however, only differentiated MSCs induced systemic memory T-cell responses. In recipients of encapsulated allogeneic cells, only differentiated allo-MSCs induced memory T-cell responses locally and systemically. Systemic alloimmune responses to differentiated MSCs indicate immunogenicity regardless of alginate encapsulation and may require immunosuppressive therapy for therapeutic use. PMID:24184966

  11. Osteoblastic/Cementoblastic and Neural Differentiation of Dental Stem Cells and Their Applications to Tissue Engineering and Regenerative Medicine

    PubMed Central

    Kim, Byung-Chul; Bae, Hojae; Kwon, Il-Keun; Lee, Eun-Jun; Park, Jae-Hong

    2012-01-01

    Recently, dental stem and progenitor cells have been harvested from periodontal tissues such as dental pulp, periodontal ligament, follicle, and papilla. These cells have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and multilineage differentiation capacity. These dental stem and progenitor cells are known to be derived from ectomesenchymal origin formed during tooth development. A great deal of research has been accomplished for directing osteoblastic/cementoblastic differentiation and neural differentiation from dental stem cells. To differentiate dental stem cells for use in tissue engineering and regenerative medicine, there needs to be efficient in vitro differentiation toward the osteoblastic/cementoblastic and neural lineage with well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source. This review focuses on the multilineage differentiation capacity, especially into osteoblastic/cementoblastic lineage and neural lineages, of dental stem cells such as dental pulp stem cells (DPSC), dental follicle stem cells (DFSC), periodontal ligament stem cells (PDLSC), and dental papilla stem cells (DPPSC). It also covers various experimental strategies that could be used to direct lineage-specific differentiation, and their potential applications in tissue engineering and regenerative medicine. PMID:22224548

  12. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine.

    PubMed

    Kim, Byung-Chul; Bae, Hojae; Kwon, Il-Keun; Lee, Eun-Jun; Park, Jae-Hong; Khademhosseini, Ali; Hwang, Yu-Shik

    2012-06-01

    Recently, dental stem and progenitor cells have been harvested from periodontal tissues such as dental pulp, periodontal ligament, follicle, and papilla. These cells have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and multilineage differentiation capacity. These dental stem and progenitor cells are known to be derived from ectomesenchymal origin formed during tooth development. A great deal of research has been accomplished for directing osteoblastic/cementoblastic differentiation and neural differentiation from dental stem cells. To differentiate dental stem cells for use in tissue engineering and regenerative medicine, there needs to be efficient in vitro differentiation toward the osteoblastic/cementoblastic and neural lineage with well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source. This review focuses on the multilineage differentiation capacity, especially into osteoblastic/cementoblastic lineage and neural lineages, of dental stem cells such as dental pulp stem cells (DPSC), dental follicle stem cells (DFSC), periodontal ligament stem cells (PDLSC), and dental papilla stem cells (DPPSC). It also covers various experimental strategies that could be used to direct lineage-specific differentiation, and their potential applications in tissue engineering and regenerative medicine.

  13. Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos.

    PubMed

    Imai, Kaoru S; Satoh, Nori; Satou, Yutaka

    2002-04-01

    In early Ciona savignyi embryos, nuclear localization of beta-catenin is the first step of endodermal cell specification, and triggers the activation of various target genes. A cDNA for Cs-FGF4/6/9, a gene activated downstream of beta-catenin signaling, was isolated and shown to encode an FGF protein with features of both FGF4/6 and FGF9/20. The early embryonic expression of Cs-FGF4/6/9 was transient and the transcript was seen in endodermal cells at the 16- and 32-cell stages, in notochord and muscle cells at the 64-cell stage, and in nerve cord and muscle cells at the 110-cell stage; the gene was then expressed again in cells of the nervous system after neurulation. When the gene function was suppressed with a specific antisense morpholino oligo, the differentiation of mesenchyme cells was completely blocked, and the fate of presumptive mesenchyme cells appeared to change into that of muscle cells. The inhibition of mesenchyme differentiation was abrogated by coinjection of the morpholino oligo and synthetic Cs-FGF4/6/9 mRNA. Downregulation of beta-catenin nuclear localization resulted in the absence of mesenchyme cell differentiation due to failure of the formation of signal-producing endodermal cells. Injection of synthetic Cs-FGF4/6/9 mRNA in beta-catenin-downregulated embryos evoked mesenchyme cell differentiation. These results strongly suggest that Cs-FGF4/6/9 produced by endodermal cells acts an inductive signal for the differentiation of mesenchyme cells. On the other hand, the role of Cs-FGF4/6/9 in the induction of notochord cells is partial; the initial process of the induction was inhibited by Cs-FGF4/6/9 morpholino oligo, but notochord-specific genes were expressed later to form a partial notochord.

  14. Cardiomyogenic Differentiation in Cardiac Myxoma Expressing Lineage-Specific Transcription Factors

    PubMed Central

    Kodama, Hiroaki; Hirotani, Takashi; Suzuki, Yusuke; Ogawa, Satoshi; Yamazaki, Kazuto

    2002-01-01

    We investigated five cases of cardiac myxoma and one case of cardiac undifferentiated sarcoma by light and electron microscopy, in situ hybridization, immunohistochemical staining, and reverse transcriptase-polymerase chain reaction for cardiomyocyte-specific transcription factors, Nkx2.5/Csx, GATA-4, MEF2, and eHAND. Conventional light microscopy revealed that cardiac myxoma and sarcoma cells presented variable cellular arrangements and different histological characteristics. Ultrastructurally, some of the myxoma cells exhibited endothelium-like or immature mesenchymal cell differentiation. Immunohistochemistry for Nkx2.5/Csx, GATA-4, and eHAND was slightly to intensely positive in all myxoma cases. MEF2 immunoreactivity was observed in all cases including the case of sarcoma, thus suggesting myogenic differentiation of myxoma or sarcoma cells. In situ hybridization for Nkx2.5/Csx also revealed that all myxoma cells, but not sarcoma cells, expressed mRNA of the cardiac homeobox gene, Nkx2.5/Csx. Furthermore, nested reverse transcriptase-polymerase chain reaction from formalin-fixed, paraffin-embedded tissue was performed and demonstrated that the Nkx2.5/Csx and eHAND gene product to be detected in all cases, and in three of six cases, respectively. In conclusion, cardiac myxoma cells were found to express various amounts of cardiomyocyte-specific transcription factor gene products at the mRNA and protein levels, thus suggesting cardiomyogenic differentiation. These results support the concept that cardiac myxoma might arise from mesenchymal cardiomyocyte progenitor cells. PMID:12163362

  15. Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells

    PubMed Central

    XUE, CHENG; ZHANG, JUN; LV, ZHAN; LIU, HUI; HUANG, CONGXIN; YANG, JING; WANG, TEN

    2015-01-01

    Cardiac stem cells (CSCs) can differentiate into cardiac muscle-like cells; however, it remains unknown whether CSCs may possess the ability to differentiate into pacemaker cells. The aim of the present study was to determine whether angiotensin II (Ang II) could promote the specialization of CSCs into pacemaker-like cells. Mouse CSCs were treated with Ang II from day 3–5, after cell sorting. The differentiation potential of the cells was then analyzed by morphological analysis, flow cytometry, reverse transcription-polymerase chain reaction, immunohistochemistry and patch clamp analysis. Treatment with Ang II resulted in an increased number of cardiac muscle-like cells (32.7±4.8% vs. 21.5±4.8%; P<0.05), and inhibition of smooth muscle-like cells (6.2±7.3% vs. 20.5±5.1%; P<0.05). Following treatment with Ang II, increased levels of the cardiac progenitor-specific markers GATA4 and Nkx2.5 were observed in the cells. Furthermore, the transcript levels of pacemaker function-related genes, including hyperpolarization-activated cyclic nucleotide-gated (HCN)2, HCN4, T-box (Tbx)2 and Tbx3, were significantly upregulated. Immunofluorescence analysis confirmed the increased number of pacemaker-like cells. The pacemaker current (If) was recorded in the cells derived from CSCs, treated with Ang II. In conclusion, treatment of CSCs with Ang II during the differentiation process modified cardiac-specific gene expression and resulted in the enhanced formation of pacemaker-like cells. PMID:25572000

  16. [Analysis of tissue-specific differentially methylated genes with differential gene expression in non-small cell lung cancer].

    PubMed

    Yin, L G; Zou, Z Q; Zhao, H Y; Zhang, C L; Shen, J G; Qi, L; Qi, M; Xue, Z Q

    2014-01-01

    Adenocarcinoma (ADC) and squamous cell carcinomas (SCC) are two subtypes of non-small cell lung carcinomas which are regarded as the leading cause of cancer-related malignancy worldwide. The aim of this study is to detect the differentially methylated loci (DMLs) and differentially methylated genes (DMGs) of these two tumor sets, and then to illustrate the different expression level of specific methylated genes. Using TCGA database and Illumina HumanMethylation 27 arrays, we first screened the DMGs and DMLs in tumor samples. Then, we explored the BiologicalProcess terms of hypermethylated and hypomethylated genes using Functional Gene Ontology (GO) catalogues. Hypermethylation intensively occurred in CpG-island, whereas hypomethylation was located in non-CpG-island. Most SCC and ADC hypermethylated genes involved GO function of DNA dependenit regulation of transcription, and hypomethylated genes mainly 'enriched in the term of immune responses. Additionally, the expression level of specific differentially methylated genesis distinctbetween ADC and SCC. It is concluded that ADC and SCC have different methylated status that might play an important role in carcinogenesis.

  17. Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering

    NASA Technical Reports Server (NTRS)

    Vunjak-Novakovic, Gordana (Inventor); Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor)

    2003-01-01

    The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.

  18. Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton's jelly mesenchymal stem cells.

    PubMed

    Al Madhoun, Ashraf; Ali, Hamad; AlKandari, Sarah; Atizado, Valerie Lopez; Akhter, Nadeem; Al-Mulla, Fahd; Atari, Maher

    2016-11-16

    Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are gaining increasing interest as an alternative source of stem cells for regenerative medicine applications. Definitive endoderm (DE) specification is a prerequisite for the development of vital organs such as liver and pancreas. Hence, efficient induction of the DE lineage from stem cells is crucial for subsequent generation of clinically relevant cell types. Here we present a defined 3D differentiation protocol of WJ-MSCs into DE cells. WJ-MSCs were cultured in suspension to generate spheroids, about 1500 cells each, for 7 days. The serum-free differentiation media contained specific growth factors, cytokines, and small molecules that specifically regulate signaling pathways including sonic hedgehog, bone morphogenetic protein, Activin/Wnt, and Notch. We obtained more than 85 % DE cells as shown with FACS analysis using antibodies directed against the DE marker CXCR4. In addition, biochemical and molecular analysis of bona-fide DE markers revealed a time-course induction of Sox17, CXCR4, and FoxA2. Focused PCR-based array also indicated a specific induction into the DE lineage. In this study, we report an efficient serum-free protocol to differentiate WJ-MSCs into DE cells utilizing 3D spheroid formation. Our approach might aid in the development of new protocols to obtain DE-derivative lineages including liver-like and pancreatic insulin-producing cells.

  19. Growth and differentiation of embryonic stem cells that lack an intact c-fos gene.

    PubMed Central

    Field, S J; Johnson, R S; Mortensen, R M; Papaioannou, V E; Spiegelman, B M; Greenberg, M E

    1992-01-01

    The c-fos protooncogene encodes a transcription factor that is thought to play a critical role in proliferation and differentiation as well as in the physiological response of mature cells to their environment. To test directly the role of c-fos in growth and differentiation, we generated mouse embryonic stem cell lines in which both copies of the c-fos gene were specifically disrupted by homologous recombination. Remarkably, the disruption of both copies of c-fos in these cells has no detectable effect on embryonic stem cell viability, growth rate, or differentiation potential. Embryonic stem cells lacking c-fos can differentiate into a wide range of cell types in tissue culture and also in chimeric mice. We conclude that despite a large body of literature suggesting an important role for c-fos in cell growth and differentiation, in at least some cell types this gene is not essential for these processes. Images PMID:1329091

  20. Generation of Epithelial Cell Populations from Human Pluripotent Stem Cells Using a Small-Molecule Inhibitor of Src Family Kinases.

    PubMed

    Selekman, Joshua A; Lian, Xiaojun; Palecek, Sean P

    2016-01-01

    Human pluripotent stem cells (hPSCs), under the right conditions, can be engineered to generate populations of any somatic cell type. Knowledge of what mechanisms govern differentiation towards a particular lineage is often quite useful for efficiently producing somatic cell populations from hPSCs. Here, we have outlined a strategy for deriving populations of simple epithelial cells, as well as more mature epidermal keratinocyte progenitors, from hPSCs by exploiting a mechanism previously shown to direct epithelial differentiation of hPSCs. Specifically, we describe how to direct epithelial differentiation of hPSCs using an Src family kinase inhibitor, SU6656, which has been shown to modulate β-catenin translocation to the cell membrane and thus promote epithelial differentiation. The differentiation platform outlined here produces cells with the ability to terminally differentiate to epidermal keratinocytes in culture through a stable simple epithelial cell intermediate that can be expanded in culture for numerous (>10) passages.

  1. Treatment with platelet lysate induces endothelial differentation of bone marrow mesenchymal stem cells under fluid shear stress

    PubMed Central

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Moradi, Alireza; Nadri, Hamid; Barzegar, Kazem; Eslami, Gilda

    2014-01-01

    By considering stem cell-based therapies as a new hope for the treatment of some tragic diseases, marrow stromal cells or marrow mesenchymal stem cells (MSCs) were considered as a suitable and safe multipotential cell source for this new therapeutic approach. For this purpose, many investigations have been performed on differentiation of MSCs toward specific cell lines to overcome the demand for providing the organ specific cells for cell therapy or preparation of engineered tissues. In the present study, differentiation of MSCs to endothelial cells (ECs) by mechanical and chemical stimulation was evaluated. Fluid shear stress (FSS) was used as mechanical inducer, while platelet lysate (PL) and estradiol (E) were used as chemical induction factors. MSCs were placed under FSS with different forces (2, 5 and 10dyn/cm2) for different periods (6, 12 and 24 hours). In some groups, PL and E were added to the culture media to evaluate their effect on expression of EC specific markers. This investigation revealed that FSS with low tension (2.5-5 dyn/cm2) for a long time (24 hours) or high tension (10 dyn/cm2) in short time (6 hours) in the presence of PL could differentiate MSCs toward ECs. The presence of PL was necessary for initiation of endothelial differentiation, and in the absence of PL, there was not any expression of CD34 and Cadherin5 (Cdh5) among cells. Adding E to the culture medium did not change the rate of endothelial differentiation under FSS. Generated endothelial progenitors could produce von Willebrand factor (vWF) after two weeks culture and also they formed tubular structures after culture on matrigel. PMID:26417289

  2. Treatment with platelet lysate induces endothelial differentation of bone marrow mesenchymal stem cells under fluid shear stress.

    PubMed

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Moradi, Alireza; Nadri, Hamid; Barzegar, Kazem; Eslami, Gilda

    2014-01-01

    By considering stem cell-based therapies as a new hope for the treatment of some tragic diseases, marrow stromal cells or marrow mesenchymal stem cells (MSCs) were considered as a suitable and safe multipotential cell source for this new therapeutic approach. For this purpose, many investigations have been performed on differentiation of MSCs toward specific cell lines to overcome the demand for providing the organ specific cells for cell therapy or preparation of engineered tissues. In the present study, differentiation of MSCs to endothelial cells (ECs) by mechanical and chemical stimulation was evaluated. Fluid shear stress (FSS) was used as mechanical inducer, while platelet lysate (PL) and estradiol (E) were used as chemical induction factors. MSCs were placed under FSS with different forces (2, 5 and 10dyn/cm(2)) for different periods (6, 12 and 24 hours). In some groups, PL and E were added to the culture media to evaluate their effect on expression of EC specific markers. This investigation revealed that FSS with low tension (2.5-5 dyn/cm(2)) for a long time (24 hours) or high tension (10 dyn/cm(2)) in short time (6 hours) in the presence of PL could differentiate MSCs toward ECs. The presence of PL was necessary for initiation of endothelial differentiation, and in the absence of PL, there was not any expression of CD34 and Cadherin5 (Cdh5) among cells. Adding E to the culture medium did not change the rate of endothelial differentiation under FSS. Generated endothelial progenitors could produce von Willebrand factor (vWF) after two weeks culture and also they formed tubular structures after culture on matrigel.

  3. The ubiquitin ligase LIN41/TRIM71 targets p53 to antagonize cell death and differentiation pathways during stem cell differentiation

    PubMed Central

    Nguyen, Duong Thi Thuy; Richter, Daniel; Michel, Geert; Mitschka, Sibylle; Kolanus, Waldemar; Cuevas, Elisa; Gregory Wulczyn, F

    2017-01-01

    Rapidity and specificity are characteristic features of proteolysis mediated by the ubiquitin-proteasome system. Therefore, the UPS is ideally suited for the remodeling of the embryonic stem cell proteome during the transition from pluripotent to differentiated states and its inverse, the generation of inducible pluripotent stem cells. The Trim-NHL family member LIN41 is among the first E3 ubiquitin ligases to be linked to stem cell pluripotency and reprogramming. Initially discovered in C. elegans as a downstream target of the let-7 miRNA, LIN41 is now recognized as a critical regulator of stem cell fates as well as the timing of neurogenesis. Despite being indispensable for embryonic development and neural tube closure in mice, the underlying mechanisms for LIN41 function in these processes are poorly understood. To better understand the specific contributions of the E3 ligase activity for the stem cell functions of LIN41, we characterized global changes in ubiquitin or ubiquitin-like modifications using Lin41-inducible mouse embryonic stem cells. The tumor suppressor protein p53 was among the five most strongly affected proteins in cells undergoing neural differentiation in response to LIN41 induction. We show that LIN41 interacts with p53, controls its abundance by ubiquitination and antagonizes p53-dependent pro-apoptotic and pro-differentiation responses. In vivo, the lack of LIN41 is associated with upregulation of Grhl3 and widespread caspase-3 activation, two downstream effectors of p53 with essential roles in neural tube closure. As Lin41-deficient mice display neural tube closure defects, we conclude that LIN41 is critical for the regulation of p53 functions in cell fate specification and survival during early brain development. PMID:28430184

  4. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells.

    PubMed

    Soucie, Erinn L; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J-C; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H

    2016-02-12

    Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. Copyright © 2016, American Association for the Advancement of Science.

  5. Human periapical cyst-mesenchymal stem cells differentiate into neuronal cells.

    PubMed

    Marrelli, M; Paduano, F; Tatullo, M

    2015-06-01

    It was recently reported that human periapical cysts (hPCys), a commonly occurring odontogenic cystic lesion of inflammatory origin, contain mesenchymal stem cells (MSCs) with the capacity for self-renewal and multilineage differentiation. In this study, periapical inflammatory cysts were compared with dental pulp to determine whether this tissue may be an alternative accessible tissue source of MSCs that retain the potential for neurogenic differentiation. Flow cytometry and immunofluorescence analysis indicated that hPCy-MSCs and dental pulp stem cells spontaneously expressed the neuron-specific protein β-III tubulin and the neural stem-/astrocyte-specific protein glial fibrillary acidic protein (GFAP) in their basal state before differentiation occurs. Furthermore, undifferentiated hPCy-MSCs showed a higher expression of transcripts for neuronal markers (β-III tubulin, NF-M, MAP2) and neural-related transcription factors (MSX-1, Foxa2, En-1) as compared with dental pulp stem cells. After exposure to neurogenic differentiation conditions (neural media containing epidermal growth factor [EGF], basic fibroblast growth factor [bFGF], and retinoic acid), the hPCy-MSCs showed enhanced expression of β-III tubulin and GFAP proteins, as well as increased expression of neurofilaments medium, neurofilaments heavy, and neuron-specific enolase at the transcript level. In addition, neurally differentiated hPCy-MSCs showed upregulated expression of the neural transcription factors Pitx3, Foxa2, Nurr1, and the dopamine-related genes tyrosine hydroxylase and dopamine transporter. The present study demonstrated for the first time that hPCy-MSCs have a predisposition toward the neural phenotype that is increased when exposed to neural differentiation cues, based on upregulation of a comprehensive set of proteins and genes that define neuronal cells. In conclusion, these results provide evidence that hPCy-MSCs might be another optimal source of neural/glial cells for cell-based therapies to treat neurologic diseases. © International & American Associations for Dental Research 2015.

  6. Local Inflammatory Cues Regulate Differentiation and Persistence of CD8+ Tissue-Resident Memory T Cells.

    PubMed

    Bergsbaken, Tessa; Bevan, Michael J; Fink, Pamela J

    2017-04-04

    Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm) cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8 + T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103 - CD69 + Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN)-β and interleukin-12 (IL-12), which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT) cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103 - CD69 + Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-β and IL-12 during infection, and deletion of CCR2 + IL-12-producing cells reduced the size of the CD103 - Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Evaluation of accessory cell heterogeneity. I. Differential accessory cell requirement for T helper cell activation and for T-B cooperation.

    PubMed

    Ramila, G; Studer, S; Kennedy, M; Sklenar, I; Erb, P

    1985-01-01

    Several Ia+ tumor cell lines and peritoneal exudate macrophages were tested as accessory cells (AC) for the activation of antigen-specific T cells and for T-B cooperation. The macrophages and all the Ia+ tumor lines tested induced the release of lymphokines from T cells in a major histocompatibility complex (MHC)-restricted fashion and reconstituted the antibody responses of AC-depleted spleen cells or of purified T and B cells. However, only the normal macrophages but none of the tumor lines induced carrier-specific T helper (Th) cells which help B cells for specific antihapten antibody responses by linked recognition. For T-B cooperation accessory cells were also required, but in contrast to Th cell activation any type of Ia+ AC (e.g. macrophage or tumor line) was effective. Strong MHC-restriction between the lymphocytes and the AC was seen if antigen-pulsed AC were added into the AC-depleted T-B cooperation cultures. If the AC and antigen were concomitantly added to the AC-depleted T-B cultures, MHC-restriction was less obvious. Concanavalin A supernatant reconstituted the response of AC-depleted T-B cultures provided antigen-specific Th cells and the hapten-carrier conjugate were present. If, however, tumor line-activated T cells were added instead of macrophage-induced Th cells, no cooperation with B cells took place even in the presence of Con A supernatant. The results obtained demonstrate a differential AC requirement for the induction of Th cells depending on the differentiation stage of the Th cells.

  8. PC12 Cells Differentiate into Chromaffin Cell-Like Phenotype in Coculture with Adrenal Medullary Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Mizrachi, Yaffa; Naranjo, Jose R.; Levi, Ben-Zion; Pollard, Harvey B.; Lelkes, Peter I.

    1990-08-01

    Previously we described specific in vitro interactions between PC12 cells, a cloned, catecholamine-secreting pheochromocytoma cell line derived from the rat adrenal medulla, and bovine adrenal medullary endothelial cells. We now demonstrate that these interactions induce the PC12 cells to acquire physical and biochemical characteristics reminiscent of chromaffin cells. Under coculture conditions involving direct cell-cell contact, the endothelial cells and the PC12 cells reduced their rates of proliferation; upon prolonged coculture PC12 cells clustered into nests of cells similar to the organization of chromaffin cells seen in vivo. Within 3 days in coculture with endothelial cells, but not with unrelated control cells, PC12 cells synthesized increased levels of [Met]enkephalin. In addition, PC12 cells, growing on confluent endothelial monolayers, failed to extend neurites in response to nerve growth factor. Neither medium conditioned by endothelial cells nor fixed endothelial cells could by themselves induce all of these different phenomena in the PC12 cells. These results suggest that under coculture conditions PC12 cells change their state of differentiation toward a chromaffin cell-like phenotype. The rapid, transient increase in the expression of the protooncogene c-fos suggests that the mechanism(s) inducing the change in the state of differentiation in PC12 cells in coculture with the endothelial cells may be distinct from that described for the differentiation of PC12 cells--e.g., by glucocorticoids. We propose that similar interactions between endothelial cells and chromaffin cell precursors may occur during embryonic development and that these interactions might be instrumental for the organ-specific differentiation of the adrenal medulla in vivo.

  9. Liver-specific gene expression in cultured human hematopoietic stem cells.

    PubMed

    Fiegel, Henning C; Lioznov, Michael V; Cortes-Dericks, Lourdes; Lange, Claudia; Kluth, Dietrich; Fehse, Boris; Zander, Axel R

    2003-01-01

    Hematopoietic and hepatic stem cells share characteristic markers such as CD34, c-kit, and Thy1. Based on the recent observations that hepatocytes may originate from bone marrow, we investigated the potential of CD34(+) bone marrow cells to differentiate into hepatocytic cells in vitro. CD34(+) and CD34(-) human bone marrow cells were separated by magnetic cell sorting. Cells were cultured on a collagen matrix in a defined medium containing hepatocyte growth factor. Cell count and size were measured by flow cytometry, and reverse transcription polymerase chain reaction was carried out for the liver-specific markers CK-19 and albumin. During cell culture, CD34(+) cells showed an increasing cell number and proliferative activity as assessed by Ki-67 staining. Under the specified culture conditions, CD34(+) cells expressed albumin RNA and CK-19 RNA after 28 days, whereas CD34(-) cells did not show liver-specific gene expression. The results indicate that CD34(+) adult human bone marrow stem cells can differentiate into hepatocytic cells in vitro.

  10. Biochemical and electrophysiological differentiation profile of a human neuroblastoma (IMR-32) cell line.

    PubMed

    Rao, Raj R; Kisaalita, William S

    2002-09-01

    A human neuroblastoma cell line (IMR-32), when differentiated, mimics large projections of the human cerebral cortex and under certain tissue culture conditions, forms intracellular fibrillary material, commonly observed in brains of patients affected with Alzheimer's disease. Our purpose is to use differentiated IMR-32 cells as an in vitro system for magnetic field exposure studies. We have previously studied in vitro differentiation of murine neuroblastoma (N1E-115) cells with respect to resting membrane potential development. The purpose of this study was to extend our investigation to IMR-32 cells. Electrophysiological (resting membrane potential, V(m)) and biochemical (neuron-specific enolase activity [NSE]) measurements were taken every 2 d for a period of 16 d. A voltage-sensitive oxonol dye together with flow cytometry was used to measure relative changes in V(m). To rule out any effect due to mechanical cell detachment, V(m) was indirectly measured by using a slow potentiometric dye (tetramethylrhodamine methyl ester) together with confocal digital imaging microscopy. Neuron-specific enolase activity was measured by following the production of phosphoenolpyruvate from 2-phospho-d-glycerate at 240 nm. Our results indicate that in IMR-32, in vitro differentiation as characterized by an increase in NSE activity is not accompanied by resting membrane potential development. This finding suggests that pathways for morphological-biochemical and electrophysiological differentiations in IMR-32 cells are independent of one another.

  11. Microengineered embryonic stem cells niche to induce neural differentiation.

    PubMed

    Joshi, Ramila; Tavana, Hossein

    2015-08-01

    A major challenge in therapeutic use of embryonic stem cells (ESCs) for treating neurodegenerative diseases is creating a niche in vitro for controlled neural-specific differentiation of ESCs. We employ a niche microengineering approach to derive neural cells from ESCs by mimicking embryonic development in terms of direct intercellular interactions. Using a polymeric aqueous two-phase system (ATPS) microprinting technology, murine ESCs (mESCs) are precisely localized over a monolayer of supporting stromal cells to allow formation of individual mESC colonies. Polyethylene glycol (PEG) and dextran (DEX) are dissolved in culture media to form two immiscible aqueous solutions. A robotic liquid handler is used to print a nanoliter-volume drop of the denser DEX phase solution containing mESCs onto a confluent layer of supporting PA6 stromal cells submerged in the aqueous PEG phase. mESCs proliferate into isolated colonies of uniform size. For the first time, a comprehensive protein expression analysis of individual mESC colonies is performed over a two-week culture period to track temporal progression of cells from a pluripotent stage to specific neural cells. Starting from day 4, the expression of nestin, neural cell adhesion molecule (NCAM), and beta-III tubulin shows a significant increase but then levels off after the first week of culture. The expression of specific neural cell markers glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), and tyrosine hydroxylase (TH) is elevated during the second week of culture. This microengineering approach to control ESCs differentiation niche combined with the time-course protein expression analysis of individual differentiating colonies facilitates understanding of evolution of specific neural cells from ESCs and identifying underlying molecular markers.

  12. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    PubMed

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. T cell fates ‘zipped up’: how the Bach2 basic leucine zipper transcriptional repressor directs T cell differentiation and function1

    PubMed Central

    Richer, Martin J.; Lang, Mark L.; Butler, Noah S.

    2016-01-01

    Recent data illustrate a key role for the transcriptional regulator Bach2 in orchestrating T cell differentiation and function. Although Bach2 has a well-described role in B cell differentiation, emerging data show that Bach2 is a prototypical member of a novel class of transcription factors that regulates transcriptional activity in T cells at super enhancers, or regions of high transcriptional activity. Accumulating data demonstrate specific roles for Bach2 in favoring regulatory T cell generation, restraining effector T cell differentiation and potentiating memory T cell development. Evidence suggests that Bach2 regulates various facets of T cell function by repressing other key transcriptional regulator such as Blimp-1. This review examines our current understanding of the role of Bach2 in T cell function and highlights the growing evidence that this transcriptional repressor functions as a key regulator involved in maintenance of T cell quiescence, T cell subset differentiation and memory T cell generation. PMID:27496973

  14. Cyclin D1 negatively regulates the expression of differentiation genes in HT-29 M6 mucus-secreting colon cancer cells.

    PubMed

    Mayo, Clara; Mayol, Xavier

    2009-08-28

    HT-29 M6 colon cancer cells differentiate to a mucus-secreting phenotype in culture. We found that the pattern of cyclin D1 expression in HT-29 M6 cells did not correlate with instances of cell proliferation but was specifically induced during a dedifferentiation process following disaggregation of epithelial cell layers, even under conditions that did not allow cell cycle reentrance. Interestingly, ectopic expression of cyclin D1 in differentiated cells led to the inhibition of the transcriptional activity of differentiation gene promoters, such as the mucin MUC1. We thus propose that the overexpression of cyclin D1 found in colon cancer favours tumour dedifferentiation as one mechanism of tumour progression.

  15. The active principle region of Buyang Huanwu decoction induced differentiation of bone marrow-derived mesenchymal stem cells into neural-like cells

    PubMed Central

    Zheng, Jinghui; Wan, Yi; Chi, Jianhuai; Shen, Dekai; Wu, Tingting; Li, Weimin; Du, Pengcheng

    2012-01-01

    The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula. PMID:25806066

  16. Estrogen alters gonadal soma-derived factor (Gsdf)/Foxl2 expression levels in the testes associated with testis-ova differentiation in adult medaka, Oryzias latipes.

    PubMed

    Kobayashi, Tohru; Chiba, Ayaka; Sato, Tadashi; Myosho, Taijun; Yamamoto, Jun; Okamura, Tetsuro; Onishi, Yuta; Sakaizumi, Mitsuru; Hamaguchi, Satoshi; Iguchi, Taisen; Horie, Yoshifumi

    2017-10-01

    Testis-ova differentiation in sexually mature male medaka (Oryzias latipes) is easily induced by estrogenic chemicals, indicating that spermatogonia persist in sexual bipotentiality, even in mature testes in medaka. By contrast, the effects of estrogen on testicular somatic cells associated with testis-ova differentiation in medaka remain unclear. In this study, we focused on the dynamics of sex-related genes (Gsdf, Dmrt1, and Foxl2) expressed in Sertoli cells in the mature testes of adult medaka during estrogen-induced testis-ova differentiation. When mature male medaka were exposed to estradiol benzoate (EB; 800ng/L), testis-ova first appeared after EB treatment for 14days (observed as the first oocytes of the leptotene-zygotene stage). However, the testis remained structurally unchanged, even after EB treatment for 28days. Although Foxl2 is a female-specific sex gene, EB treatment for 7days induced Foxl2/FOXL2 expression in all Sertoli cell-enclosed spermatogonia before testis-ova first appeared; however, Foxl2 was not detected in somatic cells in control testes. Conversely, Sertoli-cell-specific Gsdf mRNA expression levels significantly decreased after EB treatment for 14days, and no changes were observed in DMRT1 localization following EB treatment, whereas Dmrt1 mRNA levels increased significantly. Furthermore, after EB exposure, FOXl2 and DMRT1 were co-localized in Sertoli cells during testis-ova differentiation, although FOXL2 localization was undetectable in Sertoli-cell-enclosed apoptotic testis-ova, whereas DMRT1 remained localized in Sertoli cells. These results indicated for the first time that based on the expression of female-specific sex genes, feminization of Sertoli cells precedes testis-ova differentiation induced by estrogen in mature testes in medaka; however, complete feminization of Sertoli cells was not induced in this study. Additionally, it is suggested strongly that Foxl2 and Gsdf expression constitute potential molecular markers for evaluating the effects of estrogenic chemicals on testicular somatic cells associated with estrogen-induced testis-ova differentiation in mature male medaka. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. TCR Signal Strength Regulates Akt Substrate Specificity To Induce Alternate Murine Th and T Regulatory Cell Differentiation Programs.

    PubMed

    Hawse, William F; Boggess, William C; Morel, Penelope A

    2017-07-15

    The Akt/mTOR pathway is a key driver of murine CD4 + T cell differentiation, and induction of regulatory T (Treg) cells results from low TCR signal strength and low Akt/mTOR signaling. However, strong TCR signals induce high Akt activity that promotes Th cell induction. Yet, it is unclear how Akt controls alternate T cell fate decisions. We find that the strength of the TCR signal results in differential Akt enzymatic activity. Surprisingly, the Akt substrate networks associated with T cell fate decisions are qualitatively different. Proteomic profiling of Akt signaling networks during Treg versus Th induction demonstrates that Akt differentially regulates RNA processing and splicing factors to drive T cell differentiation. Interestingly, heterogeneous nuclear ribonucleoprotein (hnRNP) L or hnRNP A1 are Akt substrates during Treg induction and have known roles in regulating the stability and splicing of key mRNAs that code for proteins in the canonical TCR signaling pathway, including CD3ζ and CD45. Functionally, inhibition of Akt enzymatic activity results in the dysregulation of splicing during T cell differentiation, and knockdown of hnRNP L or hnRNP A1 results in the lower induction of Treg cells. Together, this work suggests that a switch in substrate specificity coupled to the phosphorylation status of Akt may lead to alternative cell fates and demonstrates that proteins involved with alternative splicing are important factors in T cell fate decisions. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana.

    PubMed

    Vadde, Batthula Vijaya Lakshmi; Challa, Krishna Reddy; Nath, Utpal

    2018-01-01

    Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Hepatic differentiation capability of rat bone marrow-derived mesenchymal stem cells and hematopoietic stem cells.

    PubMed

    Shu, Sai-Nan; Wei, Lai; Wang, Jiang-Hua; Zhan, Yu-Tao; Chen, Hong-Song; Wang, Yu

    2004-10-01

    To investigate the different effects of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) on hepatic differentiation. MSCs from rat bone marrow were isolated and cultured by standard methods. HSCs from rat bone marrow were isolated and purified by magnetic activated cell sorting. Both cell subsets were induced. Morphology, RT-PCR and immunocytochemistry were used to identify the hepatic differentiation grade. MSCs exhibited round in shape after differentiation, instead of fibroblast-like morphology before differentiation. Albumin mRNA and protein were expressed positively in MSCs, without detection of alpha-fetoprotein (AFP). HSCs were polygonal in shape after differentiation. The expression of albumin signal decreased and AFP signal increased. The expression of CK18 was continuous in MSCs and HSCs both before and after induction. Both MSCs and HSCs have hepatic differentiation capabilities. However, their capabilities are not the same. MSCs can differentiate into mature hepatocyte-like cells, never expressing early hepatic specific genes, while Thy-1.1(+) cells are inclined to differentiate into hepatic stem cell-like cells, with an increasing AFP expression and a decreasing albumin signal. CK18 mRNA is positive in Thy-1.1(+) cells and MSCs, negative in Thy-1.1(-) cells. It seems that CK18 has some relationship with Thy-1.1 antigen, and CK18 may be a predictive marker of hepatic differentiation capability.

  20. In Vitro Studies of Neurotoxic Substances

    DTIC Science & Technology

    1985-12-31

    crotonamide (m-.-m) on the neuron specific enolase activity of differentiated N1E - 115 neuroblastoma cells (I S.E.). ’p.-.•,- -42- 1000 1C*1 802 "" 2...40 3. The Effect of Acrylamide, N-Methylacrylamide, and Crotonamide on Acetylcholinesterase Activity of Differentiated NIE- 115 Neurcblastoma Cells...NTE and OP sensitivity in differentiated and undifferentiated cultures of NIE- 115 . Clone NIE- 115 can be induced to differentiate morphologically

  1. Reconstructing human pancreatic differentiation by mapping specific cell populations during development.

    PubMed

    Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire; Ameri, Jacqueline; Kirkegaard, Jeannette Schlichting; Hansson, Mattias; Honoré, Christian; Semb, Henrik; Scharfmann, Raphaël

    2017-07-21

    Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2 + population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3 , a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated.

  2. Autophagy dictates metabolism and differentiation of inflammatory immune cells

    PubMed Central

    Riffelmacher, Thomas; Richter, Felix Clemens; Simon, Anna Katharina

    2018-01-01

    ABSTRACT The role of macroautophagy/autophagy, a conserved lysosomal degradation pathway, during cellular differentiation has been well studied over the last decade. In particular, evidence for its role during immune cell differentiation is growing. Despite the description of a variety of dramatic immune phenotypes in tissue-specific autophagy knockout models, the underlying mechanisms are still under debate. One of the proposed mechanisms is the impact of autophagy on the altered metabolic states during immune cell differentiation. This concept is strengthened through novel molecular insights into how AMPK and MTOR signaling cascades affect both autophagy and metabolism. In this review, we discuss direct and indirect evidence linking autophagy, metabolic pathways and immune cell differentiation including T, B, and innate lymphocytes as well as in myeloid cells that are direct mediators of inflammation. Herein, we propose a model for autophagy-driven immunometabolism controlling immune cell differentiation. PMID:28806133

  3. Intravenously injected human multilineage-differentiating stress-enduring cells selectively engraft into mouse aortic aneurysms and attenuate dilatation by differentiating into multiple cell types.

    PubMed

    Hosoyama, Katsuhiro; Wakao, Shohei; Kushida, Yoshihiro; Ogura, Fumitaka; Maeda, Kay; Adachi, Osamu; Kawamoto, Shunsuke; Dezawa, Mari; Saiki, Yoshikatsu

    2018-06-01

    Aortic aneurysms result from the degradation of multiple components represented by endothelial cells, vascular smooth muscle cells, and elastic fibers. Cells that can replenish these components are desirable for cell-based therapy. Intravenously injected multilineage-differentiating stress-enduring (Muse) cells, endogenous nontumorigenic pluripotent-like stem cells, reportedly integrate into the damaged site and repair the tissue through spontaneous differentiation into tissue-compatible cells. We evaluated the therapeutic efficacy of Muse cells in a murine aortic aneurysm model. Human bone marrow Muse cells, isolated as stage-specific embryonic antigen-3 + from bone marrow mesenchymal stem cells, or non-Muse cells (stage-specific embryonic antigen-3 - cells in mesenchymal stem cells), bone marrow mesenchymal stem cells, or vehicle was intravenously injected at day 0, day 7, and 2 weeks (20,000 cells/injection) after inducing aortic aneurysms by periaortic incubation of CaCl 2 and elastase in severe combined immunodeficient mice. At 8 weeks, infusion of human Muse cells attenuated aneurysm dilation, and the aneurysmal size in the Muse group corresponded to approximately 62.5%, 55.6%, and 45.6% in the non-Muse, mesenchymal stem cell, and vehicle groups, respectively. Multiphoton laser confocal microscopy revealed that infused Muse cells migrated into aneurysmal tissue from the adventitial side and penetrated toward the luminal side. Histologic analysis demonstrated robust preservation of elastic fibers and spontaneous differentiation into endothelial cells and vascular smooth muscle cells. After intravenous injection, Muse cells homed and expanded to the aneurysm from the adventitial side. Subsequently, Muse cells differentiated spontaneously into vascular smooth muscle cells and endothelial cells, and elastic fibers were preserved. These Muse cell features together led to substantial attenuation of aneurysmal dilation. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  4. In Vitro Generation of Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature from Murine Induced Pluripotent Stem Cells.

    PubMed

    Steens, Jennifer; Zuk, Melanie; Benchellal, Mohamed; Bornemann, Lea; Teichweyde, Nadine; Hess, Julia; Unger, Kristian; Görgens, André; Klump, Hannes; Klein, Diana

    2017-04-11

    The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Generating autologous hematopoietic cells from human-induced pluripotent stem cells through ectopic expression of transcription factors.

    PubMed

    Hwang, Yongsung; Broxmeyer, Hal E; Lee, Man Ryul

    2017-07-01

    Hematopoietic cell transplantation (HCT) is a successful treatment modality for patients with malignant and nonmalignant disorders, usually when no other treatment option is available. The cells supporting long-term reconstitution after HCT are the hematopoietic stem cells (HSCs), which can be limited in numbers. Moreover, finding an appropriate human leukocyte antigen-matched donor can be problematic. If HSCs can be stably produced in large numbers from autologous or allogeneic cell sources, it would benefit HCT. Induced pluripotent stem cells (iPSCs) established from patients' own somatic cells can be differentiated into hematopoietic cells in vitro. This review will highlight recent methods for regulating human (h) iPSC production of HSCs and more mature blood cells. Advancements in transcription factor-mediated regulation of the developmental stages of in-vivo hematopoietic lineage commitment have begun to provide an understanding of the molecular mechanism of hematopoiesis. Such studies involve not only directed differentiation in which transcription factors, specifically expressed in hematopoietic lineage-specific cells, are overexpressed in iPSCs, but also direct conversion in which transcription factors are introduced into patient-derived somatic cells which are dedifferentiated to hematopoietic cells. As iPSCs derived from patients suffering from genetically mutated diseases would express the same mutated genetic information, CRISPR-Cas9 gene editing has been utilized to differentiate genetically corrected iPSCs into normal hematopoietic cells. IPSCs provide a model for molecular understanding of disease, and also may function as a cell population for therapy. Efficient differentiation of patient-specific iPSCs into HSCs and progenitor cells is a potential means to overcome limitations of such cells for HCT, as well as for providing in-vitro drug screening templates as tissue-on-a-chip models.

  6. In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance.

    PubMed

    Lei, Fengyang; Zhao, Baohua; Haque, Rizwanul; Xiong, Xiaofang; Budgeon, Lynn; Christensen, Neil D; Wu, Yuzhang; Song, Jianxun

    2011-07-15

    Adoptive T-cell immunotherapy has garnered wide attention, but its effective use is limited by the need of multiple ex vivo manipulations and infusions that are complex and expensive. In this study, we show how highly reactive antigen (Ag)-specific CTLs can be generated from induced pluripotent stem (iPS) cells to provide an unlimited source of functional CTLs for adoptive immunotherapy. iPS cell-derived T cells can offer the advantages of avoiding possible immune rejection and circumventing ethical and practical issues associated with other stem cell types. iPS cells can be differentiated into progenitor T cells in vitro by stimulation with the Notch ligand Delta-like 1 (DL1) overexpressed on bone marrow stromal cells, with complete maturation occurring upon adoptive transfer into Rag1-deficient mice. Here, we report that these iPS cells can be differentiated in vivo into functional CTLs after overexpression of MHC I-restricted Ag-specific T-cell receptors (TCR). In this study, we generated murine iPS cells genetically modified with ovalbumin (OVA)-specific and MHC-I restricted TCR (OT-I) by retrovirus-mediated transduction. After their adoptive transfer into recipient mice, the majority of OT-I/iPS cells underwent differentiation into CD8+ CTLs. TCR-transduced iPS cells developed in vivo responded in vitro to peptide stimulation by secreting interleukin 2 and IFN-γ. Most importantly, adoptive transfer of TCR-transduced iPS cells triggered infiltration of OVA-reactive CTLs into tumor tissues and protected animals from tumor challenge. Taken together, our findings offer proof of concept for a potentially more efficient approach to generate Ag-specific T lymphocytes for adoptive immunotherapy. ©2011 AACR.

  7. Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes

    PubMed Central

    Winnard, Paul T.; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu

    2017-01-01

    Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities – a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy. PMID:28145887

  8. Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes.

    PubMed

    Winnard, Paul T; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu

    2017-03-21

    Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities - a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy.

  9. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    PubMed

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-10-15

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  10. Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells.

    PubMed

    Abdullah, Rafal H; Yaseen, Nahi Y; Salih, Shahlaa M; Al-Juboory, Ahmad Adnan; Hassan, Ayman; Al-Shammari, Ahmed Majeed

    2016-11-01

    The differentiation of mesenchymal stem cells (MSC) into acetylcholine secreted motor neuron-like cells, followed by elongation of the cell axon, is a promising treatment for spinal cord injury and motor neuron cell dysfunction in mammals. Differentiation is induced through a pre-induction step using Beta- mercaptoethanol (BME) followed by four days of induction with retinoic acid and sonic hedgehog. This process results in a very efficient differentiation of BM-MSCs into motor neuron-like cells. Immunocytochemistry showed that these treated cells had specific motor neural markers: microtubule associated protein-2 and acetylcholine transferase. The ability of these cells to function as motor neuron cells was assessed by measuring acetylcholine levels in a culture media during differentiation. High-performance liquid chromatography (HPLC) showed that the differentiated cells were functional. Motor neuron axon elongation was then induced by adding different concentrations of a nerve growth factor (NGF) to the differentiation media. Using a collagen matrix to mimic the natural condition of neural cells in a three-dimensional model showed that the MSCs were successfully differentiated into motor neuron-like cells. This process can efficiently differentiate MSCs into functional motor neurons that can be used for autologous nervous system therapy and especially for treating spinal cord injuries. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Functional differentiation of human pluripotent stem cells on a chip.

    PubMed

    Giobbe, Giovanni G; Michielin, Federica; Luni, Camilla; Giulitti, Stefano; Martewicz, Sebastian; Dupont, Sirio; Floreani, Annarosa; Elvassore, Nicola

    2015-07-01

    Microengineering human "organs-on-chips" remains an open challenge. Here, we describe a robust microfluidics-based approach for the differentiation of human pluripotent stem cells directly on a chip. Extrinsic signal modulation, achieved through optimal frequency of medium delivery, can be used as a parameter for improved germ layer specification and cell differentiation. Human cardiomyocytes and hepatocytes derived on chips showed functional phenotypes and responses to temporally defined drug treatments.

  12. Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells.

    PubMed

    Chang, Yuewen; Zhao, Yongfang; Zhan, Hongsheng; Wei, Xiaoen; Liu, Tianjin; Zheng, Bo

    2014-02-01

    Cancer stem cells (CSCs) play an important role in drug resistance of tumor and are responsible for high recurrence rates. Agents that can suppress the proliferation and differentiation of CSCs would provide new opportunity to fight against tumor recurrence. In this study, we developed a new strategy to enrich CSCs in human osteosarcoma cell line hMG63. Using these CSCs as model, we tested the effect of bufalin, a traditional Chinese medicine, on the proliferation and differentiation of CSCs. hMG63 cells were cultured in poly-HEMA-treated dish and cancer stem cell-specific medium. In this nonadhesive culture system, hMG63 formed spheres, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every 3 days for five times. The enriched xenograft tumors were cultured in cancer stem cell-specific medium again to form tumor spheres. Expression of cancer stem cell markers of these cells was measured by flow cytometry. These cells were then treated with bufalin, and the proliferation and differentiation ability were indicated by the expression level of molecular markers and the formation of sphere again in vitro. We obtained a low CD133+/CD44 cell population with high-level stem cell marker. When treated with bufalin, the sphere could not get attached to the flask and failed to differentiate, which was indicated by the stable expression of stem cell marker CD133 and OCT-4 in the condition permissive to differentiation. Treatment of bufalin also suppressed the single cells isolated from the sphere to form sphere again in the nonadhesive culture system, and a decreased expression of proliferation marker Ki67 was also detected in these cells. Sphere-formed and chemoresistant colon xenograft tumors in immunodeficient mice could enrich cancer stem cell population. Bufalin could inhibit proliferation and differentiation of CSCs.

  13. A simple theoretical framework for understanding heterogeneous differentiation of CD4+ T cells

    PubMed Central

    2012-01-01

    Background CD4+ T cells have several subsets of functional phenotypes, which play critical yet diverse roles in the immune system. Pathogen-driven differentiation of these subsets of cells is often heterogeneous in terms of the induced phenotypic diversity. In vitro recapitulation of heterogeneous differentiation under homogeneous experimental conditions indicates some highly regulated mechanisms by which multiple phenotypes of CD4+ T cells can be generated from a single population of naïve CD4+ T cells. Therefore, conceptual understanding of induced heterogeneous differentiation will shed light on the mechanisms controlling the response of populations of CD4+ T cells under physiological conditions. Results We present a simple theoretical framework to show how heterogeneous differentiation in a two-master-regulator paradigm can be governed by a signaling network motif common to all subsets of CD4+ T cells. With this motif, a population of naïve CD4+ T cells can integrate the signals from their environment to generate a functionally diverse population with robust commitment of individual cells. Notably, two positive feedback loops in this network motif govern three bistable switches, which in turn, give rise to three types of heterogeneous differentiated states, depending upon particular combinations of input signals. We provide three prototype models illustrating how to use this framework to explain experimental observations and make specific testable predictions. Conclusions The process in which several types of T helper cells are generated simultaneously to mount complex immune responses upon pathogenic challenges can be highly regulated, and a simple signaling network motif can be responsible for generating all possible types of heterogeneous populations with respect to a pair of master regulators controlling CD4+ T cell differentiation. The framework provides a mathematical basis for understanding the decision-making mechanisms of CD4+ T cells, and it can be helpful for interpreting experimental results. Mathematical models based on the framework make specific testable predictions that may improve our understanding of this differentiation system. PMID:22697466

  14. A strategy for isolation of cDNAs encoding proteins affecting human intestinal epithelial cell growth and differentiation: characterization of a novel gut-specific N-myristoylated annexin.

    PubMed

    Wice, B M; Gordon, J I

    1992-01-01

    The human intestinal epithelium is rapidly and perpetually renewed as the descendants of multipotent stem cells located in crypts undergo proliferation, differentiation, and eventual exfoliation during a very well organized migration along the crypt to villus axis. The mechanisms that establish and maintain this balance between proliferation and differentiation are largely unknown. We have utilized HT-29 cells, derived from a human colon adenocarcinoma, as a model system for identifying gene products that may regulate these processes. Proliferating HT-29 cells cultured in the absence of glucose (e.g., using inosine as the carbon source) have some of the characteristics of undifferentiated but committed crypt epithelial cells while postconfluent cells cultured in the absence of glucose resemble terminally differentiated enterocytes or goblet cells. A cDNA library, constructed from exponentially growing HT-29 cells maintained in inosine-containing media, was sequentially screened with a series of probes depleted of sequences encoding housekeeping functions and enriched for intestine-specific sequences that are expressed in proliferating committed, but not differentiated, epithelial cells. Of 100,000 recombinant phage surveyed, one was found whose cDNA was derived from an apparently gut-specific mRNA. It encodes a 316 residue, 35,463-D protein that is a new member of the annexin/lipocortin family. Other family members have been implicated in regulation of cellular growth and in signal transduction pathways. RNA blot and in situ hybridization studies indicate that the gene encoding this new annexin exhibits region-specific expression along both axes of the human gut: (a) highest levels of mRNA are present in the jejunum with marked and progressive reductions occurring distally; (b) its mRNA appears in crypt-associated epithelial cells and increases in concentration as they exit the crypt. Villus-associated epithelial cells continue to transcribe this gene during their differentiation/translocation up the villus. Immunocytochemical studies reveal that the intestine-specific annexin (ISA) is associated with the plasma membrane of undifferentiated, proliferating crypt epithelial cells as well as differentiated villus enterocytes. In polarized enterocytes, the highest concentrations of ISA are found at the apical compared to basolateral membrane. In vitro studies using an octapeptide derived from residues 2-9 of the primary translation product of ISA mRNA and purified myristoyl-CoA:protein N-myristoyltransferase suggested that it is N-myristoylated. In vivo labeling studies confirmed that myristate is covalently attached to ISA via a hydroxylamine resistant amide linkage. The restricted cellular expression and acylation of ISA distinguish it from other known annexins.(ABSTRACT TRUNCATED AT 400 WORDS)

  15. [Theories on the mode of action of desensitization].

    PubMed

    Klimek, L; Reske-Kunz, A B; Saloga, J

    1999-01-01

    Specific immunotherapy (SIT) has been practised successfully for about 80 years. In classic immunotherapy, an allergen-extract is repeatedly injected subcutaneously in increasing doses. A large number of clinically controlled studies have proved the efficacy of this kind of immunotherapy, while its mode of action is not precisely known yet. A successful SIT leads to an impairment of allergic symptoms (symptom score), and a concordant decrease in drug use. Furthermore, a reduced reactivity in specific dermal, nasal and bronchial provocation tests is induced as well as a diminished unspecific reagibility in the affected tissues. Several studies showed reduced values for allergen-specific IgE (serum) that followed an initial increase. A reduced immigration of eosinophils was found, both after provocation with allergen and during the pollen season, as well as diminished values of markers for the activity of eosinophils, e.g. eosinophil cationic protein (ECP). Also, a reduced allergen-induced histamine-liberation from mast cells and basophils has been reported. The underlying mechanism for these effects of SIT might be a reorientation of the allergen-induced lymphokine-production to a dominant TH1-cytokine-profile. Because the relation between the quantity of IL-4 and its regulator IFN-gamma controls the extent of IgE-synthesis by B-cells, the reorientation leads to a diminished production of IgE. IFN-gamma inhibits the differentiation of TH2-cells; by this less TH2-cells are present to help B-cells to produce IgE-antibodies, and to induce the differentiation of mast cells and basophils as well as immigration, differentiation and activation of eosinophils. Thus, the positive effects of SIT can be explained by the reorientation T-cell lymphokine profile. The mechanism under discussion for explaining this reorientation include: 1) an increased differentiation of allergen-specific CD4+ precursor-cells or a reorientation of established TH2-cells to the production of IFN-gamma, 2) the differentiation of IFN-gamma-producing CD8+ T-cells and of T-cells with receptors for T-cell-antigenes of the gamma, delta-type; and 3) the induction of an energy in TH2-cells.

  16. B cells and TCR avidity determine distinct functions of CD4+ T cells in retroviral infection1

    PubMed Central

    Ploquin, Mickaël J-Y; Eksmond, Urszula; Kassiotis, George

    2011-01-01

    The T-cell-dependent B-cell response relies on cognate interaction between B cells and CD4+ Th cells. However, the consequences of this interaction for CD4+ T cells are not entirely known. B cells generally promote CD4+ T-cell responses to pathogens, albeit to a variable degree. In contrast, CD4+ T-cell responses to self or tumor antigens are often suppressed by B cells. Here we demonstrated that interaction with B cells dramatically inhibited the function of virus-specific CD4+ T cells in retroviral infection. We have used Friend virus (FV) infection of mice as a model for retroviral infection, in which the behavior of virus-specific CD4+ T cells was monitored according to their TCR avidity. We report that avidity for antigen and interaction with B cells determine distinct aspects of the primary CD4+ T-cell response to FV infection. Virus-specific CD4+ T cells followed exclusive Th1 and T follicular helper (Tfh) differentiation. High avidity for antigen facilitated expansion during priming and enhanced the capacity for IFN-γ and IL-21 production. In contrast, Tfh differentiation was not affected by avidity for antigen. By reducing or preventing B-cell interaction we found that B cells promoted Tfh differentiation, induced programmed death 1 (PD-1) expression and inhibited IFN-γ production by virus-specific CD4+ T cells. Ultimately, B cells protected hosts from CD4+ T-cell-mediated immune pathology, at the detriment of CD4+ T-cell-mediated protective immunity. Our results suggest that B-cell presentation of vaccine antigens could be manipulated to direct the appropriate CD4+ T-cell response. PMID:21841129

  17. Cell Adhesion Minimization by a Novel Mesh Culture Method Mechanically Directs Trophoblast Differentiation and Self-Assembly Organization of Human Pluripotent Stem Cells.

    PubMed

    Okeyo, Kennedy Omondi; Kurosawa, Osamu; Yamazaki, Satoshi; Oana, Hidehiro; Kotera, Hidetoshi; Nakauchi, Hiromitsu; Washizu, Masao

    2015-10-01

    Mechanical methods for inducing differentiation and directing lineage specification will be instrumental in the application of pluripotent stem cells. Here, we demonstrate that minimization of cell-substrate adhesion can initiate and direct the differentiation of human pluripotent stem cells (hiPSCs) into cyst-forming trophoblast lineage cells (TLCs) without stimulation with cytokines or small molecules. To precisely control cell-substrate adhesion area, we developed a novel culture method where cells are cultured on microstructured mesh sheets suspended in a culture medium such that cells on mesh are completely out of contact with the culture dish. We used microfabricated mesh sheets that consisted of open meshes (100∼200 μm in pitch) with narrow mesh strands (3-5 μm in width) to provide support for initial cell attachment and growth. We demonstrate that minimization of cell adhesion area achieved by this culture method can trigger a sequence of morphogenetic transformations that begin with individual hiPSCs attached on the mesh strands proliferating to form cell sheets by self-assembly organization and ultimately differentiating after 10-15 days of mesh culture to generate spherical cysts that secreted human chorionic gonadotropin (hCG) hormone and expressed caudal-related homeobox 2 factor (CDX2), a specific marker of trophoblast lineage. Thus, this study demonstrates a simple and direct mechanical approach to induce trophoblast differentiation and generate cysts for application in the study of early human embryogenesis and drug development and screening.

  18. ROLES OF CELL-INTRINSIC AND MICROENVIRONMENTAL FACTORS IN PHOTORECEPTOR CELL DIFFERENTIATION

    PubMed Central

    Bradford, Rebecca L.; Wang, Chenwei; Zack, Donald J.; Adler, Ruben

    2005-01-01

    Photoreceptor differentiation requires the coordinated expression of numerous genes. It is unknown whether those genes share common regulatory mechanisms or are independently regulated by distinct mechanisms. To distinguish between these scenarios, we have used in situ hybridization, RT-PCR and real time PCR to analyze the expression of visual pigments and other photoreceptor-specific genes during chick embryo retinal development in ovo, as well as in retinal cell cultures treated with molecules that regulate the expression of particular visual pigments. In ovo, onset of gene expression was asynchronous, becoming detectable at the time of photoreceptor generation (ED 5–8) for some photoreceptor genes, but only around the time of outer segment formation (ED 14–16) for others. Treatment of retinal cell cultures with activin, staurosporine or CNTF selectively induced or down-regulated specific visual pigment genes, but many cognate rod- or cone-specific genes were not affected by the treatments. These results indicate that many photoreceptor genes are independently regulated during development, are consistent with the existence of at least two distinct stages of gene expression during photoreceptor differentiation, suggest that intrinsic, coordinated regulation of a cascade of gene expression triggered by a commitment to the photoreceptor fate is not a general mechanism of photoreceptor differentiation, and imply that using a single photoreceptor-specific “marker” as a proxy to identify photoreceptor cell fate is problematic. PMID:16120439

  19. Galactoglucomannans increase cell population density and alter the protoxylem/metaxylem tracheary element ratio in xylogenic cultures of Zinnia.

    PubMed

    Benová-Kákosová, Anna; Digonnet, Catherine; Goubet, Florence; Ranocha, Philippe; Jauneau, Alain; Pesquet, Edouard; Barbier, Odile; Zhang, Zhinong; Capek, Peter; Dupree, Paul; Lisková, Desana; Goffner, Deborah

    2006-10-01

    Xylogenic cultures of zinnia (Zinnia elegans) provide a unique opportunity to study signaling pathways of tracheary element (TE) differentiation. In vitro TEs differentiate into either protoxylem (PX)-like TEs characterized by annular/helical secondary wall thickening or metaxylem (MX)-like TEs with reticulate/scalariform/pitted thickening. The factors that determine these different cell fates are largely unknown. We show here that supplementing zinnia cultures with exogenous galactoglucomannan oligosaccharides (GGMOs) derived from spruce (Picea abies) xylem had two major effects: an increase in cell population density and a decrease in the ratio of PX to MX TEs. In an attempt to link these two effects, the consequence of the plane of cell division on PX-MX differentiation was assessed. Although GGMOs did not affect the plane of cell division per se, they significantly increased the proportion of longitudinally divided cells differentiating into MX. To test the biological significance of these findings, we have determined the presence of mannan-containing oligosaccharides in zinnia cultures in vitro. Immunoblot assays indicated that beta-1,4-mannosyl epitopes accumulate specifically in TE-inductive media. These epitopes were homogeneously distributed within the thickened secondary walls of TEs when the primary cell wall was weakly labeled. Using polysaccharide analysis carbohydrate gel electrophoresis, glucomannans were specifically detected in cell walls of differentiating zinnia cultures. Finally, zinnia macroarrays probed with cDNAs from cells cultured in the presence or absence of GGMOs indicated that significantly more genes were down-regulated rather than up-regulated by GGMOs. This study constitutes a major step in the elucidation of signaling mechanisms of PX- and MX-specific genetic programs in zinnia.

  20. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging.

    PubMed

    Yu, Jinhua; He, Huixia; Tang, Chunbo; Zhang, Guangdong; Li, Yuanfei; Wang, Ruoning; Shi, Junnan; Jin, Yan

    2010-05-08

    Dental pulp stem cells (DPSCs) can be driven into odontoblast, osteoblast, and chondrocyte lineages in different inductive media. However, the differentiation potential of naive DPSCs after serial passaging in the routine culture system has not been fully elucidated. DPSCs were isolated from human/rat dental pulps by the magnetic activated cell sorting based on STRO-1 expression, cultured and passaged in the conventional culture media. The biological features of STRO-1+ DPSCs at the 1st and 9th passages were investigated. During the long-term passage, the proliferation ability of human STRO-1+ DPSCs was downregulated as indicated by the growth kinetics. When compared with STRO-1+ DPSCs at the 1st passage (DPSC-P1), the expression of mature osteoblast-specific genes/proteins (alkaline phosphatase, bone sialoprotein, osterix, and osteopontin), odontoblast-specific gene/protein (dentin sialophosphoprotein and dentin sialoprotein), and chondrocyte-specific gene/protein (type II collagen) was significantly upregulated in human STRO-1+ DPSCs at the 9th passage (DPSC-P9). Furthermore, human DPSC-P9 cells in the mineralization-inducing media presented higher levels of alkaline phosphatase at day 3 and day 7 respectively, and produced more mineralized matrix than DPSC-P9 cells at day 14. In vivo transplantation results showed that rat DPSC-P1 cell pellets developed into dentin, bone and cartilage structures respectively, while DPSC-P9 cells can only generate bone tissues. These findings suggest that STRO-1+ DPSCs consist of several interrelated subpopulations which can spontaneously differentiate into odontoblasts, osteoblasts, and chondrocytes. The differentiation capacity of these DPSCs changes during cell passaging, and DPSCs at the 9th passage restrict their differentiation potential to the osteoblast lineage in vivo.

  1. Effect of coumarins on HL-60 cell differentiation.

    PubMed

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    2000-01-01

    Twenty-eight coumarins, including 7 furocoumarins, were examined for their activity of induction of terminal differentiation of human promyelocytic leukemia cells (HL-60) by nitro blue tetrazolium (NBT) reducing, nonspecific esterase, specific esterase and phagocytic activities. Esculetin, nordalbergin, 6,7-dihydroxy-4-methylcoumarin and imperatorin had strong activity among the coumarins examined. HL-60 cells treated with these coumarins differentiated into mature monocyte/macrophage. The structure-activity relationship established from the results revealed that 6,7-dihydroxy moiety had an important role in the induction of differentiation of HL-60.

  2. STATs shape the active enhancer landscape of T cell populations.

    PubMed

    Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-Wei; Sartorelli, Vittorio; Kanno, Yuka; O'Shea, John J

    2012-11-21

    Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. Although enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4(+) T cells as a model of differentiation, mapping the activity of cell-type-specific enhancer elements in T helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the activation of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. STATs Shape the Active Enhancer Landscape of T Cell Populations

    PubMed Central

    Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-wei; Sartorelli, Vittorio; Kanno, Yuka; O’Shea, John J.

    2012-01-01

    SUMMARY Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. While enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4+ T cells as a model of differentiation, mapping the acquisition of cell-type-specific enhancer elements in T-helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the acquisition of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. PMID:23178119

  4. Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells.

    PubMed

    Tosic, Milica; Allen, Anita; Willmann, Dominica; Lepper, Christoph; Kim, Johnny; Duteil, Delphine; Schüle, Roland

    2018-01-25

    Satellite cells are muscle stem cells required for muscle regeneration upon damage. Of note, satellite cells are bipotent and have the capacity to differentiate not only into skeletal myocytes, but also into brown adipocytes. Epigenetic mechanisms regulating fate decision and differentiation of satellite cells during muscle regeneration are not yet fully understood. Here, we show that elevated levels of lysine-specific demethylase 1 (Kdm1a, also known as Lsd1) have a beneficial effect on muscle regeneration and recovery after injury, since Lsd1 directly regulates key myogenic transcription factor genes. Importantly, selective Lsd1 ablation or inhibition in Pax7-positive satellite cells, not only delays muscle regeneration, but changes cell fate towards brown adipocytes. Lsd1 prevents brown adipocyte differentiation of satellite cells by repressing expression of the novel pro-adipogenic transcription factor Glis1. Together, downregulation of Glis1 and upregulation of the muscle-specific transcription program ensure physiological muscle regeneration.

  5. The Role of ARX in Human Pancreatic Endocrine Specification

    PubMed Central

    Gage, Blair K.; Asadi, Ali; Baker, Robert K.; Webber, Travis D.; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J.

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs. PMID:26633894

  6. The Role of ARX in Human Pancreatic Endocrine Specification.

    PubMed

    Gage, Blair K; Asadi, Ali; Baker, Robert K; Webber, Travis D; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs.

  7. ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation.

    PubMed

    Alarcon, Vernadeth B; Marikawa, Yusuke

    2018-01-01

    In placental mammalian development, the first cell differentiation produces two distinct lineages that emerge according to their position within the embryo: the trophectoderm (TE, placenta precursor) differentiates in the surface, while the inner cell mass (ICM, fetal body precursor) forms inside. Here, we discuss how such position-dependent lineage specifications are regulated by the RHOA subfamily of small GTPases and RHO-associated coiled-coil kinases (ROCK). Recent studies in mouse show that activities of RHO/ROCK are required to promote TE differentiation and to concomitantly suppress ICM formation. RHO/ROCK operate through the HIPPO signaling pathway, whose cell position-specific modulation is central to establishing unique gene expression profiles that confer cell fate. In particular, activities of RHO/ROCK are essential in outside cells to promote nuclear localization of transcriptional co-activators YAP/TAZ, the downstream effectors of HIPPO signaling. Nuclear localization of YAP/TAZ depends on the formation of apicobasal polarity in outside cells, which requires activities of RHO/ROCK. We propose models of how RHO/ROCK regulate lineage specification and lay out challenges for future investigations to deepen our understanding of the roles of RHO/ROCK in preimplantation development. Finally, as RHO/ROCK may be inhibited by certain pharmacological agents, we discuss their potential impact on human preimplantation development in relation to fertility preservation in women.

  8. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation

    PubMed Central

    Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J.; Cao, Huojun; Amendt, Brad A.

    2017-01-01

    The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1−/− mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. PMID:28746823

  9. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation.

    PubMed

    Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J; Cao, Huojun; Amendt, Brad A

    2017-09-01

    The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1 -/- mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Detection of alkaline phosphatase in canine cells previously stained with Wright-Giemsa and its utility in differentiating osteosarcoma from other mesenchymal tumors.

    PubMed

    Ryseff, Julia K; Bohn, Andrea A

    2012-09-01

    Osteosarcoma (OSA) is a common primary bone tumor in dogs. Demonstration of alkaline phosphatase (ALP) reactivity by tumor cells on unstained slides is useful in differentiating osteosarcoma from other types of sarcoma. However, unstained slides are not always available. The objectives of this study were to evaluate the diagnostic utility of detecting ALP expression in differentiating osteosarcoma from other sarcomas in dogs using cytologic material previously stained with Wright-Giemsa stain and to assess the sensitivity and specificity of ALP expression for diagnosing osteosarcoma using a specific protocol. Archived aspirates of histologically confirmed sarcomas in dogs that had been previously stained with Wright-Giemsa stain were treated with 5-bromo, 4-chloro, 3-indolyl phosphate/nitroblue tetrazolium (BCIP/NBT) as a substrate for ALP. Cells were evaluated for expression of ALP after incubation with BCIP/NBT for 1 hour. Sensitivity and specificity of ALP expression for diagnosis of OSA were calculated. In samples from 83 dogs, cells from 15/17 OSAs and from 4/66 tumors other than OSA (amelanotic melanoma, gastrointestinal stromal tumor, collision tumor, and anaplastic sarcoma) expressed ALP. Sensitivity and specificity of ALP expression detected using BCIP/NBT substrate applied to cells previously stained with Wright-Giemsa stain for OSA were 88 and 94%, respectively. ALP expression detected using BCIP/NBT substrate applied to previously stained cells is useful in differentiating canine OSA from other mesenchymal neoplasms. © 2012 American Society for Veterinary Clinical Pathology.

  11. Serum-free differentiation of murine embryonic stem cells into alveolar type II epithelial cells.

    PubMed

    Winkler, Monica E; Mauritz, Christina; Groos, Stephanie; Kispert, Andreas; Menke, Sandra; Hoffmann, Anika; Gruh, Ina; Schwanke, Kristin; Haverich, Axel; Martin, Ulrich

    2008-03-01

    Alveolar type II (AT2) epithelial cells have important functions including the production of surfactant and regeneration of lost alveolar type I epithelial cells. The ability of in vitro production of AT2 cells would offer new therapeutic options in treating pulmonary injuries and disorders including genetically based surfactant deficiencies. Aiming at the generation of AT2-like cells, the differentiation of murine embryonic stem cells (mESCs) toward mesendodermal progenitors (MEPs) was optimized using a "Brachyury-eGFP-knock in" mESC line. eGFP expression demonstrated generation of up to 65% MEPs at day 4 after formation of embryoid bodies (EBs) under serum-free conditions. Plated EBs were further differentiated into AT2-like cells for a total of 25 days in serum-free media resulting in the expression of endodermal marker genes (FoxA2, Sox17, TTR, TTF-1) and of markers for distal lung epithelium (surfactant proteins (SP-) A, B, C, and D, CCSP, aquaporin 5). Notably, expression of SP-C as the only known AT2 cell specific marker could be detected after serum-induction as well as under serum-free conditions. Cytoplasmic localization of SP-C was demonstrated by confocal microscopy. The presence of AT2-like cells was confirmed by electron microscopy providing evidence for polarized cells with apical microvilli and lamellar body-like structures. Our results demonstrate the differentiation of AT2-like cells from mESCs after serum-induction and under serum-free conditions. The established serum-free differentiation protocol will facilitate the identification of key differentiation factors leading to a more specific and effective generation of AT2-like cells from ESCs.

  12. Aging and differentiation in yeast populations: elders with different properties and functions.

    PubMed

    Palková, Zdena; Wilkinson, Derek; Váchová, Libuše

    2014-02-01

    Over the past decade, it has become evident that similarly to cells forming metazoan tissues, yeast cells have the ability to differentiate and form specialized cell types. Examples of yeast cellular differentiation have been identified both in yeast liquid cultures and within multicellular structures occupying solid surfaces. Most current knowledge on different cell types comes from studies of the spatiotemporal internal architecture of colonies developing on various media. With a few exceptions, yeast cell differentiation often concerns nongrowing, stationary-phase cells and leads to the formation of cell subpopulations differing in stress resistance, cell metabolism, respiration, ROS production, and others. These differences can affect longevity of particular subpopulations. In contrast to liquid cultures, where various cell types are dispersed within stationary-phase populations, cellular differentiation depends on the specific position of particular cells within multicellular colonies. Differentiated colonies, thus, resemble primitive multicellular organisms, in which the gradients of certain compounds and the position of cells within the structure affect cellular differentiation. In this review, we summarize and compare the properties of diverse types of differentiated chronologically aging yeast cells that have been identified in colonies growing on different media, as well as of those found in liquid cultures. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study.

    PubMed

    Csaki, C; Matis, U; Mobasheri, A; Ye, H; Shakibaei, M

    2007-12-01

    Musculoskeletal diseases with osteochondrotic articular cartilage defects, such as osteoarthritis, are an increasing problem for humans and companion animals which necessitates the development of novel and improved therapeutic strategies. Canine mesenchymal stem cells (cMSCs) offer significant promise as a multipotent source for cell-based therapies and could form the basis for the differentiation and cultivation of tissue grafts to replace damaged tissue. However, no comprehensive analysis has been undertaken to characterize the ultrastructure of in vitro differentiated cMSCs. The main goal of this paper was to focus on cMSCs and to analyse their differentiation capacity. To achieve this aim, bone marrow cMSCs from three canine patients were isolated, expanded in monolayer culture and characterized with respect to their ability for osteogenic, adipogenic and chondrogenic differentiation capacities. cMSCs showed proliferative potential and were capable of osteogenic, adipogenic and chondrogenic differentiation. cMSCs treated with the osteogenic induction medium differentiated into osteoblasts, produced typical bone matrix components, beta1-integrins and upregulated the osteogenic specific transcription factor Cbfa-1. cMSCs treated with the adipogenic induction medium showed typical adipocyte morphology, produced adiponectin, collagen type I and beta1-integrins, and upregulated the adipogenic specific transcription factor PPAR-gamma. cMSCs treated with the chondrogenic induction medium exhibited a round to oval shape, produced a cartilage-specific extracellular matrix, beta1-integrins and upregulated the chondrogenic specific transcription factor Sox9. These results demonstrate, at the biochemical, morphological and ultrastructural levels, the multipotency of cMSCs and thus highlight their potential therapeutic value for cell-based tissue engineering.

  14. [Differentiation of bone marrow derived from mesenchymal stem cells into cardiomyocyte-like cells induced by co-culture with rat myocardial cells].

    PubMed

    Zhang, Rong-Li; Jiang, Er-Lie; Wang, Mei; Zhou, Zheng; Zhai, Wen-Jing; Zhai, Wei-Hua; Wang, Hua; Wang, Zhi-Yong; Bao, Yu-Shi; DU, Hong; Han, Ming-Zhe

    2008-10-01

    The study was purposed to investigate the differentiation ability of mesenchymal stem cells (MSCs) into myocardial cells in vitro. Rat bone marrow-derived MSCs were labeled and co-cultured with neonatal rat cardiomyocytes (CM) for 5 - 7 days. The expression of cell surface antigens was detected by flow cytometry, and the expression of muscle-specific marker myosin and troponin T in labeled cells was detected by immunofluorescence. The results showed that in vitro cultured MSCs expressed CD90, CD44, CD105, CD54, not expressed CD34, CD45, CD31. After co-cultured with neonatal rat CM, labeled MSCs differentiated into cardiomyocyte-like cells expressing myosin and troponin T. It is concluded that MSCs can differentiate into cardiomyocyte-like cells when co-cultured with neonatal myocardial cells in vitro. In co-culture of two kind of cells in ratio of four to one showed obvious efficacy differentiating MSCs into CMs.

  15. ERK1 is important for Th2 differentiation and development of experimental asthma

    PubMed Central

    Goplen, Nicholas; Karim, Zunayet; Guo, Lei; Zhuang, Yonghua; Huang, Hua; Gorska, Magdalena M.; Gelfand, Erwin; Pagés, Gilles; Pouysségur, Jacques; Alam, Rafeul

    2012-01-01

    The ERK1/2 signaling pathway regulates a variety of T-cell functions. We observed dynamic changes in the expression of ERK1/2 during T-helper cell differentiation. Specifically, the expression of ERK1/2 was decreased and increased by IL-12 and IL-4, respectively. To address this subject further, we examined the specific role of ERK1 in Th2 differentiation and development of experimental asthma using ERK1−/− mice. ERK1−/− mice were unable to mount airway inflammation and hyperreactivity in two different models of asthma, acute and chronic. ERK1−/− mice had reduced expression of Th2 cytokines IL-4 and IL-5 but not IL-17A or IFN-γ. They had reduced levels of allergen-specific IgE and blood eosinophils. T cells from immunized ERK1−/− mice manifested reduced proliferation in response to the sensitizing allergen. ERK1−/− T cells had reduced and short-lived expression of JunB following TCR stimulation, which likely contributed to their impaired Th2 differentiation. Immunized ERK1−/− mice showed reduced numbers of CD44high CD4 T cells in the spleen. In vitro studies demonstrated that Th2 but not Th1 cells from ERK1−/− mice had reduced numbers of CD44high cells. Finally, CD4 T cells form ERK1−/− mice expressed higher levels of BIM under growth factor-deprived conditions and reduced Mcl-1 on stimulation. As a result, the survival of CD4 T cells, especially CD44high Th2 cells, was much reduced in ERK1−/− mice. We conclude that ERK1 plays a nonredundant role in Th2 differentiation and development of experimental asthma. ERK1 controls Th2 differentiation and survival through its effect on JunB and BIM, respectively.—Goplen, N., Karim, Z., Guo, L., Zhuang, Y., Huang, H., Gorska, M. M., Gelfand, E., Pagés, G., Pouysségur, J., Alam, R. ERK1 is important for Th2 differentiation and development of experimental asthma. PMID:22262639

  16. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    PubMed

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro.

    PubMed

    Yamane, Hitomi; Ihara, Setsunosuke; Kuroda, Masaaki; Nishikawa, Akio

    2011-08-01

    Larval-to-adult myogenic conversion occurs in the dorsal muscle but not in the tail muscle during Xenopus laevis metamorphosis. To know the mechanism for tail-specific suppression of adult myogenesis, response character was compared between adult myogenic cells (Ad-cells) and larval tail myogenic cells (La-cells) to a Sonic hedgehog (Shh) inhibitor, notochord (Nc) cells, and spinal cord (SC) cells in vitro. Cyclopamine, an Shh inhibitor, suppressed the differentiation of cultured Ad (but not La) cells, suggesting the significance of Shh signaling in promoting adult myogenesis. To test the possibility that Shh-producing axial elements (notochord and spinal cord) regulate adult myogenesis, Ad-cells or La-cells were co-cultured with Nc or SC cells. The results showed that differentiation of Ad-cells were strongly inhibited by Nc cells but promoted by SC cells. If Ad-cells were "separately" co-cultured with Nc cells without direct cell-cell interactions, adult differentiation was not inhibited but rather promoted, suggesting that Nc cells have two roles, one is a short-range suppression and another is a long-range promotion for adult myogenesis. Immunohistochemical analysis showed both notochord and spinal cord express the N-terminal Shh fragment throughout metamorphosis. The "spinal cord-promotion" and long-range effect by Nc cells on adult myogenesis is thus involved in Shh signaling, while the signaling concerning the short-range "Nc suppression" will be determined by future studies. Interestingly, these effects, "Nc suppression" and "SC promotion" were not observed for La-cells. Situation where the spinal cord/notochord cross-sectional ratio is quite larger in tadpole trunk than in the tail seems to contribute to trunk-specific promotion and tail-specific suppression of adult myogenesis during Xenopus metamorphosis.

  18. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.

    PubMed

    Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K

    2013-07-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Myogenin Recruits the Histone Chaperone Facilitates Chromatin Transcription (FACT) to Promote Nucleosome Disassembly at Muscle-specific Genes*

    PubMed Central

    Lolis, Alexandra A.; Londhe, Priya; Beggs, Benjamin C.; Byrum, Stephanie D.; Tackett, Alan J.; Davie, Judith K.

    2013-01-01

    Facilitates chromatin transcription (FACT) functions to reorganize nucleosomes by acting as a histone chaperone that destabilizes and restores nucleosomal structure. The FACT complex is composed of two subunits: SSRP1 and SPT16. We have discovered that myogenin interacts with the FACT complex. Transfection of FACT subunits with myogenin is highly stimulatory for endogenous muscle gene expression in 10T1/2 cells. We have also found that FACT subunits do not associate with differentiation-specific genes while C2C12 cells are proliferating but are recruited to muscle-specific genes as differentiation initiates and then dissociate as differentiation proceeds. The recruitment is dependent on myogenin, as knockdowns of myogenin show no recruitment of the FACT complex. These data suggest that FACT is involved in the early steps of gene activation through its histone chaperone activities that serve to open the chromatin structure and facilitate transcription. Consistent with this hypothesis, we find that nucleosomes are depleted at muscle-specific promoters upon differentiation and that this activity is dependent on the presence of FACT. Our results show that the FACT complex promotes myogenin-dependent transcription and suggest that FACT plays an important role in the establishment of the appropriate transcription profile in a differentiated muscle cell. PMID:23364797

  20. Stem cell plasticity.

    PubMed

    Lakshmipathy, Uma; Verfaillie, Catherine

    2005-01-01

    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.

  1. Rotating microgravity-bioreactor cultivation enhances the hepatic differentiation of mouse embryonic stem cells on biodegradable polymer scaffolds.

    PubMed

    Wang, Yingjie; Zhang, Yunping; Zhang, Shichang; Peng, Guangyong; Liu, Tao; Li, Yangxin; Xiang, Dedong; Wassler, Michael J; Shelat, Harnath S; Geng, Yongjian

    2012-11-01

    Embryonic stem (ES) cells are pluripotent cells that are capable of differentiating all the somatic cell lineages, including those in the liver tissue. We describe the generation of functional hepatic-like cells from mouse ES (mES) cells using a biodegradable polymer scaffold and a rotating bioreactor that allows simulated microgravity. Cells derived from ES cells cultured in the three-dimensional (3D) culture system with exogenous growth factors and hormones can differentiate into hepatic-like cells with morphologic characteristics of typical mature hepatocytes. Reverse-transcription polymerase chain-reaction testing, Western blot testing, immunostaining, and flow cytometric analysis show that these cells express hepatic-specific genes and proteins during differentiation. Differentiated cells on scaffolds further exhibit morphologic traits and biomarkers characteristic of liver cells, including albumin production, cytochrome P450 activity, and low-density lipoprotein uptake. When these stem cell-bearing scaffolds are transplanted into severe combined immunodeficient mice, the 3D constructs remained viable, undergoing further differentiation and maturation of hepatic-like cells in vivo. In conclusion, the growth and differentiation of ES cells in a biodegradable polymer scaffold and a rotating microgravity bioreactor can yield functional and organizational hepatocytes useful for research involving bioartificial liver and engineered liver tissue.

  2. CMV-Specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies.

    PubMed

    Smith, Corinne J; Quinn, Michael; Snyder, Christopher M

    2016-01-01

    Human cytomegalovirus (HCMV) is a ubiquitous virus that causes chronic infection and, thus, is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8 + T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization, and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8 + T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8 + T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8 + T cell response. Finally, mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue-resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.

  3. Nanoparticle-mediated intracellular lipid accumulation during C2C12 cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp; Haniu, Hisao, E-mail: hhaniu@shinshu-u.ac.jp

    2011-03-25

    Research highlights: {yields} HTT2800 has a significant effect on intracellular lipid accumulation. {yields} HTT2800 reduced muscle-specific genes and led to the emergence of adipocyte-related genes. {yields} HT2800 converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells. -- Abstract: In this report, we sought to elucidate whether multiwall carbon nanotubes are involved in the modulation of the proliferation and differentiation of the skeletal muscle cell line C2C12. Skeletal muscle is a major mass peripheral tissue that accounts for 40% of total body weight and 50% of energy consumption. We focused on the differentiation pathway of myoblasts after exposuremore » to a vapor-grown carbon fiber, HTT2800, which is one of the most highly purified carbon nanotubes. This treatment leads in parallel to the expression of a typical adipose differentiation program. We found that HTT2800 stimulated intracellular lipid accumulation in C2C12 cells. We have also shown by quantified PCR analysis that the expression of adipose-related genes was markedly upregulated during HTT2800 exposure. Taken together, these results suggest that HTT2800 specifically converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells.« less

  4. Regulation of the Mouse Treacher Collins Syndrome Homolog (Tcof1) Promoter Through Differential Repression of Constitutive Expression

    PubMed Central

    Shiang, Rita

    2008-01-01

    Treacher Collins syndrome is an autosomal-dominant mandibulofacial dysostosis caused by haploinsufficiency of the TCOF1 gene product treacle. Mouse Tcof1 protein is approximately 61% identical and 71% similar to treacle, and heterozygous knockout of Tcof1 causes craniofacial malformation. Tcof1 expression is high in developing neural crest, but much lower in other tissues. To investigate this dual regulation, highly conserved regions upstream of TCOF1 homologs were tested through deletion and mutation reporter assays, and conserved predicted transcription factor binding sites were assessed through chromatin binding studies. Assays were performed in mouse P19 embryonic carcinoma cells and in HEK293 cells to determine differential activation in cell types at different stages of differentiation. Binding of Cebpb, Zfp161, and Sp1 transcription factors was specific to the Tcof1 regulatory region in P19 cells. The Zfp161 binding site demonstrated P19 cell–specific repression, while the Sp1/Sp3 candidate site demonstrated HEK293 cell–specific activation. Moreover, presence of c-myb and Zfp161 transcripts was specific to P19 cells. A minimal promoter fragment from −253 to +43 bp directs constitutive expression in both cell types, and dual regulation of Tcof1 appears to be through differential repression of this minimal promoter. The CpG island at the transcription start site remains unmethylated in P19 cells, 11.5 dpc mouse embryonic tissue, and adult mouse ear, which supports constitutive activation of the Tcof1 promoter. PMID:18771418

  5. New lessons learned from disease modeling with induced Pluripotent Stem Cells

    PubMed Central

    Onder, Tamer T.; Daley, George Q.

    2012-01-01

    Cellular reprogramming and generation of induced pluripotent stem cells (iPSCs) from adult cell types has enabled the creation of patient-specific stem cells for use in disease modeling. To date, many iPSC lines have been generated from a variety of disorders, which have then been differentiated into disease-relevant cell types. When a disease-specific phenotype is detectable in such differentiated cells, the reprogramming technology provides a new opportunity to identify aberrant disease-associated pathways and drugs that can block them. Here, we highlight recent progress as well as limitations in the use of iPSCs to recapitulate disease phenotypes and to screen for therapeutics in vitro. PMID:22749051

  6. Origin and Function of Circulating Plasmablasts during Acute Viral Infections.

    PubMed

    Fink, Katja

    2012-01-01

    Activated B cells proliferate and differentiate into antibody-producing cells, long-lived plasma cells, and memory B cells after immunization or infection. Repeated encounter of the same antigen triggers the rapid re-activation of pre-existing specific memory B cells, which then potentially enter new germinal center reactions and differentiate into short-lived plasmablasts or remain in the system as memory B cells. Short-lived class-switched IgG and IgA plasmablasts appear in the circulation transiently and the frequency of these cells can be remarkably high. The specificities and affinities of single plasmablasts in humans have been reported for several viral infections, so far most extensively for influenza and HIV. In general, the immunoglobulin variable regions of plasmablasts are highly mutated and diverse, suggesting that plasmablasts are derived from memory B cells, yet it is unclear which memory B cell subsets are activated and whether activated memory B cells adapt or mature before differentiation. This review summarizes what is known about the phenotype and the origin of human plasmablasts in the context of viral infections and whether these cells can be predictors of long-lived immunity.

  7. Evidence that the Dictyostelium Dd-STATa protein is a repressor that regulates commitment to stalk cell differentiation and is also required for efficient chemotaxis.

    PubMed

    Mohanty, S; Jermyn, K A; Early, A; Kawata, T; Aubry, L; Ceccarelli, A; Schaap, P; Williams, J G; Firtel, R A

    1999-08-01

    Dd-STATa is a structural and functional homologue of the metazoan STAT (Signal Transducer and Activator of Transcription) proteins. We show that Dd-STATa null cells exhibit several distinct developmental phenotypes. The aggregation of Dd-STATa null cells is delayed and they chemotax slowly to a cyclic AMP source, suggesting a role for Dd-STATa in these early processes. In Dd-STATa null strains, slug-like structures are formed but they have an aberrant pattern of gene expression. In such slugs, ecmB/lacZ, a marker that is normally specific for cells on the stalk cell differentiation pathway, is expressed throughout the prestalk region. Stalk cell differentiation in Dictyostelium has been proposed to be under negative control, mediated by repressor elements present in the promoters of stalk cell-specific genes. Dd-STATa binds these repressor elements in vitro and the ectopic expression of ecmB/lacZ in the null strain provides in vivo evidence that Dd-STATa is the repressor protein that regulates commitment to stalk cell differentiation. Dd-STATa null cells display aberrant behavior in a monolayer assay wherein stalk cell differentiation is induced using the stalk cell morphogen DIF. The ecmB gene, a general marker for stalk cell differentiation, is greatly overinduced by DIF in Dd-STATa null cells. Also, Dd-STATa null cells are hypersensitive to DIF for expression of ST/lacZ, a marker for the earliest stages in the differentiation of one of the stalk cell sub-types. We suggest that both these manifestations of DIF hypersensitivity in the null strain result from the balance between activation and repression of the promoter elements being tipped in favor of activation when the repressor is absent. Paradoxically, although Dd-STATa null cells are hypersensitive to the inducing effects of DIF and readily form stalk cells in monolayer assay, the Dd-STATa null cells show little or no terminal stalk cell differentiation within the slug. Dd-STATa null slugs remain developmentally arrested for several days before forming very small spore masses supported by a column of apparently undifferentiated cells. Thus, complete stalk cell differentiation appears to require at least two events: a commitment step, whereby the repression exerted by Dd-STATa is lifted, and a second step that is blocked in a Dd-STATa null organism. This latter step may involve extracellular cAMP, a known repressor of stalk cell differentiation, because Dd-STATa null cells are abnormally sensitive to the inhibitory effects of extracellular cyclic AMP.

  8. BIX-01294 promotes the differentiation of adipose mesenchymal stem cells into adipocytes and neural cells in Arbas Cashmere goats.

    PubMed

    Wang, Qing; Wang, Xiao; Lai, Defang; Deng, Jin; Hou, Zhuang; Liang, Hao; Liu, Dongjun

    2018-05-14

    Chromatin remodeling plays an essential role in regulating gene transcription. BIX-01294 is a specific inhibitor of histone methyltransferase G9a, which is responsible for methylation of histone H3 lysine 9 (H3K9) that can also regulate DNA methylation and chromatin remodeling. The purpose of this study was to investigate the effects of BIX-01294 on the potential of goat adipose derived stem cells (gADSCs) to differentiate into adipocytes and neural cells. To accomplish this, BIX-01294 was used to treat gADSCs for 24 h, and the global level of DNA methylation as well as the expression of genes related to cell proliferation, apoptosis and pluripotency were detected. At the same time, the cells were induced to differentiate into adipocytes and neural cells, and the transcription levels of related marker factors were examined. We found that BIX-01294 treatment reduced the level of DNA methylation and increased the level of gADSCs hydroxylmethylation. The translation level of NANOG increased, whereas Oct4, Sox2 levels decreased. Our results suggest that BIX-01294 may rely on the NANOG regulatory network to promote gADSCs differentiation. We found that both the lipid droplet level in adipocytes and the transcription levels of the adipocyte specific factors Fabp4, ADIPOQ, and Leptin increased after treatment. ENO2 and RBFOX3 transcription levels were also elevated in the differentiated neural cells after treatment. These results indicated that BIX-01294 treatment promoted the differentiation of gADSCs into adipocytes and neural cells. Our findings provide new ideas for improving the differentiation potential of gADSCs and expanding possible application for gADSCs. Copyright © 2018. Published by Elsevier Ltd.

  9. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    NASA Astrophysics Data System (ADS)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  10. The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker.

    PubMed

    Krebsbach, Paul H; Villa-Diaz, Luis G

    2017-08-01

    Stem cells have the capacity for self-renewal and differentiation into specialized cells that form and repopulated all tissues and organs, from conception to adult life. Depending on their capacity for differentiation, stem cells are classified as totipotent (ie, zygote), pluripotent (ie, embryonic stem cells), multipotent (ie, neuronal stem cells, hematopoietic stem cells, epithelial stem cells, etc.), and unipotent (ie, spermatogonial stem cells). Adult or tissue-specific stem cells reside in specific niches located in, or nearby, their organ or tissue of origin. There, they have microenvironmental support to remain quiescent, to proliferate as undifferentiated cells (self-renewal), and to differentiate into progenitors or terminally differentiated cells that migrate from the niche to perform specialized functions. The presence of proteins at the cell surface is often used to identify, classify, and isolate stem cells. Among the diverse groups of cell surface proteins used for these purposes, integrin α6, also known as CD49f, may be the only biomarker commonly found in more than 30 different populations of stem cells, including some cancer stem cells. This broad expression among stem cell populations indicates that integrin α6 may play an important and conserved role in stem cell biology, which is reaffirmed by recent demonstrations of its role maintaining self-renewal of pluripotent stem cells and breast and glioblastoma cancer stem cells. Therefore, this review intends to highlight and synthesize new findings on the importance of integrin α6 in stem cell biology.

  11. Parsing Stem Cell Lineage Development Using High Content Image Analysis of Epigenetic Spatial Markers.

    PubMed

    Kim, Joseph J; Moghe, Prabhas V

    2018-06-14

    This unit describes a protocol for acquiring and analyzing high-content super-resolution images of human stem cell nuclei for the characterization and classification of the cell differentiation paths based on distinct patterns of epigenetic mark organization. Here, we describe the cell culture, immunocytochemical labeling, super-resolution imaging parameters, and MATLAB-based quantitative image analysis approaches for monitoring human mesenchymal stem cells (hMSCs) and human induced pluripotent stem cells (hiPSCs) as the cells differentiate towards various lineages. Although this protocol uses specific cell types as examples, this approach could be easily extended to a variety of cell types and nuclear epigenetic and mechanosensitive biomarkers that are relevant to specific cell developmental scenarios. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  12. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation

    PubMed Central

    Huang, Weishan; August, Avery

    2015-01-01

    T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8+ T cell homeostasis; and IL-4-induced innate memory CD8+ T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. PMID:25525115

  13. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation.

    PubMed

    Dikov, Mikhail M; Ohm, Joyce E; Ray, Neelanjan; Tchekneva, Elena E; Burlison, Jared; Moghanaki, Drew; Nadaf, Sorena; Carbone, David P

    2005-01-01

    Impaired Ag-presenting function in dendritic cells (DCs) due to abnormal differentiation is an important mechanism of tumor escape from immune control. A major role for vascular endothelial growth factor (VEGF) and its receptors, VEGFR1/Flt-1 and VEGFR2/KDR/Flk-1, has been documented in hemopoietic development. To study the roles of each of these receptors in DC differentiation, we used an in vitro system of myeloid DC differentiation from murine embryonic stem cells. Exposure of wild-type, VEGFR1(-/-), or VEGFR2(-/-) embryonic stem cells to exogenous VEGF or the VEGFR1-specific ligand, placental growth factor, revealed distinct roles of VEGF receptors. VEGFR1 is the primary mediator of the VEGF inhibition of DC maturation, whereas VEGFR2 tyrosine kinase signaling is essential for early hemopoietic differentiation, but only marginally affects final DC maturation. SU5416, a VEGF receptor tyrosine kinase inhibitor, only partially rescued the mature DC phenotype in the presence of VEGF, suggesting the involvement of both tyrosine kinase-dependent and independent inhibitory mechanisms. VEGFR1 signaling was sufficient for blocking NF-kappaB activation in bone marrow hemopoietic progenitor cells. VEGF and placental growth factor affect the early stages of myeloid/DC differentiation. The data suggest that therapeutic strategies attempting to reverse the immunosuppressive effects of VEGF in cancer patients might be more effective if they specifically targeted VEGFR1.

  14. Modification of Hematopoietic Stem/Progenitor Cells with CD19-Specific Chimeric Antigen Receptors as a Novel Approach for Cancer Immunotherapy

    PubMed Central

    Ryan, Christine; Giannoni, Francesca; Hardee, Cinnamon L.; Tremcinska, Irena; Katebian, Behrod; Wherley, Jennifer; Sahaghian, Arineh; Tu, Andy; Grogan, Tristan; Elashoff, David; Cooper, Laurence J.N.; Hollis, Roger P.; Kohn, Donald B.

    2013-01-01

    Abstract Chimeric antigen receptors (CARs) against CD19 have been shown to direct T-cells to specifically target B-lineage malignant cells in animal models and clinical trials, with efficient tumor cell lysis. However, in some cases, there has been insufficient persistence of effector cells, limiting clinical efficacy. We propose gene transfer to hematopoietic stem/progenitor cells (HSPC) as a novel approach to deliver the CD19-specific CAR, with potential for ensuring persistent production of effector cells of multiple lineages targeting B-lineage malignant cells. Assessments were performed using in vitro myeloid or natural killer (NK) cell differentiation of human HSPCs transduced with lentiviral vectors carrying first and second generations of CD19-specific CAR. Gene transfer did not impair hematopoietic differentiation and cell proliferation when transduced at 1–2 copies/cell. CAR-bearing myeloid and NK cells specifically lysed CD19-positive cells, with second-generation CAR including CD28 domains being more efficient in NK cells. Our results provide evidence for the feasibility and efficacy of the modification of HSPC with CAR as a strategy for generating multiple lineages of effector cells for immunotherapy against B-lineage malignancies to augment graft-versus-leukemia activity. PMID:23978226

  15. Thrombospondin-4 Promotes Neuronal Differentiation of NG2 Cells via the ERK/MAPK Pathway.

    PubMed

    Yang, Hai Jie; Ma, Shuang Ping; Ju, Fei; Zhang, Ya Ping; Li, Zhi Chao; Zhang, Bin Bin; Lian, Jun Jiang; Wang, Lei; Cheng, Bin Feng; Wang, Mian; Feng, Zhi Wei

    2016-12-01

    NG2-expressing neural progenitors can produce neurons in the central nervous system, providing a potential cell resource of therapy for neurological disorders. However, the mechanism underlying neuronal differentiation of NG2 cells remains largely unknown. In this report, we found that a thrombospondin (TSP) family member, TSP4, is involved in the neuronal differentiation of NG2 cells. When TSP4 was overexpressed, NG2 cells underwent spontaneous neuronal differentiation, as demonstrated by the induction of various neuronal differentiation markers such as NeuN, Tuj1, and NF200, at the messenger RNA and protein levels. In contrast, TSP4 silencing had an opposite effect on the expression of neuronal differentiation markers in NG2 cells. Next, the signaling pathway responsible for TSP4-mediated NG2 cell differentiation was investigated. We found that ERK but not p38 and AKT signaling was affected by TSP4 overexpression. Furthermore, when ERK signaling was blocked by the inhibitor U0126, the neuronal marker expression of NG2 cells was substantially increased. Together, these findings suggested that TSP4 promoted neuronal differentiation of NG2 cells by inhibiting ERK/MAPK signaling, revealing a novel role of TSP4 in cell fate specification of NG2 cells.

  16. HDAC inhibitor LMK-235 promotes the odontoblast differentiation of dental pulp cells

    PubMed Central

    Liu, Zhao; Chen, Ting; Han, Qianqian; Chen, Ming; You, Jie; Fang, Fuchun; Peng, Ling; Wu, Buling

    2018-01-01

    The role of dental pulp cells (DPCs) in hard dental tissue regeneration had received increasing attention because DPCs can differentiate into odontoblasts and other tissue-specific cells. In recent years, epigenetic modifications had been identified to serve an important role in cell differentiation, and histone deacetylase (HDAC) inhibitors have been widely studied by many researchers. However, the effects of HDAC4 and HDAC5 on the differentiation of DPCs and the precise molecular mechanisms remain unclear. The present study demonstrated that LMK-235, a specific human HDAC4 and HDAC5 inhibitor, increased the expression of specific odontoblastic gene expression levels detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in dental pulp cells, and did not reduce cell proliferation tested by MTT assay after 3 days in culture at a low concentration. In addition, the mRNA and protein expression levels of dentin sialophosphoprotein, runt-related transcription factor 2, alkaline phosphatase (ALP) and osteocalcin were evaluated by RT-qPCR and western blotting, respectively. The increased gene and protein expression of specific markers demonstrated, indicating that LMK-235 promoted the odontoblast induction of DPCs. ALP activity and mineralised nodule formation were also enhanced due to the effect of LMK-235, detected by an ALP activity test and Alizarin Red S staining, respectively. Additionally, the vascular endothelial growth factor (VEGF)/RAC-gamma serine/threonine-protein kinase (AKT)/mechanistic target of rapamycin (mTOR) signalling pathway was tested to see if it takes part in the differentiation of DPCs treated with LMK-235, and it was demonstrated that the mRNA expression levels of VEGF, AKT and mTOR were upregulated. These findings indicated that LMK-235 may serve a key role in the proliferation and odontoblast differentiation of DPCs, and could be used to accelerate dental tissue regeneration. PMID:29138868

  17. Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths

    PubMed Central

    Li, Chunhe; Wang, Jin

    2013-01-01

    Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics. PMID:23935477

  18. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation.

    PubMed

    Jaleco, A C; Neves, H; Hooijberg, E; Gameiro, P; Clode, N; Haury, M; Henrique, D; Parreira, L

    2001-10-01

    Notch signaling is known to differentially affect the development of lymphoid B and T cell lineages, but it remains unclear whether such effects are specifically dependent on distinct Notch ligands. Using a cell coculture assay we observed that the Notch ligand Delta-1 completely inhibits the differentiation of human hematopoietic progenitors into the B cell lineage while promoting the emergence of cells with a phenotype of T cell/natural killer (NK) precursors. In contrast, Jagged-1 did not disturb either B or T cell/NK development. Furthermore, cells cultured in the presence of either Delta-1 or Jagged-1 can acquire a phenotype of NK cells, and Delta-1, but not Jagged-1, permits the emergence of a de novo cell population coexpressing CD4 and CD8. Our results thus indicate that distinct Notch ligands can mediate differential effects of Notch signaling and provide a useful system to further address cell-fate decision processes in lymphopoiesis.

  19. Differential Effects of Notch Ligands Delta-1 and Jagged-1 in Human Lymphoid Differentiation

    PubMed Central

    Jaleco, Ana C.; Neves, Hélia; Hooijberg, Erik; Gameiro, Paula; Clode, Nuno; Haury, Matthias; Henrique, Domingos; Parreira, Leonor

    2001-01-01

    Notch signaling is known to differentially affect the development of lymphoid B and T cell lineages, but it remains unclear whether such effects are specifically dependent on distinct Notch ligands. Using a cell coculture assay we observed that the Notch ligand Delta-1 completely inhibits the differentiation of human hematopoietic progenitors into the B cell lineage while promoting the emergence of cells with a phenotype of T cell/natural killer (NK) precursors. In contrast, Jagged-1 did not disturb either B or T cell/NK development. Furthermore, cells cultured in the presence of either Delta-1 or Jagged-1 can acquire a phenotype of NK cells, and Delta-1, but not Jagged-1, permits the emergence of a de novo cell population coexpressing CD4 and CD8. Our results thus indicate that distinct Notch ligands can mediate differential effects of Notch signaling and provide a useful system to further address cell-fate decision processes in lymphopoiesis. PMID:11581320

  20. Applications of Raman micro-spectroscopy to stem cell technology: label-free molecular discrimination and monitoring cell differentiation.

    PubMed

    Ghita, Adrian; Pascut, Flavius C; Sottile, Virginie; Denning, Chris; Notingher, Ioan

    Stem cell therapy is widely acknowledged as a key medical technology of the 21st century which may provide treatments for many currently incurable diseases. These cells have an enormous potential for cell replacement therapies to cure diseases such as Parkinson's disease, diabetes and cardiovascular disorders, as well as in tissue engineering as a reliable cell source for providing grafts to replace and repair diseased tissues. Nevertheless, the progress in this field has been difficult in part because of lack of techniques that can measure non-invasively the molecular properties of cells. Such repeated measurements can be used to evaluate the culture conditions during differentiation, cell quality and phenotype heterogeneity of stem cell progeny. Raman spectroscopy is an optical technique based on inelastic scattering of laser photons by molecular vibrations of cellular molecules and can be used to provide chemical fingerprints of cells or organelles without fixation, lysis or use of labels and other contrast enhancing chemicals. Because differentiated cells are specialized to perform specific functions, these cells produce specific biochemicals that can be detected by Raman micro-spectroscopy. This mini-review paper describes applications of Raman micro-scpectroscopy to measure moleculare properties of stem cells during differentiation in-vitro. The paper focuses on time- and spatially-resolved Raman spectral measurements that allow repeated investigation of live stem cells in-vitro.

  1. Stage- and subunit-specific functions of polycomb repressive complex 2 in bladder urothelial formation and regeneration

    PubMed Central

    Guo, Chunming; Balsara, Zarine R.

    2017-01-01

    ABSTRACT Urothelium is the protective lining of the urinary tract. The mechanisms underlying urothelial formation and maintenance are largely unknown. Here, we report the stage-specific roles of PRC2 epigenetic regulators in embryonic and adult urothelial progenitors. Without Eed, the obligatory subunit of PRC2, embryonic urothelial progenitors demonstrate reduced proliferation with concomitant dysregulation of genes including Cdkn2a (p16), Cdkn2b (p15) and Shh. These mutants display premature differentiation of keratin 5-positive (Krt5+) basal cells and ectopic expression of squamous-like differentiation markers. Deletion of Ezh2, the major enzymatic component of PRC2, causes upregulation of Upk3a+ superficial cells. Unexpectedly, Eed and Eed/Ezh2 double mutants exhibit delayed superficial cell differentiation. Furthermore, Eed regulates the proliferative and regenerative capacity of adult urothelial progenitors and prevents precocious differentiation. Collectively, these findings uncover the epigenetic mechanism by which PRC2 controls urothelial progenitor cell fate and the timing of differentiation, and further suggest an epigenetic basis of urothelial maintenance and regeneration. PMID:28049658

  2. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.

    PubMed

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-12-10

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  3. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    PubMed Central

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies. PMID:24710551

  4. TBR2 antagonizes retinoic acid dependent neuronal differentiation by repressing Zfp423 during corticogenesis.

    PubMed

    Massimino, Luca; Flores-Garcia, Lisbeth; Di Stefano, Bruno; Colasante, Gaia; Icoresi-Mazzeo, Cecilia; Zaghi, Mattia; Hamilton, Bruce A; Sessa, Alessandro

    2018-02-15

    During cerebral cortex development, neural progenitors are required to elaborate a variety of cell differentiation signals to which they are continuously exposed. RA acid is a potent inducer of neuronal differentiation as it was found to influence cortical development. We report herein that TBR2, a transcription factor specific to Intermediate (Basal) Neural Progenitors (INPs), represses activation of the RA responsive element and expression of RA target genes in cell lines. This repressive action on RA signaling was functionally confirmed by the decrease of RA-mediated neuronal differentiation in neural stem cells stably overexpressing TBR2. In vivo mapping of RA activity in the developing cortex indicated that RA activity is detected in radial glial cells and subsequently downregulated in INPs, revealing a fine cell-type specific regulation of its signaling. Thus, TBR2 might be a molecular player in opposing RA signaling in INPs. Interestingly, this negative regulation is achieved at least in part by directly repressing the critical nuclear RA co-factor ZFP423. Indeed, we found ZFP423 to be expressed in the developing cortex and promote RA-dependent neuronal differentiation. These data indicate that TBR2 contributes to suppressing RA signaling in INPs, thereby enabling them to re-enter the cell cycle and delay neuronal differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia

    PubMed Central

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332

  6. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features tomore » cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific mineralization markers. • p75{sup +} cells are pure stem cells and able to differentiate to neuronal cells.« less

  7. Dynamic regulation of nuclear architecture and mechanics—a rheostatic role for the nucleus in tailoring cellular mechanosensitivity

    PubMed Central

    Lee, David A.

    2017-01-01

    ABSTRACT Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response. PMID:28152338

  8. Dynamic regulation of nuclear architecture and mechanics-a rheostatic role for the nucleus in tailoring cellular mechanosensitivity.

    PubMed

    Thorpe, Stephen D; Lee, David A

    2017-05-04

    Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response.

  9. Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells

    PubMed Central

    Zhao, Ming-Tao; Jahanbani, Fereshteh; Lee, Won Hee; Snyder, Michael P.

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4, SOX2, C-MYC, and KLF4). Patient-specific iPSC derivatives (e.g., neuronal, cardiac, hepatic, muscular, and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study, we aimed to evaluate whether the cellular origin can affect the differentiation, in vivo behavior, and single-cell gene expression signatures of human iPSC–derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs), ECs (EC-iPSCs), and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin, BMP4, bFGF, and VEGF. EC-iPSCs at early passage (10 < P < 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC–ECs were recovered with a higher percentage of CD31+ population and expressed higher EC-specific gene expression markers (PECAM1, KDR, and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC–ECs maintained a higher CD31+ population than FB-iPSC–ECs and CPC-iPSC–ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence, the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation. PMID:27398408

  10. Lhx4 and Prop1 are required for cell survival and expansion of the pituitary primordia.

    PubMed

    Raetzman, Lori T; Ward, Robert; Camper, Sally A

    2002-09-01

    Deficiencies in the homeobox transcription factors LHX4 and PROP1 cause pituitary hormone deficiency in both humans and mice. Lhx4 and Prop1 mutants exhibit severe anterior pituitary hypoplasia resulting from limited differentiation and expansion of most specialized cell types. Little is known about the mechanism through which these genes promote pituitary development. In this study we determined that the hypoplasia in Lhx4 mutants results from increased cell death and that the reduced differentiation is attributable to a temporal shift in Lhx3 activation. In contrast, Prop1 mutants exhibit normal cell proliferation and cell survival but show evidence of defective dorsal-ventral patterning. Molecular genetic analyses reveal that Lhx4 and Prop1 have overlapping functions in early pituitary development. Double mutants exhibit delayed corticotrope specification and complete failure of all other anterior pituitary cell types to differentiate. Thus, Lhx4 and Prop1 have critical, but mechanistically different roles in specification and expansion of specialized anterior pituitary cells.

  11. Comparative study of P19 EC stem cell differentiation in between conventional hanging drop and the zebrafish chorion as a bio-derived material.

    PubMed

    Dae Seok Na; Lee, Hwang; Sun Uk Kim; Chang Nam Hwang; Sang Ho Lee; Ji Yoon Kang; Jai Kyeong Kim; James Jungho Pak

    2008-07-01

    Various materials including glass and polymers have been widely used for stem cell culture due to their biocompatibility. However, the roles of these materials are fundamentally limited because they cannot realize or imitate the complex biological functions of living tissues, except in very simple cases. Here, the development of a bio-derived material suitable for stem cell culture and improvement of differentiation efficiency to specific cell lineages with no stimulating agents by using a chorion obtained from a fertilized zebrafish egg through the removal of the yolk and embryonic cell mass from the egg is reported. Mouse P19 EC stem cells introduced into the empty chorion form a uniform embryoid body (EB) without addition of any inducing agent. It is demonstrated that the zebrafish chorion with nanopores improves efficiencies greatly in the EB formation, cell proliferation, and lineage-specific differentiations compared to those of the conventional hanging drop culture method.

  12. The transcriptional repressor DREAM is involved in thyroid gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Andrea, Barbara; Di Palma, Tina; Mascia, Anna

    2005-04-15

    Downstream regulatory element antagonistic modulator (DREAM) was originally identified in neuroendocrine cells as a calcium-binding protein that specifically binds to downstream regulatory elements (DRE) on DNA, and represses transcription of its target genes. To explore the possibility that DREAM may regulate the endocrine activity of the thyroid gland, we analyzed its mRNA expression in undifferentiated and differentiated thyroid cells. We demonstrated that DREAM is expressed in the normal thyroid tissue as well as in differentiated thyroid cells in culture while it is absent in FRT poorly differentiated cells. In the present work, we also show that DREAM specifically binds tomore » DRE sites identified in the 5' untranslated region (UTR) of the thyroid-specific transcription factors Pax8 and TTF-2/FoxE1 in a calcium-dependent manner. By gel retardation assays we demonstrated that thapsigargin treatment increases the binding of DREAM to the DRE sequences present in Pax8 and TTF-2/Foxe1 5' UTRs, and this correlates with a significant reduction of the expression of these genes. Interestingly, in poorly differentiated thyroid cells overexpression of exogenous DREAM strongly inhibits Pax8 expression. Moreover, we provide evidence that a mutated form of DREAM unable to bind Ca{sup 2+} interferes with thyroid cell proliferation. Therefore, we propose that in thyroid cells DREAM is a mediator of the calcium-signaling pathway and it is involved in the regulation of thyroid cell function.« less

  13. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Hakhamaneshi, Mohammad Saeed; Ebadifar, Asghar; Fathi, Fardin; Baharvand, Hossein

    2016-05-20

    Embryonic stem (ES) cell-derived hepatocytes have the potential to be used for basic research, regenerative medicine, and drug discovery. Recent reports demonstrated that in addition to conventional differentiation inducers such as chemical compounds and cytokines, overexpression of lineage-specific transcription factors could induce ES cells to differentiate to a hepatic fate. Here, we hypothesized that lentivirus-mediated inducible expression of hepatic lineage transcription factors could enhance mouse ES cells to hepatocyte-like cells. We screened the effects of candidate transcription factors Hnf1b, Hnf1a, Hnf4a, Foxa1, Foxa3 and Hex, and determined that the combination of Hnf1b/Foxa3 promoted expression of several hepatic lineage-specific markers and proteins, in addition to glycogen storage, ICG uptake, and secretion of albumin and urea. The differentiated cells were engraftable and expressed albumin when transplanted into a carbon tetrachloride-injured mouse model. These results demonstrated the crucial role of Hnf1b and Foxa3 in hepatogenesis in vitro and provided a valuable tool for the efficient differentiation of HLCs from ES cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Spdef Null Mice Lack Conjunctival Goblet Cells and Provide a Model of Dry Eye

    PubMed Central

    Marko, Christina K.; Menon, Balaraj B.; Chen, Gang; Whitsett, Jeffrey A.; Clevers, Hans; Gipson, Ilene K.

    2014-01-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef−/− mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef−/− mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef−/− mice revealed down-regulation of goblet cell–specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef−/− mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. PMID:23665202

  15. Dosage-Sensitive Function of RETINOBLASTOMA RELATED and Convergent Epigenetic Control Are Required during the Arabidopsis Life Cycle

    PubMed Central

    Johnston, Amal J.; Kirioukhova, Olga; Barrell, Philippa J.; Rutten, Twan; Moore, James M.; Baskar, Ramamurthy; Grossniklaus, Ueli; Gruissem, Wilhelm

    2010-01-01

    The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell cycle regulator, controls cell proliferation, differentiation, and regulation of a subset of Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the male and female gametophytes, as well as cell fate establishment in the male gametophyte. Here we demonstrate that RBR is also essential for cell fate determination in the female gametophyte, as revealed by loss of cell-specific marker expression in all the gametophytic cells that lack RBR. Maintenance of genome integrity also requires RBR, because diploid plants heterozygous for rbr (rbr/RBR) produce an abnormal portion of triploid offspring, likely due to gametic genome duplication. While the sporophyte of the diploid mutant plants phenocopied wild type due to the haplosufficiency of RBR, genetic analysis of tetraploid plants triplex for rbr (rbr/rbr/rbr/RBR) revealed that RBR has a dosage-dependent pleiotropic effect on sporophytic development, trichome differentiation, and regulation of PRC2 subunit genes CURLY LEAF (CLF) and VERNALIZATION 2 (VRN2), and MET1 in leaves. There were, however, no obvious cell cycle and cell proliferation defects in these plant tissues, suggesting that a single functional RBR copy in tetraploids is capable of maintaining normal cell division but is not sufficient for distinct differentiation and developmental processes. Conversely, in leaves of mutants in sporophytic PRC2 subunits, trichome differentiation was also affected and expression of RBR and MET1 was reduced, providing evidence for a RBR-PRC2-MET1 regulatory feedback loop involved in sporophyte development. Together, dosage-sensitive RBR function and its genetic interaction with PRC2 genes and MET1 must have been recruited during plant evolution to control distinct generation-specific cell fate, differentiation, and development. PMID:20585548

  16. Differentiation of human foreskin fibroblast-derived induced pluripotent stem cells into hepatocyte-like cells.

    PubMed

    Wang, Jianjun; Zhao, Ping; Wan, Zhihong; Jin, Xueyuan; Cheng, Yongqian; Yan, Tao; Qing, Song; Ding, Ning; Xin, Shaojie

    2016-10-01

    The aim of this study was to investigate the differentiation potential of induced pluripotent stem cells (iPSCs) derived from human foreskin fibroblasts (HFFs) into hepatocyte-like cells (HLCs). The iPSCs were firstly induced by transduction of OCT4, SOX2, KLF4, and c-MYC into HFFs using retrovirus. Afterwards, expressions of pluripotency factors were identified by semiquantitative reverse transcription-polymerase chain reaction and immunofluorescence staining, and karyotype, embryoid, and teratoma were observed by microscope. Then, iPSCs were gradually differentiated into endoderm cells, hepatic progenitor cells, and mature HLCs by special culture medium. During this process, differentiation efficiency into each kind of cells was evaluated by detecting SOX17, HNF4a, and ALB using flow cytometry, respectively. Besides, enzyme-linked immunosorbent assay was conducted to detect the secretion of ALB in iPSC-induced HLCs and quantitative reverse transcription-polymerase chain reaction was performed to detect the expression levels of hepatocyte-specific genes. The iPSCs were successfully induced by HFFs, which exhibited typical embryonic stem cells morphology, positive alkaline phosphatase staining, normal diploid karyotype, and positive expression of various pluripotency factors. Meanwhile, spherical embryoid and teratoma with 3 germ layers were formed by iPSCs. The iPSCs were consecutively induced into endoderm cells, hepatic progenitor cells and mature HLCs, and the differentiation efficiency was 55.7 ± 2.9%, 45.7 ± 4.8%, and 35.0 ± 3.9%, respectively. Besides, the secretion of ALB and expression of various hepatocyte-specific genes was highly detected in iPSC-induced HLCs. The iPSCs were successfully derived from HFFs and then differentiated into HLCs, which proved a new source for hepatocyte transplantation. HFFs were successfully induced into iPSCs by transduction of OCT4, SOX2, KLF4, and c-MYC. Positive expressions of various pluripotency factors were exhibited in HFFs-induced iPSCs. The iPSCs were consecutively induced into endoderm cells, hepatic progenitor cells, and mature HLCs. Various hepatocyte-specific genes were highly expressed in iPSC-induced HLCs. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Differential effects of retinoic acid (RA) and N-(4-hydroxyphenyl) retinamide (4-HPR) on cell growth, induction of differentiation, and changes in p34cdc2, Bcl-2, and actin expression in the human promyelocytic HL-60 leukemic cells.

    PubMed

    Dipietrantonio, A; Hsieh, T C; Wu, J M

    1996-07-25

    Incubation of the HL-60 cells with 3 microM of RA and 4-HPR resulted in suppression of cell growth and decrease in cell viability. A significant percentage of the RA-treated cells also displayed differentiation towards neutrophils, as assayed by changes in nitroblue tetrazolium reduction (NBT) and alpha-naphthyl-acetate esterase (ANAE) activities, whereas the 4-HPR treated cells remained essentially undifferentiated. Flow cytometric analysis showed 4-HPR to cause partial cell arrest in the G2/M phase after a 3-day treatment and an additional G1 phase arrest after a 7-day treatment. With RA-treated cells, a reduction in the percentage of cells in the G1 phase was observed after 7 days of treatment. In 4-HPR-treated cells an extra peak, characteristic of cells undergoing apoptosis, was found in the cell cycle phase distribution analysis. Determination of specific protein expression changes by Western blot analysis showed that the p34cdc2 was down-regulated by both chemicals. Furthermore, RA induced bcl-2 but prevented the processing of actin, whereas 4-HPR had little effect on bcl-2 but increased the specific processing of actin. These results suggest that RA promotes neutrophil differentiation and the establishment of a semi apoptosis-resistant state, possibly through the overexpression of the bcl-2 gene. By contrast, 4-HPR may trigger apoptosis by inducing overall cyto-architectural changes and specific DNA fragmentation subsequent to increased turnover of the protein actin.

  18. Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary.

    PubMed

    Minkina, Anna; Lindeman, Robin E; Gearhart, Micah D; Chassot, Anne-Amandine; Chaboissier, Marie-Christine; Ghyselinck, Norbert B; Bardwell, Vivian J; Zarkower, David

    2017-04-15

    Retinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the Dmrt1 mutant somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldh1a1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not prevent granulosa cell specification and oogenesis or abolish fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis

    PubMed Central

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K.

    2012-01-01

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3′ untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior. PMID:22645327

  20. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    PubMed

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  1. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds

    PubMed Central

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I

    2014-01-01

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells. PMID:24830447

  2. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds.

    PubMed

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I

    2014-05-16

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.

  3. Birthdating Studies Reshape Models for Pituitary Gland Cell Specification

    PubMed Central

    Davis, Shannon W.; Mortensen, Amanda H.; Camper, Sally A.

    2011-01-01

    The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke’s pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the post-natal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke’s pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke’s pouch are necessary for cell specification between e11.5 and e13.5 and that cell-cell communication likely plays an important role in regulating this process. PMID:21262217

  4. Birthdating studies reshape models for pituitary gland cell specification.

    PubMed

    Davis, Shannon W; Mortensen, Amanda H; Camper, Sally A

    2011-04-15

    The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke's pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke's pouch are necessary for cell specification between e11.5 and e13.5 and that cell-cell communication likely plays an important role in regulating this process. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets

    PubMed Central

    Nowicka, Malgorzata; Krieg, Carsten; Weber, Lukas M.; Hartmann, Felix J.; Guglietta, Silvia; Becher, Burkhard; Levesque, Mitchell P.; Robinson, Mark D.

    2017-01-01

    High dimensional mass and flow cytometry (HDCyto) experiments have become a method of choice for high throughput interrogation and characterization of cell populations.Here, we present an R-based pipeline for differential analyses of HDCyto data, largely based on Bioconductor packages. We computationally define cell populations using FlowSOM clustering, and facilitate an optional but reproducible strategy for manual merging of algorithm-generated clusters. Our workflow offers different analysis paths, including association of cell type abundance with a phenotype or changes in signaling markers within specific subpopulations, or differential analyses of aggregated signals. Importantly, the differential analyses we show are based on regression frameworks where the HDCyto data is the response; thus, we are able to model arbitrary experimental designs, such as those with batch effects, paired designs and so on. In particular, we apply generalized linear mixed models to analyses of cell population abundance or cell-population-specific analyses of signaling markers, allowing overdispersion in cell count or aggregated signals across samples to be appropriately modeled. To support the formal statistical analyses, we encourage exploratory data analysis at every step, including quality control (e.g. multi-dimensional scaling plots), reporting of clustering results (dimensionality reduction, heatmaps with dendrograms) and differential analyses (e.g. plots of aggregated signals). PMID:28663787

  6. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors

    PubMed Central

    Reichman, David E.; Park, Laura; Man, Limor; Redmond, David; Chao, Kenny; Harvey, Richard P.; Taketo, Makoto M.; Rosenwaks, Zev

    2018-01-01

    ABSTRACT Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs. PMID:29217753

  7. 1α,25(OH)2-Vitamin D3 Inhibits C2C12 Cell Differentiation by Activating c-Src and ERK1/2.

    PubMed

    Wang, Zhonghua; Jiang, Aijun; Mei, Jingwei; Zhang, Xinyan

    2018-05-01

    The steroid hormone 1α,25(OH)2-vitamin D3 (1,25-D3) induced some biological responses through activation of MAPK cascades in various cell types. It seems that 1,25-D3 plays different roles at different stages of proliferating, differentiating, and differentiated C2C12 cells. We wanted to detect the effect of 1,25-D3 on myogenic differentiation and the role of ERK1/2 in differentiating stage induced by 2% horse serum with 1,25-D3. In this study, cells were induced to differentiate with 2% horse serum until the 7th day (with addition of 1,25-D3 every two days). The protein level of MHC (myosin heavy chain) and phosphorylation level of Src and ERK1/2 were determined with western blot. U0126 (MEK inhibitor) and PP2 (Src specific inhibitor) were used to confirm the relationship between 1,25-D3, MHC, Src, and ERK1/2. 1,25-D3 inhibited differentiation of C2C12 cells and fusion of myotubes by phosphorylating and activating Src and ERK1/2. Phosphorylation of ERK1/2 was inhibited, not only by U0126 but also by PP2 (a Src specific inhibitor) which led to the promotion of differentiation of C2C12 cells; however, U0126 did not inhibit Src phosphorylation. These results suggested that 1,25-D3 possibly inhibited C2C12 differentiation through Src and ERK1/2, and Src played an upstream role in this signaling pathway.

  8. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    PubMed Central

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982

  9. Derivation of Multipotent Mesenchymal Precursors from Human Embryonic Stem Cells

    PubMed Central

    Barberi, Tiziano; Willis, Lucy M; Socci, Nicholas D; Studer, Lorenz

    2005-01-01

    Background Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. Methods and Findings Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. Conclusion Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications. PMID:15971941

  10. MicroRNA-127 Promotes Mesendoderm Differentiation of Mouse Embryonic Stem Cells by Targeting Left-Right Determination Factor 2.

    PubMed

    Ma, Haixia; Lin, Yu; Zhao, Zhen-Ao; Lu, Xukun; Yu, Yang; Zhang, Xiaoxin; Wang, Qiang; Li, Lei

    2016-06-03

    Specification of the three germ layers is a fundamental process and is essential for the establishment of organ rudiments. Multiple genetic and epigenetic factors regulate this dynamic process; however, the function of specific microRNAs in germ layer differentiation remains unknown. In this study, we established that microRNA-127 (miR-127) is related to germ layer specification via microRNA array analysis of isolated three germ layers of E7.5 mouse embryos and was verified through differentiation of mouse embryonic stem cells. miR-127 is highly expressed in endoderm and primitive streak. Overexpression of miR-127 increases and inhibition of miR-127 decreases the expression of mesendoderm markers. We further show that miR-127 promotes mesendoderm differentiation through the nodal pathway, a determinative signaling pathway in early embryogenesis. Using luciferase reporter assay, left-right determination factor 2 (Lefty2), an antagonist of nodal, is identified to be a novel target of miR-127. Furthermore, the role of miR-127 in mesendoderm differentiation is attenuated by Lefty2 overexpression. Altogether, our results indicate that miR-127 accelerates mesendoderm differentiation of mouse embryonic stem cells through nodal signaling by targeting Lefty2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Uhrf1 is indispensable for normal limb growth by regulating chondrocyte differentiation through specific gene expression.

    PubMed

    Yamashita, Michiko; Inoue, Kazuki; Saeki, Noritaka; Ideta-Otsuka, Maky; Yanagihara, Yuta; Sawada, Yuichiro; Sakakibara, Iori; Lee, Jiwon; Ichikawa, Koichi; Kamei, Yoshiaki; Iimura, Tadahiro; Igarashi, Katsuhide; Takada, Yasutsugu; Imai, Yuuki

    2018-01-08

    Transcriptional regulation can be tightly orchestrated by epigenetic regulators. Among these, ubiquitin-like with PHD and RING finger domains 1 (Uhrf1) is reported to have diverse epigenetic functions, including regulation of DNA methylation. However, the physiological functions of Uhrf1 in skeletal tissues remain unclear. Here, we show that limb mesenchymal cell-specific Uhrf1 conditional knockout mice ( Uhrf1 Δ Limb/ Δ Limb ) exhibit remarkably shortened long bones that have morphological deformities due to dysregulated chondrocyte differentiation and proliferation. RNA-seq performed on primary cultured chondrocytes obtained from Uhrf1 Δ Limb/ Δ Limb mice showed abnormal chondrocyte differentiation. In addition, integrative analyses using RNA-seq and MBD-seq revealed that Uhrf1 deficiency decreased genome-wide DNA methylation and increased gene expression through reduced DNA methylation in the promoter regions of 28 genes, including Hspb1 , which is reported to be an IL1-related gene and to affect chondrocyte differentiation. Hspb1 knockdown in cKO chondrocytes can normalize abnormal expression of genes involved in chondrocyte differentiation, such as Mmp13 These results indicate that Uhrf1 governs cell type-specific transcriptional regulation by controlling the genome-wide DNA methylation status and regulating consequent cell differentiation and skeletal maturation. © 2018. Published by The Company of Biologists Ltd.

  12. Safeguarding Stem Cell-Based Regenerative Therapy against Iatrogenic Cancerogenesis: Transgenic Expression of DNASE1, DNASE1L3, DNASE2, DFFB Controlled By POLA1 Promoter in Proliferating and Directed Differentiation Resisting Human Autologous Pluripotent Induced Stem Cells Leads to their Death

    PubMed Central

    Malecki, Marek; LaVanne, Christine; Alhambra, Dominique; Dodivenaka, Chaitanya; Nagel, Sarah; Malecki, Raf

    2014-01-01

    Introduction The worst possible complication of using stem cells for regenerative therapy is iatrogenic cancerogenesis. The ultimate goal of our work is to develop a self-triggering feedback mechanism aimed at causing death of all stem cells, which resist directed differentiation, keep proliferating, and can grow into tumors. Specific aim The specific aim was threefold: (1) to genetically engineer the DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter; (2) to bioengineer anti-SSEA-4 antibody guided vectors delivering transgenes to human undifferentiated and proliferating pluripotent stem cells; (3) to cause death of proliferating and directed differentiation resisting stem cells by transgenic expression of the human recombinant the DNases (hrDNases). Methods The DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter were genetically engineered. The vectors targeting specifically SSEA-4 expressing stem cells were bioengineered. The healthy volunteers’ bone marrow mononuclear cells (BMMCs) were induced into human, autologous, pluripotent stem cells with non-integrating plasmids. Directed differentiation of the induced stem cells into endothelial cells was accomplished with EGF and BMP. The anti-SSEA 4 antibodies’ guided DNA vectors delivered the transgenes for the human recombinant DNases’ into proliferating stem cells. Results Differentiation of the pluripotent induced stem cells into the endothelial cells was verified by highlighting formation of tight and adherens junctions through transgenic expression of recombinant fluorescent fusion proteins: VE cadherin, claudin, zona occludens 1, and catenin. Proliferation of the stem cells was determined through highlighting transgenic expression of recombinant fluorescent proteins controlled by POLA promoter, while also reporting expression of the transgenes for the hrDNases. Expression of the transgenes for the DNases resulted in complete collapse of the chromatin architecture and degradation of the proliferating cells’ genomic DNA. The proliferating stem cells, but not the differentiating ones, were effectively induced to die. Conclusion Herein, we describe attaining the proof-of-concept for the strategy, whereby transgenic expression of the genetically engineered human recombinant DNases in proliferating and directed differentiation resisting stem cells leads to their death. This novel strategy reduces the risk of iatrogenic neoplasms in stem cell therapy. PMID:25045589

  13. Polyclonal activation of human lymphocytes in vitro-II. Reappraisal of T and B cell-specific mitogens.

    PubMed

    Dosch, H M; Schuurman, R K; Gelfand, E W

    1980-08-01

    The capacity of the T cell mitogens phytohemagglutinin (PHA), concanavalin A (Con A), pokeweed mitogen (PWM), and Staphylococcus protein A (SpA) to induce B cell proliferation and differentiation was compared with the B cell mitogen, formalinized Staphylococcus aureus (STA). Lymphocyte subpopulations from normal donors and patients with various immunodeficiency diseases were studied. In the presence of the T cell mitogens, irradiated T cells were capable of providing a helper cell activity that enabled co-cultured B lymphocytes to proliferate in response to these mitogens and to differentiate into IgM-secreting (direct) hemolytic plaque-forming cells (PFC). In the PFC response, radioresistant T-helper and radiosensitive T-suppressor cell activities could be demonstrated. T-suppressor cell activity outweighed helper activity only in nonirradiated co-cultures stimulated with Con A. Patients with severe combined immunodeficiency lacked mitogen-induced helper T cells, whereas patients with various forms of humoral immune deficiency were normal in this respect. These findings and the tissue distribution of the helper activity is aquired early in post-thymic T cell differentiation. The data suggest that experiments with cell lineage-specific lymphocyte mitogens should be considered in the context of more complex cell-cell interactions.

  14. Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells

    PubMed Central

    Leddin, Mathias; Perrod, Chiara; Hoogenkamp, Maarten; Ghani, Saeed; Assi, Salam; Heinz, Sven; Wilson, Nicola K.; Follows, George; Schönheit, Jörg; Vockentanz, Lena; Mosammam, Ali M.; Chen, Wei; Tenen, Daniel G.; Westhead, David R.; Göttgens, Berthold

    2011-01-01

    The transcription factor PU.1 occupies a central role in controlling myeloid and early B-cell development, and its correct lineage-specific expression is critical for the differentiation choice of hematopoietic progenitors. However, little is known of how this tissue-specific pattern is established. We previously identified an upstream regulatory cis element whose targeted deletion in mice decreases PU.1 expression and causes leukemia. We show here that the upstream regulatory cis element alone is insufficient to confer physiologic PU.1 expression in mice but requires the cooperation with other, previously unidentified elements. Using a combination of transgenic studies, global chromatin assays, and detailed molecular analyses we present evidence that PU.1 is regulated by a novel mechanism involving cross talk between different cis elements together with lineage-restricted autoregulation. In this model, PU.1 regulates its expression in B cells and macrophages by differentially associating with cell type–specific transcription factors at one of its cis-regulatory elements to establish differential activity patterns at other elements. PMID:21239694

  15. Cell-Penetrating Peptide as a Means of Directing the Differentiation of Induced-Pluripotent Stem Cells.

    PubMed

    Kaitsuka, Taku; Tomizawa, Kazuhito

    2015-11-06

    Protein transduction using cell-penetrating peptides (CPPs) is useful for the delivery of large protein molecules, including some transcription factors. This method is safer than gene transfection methods with a viral vector because there is no risk of genomic integration of the exogenous DNA. Recently, this method was reported as a means for the induction of induced pluripotent stem (iPS) cells, directing the differentiation into specific cell types and supporting gene editing/correction. Furthermore, we developed a direct differentiation method to obtain a pancreatic lineage from mouse and human pluripotent stem cells via the protein transduction of three transcription factors, Pdx1, NeuroD, and MafA. Here, we discuss the possibility of using CPPs as a means of directing the differentiation of iPS cells and other stem cell technologies.

  16. Delivery of Differentiation Factors by Mesoporous Silica Particles Assists Advanced Differentiation of Transplanted Murine Embryonic Stem Cells

    PubMed Central

    Kozhevnikova, Mariya; König, Niclas; Zhou, Chunfang; Leao, Richardson; Knöpfel, Thomas; Pankratova, Stanislava; Trolle, Carl; Berezin, Vladimir; Bock, Elisabeth; Aldskogius, Håkan

    2013-01-01

    Stem cell transplantation holds great hope for the replacement of damaged cells in the nervous system. However, poor long-term survival after transplantation and insufficiently robust differentiation of stem cells into specialized cell types in vivo remain major obstacles for clinical application. Here, we report the development of a novel technological approach for the local delivery of exogenous trophic factor mimetics to transplanted cells using specifically designed silica nanoporous particles. We demonstrated that delivering Cintrofin and Gliafin, established peptide mimetics of the ciliary neurotrophic factor and glial cell line-derived neurotrophic factor, respectively, with these particles enabled not only robust functional differentiation of motor neurons from transplanted embryonic stem cells but also their long-term survival in vivo. We propose that the delivery of growth factors by mesoporous nanoparticles is a potentially versatile and widely applicable strategy for efficient differentiation and functional integration of stem cell derivatives upon transplantation. PMID:24089415

  17. Mouse ES cells have a potential to differentiate into odontoblast-like cells using hanging drop method.

    PubMed

    Kawai, R; Ozeki, N; Yamaguchi, H; Tanaka, T; Nakata, K; Mogi, M; Nakamura, H

    2014-05-01

    We examined whether mouse embryonic stem (ES) cells can differentiate into odontoblast-like cells without epithelial-mesenchymal interaction. Cells were cultured by the 'hanging drop' method using a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). Expression of odontoblast-related mRNA and protein, and cell proliferation were performed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and WST-1 assay, respectively. Cells potently expressed odontoblast-related cell marker mRNAs following induction of odontoblastic differentiation. Dentin sialophosphoprotein, a marker of mature odontoblasts, was strongly expressed in differentiated ES cells. The cells also acquired an odontoblast-like functional phenotype, as evidenced by the appearance of alkaline phosphatase activity and calcification. The cell-surface expression of α2, α6, αV and αVβ3 integrin proteins was rapidly upregulated in differentiated cells. Finally, anti-α2 integrin antibody suppressed the expression of odontoblastic markers in cells grown using this culture system, suggesting that α2 integrin expression in ES cells triggers their differentiation into odontoblast-like cells. Mouse ES cells cultured by the 'hanging drop' method are able to differentiate into cells with odontoblast-specific physiological functions and cell-surface integrin protein expression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Mycobacterium tuberculosis strains exhibit differential and strain-specific molecular signatures in pulmonary epithelial cells.

    PubMed

    Mvubu, Nontobeko Eunice; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-12-01

    Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Magnetic-Activated Cell Sorting for the Fast and Efficient Separation of Human and Rodent Schwann Cells from Mixed Cell Populations.

    PubMed

    Ravelo, Kristine M; Andersen, Natalia D; Monje, Paula V

    2018-01-01

    To date, magnetic-activated cell sorting (MACS) remains a powerful method to isolate distinct cell populations based on differential cell surface labeling. Optimized direct and indirect MACS protocols for cell immunolabeling are presented here as methods to divest Schwann cell (SC) cultures of contaminating cells (specifically, fibroblast cells) and isolate SC populations at different stages of differentiation. This chapter describes (1) the preparation of single-cell suspensions from established human and rat SC cultures, (2) the design and application of cell selection strategies using SC-specific (p75 NGFR , O4, and O1) and fibroblast-specific (Thy-1) markers, and (3) the characterization of both the pre- and post-sorting cell populations. A simple protocol for the growth of hybridoma cell cultures as a source of monoclonal antibodies for cell surface immunolabeling of SCs and fibroblasts is provided as a cost-effective alternative for commercially available products. These steps allow for the timely and efficient recovery of purified SC populations without compromising the viability and biological activity of the cells.

  20. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation

    PubMed Central

    Dezawa, Mari; Kanno, Hiroshi; Hoshino, Mikio; Cho, Hirotomi; Matsumoto, Naoya; Itokazu, Yutaka; Tajima, Nobuyoshi; Yamada, Hitoshi; Sawada, Hajime; Ishikawa, Hiroto; Mimura, Toshirou; Kitada, Masaaki; Suzuki, Yoshihisa; Ide, Chizuka

    2004-01-01

    Bone marrow stromal cells (MSCs) have the capability under specific conditions of differentiating into various cell types such as osteocytes, chondrocytes, and adipocytes. Here we demonstrate a highly efficient and specific induction of cells with neuronal characteristics, without glial differentiation, from both rat and human MSCs using gene transfection with Notch intracellular domain (NICD) and subsequent treatment with bFGF, forskolin, and ciliary neurotrophic factor. MSCs expressed markers related to neural stem cells after transfection with NICD, and subsequent trophic factor administration induced neuronal cells. Some of them showed voltage-gated fast sodium and delayed rectifier potassium currents and action potentials compatible with characteristics of functional neurons. Further treatment of the induced neuronal cells with glial cell line–derived neurotrophic factor (GDNF) increased the proportion of tyrosine hydroxylase–positive and dopamine-producing cells. Transplantation of these GDNF-treated cells showed improvement in apomorphine-induced rotational behavior and adjusting step and paw-reaching tests following intrastriatal implantation in a 6-hydroxy dopamine rat model of Parkinson disease. This study shows that a population of neuronal cells can be specifically generated from MSCs and that induced cells may allow for a neuroreconstructive approach. PMID:15199405

  1. Pancreatic Endoderm-Derived From Diabetic Patient-Specific Induced Pluripotent Stem Cell Generates Glucose-Responsive Insulin-Secreting Cells.

    PubMed

    Rajaei, Bahareh; Shamsara, Mehdi; Amirabad, Leila Mohammadi; Massumi, Mohammad; Sanati, Mohammad Hossein

    2017-10-01

    Human-induced pluripotent stem cells (hiPSCs) can potentially serve as an invaluable source for cell replacement therapy and allow the creation of patient- and disease-specific stem cells without the controversial use of embryos and avoids any immunological incompatibility. The generation of insulin-producing pancreatic β-cells from pluripotent stem cells in vitro provides an unprecedented cell source for personal drug discovery and cell transplantation therapy in diabetes. A new five-step protocol was introduced in this study, effectively induced hiPSCs to differentiate into glucose-responsive insulin-producing cells. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, primitive gut-tube endoderm, posterior foregut, pancreatic endoderm, and endocrine precursor. Each stage of differentiation were characterized by stage-specific markers. The produced cells exhibited many properties of functional β-cells, including expression of critical β-cells transcription factors, the potency to secrete C-peptide in response to high levels of glucose and the presence of mature endocrine secretory granules. This high efficient differentiation protocol, established in this study, yielded 79.18% insulin-secreting cells which were responsive to glucose five times higher than the basal level. These hiPSCs-derived glucose-responsive insulin-secreting cells might provide a promising approach for the treatment of type I diabetes mellitus. J. Cell. Physiol. 232: 2616-2625, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Nicotinamide alone accelerates the conversion of mouse embryonic stem cells into mature neuronal populations

    PubMed Central

    Griffin, Síle M.; Pickard, Mark R.; Orme, Rowan P.; Hawkins, Clive P.; Williams, Adrian C.

    2017-01-01

    Introduction Vitamin B3 has been shown to play an important role during embryogenesis. Specifically, there is growing evidence that nicotinamide, the biologically active form of vitamin B3, plays a critical role as a morphogen in the differentiation of stem cells to mature cell phenotypes, including those of the central nervous system (CNS). Detailed knowledge of the action of small molecules during neuronal differentiation is not only critical for uncovering mechanisms underlying lineage-specification, but also to establish more effective differentiation protocols to obtain clinically relevant cells for regenerative therapies for neurodegenerative conditions such as Huntington’s disease (HD). Thus, this study aimed to investigate the potential of nicotinamide to promote the conversion of stem cells to mature CNS neurons. Methods Nicotinamide was applied to differentiating mouse embryonic stem cells (mESC; Sox1GFP knock-in 46C cell line) during their conversion towards a neural fate. Cells were assessed for changes in their proliferation, differentiation and maturation; using immunocytochemistry and morphometric analysis methods. Results Results presented indicate that 10 mM nicotinamide, when added at the initial stages of differentiation, promoted accelerated progression of ESCs to a neural lineage in adherent monolayer cultures. By 14 days in vitro (DIV), early exposure to nicotinamide was shown to increase the numbers of differentiated βIII-tubulin-positive neurons. Nicotinamide decreased the proportion of pluripotent stem cells, concomitantly increasing numbers of neural progenitors at 4 DIV. These progenitors then underwent rapid conversion to neurons, observed by a reduction in Sox 1 expression and decreased numbers of neural progenitors in the cultures at 14 DIV. Furthermore, GABAergic neurons generated in the presence of nicotinamide showed increased maturity and complexity of neurites at 14 DIV. Therefore, addition of nicotinamide alone caused an accelerated passage of pluripotent cells through lineage specification and further to non-dividing mature neurons. Conclusions Our results show that, within an optimal dose range, nicotinamide is able to singly and selectively direct the conversion of embryonic stem cells to mature neurons, and therefore may be a critical factor for normal brain development, thus supporting previous evidence of the fundamental role of vitamins and their metabolites during early CNS development. In addition, nicotinamide may offer a simple effective supplement to enhance the conversion of stem cells to clinically relevant neurons. PMID:28817722

  3. Egr-5 is a post-mitotic regulator of planarian epidermal differentiation

    PubMed Central

    Tu, Kimberly C; Cheng, Li-Chun; TK Vu, Hanh; Lange, Jeffrey J; McKinney, Sean A; Seidel, Chris W; Sánchez Alvarado, Alejandro

    2015-01-01

    Neoblasts are an abundant, heterogeneous population of adult stem cells (ASCs) that facilitate the maintenance of planarian tissues and organs, providing a powerful system to study ASC self-renewal and differentiation dynamics. It is unknown how the collective output of neoblasts transit through differentiation pathways to produce specific cell types. The planarian epidermis is a simple tissue that undergoes rapid turnover. We found that as epidermal progeny differentiate, they progress through multiple spatiotemporal transition states with distinct gene expression profiles. We also identified a conserved early growth response family transcription factor, egr-5, that is essential for epidermal differentiation. Disruption of epidermal integrity by egr-5 RNAi triggers a global stress response that induces the proliferation of neoblasts and the concomitant expansion of not only epidermal, but also multiple progenitor cell populations. Our results further establish the planarian epidermis as a novel paradigm to uncover the molecular mechanisms regulating ASC specification in vivo. DOI: http://dx.doi.org/10.7554/eLife.10501.001 PMID:26457503

  4. Regulator of differentiation 1 (ROD1) binds to the amphipathic C-terminal peptide of thrombospondin-4 and is involved in its mitogenic activity.

    PubMed

    Sadvakassova, Gulzhakhan; Dobocan, Monica C; Difalco, Marcos R; Congote, Luis F

    2009-09-01

    The matrix protein thrombospondin-4 has an acidic amphipathic C-terminal peptide (C21) which stimulates erythroid cell proliferation. Here we show that C21 stimulates red cell formation in anemic mice in vivo. In vitro experiments indicated that the peptide-mediated increase of erythroid colony formation in cultures of human CD34+ hematopoietic progenitor cells was possible only under continuous presence of erythropoietin. In the absence of this cytokine, C21 stimulated exclusively myeloid colony formation. Therefore, the peptide is not a specific erythroid differentiation factor. In fact, it is mitogenic in non-erythroid cells, such as skin fibroblasts and kidney epithelial cells. In erythroleukemic TF-1 cells, it actually decreased the production of the erythroid differentiation marker glycophorin A. C21-affinity chromatography revealed regulator of differentiation 1 (ROD1) as a major C21-binding protein. ROD1 is the hematopoietic cell paralog of polypyrimidine tract binding proteins (PTBs), RNA splice regulators which regulate differentiation by repressing tissue-specific exons. ROD1 binding to C21 was strongly inhibited by synthetic RNAs in the order poly A > poly U > poly G = poly C and was weakly inhibited by a synthetic phosphorylated peptide mimicking the C-terminal domain of RNA polymerase II. Cellular overexpression or knockdown experiments of ROD1 suggest a role for this protein in the mitogenic activity of C21. Since the nuclear proteins ROD1 and PTBs regulate differentiation at a posttranscriptional level and there is a fast nuclear uptake of C21, we put forward the idea that the peptide is internalized, goes to the nucleus and maintains cells in a proliferative state by supporting ROD1-mediated inhibition of differentiation.

  5. Primary Metabolism during Biosynthesis of Secondary Wall Polymers of Protoxylem Vessel Elements1[OPEN

    PubMed Central

    Morisaki, Keiko; Sawada, Yuji; Sano, Ryosuke; Yamamoto, Atsushi; Kurata, Tetsuya; Suzuki, Shiro; Matsuda, Mami; Hasunuma, Tomohisa; Hirai, Masami Yokota

    2016-01-01

    Xylem vessels, the water-conducting cells in vascular plants, undergo characteristic secondary wall deposition and programmed cell death. These processes are regulated by the VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors. Here, to identify changes in metabolism that occur during protoxylem vessel element differentiation, we subjected tobacco (Nicotiana tabacum) BY-2 suspension culture cells carrying an inducible VND7 system to liquid chromatography-mass spectrometry-based wide-target metabolome analysis and transcriptome analysis. Time-course data for 128 metabolites showed dynamic changes in metabolites related to amino acid biosynthesis. The concentration of glyceraldehyde 3-phosphate, an important intermediate of the glycolysis pathway, immediately decreased in the initial stages of cell differentiation. As cell differentiation progressed, specific amino acids accumulated, including the shikimate-related amino acids and the translocatable nitrogen-rich amino acid arginine. Transcriptome data indicated that cell differentiation involved the active up-regulation of genes encoding the enzymes catalyzing fructose 6-phosphate biosynthesis from glyceraldehyde 3-phosphate, phosphoenolpyruvate biosynthesis from oxaloacetate, and phenylalanine biosynthesis, which includes shikimate pathway enzymes. Concomitantly, active changes in the amount of fructose 6-phosphate and phosphoenolpyruvate were detected during cell differentiation. Taken together, our results show that protoxylem vessel element differentiation is associated with changes in primary metabolism, which could facilitate the production of polysaccharides and lignin monomers and, thus, promote the formation of the secondary cell wall. Also, these metabolic shifts correlate with the active transcriptional regulation of specific enzyme genes. Therefore, our observations indicate that primary metabolism is actively regulated during protoxylem vessel element differentiation to alter the cell’s metabolic activity for the biosynthesis of secondary wall polymers. PMID:27600813

  6. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.

    PubMed

    Lee, Wonjae; Park, Jon

    2016-07-06

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  7. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  8. 3D Culture for Self-Formation of the Cerebellum from Human Pluripotent Stem Cells Through Induction of the Isthmic Organizer.

    PubMed

    Muguruma, Keiko

    2017-01-01

    Pluripotent stem cells (PSCs) possess self-organizing abilities in 3D culture. This property has been demonstrated in recent studies, including the generation of various neuroectodermal and endodermal tissues. For example, PSCs are able to differentiate into specific type of neural tissues, such as the neocortex and the optic cup, in response to local positional information brought about by signals during embryogenesis. In contrast, the generation of cerebellar tissue from PSCs requires a secondary induction by a signaling center, called the isthmic organizer, which first appears in the cell aggregate in 3D culture. Such developmental complexity of cerebellum has hampered establishment of effective differentiation culture system from PSCs, thus far.We recently reported that cerebellar neurons are generated from human PSCs (hPSCs). In this chapter, we describe an efficient protocol for differentiation of 3D cerebellar neuroepithelium from hPSCs. We also describe the protocols for further differentiation into specific neurons in the cerebellar cortex, such as Purkinje cells and the granule cells.

  9. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    PubMed Central

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  10. Stage-specific effects of Notch activation during skeletal myogenesis

    PubMed Central

    Bi, Pengpeng; Yue, Feng; Sato, Yusuke; Wirbisky, Sara; Liu, Weiyi; Shan, Tizhong; Wen, Yefei; Zhou, Daoguo; Freeman, Jennifer; Kuang, Shihuan

    2016-01-01

    Skeletal myogenesis involves sequential activation, proliferation, self-renewal/differentiation and fusion of myogenic stem cells (satellite cells). Notch signaling is known to be essential for the maintenance of satellite cells, but its function in late-stage myogenesis, i.e. post-differentiation myocytes and post-fusion myotubes, is unknown. Using stage-specific Cre alleles, we uncovered distinct roles of Notch1 in mononucleated myocytes and multinucleated myotubes. Specifically, constitutive Notch1 activation dedifferentiates myocytes into Pax7 quiescent satellite cells, leading to severe defects in muscle growth and regeneration, and postnatal lethality. By contrast, myotube-specific Notch1 activation improves the regeneration and exercise performance of aged and dystrophic muscles. Mechanistically, Notch1 activation in myotubes upregulates the expression of Notch ligands, which modulate Notch signaling in the adjacent satellite cells to enhance their regenerative capacity. These results highlight context-dependent effects of Notch activation during myogenesis, and demonstrate that Notch1 activity improves myotube’s function as a stem cell niche. DOI: http://dx.doi.org/10.7554/eLife.17355.001 PMID:27644105

  11. Dynamics of γ-tubulin cytoskeleton in HL-60 leukemia cells undergoing differentiation and apoptosis by all-trans retinoic acid.

    PubMed

    Shariftabrizi, Ahmad; Ahmadian, Shahin; Pazhang, Yaghub

    2012-02-01

    Microtubules are important components of the cell cytoskeleton, participating in protein localization and cell signaling. The capacity of leukemia cells to re-organize their microtubules is considered an integral part of differentiation in these cells in order to become mature granulocytes through treatment with all-trans retinoic acid (ATRA), an established drug for treating acute promyelocytic leukemia. In this study we examined γ-, α- and acetylated-α-tubulin content, their patterns of distribution in the cytoplasm, and the potency of centrosomes in re-organizing microtubules in different stages of ATRA-induced differentiation and apoptosis of the HL-60 cell line. The γ-tubulin content was dramatically increased following differentiation of HL-60 cells, and was then decreased after apoptosis. We also found that γ-tubulin had a diffuse, cytoplasmic pattern following apoptosis compared to the focal, centrosomal accumulation of γ-tubulin in differentiated cells. Differentiated cells had the ability to re-organize their microtubule network following nocodazole challenge testing, whereas undifferentiated cells did not show a similar ability. α-tubulin was more regularly organized in differentiated cells, and did not reveal any specific pattern of polymerization in apoptotic cells. Acetylated-α-tubulin generally followed the same organization patterns after differentiation, as that which occurred for α-tubulin. Our data is suggestive of a centrosomal and organized nucleation pattern of microtubules in HL-60 cells following differentiation, possibly mediated through up-regulation of γ-tubulin.

  12. Formation of Stomach Tissue by Organoid Culture Using Mouse Embryonic Stem Cells.

    PubMed

    Noguchi, Taka-Aki K; Kurisaki, Akira

    2017-01-01

    In this chapter, we describe a method for the induction of stomach organoids from mouse embryonic stem (ES) cells. We used an embryoid body-based differentiation method to induce gastric primordial epithelium covered with mesenchyme and further differentiate it in Matrigel by 3D culture. The differentiated organoid contains both corpus- and antrum-specific mature gastric tissue cells. This protocol may be useful for a variety of studies in developmental biology and disease modeling of the stomach.

  13. Role of substrate biomechanics in controlling (stem) cell fate: Implications in regenerative medicine.

    PubMed

    Macri-Pellizzeri, Laura; De-Juan-Pardo, Elena M; Prosper, Felipe; Pelacho, Beatriz

    2018-04-01

    Tissue-specific stem cells reside in a specialized environment known as niche. The niche plays a central role in the regulation of cell behaviour and, through the concerted action of soluble molecules, supportive somatic cells, and extracellular matrix components, directs stem cells to proliferate, differentiate, or remain quiescent. Great efforts have been done to decompose and separately analyse the contribution of these cues in the in vivo environment. Specifically, the mechanical properties of the extracellular matrix influence many aspects of cell behaviour, including self-renewal and differentiation. Deciphering the role of biomechanics could thereby provide important insights to control the stem cells responses in a more effective way with the aim to promote their therapeutic potential. In this review, we provide a wide overview of the effect that the microenvironment stiffness exerts on the control of cell behaviour with a particular focus on the induction of stem cells differentiation. We also describe the process of mechanotransduction and the molecular effectors involved. Finally, we critically discuss the potential involvement of tissue biomechanics in the design of novel tissue engineering strategies. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro

    NASA Technical Reports Server (NTRS)

    Uzawa, K.; Grzesik, W. J.; Nishiura, T.; Kuznetsov, S. A.; Robey, P. G.; Brenner, D. A.; Yamauchi, M.

    1999-01-01

    The pattern of lysyl hydroxylation in the nontriple helical domains of collagen is critical in determining the cross-linking pathways that are tissue specific. We hypothesized that the tissue specificity of type I collagen cross-linking is, in part, due to the differential expression of lysyl hydroxylase genes (Procollagen-lysine,2-oxyglutarate,5-dioxygenase 1, 2, and 3 [PLOD1, PLOD2, and PLOD3]). In this study, we have examined the expression patterns of these three genes during the course of in vitro differentiation of human osteoprogenitor cells (bone marrow stromal cells [BMSCs]) and normal skin fibroblasts (NSFs). In addition, using the medium and cell layer/matrix fractions in these cultures, lysine hydroxylation of type I collagen alpha chains and collagen cross-linking chemistries have been characterized. High levels of PLOD1 and PLOD3 genes were expressed in both BMSCs and NSFs, and the expression levels did not change in the course of differentiation. In contrast to the PLOD1 and PLOD3 genes, both cell types showed low PLOD2 gene expression in undifferentiated and early differentiated conditions. However, fully differentiated BMSCs, but not NSFs, exhibited a significantly elevated level (6-fold increase) of PLOD2 mRNA. This increase coincided with the onset of matrix mineralization and with the increase in lysyl hydroxylation in the nontriple helical domains of alpha chains of type I collagen molecule. Furthermore, the collagen cross-links that are derived from the nontriple helical hydroxylysine-aldehyde were found only in fully differentiated BMSC cultures. The data suggests that PLOD2 expression is associated with lysine hydroxylation in the nontriple helical domains of collagen and, thus, could be partially responsible for the tissue-specific collagen cross-linking pattern.

  15. Endoderm development in Caenorhabditis elegans: the synergistic action of ELT-2 and -7 mediates the specification→differentiation transition.

    PubMed

    Sommermann, Erica M; Strohmaier, Keith R; Maduro, Morris F; Rothman, Joel H

    2010-11-01

    The transition from specification of cell identity to the differentiation of cells into an appropriate and enduring state is critical to the development of embryos. Transcriptional profiling in Caenorhabditis elegans has revealed a large number of genes that are expressed in the fully differentiated intestine; however, no regulatory factor has been found to be essential to initiate their expression once the endoderm has been specified. These gut-expressed genes possess a preponderance of GATA factor binding sites and one GATA factor, ELT-2, fulfills the expected characteristics of a key regulator of these genes based on its persistent expression exclusively in the developing and differentiated intestine and its ability to bind these regulatory sites. However, a striking characteristic of elt-2(0) knockout mutants is that while they die shortly after hatching owing to an obstructed gut passage, they nevertheless contain a gut that has undergone complete morphological differentiation. We have discovered a second gut-specific GATA factor, ELT-7, that profoundly synergizes with ELT-2 to create a transcriptional switch essential for gut cell differentiation. ELT-7 is first expressed in the early endoderm lineage and, when expressed ectopically, is sufficient to activate gut differentiation in nonendodermal progenitors. elt-7 is transcriptionally activated by the redundant endoderm-specifying factors END-1 and -3, and its product in turn activates both its own expression and that of elt-2, constituting an apparent positive feedback system. While elt-7 loss-of-function mutants lack a discernible phenotype, simultaneous loss of both elt-7 and elt-2 results in a striking all-or-none block to morphological differentiation of groups of gut cells with a region-specific bias, as well as reduced or abolished gut-specific expression of a number of terminal differentiation genes. ELT-2 and -7 synergize not only in activation of gene expression but also in repression of a gene that is normally expressed in the valve cells, which immediately flank the termini of the gut tube. Our results point to a developmental strategy whereby positive feedback and cross-regulatory interactions between two synergistically acting regulatory factors promote a decisive and persistent transition of specified endoderm progenitors into the program of intestinal differentiation. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Generation of monoclonal antibodies specific for cell surface molecules expressed on early mouse endoderm.

    PubMed

    Gadue, Paul; Gouon-Evans, Valerie; Cheng, Xin; Wandzioch, Ewa; Zaret, Kenneth S; Grompe, Markus; Streeter, Philip R; Keller, Gordon M

    2009-09-01

    The development of functional cell populations such as hepatocytes and pancreatic beta cells from embryonic stem cell (ESC) is dependent on the efficient induction of definitive endoderm early in the differentiation process. To monitor definitive endoderm formation in mouse ESC differentiation cultures in a quantitative fashion, we generated a reporter cell line that expresses human CD25 from the Foxa3 locus and human CD4 from the Foxa2 locus. Induction of these reporter ESCs with high concentrations of activin A led to the development of a CD25-Foxa3+CD4-Foxa2+ population within 4-5 days of culture. Isolation and characterization of this population showed that it consists predominantly of definitive endoderm that is able to undergo hepatic specification under the appropriate conditions. To develop reagents that can be used for studies on endoderm development from unmanipulated ESCs, from induced pluripotent stem cells, and from the mouse embryo, we generated monoclonal antibodies against the CD25-Foxa3+CD4-Foxa2+ population. With this approach, we identified two antibodies that react specifically with endoderm from ESC cultures and from the early embryo. The specificity of these antibodies enables one to quantitatively monitor endoderm development in ESC differentiation cultures, to study endoderm formation in the embryo, and to isolate pure populations of culture- or embryo-derived endodermal cells.

  17. Retinol Dehydrogenase-10 Regulates Pancreas Organogenesis and Endocrine Cell Differentiation via Paracrine Retinoic Acid Signaling.

    PubMed

    Arregi, Igor; Climent, Maria; Iliev, Dobromir; Strasser, Jürgen; Gouignard, Nadège; Johansson, Jenny K; Singh, Tania; Mazur, Magdalena; Semb, Henrik; Artner, Isabella; Minichiello, Liliana; Pera, Edgar M

    2016-12-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon + and insulin + cells. During the secondary transition, the reduction of Neurogenin3 + endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.

  18. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, D.; Oborn, C.J.; Li, M.L.

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appearedmore » to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.« less

  19. Regulation of epidermal cell fate in Arabidopsis roots: the importance of multiple feedback loops

    PubMed Central

    Schiefelbein, John; Huang, Ling; Zheng, Xiaohua

    2014-01-01

    The specification of distinct cell types in multicellular organisms is accomplished via establishment of differential gene expression. A major question is the nature of the mechanisms that establish this differential expression in time and space. In plants, the formation of the hair and non-hair cell types in the root epidermis has been used as a model to understand regulation of cell specification. Recent findings show surprising complexity in the number and the types of regulatory interactions between the multiple transcription factor genes/proteins influencing root epidermis cell fate. Here, we describe this regulatory network and the importance of the multiple feedback loops for its establishment and maintenance. PMID:24596575

  20. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    PubMed

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  1. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    PubMed

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  2. mAb C19 targets a novel surface marker for the isolation of human cardiac progenitor cells from human heart tissue and differentiated hESCs.

    PubMed

    Leung, Hau Wan; Moerkamp, Asja T; Padmanabhan, Jayanthi; Ng, Sze-Wai; Goumans, Marie-José; Choo, Andre

    2015-05-01

    Cardiac progenitor cells (CPCs) have been isolated from adult and developing hearts using an anti-mouse Sca-1 antibody. However, the absence of a human Sca-1 homologue has hampered the clinical application of the CPCs. Therefore, we generated novel monoclonal antibodies (mAbs) specifically raised against surface markers expressed by resident human CPCs. Here, we explored the suitability of one of these mAbs, mAb C19, for the identification, isolation and characterization of CPCs from fetal heart tissue and differentiating cultures of human embryonic stem cells (hESCs). Using whole-cell immunization, mAbs were raised against Sca-1+ CPCs and screened for reactivity to various CPC lines by flow cytometry. mAb C19 was found to be specific for Sca-1+ CPCs, with high cell surface binding capabilities. mAb C19 stained small stem-like cells in cardiac tissue sections. Moreover, during differentiation of hESCs towards cardiomyocytes, a transient population of cells with mAb C19 reactivity was identified and isolated using magnetic-activated cell sorting. Their cell fate was tracked and found to improve cardiomyocyte purity from hESC-derived cultures. mAb C19+ CPCs, from both hESC differentiation and fetal heart tissues, were maintained and expanded in culture, while retaining their CPC-like characteristics and their ability to further differentiate into cardiomyocytes by stimulation with TGFβ1. Finally, gene expression profiling of these mAb C19+ CPCs suggested a highly angiogenic nature, which was further validated by cell-based angiogenesis assays. mAb C19 is a new surface marker for the isolation of multipotent CPCs from both human heart tissues and differentiating hESCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.

    PubMed

    Faulkner-Jones, Alan; Fyfe, Catherine; Cornelissen, Dirk-Jan; Gardner, John; King, Jason; Courtney, Aidan; Shu, Wenmiao

    2015-10-21

    We report the first investigation into the bioprinting of human induced pluripotent stem cells (hiPSCs), their response to a valve-based printing process as well as their post-printing differentiation into hepatocyte-like cells (HLCs). HLCs differentiated from both hiPSCs and human embryonic stem cells (hESCs) sources were bioprinted and examined for the presence of hepatic markers to further validate the compatibility of the valve-based bioprinting process with fragile cell transfer. Examined cells were positive for nuclear factor 4 alpha and were demonstrated to secrete albumin and have morphology that was also found to be similar to that of hepatocytes. Both hESC and hiPSC lines were tested for post-printing viability and pluripotency and were found to have negligible difference in terms of viability and pluripotency between the printed and non-printed cells. hESC-derived HLCs were 3D printed using alginate hydrogel matrix and tested for viability and albumin secretion during the remaining differentiation and were found to be hepatic in nature. 3D printed with 40-layer of HLC-containing alginate structures reached peak albumin secretion at day 21 of the differentiation protocol. This work demonstrates that the valve-based printing process is gentle enough to print human pluripotent stem cells (hPSCs) (both hESCs and hiPSCs) while either maintaining their pluripotency or directing their differentiation into specific lineages. The ability to bioprint hPSCs will pave the way for producing organs or tissues on demand from patient specific cells which could be used for animal-free drug development and personalized medicine.

  4. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death.

    PubMed

    Almeida, Ana S; Soares, Nuno L; Vieira, Melissa; Gramsbergen, Jan Bert; Vieira, Helena L A

    2016-01-01

    Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO's improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO's increasing number of differentiated neurons in OHSC. In conclusion, CO's increasing number of differentiated neurons is a novel biological role disclosed herein. CO improves neuronal yield due to its capacity to reduce cell death, promoting an increase in proliferative population. However, one cannot disregard a direct CO's effect on specific cellular processes of neuronal differentiation. Further studies are needed to evaluate how CO can potentially modulate cell mechanisms involved in neuronal differentiation. In summary, CO appears as a promising therapeutic molecule to stimulate endogenous neurogenesis or to improve in vitro neuronal production for cell therapy strategies.

  5. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death

    PubMed Central

    Almeida, Ana S.; Soares, Nuno L.; Vieira, Melissa; Gramsbergen, Jan Bert

    2016-01-01

    Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO’s improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO’s increasing number of differentiated neurons in OHSC. In conclusion, CO’s increasing number of differentiated neurons is a novel biological role disclosed herein. CO improves neuronal yield due to its capacity to reduce cell death, promoting an increase in proliferative population. However, one cannot disregard a direct CO’s effect on specific cellular processes of neuronal differentiation. Further studies are needed to evaluate how CO can potentially modulate cell mechanisms involved in neuronal differentiation. In summary, CO appears as a promising therapeutic molecule to stimulate endogenous neurogenesis or to improve in vitro neuronal production for cell therapy strategies. PMID:27144388

  6. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells

    PubMed Central

    Huszar, Jessica M.; Payne, Christopher J.

    2014-01-01

    Chromatin remodeling is important for cell differentiation. Histone methyltransferase EZH2 and histone demethylase JMJD3 (KDM6B) modulate levels of histone H3 lysine 27 trimethylation (H3K27me3). Interplay between the two modulators influence lineage specification in stem cells. Here, we identified microRNA MIR146A to be a negative regulator of JMJD3. In the osteogenic differentiation of human mesenchymal stem cells (hMSCs), we observed an upregulation of JMJD3 and a downregulation of MIR146A. Blocking JMJD3 activity in differentiating hMSCs reduced transcript levels of osteogenic gene RUNX2. H3K27me3 levels decreased at the RUNX2 promoter during cell differentiation. Modulation of MIR146A levels in hMSCs altered JMJD3 and RUNX2 expression and affected osteogenic differentiation. We conclude that JMJD3 promotes osteogenesis in differentiating hMSCs, with MIR146A regulating JMJD3. PMID:24726732

  7. Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification

    PubMed Central

    Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.

    2016-01-01

    ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885

  8. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration.

    PubMed

    Dwane, Susan; Durack, Edel; Kiely, Patrick A

    2013-09-11

    Cell migration is a fundamental biological process and has an important role in the developing brain by regulating a highly specific pattern of connections between nerve cells. Cell migration is required for axonal guidance and neurite outgrowth and involves a series of highly co-ordinated and overlapping signalling pathways. The non-receptor tyrosine kinase, Focal Adhesion Kinase (FAK) has an essential role in development and is the most highly expressed kinase in the developing CNS. FAK activity is essential for neuronal cell adhesion and migration. The objective of this study was to optimise a protocol for the differentiation of the neuroblastoma cell line, SH-SY5Y. We determined the optimal extracellular matrix proteins and growth factor combinations required for the optimal differentiation of SH-SY5Y cells into neuronal-like cells and determined those conditions that induce the expression of FAK. It was confirmed that the cells were morphologically and biochemically differentiated when compared to undifferentiated cells. This is in direct contrast to commonly used differentiation methods that induce morphological differentiation but not biochemical differentiation. We conclude that we have optimised a protocol for the differentiation of SH-SY5Y cells that results in a cell population that is both morphologically and biochemically distinct from undifferentiated SH-SY5Y cells and has a distinct adhesion and spreading pattern and display extensive neurite outgrowth. This protocol will provide a neuronal model system for studying FAK activity during cell adhesion and migration events.

  9. 6-gingerol inhibits rosiglitazone-induced adipogenesis in 3T3-L1 adipocytes.

    PubMed

    Tzeng, Thing-Fong; Chang, Chia Ju; Liu, I-Min

    2014-02-01

    We investigated the effects of 6-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) on the inhibition of rosiglitazone (RGZ)-induced adipogenesis in 3T3-L1 cells. The morphological changes were photographed based on staining lipid accumulation by Oil-Red O in RGZ (1 µmol/l)-treated 3T3-L1 cells without or with various concentrations of 6-gingerol on differentiation day 8. Quantitation of triglycerides content was performed in cells on day 8 after differentiation induction. Differentiated cells were lysed to detect mRNA and protein levels of adipocyte-specific transcription factors by real-time reverse transcription-polymerase chain reaction and Western blot analysis, respectively. 6-gingerol (50 µmol/l) effectively suppressed oil droplet accumulation and reduced the sizes of the droplets in RGZ-induced adipocyte differentiation in 3T3-L1 cells. The triglyceride accumulation induced by RGZ in differentiated 3T3-L1 cells was also reduced by 6-gingerol (50 µmol/l). Treatment of differentiated 3T3-L1 cells with 6-gingerol (50 µmol/l) antagonized RGZ-induced gene expression of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein α. Additionally, the increased levels of mRNA and protein in adipocyte-specific fatty acid binding protein 4 and fatty acid synthase induced by RGZ in 3T3-L1 cells were decreased upon treatment with 6-gingerol. Our data suggests that 6-gingerol may be beneficial in obesity, by reducing adipogenesis partly through the down-regulating PPARγ activity. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Transcriptomic Profiling Discloses Molecular and Cellular Events Related to Neuronal Differentiation in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Pezzini, Francesco; Bettinetti, Laura; Di Leva, Francesca; Bianchi, Marzia; Zoratti, Elisa; Carrozzo, Rosalba; Santorelli, Filippo M; Delledonne, Massimo; Lalowski, Maciej; Simonati, Alessandro

    2017-05-01

    Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.

  11. Human induced pluripotent stem cells and their use in drug discovery for toxicity testing.

    PubMed

    Scott, Clay W; Peters, Matthew F; Dragan, Yvonne P

    2013-05-10

    Predicting human safety risks of novel xenobiotics remains a major challenge, partly due to the limited availability of human cells to evaluate tissue-specific toxicity. Recent progress in the production of human induced pluripotent stem cells (hiPSCs) may fill this gap. hiPSCs can be continuously expanded in culture in an undifferentiated state and then differentiated to form most cell types. Thus, it is becoming technically feasible to generate large quantities of human cell types and, in combination with relatively new detection methods, to develop higher-throughput in vitro assays that quantify tissue-specific biological properties. Indeed, the first wave of large scale hiSC-differentiated cell types including patient-derived hiPSCS are now commercially available. However, significant improvements in hiPSC production and differentiation processes are required before cell-based toxicity assays that accurately reflect mature tissue phenotypes can be delivered and implemented in a cost-effective manner. In this review, we discuss the promising alignment of hiPSCs and recently emerging technologies to quantify tissue-specific functions. We emphasize liver, cardiovascular, and CNS safety risks and highlight limitations that must be overcome before routine screening for toxicity pathways in hiSC-derived cells can be established. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. A fetal human heart cardiac-inducing RNA (CIR) promotes the differentiation of stem cells into cardiomyocytes.

    PubMed

    Kochegarov, Andrei; Moses-Arms, Ashley; Lemanski, Larry F

    2015-08-01

    A specific human fetal heart RNA has been discovered, which has the ability to induce myocardial cell formation from mouse embryonic and human-induced pluripotent stem cells in culture. In this study, commercially obtained RNA from human fetal heart was cloned, sequenced, and synthesized using standard laboratory approaches. Molecular analyses of the specific fetal cardiac-inducing RNA (CIR), revealed that it is a fragment of N-sulfoglucosaminesulfohydrolase and the caspase recruitment domain family member 14 precursor. Stem cells transfected with CIRs often form into spindle-shaped cells characteristic of cardiomyocytes,and express the cardiac-specific contractile protein marker, troponin-T, in addition to tropomyosin and α-actinin as detected by immunohistochemical staining. Expression of these contractile proteins showed organization into sarcomeric myofibrils characteristic of striated cardiac muscle cells. Computer analyses of the RNA secondary structures of the active CIR show significant similarities to a RNA from salamander or myofibril-inducing RNA (MIR), which also promotes non-muscle cells to differentiate into cardiac muscle. Thus, these two RNAs, salamander MIR and the newly discovered human-cloned CIR reported here, appear to have evolutionarily conserved secondary structures suggesting that both play major roles in vertebrate heart development and, particularly, in the differentiation of cardiomyocytes from non-muscle cells during development.

  13. Construction of bioengineered hepatic tissue derived from human umbilical cord mesenchymal stem cells via aggregation culture in porcine decellularized liver scaffolds.

    PubMed

    Li, Yi; Wu, Qiong; Wang, Yujia; Li, Li; Chen, Fei; Shi, Yujun; Bao, Ji; Bu, Hong

    2017-01-01

    An individualized, tissue-engineered liver suitable for transplanting into a patient with liver disease would be of great benefit to the patient and the healthcare system. The tissue-engineered liver would possess the functions of the original healthy organ. Two fields of study, (i) using decellularized tissue as cell scaffolding, and (ii) stem cell differentiation into functional cells, are coming together to make this concept feasible. The decellularized liver scaffolds (DLS) can interact with cells to promote cell differentiation and signal transduction and three-dimensional (3D) stem cell aggregations can maintain the phenotypes and improve functions of stem cells after differentiation by undergoing cell-cell contact. Although the effects of DLS and stem cell aggregation culture have been intensively studied, few observations about the interaction between the two have been achieved. We established a method that combines the use of decellularized liver scaffolds and aggregation culture of MSCs (3D-DLS) and explored the effects of the two on hepatic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in bioengineered hepatic tissue. A higher percentage of albumin-producing cells, higher levels of liver-specific transcripts, higher urea cycle-related transcripts, and lower levels of stem cell-specific transcripts were observed in the 3D-DLS group when compared to that of hUC-MSCs in monolayer culture (2D), aggregation culture (3D), monolayer on DLS culture (2D-DLS). The gene arrays also indicated that 3D-DLS induced the differentiation from the hUC-MSC phenotype to the PHH phenotype. Liver-specific proteins albumin, CK-18, and glycogen storage were highly positive in the 3D-DLS group. Albumin secretion and ammonia conversion to urea were more effective with a higher cell survival rate in the 3D-DLS group for 14 days. This DLS and aggregation combination culture system provides a novel method to improve hepatic differentiation, maintain phenotype of hepatocyte-like cells and sustain survival for 14 days in vitro. This is a promising strategy to use to construct bioengineered hepatic tissue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Bioinspired Nanocomplex for Spatiotemporal Imaging of Sequential mRNA Expression in Differentiating Neural Stem Cells

    PubMed Central

    2015-01-01

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492

  15. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    PubMed

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  16. Reconstructing human pancreatic differentiation by mapping specific cell populations during development

    PubMed Central

    Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire; Ameri, Jacqueline; Kirkegaard, Jeannette Schlichting; Hansson, Mattias; Honoré, Christian; Semb, Henrik; Scharfmann, Raphaël

    2017-01-01

    Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2+ population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3, a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated. DOI: http://dx.doi.org/10.7554/eLife.27564.001 PMID:28731406

  17. DR-nm23 expression affects neuroblastoma cell differentiation, integrin expression, and adhesion characteristics.

    PubMed

    Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G

    2001-01-01

    Nm23 gene family has been associated with metastasis suppression and differentiation. We studied DR-nm23 during neuroblastoma cells differentiation. DR-nm23 expression increased after retinoic acid induction of differentiation in human cell lines SK-N-SH and LAN-5. In several cell lines, overexpression of DR-nm23 was associated with more differentiated phenotypes. SK-N-SH cells increased vimentin expression, increased deposition of collagen type IV, modulated integrin expression, and underwent growth arrest; the murine neuroblastoma cell line N1E-115 showed neurite outgrowth and a striking enhancement of beta1 integrin expression. Up-regulation of beta1 integrin was specifically responsible for the increase in the adhesion to collagen type I-coated plates. Finally, cells overexpressing DR-nm23 were unable to growth in soft agar. In conclusion, DR-nm23 expression is directly involved in differentiation of neuroblastoma cells, and its ability to affects the adhesion to extracellular substrates and to inhibit growth in soft agar suggests an involvement in the metastatic potential of neuroblastoma.

  18. Pluripotent Stem Cells in Research and Treatment of Hemoglobinopathies

    PubMed Central

    Arora, Natasha; Daley, George Q.

    2012-01-01

    Pluripotent stem cells (PSCs) hold great promise for research and treatment of hemoglobinopathies. In principle, patient-specific induced pluripotent stem cells could be derived from a blood sample, genetically corrected to repair the disease-causing mutation, differentiated into hematopoietic stem cells (HSCs), and returned to the patient to provide a cure through autologous gene and cell therapy. However, there are many challenges at each step of this complex treatment paradigm. Gene repair is currently inefficient in stem cells, but use of zinc finger nucleases and transcription activator-like effector nucleases appear to be a major advance. To date, no successful protocol exists for differentiating PSCs into definitive HSCs. PSCs can be directly differentiated into primitive red blood cells, but not yet in sufficient numbers to enable treating patients, and the cost of clinical scale differentiation is prohibitively expensive with current differentiation methods and efficiencies. Here we review the progress, promise, and remaining hurdles in realizing the potential of PSCs for cell therapy. PMID:22474618

  19. Nanoengineered Polystyrene Surfaces with Nanopore Array Pattern Alters Cytoskeleton Organization and Enhances Induction of Neural Differentiation of Human Adipose-Derived Stem Cells.

    PubMed

    Jung, Ae Ryang; Kim, Richard Y; Kim, Hyung Woo; Shrestha, Kshitiz Raj; Jeon, Seung Hwan; Cha, Kyoung Je; Park, Yong Hyun; Kim, Dong Sung; Lee, Ji Youl

    2015-07-01

    Human adipose-derived stem cells (hADSCs) can differentiate into various cell types depending on chemical and topographical cues. One topographical cue recently noted to be successful in inducing differentiation is the nanoengineered polystyrene surface containing nanopore array-patterned substrate (NP substrate), which is designed to mimic the nanoscale topographical features of the extracellular matrix. In this study, efficacies of NP and flat substrates in inducing neural differentiation of hADSCs were examined by comparing their substrate-cell adhesion rates, filopodia growth, nuclei elongation, and expression of neural-specific markers. The polystyrene nano Petri dishes containing NP substrates were fabricated by a nano injection molding process using a nickel electroformed nano-mold insert (Diameter: 200 nm. Depth of pore: 500 nm. Center-to-center distance: 500 nm). Cytoskeleton and filopodia structures were observed by scanning electron microscopy and F-actin staining, while cell adhesion was tested by vinculin staining after 24 and 48 h of seeding. Expression of neural specific markers was examined by real-time quantitative polymerase chain reaction and immunocytochemistry. Results showed that NP substrates lead to greater substrate-cell adhesion, filopodia growth, nuclei elongation, and expression of neural specific markers compared to flat substrates. These results not only show the advantages of NP substrates, but they also suggest that further study into cell-substrate interactions may yield great benefits for biomaterial engineering.

  20. Endothelial progenitor cells from human dental pulp-derived iPS cells as a therapeutic target for ischemic vascular diseases.

    PubMed

    Yoo, Chae Hwa; Na, Hee-Jun; Lee, Dong-Seol; Heo, Soon Chul; An, Yuri; Cha, Junghwa; Choi, Chulhee; Kim, Jae Ho; Park, Joo-Cheol; Cho, Yee Sook

    2013-11-01

    Human dental pulp cells (hDPCs) are a valuable source for the generation of patient-specific human induced pluripotent stem cells (hiPSCs). An advanced strategy for the safe and efficient reprogramming of hDPCs and subsequent lineage-specific differentiation is a critical step toward clinical application. In present research, we successfully generated hDPC-iPSCs using only two non-oncogenic factors: Oct4 and Sox2 (2F hDPC-hiPSCs) and evaluated the feasibility of hDPC-iPSCs as substrates for endothelial progenitor cells (EPCs), contributing to EPC-based therapies. Under conventional differentiation conditions, 2F hDPC-hiPSCs showed higher differentiation efficiency, compared to hiPSCs from other cell types, into multipotent CD34(+) EPCs (2F-hEPCs) capable to differentiate into functional endothelial and smooth muscle cells. The angiogenic and neovasculogenic activities of 2F-hEPCs were confirmed using a Matrigel plug assay in mice. In addition, the therapeutic effects of 2F-hEPC transplantation were confirmed in mouse models of hind-limb ischemia and myocardial infarction. Importantly, 2F-EPCs effectively integrated into newly formed vascular structures and enhanced neovascularization via likely both direct and indirect paracrine mechanisms. 2F hDPC-hiPSCs have a robust capability for the generation of angiogenic and vasculogenic EPCs, representing a strategy for patient-specific EPC therapies and disease modeling, particularly for ischemic vascular diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Integrator complex plays an essential role in adipose differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otani, Yuichiro; Nakatsu, Yusuke; Sakoda, Hideyuki

    2013-05-03

    Highlights: •IntS6 and IntS11 are subunits of the Integrator complex. •Expression levels of IntS6 and IntS11 were very low in 3T3-L1 fibroblast. •IntS6 and IntS11 were upregulated during adipose differentiation. •Suppression of IntS6 or IntS11 expression inhibited adipose differentiation. -- Abstract: The dynamic process of adipose differentiation involves stepwise expressions of transcription factors and proteins specific to the mature fat cell phenotype. In this study, it was revealed that expression levels of IntS6 and IntS11, subunits of the Integrator complex, were increased in 3T3-L1 cells in the period when the cells reached confluence and differentiated into adipocytes, while being reducedmore » to basal levels after the completion of differentiation. Suppression of IntS6 or IntS11 expression using siRNAs in 3T3-L1 preadipocytes markedly inhibited differentiation into mature adipocytes, based on morphological findings as well as mRNA analysis of adipocyte-specific genes such as Glut4, perilipin and Fabp4. Although Pparγ2 protein expression was suppressed in IntS6 or IntS11-siRNA treated cells, adenoviral forced expression of Pparγ2 failed to restore the capacity for differentiation into mature adipocytes. Taken together, these findings demonstrate that increased expression of Integrator complex subunits is an indispensable event in adipose differentiation. Although further study is necessary to elucidate the underlying mechanism, the processing of U1, U2 small nuclear RNAs may be involved in cell differentiation steps.« less

  2. Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro

    PubMed Central

    Rackwitz, Lars; Djouad, Farida; Janjanin, Sasa; Nöth, Ulrich; Tuan, Rocky S.

    2017-01-01

    Objective The long-term performance of cell seeded matrix based cartilage constructs depends on (1) the development of sufficient biomechanical properties, and (2) lateral integration with host tissues, both of which require cartilage specific matrix deposition within the scaffold. In this study, we have examined the potential of tissue-engineered cartilage analogs developed using different cell types, i.e., MSCs versus chondrocytes and de-differentiated chondrocytes, in an established “construct in cartilage ring” model. Design Cell-laden constructs of differentiated chondrocytes, de-differentiated chondrocytes after 2, 5 or 8 population doublings, and MSCs were either implanted into a native cartilage ring immediately after fabrication (immature group) or pretreated for 21 days in a transforming growth factor-β3 (TGF-β3) containing medium prior to implantation. After additional culture for 28 days in a serum-free, chemically defined medium, the extent of lateral integration, and biochemical and biomechanical characteristics of the implants as hybrid constructs were assessed. Results The quality of integration, the amount of accumulated cartilage-specific matrix components and associated biomechanical properties were found to be highest when using differentiated chondrocytes. De-differentiation of chondrocytes negatively impacted the properties of the implants, as even two population doublings of the chondrocytes in culture significantly lowered cartilage repair capacity. In contrast, MSCs showed chondrogenic differentiation with TGF-β3 pre-treatment and superior integrational behavior. Conclusions Chondrocyte expansion and de-differentiation impaired the cell response, resulting in inferior cartilage repair in vitro. With TGF-β3 pre-treatment, MSCs were able to undergo sustained chondrogenic differentiation and exhibited superior matrix deposition and integration compared to de-differentiated chondrocytes. PMID:24887551

  3. Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes

    PubMed Central

    Basma, Hesham; Soto-Gutiérrez, Alejandro; Yannam, Govardhana Rao; Liu, Liping; Ito, Ryotaro; Yamamoto, Toshiyuki; Ellis, Ewa; Carson, Steven D.; Sato, Shintaro; Chen, Yong; Muirhead, David; Navarro-Álvarez, Nalu; Wong, Ron; Roy-Chowdhury, Jayanta; Platt, Jeffrey L.; Mercer, David F.; Miller, John D.; Strom, Stephen C.; Kobayashi, Noaya; Fox, Ira J.

    2009-01-01

    Background & Aims The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes. Methods To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human Activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein receptor expression. Characterization was performed by real-time PCR, imunohistochemistry, immunoblot, functional assays and transplantation. Results Embryonic stem cell-derived hepatocytes expressed liver-specific genes but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes and demonstrated human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha-1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. Conclusion Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein receptor expression and could potentially be used in drug discovery research and developed as therapeutics. PMID:19026649

  4. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall.

    PubMed

    Shoae-Hassani, Alireza; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Seifalian, Alexander Marcus; Azimi, Alireza; Samadikuchaksaraei, Ali; Verdi, Javad

    2015-11-01

    Reconstruction of the bladder wall via in vitro differentiated stem cells on an appropriate scaffold could be used in such conditions as cancer and neurogenic urinary bladder. This study aimed to examine the potential of human endometrial stem cells (EnSCs) to form urinary bladder epithelial cells (urothelium) on nanofibrous silk-collagen scaffolds, for construction of the urinary bladder wall. After passage 4, EnSCs were induced by keratinocyte growth factor (KGF) and epidermal growth factor (EGF) and seeded on electrospun collagen-V, silk and silk-collagen nanofibres. Later we tested urothelium-specific genes and proteins (uroplakin-Ia, uroplakin-Ib, uroplakin-II, uroplakin-III and cytokeratin 20) by immunocytochemistry, RT-PCR and western blot analyses. Scanning electron microscopy (SEM) and histology were used to detect cell-matrix interactions. DMEM/F12 supplemented by KGF and EGF induced EnSCs to express urothelial cell-specific genes and proteins. Either collagen, silk or silk-collagen scaffolds promoted cell proliferation. The nanofibrous silk-collagen scaffolds provided a three-dimensional (3D) structure to maximize cell-matrix penetration and increase differentiation of the EnSCs. Human EnSCs seeded on 3D nanofibrous silk-collagen scaffolds and differentiated to urothelial cells provide a suitable source for potential use in bladder wall reconstruction in women. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Spectral Monitoring of Surfactant Clearance during Alveolar Epithelial Type II Cell Differentiation

    PubMed Central

    Swain, Robin J.; Kemp, Sarah J.; Goldstraw, Peter; Tetley, Teresa D.; Stevens, Molly M.

    2008-01-01

    In this study, we report on the noninvasive identification of spectral markers of alveolar type II (ATII) cell differentiation in vitro using Raman microspectroscopy. ATII cells are progenitor cells for alveolar type I (ATI) cells in vivo, and spontaneously differentiate toward an ATI-like phenotype in culture. We analyzed undifferentiated and differentiated primary human ATII cells, and correlated Raman spectral changes to cellular changes in morphology and marker protein synthesis (surfactant protein C, alkaline phosphatase, caveolin-1). Undifferentiated ATII cells demonstrated spectra with strong phospholipid vibrations, arising from alveolar surfactant stored within cytoplasmic lamellar bodies (Lbs). Differentiated ATI-like cells yielded spectra with significantly less lipid content. Factor analysis revealed a phospholipid-dominated spectral component as the main discriminator between the ATII and ATI-like phenotypes. Spectral modeling of the data revealed a significant decrease in the spectral contribution of cellular lipids—specifically phosphatidyl choline, the main constituent of surfactant, as ATII cells differentiate. These observations were consistent with the clearance of surfactant from Lbs as ATII cells differentiate, and were further supported by cytochemical staining for Lbs. These results demonstrate the first spectral characterization of primary human ATII cells, and provide insight into the biochemical properties of alveolar surfactant in its unperturbed cellular environment. PMID:18820234

  6. Quantitative Raman spectral changes of the differentiation of mesenchymal stem cells into islet-like cells by biochemical component analysis and multiple peak fitting

    NASA Astrophysics Data System (ADS)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; He, Yingtian; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-12-01

    Mesenchymal stem cells (MSCs) differentiate into islet-like cells, providing a possible solution for type I diabetes treatment. To search for the precise molecular mechanism of the directional differentiation of MSC-derived islet-like cells, biomolecular composition, and structural conformation information during MSC differentiation, is required. Because islet-like cells lack specific surface markers, the commonly employed immunostaining technique is not suitable for their identification, physical separation, and enrichment. Combining Raman spectroscopic data, a fitting accuracy-improved biochemical component analysis, and multiple peaks fitting approach, we identified the quantitative biochemical and intensity change of Raman peaks that show the differentiation of MSCs into islet-like cells. Along with increases in protein and glycogen content, and decreases in deoxyribonucleic acid and ribonucleic acid content, in islet-like cells relative to MSCs, it was found that a characteristic peak of insulin (665 cm-1) has twice the intensity in islet-like cells relative to MSCs, indicating differentiation of MSCs into islet-like cells was successful. Importantly, these Raman signatures provide useful information on the structural and pathological states during MSC differentiation and help to develop noninvasive and label-free Raman sorting methods for stem cells and their lineages.

  7. The SGBS cell strain as a model for the in vitro study of obesity and cancer.

    PubMed

    Allott, Emma H; Oliver, Elizabeth; Lysaght, Joanne; Gray, Steven G; Reynolds, John V; Roche, Helen M; Pidgeon, Graham P

    2012-10-01

    The murine adipocyte cell line 3T3-L1 is well characterised and used widely, while the human pre-adipocyte cell strain, Simpson-Golabi-Behmel Syndrome (SGBS), requires validation for use in human studies. Obesity is currently estimated to account for up to 41 % of the worldwide cancer burden. A human in vitro model system is required to elucidate the molecular mechanisms for this poorly understood association. This work investigates the relevance of the SGBS cell strain for obesity and cancer research in humans. Pre-adipocyte 3T3-L1 and SGBS were differentiated according to standard protocols. Morphology was assessed by Oil Red O staining. Adipocyte-specific gene expression was measured by qPCR and biochemical function was assessed by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity. Differential gene expression in oesophageal adenocarcinoma cell line OE33 following co-culture with SGBS or primary omental human adipocytes was investigated using Human Cancer Profiler qPCR arrays. During the process of differentiation, SGBS expressed higher levels of adipocyte-specific transcripts and fully differentiated SGBS expressed more similar morphology, transcript levels and biochemical function to primary omental adipocytes, relative to 3T3-L1. Co-culture with SGBS or primary omental adipocytes induced differential expression of genes involved in adhesion (ITGB3), angiogenesis (IGF1, TEK, TNF, VEGFA), apoptosis (GZMA, TERT) and invasion and metastasis (MMP9, TIMP3) in OE33 tumour cells. Comparable adipocyte-specific gene expression, biochemical function and a shared induced gene signature in co-cultured OE33 cells indicate that SGBS is a relevant in vitro model for obesity and cancer research in humans.

  8. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catecholmore » enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.« less

  9. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

    PubMed Central

    Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J.; Cohen, Idan; Santoriello, Francis J.; Zhao, Dejian; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-01-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  10. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    PubMed

    Perdigoto, Carolina N; Dauber, Katherine L; Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J; Cohen, Idan; Santoriello, Francis J; Zhao, Dejian; Zheng, Deyou; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-07-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  11. Regulated expression and role of c-Myb in the cardiovascular-directed differentiation of mouse embryonic stem cells.

    PubMed

    Ishida, Masayoshi; El-Mounayri, Omar; Kattman, Steven; Zandstra, Peter; Sakamoto, Hiroshi; Ogawa, Minetaro; Keller, Gordon; Husain, Mansoor

    2012-01-20

    c-myb null (knockout) embryonic stem cells (ESC) can differentiate into cardiomyocytes but not contractile smooth muscle cells (SMC) in embryoid bodies (EB). To define the role of c-Myb in SMC differentiation from ESC. In wild-type (WT) EB, high c-Myb levels on days 0-2 of differentiation undergo ubiquitin-mediated proteosomal degradation on days 2.5-3, resurging on days 4-6, without changing c-myb mRNA levels. Activin-A and bone morphogenetic protein 4-induced cardiovascular progenitors were isolated by FACS for expression of vascular endothelial growth factor receptor (VEGFR)2 and platelet-derived growth factor receptor (PDGFR)α. By day 3.75, hematopoesis-capable VEGFR2+ cells were fewer, whereas cardiomyocyte-directed VEGFR2+/PDGFRα+ cells did not differ in abundance in knockout versus WT EB. Importantly, highest and lowest levels of c-Myb were observed in VEGFR2+ and VEGFR2+/PDGFRα+ cells, respectively. Proteosome inhibitor MG132 and lentiviruses enabling inducible expression or knockdown of c-myb were used to regulate c-Myb in WT and knockout EB. These experiments showed that c-Myb promotes expression of VEGFR2 over PDGFRα, with chromatin immunopreciptation and promoter-reporter assays defining specific c-Myb-responsive binding sites in the VEGFR2 promoter. Next, FACS-sorted VEGFR2+ cells expressed highest and lowest levels of SMC- and fibroblast-specific markers, respectively, at days 7-14 after retinoic acid (RA) as compared with VEGFR2+/PDGFRα+ cells. By contrast, VEGFR2+/PDGFRα+ cells cultured without RA beat spontaneously, like cardiomyocytes between days 7 and 14, and expressed cardiac troponin. Notably, RA was required to more fully differentiate SMC from VEGFR2+ cells and completely blocked differentiation of cardiomyocytes from VEGFR2+/PDGFRα+ cells. c-Myb is tightly regulated by proteosomal degradation during cardiovascular-directed differentiation of ESC, expanding early-stage VEGFR2+ progenitors capable of RA-responsive SMC formation.

  12. Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules.

    PubMed

    Kramer, Jan; Steinhoff, Jürgen; Klinger, Matthias; Fricke, Lutz; Rohwedel, Jürgen

    2006-03-01

    Differentiation of mouse embryonic stem (ES) cells via embryoid bodies (EB) is established as a suitable model to study cellular processes of development in vitro. ES cells are known to be pluripotent because of their capability to differentiate into cell types of all three germ layers including germ cells. Here, we show that ES cells differentiate into renal cell types in vitro. We found that genes were expressed during EB cultivation, which have been previously described to be involved in renal development. Marker molecules characteristic for terminally differentiated renal cell types were found to be expressed predominantly during late stages of EB cultivation, while marker molecules involved in the initiation of nephrogenesis were already expressed during early steps of EB development. On the cellular level--using immunostaining--we detected cells expressing podocin, nephrin and wt-1, characteristic for differentiated podocytes and other cells, which expressed Tamm-Horsfall protein, a marker for distal tubule epithelial cells of kidney tissue. Furthermore, the proximal tubule marker molecules renal-specific oxido reductase, kidney androgen-related protein and 25-hydroxyvitamin D3alpha-hydroxylase were found to be expressed in EBs. In particular, we could demonstrate that cells expressing podocyte marker molecules assemble to distinct ring-like structures within the EBs. Because the differentiation efficiency into these cell types is still relatively low, application of fibroblast growth factor (FGF)-2 in combination with leukaemia inhibitory factor was tested for induction, but did not enhance ES cell-derived renal differentiation in vitro.

  13. Expression of different functional isoforms in haematopoiesis.

    PubMed

    Grech, Godfrey; Pollacco, Joel; Portelli, Mark; Sacco, Keith; Baldacchino, Shawn; Grixti, Justine; Saliba, Christian

    2014-01-01

    Haematopoiesis is a complex process regulated at various levels facilitating rapid responses to external factors including stress, modulation of lineage commitment and terminal differentiation of progenitors. Although the transcription program determines the RNA pool of a cell, various mRNA strands can be obtained from the same template, giving rise to multiple protein isoforms. The majority of variants and isoforms co-occur in normal haematopoietic cells or are differentially expressed at various maturity stages of progenitor maturation and cellular differentiation within the same lineage or across lineages. Genetic aberrations or specific cellular states result in the predominant expression of abnormal isoforms leading to deregulation and disease. The presence of upstream open reading frames (uORF) in 5' untranslated regions (UTRs) of a transcript, couples the utilization of start codons with the cellular status and availability of translation initiation factors (eIFs). In addition, tissue-specific and cell lineage-specific alternative promoter use, regulates several transcription factors producing transcript variants with variable 5' exons. In this review, we propose to give a detailed account of the differential isoform formation, causing haematological malignancies.

  14. IFN Regulatory Factor 8 Represses GM-CSF Expression in T cells to Affect Myeloid Cell Lineage Differentiation

    PubMed Central

    Paschall, Amy V.; Zhang, Ruihua; Qi, Chen-Feng; Bardhan, Kankana; Peng, Liang; Lu, Geming; Yang, Jianjun; Merad, Miriam; McGaha, Tracy; Zhou, Gang; Mellor, Andrew; Abrams, Scott I.; Morse, Herbert C.; Ozato, Keiko; Xiong, Huabao; Liu, Kebin

    2015-01-01

    During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN Regulatory Factor 8 (IRF8) accumulate CD11b+Gr1+ myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. Here we report an intriguing finding that although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b+Gr1+ MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to represses GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo. PMID:25646302

  15. Changes in the regulation of heat shock gene expression in neuronal cell differentiation.

    PubMed

    Oza, Jay; Yang, Jingxian; Chen, Kuang Yu; Liu, Alice Y-C

    2008-01-01

    Neuronal differentiation of the NG108-15 neuroblastoma-glioma hybrid cells is accompanied by a marked attenuation in the heat shock induction of the Hsp70-firefly luciferase reporter gene activity. Analysis of the amount and activation of heat shock factor 1, induction of mRNA(hsp), and the synthesis and accumulation of heat shock proteins (HSPs) in the undifferentiated and differentiated cells suggest a transcriptional mechanism for this attenuation. Concomitant with a decreased induction of the 72-kDa Hsp70 protein in the differentiated cells, there is an increased abundance of the constitutive 73-kDa Hsc70, a protein known to function in vesicle trafficking. Assessment of sensitivity of the undifferentiated and differentiated cells against stress-induced cell death reveals a significantly greater vulnerability of the differentiated cells toward the cytotoxic effects of arsenite and glutamate/glycine. This study shows that changes in regulation of the HSP and HSC proteins are components of the neuronal cell differentiation program and that the attenuated induction of HSPs likely contributes to neuronal vulnerability whereas the increased expression of Hsc70 likely has a role in neural-specific functions.

  16. Delayed Accumulation of H3K27me3 on Nascent DNA Is Essential for Recruitment of Transcription Factors at Early Stages of Stem Cell Differentiation.

    PubMed

    Petruk, Svetlana; Cai, Jingli; Sussman, Robyn; Sun, Guizhi; Kovermann, Sina K; Mariani, Samanta A; Calabretta, Bruno; McMahon, Steven B; Brock, Hugh W; Iacovitti, Lorraine; Mazo, Alexander

    2017-04-20

    Recruitment of transcription factors (TFs) to repressed genes in euchromatin is essential to activate new transcriptional programs during cell differentiation. However, recruitment of all TFs, including pioneer factors, is impeded by condensed H3K27me3-containing chromatin. Single-cell and gene-specific analyses revealed that, during the first hours of induction of differentiation of mammalian embryonic stem cells (ESCs), accumulation of the repressive histone mark H3K27me3 is delayed after DNA replication, indicative of a decondensed chromatin structure in all regions of the replicating genome. This delay provides a critical "window of opportunity" for recruitment of lineage-specific TFs to DNA. Increasing the levels of post-replicative H3K27me3 or preventing S phase entry inhibited recruitment of new TFs to DNA and significantly blocked cell differentiation. These findings suggest that recruitment of lineage-specifying TFs occurs soon after replication and is facilitated by a decondensed chromatin structure. This insight may explain the developmental plasticity of stem cells and facilitate their exploitation for therapeutic purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Reconstructing the regulatory circuit of cell fate determination in yeast mating response.

    PubMed

    Shao, Bin; Yuan, Haiyu; Zhang, Rongfei; Wang, Xuan; Zhang, Shuwen; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2017-07-01

    Massive technological advances enabled high-throughput measurements of proteomic changes in biological processes. However, retrieving biological insights from large-scale protein dynamics data remains a challenging task. Here we used the mating differentiation in yeast Saccharomyces cerevisiae as a model and developed integrated experimental and computational approaches to analyze the proteomic dynamics during the process of cell fate determination. When exposed to a high dose of mating pheromone, the yeast cell undergoes growth arrest and forms a shmoo-like morphology; however, at intermediate doses, chemotropic elongated growth is initialized. To understand the gene regulatory networks that control this differentiation switch, we employed a high-throughput microfluidic imaging system that allows real-time and simultaneous measurements of cell growth and protein expression. Using kinetic modeling of protein dynamics, we classified the stimulus-dependent changes in protein abundance into two sources: global changes due to physiological alterations and gene-specific changes. A quantitative framework was proposed to decouple gene-specific regulatory modes from the growth-dependent global modulation of protein abundance. Based on the temporal patterns of gene-specific regulation, we established the network architectures underlying distinct cell fates using a reverse engineering method and uncovered the dose-dependent rewiring of gene regulatory network during mating differentiation. Furthermore, our results suggested a potential crosstalk between the pheromone response pathway and the target of rapamycin (TOR)-regulated ribosomal biogenesis pathway, which might underlie a cell differentiation switch in yeast mating response. In summary, our modeling approach addresses the distinct impacts of the global and gene-specific regulation on the control of protein dynamics and provides new insights into the mechanisms of cell fate determination. We anticipate that our integrated experimental and modeling strategies could be widely applicable to other biological systems.

  18. Probing the Effector and Suppressive Functions of Human T Cell Subsets Using Antigen-Specific Engineered T Cell Receptors

    PubMed Central

    Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya

    2013-01-01

    Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112

  19. The founder-cell transcriptome in the Arabidopsis apetala1 cauliflower inflorescence meristem.

    PubMed

    Frerichs, Anneke; Thoma, Rahere; Abdallah, Ali Taleb; Frommolt, Peter; Werr, Wolfgang; Chandler, John William

    2016-11-03

    Although the pattern of lateral organ formation from apical meristems establishes species-specific plant architecture, the positional information that confers cell fate to cells as they transit to the meristem flanks where they differentiate, remains largely unknown. We have combined fluorescence-activated cell sorting and RNA-seq to characterise the cell-type-specific transcriptome at the earliest developmental time-point of lateral organ formation using DORNRÖSCHEN-LIKE::GFP to mark founder-cell populations at the periphery of the inflorescence meristem (IM) in apetala1 cauliflower double mutants, which overproliferate IMs. Within the lateral organ founder-cell population at the inflorescence meristem, floral primordium identity genes are upregulated and stem-cell identity markers are downregulated. Additional differentially expressed transcripts are involved in polarity generation and boundary formation, and in epigenetic and post-translational changes. However, only subtle transcriptional reprogramming within the global auxin network was observed. The transcriptional network of differentially expressed genes supports the hypothesis that lateral organ founder-cell specification involves the creation of polarity from the centre to the periphery of the IM and the establishment of a boundary from surrounding cells, consistent with bract initiation. However, contrary to the established paradigm that sites of auxin response maxima pre-pattern lateral organ initiation in the IM, auxin response might play a minor role in the earliest stages of lateral floral initiation.

  20. Neural Differentiation of Mesenchymal Stem Cells on Scaffolds for Nerve Tissue Engineering Applications.

    PubMed

    Quintiliano, Kerlin; Crestani, Thayane; Silveira, Davi; Helfer, Virginia Etges; Rosa, Annelise; Balbueno, Eduardo; Steffens, Daniela; Jotz, Geraldo Pereira; Pilger, Diogo André; Pranke, Patricia

    2016-11-01

    Scaffolds produced by electrospinning act as supports for cell proliferation and differentiation, improved through the release of neurotrophic factors. The objective of this study was to develop aligned and random nanofiber scaffolds with and without nerve growth factor to evaluate the potential of mesenchymal stem cells (MSCs) for neural differentiation. Nanofiber morphology, diameter, degradability, cell morphology, adhesion, proliferation, viability, cytotoxicity, and neural differentiation were performed to characterize the scaffolds. The expression for nestin, β-III tubulin, and neuron-specific enolase was also evaluated. The scaffolds demonstrated a satisfactory environment for MSC growth, being nontoxic. The MSCs cultivated on the scaffolds were able to adhere and proliferate. The evaluation of neural differentiation indicated that in all groups of scaffolds the MSCs were able to upregulate neural gene expression.

  1. Utilization of nuclear structural proteins for targeted therapy and detection of proliferative and differentiation disorders

    DOEpatents

    Lelievre, Sophie; Bissell, Mina

    2001-01-01

    The localization of nuclear apparatus proteins (NUMA) is used to identify tumor cells and different stages in the tumor progression and differentiation processes. There is a characteristic organization of NuMA in tumor cells and in phenotypically normal cells. NuMA distribution patterns are significantly less diffuse in proliferating non-malignant cells compared to malignant cells. The technique encompasses cell immunostaining using a NuMA specific antibody, and microscopic analysis of NuMA distribution within each nucleus.

  2. High-Density ZnO Nanowires as a Reversible Myogenic-Differentiation Switch.

    PubMed

    Errico, Vito; Arrabito, Giuseppe; Fornetti, Ersilia; Fuoco, Claudia; Testa, Stefano; Saggio, Giovanni; Rufini, Stefano; Cannata, Stefano; Desideri, Alessandro; Falconi, Christian; Gargioli, Cesare

    2018-04-25

    Mesoangioblasts are outstanding candidates for stem-cell therapy and are already being explored in clinical trials. However, a crucial challenge in regenerative medicine is the limited availability of undifferentiated myogenic progenitor cells because growth is typically accompanied by differentiation. Here reversible myogenic-differentiation switching during proliferation is achieved by functionalizing the glass substrate with high-density ZnO nanowires (NWs). Specifically, mesoangioblasts grown on ZnO NWs present a spherical viable undifferentiated cell state without lamellopodia formation during the entire observation time (8 days). Consistently, the myosin heavy chain, typically expressed in skeletal muscle tissue and differentiated myogenic progenitors, is completely absent. Remarkably, NWs do not induce any damage while they reversibly block differentiation, so that the differentiation capabilities are completely recovered upon cell removal from the NW-functionalized substrate and replating on standard culture glass. This is the first evidence of a reversible myogenic-differentiation switch that does not affect the viability. These results can be the first step toward for the in vitro growth of a large number of undifferentiated stem/progenitor cells and therefore can represent a breakthrough for cell-based therapy and tissue engineering.

  3. Transcript Profiling Identifies Gene Cohorts Controlled by Each Signal Regulating Trans-Differentiation of Epidermal Cells of Vicia faba Cotyledons to a Transfer Cell Phenotype

    PubMed Central

    Zhang, Hui-Ming; Wheeler, Simon L.; Xia, Xue; Colyvas, Kim; Offler, Christina E.; Patrick, John W.

    2017-01-01

    Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H2O2) and cytosolic Ca2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans-differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log2fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans-differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H2O2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca2+ (21%), auxin (18%) and ethylene (5%). The dominance by H2O2 was evident across all functional categories, but became more attenuated once trans-differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H2O2/Ca2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport. PMID:29234338

  4. Transcript Profiling Identifies Gene Cohorts Controlled by Each Signal Regulating Trans-Differentiation of Epidermal Cells of Vicia faba Cotyledons to a Transfer Cell Phenotype.

    PubMed

    Zhang, Hui-Ming; Wheeler, Simon L; Xia, Xue; Colyvas, Kim; Offler, Christina E; Patrick, John W

    2017-01-01

    Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H 2 O 2 ) and cytosolic Ca 2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans -differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log 2 fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans -differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H 2 O 2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca 2+ (21%), auxin (18%) and ethylene (5%). The dominance by H 2 O 2 was evident across all functional categories, but became more attenuated once trans -differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H 2 O 2 /Ca 2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport.

  5. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior.

    PubMed

    Oh, Se Heang; An, Dan Bi; Kim, Tae Ho; Lee, Jin Ho

    2016-04-15

    Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve, ∼40kPa for muscle, ∼80kPa for cartilage, and ∼190kPa for bone in our hydrogel system). Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Chitosan-coated amyloid fibrils increase adipogenesis of mesenchymal stem cells.

    PubMed

    Gilbert, Jay; Reynolds, Nicholas P; Russell, Sarah M; Haylock, David; McArthur, Sally; Charnley, Mirren; Jones, Owen G

    2017-10-01

    Mesenchymal stem cells (MSCs) have the potential to revolutionize medicine due to their ability to differentiate into specific lineages for targeted tissue repair. Development of materials and cell culture platforms that improve differentiation of either autologous or allogenic stem cell sources into specific lineages would enhance clinical utilization of MCSs. In this study, nanoscale amyloid fibrils were evaluated as substrate materials to encourage viability, proliferation, multipotency, and differentiation of MSCs. Fibrils assembled from the proteins lysozyme or β-lactoglobulin, with and without chitosan coatings, were deposited on planar mica surfaces. MSCs were cultured and differentiated on fibril-covered surfaces, as well as on unstructured controls and tissue culture plastic. Expression of CD44 and CD90 proteins indicated that multipotency was maintained for all fibrils, and osteogenic differentiation was similarly comparable among all tested materials. MSCs grown for 7days on fibril-covered surfaces favored multicellular spheroid formation and demonstrated a >75% increase in adipogenesis compared to tissue culture plastic controls, although this benefit could only be achieved if MSCs were transferred to TCP for the final differentiation step. The largest spheroids and greatest tendency to undergo adipogenesis was evidenced among MSCs grown on fibrils coated with the positively-charged polysaccharide chitosan, suggesting that spheroid formation is prompted by both topography and cell-surface interactivity and that there is a connection between multicellular spheroid formation and adipogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Skeletal Cell Differentiation Is Enhanced by Atmospheric Dielectric Barrier Discharge Plasma Treatment

    PubMed Central

    Zhang, Jun; Kurpad, Deepa S.; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A.

    2013-01-01

    Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance differentiation, and suggest this technology could be used to enhance bone fusion and improve healing after skeletal injury. PMID:24349203

  8. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.

    PubMed

    Steinbeck, Marla J; Chernets, Natalie; Zhang, Jun; Kurpad, Deepa S; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A

    2013-01-01

    Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance differentiation, and suggest this technology could be used to enhance bone fusion and improve healing after skeletal injury.

  9. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel.

    PubMed

    He, Li; Si, Guangwei; Huang, Jiuhong; Samuel, Aravinthan D T; Perrimon, Norbert

    2018-03-01

    Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear. Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells. Loss of Piezo activity reduces the generation of enteroendocrine cells in the adult midgut. In addition, ectopic expression of Piezo in all stem cells triggers both cell proliferation and enteroendocrine cell differentiation. Both the Piezo mutant and overexpression phenotypes can be rescued by manipulation of cytosolic Ca 2+ levels, and increases in cytosolic Ca 2+ resemble the Piezo overexpression phenotype, suggesting that Piezo functions through Ca 2+ signalling. Further studies suggest that Ca 2+ signalling promotes stem-cell proliferation and differentiation through separate pathways. Finally, Piezo is required for both mechanical activation of stem cells in a gut expansion assay and the increase of cytosolic Ca 2+ in response to direct mechanical stimulus in a gut compression assay. Thus, our study demonstrates the existence of a specific group of stem cells in the fly midgut that can directly sense mechanical signals through Piezo.

  10. Histone Deacetylase Inhibitors in Cell Pluripotency, Differentiation, and Reprogramming

    PubMed Central

    Kretsovali, Androniki; Hadjimichael, Christiana; Charmpilas, Nikolaos

    2012-01-01

    Histone deacetylase inhibitors (HDACi) are small molecules that have important and pleiotropic effects on cell homeostasis. Under distinct developmental conditions, they can promote either self-renewal or differentiation of embryonic stem cells. In addition, they can promote directed differentiation of embryonic and tissue-specific stem cells along the neuronal, cardiomyocytic, and hepatic lineages. They have been used to facilitate embryo development following somatic cell nuclear transfer and induced pluripotent stem cell derivation by ectopic expression of pluripotency factors. In the latter method, these molecules not only increase effectiveness, but can also render the induction independent of the oncogenes c-Myc and Klf4. Here we review the molecular pathways that are involved in the functions of HDAC inhibitors on stem cell differentiation and reprogramming of somatic cells into pluripotency. Deciphering the mechanisms of HDAC inhibitor actions is very important to enable their exploitation for efficient and simple tissue regeneration therapies. PMID:22550500

  11. Intraportal injection of insulin-producing cells generated from human bone marrow mesenchymal stem cells decreases blood glucose level in diabetic rats.

    PubMed

    Tsai, Pei-Jiun; Wang, Hwai-Shi; Lin, Chi-Hung; Weng, Zen-Chung; Chen, Tien-Hua; Shyu, Jia-Fwu

    2014-01-01

    We studied the process of trans-differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) into insulin-producing cells. Streptozotocin (STZ)-induced diabetic rat model was used to study the effect of portal vein transplantation of these insulin-producing cells on blood sugar levels. The BM-MSCs were differentiated into insulin-producing cells under defined conditions. Real-time PCR, immunocytochemistry and glucose challenge were used to evaluate in vitro differentiation. Flow cytometry showed that hBM-MSCs were strongly positive for CD44, CD105 and CD73 and negative for hematopoietic markers CD34, CD38 and CD45. Differentiated cells expressed C-peptide as well as β-cells specific genes and hormones. Glucose stimulation increased C-peptide secretion in these cells. The insulin-producing, differentiated cells were transplanted into the portal vein of STZ-induced diabetic rats using a Port-A catheter. The insulin-producing cells were localized in the liver of the recipient rat and expressed human C-peptide. Blood glucose levels were reduced in diabetic rats transplanted with insulin-producing cells. We concluded that hBM-MSCs could be trans-differentiated into insulin-producing cells in vitro. Portal vein transplantation of insulin-producing cells alleviated hyperglycemia in diabetic rats.

  12. Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro

    PubMed Central

    2014-01-01

    Background Recent studies suggest that ovarian germ line stem cells replenish oocyte-pool in adult stage, and challenge the central doctrine of ‘fixed germ cell pool’ in mammalian reproductive biology. Two distinct populations of spherical stem cells with high nucleo-cytoplasmic ratio have been recently identified in the adult mammalian ovary surface epithelium (OSE) including nuclear OCT-4A positive very small embryonic-like (VSELs) and cytoplasmic OCT-4 expressing ovarian germ stem cells (OGSCs). Three weeks culture of scraped OSE cells results in spontaneous differentiation of the stem cells into oocyte-like, parthenote-like, embryoid body-like structures and also embryonic stem cell-like colonies whereas epithelial cells attach and transform into a bed of mesenchymal cells. Present study was undertaken, to further characterize ovarian stem cells and to comprehend better the process of spontaneous differentiation of ovarian stem cells into oocyte-like structures in vitro. Methods Ovarian stem cells were enriched by immunomagnetic sorting using SSEA-4 as a cell surface marker and were further characterized. Stem cells and clusters of OGSCs (reminiscent of germ cell nests in fetal ovaries), were characterized by immuno-localization for stem and germ cell specific markers and spontaneous differentiation in OSE cultures was studied by live cell imaging. Results Differential expression of markers specific for pluripotent VSELs (nuclear OCT-4A, SSEA-4, CD133), OGSCs (cytoplasmic OCT-4) primordial germ cells (FRAGILIS, STELLA, VASA) and germ cells (DAZL, GDF-9, SCP-3) were studied. Within one week of culture, stem cells became bigger in size, developed abundant cytoplasm, differentiated into germ cells, revealed presence of Balbiani body-like structure (mitochondrial cloud) and exhibited characteristic cytoplasmic streaming. Conclusions Presence of germ cell nests, Balbiani body-like structures and cytoplasmic streaming extensively described during fetal ovary development, are indeed well recapitulated during in vitro oogenesis in adult OSE cultures along with characteristic expression of stem/germ cell/oocyte markers. Further studies are required to assess the genetic integrity of in vitro derived oocytes before harnessing their clinical potential. Advance in our knowledge about germ cell differentiation from stem cells will enable researchers to design better in vitro strategies which in turn may have relevance to reproductive biology and regenerative medicine. PMID:24568237

  13. In vivo differentiation of human periodontal ligament cells leads to formation of dental hard tissue.

    PubMed

    Wolf, M; Lossdörfer, S; Abuduwali, N; Meyer, R; Kebir, S; Götz, W; Jäger, A

    2013-11-01

    Following trauma, periodontal disease, or orthodontic tooth movement, residual periodontal ligament (PDL) cells at the defect site are considered mandatory for successful regeneration of the injured structures. Recent developments in tissue engineering focus, as one pillar, on the transplantation of PDL cells to support periodontal regeneration processes. Here, we examined the ability of osteogenically predifferentiated PDL cells to undergo further osteoblastic or cementoblastic differentiation and to mineralize their extracellular matrix when transplanted in an in vivo microenvironment. Using collagen sponges as carriers, osteogenically predifferentiated human PDL cells were transplanted subcutaneously into six immunocompromised CD-1® nude mice. Following explantation after 28 days, osteogenic and cementogenic marker protein expression was visualized immunohistochemically. After 28 days, transplanted PDL cells revealed both cellular, cytoplasmatic and extracellular immunoreactivity for the chosen markers alkaline phosphatase, osteopontin, PTH-receptor 1, and osteocalcin. Specific osteogenic and cementoblastic differentiation was demonstrated by RUNX2 and CEMP1 immunoreactivity. Early stages of mineralization were demonstrated by calcium and phosphate staining. Our results reinforce the previously published reports of PDL cell mineralization in vivo and further demonstrate the successful induction of specific osteogenic and cementogenic differentiation of transplanted human PDL cells in vivo. These findings reveal promising possibilities for supporting periodontal remodeling and regeneration processes with PDL cells being potential target cells with which to influence the process of orthodontically induced root resorption.

  14. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines

    PubMed Central

    2010-01-01

    To overcome loss of stem-like properties and spontaneous differentiation those hinder the expansion and application of human mesenchymal stem cells (hMSCs), we have clonally isolated permanent and stable human MSC lines by ectopic overexpression of primary cell cultures of hMSCs with HPV 16 E6E7 and human telomerase reverse transcriptase (hTERT) genes. These cells were found to have a differentiation potential far beyond the ordinary hMSCs. They expressed trophoectoderm and germline specific markers upon differentiation with BMP4 and retinoic acid, respectively. Furthermore, they displayed higher osteogenic and neural differentiation efficiency than primary hMSCs or hMSCs expressed HPV16 E6E7 alone with a decrease in methylation level as proven by a global CpG island methylation profile analysis. Notably, the demethylated CpG islands were highly associated with development and differentiation associated genes. Principal component analysis further pointed out the expression profile of the cells converged toward embryonic stem cells. These data demonstrate these cells not only are a useful tool for the studies of cell differentiation both for the mesenchymal and neurogenic lineages, but also provide a valuable source of cells for cell therapy studies in animal models of skeletal and neurological disorders. PMID:20670406

  15. Controlling Destiny through Chemistry: Small-Molecule Regulators of Cell Fate

    PubMed Central

    2009-01-01

    Controlling cell fate is essential for embryonic development, tissue regeneration, and the prevention of human disease. With each cell in the human body sharing a common genome, achieving the appropriate spectrum of stem cells and their differentiated lineages requires the selective activation of developmental signaling pathways, the expression of specific target genes, and the maintenance of these cellular states through epigenetic mechanisms. Small molecules that target these regulatory processes are therefore valuable tools for probing and manipulating the molecular mechanisms by which stem cells self-renew, differentiate, and arise from somatic cell reprogramming. Pharmacological modulators of cell fate could also help remediate human diseases caused by dysregulated cell proliferation or differentiation, heralding a new era in molecular therapeutics. PMID:20000447

  16. Controlling destiny through chemistry: small-molecule regulators of cell fate.

    PubMed

    Firestone, Ari J; Chen, James K

    2010-01-15

    Controlling cell fate is essential for embryonic development, tissue regeneration, and the prevention of human disease. With each cell in the human body sharing a common genome, achieving the appropriate spectrum of stem cells and their differentiated lineages requires the selective activation of developmental signaling pathways, the expression of specific target genes, and the maintenance of these cellular states through epigenetic mechanisms. Small molecules that target these regulatory processes are therefore valuable tools for probing and manipulating the molecular mechanisms by which stem cells self-renew, differentiate, and arise from somatic cell reprogramming. Pharmacological modulators of cell fate could also help remediate human diseases caused by dysregulated cell proliferation or differentiation, heralding a new era in molecular therapeutics.

  17. 3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation.

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Wallace, Gordon G; Crook, Jeremy M

    2017-09-01

    The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine, including individualized, patient-specific stem cell-based treatments. There are, however, few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues, ideally comprising direct-write printing of cells for encapsulation, proliferation, and differentiation. Here, such a method, employing a clinically amenable polysaccharide-based bioink, is described as the first example of bioprinting human iPSCs for in situ expansion and sequential differentiation. Specifically, we have extrusion printed the bioink including iPSCs, alginate (Al; 5% weight/volume [w/v]), carboxymethyl-chitosan (5% w/v), and agarose (Ag; 1.5% w/v), crosslinked the bioink in calcium chloride for a stable and porous construct, proliferated the iPSCs within the construct and differentiated the same iPSCs into either EBs comprising cells of three germ lineages-endoderm, ectoderm, and mesoderm, or more homogeneous neural tissues containing functional migrating neurons and neuroglia. This defined, scalable, and versatile platform is envisaged being useful in iPSC research and translation for pharmaceuticals development and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Intermolecular Interactions of Homologs of Germ Plasm Components in Mammalian Germ Cells

    PubMed Central

    Fox, Mark S.; Clark, Amander T.; El Majdoubi, Mohammed; Vigne, Jean-Louis; Urano, Jun; Hostetler, Chris E.; Griswold, Michael D.; Weiner, Richard I.; Pera, Renee A. Reijo

    2007-01-01

    In some species such as flies, worms, frogs, and fish the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically-distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration, that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells. PMID:16996493

  19. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes.

    PubMed

    Young, Nathan P; Kamireddy, Anwesh; Van Nostrand, Jeanine L; Eichner, Lillian J; Shokhirev, Maxim Nikolaievich; Dayn, Yelena; Shaw, Reuben J

    2016-03-01

    Faithful execution of developmental programs relies on the acquisition of unique cell identities from pluripotent progenitors, a process governed by combinatorial inputs from numerous signaling cascades that ultimately dictate lineage-specific transcriptional outputs. Despite growing evidence that metabolism is integrated with many molecular networks, how pathways that control energy homeostasis may affect cell fate decisions is largely unknown. Here, we show that AMP-activated protein kinase (AMPK), a central metabolic regulator, plays critical roles in lineage specification. Although AMPK-deficient embryonic stem cells (ESCs) were normal in the pluripotent state, these cells displayed profound defects upon differentiation, failing to generate chimeric embryos and preferentially adopting an ectodermal fate at the expense of the endoderm during embryoid body (EB) formation. AMPK(-/-) EBs exhibited reduced levels of Tfeb, a master transcriptional regulator of lysosomes, leading to diminished endolysosomal function. Remarkably, genetic loss of Tfeb also yielded endodermal defects, while AMPK-null ESCs overexpressing this transcription factor normalized their differential potential, revealing an intimate connection between Tfeb/lysosomes and germ layer specification. The compromised endolysosomal system resulting from AMPK or Tfeb inactivation blunted Wnt signaling, while up-regulating this pathway restored expression of endodermal markers. Collectively, these results uncover the AMPK pathway as a novel regulator of cell fate determination during differentiation. © 2016 Young et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes.

    PubMed

    Lacham-Kaplan, Orly; Chy, Hun; Trounson, Alan

    2006-02-01

    Previous reports and the current study have found that germ cell precursor cells appear in embryoid bodies (EBs) formed from mouse embryonic stem cells as identified by positive expression of specific germ cell markers such as Oct-3/4, Mvh, c-kit, Stella, and DAZL. We hypothesized that if exposed to appropriate growth factors, the germ cell precursor cells within the EBs would differentiate into gametes. The source for growth factors used in the present study is conditioned medium collected from testicular cell cultures prepared from the testes of newborn males. Testes at this stage of development contain most growth factors required for the transformation of germ stem cells into differentiated gametes. When EBs were cultured in the conditioned medium, they developed into ovarian structures, which contained putative oocytes. The oocytes were surrounded by one to two layers of flattened cells and did not have a visible zona pellucida. However, oocyte-specific markers such as Fig-alpha and ZP3 were found expressed by the ovarian structures. The production of oocytes using this method is repeatable and reliable and may be applicable to other mammalian species, including the human.

  1. Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells.

    PubMed

    Matin, Maryam M; Walsh, James R; Gokhale, Paul J; Draper, Jonathan S; Bahrami, Ahmad R; Morton, Ian; Moore, Harry D; Andrews, Peter W

    2004-01-01

    We have used RNA interference (RNAi) to downregulate beta2-microglobulin and Oct4 in human embryonal carcinoma (hEC) cells and embryonic stem (hES) cells, demonstrating that RNAi is an effective tool for regulating specific gene activity in these human stem cells. The knockdown of Oct4 but not beta2-microglobulin expression in both EC and ES cells resulted in their differentiation, as indicated by a marked change in morphology, growth rate, and surface antigen phenotype, with respect to SSEA1, SSEA3, and TRA-1-60 expression. Expression of hCG and Gcm1 was also induced following knockdown of Oct4 expression, in both 2102Ep hEC cells and in H7 and H14 hES cells, consistent with the conclusion that, as in the mouse, Oct4 is required to maintain the undifferentiated stem cell state, and that differentiation to trophectoderm occurs in its absence. NTERA2 hEC cells also differentiated, but not to trophectoderm, suggesting their equivalence to a later stage of embryogenesis than other hEC and hES cells.

  2. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud

    PubMed Central

    Norrie, Jacqueline L.; Li, Qiang; Co, Swanie; Huang, Bau-Lin; Ding, Ding; Uy, Jann C.; Ji, Zhicheng; Mackem, Susan; Bedford, Mark T.; Galli, Antonella; Ji, Hongkai

    2016-01-01

    During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4. Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis. PMID:27827819

  3. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud.

    PubMed

    Norrie, Jacqueline L; Li, Qiang; Co, Swanie; Huang, Bau-Lin; Ding, Ding; Uy, Jann C; Ji, Zhicheng; Mackem, Susan; Bedford, Mark T; Galli, Antonella; Ji, Hongkai; Vokes, Steven A

    2016-12-15

    During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4 Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis. © 2016. Published by The Company of Biologists Ltd.

  4. Pluripotent hybrid cells contribute to extraembryonic as well as embryonic tissues.

    PubMed

    Do, Jeong Tae; Choi, Hyun Woo; Choi, Youngsok; Schöler, Hans R

    2011-06-01

    The restricted gene expression of a differentiated cell can be reversed by forming hybrid with embryonic stem cells (ESCs). The resulting hybrid cells showed not only an ESC-specific marker expression but also a differentiation potential similar to the pluripotent fusion partner. Here, we evaluated whether the tetraploid fusion hybrid cells have a unique differentiation potential compared with diploid pluripotent cells. The first Oct4-GFP-positive cells were observed at day 2 following fusion between ESCs and neurosphere cells (OG2(+/-)/ROSA26(+/-)). Reprogramming efficiency was as high as 94.5% at passage 5 and 96.4% at passage 13. We have found that the tetraploid hybrid cells could form chimera with contribution to placenta after blastocyst injection. This result indicates that the tetraploid pluripotent fusion hybrid cells have wide range of differentiation potential. Therefore, we suggest that once the somatic cells are reprogrammed by fusion with ESCs, the tetraploid hybrid cells contributed to the extraembryonic as well as embryonic tissues.

  5. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells

    PubMed Central

    Meyer, Swanhild U.; Krebs, Stefan; Thirion, Christian; Blum, Helmut; Krause, Sabine; Pfaffl, Michael W.

    2015-01-01

    Introduction TNF-α levels are increased during muscle wasting and chronic muscle degeneration and regeneration processes, which are characteristic for primary muscle disorders. Pathologically increased TNF-α levels have a negative effect on muscle cell differentiation efficiency, while IGF1 can have a positive effect; therefore, we intended to elucidate the impact of TNF-α and IGF1 on gene expression during the early stages of skeletal muscle cell differentiation. Methodology/Principal Findings This study presents gene expression data of the murine skeletal muscle cells PMI28 during myogenic differentiation or differentiation with TNF-α or IGF1 exposure at 0 h, 4 h, 12 h, 24 h, and 72 h after induction. Our study detected significant coregulation of gene sets involved in myoblast differentiation or in the response to TNF-α. Gene expression data revealed a time- and treatment-dependent regulation of signaling pathways, which are prominent in myogenic differentiation. We identified enrichment of pathways, which have not been specifically linked to myoblast differentiation such as doublecortin-like kinase pathway associations as well as enrichment of specific semaphorin isoforms. Moreover to the best of our knowledge, this is the first description of a specific inverse regulation of the following genes in myoblast differentiation and response to TNF-α: Aknad1, Cmbl, Sepp1, Ndst4, Tecrl, Unc13c, Spats2l, Lix1, Csdc2, Cpa1, Parm1, Serpinb2, Aspn, Fibin, Slc40a1, Nrk, and Mybpc1. We identified a gene subset (Nfkbia, Nfkb2, Mmp9, Mef2c, Gpx, and Pgam2), which is robustly regulated by TNF-α across independent myogenic differentiation studies. Conclusions This is the largest dataset revealing the impact of TNF-α or IGF1 treatment on gene expression kinetics of early in vitro skeletal myoblast differentiation. We identified novel mRNAs, which have not yet been associated with skeletal muscle differentiation or response to TNF-α. Results of this study may facilitate the understanding of transcriptomic networks underlying inhibited muscle differentiation in inflammatory diseases. PMID:26447881

  6. Phenotypic and Functional Characterization of Herpes Simplex Virus Glycoprotein B Epitope-Specific Effector and Memory CD8+ T Cells from Symptomatic and Asymptomatic Individuals with Ocular Herpes

    PubMed Central

    Khan, Arif A.; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P.; Pham, Thanh T.; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M.; Nesburn, Anthony B.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8+ T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8+ T cells play a key role in the “natural” protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8+ T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow). In contrast, SYMP patients had frequent less-differentiated central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8+ T cells which responded mainly to gB342–350 and gB561–569 “ASYMP” epitopes, and simultaneously produced IFN-γ, CD107a/b, granzyme B, and perforin. In contrast, effector CD8+ T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17–25 and gB183–191 “SYMP” epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong CD8+ T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8+ TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow) were found in healthy ASYMP individuals who are seropositive for HSV-1 but never had any recurrent herpetic disease, while there were frequent less-differentiated and monofunctional central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh) in SYMP patients. Immunization with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong protective HSV-specific CD8+ T cell response in HLA-A*02:01 transgenic mice. These findings are important for the development of a safe and effective T cell-based herpes vaccine. PMID:25609800

  7. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.

    PubMed

    Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F

    2017-03-01

    Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP + memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP + memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation. © 2016 John Wiley & Sons Ltd.

  8. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination.

    PubMed

    Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Shi, Yanhong

    2009-04-01

    MicroRNAs have been implicated as having important roles in stem cell biology. MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and may be involved in neural stem cell self-renewal and differentiation. We showed previously that the nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a TLX expression vector that is not prone to miR-9 regulation rescued miR-9-induced proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural stem cells. Moreover, TLX represses expression of the miR-9 pri-miRNA. By forming a negative regulatory loop with TLX, miR-9 provides a model for controlling the balance between neural stem cell proliferation and differentiation.

  9. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination

    PubMed Central

    Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Shi, Yanhong

    2009-01-01

    Summary MicroRNAs are important players in stem cell biology. Among them, microRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain. Whether miR-9 plays a role in neural stem cell self-renewal and differentiation is unknown. We showed previously that nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a TLX expression vector lacking the miR-9 recognition site rescued miR-9-induced proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural stem cells. Moreover, TLX represses miR-9 pri-miRNA expression. MiR-9, by forming a negative regulatory loop with TLX, establishes a model for controlling the balance between neural stem cell proliferation and differentiation. PMID:19330006

  10. Induced pluripotent stem cells: challenges and opportunities for cancer immunotherapy.

    PubMed

    Sachamitr, Patty; Hackett, Simon; Fairchild, Paul Jonathan

    2014-01-01

    Despite recent advances in cancer treatment over the past 30 years, therapeutic options remain limited and do not always offer a cure for malignancy. Given that tumor-associated antigens (TAA) are, by definition, self-proteins, the need to productively engage autoreactive T cells remains at the heart of strategies for cancer immunotherapy. These have traditionally focused on the administration of autologous monocyte-derived dendritic cells (moDC) pulsed with TAA, or the ex vivo expansion and adoptive transfer of tumor-infiltrating lymphocytes (TIL) as a source of TAA-specific cytotoxic T cells (CTL). Although such approaches have shown some efficacy, success has been limited by the poor capacity of moDC to cross present exogenous TAA to the CD8(+) T-cell repertoire and the potential for exhaustion of CTL expanded ex vivo. Recent advances in induced pluripotency offer opportunities to generate patient-specific stem cell lines with the potential to differentiate in vitro into cell types whose properties may help address these issues. Here, we review recent success in the differentiation of NK cells from human induced pluripotent stem (iPS) cells as well as minor subsets of dendritic cells (DCs) with therapeutic potential, including CD141(+)XCR1(+) DC, capable of cross presenting TAA to naïve CD8(+) T cells. Furthermore, we review recent progress in the use of TIL as the starting material for the derivation of iPSC lines, thereby capturing their antigen specificity in a self-renewing stem cell line, from which potentially unlimited numbers of naïve TAA-specific T cells may be differentiated, free of the risks of exhaustion.

  11. Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA.

    PubMed

    Ban, Kiwon; Wile, Brian; Kim, Sangsung; Park, Hun-Jun; Byun, Jaemin; Cho, Kyu-Won; Saafir, Talib; Song, Ming-Ke; Yu, Shan Ping; Wagner, Mary; Bao, Gang; Yoon, Young-Sup

    2013-10-22

    Although methods for generating cardiomyocytes from pluripotent stem cells have been reported, current methods produce heterogeneous mixtures of cardiomyocytes and noncardiomyocyte cells. Here, we report an entirely novel system in which pluripotent stem cell-derived cardiomyocytes are purified by cardiomyocyte-specific molecular beacons (MBs). MBs are nanoscale probes that emit a fluorescence signal when hybridized to target mRNAs. Five MBs targeting mRNAs of either cardiac troponin T or myosin heavy chain 6/7 were generated. Among 5 MBs, an MB that targeted myosin heavy chain 6/7 mRNA (MHC1-MB) identified up to 99% of HL-1 cardiomyocytes, a mouse cardiomyocyte cell line, but <3% of 4 noncardiomyocyte cell types in flow cytometry analysis, which indicates that MHC1-MB is specific for identifying cardiomyocytes. We delivered MHC1-MB into cardiomyogenically differentiated pluripotent stem cells through nucleofection. The detection rate of cardiomyocytes was similar to the percentages of cardiac troponin T- or cardiac troponin I-positive cardiomyocytes, which supports the specificity of MBs. Finally, MHC1-MB-positive cells were sorted by fluorescence-activated cell sorter from mouse and human pluripotent stem cell differentiating cultures, and ≈97% cells expressed cardiac troponin T or cardiac troponin I as determined by flow cytometry. These MB-based sorted cells maintained their cardiomyocyte characteristics, which was verified by spontaneous beating, electrophysiological studies, and expression of cardiac proteins. When transplanted in a myocardial infarction model, MB-based purified cardiomyocytes improved cardiac function and demonstrated significant engraftment for 4 weeks without forming tumors. We developed a novel cardiomyocyte selection system that allows production of highly purified cardiomyocytes. These purified cardiomyocytes and this system can be valuable for cell therapy and drug discovery.

  12. In vitro hepatic differentiation of human endometrial stromal stem cells.

    PubMed

    Yang, Xin-yuan; Wang, Wei; Li, Xu

    2014-02-01

    Human endometrial stromal stem cells (hESSCs) can differentiate into mesodermal and ectodermal cellular lineages in the endometrium. However, whether hESSCs can differentiate into functional hepatic-like cells is unknown. In this study, we developed a multiple-step induction protocol to differentiate hESSCs into functional hepatic-like cells in vitro. Endometrial stromal cells were isolated by magnetic affinity sorting using anti-epithelial cell adhesion molecule-coated Dynabeads. The enriched hESSCs were analyzed by flow cytometry and were able to differentiate into osteoblasts or adipocytes under proper induction media. To differentiate into hepatic-like cells, hESSCs were cultured in a stepwise system containing hepatocyte growth factor, fibroblast growth factor-4, oncostatin M, and trichostatin A for a total of 24 d. The hepatic-like cell differentiation was analyzed by confocal microscopy and immunocytochemical staining. Glycogen storage, cellular urea synthesis, and ammonia concentrations were measured. Hepatic-like cells were successfully generated from hESSCs and were identified by their epithelial-like shape characteristics and expression of specific biomarkers albumin and cytokeratin 8 accompanied with a reduction of alpha-fetoprotein and alpha-smooth muscle actin expression. The hepatic-like cells generated were functional as evidenced by urea synthesis and glycogen storage. Our study demonstrated that hESSCs were able to differentiate into hepatic-like cells in vitro. Thus, endometrial stromal cells may be used as an easily accessible alternative source of stem cells for potential therapeutic applications in liver disease.

  13. The spectrum of STAT functions in mammary gland development

    PubMed Central

    Hughes, Katherine; Watson, Christine J.

    2012-01-01

    The signal transducer and activator of transcription (STAT) family of transcription factors have a spectrum of functions in mammary gland development. In some cases these roles parallel those of STATs in other organ systems, while in other instances the function of individual STATs in the mammary gland is specific to this tissue. In the immune system, STAT6 is associated with differentiation of T helper cells, while in the mammary gland, it has a fundamental role in the commitment of luminal epithelial cells to the alveolar lineage. STAT5A is required for the production of luminal progenitor cells from mammary stem cells and is essential for the differentiation of milk producing alveolar cells during pregnancy. By contrast, the initiation of regression following weaning heralds a dramatic and specific activation of STAT3, reflecting its pivotal role in the regulation of cell death and tissue remodeling during mammary involution. Although it has been demonstrated that STAT1 is regulated during a mammary developmental cycle, it is not yet determined whether it has a specific, non-redundant function. Thus, the mammary gland constitutes an unusual example of an adult organ in which different STATs are sequentially activated to orchestrate the processes of functional differentiation, cell death and tissue remodeling. PMID:24058764

  14. Lentiviral Vectors Bearing the Cardiac Promoter of the Na+-Ca2+ Exchanger Report Cardiogenic Differentiation in Stem Cells

    PubMed Central

    Barth, Andreas S; Kizana, Eddy; Smith, Rachel R; Terrovitis, John; Dong, Peihong; Leppo, Michelle K; Zhang, Yiqiang; Miake, Junichiro; Olson, Eric N; Schneider, Jay W; Abraham, M Roselle; Marbán, Eduardo

    2009-01-01

    Cardiosphere-derived resident cardiac stem cells (CDCs) are readily isolated from adult hearts and confer functional benefit in animal models of heart failure. To study cardiogenic differentiation in CDCs, we developed a method to genetically label and selectively enrich for cells that have acquired a cardiac phenotype. Lentiviral vectors achieved significantly higher transduction efficiencies in CDCs than any of the nine adeno-associated viral (AAV) serotypes tested. To define the most suitable vector system for reporting cardiogenic differentiation, we compared the cell specificity of five commonly-used cardiac-specific promoters in the context of lentiviral vectors. The promoter of the cardiac sodium-calcium exchanger (NCX1) conveyed the highest degree of cardiac specificity, as assessed by transducing seven cell types with each vector and measuring fluorescence intensity by flow cytometry. NCX1-GFP-positive CDC subpopulations, demonstrating prolonged expression of a variety of cardiac markers, could be isolated and expanded in vitro. Finally, we used chemical biology to validate that lentiviral vectors bearing the cardiac NCX1-promoter can serve as a highly accurate biosensor of cardiogenic small molecules in stem cells. The ability to accurately report cardiac fate and selectively enrich for cardiomyocytes and their precursors has important implications for drug discovery and the development of cell-based therapies. PMID:18388932

  15. Generation of Hepatocytes from Pluripotent Stem Cells for Drug Screening and Developmental Modeling.

    PubMed

    Gieseck, Richard L; Vallier, Ludovic; Hannan, Nicholas R F

    2015-01-01

    Hepatocytes produced from the differentiation of human pluripotent stem cells can be used to study human development and liver disease, to investigate the toxicological response of novel drug candidates, and as an alternative source of primary cells for transplantation therapies. Here, we describe a method to produce hepatocytes by differentiating human pluripotent stem cells into definitive endoderm, patterning definitive endoderm into anterior definitive endoderm, specifying anterior definitive endoderm into hepatic endoderm, and differentiating hepatic endoderm into immature hepatocytes. These cells are further matured in either two-dimensional or three-dimensional culture conditions to produce cells capable of metabolizing xenobiotics and generating liver-specific proteins, such as albumin and alpha 1 antitrypsin.

  16. The interaction between Sertoli cells and luekemia inhibitory factor on the propagation and differentiation of spermatogonial stem cells in vitro

    PubMed Central

    Rastegar, Tayebeh; Habibi Roudkenar, Mehryar; Parvari, Soraya; Baazm, Maryam

    2015-01-01

    Background: Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. Objective: This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. Materials and Methods: SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Results: Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Conclusion: Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment. PMID:26730242

  17. The interaction between Sertoli cells and luekemia inhibitory factor on the propagation and differentiation of spermatogonial stem cells in vitro.

    PubMed

    Rastegar, Tayebeh; Habibi Roudkenar, Mehryar; Parvari, Soraya; Baazm, Maryam

    2015-11-01

    Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment.

  18. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    PubMed

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  19. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells

    PubMed Central

    Bock, Christoph; Beerman, Isabel; Lien, Wen-Hui; Smith, Zachary D.; Gu, Hongcang; Boyle, Patrick; Gnirke, Andreas; Fuchs, Elaine; Rossi, Derrick J.; Meissner, Alexander

    2012-01-01

    DNA methylation is a mechanism of epigenetic regulation that is common to all vertebrates. Functional studies underscore its relevance for tissue homeostasis, but the global dynamics of DNA methylation during in vivo differentiation remain underexplored. Here we report high-resolution DNA methylation maps of adult stem cell differentiation in mouse, focusing on 19 purified cell populations of the blood and skin lineages. DNA methylation changes were locus-specific and relatively modest in magnitude. They frequently overlapped with lineage-associated transcription factors and their binding sites, suggesting that DNA methylation may protect cells from aberrant transcription factor activation. DNA methylation and gene expression provided complementary information, and combining the two enabled us to infer the cellular differentiation hierarchy of the blood lineage directly from genomic data. In summary, these results demonstrate that in vivo differentiation of adult stem cells is associated with small but informative changes in the genomic distribution of DNA methylation. PMID:22841485

  20. Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response.

    PubMed

    Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els

    2003-12-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.

  1. Mouse embryonic stem cell-derived cells reveal niches that support neuronal differentiation in the adult rat brain.

    PubMed

    Maya-Espinosa, Guadalupe; Collazo-Navarrete, Omar; Millán-Aldaco, Diana; Palomero-Rivero, Marcela; Guerrero-Flores, Gilda; Drucker-Colín, René; Covarrubias, Luis; Guerra-Crespo, Magdalena

    2015-02-01

    A neurogenic niche can be identified by the proliferation and differentiation of its naturally residing neural stem cells. However, it remains unclear whether "silent" neurogenic niches or regions suitable for neural differentiation, other than the areas of active neurogenesis, exist in the adult brain. Embryoid body (EB) cells derived from embryonic stem cells (ESCs) are endowed with a high potential to respond to specification and neuralization signals of the embryo. Hence, to identify microenvironments in the postnatal and adult rat brain with the capacity to support neuronal differentiation, we transplanted dissociated EB cells to conventional neurogenic and non-neurogenic regions. Our results show a neuronal differentiation pattern of EB cells that was dependent on the host region. Efficient neuronal differentiation of EB cells occurred within an adjacent region to the rostral migratory stream. EB cell differentiation was initially patchy and progressed toward an even distribution along the graft by 15-21 days post-transplantation, giving rise mostly to GABAergic neurons. EB cells in the striatum displayed a lower level of neuronal differentiation and derived into a significant number of astrocytes. Remarkably, when EB cells were transplanted to the striatum of adult rats after a local ischemic stroke, increased number of neuroblasts and neurons were observed. Unexpectedly, we determined that the adult substantia nigra pars compacta, considered a non-neurogenic area, harbors a robust neurogenic environment. Therefore, neurally uncommitted cells derived from ESCs can detect regions that support neuronal differentiation within the adult brain, a fundamental step for the development of stem cell-based replacement therapies. © 2014 AlphaMed Press.

  2. Arginine methylation catalyzed by PRMT1 is required for B cell activation and differentiation.

    PubMed

    Infantino, Simona; Light, Amanda; O'Donnell, Kristy; Bryant, Vanessa; Avery, Danielle T; Elliott, Michael; Tangye, Stuart G; Belz, Gabrielle; Mackay, Fabienne; Richard, Stephane; Tarlinton, David

    2017-10-12

    Arginine methylation catalyzed by protein arginine methyltransferases (PRMT) is a common post-translational modification in mammalian cells, regulating many important functions including cell signalling, proliferation and differentiation. Here we show the role of PRMT1 in B-cell activation and differentiation. PRMT1 expression and activity in human and mouse peripheral B cells increases in response to in vitro or in vivo activation. Deletion of the Prmt1 gene in mature B cells establishes that although the frequency and phenotype of peripheral B cell subsets seem unaffected, immune responses to T-cell-dependent and -independent antigens are substantially reduced. In vitro activation of Prmt1-deficient B cells with a variety of mitogens results in diminished proliferation, differentiation and survival, effects that are correlated with altered signal transduction from the B cell receptor. Thus PRMT1 activity in B cells is required for correct execution of multiple processes that in turn are necessary for humoral immunity.PRMT1 is an arginine methyltransferase involved in a variety of cell functions. Here the authors delete PRMT1 specifically in mature B cells to show the importance of arginine methylation for B cell proliferation, differentiation and survival, and thereby for humoral immunity.

  3. Altered differentiation and clustering of Sertoli cells in transgenic mice showing a Sertoli cell specific knockout of the connexin 43 gene.

    PubMed

    Weider, Karola; Bergmann, Martin; Giese, Sarah; Guillou, Florian; Failing, Klaus; Brehm, Ralph

    2011-07-01

    Histological analysis revealed that Sertoli cell specific knockout of the predominant testicular gap junction protein connexin 43 results in a spermatogenic arrest at the level of spermatogonia or Sertoli cell-only syndrome, intratubular cell clusters and still proliferating adult Sertoli cells, implying an important role for connexin 43 in the Sertoli and germ cell development. This study aimed to determine the (1) Sertoli cell maturation state, (2) time of occurrence and (3) composition, differentiation and fate of clustered cells in knockout mice. Using immunohistochemistry connexin 43 deficient Sertoli cells showed an accurate start of the mature markers androgen receptor and GATA-1 during puberty and a vimentin expression from neonatal to adult. Expression of anti-Muellerian hormone, as a marker of Sertoli cell immaturity, was finally down-regulated during puberty, but its disappearance was delayed. This observed extended anti-Müllerian hormone synthesis during puberty was confirmed by western blot and Real-Time PCR and suggests a partial alteration in the Sertoli cell differentiation program. Additionally, Sertoli cells of adult knockouts showed a permanent and uniform expression of GATA-1 at protein and mRNA level, maybe caused by the lack of maturing germ cells and missing negative feedback signals. At ultrastructural level, basally located adult Sertoli cells obtained their mature appearance, demonstrated by the tripartite nucleolus as a typical feature of differentiated Sertoli cells. Intratubular clustered cells were mainly formed by abnormal Sertoli cells and single attached apoptotic germ cells, verified by immunohistochemistry, TUNEL staining and transmission electron microscopy. Clusters first appeared during puberty and became more numerous in adulthood with increasing cell numbers per cluster suggesting an age-related process. In conclusion, adult connexin 43 deficient Sertoli cells seem to proliferate while maintaining expression of mature markers and their adult morphology, indicating a unique and abnormal intermediate phenotype with characteristics common to both undifferentiated and differentiated Sertoli cells. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  4. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnicarova, Andrea; Kozubek, Stanislav; Pachernik, Jiri

    2006-12-10

    Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal andmore » derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.« less

  5. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sternberg, E.A.; Spizz, G.; Perry, W.M.

    1988-07-01

    Terminal differentiation of skeletal myobalsts is accompanied by induction of a series of tissue-specific gene products, which includes the muscle isoenzymte of creatine kinase (MCK). To begin to define the sequences and signals involved in MCK regulation in developing muscle cells, the mouse MCK gene has been isolated. Sequence analysis of 4,147 bases of DNA surrounding the transcription initiation site revealed several interesting structural features, some of which are common to other muscle-specific genes and to cellular and viral enhancers.

  6. The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells.

    PubMed

    Twu, Yuh-Ching; Teh, Hung-Sia

    2014-03-01

    The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-β-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells. © 2013 John Wiley & Sons Ltd.

  7. Mouse Bone Marrow VSELs Exhibit Differentiation into Three Embryonic Germ Lineages and Germ & Hematopoietic Cells in Culture.

    PubMed

    Shaikh, Ambreen; Anand, Sandhya; Kapoor, Sona; Ganguly, Ranita; Bhartiya, Deepa

    2017-04-01

    Very small embryonic-like stem cells (VSELs) have been reported in various adult tissues, express pluripotent and primordial germ cells (PGCs) specific markers, are mobilized under stress/disease conditions, give rise to tissue committed progenitors and thus help regenerate and maintain homeostasis. The aim of the present study was to evaluate in vitro differentiation potential of VSELs using a quantitative approach. VSELs were collected from mouse bone marrow after 4 days of 5-fluorouracil (5-FU, 150 mg/Kg) treatment, further enriched by size based filtration and cultured on a feeder support in the presence of specific differentiation media. Cultured VSELs were found to differentiate into all three embryonic germ cell lineages, germ and hematopoietic cells after 14 days in culture. This was confirmed by studying Nestin, PDX-1, NKX2.5, DAZL, CD45 and other markers expression by various approaches. Very small, CD45 negative cells collected and enriched from GFP positive 5-FU treated mice bone marrow transitioned into CD45 positive cells in vitro thus demonstrating that VSELs can give rise to hematopoietic stem cells (HSCs). We envision that VSELs may be responsible for plasticity and ability of bone marrow cells to give rise to non-hematopoietic tissue progenitors of all 3 germ layers. Moreover the ability of VSELs to differentiate into germ cells as well as all the three lineages provides further evidence to support their pluripotent state and confirms developmental link between bone marrow VSELs and PGCs. The property of quiescence, no risk of teratoma formation and autologus source, make pluripotent VSELs a potential candidate to facilitate endogenous regeneration compared to cell replacement strategy envisioned using embryonic and induced pluripotent stem cells.

  8. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration

    PubMed Central

    2013-01-01

    Background Cell migration is a fundamental biological process and has an important role in the developing brain by regulating a highly specific pattern of connections between nerve cells. Cell migration is required for axonal guidance and neurite outgrowth and involves a series of highly co-ordinated and overlapping signalling pathways. The non-receptor tyrosine kinase, Focal Adhesion Kinase (FAK) has an essential role in development and is the most highly expressed kinase in the developing CNS. FAK activity is essential for neuronal cell adhesion and migration. Results The objective of this study was to optimise a protocol for the differentiation of the neuroblastoma cell line, SH-SY5Y. We determined the optimal extracellular matrix proteins and growth factor combinations required for the optimal differentiation of SH-SY5Y cells into neuronal-like cells and determined those conditions that induce the expression of FAK. It was confirmed that the cells were morphologically and biochemically differentiated when compared to undifferentiated cells. This is in direct contrast to commonly used differentiation methods that induce morphological differentiation but not biochemical differentiation. Conclusions We conclude that we have optimised a protocol for the differentiation of SH-SY5Y cells that results in a cell population that is both morphologically and biochemically distinct from undifferentiated SH-SY5Y cells and has a distinct adhesion and spreading pattern and display extensive neurite outgrowth. This protocol will provide a neuronal model system for studying FAK activity during cell adhesion and migration events. PMID:24025096

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. Themore » switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.« less

  10. Temporal Impact of Substrate Mechanics on Differentiation of Human Embryonic Stem Cells to Cardiomyocytes

    PubMed Central

    Hazeltine, Laurie B.; Badur, Mehmet G.; Lian, Xiaojun; Das, Amritava; Han, Wenqing; Palecek, Sean P.

    2014-01-01

    A significant clinical need exists to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes, enabling tissue modeling for in vitro discovery of new drugs or cell-based therapies for heart repair in vivo. Chemical and mechanical microenvironmental factors are known to impact efficiency of stem cell differentiation, but cardiac differentiation protocols in hPSCs are typically performed on rigid tissue culture polystyrene (TCPS) surfaces which do not present a physiological mechanical setting. To investigate the temporal effects of mechanics on cardiac differentiation, we cultured human embryonic stem cells (hESCs) and their derivatives on polyacrylamide hydrogel substrates with a physiologically relevant range of stiffnesses. In directed differentiation and embryoid body culture systems, differentiation of hESCs to cardiac Troponin T-expressing (cTnT+) cardiomyocytes peaked on hydrogels of intermediate stiffness. Brachyury expression also peaked on intermediate stiffness hydrogels at day 1 of directed differentiation, suggesting that stiffness impacted the initial differentiation trajectory of hESCs to mesendoderm. To investigate the impact of substrate mechanics during cardiac specification of mesodermal progenitors, we initiated directed cardiomyocyte differentiation on TCPS and transferred cells to hydrogels at the Nkx2.5/Isl1+ cardiac progenitor cell stage. No differences in cardiomyocyte purity with stiffness were observed on day 15. These experiments indicate that differentiation of hESCs is sensitive to substrate mechanics at early stages of mesodermal induction, and proper application of substrate mechanics can increase the propensity of hESCs to differentiate to cardiomyocytes. PMID:24200714

  11. TACI is required for efficient plasma cell differentiation in response to T-independent type 2 antigens.

    PubMed

    Mantchev, George T; Cortesão, Catarina S; Rebrovich, Michelle; Cascalho, Marilia; Bram, Richard J

    2007-08-15

    The control of systemic infection by encapsulated microorganisms requires T-independent type II (TI-2) Ab responses to bacterial polysaccharides. To understand how such responses evolve, we explored the function of transmembrane activator calcium modulator and cyclophilin ligand interactor (TACI), a member of the TNFR family, required for TI-2 Ab production. Quasimonoclonal (QM) mice produce robust TI-2 responses to 4-hydroxy-3-nitrophenylacetate (NP)-Ficoll, owing to the high precursor frequency of NP-specific B cells in the marginal zone of the spleen. QM mice that lack TACI produce decreased numbers of IgM (2-fold) and IgG (1.6-fold) NP-specific ASCs, compared with TACI-positive QM mice in response to immunization with NP-Ficoll. Our studies indicate that TACI acts at a remote time from activation because TACI is not necessary for activation and proliferation of B cells both in vitro and in vivo. Instead, TACI-deficient QM B cells remained in the cell cycle longer than TACI-proficient QM cells and had impaired plasma cell differentiation in response to NP-Ficoll. We conclude that TACI has dual B cell-autonomous functions, inhibiting prolonged B cell proliferation and stimulating plasma cell differentiation, thus resolving the longstanding paradox that TACI may have both B cell-inhibitory and -stimulatory functions. By promoting plasma cell differentiation earlier during clonal expansion, TACI may decrease the chances of autoantibody production by somatic hypermutation of Ig genes in response to T-independent Ags.

  12. Notch regulates Th17 differentiation and controls trafficking of IL-17 and metabolic regulators within Th17 cells in a context-dependent manner

    PubMed Central

    Coutaz, Manuel; Hurrell, Benjamin P.; Auderset, Floriane; Wang, Haiping; Siegert, Stefanie; Eberl, Gerard; Ho, Ping-Chih; Radtke, Freddy; Tacchini-Cottier, Fabienne

    2016-01-01

    Th17 cells play critical roles in host defense and autoimmunity. Emerging data support a role for Notch signaling in Th17 cell differentiation but whether it is a positive or negative regulator remains unclear. We report here that T cell-specific deletion of Notch receptors enhances Th17 cell differentiation in the gut, with a corresponding increase in IL-17 secretion. An increase in Th17 cell frequency was similarly observed following immunization of T cell specific Notch mutant mice with OVA/CFA. However, in this setting, Th17 cytokine secretion was impaired, and increased intracellular retention of IL-17 was observed. Intracellular IL-17 co-localized with the CD71 iron transporter in the draining lymph node of both control and Notch-deficient Th17 cells. Immunization induced CD71 surface expression in control, but not in Notch-deficient Th17 cells, revealing defective CD71 intracellular transport in absence of Notch signaling. Moreover, Notch receptor deficient Th17 cells had impaired mTORC2 activity. These data reveal a context-dependent impact of Notch on vesicular transport during high metabolic demand suggesting a role for Notch signaling in the bridging of T cell metabolic demands and effector functions. Collectively, our findings indicate a prominent regulatory role for Notch signaling in the fine-tuning of Th17 cell differentiation and effector function. PMID:27974744

  13. In situ label-free quantification of human pluripotent stem cells with electrochemical potential.

    PubMed

    Yea, Cheol-Heon; Jeong, Ho-Chang; Moon, Sung-Hwan; Lee, Mi-Ok; Kim, Kyeong-Jun; Choi, Jeong-Woo; Cha, Hyuk-Jin

    2016-01-01

    Conventional methods for quantification of undifferentiated pluripotent stem cells such as fluorescence-activated cell sorting and real-time PCR analysis have technical limitations in terms of their sensitivity and recyclability. Herein, we designed a real-time in situ label-free monitoring system on the basis of a specific electrochemical signature of human pluripotent stem cells in vitro. The intensity of the signal of hPSCs highly corresponded to the cell number and remained consistent in a mixed population with differentiated cells. The electrical charge used for monitoring did not markedly affect the proliferation rate or molecular characteristics of differentiated human aortic smooth muscle cells. After YM155 treatment to ablate undifferentiated hPSCs, their specific signal was significantly reduced. This suggests that detection of the specific electrochemical signature of hPSCs would be a valid approach to monitor potential contamination of undifferentiated hPSCs, which can assess the risk of teratoma formation efficiently and economically. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians

    PubMed Central

    Solana, Jordi; Irimia, Manuel; Ayoub, Salah; Orejuela, Marta Rodriguez; Zywitza, Vera; Jens, Marvin; Tapial, Javier; Ray, Debashish; Morris, Quaid; Hughes, Timothy R; Blencowe, Benjamin J; Rajewsky, Nikolaus

    2016-01-01

    In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans. DOI: http://dx.doi.org/10.7554/eLife.16797.001 PMID:27502555

  15. Prospero-related homeobox 1 (Prox1) at the crossroads of diverse pathways during adult neural fate specification

    PubMed Central

    Stergiopoulos, Athanasios; Elkouris, Maximilianos; Politis, Panagiotis K.

    2015-01-01

    Over the last decades, adult neurogenesis in the central nervous system (CNS) has emerged as a fundamental process underlying physiology and disease. Recent evidence indicates that the homeobox transcription factor Prox1 is a critical intrinsic regulator of neurogenesis in the embryonic CNS and adult dentate gyrus (DG) of the hippocampus, acting in multiple ways and instructed by extrinsic cues and intrinsic factors. In the embryonic CNS, Prox1 is mechanistically involved in the regulation of proliferation vs. differentiation decisions of neural stem cells (NSCs), promoting cell cycle exit and neuronal differentiation, while inhibiting astrogliogenesis. During the complex differentiation events in adult hippocampal neurogenesis, Prox1 is required for maintenance of intermediate progenitors (IPs), differentiation and maturation of glutamatergic interneurons, as well as specification of DG cell identity over CA3 pyramidal fate. The mechanism by which Prox1 exerts multiple functions involves distinct signaling pathways currently not fully highlighted. In this mini-review, we thoroughly discuss the Prox1-dependent phenotypes and molecular pathways in adult neurogenesis in relation to different upstream signaling cues and cell fate determinants. In addition, we discuss the possibility that Prox1 may act as a cross-talk point between diverse signaling cascades to achieve specific outcomes during adult neurogenesis. PMID:25674048

  16. Robust and Highly-Efficient Differentiation of Functional Monocytic Cells from Human Pluripotent Stem Cells under Serum- and Feeder Cell-Free Conditions

    PubMed Central

    Yanagimachi, Masakatsu D.; Niwa, Akira; Tanaka, Takayuki; Honda-Ozaki, Fumiko; Nishimoto, Seiko; Murata, Yuuki; Yasumi, Takahiro; Ito, Jun; Tomida, Shota; Oshima, Koichi; Asaka, Isao; Goto, Hiroaki; Heike, Toshio; Nakahata, Tatsutoshi; Saito, Megumu K.

    2013-01-01

    Monocytic lineage cells (monocytes, macrophages and dendritic cells) play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3×106±0.3×106 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5–6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery. PMID:23573196

  17. NOTCH SIGNALING ALTERS SENSORY OR NEURONAL CELL FATE SPECIFICATION OF INNER EAR STEM CELLS

    PubMed Central

    Jeon, Sang-Jun; Fujioka, Masato; Kim, Shi-Chan; Edge, Albert S.B.

    2011-01-01

    Multipotent progenitor cells in the otic placode give rise to the specialized cell types of the inner ear, including neurons, supporting cells and hair cells. The mechanisms governing acquisition of specific fates by the cells that form the cochleovestibular organs remain poorly characterized. Here we show that whereas blocking Notch signaling with a γ-secretase inhibitor increased the conversion of inner ear stem cells to hair cells by a mechanism that involved the upregulation of bHLH transcription factor, Math1 (mouse Atoh1), differentiation to a neuronal lineage was increased by expression of the Notch intracellular domain. The shift to a neuronal lineage could be attributed in part to the continued cell proliferation in cells that did not undergo sensory cell differentiation due to the high Notch signaling, but also involved upregulation of Ngn1. The Notch intracellular domain influenced Ngn1 indirectly by upregulation of Sox2, a transcription factor expressed in many neural progenitor cells, and directly by an interaction with an RBP-J binding site in the Ngn1 promoter/enhancer. The induction of Ngn1 was blocked partially by mutation of the RBP-J site and nearly completely when the mutation was combined with inhibition of Sox2 expression. Thus Notch signaling had a significant role in the fate specification of neurons and hair cells from inner ear stem cells, and decisions about cell fate were mediated in part by a differential effect of combinatorial signaling by Notch and Sox2 on the expression of bHLH transcription factors. PMID:21653840

  18. In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.

    PubMed

    Xie, Lin; Zhang, Nan; Marsano, Anna; Vunjak-Novakovic, Gordana; Zhang, Yanru; Lopez, Mandi J

    2013-12-01

    Directed differentiation of adult multipotent stromal cells (MSC) is critical for effective treatment strategies. This study was designed to evaluate the capability of equine MSC from bone marrow (BMSC) and adipose tissue (ASC) on a type I collagen (COLI) scaffold to undergo chondrogenic, osteogenic and adipogenic differentiation and form extracellular matrix (ECM) in vitro. Following determination of surface antigen expression, MSC were loaded into scaffolds in a perfusion bioreactor and loading efficiency was quantified. Cell-scaffold constructs were assessed after loading and 7, 14 and 21 days of culture in stromal or induction medium. Cell number was determined with DNA content, cell viability and spatial uniformity with confocal laser microscopy and cell phenotype and matrix production with light and scanning electron microscopy and mRNA levels. The MSC were positive for CD29 (>90 %), CD44 (>99 %), and CD105 (>60 %). Loading efficiencies were >70 %. The ASC and BMSC cell numbers on scaffolds were affected by culture in induction medium differently. Viable cells remained uniformly distributed in scaffolds for up to 21 days and could be directed to differentiate or to maintain an MSC phenotype. Micro- and ultrastructure showed lineage-specific cell and ECM changes. Lineage-specific mRNA levels differed between ASC and BMSC with induction and changed with time. Based on these results, equine ASC and BMSC differentiate into chondrogenic, osteogenic and adipogenic lineages and form ECM similarly on COLI scaffolds. The collected data supports the potential for equine MSC-COLI constructs to support diverse equine tissue formation for controlled biological studies.

  19. Effect of nanodiamond modification of siloxane surfaces on stem cell behaviour

    NASA Astrophysics Data System (ADS)

    Keremidarska, M.; Hikov, T.; Radeva, E.; Pramatarova, L.; Krasteva, N.

    2014-12-01

    Mesenchymal stem cells (MSCs) hold a great promise for use in many cell therapies and tissue engineering due to their remarkable potential to replicate indefinitely and differentiate into various cell types. Many efforts have been put to study the factors controlling stem cell differentiation. However, still little knowledge has been gained to what extent biomaterials properties influence stem cell adhesion, growth and differentiation. Research utilizing bone marrow-derived MSCs has concentrated on development of specific materials which can enhance specific differentiation of stem cells e.g. osteogenic and chondrogenic. In the present work we have modified an organosilane, hexamethyldisiloxane (HMDS) with detonation nanodiamond (DND) particles aiming to improve adhesion, growth and osteodifferentiation of rat mesenchymal stem cells. HMDS/DND films were deposited on cover glass using two approaches: premixing of both compounds, followed by plasma polymerization (PP) and PP of HMDS followed by plasma deposition of DND particles. We did not observe however an increase in rMSCs adhesion and growth on DND-modified PPHMDS surfaces compared to unmodified PPHMDS. When we studied alkaline phosphatase (ALP) activity, which is a major sign for early osteodifferentiation, we found the highest ALP activity on the PPHMDS/DND material, prepared by consequent deposition while on the other composite material ALP activity was the lowest. These results suggested that DND-modified materials were able to control osteodifferention in MSCs depending on the deposition approach. Modification of HMDS with DND particles by consequent plasma deposition seems to be a promising approach to produce biomaterials capable to guide stem cell differentiation toward osteoblasts and thus to be used in bone tissue engineering.

  20. The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm

    PubMed Central

    Tian, Chenxi; Shi, Herong; Colledge, Clark; Stern, Michael; Waterston, Robert; Liu, Jun

    2011-01-01

    The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation. PMID:21307099

Top