In Vitro Detection of Characteristic Differences in Radiation Sensitivity of Female Genital Cancers
DOE Office of Scientific and Technical Information (OSTI.GOV)
LUDOVICI, PETER P.; MILLER, NORMAN F.
1962-01-01
BS>By a standardized assay technic in which cell monolayers were irradiated at different dose levels (100 to 1200 r) on the 4th culture day and cell counts carried out 4 days later, the radiation sensitivities of 37 cell strains, derived from female patients with various genital cancers and from normal individuals, were assessed. These 37 cell strains had certain patterns of radiation sensitivity which, in general, appear to be consistent with the generally accepted radiosensitivity of the tumors from which the cell strains arose. Cell strains from squamous-cell carcinomas of the cervix as a group were at least twice asmore » sensitive as those from other squamous-cell carcinomas of the female genital tract. Cell strains derived from carcinomas of the ovary, vagina, and vulva were almost equally resistant to radiation. As expected, cell strains derived from benign tissues were the most highly resistant to radiation, normal fibroblastic strains being more resistant than normal epithelial strains. (H.H.D.)« less
Fink, Lisbeth N; Zeuthen, Louise H; Ferlazzo, Guido; Frøkiaer, Hanne
2007-12-01
The intestinal microbiota is essential for homeostasis of the local and systemic immune system, and particularly strains of lactic acid bacteria and Escherichia coli have been shown to have balancing effects on inflammatory conditions such as allergy and inflammatory bowel disease. However, in vitro assessment of the immunomodulatory effects of distinct strains may depend strongly on the cell type used as a model. To select the most appropriate model for screening of beneficial bacteria in human cells, the response to strains of intestinal bacteria of three types of antigen-presenting cells (APC) was compared; blood myeloid dendritic cells (DC), monocyte-derived DC and monocytes, and the effector response of natural killer cells and naïve T cells was characterized. Maturation induced by gut-derived bacteria differed between APC, with blood DC and monocytes responding with the production of IL-6 and tumour necrosis factor-alpha to bacteria, which elicited mainly IL-10 in monocyte-derived DC. In contrast, comparable IFN-gamma production patterns were found in both natural killer cells and T cells induced by all bacteria-matured APC. An inhibitory effect of certain strains on this IFN-gamma production was also mediated by all types of APC. The most potent responses were induced by monocyte-derived DC, which thus constitute a sensitive screening model.
Stasuk, Alexander
2017-01-01
Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment. PMID:29375625
Suárez, Viviana B; Maciel, Natalia; Guglielmotti, Daniela; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge
2008-12-10
The aim of this work was to study the relationship between the cell morphological heterogeneity and the phage-resistance in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Two morphological variants (named C and T) were isolated from this strain. Phage-resistant derivatives were isolated from them and the percentage of occurrence of confirmed phage-resistant cells was 0.001% of the total cellular population. Within these phage-resistant cell derivatives there were T (3 out of 4 total isolates) and C (1 out of 4 total isolates) variants. The study of some technological properties (e.g. proteolytic and acidifying activities) demonstrated that most of phage-resistant derivatives were not as good as the parental strain. However, for one derivative (a T variant), the technological properties were better than those of the parental strain. On the other hand, it was possible to determinate that the system of phage-resistance in the T variants was interference in adsorption step, with adsorption rates <15%. For the C variant derivative it was possible to demonstrate the presence of a restriction/modification system and, moreover, to determinate that this system could be Type I R/M.
Isolation and initial characterization of thermoresistant RIF tumor cell strains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, G.M.; van Kersen, I.
1988-04-01
Heat-resistant cell strains were obtained from RIF-1 mouse tumor cells by repeated heatings of cells derived from survivors of previous heating cycles (60 min; 45/sup 0/C). Twenty thermally resistant (TR) strains were derived from single cells that had survived 11 heating and regrowth cycles. These were then analyzed for appropriate characteristics in vitro and in vivo. In vitro we looked for: marked heat resistance; high plating efficiency; growth rate similar to that of RIF-1 cells; and no obvious morphological abnormalities. In syngeneic hosts, we looked for: ability of the cells to form tumors whose growth rates were similar to thatmore » of RIF-1 tumors; high cellular heat resistance; good plating efficiency of tumor-derived cells; and low immunogenicity. Five strains having these desired characteristics were analyzed for survival kinetics. The heat-resistant phenotype was found to be stable in vitro, although partial reversion in vivo was seen occasionally. The break in the Arrhenius plot was found to occur at 45/sup 0/C in TR strains versus 43/sup 0/C in RIF-1. All TR strains and the RIF-1 line developed similar levels of thermotolerance (as defined by slope ratios) when given isosurvival heat exposures. X-ray responses of TR and RIF-1 cells were indistinguishable both with respect to survival and to heat-induced radiosensitization. While the number of live cells required to give tumor takes in 50% of the recipients for TR strains was appreciably higher than that for RIF-1 cells, radiation-killed cells from none of the strains were able to immunize efficiently against subsequent challenges by live cells.« less
Shimizu, Nobuaki; Soda, Yasushi; Kanbe, Katsuaki; Liu, Hui-Yu; Jinno, Atsushi; Kitamura, Toshio; Hoshino, Hiroo
1999-01-01
Twelve G protein-coupled receptors, including chemokine receptors, act as coreceptors and determinants for the cell tropisms of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). We isolated HIV-1 variants from T-cell-line (T)- and macrophage (M)-tropic (i.e., dualtropic) (R5-R3-X4) HIV-1 strains and also produced six HIV-1 mutants carrying single-point amino acid substitutions at the tip of the V3 region of the Env protein of HIV-1. These variants and three mutants infected brain-derived CD4-positive cells that are resistant to M-, T-, or dualtropic (R5, X4, or R5-X4) HIV-1 strains. However, a factor that determines this cell tropism has not been identified. This study shows that primary brain-derived fibroblast-like cell strains, BT-3 and BT-20/N, as well as a CD4-transduced glioma cell line, U87/CD4, which were susceptible to these HIV-1 variants and mutants and the HIV-2ROD strain, expressed mRNA of an orphan G protein-coupled receptor (GPCR), GPR1. When a CD4-positive cell line which was strictly resistant to infection with diverse HIV-1 and HIV-2 strains was transduced with GPR1, the cell line became susceptible to these HIV-1 variants and mutants and to an HIV-2 strain but not to T- or dualtropic HIV-1 strains, and numerous syncytia formed after infection. These results indicate that GPR1 functions as a coreceptor for the HIV-1 variants and mutants and for the HIV-2ROD strain in vitro. PMID:10233994
Kress, C; Vandormael-Pournin, S; Baldacci, P; Cohen-Tannoudji, M; Babinet, C
1998-12-01
The inbred mouse strain DDK carries a conditional early embryonic lethal mutation that is manifested when DDK females are crossed to males of other inbred strains but not in the corresponding reciprocal crosses. It has been shown that embryonic lethality could be assigned to a single genetic locus called Ovum mutant (Om), on Chromosome (Chr) 11 near Syca 1. In the course of our study of the molecular mechanisms underlying the embryonic lethality, we were interested in deriving an embryonic stem cell bearing the Om mutation in the homozygous state (Omd/Omd). However, it turned out that DDK is nonpermissive for ES cell establishment, with a standard protocol. Here we show that permissiveness could be obtained using Omd/Omd blastocysts with a 75% 129/Sv and 25% DDK genetic background. Several germline-competent Omd/Omd ES cell lines have been derived from blastocysts of this genotype. Such a scenario could be extended to the generation of ES cell lines bearing any mutation present in an otherwise nonpermissive mouse strain.
Nunes, Ana Paula Ferreira; Teixeira, Lúcia Martins; Iorio, Natália Lopes Pontes; Bastos, Carla Callegário Reis; de Sousa Fonseca, Leila; Souto-Padrón, Thaís; dos Santos, Kátia Regina Netto
2006-04-01
The population analysis profile (PAP) method as well as analysis of autolytic activity and cellular ultrastructure by transmission electron microscopy (TEM) were used to characterise Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri clinical strains with reduced susceptibility to glycopeptides. All strains showed heterogeneous profiles to vancomycin and teicoplanin by the PAP method. Subpopulations that grew in the presence of high concentrations of each drug were selected from the PAP as derivative strains. Their glycopeptide minimal inhibitory concentrations (MICs) were determined and subsequently all parental and derivative strains were grown in one-half of the MIC of vancomycin or teicoplanin. An increase in cell wall thickness of all derivative strains was seen by TEM, with statistically significant values (P<0.01) compared with their respective parental strains. In general, variable rates of autolysis among the strains were observed. Cell wall thickness is an important factor involved in glycopeptide resistance and, in association with PAP results, confirmed the Brazilian coagulase-negative staphylococci clinical isolates as being heteroresistant to glycopeptides. Detection of these heteroresistant organisms is important in order to achieve more judicious use of vancomycin and teicoplanin in hospitals.
Seki, Fumio; Yamada, Kentaro; Nakatsu, Yuichiro; Okamura, Koji; Yanagi, Yusuke; Nakayama, Tetsuo; Komase, Katsuhiro; Takeda, Makoto
2011-11-01
Subacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein. Through the establishment of an efficient reverse genetics system, a recombinant SI strain expressing a green fluorescent protein (rSI-AcGFP) was generated. The infection of various cell types with rSI-AcGFP was evaluated by fluorescence microscopy. rSI-AcGFP exhibited limited syncytium-forming activity and spread poorly in cells. Analyses using a recombinant MV possessing a chimeric genome between those of the SI strain and a wild-type MV strain indicated that the membrane-associated protein genes (M, F, and H) were responsible for the altered growth phenotype of the SI strain. Functional analyses of viral glycoproteins showed that the F protein of the SI strain exhibited reduced fusion activity because of an E300G substitution and that the H protein of the SI strain used CD46 efficiently but used the original MV receptors on immune and epithelial cells poorly because of L482F, S546G, and F555L substitutions. The data obtained in the present study provide a new platform for analyses of SSPE-derived strains as well as a clear example of an SSPE-derived strain that exhibits altered receptor specificity and limited fusion activity.
Seki, Fumio; Yamada, Kentaro; Nakatsu, Yuichiro; Okamura, Koji; Yanagi, Yusuke; Nakayama, Tetsuo; Komase, Katsuhiro; Takeda, Makoto
2011-01-01
Subacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein. Through the establishment of an efficient reverse genetics system, a recombinant SI strain expressing a green fluorescent protein (rSI-AcGFP) was generated. The infection of various cell types with rSI-AcGFP was evaluated by fluorescence microscopy. rSI-AcGFP exhibited limited syncytium-forming activity and spread poorly in cells. Analyses using a recombinant MV possessing a chimeric genome between those of the SI strain and a wild-type MV strain indicated that the membrane-associated protein genes (M, F, and H) were responsible for the altered growth phenotype of the SI strain. Functional analyses of viral glycoproteins showed that the F protein of the SI strain exhibited reduced fusion activity because of an E300G substitution and that the H protein of the SI strain used CD46 efficiently but used the original MV receptors on immune and epithelial cells poorly because of L482F, S546G, and F555L substitutions. The data obtained in the present study provide a new platform for analyses of SSPE-derived strains as well as a clear example of an SSPE-derived strain that exhibits altered receptor specificity and limited fusion activity. PMID:21917959
Hematopoietic Responses to Lipopolysaccharide in C57BL/10Sn and C57BL/10ScN Strain Mice
1982-12-01
Responses of endogenous (E-CFU) stem cells as well as bone marrow and spleen-derived exogenous (CFU-s) stem cells, granulocyte-macrophage (GM;-CFC... endogenous (E-CFU) stem cells as well as bone marrow and spleen-derived exogenous (CFU-s) stem cells, granulocyte-macrophage (GM-CFC) and macrophage (M...IOScN in comparison to the normal C57BL/1OSn strain mice, as measured by endogenous (E-CFU) and exogenous (CFU-s) stem cells and committed granulocyte
Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories
Zhou, Yongjin J.; Buijs, Nicolaas A.; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens
2016-01-01
Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l−1 of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l−1) and fatty alcohols (1.5 g l−1), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value. PMID:27222209
Ruskoski, Sallie A; Champlin, Franklin R
2017-07-01
The purpose of the present study was to obtain a better understanding of the relationship between cell surface physiology and outer cellular envelope permeability for hydrophobic substances in mucoid and non-mucoid B. multivorans strains, as well as in two capsule-deficient derivatives of a mucoid parental strain. Cell surface hydrophobicity properties were determined using the hydrocarbon adherence method, while outer cell envelope accessibility and permeability for non-polar compounds were measured using hydrophobic antimicrobial agent susceptibility and fluorescent probe assays. Extracellular polysaccharide (EPS) production was assessed by cultivating strains of disparate origin on yeast extract agar (YEA) containing different sugars, while the resultant colonial and cellular morphological parameters were assessed macro- and microscopically, respectively.Results/Key findings. The cell surfaces of all the strains were hydrophilic, impermeable to mechanistically disparate hydrophobic antibacterial agents and inaccessible to the hydrophobic probe N-phenyl-1-napthylamine, regardless of EPS phenotype. Supplementation of basal YEA with eight different sugars enhanced macroscopic EPS expression for all but one non-mucoid strain, with mannose potentiating the greatest effect. Despite acquisition of the mucoid phenotype, non-mucoid strains remained non-capsulated and capsulation of a hyper-mucoid strain and its two non-mucoid derivative strains was unaffected, as judged by microscopic observation. These data support the conclusion that EPS expression and the consistent mucoid phenotype are not necessarily associated with the ability of the outer cell surface to associate with non-polar substances or cellular capsulation.
Gilbert, Hamish T. J.; Nagra, Navraj S.; Freemont, Anthony J.; Millward-Sadler, Sarah J.; Hoyland, Judith A.
2013-01-01
Intervertebral disc (IVD) cells derived from degenerate tissue respond aberrantly to mechanical stimuli, potentially due to altered mechanotransduction pathways. Elucidation of the altered, or alternative, mechanotransduction pathways operating with degeneration could yield novel targets for the treatment of IVD disease. Our aim here was to investigate the involvement of RGD-recognising integrins and associated signalling molecules in the response to cyclic tensile strain (CTS) of human annulus fibrosus (AF) cells derived from non-degenerate and degenerate IVDs. AF cells from non-degenerate and degenerate human IVDs were cyclically strained with and without function blocking RGD – peptides with 10% strain, 1.0 Hz for 20 minutes using a Flexercell® strain device. QRT-PCR and Western blotting were performed to analyse gene expression of type I collagen and ADAMTS -4, and phosphorylation of focal adhesion kinase (FAK), respectively. The response to 1.0 Hz CTS differed between the two groups of AF cells, with decreased ADAMTS -4 gene expression and decreased type I collagen gene expression post load in AF cells derived from non-degenerate and degenerate IVDs, respectively. Pre-treatment of non-degenerate AF cells with RGD peptides prevented the CTS-induced decrease in ADAMTS -4 gene expression, but caused an increase in expression at 24 hours, a response not observed in degenerate AF cells where RGD pre-treatment failed to inhibit the mechano-response. In addition, FAK phosphorylation increased in CTS stimulated AF cells derived from non-degenerate, but not degenerate IVDs, with RGD pre-treatment inhibiting the CTS – dependent increase in phosphorylated FAK. Our findings suggest that RGD -integrins are involved in the 1.0 Hz CTS – induced mechano-response observed in AF cells derived from non-degenerate, but not degenerate IVDs. This data supports our previous work, suggesting an alternative mechanotransduction pathway may be operating in degenerate AF cells. PMID:24039840
Ribeiro, Kleber Silva; Vasconcellos, Camilla Ioshida; Soares, Rodrigo Pedro; Mendes, Maria Tays; Ellis, Cameron C; Aguilera-Flores, Marcela; de Almeida, Igor Correia; Schenkman, Sergio; Iwai, Leo Kei; Torrecilhas, Ana Claudia
2018-01-01
Trypanosoma cruzi , the aetiologic agent of Chagas disease, releases vesicles containing a wide range of surface molecules known to affect the host immunological responses and the cellular infectivity. Here, we compared the secretome of two distinct strains (Y and YuYu) of T. cruzi , which were previously shown to differentially modulate host innate and acquired immune responses. Tissue culture-derived trypomastigotes of both strains secreted extracellular vesicles (EVs), as demonstrated by electron scanning microscopy. EVs were purified by exclusion chromatography or ultracentrifugation and quantitated using nanoparticle tracking analysis. Trypomastigotes from YuYu strain released higher number of EVs than those from Y strain, enriched with virulence factors trans -sialidase (TS) and cruzipain. Proteomic analysis confirmed the increased abundance of proteins coded by the TS gene family, mucin-like glycoproteins, and some typical exosomal proteins in the YuYu strain, which also showed considerable differences between purified EVs and vesicle-free fraction as compared to the Y strain. To evaluate whether such differences were related to parasite infectivity, J774 macrophages and LLC-MK2 kidney cells were preincubated with purified EVs from both strains and then infected with Y strain trypomastigotes. EVs released by YuYu strain caused a lower infection but higher intracellular proliferation in J774 macrophages than EVs from Y strain. In contrast, YuYu strain-derived EVs caused higher infection of LLC-MK2 cells than Y strain-derived EVs. In conclusion, quantitative and qualitative differences in EVs and secreted proteins from different T. cruzi strains may correlate with infectivity/virulence during the host-parasite interaction.
Ribeiro, Kleber Silva; Vasconcellos, Camilla Ioshida; Soares, Rodrigo Pedro; Ellis, Cameron C.; Aguilera-Flores, Marcela; de Almeida, Igor Correia
2018-01-01
ABSTRACT Trypanosoma cruzi, the aetiologic agent of Chagas disease, releases vesicles containing a wide range of surface molecules known to affect the host immunological responses and the cellular infectivity. Here, we compared the secretome of two distinct strains (Y and YuYu) of T. cruzi, which were previously shown to differentially modulate host innate and acquired immune responses. Tissue culture-derived trypomastigotes of both strains secreted extracellular vesicles (EVs), as demonstrated by electron scanning microscopy. EVs were purified by exclusion chromatography or ultracentrifugation and quantitated using nanoparticle tracking analysis. Trypomastigotes from YuYu strain released higher number of EVs than those from Y strain, enriched with virulence factors trans-sialidase (TS) and cruzipain. Proteomic analysis confirmed the increased abundance of proteins coded by the TS gene family, mucin-like glycoproteins, and some typical exosomal proteins in the YuYu strain, which also showed considerable differences between purified EVs and vesicle-free fraction as compared to the Y strain. To evaluate whether such differences were related to parasite infectivity, J774 macrophages and LLC-MK2 kidney cells were preincubated with purified EVs from both strains and then infected with Y strain trypomastigotes. EVs released by YuYu strain caused a lower infection but higher intracellular proliferation in J774 macrophages than EVs from Y strain. In contrast, YuYu strain-derived EVs caused higher infection of LLC-MK2 cells than Y strain-derived EVs. In conclusion, quantitative and qualitative differences in EVs and secreted proteins from different T. cruzi strains may correlate with infectivity/virulence during the host–parasite interaction. PMID:29696081
Kurath, Gael; Purcell, Maureen K.; Wargo, Andrew; Park, Jeong Woo; Moon, Chang Hoon
2010-01-01
Infectious haematopoietic necrosis virus (IHNV) is one of the most important viral pathogens of salmonids. In rainbow trout, IHNV isolates in the M genogroup are highly pathogenic, while U genogroup isolates are significantly less pathogenic. We show here that, at a multiplicity of infection (MOI) of 1, a representative U type strain yielded 42-fold less infectious virus than an M type strain in the rainbow trout–derived RTG-2 cell line at 24 h post-infection (p.i.). However, at an MOI of 10, there was only fivefold difference in the yield of infectious virus between the U and M strains. Quantification of extracellular viral genomic RNA suggested that the number of virus particles released from cells infected with the U strain at a MOI of 1 was 47-fold lower than from M-infected cells, but U and M virions were equally infectious by particle to infectivity ratios. At an MOI of 1, U strain intracellular viral genome accumulation and transcription were 37- and 12-fold lower, respectively, than those of the M strain at 24 h p.i. Viral nucleocapsid (N) protein accumulation in U strain infections was fivefold lower than in M strain infections. These results suggest that the block in U type strain growth in RTG-2 cells was because of the effects of reduced genome replication and transcription. The reduced growth of the U strain does not seem to be caused by defective genes, because the U and M strains grew equally well in the permissive epithelioma papulosum cyprini cell line at an MOI of 1. This suggests that host-specific factors in RTG-2 cells control the growth of the IHNV U and M strains differently, leading to growth restriction of the U type virus during the RNA synthesis step.
Rashidi, Neda; Tafazzoli-Shadpour, Mohammad; Haghighipour, Nooshin; Khani, Mohammad-Mehdi
2018-06-27
Previous studies have shown smooth muscle induction in adipose-derived mesenchymal stem cells (ASCs) caused by long-term cyclic stretch. Here we examined the capability of the short-term straining with time steps of 4, 8, 16 and 24 h alone or combined with TGF-β1 on smooth muscle induction of rabbit ASCs. Alterations in cell morphology were quantified through the cell shape index and orientation angle, and expression levels of α-SMA, SM22-α, h-caldesmon and calponin3 markers were examined using the real-time polymerase chain reaction (PCR) method. Moreover, F-actin cytoskeleton organization was observed by fluorescence staining. Mechanical strain either alone or combined with growth factor treatment caused significant up-regulation of both early and intermediate smooth muscle cells (SMCs) specific markers during the initial hours of stimulation peaking in 8 to 16 h. Furthermore, gradual alignment of cells perpendicular to the strain direction during loading time, and cell elongation resembling contractile SMC phenotype, together with alignment and reorganization of F-actin fibers were observed. Considering previously reported protein up-regulation in following days of straining, the effects of short-term cyclic stretch on smooth muscle induction of ASCs were revealed which can be helpful in achieving functional contractile SMCs through synergistic mechano-chemical regulation of ASCs as an appealing cell source for vascular tissue engineering.
Hassani, Seyedeh-Nafiseh; Totonchi, Mehdi; Farrokhi, Ali; Taei, Adeleh; Larijani, Mehran Rezaei; Gourabi, Hamid; Baharvand, Hossein
2012-06-01
Mouse embryonic stem cells (ESCs) are pluripotent stem cell lines derived from pre-implantation embryos. The efficiency of mESC generation is affected by genetic variation in mice; that is, some mouse strains are refractory or non-permissive to ESC establishment. Developing an efficient method to derive mESCs from strains of various genetic backgrounds should be valuable for establishment of ESCs in various mammalian species. In the present study, we identified dual inhibition of TGF-β and ERK1/2, by SB431542 and PD0325901, respectively led to the highly efficient and reproducible generation of mESC lines from NMRI, C57BL/6, BALB/c, DBA/2, and FVB/N strains, which previously considered refractory or non-permissive for ESC establishment. These mESCs expressed pluripotency markers and retained the capacity to differentiate into derivatives of all three germ layers. The evaluated lines exhibited high rates of chimerism when reintroduced into blastocysts. To our knowledge, this is the first report of efficient (100%) mESC lines generation from different genetic backgrounds. The application of these two inhibitors will not only solve the problems of mESC derivation but also clarifies new signaling pathways in pluripotent mESCs.
Gillich, Nadine; Kuwata, Ryusei; Isawa, Haruhiko; Horie, Masayuki
2015-09-01
Culex tritaeniorhynchus rhabdovirus (CTRV) is a mosquito virus that establishes persistent infection without any obvious cell death. Therefore, occult infection by CTRV can be present in mosquito cell lines. In this study, it is shown that NIID-CTR cells, which were derived from Cx. tritaeniorhynchus, are persistently infected with a novel strain of CTRV. Complete genome sequencing of the infecting strain revealed that it is genetically similar but distinct from the previously isolated CTRV strain, excluding the possibility of contamination. These findings raise the importance of further CTRV studies, such as screening of CTRV in other mosquito cell lines. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.
Yasugi, Mayo; Sugahara, Yuki; Hoshi, Hidenobu; Kondo, Kaori; Talukdar, Prabhat K; Sarker, Mahfuzur R; Yamamoto, Shigeki; Kamata, Yoichi; Miyake, Masami
2015-08-01
Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Four-point bending protocols to study the effects of dynamic strain in osteoblastic cells in vitro.
Galea, Gabriel L; Price, Joanna S
2015-01-01
Strain engendered within bone tissue by mechanical loading of the skeleton is a major influence on the processes of bone modeling and remodeling and so a critical determinant of bone mass and architecture. The cells best placed to respond to strain in bone tissue are the resident osteocytes and osteoblasts. To address the mechanisms of strain-related responses in osteoblast-like cells, our group uses both in vivo and in vitro approaches, including a system of four-point bending of the substrate on which cells are cultured. A range of cell lines can be studied using this system but we routinely compare their responses to those in primary cultures of osteoblast-like cells derived from explants of mouse long bones. These cells show a range of well-characterized responses to physiological levels of strain, including increased proliferation, which in vivo is a feature of the osteogenic response.
Wainwright, M; Phoenix, D A; Gaskell, M; Marshall, B
1999-12-01
The toxicities and phototoxicities of methylene blue and its two methylated derivatives were measured against one standard and three vancomycin-resistant pathogenic strains of Enterococcus spp. Each of the compounds was bactericidal and the derivatives exhibited photobactericidal activity on illumination at a 'light' dose of 6.3 J/cm(2) against one or more of the strains. Increased bactericidal and photobactericidal activity in the methylated derivatives is thought to be due to their higher hydrophobicities allowing greater interaction with the bacterial cell wall. In addition, the derivatives exhibited higher inherent photosensitizing efficacies.
Hahn, Rosane Christine; Hamdan, Júnia Soares
2000-01-01
Yeast cells of five different strains of Paracoccidioides brasiliensis were obtained for partial analysis of lipid composition, and sterol content was determined quantitatively and qualitatively. The determinations were conducted with cells cultured in the presence and absence of amphotericin B and azole derivatives at levels below the MIC. PMID:10858371
In vitro interaction of Stenotrophomonas maltophilia with human monocyte-derived dendritic cells.
Roscetto, Emanuela; Vitiello, Laura; Muoio, Rosa; Soriano, Amata A; Iula, Vita D; Vollaro, Antonio; De Gregorio, Eliana; Catania, Maria R
2015-01-01
Stenotrophomonas maltophilia is increasingly identified as an opportunistic pathogen in immunocompromised, cancer and cystic fibrosis (CF) patients. Knowledge on innate immune responses to S. maltophilia and its potential modulation is poor. The present work investigated the ability of 12 clinical S. maltophilia strains (five from CF patients, seven from non-CF patients) and one environmental strain to survive inside human monocyte-derived dendritic cells (DCs). The effects of the bacteria on maturation of and cytokine secretion by DCs were also measured. S. maltophilia strains presented a high degree of heterogeneity in internalization and intracellular replication efficiencies as well as in the ability of S. maltophilia to interfere with normal DCs maturation. By contrast, all S. maltophilia strains were able to activate DCs, as measured by increase in the expression of surface maturation markers and proinflammatory cytokines secretion.
In vitro interaction of Stenotrophomonas maltophilia with human monocyte-derived dendritic cells
Roscetto, Emanuela; Vitiello, Laura; Muoio, Rosa; Soriano, Amata A.; Iula, Vita D.; Vollaro, Antonio; Gregorio, Eliana De; Catania, Maria R.
2015-01-01
Stenotrophomonas maltophilia is increasingly identified as an opportunistic pathogen in immunocompromised, cancer and cystic fibrosis (CF) patients. Knowledge on innate immune responses to S. maltophilia and its potential modulation is poor. The present work investigated the ability of 12 clinical S. maltophilia strains (five from CF patients, seven from non-CF patients) and one environmental strain to survive inside human monocyte-derived dendritic cells (DCs). The effects of the bacteria on maturation of and cytokine secretion by DCs were also measured. S. maltophilia strains presented a high degree of heterogeneity in internalization and intracellular replication efficiencies as well as in the ability of S. maltophilia to interfere with normal DCs maturation. By contrast, all S. maltophilia strains were able to activate DCs, as measured by increase in the expression of surface maturation markers and proinflammatory cytokines secretion. PMID:26236302
Yoshimura, Aya; Adachi, Naoki; Matsuno, Hitomi; Kawamata, Masaki; Yoshioka, Yusuke; Kikuchi, Hisae; Odaka, Haruki; Numakawa, Tadahiro; Kunugi, Hiroshi; Ochiya, Takahiro; Tamai, Yoshitaka
2018-01-30
Extracellular vesicles (EVs) can modulate microenvironments by transferring biomolecules, including RNAs and proteins derived from releasing cells, to target cells. To understand the molecular mechanisms maintaining the neural stem cell (NSC) niche through EVs, a new transgenic (Tg) rat strain that can release human CD63-GFP-expressing EVs from the NSCs was established. Human CD63-GFP expression was controlled under the rat Sox2 promoter (Sox2/human CD63-GFP), and it was expressed in undifferentiated fetal brains. GFP signals were specifically observed in in vitro cultured NSCs obtained from embryonic brains of the Tg rats. We also demonstrated that embryonic NSC (eNSC)-derived EVs were labelled by human CD63-GFP. Furthermore, when we examined the transfer of EVs, eNSC-derived EVs were found to be incorporated into astrocytes and eNSCs, thus implying an EV-mediated communication between different cell types around NSCs. This new Sox2/human CD63-GFP Tg rat strain should provide resources to analyse the cell-to-cell communication via EVs in NSC microenvironments. © 2018. Published by The Company of Biologists Ltd.
Kanda, Teru; Furuse, Yuki; Oshitani, Hitoshi; Kiyono, Tohru
2016-05-01
The Epstein-Barr virus (EBV) is etiologically linked to approximately 10% of gastric cancers, in which viral genomes are maintained as multicopy episomes. EBV-positive gastric cancer cells are incompetent for progeny virus production, making viral DNA cloning extremely difficult. Here we describe a highly efficient strategy for obtaining bacterial artificial chromosome (BAC) clones of EBV episomes by utilizing a CRISPR/Cas9-mediated strand break of the viral genome and subsequent homology-directed repair. EBV strains maintained in two gastric cancer cell lines (SNU719 and YCCEL1) were cloned, and their complete viral genome sequences were determined. Infectious viruses of gastric cancer cell-derived EBVs were reconstituted, and the viruses established stable latent infections in immortalized keratinocytes. While Ras oncoprotein overexpression caused massive vacuolar degeneration and cell death in control keratinocytes, EBV-infected keratinocytes survived in the presence of Ras expression. These results implicate EBV infection in predisposing epithelial cells to malignant transformation by inducing resistance to oncogene-induced cell death. Recent progress in DNA-sequencing technology has accelerated EBV whole-genome sequencing, and the repertoire of sequenced EBV genomes is increasing progressively. Accordingly, the presence of EBV variant strains that may be relevant to EBV-associated diseases has begun to attract interest. Clearly, the determination of additional disease-associated viral genome sequences will facilitate the identification of any disease-specific EBV variants. We found that CRISPR/Cas9-mediated cleavage of EBV episomal DNA enabled the cloning of disease-associated viral strains with unprecedented efficiency. As a proof of concept, two gastric cancer cell-derived EBV strains were cloned, and the infection of epithelial cells with reconstituted viruses provided important clues about the mechanism of EBV-mediated epithelial carcinogenesis. This experimental system should contribute to establishing the relationship between viral genome variation and EBV-associated diseases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Taxonomy of Probiotic Microorganisms
NASA Astrophysics Data System (ADS)
Felis, Giovanna E.; Dellaglio, Franco; Torriani, Sandra
When referring to probiotics, one refers to probiotic strains, i.e., the microbial individuals, sub-cultures of billion of almost identical cells ideally derived from the same mother cell. Therefore, beneficial effects attributed to probiotics are ascribed in fact to specific strains. However, these strains have to be, by law, clearly identified at the species level (Pineiro and Stanton, 2007). In fact, probiotics have to be safe for consumption, and the evaluation of QPS - qualified presumption of safety - status by the European Food Safety Authority (EFSA) (Opinion, 2007) is discussed for species, not for single strains.
Ye, Shoudong; Tan, Li; Yang, Rongqing; Fang, Bo; Qu, Su; Schulze, Eric N.; Song, Houyan; Ying, Qilong; Li, Ping
2012-01-01
Background Inhibition of glycogen synthase kinase-3 (GSK-3) improves the efficiency of embryonic stem (ES) cell derivation from various strains of mice and rats, as well as dramatically promotes ES cell self-renewal potential. β-catenin has been reported to be involved in the maintenance of self-renewal of ES cells through TCF dependent and independent pathway. But the intrinsic difference between ES cell lines from different species and strains has not been characterized. Here, we dissect the mechanism of GSK-3 inhibition by CHIR99021 in mouse ES cells from refractory mouse strains. Methodology/Principal Findings We found that CHIR99021, a GSK-3 specific inhibitor, promotes self-renewal of ES cells from recalcitrant C57BL/6 (B6) and BALB/c mouse strains through stabilization of β-catenin and c-Myc protein levels. Stabilized β-catenin promoted ES self-renewal through two mechanisms. First, β-catenin translocated into the nucleus to maintain stem cell pluripotency in a lymphoid-enhancing factor/T-cell factor–independent manner. Second, β-catenin binds plasma membrane-localized E-cadherin, which ensures a compact, spherical morphology, a hallmark of ES cells. Further, elevated c-Myc protein levels did not contribute significantly to CH-mediated ES cell self-renewal. Instead, the role of c-Myc is dependent on its transformation activity and can be replaced by N-Myc but not L-Myc. β-catenin and c-Myc have similar effects on ES cells derived from both B6 and BALB/c mice. Conclusions/Significance Our data demonstrated that GSK-3 inhibition by CH promotes self-renewal of mouse ES cells with non-permissive genetic backgrounds by regulation of multiple signaling pathways. These findings would be useful to improve the availability of normally non-permissive mouse strains as research tools. PMID:22540008
Synthesis, antibacterial and cytotoxic activities of new biflorin-based hydrazones and oximes.
da S Souza, Luciana G; Almeida, Macia C S; Lemos, Telma L G; Ribeiro, Paulo R V; de Brito, Edy S; Silva, Vera L M; Silva, Artur M S; Braz-Filho, Raimundo; Costa, José G M; Rodrigues, Fábio F G; Barreto, Francisco S; de Moraes, Manoel O
2016-01-15
Biflorin 1 is a biologically active quinone, isolated from Capraria biflora. Five new biflorin-based nitrogen derivatives were synthesized, of which two were mixtures of (E)- and (Z)- isomers: (Z)-2a, (Z)-2b, (Z)-3a, (Z)- and (E)-3b, (Z)- and (E)-3c. The antibacterial activity was investigated using the microdilution method for determining the minimum inhibitory concentration (MIC) against six bacterial strains. Tests have shown that these derivatives have potential against all bacterial strains. The cytotoxic activity was also evaluated against three strains of cancer cells, but none of the derivatives showed activity. Copyright © 2015. Published by Elsevier Ltd.
Novel Permissive Cell Lines for Complete Propagation of Hepatitis C Virus
Shiokawa, Mai; Fukuhara, Takasuke; Ono, Chikako; Yamamoto, Satomi; Okamoto, Toru; Watanabe, Noriyuki; Wakita, Takaji
2014-01-01
ABSTRACT Hepatitis C virus (HCV) is a major etiologic agent of chronic liver diseases. Although the HCV life cycle has been clarified by studying laboratory strains of HCV derived from the genotype 2a JFH-1 strain (cell culture-adapted HCV [HCVcc]), the mechanisms of particle formation have not been elucidated. Recently, we showed that exogenous expression of a liver-specific microRNA, miR-122, in nonhepatic cell lines facilitates efficient replication but not particle production of HCVcc, suggesting that liver-specific host factors are required for infectious particle formation. In this study, we screened human cancer cell lines for expression of the liver-specific α-fetoprotein by using a cDNA array database and identified liver-derived JHH-4 cells and stomach-derived FU97 cells, which express liver-specific host factors comparable to Huh7 cells. These cell lines permit not only replication of HCV RNA but also particle formation upon infection with HCVcc, suggesting that hepatic differentiation participates in the expression of liver-specific host factors required for HCV propagation. HCV inhibitors targeting host and viral factors exhibited different antiviral efficacies between Huh7 and FU97 cells. Furthermore, FU97 cells exhibited higher susceptibility for propagation of HCVcc derived from the JFH-2 strain than Huh7 cells. These results suggest that hepatic differentiation participates in the expression of liver-specific host factors required for complete propagation of HCV. IMPORTANCE Previous studies have shown that liver-specific host factors are required for efficient replication of HCV RNA and formation of infectious particles. In this study, we screened human cancer cell lines for expression of the liver-specific α-fetoprotein by using a cDNA array database and identified novel permissive cell lines for complete propagation of HCVcc without any artificial manipulation. In particular, gastric cancer-derived FU97 cells exhibited a much higher susceptibility to HCVcc/JFH-2 infection than observed in Huh7 cells, suggesting that FU97 cells would be useful for further investigation of the HCV life cycle, as well as the development of therapeutic agents for chronic hepatitis C. PMID:24599999
Teramura, Takeshi; Onodera, Yuta; Murakami, Hideki; Ito, Syunsuke; Mihara, Toshihiro; Takehara, Toshiyuki; Kato, Hiromi; Mitani, Tasuku; Anzai, Masayuki; Matsumoto, Kazuya; Saeki, Kazuhiro; Fukuda, Kanji; Sagawa, Norimasa; Osoi, Yoshihiko
2009-06-01
The embryos of some rodents and primates can precede early development without the process of fertilization; however, they cease to develop after implantation because of restricted expressions of imprinting genes. Asexually developed embryos are classified into parthenote/gynogenote and androgenote by their genomic origins. Embryonic stem cells (ESCs) derived from asexual origins have also been reported. To date, ESCs derived from parthenogenetic embryos (PgESCs) have been established in some species, including humans, and the possibility to be alternative sources for autologous cell transplantation in regenerative medicine has been proposed. However, some developmental characteristics, which might be important for therapeutic applications, such as multiple differentiation capacity and transplantability of the ESCs of androgenetic origin (AgESCs) are uncertain. Here, we induced differentiation of mouse AgESCs and observed derivation of neural cells, cardiomyocytes and hepatocytes in vitro. Following differentiated embryoid body (EB) transplantation in various mouse strains including the strain of origin, we found that the EBs could engraft in theoretically MHC-matched strains. Our results indicate that AgESCs possess at least two important characteristics, multiple differentiation properties in vitro and transplantability after differentiation, and suggest that they can also serve as a source of histocompatible tissues for transplantation.
Infectivity of five different types of macrophages by Leishmania infantum.
Maia, C; Rolão, N; Nunes, M; Gonçalves, L; Campino, L
2007-08-01
Leishmania are intracellular parasites that multiply as the amastigote form in the macrophages of their vertebrate hosts. Since vaccines against leishmaniases are still under development, the control of these diseases relies on prompt diagnosis and chemotherapy in infected humans as well as in dogs, which are the main reservoir of Leishmania infantum, in Mediterranean countries. To establish the macrophage type to be used as an in vitro model for antileishmanial chemotherapeutic studies, we analysed the susceptibility of human peripheral blood derived macrophages, macrophages derived from mouse bone marrow, mouse peritoneal macrophages and macrophages differentiated from cell lines U-937 and DH82 to infection by two L. infantum strains, one obtained from a human leishmanial infection and other from a canine infection. Both strains displayed comparable behaviour in their capacity of infecting the different macrophage types. Human peripheral blood macrophages and DH82 cells were less infectable by both strains. U-937, mouse peritoneal macrophages and mouse bone marrow derived macrophages are the most active cells to phagocytose the parasites. However, U-937 cell line appears to be the most useful as Leishmania infection model providing an unlimited source of homogeneous host cells with reproducibility of the results, is less time consuming, less expensive and tolerate high doses of first line drugs for human and canine visceral leishmaniasis treatment.
Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.
2014-01-01
Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and towards immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. PMID:25435355
Severson, Paul L; Vrba, Lukas; Stampfer, Martha R; Futscher, Bernard W
2014-12-01
Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. Copyright © 2014 Elsevier B.V. All rights reserved.
Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; ...
2014-11-04
Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutationsmore » were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. In conclusion, the results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.« less
Serotypic characterization of rotaviruses derived from asymptomatic human neonatal infections.
Hoshino, Y; Wyatt, R G; Flores, J; Midthun, K; Kapikian, A Z
1985-01-01
Nineteen rotavirus strains derived from asymptomatic neonates (seven from England, five from Australia, two from Venezuela, and five from Sweden) were successfully cultivated in primary African green monkey kidney cell cultures, serotyped by plaque reduction neutralization tests, subgrouped by indirect enzyme-linked immunosorbent assay, and electropherotyped by polyacrylamide gel electrophoresis. All 19 strains were shown to fall into one of the four known human serotypes; serotype 1 (all Venezuelan strains), serotype 2 (all Swedish strains), serotype 3 (all Australian strains), or serotype 4 (all English strains). Hyperimmune guinea pig serum raised against the Venezuelan strain (M37) neutralized not only serotype 1 (strain Wa) but also serotype 4 (strain St. Thomas no. 3) viruses to a similar degree. The English, Australian, and Venezuelan isolates were found to belong to subgroup 2, and the Swedish strains were subgroup 1 viruses. The potential importance of these rotaviruses obtained from neonates as possible vaccine candidates is discussed. Images PMID:2984247
Derivation of Thymic Lymphoma T-cell Lines from Atm-/- and p53-/- Mice
Jinadasa, Rasika; Balmus, Gabriel; Gerwitz, Lee; Roden, Jamie; Weiss, Robert; Duhamel, Gerald
2011-01-01
Established cell lines are a critical research tool that can reduce the use of laboratory animals in research. Certain strains of genetically modified mice, such as Atm-/- and p53-/- consistently develop thymic lymphoma early in life 1,2, and thus, can serve as a reliable source for derivation of murine T-cell lines. Here we present a detailed protocol for the development of established murine thymic lymphoma T-cell lines without the need to add interleukins as described in previous protocols 1,3. Tumors were harvested from mice aged three to six months, at the earliest indication of visible tumors based on the observation of hunched posture, labored breathing, poor grooming and wasting in a susceptible strain 1,4. We have successfully established several T-cell lines using this protocol and inbred strains ofAtm-/- [FVB/N-Atmtm1Led/J] 2 and p53-/- [129/S6-Trp53tm1Tyj/J] 5 mice. We further demonstrate that more than 90% of the established T-cell population expresses CD3, CD4 and CD8. Consistent with stably established cell lines, the T-cells generated by using the present protocol have been passaged for over a year. PMID:21490582
Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.
McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping
2017-03-14
Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells
NASA Technical Reports Server (NTRS)
Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.
2001-01-01
Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.
Takimoto, T; Sato, H; Ogura, H
1986-01-01
The appearance of Epstein-Barr virus (EBV)-associated nuclear antigen (EBNA) and induction of EBV-induced early antigen (EA) in human umbilical cord blood lymphocytes (HUCLs) and two EBV genome-negative Burkitt's lymphoma (BL) lines (BJAB and Ramos) were studied by infection with EBVs prepared from three different cell lines: marmoset cell line (B95-8) derived from infections mononucleosis, BL-derived cell line (P3HR-1) and human epithelial hybrid cell line (NPC-KT) derived from nasopharyngeal carcinoma. B95-8 virus can transform HUCLs but cannot superinfect Raji cells. P3HR-1 virus can transform HUCLs cells but cannot transform HUCLs. NPC-KT virus can transform HUCLs and can superinfect Raji cells. We have examined the time sequence of EBNA appearance and EA induction in HUCLs, BJAB cells and Ramos cells, in order to determine if three different strains of EBV differ in their abilities to infect their cells. We found that all three strains of EBV can induce EBNA in HUCLs, BJAB cells and Ramos cells. On the other hand, we found that P3HR-1 virus and NPC-KT virus can induce EA in BJAB cells and Ramos cells, but B95-8 virus cannot induce EA in their cells.
Jere, Khuzwayo C.; O'Neill, Hester G.; Potgieter, A. Christiaan; van Dijk, Alberdina A.
2014-01-01
Rotavirus virus-like particles (RV-VLPs) are potential alternative non-live vaccine candidates due to their high immunogenicity. They mimic the natural conformation of native viral proteins but cannot replicate because they do not contain genomic material which makes them safe. To date, most RV-VLPs have been derived from cell culture adapted strains or common G1 and G3 rotaviruses that have been circulating in communities for some time. In this study, chimaeric RV-VLPs were generated from the consensus sequences of African rotaviruses (G2, G8, G9 or G12 strains associated with either P[4], P[6] or P[8] genotypes) characterised directly from human stool samples without prior adaptation of the wild type strains to cell culture. Codon-optimised sequences for insect cell expression of genome segments 2 (VP2), 4 (VP4), 6 (VP6) and 9 (VP7) were cloned into a modified pFASTBAC vector, which allowed simultaneous expression of up to four genes using the Bac-to-Bac Baculovirus Expression System (BEVS; Invitrogen). Several combinations of the genome segments originating from different field strains were cloned to produce double-layered RV-VLPs (dRV-VLP; VP2/6), triple-layered RV-VLPs (tRV-VLP; VP2/6/7 or VP2/6/7/4) and chimaeric tRV-VLPs. The RV-VLPs were produced by infecting Spodoptera frugiperda 9 and Trichoplusia ni cells with recombinant baculoviruses using multi-cistronic, dual co-infection and stepwise-infection expression strategies. The size and morphology of the RV-VLPs, as determined by transmission electron microscopy, revealed successful production of RV-VLPs. The novel approach of producing tRV-VLPs, by using the consensus insect cell codon-optimised nucleotide sequence derived from dsRNA extracted directly from clinical specimens, should speed-up vaccine research and development by by-passing the need to adapt rotaviruses to cell culture. Other problems associated with cell culture adaptation, such as possible changes in epitopes, can also be circumvented. Thus, it is now possible to generate tRV-VLPs for evaluation as non-live vaccine candidates for any human or animal field rotavirus strain. PMID:25268783
Aladin, Farah; Einerhand, Alexandra W. C.; Bouma, Janneke; Bezemer, Sandra; Hermans, Pim; Wolvers, Danielle; Bellamy, Kate; Frenken, Leon G. J.; Gray, Jim; Iturriza-Gómara, Miren
2012-01-01
Rotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (referred to as Anti-Rotavirus Proteins or ARP1) derived from a heavy chain antibody of a llama immunised with rotavirus was able to neutralise rotavirus infection in a mouse model system. In the present work we investigated the specificity and neutralising activity of two llama antibody fragments, ARP1 and ARP3, against 13 cell culture adapted rotavirus strains of diverse genotypes. In addition, immunocapture electron microscopy (IEM) was performed to determine binding of ARP1 to clinical isolates and cell culture adapted strains. ARP1 and ARP3 were able to neutralise a broad variety of rotavirus serotypes/genotypes in vitro, and in addition, IEM showed specific binding to a variety of cell adapted strains as well as strains from clinical specimens. These results indicated that these molecules could potentially be used as immunoprophylactic and/or immunotherapeutic products for the prevention and/or treatment of infection of a broad range of clinically relevant rotavirus strains. PMID:22403728
Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo
2014-01-01
Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.
A Modeling Insight into Adipose-Derived Stem Cell Myogenesis.
Deshpande, Rajiv S; Grayson, Warren L; Spector, Alexander A
2015-01-01
Adipose-derived stem cells (ASCs) are clinically important in regenerative medicine as they are relatively easy to obtain, are characterized by low morbidity, and can differentiate into myogenic progenitor cells. Although studies have elucidated the principal markers, PAX7, Desmin, MyoD, and MHC, the underlying mechanisms are not completely understood. This motivates the application of computational methods to facilitate greater understanding of such processes. In the following, we present a multi-stage kinetic model comprising a system of ordinary differential equations (ODEs). We sought to model ASC differentiation using data from a static culture, where no strain is applied, and a dynamic culture, where 10% strain is applied. The coefficients of the equations have been modulated by those experimental data points. To correctly represent the trajectories, various switches and a feedback factor based on total cell number have been introduced to better represent the biology of ASC differentiation. Furthermore, the model has then been applied to predict ASC fate for strains different from those used in the experimental conditions and for times longer than the duration of the experiment. Analysis of the results reveals unique characteristics of ASC myogenesis under dynamic conditions of the applied strain.
Nyanzi, Richard; Awouafack, Maurice D; Steenkamp, Paul; Jooste, Piet J; Eloff, Jacobus N
2014-12-01
This study investigated the anti-Candida activity of methanol extracts from freeze-dried probiotic cells and the isolation of some constituents in the extracts. The MIC values of the probiotic methanol cell extracts against Candida albicans ranged between 1.25 and 5mg/ml after 48 h of incubation. However, Lactococcus latics subsp. lactis strain X and Lactobacillus casei strain B extracts had an MIC of 10mg/ml after 48 h of incubation. The extracts had fungistatic rather than fungicidal activity. These extracts had a much higher antifungal activity than antifungal compounds isolated from the growth medium by many other authors. This indicates that probiotics may also release antifungal compounds in their cells that could contribute to a therapeutic effect. Lactic acid (1) and 6-O-(α-D-glucopyranosyl)-1,6-di-O-pentadecanoyl-α-D-glucopyranose a novel fatty acid derivative (2) were isolated from methanol probiotic extracts and the structure of these compounds were elucidated using NMR (1 and 2D) and mass spectrometry (MS). Copyright © 2014 Elsevier Ltd. All rights reserved.
Jeong, Jae-Kyo; Kang, Min-Hee; Gurunathan, Sangiliyandi; Cho, Ssang-Goo; Park, Chankyu; Seo, Han Geuk; Kim, Jin-Hoi
2014-09-25
Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) is the most sensitive, and valuable technique for rare mRNA detection. However, the expression profiles of reference genes under different experimental conditions, such as different mouse strains, developmental stage, and culture conditions have been poorly studied. mRNA stability of the actb, gapdh, sdha, ablim, ywhaz, sptbn, h2afz, tgfb1, 18 s and wrnip genes was analyzed. Using the NormFinder program, the most stable genes are as follows: h2afz for the B6D2F-1 and C57BL/6 strains; sptbn for ICR; h2afz for KOSOM and CZB cultures of B6D2F-1 and C57BL/6 strain-derived embryos; wrnip for M16 culture of B6D2F-1 and C57BL/6 strain-derived embryos; ywhaz, tgfb1, 18 s, 18 s, ywhaz, and h2afz for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst embryonic stages cultured in KSOM medium, respectively; h2afz, wrnip, wrnip, h2afz, ywhaz, and ablim for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in CZB medium, respectively; 18 s, h2afz, h2afz, actb, h2afz, and wrnip for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in M16 medium, respectively. These results demonstrated that candidate reference genes for normalization of target gene expression using RT-qPCR should be selected according to mouse strains, developmental stage, and culture conditions.
Orozco, R L; Redwood, M D; Yong, P; Caldelari, I; Sargent, F; Macaskie, L E
2010-12-01
Escherichia coli strains MC4100 (parent) and a mutant strain derived from this (IC007) were evaluated for their ability to produce H(2) and organic acids (OAs) via fermentation. Following growth, each strain was coated with Pd(0) via bioreduction of Pd(II). Dried, sintered Pd-biomaterials ('Bio-Pd') were tested as anodes in a proton exchange membrane (PEM) fuel cell for their ability to generate electricity from H(2). Both strains produced hydrogen and OAs but 'palladised' cells of strain IC007 (Bio-Pd(IC007)) produced ~threefold more power as compared to Bio-Pd(MC4100) (56 and 18 mW respectively). The power output used, for comparison, commercial Pd(0) powder and Bio-Pd made from Desulfovibrio desulfuricans, was ~100 mW. The implications of these findings for an integrated energy generating process are discussed.
A study of the interaction between H. pylori mice passage strains and gastric epithelial cells.
Rahman, Inayatur; Idrees, Muhammad; Waqas, Mohammad; Karim, Abdul
2018-05-01
Helicobacter pylori (H. pylori) infections are very serious health problem that are further worsened by increasing/developing resistance to the current antibiotics. Therefore, new therapeutic agents are needed for H. pylori eradication. Use of a CD46 derived peptide (P3) as bactericidal agent against H. pylori has shown high activity rate in vivo and this study examines the changes in H. pylori features in response to effect of P3 treatment.AGS cells were infected with H. pylori wild type strain 67:21 and its mice passage strains (P3 treated and untreated strains) and further examined using immunoblotting assay, FACS and Urease activity analysis. Comparatively we found increased level of Urease alpha subunit A (UreA) and alkyl hydroperoxide reductase C (AhpC) proteins for P3 treated strain of H. pylori than its wild type or untreated strain after infection of AGS cells. Conclusion These results suggest that there might be a high rate of adherence to host cells for the P3 treated passage strain than untreated or wild type strain. Our findings also indicate that either adhesins are being changed or H. pylori interaction to the host cells is affected after P3 treatment.
Opitz, Lars; Zimmermann, Anke; Lehmann, Sylvia; Genzel, Yvonne; Lübben, Holger; Reichl, Udo; Wolff, Michael W
2008-12-01
Strategies to control influenza outbreaks are focused mainly on prophylactic vaccination. Human influenza vaccines are trivalent blends of different virus subtypes. Therefore and due to frequent antigenic drifts, strain independent manufacturing processes are required for vaccine production. This study verifies the strain independency of a capture method based on Euonymus europaeus lectin-affinity chromatography (EEL-AC) for downstream processing of influenza viruses under various culture conditions propagated in MDCK cells. A comprehensive lectin binding screening was conducted for two influenza virus types from the season 2007/2008 (A/Wisconsin/67/2005, B/Malaysia/2506/2004) including a comparison of virus-lectin interaction by surface plasmon resonance technology. EEL-AC resulted in a reproducible high product recovery rate and a high degree of contaminant removal in the case of both MDCK cell-derived influenza virus types demonstrating clearly the general applicability of EEL-AC. In addition, host cell dependency of EEL-AC was studied with two industrial relevant cell lines: Vero and MDCK cells. However, the choice of the host cell lines is known to lead to different product glycosylation profiles. Hence, altered lectin specificities have been observed between the two cell lines, requiring process adaptations between different influenza vaccine production systems.
Sato, K; Quartey, M K; Liebeler, C L; Le, C T; Giebink, G S
1996-01-01
Streptococcus pneumoniae cell wall and pneumolysin are important contributors to pneumococcal pathogenicity in some animal models. To further explore these factors in middle ear inflammation caused by pneumococci, penicillin-induced inflammatory acceleration was studied by using three closely related pneumococcal strains: a wild-type 3 strain (WT3), its pneumolysin-negative derivative (P-1), and into autolysin-negative derivative (A-1). Both middle ears of chinchillas were inoculated with one of the three pneumococcal strains. During the first 12 h, all three strains grew in vivo at the same rate, and all three strains induced similar inflammatory cell responses in middle ear fluid (MEF). Procaine penicillin G was given as 12 h to one-half of the animals in each group, and all treated chinchillas had sterile MEF at 24 h. Penicillin significantly accelerated MEF inflammatory cell influx into WT3-and P-1-infected ears at 18 and 24 h in comparison with the rate for penicillin-treated A-1-infected ears. Inflammatory cell influx was slightly, but not significantly, greater after treatment of WT3 infection than after treatment of P-1 infection. Interleukin (IL)-1beta and IL-6, but not IL-8, concentrations in MEF at 24 h reflected the penicillin effect on MEF inflammatory cells; however, differences between treatment groups were not significant. Results suggest that pneumococcal otitis media pathogenesis is triggered principally by the inflammatory effects of intact and lytic cell wall products in the middle ear, with at most a modes additional pneumolysin effect. Investigation strategies that limit the release of these products or neutralize them warrant further investigation. PMID:8606070
Miyamoto, T; Fujiyama, R; Okada, Y; Sato, T
1999-12-17
The chorda tympani nerve responses to NaCl in a mouse strain, C57BL/6 are known to be much more sensitive than those in BALB/c. We compared the NaCl-induced responses obtained from taste cells of the fungiform papillae in these two strains of mice. Amiloride inhibited, in the same degree, the responses induced by a bath-application of normal extracellular solution (NES) containing 140 mM NaCl in either taste cells of C57BL/6 and BALB/c mice. In contrast, amiloride inhibited 62% of responses induced by an apically applied 0.5 M NaCl in the C57BL/6 strain, but only 33% of responses in the BALB/c strain. These results suggest that the difference in amiloride-sensitivity between taste cells in both strains mainly derives from the difference in density of functional amiloride sensitive Na+ channels at the apical receptive membrane but not at the basolateral membrane.
Ikizler, Mine R.; Kawaoka, Yoshihiro; Rudenko, Larisa G.; Treanor, John J.; Subbarao, Kanta; Wright, Peter F.
2012-01-01
Although clinical trials with human subjects are essential for determination of safety, infectivity, and immunogenicity, it is desirable to know in advance the infectiousness of potential candidate live attenuated influenza vaccine strains for human use. We compared the replication kinetics of wild-type and live attenuated influenza viruses, including H1N1, H3N2, H9N2, and B strains, in Madin-Darby canine kidney (MDCK) cells, primary epithelial cells derived from human adenoids, and human bronchial epithelium (NHBE cells). Our data showed that despite the fact that all tissue culture models lack a functional adaptive immune system, differentiated cultures of human epithelium exhibited the greatest restriction for all H1N1, H3N2, and B vaccine viruses studied among three cell types tested and the best correlation with their levels of attenuation seen in clinical trials with humans. In contrast, the data obtained with MDCK cells were the least predictive of restricted viral replication of live attenuated vaccine viruses in humans. We were able to detect a statistically significant difference between the replication abilities of the U.S. (A/Ann Arbor/6/60) and Russian (A/Leningrad/134/17/57) cold-adapted vaccine donor strains in NHBE cultures. Since live attenuated pandemic influenza vaccines may potentially express a hemagglutinin and neuraminidase from a non-human influenza virus, we assessed which of the three cell cultures could be used to optimally evaluate the infectivity and cellular tropism of viruses derived from different hosts. Among the three cell types tested, NHBE cultures most adequately reflected the infectivity and cellular tropism of influenza virus strains with different receptor specificities. NHBE cultures could be considered for use as a screening step for evaluating the restricted replication of influenza vaccine candidates. PMID:22915797
Lee, I-Chiao; Caggianiello, Graziano; van Swam, Iris I; Taverne, Nico; Meijerink, Marjolein; Bron, Peter A; Spano, Giuseppe; Kleerebezem, Michiel
2016-07-01
Lactobacilli are found in diverse environments and are widely applied as probiotic, health-promoting food supplements. Polysaccharides are ubiquitously present on the cell surface of lactobacilli and are considered to contribute to the species- and strain-specific probiotic effects that are typically observed. Two Lactobacillus plantarum strains, SF2A35B and Lp90, have an obvious ropy phenotype, implying high extracellular polysaccharide (EPS) production levels. In this work, we set out to identify the genes involved in EPS production in these L. plantarum strains and to demonstrate their role in EPS production by gene deletion analysis. A model L. plantarum strain, WCFS1, and its previously constructed derivative that produced reduced levels of EPS were included as reference strains. The constructed EPS-reduced derivatives were analyzed for the abundance and sugar compositions of their EPS, revealing cps2-like gene clusters in SF2A35B and Lp90 responsible for major EPS production. Moreover, these mutant strains were tested for phenotypic characteristics that are of relevance for their capacity to interact with the host epithelium in the intestinal tract, including bacterial surface properties as well as survival under the stress conditions encountered in the gastrointestinal tract (acid and bile stress). In addition, the Toll-like receptor 2 (TLR2) signaling and immunomodulatory capacities of the EPS-negative derivatives and their respective wild-type strains were compared, revealing strain-specific impacts of EPS on the immunomodulatory properties. Taken together, these experiments illustrate the importance of EPS in L. plantarum strains as a strain-specific determinant in host interaction. This study evaluates the role of extracellular polysaccharides that are produced by different strains of Lactobacillus plantarum in the determination of the cell surface properties of these bacteria and their capacity to interact with their environment, including their signaling to human host cells. The results clearly show that the consequences of removal of these polysaccharides are very strain specific, illustrating the diverse and unpredictable roles of these polysaccharides in the environmental interactions of these bacterial strains. In the context of the use of lactobacilli as health-promoting probiotic organisms, this study exemplifies the importance of strain specificity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Lee, I-Chiao; Caggianiello, Graziano; van Swam, Iris I.; Taverne, Nico; Meijerink, Marjolein; Bron, Peter A.; Spano, Giuseppe
2016-01-01
ABSTRACT Lactobacilli are found in diverse environments and are widely applied as probiotic, health-promoting food supplements. Polysaccharides are ubiquitously present on the cell surface of lactobacilli and are considered to contribute to the species- and strain-specific probiotic effects that are typically observed. Two Lactobacillus plantarum strains, SF2A35B and Lp90, have an obvious ropy phenotype, implying high extracellular polysaccharide (EPS) production levels. In this work, we set out to identify the genes involved in EPS production in these L. plantarum strains and to demonstrate their role in EPS production by gene deletion analysis. A model L. plantarum strain, WCFS1, and its previously constructed derivative that produced reduced levels of EPS were included as reference strains. The constructed EPS-reduced derivatives were analyzed for the abundance and sugar compositions of their EPS, revealing cps2-like gene clusters in SF2A35B and Lp90 responsible for major EPS production. Moreover, these mutant strains were tested for phenotypic characteristics that are of relevance for their capacity to interact with the host epithelium in the intestinal tract, including bacterial surface properties as well as survival under the stress conditions encountered in the gastrointestinal tract (acid and bile stress). In addition, the Toll-like receptor 2 (TLR2) signaling and immunomodulatory capacities of the EPS-negative derivatives and their respective wild-type strains were compared, revealing strain-specific impacts of EPS on the immunomodulatory properties. Taken together, these experiments illustrate the importance of EPS in L. plantarum strains as a strain-specific determinant in host interaction. IMPORTANCE This study evaluates the role of extracellular polysaccharides that are produced by different strains of Lactobacillus plantarum in the determination of the cell surface properties of these bacteria and their capacity to interact with their environment, including their signaling to human host cells. The results clearly show that the consequences of removal of these polysaccharides are very strain specific, illustrating the diverse and unpredictable roles of these polysaccharides in the environmental interactions of these bacterial strains. In the context of the use of lactobacilli as health-promoting probiotic organisms, this study exemplifies the importance of strain specificity. PMID:27107126
Xiang, Bin; Zhu, Wenxian; Li, Yaling; Gao, Pei; Liang, Jianpeng; Liu, Di; Ding, Chan; Liao, Ming; Kang, Yinfeng; Ren, Tao
2018-06-01
Infection of chickens with virulent Newcastle disease virus (NDV) is associated with severe pathology and increased morbidity and mortality. The innate immune response contributes to the pathogenicity of NDV. As professional antigen-presenting cells, dendritic cells (DCs) play a unique role in innate immunity. However, the contribution of DCs to NDV infection has not been investigated in chickens. In this study, we selected two representative NDV strains, i.e., the velogenic NDV strain Chicken/Guangdong/GM/2014 (GM) and the lentogenic NDV strain La Sota, to investigate whether NDVs could infect LPS-activated chicken bone-derived marrow DCs (mature chicken BM-DCs). We compared the viral titres and innate immune responses in mature chicken BM-DCs following infection with those strains. Both NDV strains could infect mature chicken BM-DC, but the GM strain showed stronger replication capacity than the La Sota strain in mature chicken BM-DCs. Gene expression profiling showed that MDA5, LGP2, TLR3, TLR7, IFN-α, IFN-β, IFN-γ, IL-1β, IL-6, IL-18, IL-8, CCL5, IL-10, IL-12, MHC-I, and MHC-II levels were altered in mature DCs after infection with NDVs at all evaluated times postinfection. Notably, the GM strain triggered stronger innate immune responses than the La Sota strain in chicken BM-DCs. However, both strains were able to suppress the expression of some cytokines, such as IL-6 and IFN-α, in mature chicken DCs at 24 hpi. These data provide a foundation for further investigation of the role of chicken DCs in NDV infection.
In vitro expression of Streptococcus pneumoniae ply gene in human monocytes and pneumocytes.
Hu, Da-Kang; Liu, Yang; Li, Xiang-Yang; Qu, Ying
2015-05-07
Streptococcus pneumoniae is one major cause of pneumonia in human and contains various virulence factors that contribute to pathogenesis of pneumococcal disease. This study investigated the role of pneumolysin, Ply, in facilitating S. pneumoniae invasion into the host blood stream. S. pneumoniae strains were isolated from clinical blood and sputum samples and confirmed by PCR. Expression of ply gene was assessed by infecting human monocytes and pneumocytes. A total of 23 strains of S. pneumoniae isolated from blood (n = 11) and sputum (n = 12) along with S. pneumoniae ATCC49619 were used to infect human monocyte (THP-1) and Type II pneumocyte (A549) cell lines. All clinical strains of S. pneumoniae showed higher expression of ply mRNA than the American Type Culture Collection (ATCC) strain. Among the clinical strains, blood isolates showed higher expression of ply genes than sputum isolates, i.e., 2(1.5)- to 2(1.6)-folds in THP-1 and 2(0.4)- to 2(4.9)-folds in A549 cell lines. The data from the current study demonstrated that ply gene of blood- and sputum-derived S. pneumoniae is differentially expressed in two different cell lines. Under survival pressure, ply is highly expressed in these two cell lines for blood-derived S. pneumoniae, indicating that ply gene may facilitate S. pneumoniae invasion into the host blood system.
HELP - A Multimaterial Eulerian Program in Two Space Dimensions and Time
1976-04-01
ASSUMPTIONS 3-1 3.2 STRENGTH PHASE (SPHASE) 3-1 3.2.1 Definition of Strain Rate Derivatives for Cells at a Grid Boundary 3-3 3.2.2 Definition...of Interpolated Strain Rates and Stresses for Cells at a Grid Boundary 3-4 3.2.3 Definition of Velocities and Deviator Stresses at Grid Boundaries...Grid Boundaries 3-9 3.4.2 Change of Momentum for Cells at Reflective Grid Boundaries in TPHASE.. 3-10 3.4.3 Correction to Theoretical Energy for
Sanders, Barbara P; Oakes, Isabel de los Rios; van Hoek, Vladimir; Liu, Ying; Marissen, Wilfred; Minor, Philip D; Wimmer, Eckard; Schuitemaker, Hanneke; Custers, Jerome H H V; Macadam, Andrew; Cello, Jeronimo; Edo-Matas, Diana
2015-11-27
As poliovirus eradication draws closer, alternative Inactivated Poliovirus Vaccines (IPV) are needed to overcome the risks associated with continued use of the Oral Poliovirus Vaccine and of neurovirulent strains used during manufacture of conventional (c) IPV. We have previously demonstrated the susceptibility of the PER.C6(®) cell line to cIPV strains; here we investigated the suspension cell culture platform for growth of attenuated poliovirus strains. We examined attenuated Sabin strain productivity on the PER.C6(®) cell platform compared to the conventional Vero cell platform. The suitability of the suspension cell platform for propagation of rationally-attenuated poliovirus strains (stabilized Sabin type 3 S19 derivatives and genetically attenuated and stabilized MonoCre(X) strains), was also assessed. Yields were quantified by infectious titer determination and D-antigen ELISA using either serotype-specific polyclonal rabbit sera for Sabin strains or monoclonal cIPV-strain-specific antibodies for cIPV, S19 and MonoCre(X) strains. PER.C6(®) cells supported the replication of Sabin strains to yields of infectious titers that were in the range of cIPV strains at 32.5°C. Sabin strains achieved 30-fold higher yields (p<0.0001) on the PER.C6(®) cell platform as compared to the Vero cell platform in infectious titer and D-antigen content. Furthermore, Sabin strain productivity on the PER.C6(®) cell platform was maintained at 10l scale. Yields of infectious titers of S19 and MonoCre(X) strains were 0.5-1 log10 lower than seen for cIPV strains, whereas D-antigen yield and productivities in doses/ml using rationally-attenuated strains were in line with yields reported for cIPV strains. Sabin and rationally-attenuated polioviruses can be grown to high infectious titers and D-antigen yields. Sabin strain infection shows increased productivity on the PER.C6(®) cell platform as compared to the conventional Vero cell platform. Novel cell platforms with the potential for higher yields could contribute to increased affordability of a next generation of IPV vaccines needed for achieving and maintaining poliovirus eradication. Copyright © 2015 Elsevier Ltd. All rights reserved.
Identification of Novel Avian Influenza Virus Derived CD8+ T-Cell Epitopes
Reemers, Sylvia S. N.; van Haarlem, Daphne A.; Sijts, Alice J. A. M.; Vervelde, Lonneke; Jansen, Christine A.
2012-01-01
Avian influenza virus (AIV) infection is a continuing threat to both humans and poultry. Influenza virus specific CD8+ T cells are associated with protection against homologous and heterologous influenza strains. In contrast to what has been described for humans and mice, knowledge on epitope-specific CD8+ T cells in chickens is limited. Therefore, we set out to identify AIV-specific CD8+ T-cell epitopes. Epitope predictions based on anchor residues resulted in 33 candidate epitopes. MHC I inbred chickens were infected with a low pathogenic AIV strain and sacrificed at 5, 7, 10 and 14 days post infection (dpi). Lymphocytes isolated from lung, spleen and blood were stimulated ex vivo with AIV-specific pooled or individual peptides and the production of IFNγ was determined by ELIspot. This resulted in the identification of 12 MHC B12-restricted, 3 B4-restricted and 1 B19-restricted AIV- specific CD8+ T-cell epitopes. In conclusion, we have identified novel AIV-derived CD8+ T-cell epitopes for several inbred chicken strains. This knowledge can be used to study the role of CD8+ T cells against AIV infection in a natural host for influenza, and may be important for vaccine development. PMID:22384112
Watanabe, Masahiro; Hashimoto, Koichi; Abe, Yusaku; Kodama, Eiichi N; Nabika, Ryota; Oishi, Shinya; Ohara, Shinichiro; Sato, Masatoki; Kawasaki, Yukihiko; Fujii, Nobutaka; Hosoya, Mitsuaki
2016-01-01
Subacute sclerosing panencephalitis (SSPE) is a persistent, progressive, and fatal degenerative disease resulting from persistent measles virus (MV) infection of the central nervous system. Most drugs used to treat SSPE have been reported to have limited effects. Therefore, novel therapeutic strategies are urgently required. The SSPE virus, a variant MV strain, differs virologically from wild-type MV strain. One characteristic of the SSPE virus is its defective production of cell-free virus, which leaves cell-to-cell infection as the major mechanism of viral dissemination. The fusion protein plays an essential role in this cell-to-cell spread. It contains two critical heptad repeat regions that form a six-helix bundle in the trimer similar to most viral fusion proteins. In the case of human immunodeficiency virus type-1 (HIV-1), a synthetic peptide derived from the heptad repeat region of the fusion protein enfuvirtide inhibits viral replication and is clinically approved as an anti-HIV-1 agent. The heptad repeat regions of HIV-1 are structurally and functionally similar to those of the MV fusion protein. We therefore designed novel peptides derived from the fusion protein heptad repeat region of the MV and examined their effects on the measles and SSPE virus replication in vitro and in vivo. Some of these synthetic novel peptides demonstrated high antiviral activity against both the measles (Edmonston strain) and SSPE (Yamagata-1 strain) viruses at nanomolar concentrations with no cytotoxicity in vitro. In particular, intracranial administration of one of the synthetic peptides increased the survival rate from 0% to 67% in an SSPE virus-infected nude mouse model.
Watanabe, Masahiro; Hashimoto, Koichi; Abe, Yusaku; Kodama, Eiichi N.; Nabika, Ryota; Oishi, Shinya; Ohara, Shinichiro; Sato, Masatoki; Kawasaki, Yukihiko; Fujii, Nobutaka; Hosoya, Mitsuaki
2016-01-01
Subacute sclerosing panencephalitis (SSPE) is a persistent, progressive, and fatal degenerative disease resulting from persistent measles virus (MV) infection of the central nervous system. Most drugs used to treat SSPE have been reported to have limited effects. Therefore, novel therapeutic strategies are urgently required. The SSPE virus, a variant MV strain, differs virologically from wild-type MV strain. One characteristic of the SSPE virus is its defective production of cell-free virus, which leaves cell-to-cell infection as the major mechanism of viral dissemination. The fusion protein plays an essential role in this cell-to-cell spread. It contains two critical heptad repeat regions that form a six-helix bundle in the trimer similar to most viral fusion proteins. In the case of human immunodeficiency virus type-1 (HIV-1), a synthetic peptide derived from the heptad repeat region of the fusion protein enfuvirtide inhibits viral replication and is clinically approved as an anti-HIV-1 agent. The heptad repeat regions of HIV-1 are structurally and functionally similar to those of the MV fusion protein. We therefore designed novel peptides derived from the fusion protein heptad repeat region of the MV and examined their effects on the measles and SSPE virus replication in vitro and in vivo. Some of these synthetic novel peptides demonstrated high antiviral activity against both the measles (Edmonston strain) and SSPE (Yamagata-1 strain) viruses at nanomolar concentrations with no cytotoxicity in vitro. In particular, intracranial administration of one of the synthetic peptides increased the survival rate from 0% to 67% in an SSPE virus-infected nude mouse model. PMID:27612283
Hattangady, Dipti S.; Singh, Atul K.; Muthaiyan, Arun; Jayaswal, Radheshyam K.; Gustafson, John E.; Ulanov, Alexander V.; Li, Zhong; Wilkinson, Brian J.; Pfeltz, Richard F.
2015-01-01
Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p−m+V20 (vancomycin MIC = 16 µg/mL) than strain 13136p−m+V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype. PMID:27025616
Miller, M J; Maher, V M; McCormick, J J
1992-11-01
Quantitative two-dimensional gel electrophoresis was used to compare the cellular protein patterns of a normal foreskin-derived human fibroblasts cell line (LG1) and three immortal derivatives of LG1. One derivative, designated MSU-1.1 VO, was selected for its ability to grow in the absence of serum and is non-tumorigenic in athymic mice. The other two strains were selected for focus-formation following transfection with either Ha-ras or N-ras oncogenes and form high grade malignant tumors. Correspondence and cluster analysis provided a nonbiased estimate of the relative similarity of the different two-dimensional patterns. These techniques separated the gel patterns into three distinct classes: LG1, MSU-1.1 VO, and the ras transformed cell strains. The MSU-1.1 VO cells were more closely related to the parental LG1 than to the ras-transformed cells. The differences between the three classes were primarily quantitative in nature: 16% of the spots demonstrated statistically significant changes (P < 0.01, T test, mean ratio of intensity > 2) in the rate of incorporation of radioactive amino acids. The patterns from the two ras-transformed cell strains were similar, and variations in the expression of proteins that occurred between the separate experiments obscured consistent differences between the Ha-ras and N-ras transformed cells. However, while only 9 out of 758 spots were classified as different (1%), correspondence analysis could consistently separate the two ras transformants. One of these spots was five times more intense in the Ha-ras transformed cells than the N-ras.(ABSTRACT TRUNCATED AT 250 WORDS)
Santpere, Gabriel; Darre, Fleur; Blanco, Soledad; Alcami, Antonio; Villoslada, Pablo; Mar Albà, M; Navarro, Arcadi
2014-04-01
Most people in the world (∼90%) are infected by the Epstein-Barr virus (EBV), which establishes itself permanently in B cells. Infection by EBV is related to a number of diseases including infectious mononucleosis, multiple sclerosis, and different types of cancer. So far, only seven complete EBV strains have been described, all of them coming from donors presenting EBV-related diseases. To perform a detailed comparative genomic analysis of EBV including, for the first time, EBV strains derived from healthy individuals, we reconstructed EBV sequences infecting lymphoblastoid cell lines (LCLs) from the 1000 Genomes Project. As strain B95-8 was used to transform B cells to obtain LCLs, it is always present, but a specific deletion in its genome sets it apart from natural EBV strains. After studying hundreds of individuals, we determined the presence of natural EBV in at least 10 of them and obtained a set of variants specific to wild-type EBV. By mapping the natural EBV reads into the EBV reference genome (NC007605), we constructed nearly complete wild-type viral genomes from three individuals. Adding them to the five disease-derived EBV genomic sequences available in the literature, we performed an in-depth comparative genomic analysis. We found that latency genes harbor more nucleotide diversity than lytic genes and that six out of nine latency-related genes, as well as other genes involved in viral attachment and entry into host cells, packaging, and the capsid, present the molecular signature of accelerated protein evolution rates, suggesting rapid host-parasite coevolution.
Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N; Gieryńska, Małgorzata
2017-01-01
Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM-comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data strongly suggest that in vitro modulation of GM-BM innate and adaptive immune functions by ECTV occurs irrespective of whether the mouse strain is susceptible or resistant to infection. Moreover, ECTV limits the GM-BM (including cDCs) capacity to stimulate protective Th1 immune response. We cannot exclude that this may be an important factor in the generation of non-protective Th2 immune response in susceptible BALB/c mice in vivo .
Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria
NASA Astrophysics Data System (ADS)
Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.
2006-02-01
We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.
Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich
2016-12-01
Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.
The innate immune system in host mice targets cells with allogenic mitochondrial DNA
Ishikawa, Kaori; Nakada, Kazuto; Morimoto, Mami; Imanishi, Hirotake; Yoshizaki, Mariko; Sasawatari, Shigemi; Niikura, Mamoru; Takenaga, Keizo; Yonekawa, Hiromichi
2010-01-01
Mitochondrial DNA (mtDNA) has been proposed to be involved in respiratory function, and mtDNA mutations have been associated with aging, tumors, and various disorders, but the effects of mtDNA imported into transplants from different individuals or aged subjects have been unclear. We examined this issue by generating trans-mitochondrial tumor cells and embryonic stem cells that shared the syngenic C57BL/6 (B6) strain–derived nuclear DNA background but possessed mtDNA derived from allogenic mouse strains. We demonstrate that transplants with mtDNA from the NZB/B1NJ strain were rejected from the host B6 mice, not by the acquired immune system but by the innate immune system. This rejection was caused partly by NK cells and involved a MyD88-dependent pathway. These results introduce novel roles of mtDNA and innate immunity in tumor immunology and transplantation medicine. PMID:20937705
La Regina, Giuseppe; Coluccia, Antonio; Brancale, Andrea; Piscitelli, Francesco; Gatti, Valerio; Maga, Giovanni; Samuele, Alberta; Pannecouque, Christophe; Schols, Dominique; Balzarini, Jan; Novellino, Ettore; Silvestri, Romano
2011-03-24
New indolylarylsulfone derivatives bearing cyclic substituents at indole-2-carboxamide linked through a methylene/ethylene spacer were potent inhibitors of the WT HIV-1 replication in CEM and PBMC cells with inhibitory concentrations in the low nanomolar range. Against the mutant L100I and K103N RT HIV-1 strains in MT-4 cells, compounds 20, 24-26, 36, and 40 showed antiviral potency superior to that of NVP and EFV. Against these mutant strains, derivatives 20, 24-26, and 40 were equipotent to ETV. Molecular docking experiments on this novel series of IAS analogues have also suggested that the H-bond interaction between the nitrogen atom in the carboxamide chain of IAS and Glu138:B is important in the binding of these compounds. These results are in accordance with the experimental data obtained on the WT and on the mutant HIV-1 strains tested.
Lefeuvre, Anabelle; Contamin, Hugues; Decelle, Thierry; Fournier, Christophe; Lang, Jean; Deubel, Vincent; Marianneau, Philippe
2006-05-01
Yellow fever (YF) virus is currently found in tropical Africa and South America, and is responsible for a febrile to severe illness characterized by organ failure and shock. The attenuated YF 17D strain, used in YF vaccine, was derived from the wild-type strain Asibi. Although studies have been done on genetic markers of YF virulence, differentiation of the two strains in terms of host-cell interaction during infection remains elusive. As YF wild-type strains are hepatotropic, we chose a hepatic cell line (HepG2) to study YF virus-host cell interaction. HepG2 cells rapidly produced high titres of infectious viral particles for 17D and Asibi YF strains. However, HepG2 cells were more susceptible to the attenuated 17D virus infection, and only this virus strain induced early apoptosis in these cells. Molecular markers specific for the 17D virus were identified by microarray analysis and confirmed by quantitative RT-PCR analysis. As early as 1h postinfection, three genes, (IEX-1, IRF-1, DEC-1) all implicated in apoptosis pathways, were upregulated. Later in infection (48 h) two other genes (HSP70-1A and 1B), expressed in cases of cellular stress, were highly upregulated in 17D-infected HepG2 cells. The early specific upregulation of these cellular genes in HepG2 cells may be considered markers of the 17D virus. This study on the YF attenuated strain gives a new approach to the analysis of the factors involved in virus attenuation.
How deep cells feel: Mean-field Computations and Experiments
NASA Astrophysics Data System (ADS)
Buxboim, Amnon; Sen, Shamik; Discher, Dennis E.
2009-03-01
Most cells in solid tissues exert contractile forces that mechanically couple them to elastic surroundings and that significantly influence cell adhesion, cytoskeletal organization and differentiation. However, strains within the depths of matrices are often unclear and are likely relevant to thin matrices, such as basement membranes, relative to cell size as well as to defining how far cells can ``feel.'' We present experimental results for cell spreading on thin, ligand- coated gels and for prestress in stem cells in relation to gel stiffness. Matrix thickness affects cell spread area, focal adhesions and cytoskeleton organization in stem cells, which we will compare to differentiated cells. We introduce a finite element computation to estimate the elastostatic deformations within the matrix on which a cell is placed. Interfacial strains between cell and matrix show large deviations only when soft matrices are a fraction of cell dimensions, proving consistent with experiments. 3-D cell morphologies that model stem cell-derived neurons, myoblasts, and osteoblasts show that a cylinder-shaped myoblast induces the highest strains, consistent with the prominent contractility of muscle. Groups of such cells show a weak crosstalk via matrix strains only when cells are much closer than a cell-width. Cells thus feel on length scales closer to that of adhesions than on cellular scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.
Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutationsmore » were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. In conclusion, the results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.« less
Stretch Injury of Human Induced Pluripotent Stem Cell Derived Neurons in a 96 Well Format
Sherman, Sydney A.; Phillips, Jack K.; Costa, J. Tighe; Cho, Frances S.; Oungoulian, Sevan R.; Finan, John D.
2016-01-01
Traumatic brain injury (TBI) is a major cause of mortality and morbidity with limited therapeutic options. Traumatic axonal injury (TAI) is an important component of TBI pathology. It is difficult to reproduce TAI in animal models of closed head injury, but in vitro stretch injury models reproduce clinical TAI pathology. Existing in vitro models employ primary rodent neurons or human cancer cell line cells in low throughput formats. This in vitro neuronal stretch injury model employs human induced pluripotent stem cell-derived neurons (hiPSCNs) in a 96 well format. Silicone membranes were attached to 96 well plate tops to create stretchable, culture substrates. A custom-built device was designed and validated to apply repeatable, biofidelic strains and strain rates to these plates. A high content approach was used to measure injury in a hypothesis-free manner. These measurements are shown to provide a sensitive, dose-dependent, multi-modal description of the response to mechanical insult. hiPSCNs transition from healthy to injured phenotype at approximately 35% Lagrangian strain. Continued development of this model may create novel opportunities for drug discovery and exploration of the role of human genotype in TAI pathology. PMID:27671211
Sun, Ning; Du, Ruo-Lan; Zheng, Yuan-Yuan; Guo, Qi; Cai, Sen-Yuan; Liu, Zhi-Hua; Fang, Zhi-Yuan; Yuan, Wen-Chang; Liu, Ting; Li, Xiao-Mei; Lu, Yu-Jing; Wong, Kwok-Yin
2018-12-01
The increasing incidence of multidrug resistant bacterial infection renders an urgent need for the development of new antibiotics. To develop small molecules disturbing FtsZ activity has been recognized as promising approach to search for antibacterial of high potency systematically. Herein, a series of novel quinolinium derivatives were synthesized and their antibacterial activities were investigated. The compounds show strong antibacterial activities against different bacteria strains including MRSA, VRE and NDM-1 Escherichia coli. Among these derivatives, a compound bearing a 4-fluorophenyl group (A2) exhibited a superior antibacterial activity and its MICs to the drug-resistant strains are found lower than those of methicillin and vancomycin. The biological results suggest that these quinolinium derivatives can disrupt the GTPase activity and dynamic assembly of FtsZ, and thus inhibit bacterial cell division and then cause bacterial cell death. These compounds deserve further evaluation for the development of new antibacterial agents targeting FtsZ.
Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior.
Yuan, Xiaofei; Couto, Jillian M; Glidle, Andrew; Song, Yanqing; Sloan, William; Yin, Huabing
2017-12-15
By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.
Li, Ziwei; You, Qiumei; Ossa, Faisury; Mead, Philip; Quinton, Margaret; Karrow, Niel A
2016-03-01
Since yeast Saccharomyces cerevisiae and its components are being used for the prevention and treatment of enteric diseases in different species, they may also be useful for preventing Johne's disease, a chronic inflammatory bowel disease of ruminants caused by Mycobacterium avium spp. paratuberculosis (MAP). This study aimed to identify potential yeast derivatives that may be used to help prevent MAP infection. The adherence of mCherry-labeled MAP to bovine mammary epithelial cell line (MAC-T cells) and bovine primary epithelial cells (BECs) co-cultured with yeast cell wall components (CWCs) from four different yeast strains (A, B, C and D) and two forms of dead yeast from strain A was investigated. The CWCs from all four yeast strains and the other two forms of dead yeast from strain A reduced MAP adhesion to MAC-T cells and BECs in a concentration-dependent manner after 6-h of exposure, with the dead yeast having the greatest effect. The following in vitro binding studies suggest that dead yeast and its' CWCs may be useful for reducing risk of MAP infection.
Diversity of exophillic acid derivatives in strains of an endophytic Exophiala sp.
Cheikh-Ali, Zakaria; Glynou, Kyriaki; Ali, Tahir; Ploch, Sebastian; Kaiser, Marcel; Thines, Marco; Bode, Helge B; Maciá-Vicente, Jose G
2015-10-01
Members of the fungal genus Exophiala are common saprobes in soil and water environments, opportunistic pathogens of animals, or endophytes in plant roots. Their ecological versatility could imply a capacity to produce diverse secondary metabolites, but only a few studies have aimed at characterizing their chemical profiles. Here, we assessed the secondary metabolites produced by five Exophiala sp. strains of a particular phylotype, isolated from roots of Microthlaspi perfoliatum growing in different European localities. Exophillic acid and two previously undescribed compounds were isolated from these strains, and their structures were elucidated by spectroscopic methods using MS, 1D and 2D NMR. Bioassays revealed a weak activity of these compounds against disease-causing protozoa and mammalian cells. In addition, 18 related structures were identified by UPLC/MS based on comparisons with the isolated structures. Three Exophiala strains produced derivatives containing a β-d-glucopyranoside moiety, and their colony morphology was distinct from the other two strains, which produced derivatives lacking β-d-glucopyranoside. Whether the chemical/morphological strain types represent variants of the same genotype or independent genetic populations within Exophiala remains to be evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spatio-temporal dynamics of an active, polar, viscoelastic ring.
Marcq, Philippe
2014-04-01
Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.
Early detection of disease program: Evaluation of the cellular immune response
NASA Technical Reports Server (NTRS)
Criswell, B. S.; Knight, V.; Martin, R. R.; Kasel, J. A.
1975-01-01
Surfaces of normal, cultured, and mitogen-stimulated mouse lymphoid cells were examined by scanning electron microscopy (SEM). Lymphocytes with smooth, highly villous and intermediate surfaces were observed in cell suspensions from both spleens and thymuses of normal mice and from spleens of congenitally athymic (nude) mice. Several strain-specific surface features were noted, including the spine-like appearance of microvilli on C57B1/6 lymphocytes. Although thymus cell suspensions contained somewhat more smooth cells than did spleen cell preparations, lymphocyte derivation could not be inferred from SEM examination. Studies of cells stimulated with mitogenic agents for thymus-derived lymphocytes (concanavalin A) or for bone marrow-derived lymphocytes (lipopolysaccharide) suggested that, in the mouse, development of a complex villous surface is a general concomitant of lymphocyte activation and transformation.
Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N.; Gieryńska, Małgorzata
2017-01-01
Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM—comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data strongly suggest that in vitro modulation of GM-BM innate and adaptive immune functions by ECTV occurs irrespective of whether the mouse strain is susceptible or resistant to infection. Moreover, ECTV limits the GM-BM (including cDCs) capacity to stimulate protective Th1 immune response. We cannot exclude that this may be an important factor in the generation of non-protective Th2 immune response in susceptible BALB/c mice in vivo. PMID:29312229
1989-04-01
strain-specific identification of HAV in human fecal samples was a major aim of the original contract application, as clinical trials of live and...derived materials and human and primate fecal specimens. 4. We molecularly cloned and partially sequenced the genome of PA21 strain HAV, a virus...antibody. This approach revealed that 99% of the infectious virus particles present in disrupted cell lysates from the 23rd passage of persistently
Davies, Timothy J.
2012-01-01
The derivation of pluripotent embryonic stem cells (ESCs) from a variety of genetic backgrounds remains a desirable objective in the generation of mice functionally deficient in genes of interest and the modeling of human disease. Nevertheless, disparity in the ease with which different strains of mice yield ESC lines has long been acknowledged. Indeed, the generation of bona fide ESCs from the non obese diabetic (NOD) mouse, a well-characterized model of human type I diabetes, has historically proved especially difficult to achieve. Here, we report the development of protocols for the derivation of novel ESC lines from C57Bl/6 mice based on the combined use of high concentrations of leukemia inhibitory factor and serum-replacement, which is equally applicable to fresh and cryo-preserved embryos. Further, we demonstrate the success of this approach using Balb/K and CBA/Ca mice, widely considered to be refractory strains. CBA/Ca ESCs contributed to the somatic germ layers of chimeras and displayed a very high competence at germline transmission. Importantly, we were able to use the same protocol for the derivation of ESC lines from nonpermissive NOD mice. These ESCs displayed a normal karyotype that was robustly stable during long-term culture, were capable of forming teratomas in vivo and germline competent chimeras after injection into recipient blastocysts. Further, these novel ESC lines efficiently formed embryoid bodies in vitro and could be directed in their differentiation along the dendritic cell lineage, thus illustrating their potential application to the generation of cell types of relevance to the pathogenesis of type I diabetes. PMID:21933027
Kravtsov, A L; Liapin, M N; Shmel'kova, T P; Golovko, E M; Maliukova, T A; Kostiukova, T A; Ezhov, I N
2011-01-01
Comparative analysis of Yersinia pestis strains with various biological properties by DNA content in individual cells. Virulent strain 231, avirulent strain KM 260 (12) [231], that is its isogenic (no-plasmid) derivative, and vaccine strain EV NIIEG were used. 48-hour agar cultures of the studied strains reproduced at 28 degrees C and their subcultures obtained by cultivation of the initial cultures by aeration on liquid nutrient medium from 37 degrees C were prepared. DNA of the fixed bacteria was dyed by a mixture of ethidium bromide and mitramycin, and then the bacteria were studied by using flow cytofluorimeter for the determination of rates of cells with relatively low or high DNA content in the studied bacterial populations. The degree of inhomogeneity of a bacterial population was evaluated by DNA histogram variation coefficient value. In 6 hours of growth at 37 degrees C in optically non-dense bacterial cultures a high degree of DNA content per cell inhomogeneity was established that is related to the activation of DNA replication process in bacteria. In 48 hours of growth this inhomogeneity completely disappeared in the virulent strain cultures and remained in the avirulent strain cultures of the plague pathogen. Based on the studied parameters the vaccine strain held an intermediate position. Further studies of the plague culture DNA content per cell inhomogeneity may become a base for the operative strain differentiation based on pathogenicity level (hazard) for humans, and therefore the requirements for the management of safe working conditions with this microorganism.
[Use of Caco-2 cells for isolation of influenza virus].
Yoshino, S; Yamamoto, S; Kawabata, N
1998-04-01
In this study we assessed the usefulness of Caco-2 cells, derived from a human colon carcinoma, to isolate an influenza virus. Throat washings collected from 30 patients with influenza-like illnesses in Miyazaki Prefecture in 1997 were inoculated in MDCK and Caco-2 cells, 17 influenza virus strains were isolated in MDCK cells, and 20 in Caco-2 cells. Of all the viruses isolated, only one strain was identified as influenza virus type B; other strains were identified as type A (H3N2). Furthermore, some influenza viruses were isolated in Caco-2 cells also from the specimens collected between 1991 and 1997. With Caco-2 cells, each type of influenza virus was isolated effectively without the supplement of trypsin in the culture medium. These facts indicate the usefulness of Caco-2 cells as a host to isolate influenza virus as shown to be suitable in the detection of many types of enteric viruses. Caco-2 cells will serve as a useful cell line for the surveillance of infectious disease because Caco-2 cells are sensitive to a wide range of virus.
Laassri, Majid; Dragunsky, Eugenia; Enterline, Joan; Eremeeva, Tatiana; Ivanova, Olga; Lottenbach, Kathleen; Belshe, Robert; Chumakov, Konstantin
2005-01-01
Sabin strains of poliovirus used in the manufacture of oral poliovirus vaccine (OPV) are prone to genetic variations that occur during growth in cell cultures and the organisms of vaccine recipients. Such derivative viruses often have increased neurovirulence and transmissibility, and in some cases they can reestablish chains of transmission in human populations. Monitoring for vaccine-derived polioviruses is an important part of the worldwide campaign to eradicate poliomyelitis. Analysis of vaccine-derived polioviruses requires, as a first step, their isolation in cell cultures, which takes significant time and may yield viral stocks that are not fully representative of the strains present in the original sample. Here we demonstrate that full-length viral cDNA can be PCR amplified directly from stool samples and immediately subjected to genomic analysis by oligonucleotide microarray hybridization and nucleotide sequencing. Most fecal samples from healthy children who received OPV were found to contain variants of Sabin vaccine viruses. Sequence changes in the 5′ untranslated region were common, as were changes in the VP1-coding region, including changes in a major antigenic site. Analysis of stool samples taken from cases of acute flaccid paralysis revealed the presence of mixtures of recombinant polioviruses, in addition to the emergence of new sequence variants. Avoiding the need for cell culture isolation dramatically shortened the time needed for identification and analysis of vaccine-derived polioviruses and could be useful for preliminary screening of clinical samples. The amplified full-length viral cDNA can be archived and used to recover live virus for further virological studies. PMID:15956413
Li, Xin; Sheng, Juzheng; Huang, Guihua; Ma, Ruixin; Yin, Fengxin; Song, Di; Zhao, Can; Ma, Shutao
2015-06-05
In an attempt to discover potential antibacterial agents against the increasing bacterial resistance, novel cinnamaldehyde derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their antibacterial activity against nine significant pathogens using broth microdilution method, and their cell division inhibitory activity against four representative strains. In the in vitro antibacterial activity, the newly synthesized compounds generally displayed better efficacy against Staphylococcus aureus ATCC25923 than the others. In particular, compounds 3, 8 and 10 exerted superior or comparable activity to all the reference drugs. In the cell division inhibitory activity, all the compounds showed the same trend as their in vitro antibacterial activity, exhibiting better activity against S. aureus ATCC25923 than the other strains. Additionally, compounds 3, 6, 7 and 8 displayed potent cell division inhibitory activity with an MIC value of below 1 μg/mL, over 256-fold better than all the reference drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Liver repopulation by c-Met-positive stem/progenitor cells isolated from the developing rat liver.
Suzuki, Atsushi; Zheng, Yun-wen; Fukao, Katashi; Nakauchi, Hiromitsu; Taniguchi, Hideki
2004-01-01
Self-renewing stem cells responsible for tissue or organ development and regeneration have been recently described. To isolate such cells using flow cytometry, it should be required to find molecules expressing on their cell surfaces. We have previously reported that, on cells fulfilling the criteria for hepatic stem cells, the hepatocyte growth factor receptor c-Met is expressed specifically in the developing mouse liver. In this study, to determine whether c-Met is an essential marker for hepatic stem cells in other animal strains, we examined the potential for in vivo liver-repopulation in sorted fetal rat-derived c-Met+ cells using the retrorsine model. Using flow cytometry and monoclonal antibodies for c-Met and leukocyte common antigen CD45, fetal rat liver cells were fractionated according to the expression of these molecules. Then, cells in each cell subpopulation were sorted and transplanted into the retrorsine-treated adult rats with two-third hepatectomy. At 9 months post transplant, frequency of liver-repopulation was examined by qualitative and quantitative analyses. When we transplanted c-Met+ CD45- sorted cells, many donor-derived cells formed colonies that included mature hepatocytes expressing albumin and containing abundant glycogen in their cytoplasm. In contrast, c-Met- cells and CD45+ cells could not repopulate damaged recipient livers. High enrichment of liver-repopulating cells was conducted by sorting of c-Met+ cells from the developing rat liver. This result suggests that c-Met/HGF interaction plays a crucial role for stem cell growth, differentiation, and self-renewal in rat liver organogenesis. Since the c-Met is also expressed in the fetal mouse-derived hepatic stem cells, this molecule could be expected to be an essential marker for such cell population in the various animal strains, including human.
The synthesis and antistaphylococcal activity of 9, 13-disubstituted berberine derivatives.
Wang, Jing; Yang, Teng; Chen, Huang; Xu, Yun-Nan; Yu, Li-Fang; Liu, Ting; Tang, Jie; Yi, Zhengfang; Yang, Cai-Guang; Xue, Wei; Yang, Fan
2017-02-15
A series of novel 9, 13-disubstituted berberine derivatives have been synthesized and evaluated for the antibacterial activities against Staphylococcus aureus, including Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108, and NRS-271). Compound 20 shows the most potent activity against the growth of Newman strain, with a MIC value of 0.78 μg/mL, which is comparable with the positive control vancomycin. In addition, compound 20, 21, and 33 are highly antistaphylococcal active against five strains of multidrug-resistant S. aureus, with MIC values of 0.78-1.56 μg/mL. Of note, theses antibacterial active compounds have no obvious toxicity to the viability of human fibroblast (HAF) cells at the MIC concentration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Proteome profiling of virus-host interactions of wild type and attenuated measles virus strains.
Billing, Anja M; Kessler, Julia R; Revets, Dominique; Sausy, Aurélie; Schmitz, Stephanie; Barra, Claire; Muller, Claude P
2014-08-28
Quantitative gel-based proteomics (2D DIGE coupled to MALDI-TOF/TOF MS) has been used to investigate the effects of different measles virus (MV) strains on the host cell proteome. A549/hSLAM cells were infected either with wild type MV strains, an attenuated vaccine or a multiple passaged Vero cell adapted strain. By including interferon beta treatment as a control it was possible to distinguish between the classical antiviral response and changes induced specifically by the different strains. Of 38 differentially expressed proteins in total (p-value ≤0.05, fold change ≥2), 18 proteins were uniquely modulated following MV infection with up to 9 proteins specific per individual strain. Interestingly, wt strains displayed distinct protein patterns particularly during the late phase of infection. Proteins were grouped into cytoskeleton, metabolism, transcription/translation, immune response and mitochondrial proteins. Bioinformatics analysis revealed mostly changes in proteins regulating cell death and apoptosis. Surprisingly, wt strains affected the cytokeratin system much stronger than the vaccine strain. To our knowledge, this is the first study on the MV-host proteome addressing interstrain differences. In the present study we investigated the host cell proteome upon measles virus (MV) infection. The novelty about this study is the side-by side comparison of different strains from the same virus, which has not been done at the proteome level for any other virus including MV. We used different virus strains including a vaccine strain, wild type isolates derived from MV-infected patients as well as a Vero cell adapted strain, which serves as an intermediate between vaccine and wild type strain. We observed differences between vaccine and wild type strains as well as common features between different wild type strains. Perhaps one of the most surprising findings was that differences did not only occur between wild type and vaccine or Vero cell adapted strains but also between different wild type strains. In fact our study suggests that besides the cytokeratin and the IFN system wild type viruses seem to differ as much among each other than from vaccine strains. Thus our results are suggestive of complex and diverse virus-host interactions which differ considerably between different wild type strains. Our data indicate that interstrain differences are prominent and have so far been neglected by proteomics studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Biophysical Stimulation for Engineering Functional Skeletal Muscle.
Somers, Sarah M; Spector, Alexander A; DiGirolamo, Douglas J; Grayson, Warren L
2017-08-01
Tissue engineering is a promising therapeutic strategy to regenerate skeletal muscle. However, ex vivo cultivation methods typically result in a low differentiation efficiency of stem cells as well as grafts that resemble the native tissues morphologically, but lack contractile function. The application of biomimetic tensile strain provides a potent stimulus for enhancing myogenic differentiation and engineering functional skeletal muscle grafts. We reviewed integrin-dependent mechanisms that potentially link mechanotransduction pathways to the upregulation of myogenic genes. Yet, gaps in our understanding make it challenging to use these pathways to theoretically determine optimal ex vivo strain regimens. A multitude of strain protocols have been applied to in vitro cultures for the cultivation of myogenic progenitors (adipose- and bone marrow-derived stem cells and satellite cells) and transformed murine myoblasts, C2C12s. Strain regimens are characterized by orientation, amplitude, and time-dependent factors (effective frequency, duration, and the rest period between successive strain cycles). Analysis of published data has identified possible minimum/maximum values for these parameters and suggests that uniaxial strains may be more potent than biaxial strains, possibly because they more closely mimic physiologic strain profiles. The application of these biophysical stimuli for engineering 3D skeletal muscle grafts is nontrivial and typically requires custom-designed bioreactors used in combination with biomaterial scaffolds. Consideration of the physical properties of these scaffolds is critical for effective transmission of the applied strains to encapsulated cells. Taken together, these studies demonstrate that biomimetic tensile strain generally results in improved myogenic outcomes in myogenic progenitors and differentiated myoblasts. However, for 3D systems, the optimization of the strain regimen may require the entire system including cells, biomaterials, and bioreactor, to be considered in tandem.
In Vitro Anti-Toxoplasma gondii and Antimicrobial Activity of Amides Derived from Cinnamic Acid.
Silveira, Graziela Rangel; Campelo, Karoline Azerêdo; Lima, Gleice Rangel Silveira; Carvalho, Lais Pessanha; Samarão, Solange Silva; Vieira-da-Motta, Olney; Mathias, Leda; Matos, Carlos Roberto Ribeiro; Vieira, Ivo José Curcino; Melo, Edesio José Tenório de; Maria, Edmilson José
2018-03-28
Most cinnamic acids, their esters, amides, aldehydes, and alcohols present several therapeutic actions through anti-inflammatory, antitumor, and inhibitory activity against a great variety of microorganisms. In this work, eight amines derived from cinnamic acid were synthesized and tested against host cells infected with Toxoplasma gondii and the bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and three strains of Staphylococcus aureus . Compounds 3 and 4 showed the best result against intracellular T. gondii , presenting antiparasitic activity at low concentrations (0.38 and 0.77 mM). The antibacterial activity of these compounds was also evaluated by the agar microdilution method, and amides 2 and 5 had a minimum inhibitory concentration of 250 µg mL -1 against two strains of S. aureus (ATCC 25923 and bovine strain LSA 88). These also showed synergistic action along with a variety of antibiotics, demonstrating that amines derived from cinnamic acid have potential as pharmacological agents.
Takenaka, Shinji; Cheng, Minyi; Mulyono; Koshiya, Atsushi; Murakami, Shuichiro; Aoki, Kenji
2009-01-01
Bacillus cereus strain 10-L-2 synthesizes two arylamine N-acetyltransferases (Nat-a and Nat-b) with broad substrate specificities toward aniline and its derivatives. In southern blot analysis using probes encoding the NH2-terminus of Nat-b and a conserved region of N-acetyltransferases, digested total DNA of strain 10-L-2 showed one positive band. We cloned and sequenced the gene encoding Nat-b. The NH2-terminal amino acid sequence predicted from the open reading frame (768 base pairs) corresponded to that of purified Nat-b. The cloned Nat-b gene was expressed in Escherichia coli. The expressed enzyme (BcNAT) from the recombinant strain was partially purified and characterized. Nat-b from strain 10-L-2 and BcNAT from the recombinant strain were slightly different from each others in substrate specificity and thermo-stability. We examined the biotransformations of 2-aminophenols and phenylenediamines by the whole cells of the recombinant strain. The cells converted these compounds into their corresponding acetanilides. Only one amino group of phenylenediamines was acetylated. The cells utilized 4-nitroacetanilide as an acetyl donor instead of acetyl-CoA. 4-Aminoacetanilide was produced and 4-nitroaniline was released almost stoichiometrically.
Protective effect of basil (Ocimum basilicum L.) against oxidative DNA damage and mutagenesis.
Berić, Tanja; Nikolić, Biljana; Stanojević, Jasna; Vuković-Gacić, Branka; Knezević-Vukcević, Jelena
2008-02-01
Mutagenic and antimutagenic properties of essential oil (EO) of basil and its major constituent Linalool, reported to possess antioxidative properties, were examined in microbial tests. In Salmonella/microsome and Escherichia. coli WP2 reversion assays both derivatives (0.25-2.0 microl/plate) showed no mutagenic effect. Salmonella. typhimurium TA98, TA100 and TA102 strains displayed similar sensitivity to both basil derivatives as non-permeable E. coli WP2 strains IC185 and IC202 oxyR. Moreover, the toxicity of basil derivatives to WP2 strains did not depend on OxyR function. The reduction of t-BOOH-induced mutagenesis by EO and Linalool (30-60%) was obtained in repair proficient strains of the E. coli K12 assay (Nikolić, B., Stanojević, J., Mitić, D., Vuković-Gacić, B., Knezević-Vukcević, J., Simić, D., 2004. Comparative study of the antimutagenic potential of vitamin E in different E. coli strains. Mutat. Res. 564, 31-38), as well as in E. coli WP2 IC202 strain. EO and Linalool reduced spontaneous mutagenesis in mismatch repair deficient E. coli K12 strains (27-44%). In all tests, antimutagenic effect of basil derivatives was comparable with that obtained with model antioxidant vitamin E. Linalool and vitamin E induced DNA strand breaks in Comet assay on S. cerevisiae 3A cells, but at non-genotoxic concentrations (0.075 and 0.025 microg/ml, respectively) they reduced the number of H(2)O(2)-induced comets (45-70% Linalool and 80-93% vitamin E). Obtained results indicate that antigenotoxic potential of basil derivatives could be attributed to their antioxidative properties.
Protein Localization in Silica Nanospheres Derived via Biomimetic Mineralization (POSTPRINT)
2010-01-01
lyse the cell wall of the bac- terial strain Micrococcus lysodeikticus demonstrating that its native hydrolase activity is retained. The K m (M) for...manufacturer’s instructions (Pierce, Rockford, IL). Lysozyme activity assays were performed with Micrococcus lysodeikticus cells according to the supplier’s
STUDIES ON THE PROPAGATION IN VITRO OF POLIOMYELITIS VIRUSES
Scherer, William F.; Syverton, Jerome T.; Gey, George O.
1953-01-01
The cells of a human epithelial cancer cultivated en masse have been shown to support the multiplication of all three types of poliomyelitis virus. These cells (strain HeLa of Gey) have been maintained in vitro since their derivation from an epidermoid carcinoma of the cervix in February, 1951. As the virus multiplied it caused in from 12 to 96 hours degeneration and destruction of the cancer cells. The specific destructive effect of the virus was prevented by adding homotypic antibody to the cultures but not by adding heterotypic antibodies. Methods for the preparation of large numbers of replicate cultures with suspensions of strain HeLa cells were described. The cells in suspension were readily quantitated by direct counts in a hemocytometer. A synthetic solution that maintains cellular viability was employed for viral propagation. The experimental results demonstrate the usefulness of strain HeLa cells for (a) the quantitation of poliomyelitis virus, (b) the measurement of poliomyelitis antibodies, and (c) the production of virus. PMID:13052828
George, Meena; Farooq, Masiha; Dang, Thi; Cortes, Bernadette; Liu, Jonathan; Maranga, Luis
2010-08-15
The majority of influenza vaccines are manufactured using embryonated hens' eggs. The potential occurrence of a pandemic outbreak of avian influenza might reduce or even eliminate the supply of eggs, leaving the human population at risk. Also, the egg-based production technology is intrinsically cumbersome and not easily scalable to provide a rapid worldwide supply of vaccine. In this communication, the production of a cell culture (Madin-Darby canine kidney (MDCK)) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process using a novel Single Use Bioreactor (SUB) is presented. The cell culture and virus infection was maintained in a disposable stirred tank reactor with PID control of pH, DO, agitation, and temperature, similar to traditional glass or stainless steel bioreactors. The application of this technology was tested using MDCK cells grown on microcarriers in proprietary serum free medium and infection with 2006/2007 seasonal LAIV strains at 25-30 L scale. The MDCK cell growth was optimal at the agitation rate of 100 rpm. Optimization of this parameter allowed the cells to grow at a rate similar to that achieved in the conventional 3 L glass stirred tank bioreactors. Influenza vaccine virus strains, A/New Caledonia/20/99 (H1N1 strain), A/Wisconsin/67/05 (H3N2 strain), and B/Malaysia/2506/04 (B strain) were all successfully produced in SUB with peak virus titers > or =8.6 log(10) FFU/mL. This result demonstrated that more than 1 million doses of vaccine can be produced through one single run of a small bioreactor at the scale of 30 L and thus provided an alternative to the current vaccine production platform with fast turn-around and low upfront facility investment, features that are particularly useful for emerging and developing countries and clinical trial material production.
Yasmin, A R; Yeap, S K; Hair-Bejo, M; Omar, A R
2016-12-01
Studies have shown that infectious bursal disease virus (IBDV) infects lymphoid cells, mainly B cells and macrophages. This study was aimed to examine the involvement of chicken splenic-derived dendritic cells (ch-sDCs) in specific-pathogen-free chickens following inoculation with IBDV vaccine strain (D78) and a very virulent (vv) strain (UPM0081). Following IBDV infection, enriched activated ch-sDCs were collected by using the negative selection method and were examined based on morphology and immunophenotyping to confirm the isolation method for dendritic cells (DCs). The presence of IBDV on enriched activated ch-sDCs was analyzed based on the immunofluorescence antibody test (IFAT), flow cytometry, and quantitative real-time PCR (RT-qPCR) while the mRNAs of several cytokines were detected using RT-qPCR. The isolated ch-sDCs resembled typical DC morphologies found in mammals by having a veiled shape and they grew in clusters. Meanwhile, the expression of DC maturation markers, namely CD86 and MHCII, were increased at day 2 and day 3 following vvIBDV and vaccine strain inoculation, respectively, ranging from 10% to 40% compared to the control at 2.55% (P < 0.05). At day 3 postinfection, IBDV VP3 proteins colocalized with CD86 were readily detected via IFAT and flow cytometry in both vaccine and vvIBDV strains. In addition, enriched activated ch-sDCs were also detected as positive based on the VP4 gene by RT-qPCR; however, a higher viral load was detected on vvIBDV compared to the vaccine group. Infection with vaccine and vvIBDV strains induced the enriched activated ch-sDCs to produce proinflammatory cytokines and Th1-like cytokines from day 3 onward; however, the expressions were higher in the vvIBDV group (P < 0.05). These data collectively suggest that enriched activated ch-sDCs were permissive to IBDV infection and produced a strong inflammatory and Th1-like cytokine response following vvIBDV infection as compared to the vaccine strain.
Terai, Masanori; Uyama, Taro; Sugiki, Tadashi; Li, Xiao-Kang; Umezawa, Akihiro; Kiyono, Tohru
2005-01-01
Human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) are expected to serve as an excellent alternative to bone marrow-derived human mesenchymal stem cells. However, it is difficult to study them because of their limited life span. To overcome this problem, we attempted to produce a strain of UCBMSCs with a long life span and to investigate whether the strain could maintain phenotypes in vitro. UCBMSCs were infected with retrovirus carrying the human telomerase reverse transcriptase (hTERT) to prolong their life span. The UCBMSCs underwent 30 population doublings (PDs) and stopped dividing at PD 37. The UCBMSCs newly established with hTERT (UCBTERTs) proliferated for >120 PDs. The p16INK4a/RB braking pathway leading to senescence can be inhibited by introduction of Bmi-1, a polycomb-group gene, and human papillomavirus type 16 E7, but the extension of the life span of the UCBMSCs with hTERT did not require inhibition of the p16INK4a/RB pathway. The characteristics of the UCBTERTs remained unchanged during the prolongation of life span. UCBTERTs provide a powerful model for further study of cellular senescence and for future application to cell-based therapy by using umbilical cord blood cells. PMID:15647378
Fang, Shi-Ming; Cui, Cheng-Bin; Li, Chang-Wei; Wu, Chang-Jing; Zhang, Zhi-Jun; Li, Li; Huang, Xiao-Jun; Ye, Wen-Cai
2012-01-01
Two new drimenyl cyclohexenone derivatives, named purpurogemutantin (1) and purpurogemutantidin (2), and the known macrophorin A (3) were isolated from a bioactive mutant BD-1-6 obtained by random diethyl sulfate (DES) mutagenesis of a marine-derived Penicillium purpurogenum G59. Structures and absolute configurations of 1 and 2 were determined by extensive spectroscopic methods, especially 2D NMR and electronic circular dichroism (ECD) analysis. Possible biosynthetic pathways for 1–3 were also proposed and discussed. Compounds 1 and 2 significantly inhibited human cancer K562, HL-60, HeLa, BGC-823 and MCF-7 cells, and compound 3 also inhibited the K562 and HL-60 cells. Both bioassay and chemical analysis (HPLC, LC-ESIMS) demonstrated that the parent strain G59 did not produce 1–3, and that DES-induced mutation(s) in the mutant BD-1-6 activated some silent biosynthetic pathways in the parent strain G59, including one set for 1–3 production. PMID:22822371
A novel thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control.
Wu, Ying; Lee, Yew; Jung, Seul-Gi; Kim, Minju; Eom, Chi-Yong; Kim, Si Wouk; Cho, Hoon; Jin, Eonseon
2014-05-01
Thiazolidinedione (TD) derivatives have been found to have an algicidal effect on harmful algal bloom microalgae. In this study, 75 TD derivatives were synthesized and analyzed for algicidal activity. Among these synthetic TDs, 18 TD derivatives showed specific algicidal activity on two strains belonging to the classes Raphidophyceae (Chattonella marina and Heterosigma akashiwo) and Dinophyceae (Cochlodinium polykrikoides). Two strains belonging to Bacillariophyceae (Navicula pelliculosa and Phaeodactylum EPV), one strain belonging to Dinophyceae (Amphidinium sp.), and a Eustigmatophycean microalga (Nannochloropsis oculata) showed less sensitivity to the TD derivatives than the other two phyla. The most reactive TD derivative, compound 2 (TD118), was selected and tested for morphological and physiological changes. TD118 effectively damaged the cell membrane of C. marina, H. akashiwo and C. polykrikoides. The O₂ evolution and photosystem II efficiency (F(v)/F(m)) of C. marina, H. akashiwo and C. polykrikoides were also severely reduced by TD118 treatment. Amphidinium sp., N. pelliculosa, Phaeodactylum EPV and N. oculata showed less reduction of O₂ evolution and the F(v)/F(m) by TD118. These results imply that the species-specific TD structure relationship may be due to structural and/or physiological differences among microalgal species.
Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung; Hiramatsu, Keiichi
2013-12-01
Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10(-6) or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate.
Pillet, Stéphane; Aubin, Éric; Trépanier, Sonia; Bussière, Diane; Dargis, Michèle; Poulin, Jean-François; Yassine-Diab, Bader; Ward, Brian J; Landry, Nathalie
2016-07-01
Recent issues regarding efficacy of influenza vaccines have re-emphasized the need of new approaches to face this major public health issue. In a phase 1-2 clinical trial, healthy adults received one intramuscular dose of a seasonal influenza plant-based quadrivalent virus-like particle (QVLP) vaccine or placebo. The hemagglutination inhibition (HI) titers met all the European licensure criteria for the type A influenza strains at the 3μg/strain dose and for all four strains at the higher dosages 21days after immunization. High HI titers were maintained for most of the strains 6months after vaccination. QVLP vaccine induced a substantial and sustained increase of hemagglutinin-specific polyfunctional CD4 T cells, mainly transitional memory and TEMRA effector IFN-γ(+) CD4 T cells. A T cells cross-reactive response was also observed against A/Hong-Kong/1/1968 H3N2 and B/Massachusetts/2/2012. Plant-based QVLP offers an attractive alternative manufacturing method for producing effective and HA-strain matching seasonal influenza vaccines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Choi, Sun Young; Lee, Hyun Jeong; Choi, Jaeyeon; Kim, Jiye; Sim, Sang Jun; Um, Youngsoon; Kim, Yunje; Lee, Taek Soon; Keasling, Jay D; Woo, Han Min
2016-01-01
Metabolic engineering of cyanobacteria has enabled photosynthetic conversion of CO2 to value-added chemicals as bio-solar cell factories. However, the production levels of isoprenoids in engineered cyanobacteria were quite low, compared to other microbial hosts. Therefore, modular optimization of multiple gene expressions for metabolic engineering of cyanobacteria is required for the production of farnesyl diphosphate-derived isoprenoids from CO2. Here, we engineered Synechococcus elongatus PCC 7942 with modular metabolic pathways consisting of the methylerythritol phosphate pathway enzymes and the amorphadiene synthase for production of amorpha-4,11-diene, resulting in significantly increased levels (23-fold) of amorpha-4,11-diene (19.8 mg/L) in the best strain relative to a parental strain. Replacing amorphadiene synthase with squalene synthase led to the synthesis of a high amount of squalene (4.98 mg/L/OD730). Overexpression of farnesyl diphosphate synthase is the most critical factor for the significant production, whereas overexpression of 1-deoxy-d-xylulose 5-phosphate reductase is detrimental to the cell growth and the production. Additionally, the cyanobacterial growth inhibition was alleviated by expressing a terpene synthase in S. elongatus PCC 7942 strain with the optimized MEP pathway only (SeHL33). This is the first demonstration of photosynthetic production of amorpha-4,11-diene from CO2 in cyanobacteria and production of squalene in S. elongatus PCC 7942. Our optimized modular OverMEP strain (SeHL33) with either co-expression of ADS or SQS demonstrated the highest production levels of amorpha-4,11-diene and squalene, which could expand the list of farnesyl diphosphate-derived isoprenoids from CO2 as bio-solar cell factories.
HLA class I molecules consistently present internal influenza epitopes.
Wahl, Angela; Schafer, Fredda; Bardet, Wilfried; Buchli, Rico; Air, Gillian M; Hildebrand, William H
2009-01-13
Cytotoxic T lymphocytes (CTL) limit influenza virus replication and prevent morbidity and mortality upon recognition of HLA class I presented epitopes on the surface of virus infected cells, yet the number and origin of the viral epitopes that decorate the infected cell are unknown. To understand the presentation of influenza virus ligands by human MHC class I molecules, HLA-B*0702-presented viral peptides were directly identified following influenza infection. After transfection with soluble class I molecules, peptide ligands unique to infected cells were eluted from isolated MHC molecules and identified by comparative mass spectrometry (MS). Then CTL were gathered following infection with influenza and viral peptides were tested for immune recognition. We found that the class I molecule B*0702 presents 3-6 viral ligands following infection with different strains of influenza. Peptide ligands derived from the internal viral nucleoprotein (NP(418-426) and NP(473-481)) and from the internal viral polymerase subunit PB1 (PB1(329-337)) were presented by B*0702 following infection with each of 3 different influenza strains; ligands NP(418-426), NP(473-481), and PB1(329-337) derived from internal viral proteins were consistently revealed by class I HLA. In contrast, ligands derived from hemagglutinin (HA) and matrix protein (M1) were presented intermittently on a strain-by-strain basis. When tested for immune recognition, HLA-B*0702 transgenic mice responded to NP(418-426) and PB1(329-337) consistently and NP(473-481) intermittently while ligands from HA and M1 were not recognized. These data demonstrate an emerging pattern whereby class I HLA reveal a handful of internal viral ligands and whereby CTL recognize consistently presented influenza ligands.
HLA class I molecules consistently present internal influenza epitopes
Wahl, Angela; Schafer, Fredda; Bardet, Wilfried; Buchli, Rico; Air, Gillian M.; Hildebrand, William H.
2009-01-01
Cytotoxic T lymphocytes (CTL) limit influenza virus replication and prevent morbidity and mortality upon recognition of HLA class I presented epitopes on the surface of virus infected cells, yet the number and origin of the viral epitopes that decorate the infected cell are unknown. To understand the presentation of influenza virus ligands by human MHC class I molecules, HLA-B*0702-presented viral peptides were directly identified following influenza infection. After transfection with soluble class I molecules, peptide ligands unique to infected cells were eluted from isolated MHC molecules and identified by comparative mass spectrometry (MS). Then CTL were gathered following infection with influenza and viral peptides were tested for immune recognition. We found that the class I molecule B*0702 presents 3–6 viral ligands following infection with different strains of influenza. Peptide ligands derived from the internal viral nucleoprotein (NP418–426 and NP473–481) and from the internal viral polymerase subunit PB1 (PB1329–337) were presented by B*0702 following infection with each of 3 different influenza strains; ligands NP418–426, NP473–481, and PB1329–337 derived from internal viral proteins were consistently revealed by class I HLA. In contrast, ligands derived from hemagglutinin (HA) and matrix protein (M1) were presented intermittently on a strain-by-strain basis. When tested for immune recognition, HLA-B*0702 transgenic mice responded to NP418–426 and PB1329–337 consistently and NP473–481 intermittently while ligands from HA and M1 were not recognized. These data demonstrate an emerging pattern whereby class I HLA reveal a handful of internal viral ligands and whereby CTL recognize consistently presented influenza ligands. PMID:19122146
Bacterial invasion of HT29-MTX-E12 monolayers: effects of human breast milk.
Hall, Tim; Dymock, David; Corfield, Anthony P; Weaver, Gillian; Woodward, Mark; Berry, Monica
2013-02-01
The supramucosal gel, crucial for gut barrier function, might be compromised in necrotizing enterocolitis (NEC). Breast milk is associated with a reduced incidence of NEC. We compared the effects of human breast milk (BM) versus a neonatal formula, Nutriprem 1 (FF), on adherence, internalisation, and penetration of NEC-associated Escherichia coli through monolayers of mucus producing intestinal cells, HT29-MTX-E12 (E12). E12 cells were grown to confluence on membranes permeable to bacteria. E. coli, reference strain and isolated from a NEC-affected intestine, were cultured in LB broth, labelled with fluorescein and biotinylated. Bacteria were suspended in tissue culture medium (TC) or mixtures of TC with BM or FF and applied to the E12 cultures. Bacterial numbers were assessed by fluorescence. DyLight 650-labelled neutravidin, which cannot cross cell membrane, evaluated extracellular bacteria. Fluorescence of basolateral medium was measured to quantify translocation. Bacterial concentrations were compared using the Mann Whitney U test. After 1h exposure, E12 cultures adhered or internalised more NEC-derived bacteria than standard strain E. coli and more suspended in FF than BM (P<0.001). A greater proportion of NEC-derived bacteria internalised when suspended in TC or BM. In FF, the NEC-derived strain internalised least. More translocation occurred in BM incubations compared to FF in the first 1-4h: NEC-E. coli less than the reference strain. After 24h translocated bacterial populations were equal. In this pilot study, breast milk was associated with relatively less adhesion and internalisation of NEC-associated E. coli to mucus covered E12s compared to formula milk. Copyright © 2013 Elsevier Inc. All rights reserved.
Matejczyk, Marzena; Swislocka, Renata; Kalinowska, Monika; Widerskp, Grzegorz; Lewandowsk, Wlodzimierz; Jablonska-Trypuo, Agata; Rosochacki, Stanislaw Jozef
2017-05-01
Cinnamic acid and its derivatives are important and promising compounds in cancer therapy, because of its broad spectrum of anicancer and antioxidative ability, and with high potential for development into new generation drugs. The aim of this study was to compare the cyto- and genotoxic effects of cinnamic acid and its derivatives with the use of4Escherichia coli K-12 recA::gfp microbial biosensor strain with plasmid fusion of recA promoter and gfp gene as reporter. Obtained results indicate that recA::gfpmut2 genetic system was a sensitive biosensor to the most chemicals tested in our experiments. The cinnamic acid and its derivatives modulated the reactivity of wcA promoter in relation to control sample and significantly inhibited bacteria cells growth. In the light of our results only chlorogenic and ferulic acids at higher concentrations demonstrated cyto and genotoxic activity toward to E. coli K-12 mcA::gfp cells.
Sawada, Akihisa; Croom-Carter, Deborah; Kondo, Osamu; Yasui, Masahiro; Koyama-Sato, Maho; Inoue, Masami; Kawa, Keisei; Rickinson, Alan B; Tierney, Rosemary J
2011-05-01
Polymorphisms in Epstein-Barr virus (EBV) latent genes can identify virus strains from different human populations and individual strains within a population. An Asian EBV signature has been defined almost exclusively from Chinese viruses, with little information from other Asian countries. Here we sequenced polymorphic regions of the EBNA1, 2, 3A, 3B, 3C and LMP1 genes of 31 Japanese strains from control donors and EBV-associated T/NK-cell lymphoproliferative disease (T/NK-LPD) patients. Though identical to Chinese strains in their dominant EBNA1 and LMP1 alleles, Japanese viruses were subtly different at other loci. Thus, while Chinese viruses mainly fall into two families with strongly linked 'Wu' or 'Li' alleles at EBNA2 and EBNA3A/B/C, Japanese viruses all have the consensus Wu EBNA2 allele but fall into two families at EBNA3A/B/C. One family has variant Li-like sequences at EBNA3A and 3B and the consensus Li sequence at EBNA3C; the other family has variant Wu-like sequences at EBNA3A, variants of a low frequency Chinese allele 'Sp' at EBNA3B and a consensus Sp sequence at EBNA3C. Thus, EBNA3A/B/C allelotypes clearly distinguish Japanese from Chinese strains. Interestingly, most Japanese viruses also lack those immune-escape mutations in the HLA-A11 epitope-encoding region of EBNA3B that are so characteristic of viruses from the highly A11-positive Chinese population. Control donor-derived and T/NK-LPD-derived strains were similarly distributed across allelotypes and, by using allelic polymorphisms to track virus strains in patients pre- and post-haematopoietic stem-cell transplant, we show that a single strain can induce both T/NK-LPD and B-cell-lymphoproliferative disease in the same patient.
Trichomonas vaginalis Contact-Dependent Cytolysis of Epithelial Cells
Lustig, Gila; Ryan, Christopher M.; Secor, W. Evan
2013-01-01
Trichomonas vaginalis is an extracellular protozoan parasite that binds to the epithelium of the human urogenital tract during infection. In this study, we examined the propensities of 26 T. vaginalis strains to bind to and lyse prostate (BPH-1) and ectocervical (Ect1) epithelium and to lyse red blood cells (RBCs). We found that only three of the strains had a statistically significant preference for either BPH-1 (MSA1103) or Ect1 (LA1 and MSA1123). Overall, we observed that levels of adherence are highly variable among strains, with a 12-fold range of adherence on Ect1 cells and a 45-fold range on BPH-1 cells. Cytolysis levels displayed even greater variability, from no detectable cytolysis to 80% or 90% cytolysis of Ect1 and BPH-1, respectively. Levels of adherence and cytolysis correlate for weakly adherent/cytolytic strains, and a threshold of attachment was found to be necessary to trigger cytolysis; however, this threshold can be reached without inducing cytolysis. Furthermore, cytolysis was completely blocked when we prevented attachment of the parasites to host cells while allowing soluble factors complete access. We demonstrate that hemolysis was a rare trait, with only 4 of the 26 strains capable of lysing >20% RBCs with a 1:30 parasite/RBC ratio. Hemolysis also did not correlate with adherence to or cytolysis of either male (BPH-1)- or female (Ect1)-derived epithelial cell lines. Our results reveal that despite a broad range of pathogenic properties among different T. vaginalis strains, all strains show strict contact-dependent cytolysis. PMID:23429535
Cytotoxic and Antimicrobial Activity of Dehydrozingerone based Cyclopropyl Derivatives.
Burmudžija, Adrijana Z; Muškinja, Jovana M; Kosanić, Marijana M; Ranković, Branislav R; Novaković, Slađana B; Đorđević, Snežana B; Stanojković, Tatjana P; Baskić, Dejan D; Ratković, Zoran R
2017-08-01
A small series of 1-acetyl-2-(4-alkoxy-3-methoxyphenyl)cyclopropanes was prepared, starting from dehydrozingerone (4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one) and its O-alkyl derivatives. Their microbiological activities toward some strains of bacteria and fungi were tested, as well as their in vitro cytotoxic activity against some cancer cell lines (HeLa, LS174 and A549). All synthesized compounds showed significant antimicrobial activity and expressed cytotoxic activity against tested carcinoma cell lines, but they showed no significant influence on normal cell line (MRC5). Butyl derivative is the most active on HeLa cells (IC 50 = 8.63 μm), while benzyl one is active against LS174 and A549 cell lines (IC 50 = 10.17 and 12.15 μm, respectively). © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Compression Stiffening of Brain and its Effect on Mechanosensing by Glioma Cells
NASA Astrophysics Data System (ADS)
Pogoda, Katarzyna
The stiffness of tissues, often characterized by their time-dependent elastic properties, is tightly controlled under normal condition and central nervous system tissue is among the softest tissues. Changes in tissue and organ stiffness occur in some physiological conditions and are frequently symptoms of diseases such as fibrosis, cardiovascular disease and many forms of cancer. Primary cells isolated from various tissues often respond to changes in the mechanical properties of their substrates, and the range of stiffness over which these responses occur appear to be limited to the tissue elastic modulus from which they are derived. Our goal was to test the hypotheses that the stiffness of tumors derived from CNS tissue differs from that of normal brain, and that transformed cells derived from such tumors exhibit mechanical responses that differ from those of normal glial cells. Unlike breast and some other cancers where the stroma and the tumor itself is substantially stiffer than the surrounding normal tissue, our data suggest that gliomas can arise without a gross change in the macroscopic tissue stiffness when measured at low strains without compression. However, both normal brain and glioma samples stiffen with compression, but not in elongation and increased shear strains. On the other hand, different classes of immortalized cells derived from human glioblastoma show substantially different responses to the stiffness of substrates in vitrowhen grown on soft polyacrylamide and hyaluronic acid gels. This outcome supports the hypothesis that compression stiffening, which might occur with increased vascularization and interstitial pressure gradients that are characteristic of tumors, effectively stiffens the environment of glioma cells, and that in situ, the elastic resistance these cells sense might be sufficient to trigger the same responses that are activated in vitro by increased substrate stiffness.
Low immunogenicity predicted for emerging avian-origin H7N9
De Groot, Anne S.; Ardito, Matthew; Terry, Frances; Levitz, Lauren; Ross, Ted; Moise, Leonard; Martin, William
2013-01-01
A new avian-origin influenza virus emerged near Shanghai in February 2013, and by the beginning of May it had caused over 130 human infections and 36 deaths. Human-to-human transmission of avian-origin H7N9 influenza A has been limited to a few family clusters, but the high mortality rate (27%) associated with human infection has raised concern about the potential for this virus to become a significant human pathogen. European, American, and Asian vaccine companies have already initiated the process of cloning H7 antigens such as hemagglutinin (HA) into standardized vaccine production vehicles. Unfortunately, previous H7 HA-containing vaccines have been poorly immunogenic. We used well-established immunoinformatics tools to analyze the H7N9 protein sequences and compare their T cell epitope content to other circulating influenza A strains as a means of estimating the immunogenic potential of the new influenza antigen. We found that the HA proteins derived from closely related human-derived H7N9 strains contain fewer T cell epitopes than other recently circulating strains of influenza, and that conservation of T cell epitopes with other strains of influenza was very limited. Here, we provide a detailed accounting of the type and location of T cell epitopes contained in H7N9 and their conservation in other H7 and circulating (A/California/07/2009, A/Victoria/361/2011, and A/Texas/50/2012) influenza A strains. Based on this analysis, avian-origin H7N9 2013 appears to be a “stealth” virus, capable of evading human cellular and humoral immune response. Should H7N9 develop pandemic potential, this analysis predicts that novel strategies for improving vaccine immunogenicity for this unique low-immunogenicity strain of avian-origin influenza will be urgently needed. PMID:23807079
Maddula, V. S. R. K.; Pierson, E. A.; Pierson, L. S.
2008-01-01
Pseudomonas chlororaphis strain 30-84 is a plant-beneficial bacterium that is able to control take-all disease of wheat caused by the fungal pathogen Gaeumannomyces graminis var. tritici. The production of phenazines (PZs) by strain 30-84 is the primary mechanism of pathogen inhibition and contributes to the persistence of strain 30-84 in the rhizosphere. PZ production is regulated in part by the PhzR/PhzI quorum-sensing (QS) system. Previous flow cell analyses demonstrated that QS and PZs are involved in biofilm formation in P. chlororaphis (V. S. R. K. Maddula, Z. Zhang, E. A. Pierson, and L. S. Pierson III, Microb. Ecol. 52:289-301, 2006). P. chlororaphis produces mainly two PZs, phenazine-1-carboxylic acid (PCA) and 2-hydroxy-PCA (2-OH-PCA). In the present study, we examined the effect of altering the ratio of PZs produced by P. chlororaphis on biofilm formation and pathogen inhibition. As part of this study, we generated derivatives of strain 30-84 that produced only PCA or overproduced 2-OH-PCA. Using flow cell assays, we found that these PZ-altered derivatives of strain 30-84 differed from the wild type in initial attachment, mature biofilm architecture, and dispersal from biofilms. For example, increased 2-OH-PCA production promoted initial attachment and altered the three-dimensional structure of the mature biofilm relative to the wild type. Additionally, both alterations promoted thicker biofilm development and lowered dispersal rates compared to the wild type. The PZ-altered derivatives of strain 30-84 also differed in their ability to inhibit the fungal pathogen G. graminis var. tritici. Loss of 2-OH-PCA resulted in a significant reduction in the inhibition of G. graminis var. tritici. Our findings suggest that alterations in the ratios of antibiotic secondary metabolites synthesized by an organism may have complex and wide-ranging effects on its biology. PMID:18263718
Jeon, B J; Kim, J D; Han, J W; Kim, B S
2016-05-01
The objective of this study was to explore antifungal metabolites targeting fungal cell envelope and to evaluate the control efficacy against anthracnose development in pepper plants. A natural product library comprising 3000 microbial culture extracts was screened via an adenylate kinase (AK)-based cell lysis assay to detect antifungal metabolites targeting the cell envelope of plant-pathogenic fungi. The culture extract of Streptomyces mauvecolor strain BU16 displayed potent AK-releasing activity. Rimocidin and a new rimocidin derivative, BU16, were identified from the extract as active constituents. BU16 is a tetraene macrolide containing a six-membered hemiketal ring with an ethyl group side chain instead of the propyl group in rimocidin. Rimocidin and BU16 showed broad-spectrum antifungal activity against various plant-pathogenic fungi and demonstrated potent control efficacy against anthracnose development in pepper plants. Antifungal metabolites produced by S. mauvecolor strain BU16 were identified to be rimocidin and BU16. The compounds displayed potent control efficacy against pepper anthracnose. Rimocidin and BU16 would be active ingredients of disease control agents disrupting cell envelope of plant-pathogenic fungi. The structure and antifungal activity of rimocidin derivative BU16 is first described in this study. © 2016 The Society for Applied Microbiology.
The atlA operon of Streptococcus mutans: role in autolysin maturation and cell surface biogenesis.
Ahn, Sang-Joon; Burne, Robert A
2006-10-01
The Smu0630 protein (AtlA) was recently shown to be involved in cell separation, biofilm formation, and autolysis. Here, transcriptional studies revealed that atlA is part of a multigene operon under the control of at least three promoters. The morphology and biofilm-forming capacity of a nonpolar altA mutant could be restored to that of the wild-type strain by adding purified AtlA protein to the medium. A series of truncated derivatives of AtlA revealed that full activity required the C terminus and repeat regions. AtlA was cell associated and readily extractable from with sodium dodecyl sulfate. Of particular interest, the surface protein profile of AtlA-deficient strains was dramatically altered compared to the wild-type strain, as was the nature of the association of the multifunctional adhesin P1 with the cell wall. In addition, AtlA-deficient strains failed to develop competence as effectively as the parental strain. Mutation of thmA, which can be cotranscribed with atlA and encodes a putative pore-forming protein, resulted in a phenotype very similar to that of the AtlA-deficient strain. ThmA was also shown to be required for efficient processing of AtlA to its mature form, and treatment of the thmA mutant strain with full-length AtlA protein did not restore normal cell separation and biofilm formation. The effects of mutating other genes in the operon on cell division, biofilm formation, or AtlA biogenesis were not as profound. This study reveals that AtlA is a surface-associated protein that plays a critical role in the network connecting cell surface biogenesis, biofilm formation, genetic competence, and autolysis.
Burns, Patricia; Vinderola, Gabriel; Reinheimer, Jorge; Cuesta, Isabel; de Los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia
2011-08-01
The capacity of lactic acid bacteria to produce exopolysaccharides (EPS) conferring microorganisms a ropy phenotype could be an interesting feature from a technological point of view. Progressive adaptation to bile salts might render some lactobacilli able to overcome physiological gut barriers but could also modify functional properties of the strain, including the production of EPS. In this work some technological properties and the survival ability in simulated gastrointestinal conditions of Lactobacillus delbrueckii subsp. lactis 193, and Lb. delbrueckii subsp. lactis 193+, a strain with stable bile-resistant phenotype derived thereof, were characterized in milk in order to know whether the acquisition of resistance to bile could modify some characteristics of the microorganism. Both strains were able to grow and acidify milk similarly; however the production of ethanol increased at the expense of the aroma compound acetaldehyde in milk fermented by the strain 193+, with respect to milk fermented by the strain 193. Both microorganisms produced a heteropolysaccharide composed of glucose and galactose, and were able to increase the viscosity of fermented milks. In spite of the higher production yield of EPS by the bile-resistant strain 193+, it displayed a lower ability to increase viscosity than Lb. delbrueckii subsp. lactis 193. Milk increased survival in simulated gastric juice; the presence of bile improved adhesion to the intestinal cell line HT29-MTX in both strains. However, the acquisition of a stable resistance phenotype did not improve survival in simulated gastric and intestinal conditions or the adhesion to the intestinal cell line HT29-MTX. Thus, Lb. delbrueckii subsp. lactis 193 presents suitable technological properties for the manufacture of fermented dairy products; the acquisition of a stable bile-resistant phenotype modified some properties of the microorganism. This suggests that the possible use of bile-resistant derivative strains should be carefully evaluated in each specific application considering the influence that the acquisition of a stable bile-resistant phenotype could have in survival ability in gastric and intestinal conditions and in technological properties.
Surface Antigens Common to Mouse Cleavage Embryos and Primitive Teratocarcinoma Cells in Culture
Artzt, Karen; Dubois, Philippe; Bennett, Dorothea; Condamine, Hubert; Babinet, Charles; Jacob, François
1973-01-01
Syngeneic antisera have been produced in mouse strain 129/Sv-CP males against the primitive cells of teratocarcinoma. These sera react specifically with the primitive cells and are negative on various types of differentiated teratoma cells derived from the same original tumor. They are negative on all other mouse cells tested, with the exception of male germ cells and cleavage-stage embryos. Thus, teratoma cells possess cell-surface antigens in common with normal cleavage-stage embryos. Images PMID:4355379
Direct Measurement of Acetylesterase in Living Protist Cells1
Medzon, Edward L.; Brady, Marilyn L.
1969-01-01
The fluorogenic acetylesterase (acetic ester hydrolase EC 3.1.1.6.) substrate, fluorescein diacetate, was used to measure enzyme activity in living protist cells. The visual enzyme assay was done by monitoring fluorochromasia by fluorescent microscopy. Quantitative fluorogenic assays were done by measuring the evolved fluorescein in a fluorometer. Of 59 strains of bacteria, 35 were fluorochromatically positive. Eight of the fluorochromatically negative strains were fluorogenically positive. Of 22 strains of slime molds and fungi, all were fluorochromatically positive. Three out of 12 different algae were fluorochromatically positive. Several unidentified protozoa were also fluorochromatically positive. Four out of six protozoa were fluorochromatically positive. Structures of special interest showing acetylesterase activity were: the growing hyphal tips of fungi, the vacuolated areas of yeast and protozoa, newly formed bacterial spores or immature fungal spores, “mesosome-like” bodies in Bacillus megaterium, and the cell membrane and nuclear region of green algae. Yeast protoplasts and bacterial protoplasts and spheroplasts were fluorochromatically positive when derived from positive cells and negative when derived from negative cells. There was no correlation between the possession of a capsule and acetylesterase activity. There was no effect on the viability of bacterial cells incubated in the presence of fluorescein diacetate. Paraoxon inhibited bacterial and yeast enzyme at 10−5m. Eserine (10−5m) and Paraoxon (10−7m) inhibited B. megaterium enzyme. Sodium acetate at 10−2m did not inhibit bacterial enzyme. The implications of these findings on the location and expression of esterase activity in living cells are discussed. Images PMID:4974398
HIV-2 infects resting CD4+ T cells but not monocyte-derived dendritic cells.
Chauveau, Lise; Puigdomenech, Isabel; Ayinde, Diana; Roesch, Ferdinand; Porrot, Françoise; Bruni, Daniela; Visseaux, Benoit; Descamps, Diane; Schwartz, Olivier
2015-01-13
Human Immunodeficiency Virus-type 2 (HIV-2) encodes Vpx that degrades SAMHD1, a cellular restriction factor active in non-dividing cells. HIV-2 replicates in lymphocytes but the susceptibility of monocyte-derived dendritic cells (MDDCs) to in vitro infection remains partly characterized. Here, we investigated HIV-2 replication in primary CD4+ T lymphocytes, both activated and non-activated, as well as in MDDCs. We focused on the requirement of Vpx for productive HIV-2 infection, using the reference HIV-2 ROD strain, the proviral clone GL-AN, as well as two primary HIV-2 isolates. All HIV-2 strains tested replicated in activated CD4+ T cells. Unstimulated CD4+ T cells were not productively infected by HIV-2, but viral replication was triggered upon lymphocyte activation in a Vpx-dependent manner. In contrast, MDDCs were poorly infected when exposed to HIV-2. HIV-2 particles did not potently fuse with MDDCs and did not lead to efficient viral DNA synthesis, even in the presence of Vpx. Moreover, the HIV-2 strains tested were not efficiently sensed by MDDCs, as evidenced by a lack of MxA induction upon viral exposure. Virion pseudotyping with VSV-G rescued fusion, productive infection and HIV-2 sensing by MDDCs. Vpx allows the non-productive infection of resting CD4+ T cells, but does not confer HIV-2 with the ability to efficiently infect MDDCs. In these cells, an entry defect prevents viral fusion and reverse transcription independently of SAMHD1. We propose that HIV-2, like HIV-1, does not productively infect MDDCs, possibly to avoid triggering an immune response mediated by these cells.
Metastable Pluripotent States in NOD Mouse Derived ES Cells
Hanna, Jacob; Markoulaki, Styliani; Mitalipova, Maisam; Cheng, Albert W.; Cassady, John P.; Staerk, Judith; Carey, Bryce W.; Lengner, Christopher J.; Foreman, Ruth; Love, Jennifer; Gao, Qing; Kim, Jongpil; Jaenisch, Rudolf
2009-01-01
Embryonic stem (ES) cells are isolated from the inner cell mass (ICM) of blastocysts, whereas epiblast stem cells (EpiSCs) are derived from the post-implantation epiblast and display a restricted developmental potential. Here we characterize pluripotent states in the non-obese diabetic (NOD) mouse strain, which prior to this study was considered “non-permissive” for ES cell derivation. We find that NOD stem cells can be stabilized by providing constitutive expression of Klf4 or c-Myc or small molecules that can replace these factors during in vitro reprogramming. The NOD ES and iPS cells appear “metastable”, as they acquire an alternative EpiSC-like identity after removal of the exogenous factors, while their reintroduction converts the cells back to ICM-like pluripotency. Our findings suggest that stem cells from different genetic backgrounds can assume distinct states of pluripotency in vitro, the stability of which is regulated by endogenous genetic determinants and can be modified by exogenous factors. PMID:19427283
Storz, J; Zhang, X M; Rott, R
1992-01-01
Hemagglutinating and acetylesterase functions as well as the 124 kDa glycoprotein were present in the highly cell-culture adapted, avirulent bovine coronavirus strain BCV-L9, in the Norden vaccine strain derived from it, and in 5 wild-type, virulent strains that multiplied in HRT-18 cells but were restricted in several types of cultured bovine cells. The BCV-L9 and the wild-type strain BCV-LY-138 agglutinated chicken and mouse erythrocytes. The acetylesterase facilitated break-down of the BCV-erythrocyte complex with chicken but only to a minimal extent with mouse erythrocytes in the receptor-destroying enzyme test. Purified preparations of the vaccine and the wild-type strains agglutinated chicken erythrocytes at low titers and mouse erythrocytes at 128 to 256 times higher titers whereas receptor destroying enzyme activity was detectable only with chicken erythrocytes. When wild-type strains were propagated in HRT cells at low passage levels, they produced 5 x 10(5) to 4.5 x 10(6) plaque forming units per 50 microliters which agglutinated erythrocytes from mice but not from chickens. Diisopropylfluoro-phosphate moderately increased the hemagglutination titers, but completely inhibited the receptor destroying enzyme of purified virus of all strains. It had virtually no influence on the plaque-forming infectivity of the different BCV strains. The acetylesterase of strain BCV-L9 reacting in the receptor-destroying enzyme test was stable for 3 h at 37 and 42 degrees C. It was inactivated within 30 min at 56 degrees C while the hemagglutinin function of this strain was stable for 3 h at 37, 42, and 56 degrees C, but it was inactivated at 65 degrees C within 1 h.
Viral Susceptibility Range of the Fathead Minnow (Pimephales promelas) Poikilothermic Cell Line 1
Solis, Juan; Mora, Emilio C.
1970-01-01
The viral susceptibility range of a poikilothermic cell line derived from the fathead minnow (Pimephales promelas) (FHM) to infection by a number of homoiothermic viruses representing most of the presently recognized viral groups and a member of the psittacosis-lymphogranuloma-trachoma group of agents was studied. All infectious agents, except poliovirus types 1 and 3, infectious bursal agent, and an avian infectious bronchitis virus (IBV) strain, readily multiplied in the FHM cell culture system, producing a detectable cytopathic effect. Although inconclusive evidence was obtained with two other avian IBV strains, these results indicated the ability of the FHM cell culture system to readily support the propagation of a variety of cytopathogenic homoiothermic viral agents. PMID:5461163
Xie, Hang; Wan, Xiu-Feng; Ye, Zhiping; Plant, Ewan P.; Zhao, Yangqing; Xu, Yifei; Li, Xing; Finch, Courtney; Zhao, Nan; Kawano, Toshiaki; Zoueva, Olga; Chiang, Meng-Jung; Jing, Xianghong; Lin, Zhengshi; Zhang, Anding; Zhu, Yanhong
2015-01-01
The poor performance of 2014–15 Northern Hemisphere (NH) influenza vaccines was attributed to mismatched H3N2 component with circulating epidemic strains. Using human serum samples collected from 2009–10, 2010–11 and 2014–15 NH influenza vaccine trials, we assessed their cross-reactive hemagglutination inhibition (HAI) antibody responses against recent H3 epidemic isolates. All three populations (children, adults, and older adults) vaccinated with the 2014–15 NH egg- or cell-based vaccine, showed >50% reduction in HAI post-vaccination geometric mean titers against epidemic H3 isolates from those against egg-grown H3 vaccine strain A/Texas/50/2012 (TX/12e). The 2014–15 NH vaccines, regardless of production type, failed to further extend HAI cross-reactivity against H3 epidemic strains from previous seasonal vaccines. Head-to-head comparison between ferret and human antisera derived antigenic maps revealed different antigenic patterns among representative egg- and cell-grown H3 viruses characterized. Molecular modeling indicated that the mutations of epidemic H3 strains were mainly located in antibody-binding sites A and B as compared with TX/12e. To improve vaccine strain selection, human serologic testing on vaccination-induced cross-reactivity need be emphasized along with virus antigenic characterization by ferret model. PMID:26472175
NASA Astrophysics Data System (ADS)
Xie, Hang; Wan, Xiu-Feng; Ye, Zhiping; Plant, Ewan P.; Zhao, Yangqing; Xu, Yifei; Li, Xing; Finch, Courtney; Zhao, Nan; Kawano, Toshiaki; Zoueva, Olga; Chiang, Meng-Jung; Jing, Xianghong; Lin, Zhengshi; Zhang, Anding; Zhu, Yanhong
2015-10-01
The poor performance of 2014-15 Northern Hemisphere (NH) influenza vaccines was attributed to mismatched H3N2 component with circulating epidemic strains. Using human serum samples collected from 2009-10, 2010-11 and 2014-15 NH influenza vaccine trials, we assessed their cross-reactive hemagglutination inhibition (HAI) antibody responses against recent H3 epidemic isolates. All three populations (children, adults, and older adults) vaccinated with the 2014-15 NH egg- or cell-based vaccine, showed >50% reduction in HAI post-vaccination geometric mean titers against epidemic H3 isolates from those against egg-grown H3 vaccine strain A/Texas/50/2012 (TX/12e). The 2014-15 NH vaccines, regardless of production type, failed to further extend HAI cross-reactivity against H3 epidemic strains from previous seasonal vaccines. Head-to-head comparison between ferret and human antisera derived antigenic maps revealed different antigenic patterns among representative egg- and cell-grown H3 viruses characterized. Molecular modeling indicated that the mutations of epidemic H3 strains were mainly located in antibody-binding sites A and B as compared with TX/12e. To improve vaccine strain selection, human serologic testing on vaccination-induced cross-reactivity need be emphasized along with virus antigenic characterization by ferret model.
Chung, Wing Sun Faith; Meijerink, Marjolein; Zeuner, Birgitte; Holck, Jesper; Louis, Petra; Meyer, Anne S; Wells, Jerry M; Flint, Harry J; Duncan, Sylvia H
2017-11-01
Dietary plant cell wall carbohydrates are important in modulating the composition and metabolism of the complex gut microbiota, which can impact on health. Pectin is a major component of plant cell walls. Based on studies in model systems and available bacterial isolates and genomes, the capacity to utilise pectins for growth is widespread among colonic Bacteroidetes but relatively uncommon among Firmicutes. One Firmicutes species promoted by pectin is Eubacterium eligens. Eubacterium eligens DSM3376 utilises apple pectin and encodes a broad repertoire of pectinolytic enzymes, including a highly abundant pectate lyase of around 200 kDa that is expressed constitutively. We confirmed that certain Faecalibacterium prausnitzii strains possess some ability to utilise apple pectin and report here that F. prausnitzii strains in common with E. eligens can utilise the galacturonide oligosaccharides DP4 and DP5 derived from sugar beet pectin. Faecalibacterium prausnitzii strains have been shown previously to exert anti-inflammatory effects on host cells, but we show here for the first time that E. eligens strongly promotes the production of the anti-inflammatory cytokine IL-10 in in vitro cell-based assays. These findings suggest the potential to explore further the prebiotic potential of pectin and its derivatives to re-balance the microbiota towards an anti-inflammatory profile. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lu, Wen-Jie; Wicht, Kathryn J; Wang, Li; Imai, Kento; Mei, Zhen-Wu; Kaiser, Marcel; El Sayed, Ibrahim El Tantawy; Egan, Timothy J; Inokuchi, Tsutomu
2013-06-01
This report describes the synthesis, and in vitro and in vivo antimalarial evaluations of certain ester-modified neocryptolepine (5-methyl-5H-indolo[2,3-b]quinoline) derivatives. The modifications were carried out by introducing ester groups at the C2 and/or C9 position on the neocryptolepine core and the terminal amino group of the 3-aminopropylamine substituents at the C11 position with a urea/thiourea unit. The antiplasmodial activities of our derivative agents against two different strains (CQS: NF54, and CQR: K1) and the cytotoxic activity against normal L6 cells were evaluated. The test results showed that the ester modified neocryptolepine derivatives have higher antiplasmodial activities against both strains and a low cytotoxic activity against normal cells. The best results were achieved by compounds 9c and 12b against the NF54 strain with the IC50/SI value as 2.27 nM/361 and 1.81 nM/321, respectively. While against K1 strain, all the tested compounds showed higher activity than the well-known antimalarial drug chloroquine. Furthermore, the compounds were tested for β-haematin inhibition and 12 were found to be more active than chloroquine (IC50 = 18 μM). Structure activity relationship studies exposed an interesting linear correlation between polar surface area of the molecule and β-haematin inhibition for this series. In vivo testing of compounds 7 and 8a against NF54 strain on Plasmodium berghei female mice showed that the introduction of the ester group increased the antiplasmodial activity of the neocryptolepine core substantially. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; ...
2016-04-22
The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less
Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro.
Liu, Xin; Wu, Xin; Ma, Yuefan; Zhang, Wenzhang; Hu, Liang; Feng, Xiaowei; Li, Xiangyong; Tang, Xudong
2017-03-01
The secondary metabolites of mangrove-derived endophytic fungi contain multiple substances with novel structures and biological activities. In the present study, three types of mangrove plants, namely Kandelia candel, Rhizophora stylosa and Rhizophoraceae from Zhanjiang region including the leaves, roots and stems were collected, and endophytic fungi were isolated, purified and identified from these mangrove plants. MTT assay was used to observe the effects of the isolated endophytic fungi on the growth of A549 and NCI-H460 lung cancer cells. The effect of the endophytic fungi on lung cancer angiogenesis in vitro induced by the HPV-16 E7 oncoprotein was observed. Our results showed that 28 strains of endophytic fungi were isolated, purified and identified from the three types of mangrove plants. Ten strains of endophytic fungi significantly suppressed the growth of A549 and NCI-H460 cells. The average inhibitory rates in the A549 cells were 64.4, 59.5, 81.9, 43.9, 58.3, 56.2, 48.3, 42.4, 93.0 and 49.7%, respectively. The average inhibitory rates in the NCI-H460 cells were 41.2, 49.3, 82.7, 40.7, 53.9, 52.6, 56.8, 64.3, 91.0 and 45.6%, respectively. Particularly, three strains of endophytic fungi markedly inhibited HPV-16 E7 oncoprotein‑induced lung cancer angiogenesis in vitro. These findings contribute to the further screening of potential chemotherapeutic agents from mangrove-derived endophytic fungi.
Isolation of a new herpes virus from human CD4 sup + T cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.
1990-01-01
A new human herpes virus has been isolated from CD4{sup +} T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpesmore » virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date.« less
Wang, Ge; Romero-Gallo, Judith; Benoit, Stéphane L.; Piazuelo, M. Blanca; Dominguez, Ricardo L.; Morgan, Douglas R.; Peek, Richard M.
2016-01-01
ABSTRACT A known virulence factor of Helicobacter pylori that augments gastric cancer risk is the CagA cytotoxin. A carcinogenic derivative strain, 7.13, that has a greater ability to translocate CagA exhibits much higher hydrogenase activity than its parent noncarcinogenic strain, B128. A Δhyd mutant strain with deletion of hydrogenase genes was ineffective in CagA translocation into human gastric epithelial AGS cells, while no significant attenuation of cell adhesion was observed. The quinone reductase inhibitor 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) was used to specifically inhibit the H2-utilizing respiratory chain of outer membrane-permeabilized bacterial cells; that level of inhibitor also greatly attenuated CagA translocation into AGS cells, indicating the H2-generated transmembrane potential is a contributor to toxin translocation. The Δhyd strain showed a decreased frequency of DNA transformation, suggesting that H. pylori hydrogenase is also involved in energizing the DNA uptake apparatus. In a gerbil model of infection, the ability of the Δhyd strain to induce inflammation was significantly attenuated (at 12 weeks postinoculation), while all of the gerbils infected with the parent strain (7.13) exhibited a high level of inflammation. Gastric cancer developed in 50% of gerbils infected with the wild-type strain 7.13 but in none of the animals infected with the Δhyd strain. By examining the hydrogenase activities from well-defined clinical H. pylori isolates, we observed that strains isolated from cancer patients (n = 6) have a significantly higher hydrogenase (H2/O2) activity than the strains isolated from gastritis patients (n = 6), further supporting an association between H. pylori hydrogenase activity and gastric carcinogenesis in humans. PMID:27531909
Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad
2015-01-01
Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future medical applications. Chitosan derivatives with triazole functionality, synthesized by Huisgen 1,3-dipolar cycloaddition, and their nanoparticles showed significant enhancement in antibacterial and antifungal activities in comparison to those associated with native, non-altered chitosan. PMID:25928293
Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells.
Mizutani, Eiji; Torikai, Kohei; Wakayama, Sayaka; Nagatomo, Hiroaki; Ohinata, Yasuhide; Kishigami, Satoshi; Wakayama, Teruhiko
2016-04-01
Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38-77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal.
Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells
Mizutani, Eiji; Torikai, Kohei; Wakayama, Sayaka; Nagatomo, Hiroaki; Ohinata, Yasuhide; Kishigami, Satoshi; Wakayama, Teruhiko
2016-01-01
Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38–77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal. PMID:27033801
Modeling creep behavior of fiber composites
NASA Technical Reports Server (NTRS)
Chen, J. L.; Sun, C. T.
1988-01-01
A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.
Qu, Yajin; Liu, Litao; Niu, Yujuan; Qu, Yue; Li, Ning; Sun, Wei; Lv, Chuanwei; Wang, Pengfei; Zhang, Guihua; Liu, Sidang
2016-10-01
Subgroup J avian leukosis virus (ALV-J) causes a neoplastic disease in infected chickens. The ALV-J strain NX0101, which was isolated from broiler breeders in 2001, mainly induced formation of myeloid cell tumors. However, strain HN10PY01, which was recently isolated from laying hens, mainly induces formation of myeloid cell tumors and hemangioma. To identify the molecular pathological mechanism underlying changes in host susceptibility and tumor classification induced by these two types of ALV-J strains, chicken embryo fibroblasts derived from chickens with different genetic backgrounds (broiler breeders and laying hens) and an immortalized chicken embryo fibroblasts (DF-1) were prepared and infected with strain NX0101 or HN10PY01, respectively. The 50% tissue culture infective dose (TCID50) and levels of ALV group-specific antigen p27 and heat shock protein 70 in the supernatant collected from the ALV-J infected cells were detected. Moreover, mRNA expression levels of tumor-related genes p53, c-myc, and Bcl-2 in ALV-J-infected cells were quantified. The results indicated that the infection of ALV-J could significantly increase mRNA expression levels of p53, c-myc, and Bcl-2 Strain HN10PY01 exhibited a greater influence on the three tumor-related genes in each of the three types of cells when compared with strain NX0101, and the TCID50 and p27 levels in the supernatant collected from HN10PY01-infected cells were higher than those collected from NX0101-infected cells. These results indicate that the infection of the two ALV-J strains influenced the gene expression levels in the infected cells, while the newly isolated strain HN10PY01 showed higher replication ability in cells and induced higher expression levels of tumor-related genes in infected cells. Furthermore, virus titers and expression levels of tumor-related genes and cellular stress responses of cells with different genetic backgrounds when infected with each of the two ALV-J strain were different, indicating that genetic backgrounds influenced the capabilities of the virus to infect and proliferate. The findings of this study provide useful data to further elucidate the mechanism underlying host susceptibility and tumor classification in ALV-J-infected chickens and cells. © 2016 Poultry Science Association Inc.
Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M
2016-11-30
It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of selected lactobacilli strains on the course of B. cereus infection.
Tanabe, Shin-Ichi; Bonifait, Laetitia; Fittipaldi, Nahuel; Grignon, Louis; Gottschalk, Marcelo; Grenier, Daniel
2010-01-01
In this study, an unencapsulated Streptococcus suis mutant was used to investigate the pleiotropic effects resulting from capsule loss. The capsule deficient mutant of S. suis acquired a biofilm-positive phenotype, which was associated with significantly increased cell surface hydrophobicity. Cell-associated fibrinogen-binding and chymotrypsin-like activities were decreased in the unencapsulated mutant. The mutant did not differ significantly from the encapsulated parent strain for minimal inhibitory concentrations to penicillin G, ampicillin, and tetracycline. However, while the encapsulated strain was highly resistant to the bactericidal action of penicillin G and ampicillin, the unencapsulated mutant was approximately 60-fold more sensitive. Compared with the parent strain, the unencapsulated mutant induced a much higher inflammatory response in monocyte-derived macrophages resulting in an increased secretion of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, and IL-8. The capsule appears to hinder important adhesins or hydrophobic molecules that mediate biofilm formation, as well as cell wall components capable of stimulating immune cells.
Tanabe, Shin-Ichi; Bonifait, Laetitia; Fittipaldi, Nahuel; Grignon, Louis; Gottschalk, Marcelo; Grenier, Daniel
2010-01-01
In this study, an unencapsulated Streptococcus suis mutant was used to investigate the pleiotropic effects resulting from capsule loss. The capsule deficient mutant of S. suis acquired a biofilm-positive phenotype, which was associated with significantly increased cell surface hydrophobicity. Cell-associated fibrinogen-binding and chymotrypsin-like activities were decreased in the unencapsulated mutant. The mutant did not differ significantly from the encapsulated parent strain for minimal inhibitory concentrations to penicillin G, ampicillin, and tetracycline. However, while the encapsulated strain was highly resistant to the bactericidal action of penicillin G and ampicillin, the unencapsulated mutant was approximately 60-fold more sensitive. Compared with the parent strain, the unencapsulated mutant induced a much higher inflammatory response in monocyte-derived macrophages resulting in an increased secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8. The capsule appears to hinder important adhesins or hydrophobic molecules that mediate biofilm formation, as well as cell wall components capable of stimulating immune cells. PMID:20357962
Leanti La Rosa, Sabina; Camila Montealegre, Maria; Singh, Kavindra V.
2016-01-01
Enterococcus faecalis is an opportunistic pathogen that ranks among the leading causes of biofilm-associated infections. We previously demonstrated that the endocarditis- and biofilm-associated pili (Ebp) of E. faecalis play a major role in biofilm formation, adherence to abiotic surfaces and experimental infections. In this study, derivatives of E. faecalis strain OG1 were engineered to further characterize functions of Ebp pili. Loss of pili resulted in a 36-fold decrease in the number of closely associated cells when OG1RFΔebpABC was mixed with OG1SSpΔebpABC, compared with mixing the Ebp+ parental strains. In addition, using the Ebp+ parental strains as donor and recipient, we found a statistically significant increase (280–360 %, P < 0.05) in the frequency of plasmid transfer versus using Ebp− mutants in the conjugation experiments. These results demonstrate a previously unrecognized role of Ebp pili, namely, as important contributors to microscale cell aggregation and horizontal spread of genetic material. PMID:26967674
Cell Model Of A Disordered Solid
NASA Technical Reports Server (NTRS)
Peng, Steven T. J.; Landel, Robert F.; Moacanin, Jovan; Simha, Robert; Papazoglou, Elizabeth
1990-01-01
Elastic properties predicted from first principles. Paper discusses generalization of cell theory of disordered (non-crystaline) solid to include anisotropic stresses. Study part of continuing effort to understand macroscopic stress-and-strain properties of solid materials in terms of microscopic physical phenomena. Emphasis on derivation, from first principles, of bulk, shear, and Young's moduli of glassy material at zero absolute temperature.
Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung
2013-01-01
Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10−6 or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate. PMID:24018261
Yi, Yanjie; Isaacs, Stuart N.; Williams, Darlisha A.; Frank, Ian; Schols, Dominique; De Clercq, Erik; Kolson, Dennis L.; Collman, Ronald G.
1999-01-01
Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4). PMID:10438797
Immunologgical self-tolerance in allophenic and embryo-aggregated mice.
Prehn, Richmond T; Prehn, Liisa M
2010-09-20
Allophenic mice, supposedly containing almost equal numbers of cells derived from embryos of mouse strains C57Bl and FVB, were shown in a recent paper to grow the B16 melanoma, a long transplanted tumor of C57Bl origin, much better than did mice of either the parental C57Bl strain or the C57Bl x FVB F1 hybrid. Mice containing smaller proportions of C57Bl cells rejected the tumor. A reconsideration of these suprising data, in light of the current literature, suggests that the better growth of the tumor in the 50-50% allophenics than in the C57Bl parental strain was almost certainly caused by the tumor stimulation engendered by a weak anti-C57Bl immune reaction in the overtly healthy allophenic mice.
Kaktcham, Pierre Marie; Temgoua, Jules-Bocamdé; Zambou, François Ngoufack; Diaz-Ruiz, Gloria; Wacher, Carmen; Pérez-Chabela, María de Lourdes
2018-03-01
In this study, seven bacteriocinogenic and non-bacteriocinogenic LAB strains previously isolated from the intestines of Nile tilapia and common carp and that showed potent antibacterial activity against host-derived and non-host-derived fish pathogens were assayed for their probiotic and safety properties so as to select promising candidates for in vivo application as probiotic in aquaculture. All the strains were investigated for acid and bile tolerances, transit tolerance in simulated gastrointestinal conditions, for cell surface characteristics including hydrophobicity, co-aggregation and auto-aggregation, and for bile salt hydrolase activity. Moreover, haemolytic, gelatinase and biogenic amine-producing abilities were investigated for safety assessment. The strains were found to be tolerant at low pH (two strains at pH 2.0 and all the strains at pH 3.0). All of them could also survive in the presence of bile salts (0.3% oxgall) and in simulated gastric and intestinal juices conditions. Besides, three of them were found to harbour the gtf gene involved in pH and bile salt survival. The strains also showed remarkable cell surface characteristics, and 57.14% exhibited the ability to deconjugate bile salts. When assayed for their safety properties, the strains prove to be free from haemolytic activity, gelatinase activity and they could neither produce biogenic amines nor harbour the hdc gene. They did not also show antibiotic resistance, thus confirming to be safe for application as probiotics. Among them, Lactobacillus brevis 1BT and Lactobacillus plantarum 1KMT exhibited the best probiotic potentials, making them the most promising candidates.
Zika virus has oncolytic activity against glioblastoma stem cells
Gorman, Matthew J.; McKenzie, Lisa D.; Hubert, Christopher G.; Prager, Briana C.; Fernandez, Estefania; Richner, Justin M.; Zhang, Rong; Shan, Chao; Tycksen, Eric; Shi, Pei-Yong
2017-01-01
Glioblastoma is a highly lethal brain cancer that frequently recurs in proximity to the original resection cavity. We explored the use of oncolytic virus therapy against glioblastoma with Zika virus (ZIKV), a flavivirus that induces cell death and differentiation of neural precursor cells in the developing fetus. ZIKV preferentially infected and killed glioblastoma stem cells (GSCs) relative to differentiated tumor progeny or normal neuronal cells. The effects against GSCs were not a general property of neurotropic flaviviruses, as West Nile virus indiscriminately killed both tumor and normal neural cells. ZIKV potently depleted patient-derived GSCs grown in culture and in organoids. Moreover, mice with glioblastoma survived substantially longer and at greater rates when the tumor was inoculated with a mouse-adapted strain of ZIKV. Our results suggest that ZIKV is an oncolytic virus that can preferentially target GSCs; thus, genetically modified strains that further optimize safety could have therapeutic efficacy for adult glioblastoma patients. PMID:28874392
Lima, Fabio Mitsuo; Souza, Renata Torres; Santori, Fábio Rinaldo; Santos, Michele Fernandes; Cortez, Danielle Rodrigues; Barros, Roberto Moraes; Cano, Maria Isabel; Valadares, Helder Magno Silva; Macedo, Andréa Mara; Mortara, Renato Arruda; da Silveira, José Franco
2013-01-01
Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure. PMID:23667668
Shomer, Inna; Avisar, Alon; Desai, Prerak; Azriel, Shalhevet; Smollan, Gill; Belausov, Natasha; Keller, Nathan; Glikman, Daniel; Maor, Yasmin; Peretz, Avi; McClelland, Michael; Rahav, Galia; Gal-Mor, Ohad
2016-01-01
Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the ubiquitous Salmonella serovars worldwide and a major cause of food-born outbreaks, which are often associated with poultry and poultry derivatives. Here we report a nation-wide S. Enteritidis clonal outbreak that occurred in Israel during the last third of 2015. Pulsed field gel electrophoresis and whole genome sequencing identified genetically related strains that were circulating in Israel as early as 2008. Global comparison linked this outbreak strain to several clinical and marine environmental isolates that were previously isolated in California and Canada, indicating that similar strains are prevalent outside of Israel. Phenotypic comparison between the 2015 outbreak strain and other clinical and reference S. Enteritidis strains showed only limited intra-serovar phenotypic variation in growth in rich medium, invasion into Caco-2 cells, uptake by J774.1A macrophages, and host cell cytotoxicity. In contrast, significant phenotypic variation was shown among different S. Enteritidis isolates when biofilm-formation, motility, invasion into HeLa cells and uptake by THP-1 human macrophages were studied. Interestingly, the 2015 outbreak clone was found to possess superior intra-macrophage replication ability within both murine and human macrophages in comparison to the other S. Enteritidis strains studied. This phenotype is likely to play a role in the virulence and host-pathogen interactions of this emerging clone. PMID:27695450
A phenotypic screening approach to identify anticancer compounds derived from marine fungi.
Ellinger, Bernhard; Silber, Johanna; Prashar, Anjali; Landskron, Johannes; Weber, Jonas; Rehermann, Sarah; Müller, Franz-Josef; Smith, Stephen; Wrigley, Stephen; Taskén, Kjetil; Gribbon, Philip; Labes, Antje; Imhoff, Johannes F
2014-04-01
This study covers the isolation, testing, and identification of natural products with anticancer properties. Secondary metabolites were isolated from fungal strains originating from a variety of marine habitats. Strain culture protocols were optimized with respect to growth media composition and fermentation conditions. From these producers, isolated compounds were screened for their effect on the viability and proliferation of a subset of the NCI60 panel of cancer cell lines. Active compounds of interest were identified and selected for detailed assessments and structural elucidation using nuclear magnetic resonance. This revealed the majority of fungal-derived compounds represented known anticancer chemotypes, confirming the integrity of the process and the ability to identify suitable compounds. Examination of effects of selected compounds on cancer-associated cell signaling pathways used phospho flow cytometry in combination with 3D fluorescent cell barcoding. In parallel, the study addressed the logistical aspects of maintaining multiple cancer cell lines in culture simultaneously. A potential solution involving microbead-based cell culture was investigated (BioLevitator, Hamilton). Selected cell lines were cultured in microbead and 2D methods and cell viability tests showed comparable compound inhibition in both methods (R2=0.95). In a further technology assessment, an image-based assay system was investigated for its utility as a possible complement to ATP-based detection for quantifying cell growth and viability in a label-free manner.
Morrison, T; McQuain, C; McGinnes, L
1991-01-01
The cDNA derived from the fusion gene of the virulent AV strain of Newcastle disease virus (NDV) was expressed in chicken embryo cells by using a retrovirus vector. The fusion protein expressed in this system was transported to the cell surface and was efficiently cleaved into the disulfide-linked F1-F2 form found in infectious virions. The cells expressing the fusion gene grew normally and could be passaged many times. Monolayers of these cells would plaque, in the absence of trypsin, avirulent NDV strains (strains which encode a fusion protein which is not cleaved in tissue culture). Fusion protein-expressing cells would not fuse if mixed with uninfected cells or uninfected cells expressing the hemagglutinin-neuraminidase (HN) protein. However, the fusion protein-expressing cells, if infected with avirulent strains of NDV, would fuse with uninfected cells, suggesting that fusion requires both the fusion protein and another viral protein expressed in the same cell. Fusion was also seen after transfection of the HN protein gene into fusion protein-expressing cells. Thus, the expressed fusion protein gene is capable of complementing the virus infection, providing an active cleaved fusion protein required for the spread of infection. However, the fusion protein does not mediate cell fusion unless the cell also expresses the HN protein. Fusion protein-expressing cells would not plaque influenza virus in the absence of trypsin, nor would influenza virus-infected fusion protein-expressing cells fuse with uninfected cells. Thus, the influenza virus HA protein will not substitute for the NDV HN protein in cell-to-cell fusion. Images PMID:1987376
Effect of Hydrazines on Substrate Utilization by a Strain of Enterobacter Cloacae
1983-01-01
UDMH) to a strain of soil bacteria to be comparable to that observed in other biological systems. A subsequent study by MANTEL & LONDON (1980) suggested...metabolites derived from lysed cells were being metabolized . This observation in conjunction with reports on the effects of Hz intoxication on...carbohydrate metabolism (UNDERHILL & HOGAN 1915, IZUME & LEWIS 1926-1927, SMITH 1965, TAYLOR 1966, GEORGE & BACK 1977) prompted an investigation of the effects
Weller, Romy; Hueging, Kathrin; Brown, Richard J P; Todt, Daniel; Joecks, Sebastian; Vondran, Florian W R; Pietschmann, Thomas
2017-09-15
Hepatitis C virus (HCV) is extraordinarily diverse and uses entry factors in a strain-specific manner. Virus particles associate with lipoproteins, and apolipoprotein E (ApoE) is critical for HCV assembly and infectivity. However, whether ApoE dependency is common to all HCV genotypes remains unknown. Therefore, we compared the roles of ApoE utilizing 10 virus strains from genotypes 1 through 7. ApoA and ApoC also support HCV assembly, so they may contribute to virus production in a strain-dependent fashion. Transcriptome sequencing (RNA-seq) revealed abundant coexpression of ApoE, ApoB, ApoA1, ApoA2, ApoC1, ApoC2, and ApoC3 in primary hepatocytes and in Huh-7.5 cells. Virus production was examined in Huh-7.5 cells with and without ApoE expression and in 293T cells where individual apolipoproteins (ApoE1, -E2, -E3, -A1, -A2, -C1, and -C3) were provided in trans All strains were strictly ApoE dependent. However, ApoE involvement in virus production was strain and cell type specific, because some HCV strains poorly produced infectious virus in ApoE-expressing 293T cells and because ApoE knockout differentially affected virus production of HCV strains in Huh-7.5 cells. ApoE allelic isoforms (ApoE2, -E3, and -E4) complemented virus production of HCV strains to comparable degrees. All tested strains assembled infectious progeny with ApoE in preference to other exchangeable apolipoproteins (ApoA1, -A2, -C1, and -C3). The specific infectivity of HCV particles was similar for 293T- and Huh-7.5-derived particles for most strains; however, it differed by more than 100-fold in some viruses. Collectively, this study reveals strain-dependent and host cell-dependent use of ApoE during HCV assembly. These differences relate to the efficacy of virus production and also to the properties of released virus particles and therefore govern viral fitness at the level of assembly and cell entry. IMPORTANCE Chronic HCV infections are a major cause of liver disease. HCV is highly variable, and strain-specific determinants modulate the response to antiviral therapy, the natural course of infection, and cell entry factor usage. Here we explored whether host factor dependency of HCV in particle assembly is modulated by strain-dependent viral properties. We showed that all examined HCV strains, which represent all seven known genotypes, rely on ApoE expression for assembly of infectious progeny. However, the degree of ApoE dependence is modulated in a strain-specific and cell type-dependent manner. This indicates that HCV strains differ in their assembly properties and host factor usage during assembly of infectious progeny. Importantly, these differences relate not only to the efficiency of virus production and release but also to the infectiousness of virus particles. Thus, strain-dependent features of HCV modulate ApoE usage, with implications for virus fitness at the level of assembly and cell entry. Copyright © 2017 Weller et al.
Ömeroğlu, İpek; Kaya, Esra Nur; Göksel, Meltem; Kussovski, Vesselin; Mantareva, Vanya; Durmuş, Mahmut
2017-10-15
Axially di-(alpha,alpha-diphenyl-4-pyridylmethoxy) silicon(IV) phthalocyanine (3) and its quaternized derivative (3Q) were synthesized and tested as photosensitizers against tumor and bacterial cells. These new phthalocyanines were characterized by elemental analysis, and different spectroscopic methods such as FT-IR, UV-Vis, MALDI-TOF and 1 H NMR. The photophysical properties such as absorption and fluorescence, and the photochemical properties such as singlet oxygen generation of both phthalocyanines were investigated in solutions. The obtained values were compared to the values obtained with unsubstituted silicon(IV) phthalocyanine dichloride (SiPcCl 2 ). The addition of two di-(alpha,alpha-diphenyl-4-pyridylmethanol) groups as axial ligands showed an improvement of the photophysical and photochemical properties and an increasement of the singlet oxygen quantum yield (Φ Δ ) from 0.15 to 0.33 was determined. The photodynamic efficacy of synthesized photosensitizers (3 and 3Q) were evaluated with promising photocytotoxicity (17% cell survival for 3 and 28% for 3Q) against the cervical cancer cell line (HeLa). The photodynamic inactivation of pathogenic bacterial strains Streptococcus mutans, Staphylococcus aureus, and Pseudomonas aeruginosa suggested a high susceptibility with quaternized derivative (3Q). The both Gram-positive bacterial strains were fully photoinactivated with 11μM 3Q and mild light dose 50J.cm -2 . In case of P. aeruginosa the effect was negligible for concentrations up to 22μM 3Q and light dose 100J.cm -2 . The results suggested that the novel axially substituted silicon(IV) phthalocyanines have promising characteristic as photosensitizer towards tumor cells. The quaternized derivative 3Q has high potential for photoinactivation of pathogenic bacterial species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Jonathan K; Garbe, James C; Vrba, Lukas; Miyano, Masaru; Futscher, Bernard W; Stampfer, Martha R; LaBarge, Mark A
2015-01-01
Based on molecular features, breast cancers are grouped into intrinsic subtypes that have different prognoses and therapeutic response profiles. With increasing age, breast cancer incidence increases, with hormone receptor-positive and other luminal-like subtype tumors comprising a majority of cases. It is not known at what stage of tumor progression subtype specification occurs, nor how the process of aging affects the intrinsic subtype. We examined subtype markers in immortalized human mammary epithelial cell lines established following exposure of primary cultured cell strains to a two-step immortalization protocol that targets the two main barriers to immortality: stasis (stress-associated senescence) and replicative senescence. Cell lines derived from epithelial cells obtained from non-tumorous pre- and post-menopausal breast surgery tissues were compared. Additionally, comparisons were made between lines generated using two different genetic interventions to bypass stasis: transduction of either an shRNA that down-regulated p16(INK4A), or overexpressed constitutive active cyclin D1/CDK2. In all cases, the replicative senescence barrier was bypassed by transduction of c-Myc. Cells from all resulting immortal lines exhibited normal karyotypes. Immunofluorescence, flow cytometry, and gene expression analyses of lineage-specific markers were used to categorize the intrinsic subtypes of the immortalized lines. Bypassing stasis with p16 shRNA in young strains generated cell lines that were invariably basal-like, but the lines examined from older strains exhibited some luminal features such as keratin 19 and estrogen receptor expression. Overexpression of cyclin D1/CDK2 resulted in keratin 19 positive, luminal-like cell lines from both young and old strains, and the lines examined from older strains exhibited estrogen receptor expression. Thus age and the method of bypassing stasis independently influence the subtype of immortalized human mammary epithelial cells.
Roth, Patricia B; Twiner, Michael J; Wang, Zhihong; Bottein Dechraoui, Marie-Yasmine; Doucette, Gregory J
2007-12-15
Flavobacteriaceae (strain S03) and Cytophaga sp. (strain 41-DBG2) are algicidal bacteria active against the brevetoxin (PbTx)-producing, red tide dinoflagellate, Karenia brevis. Little is known about the fate of PbTx associated with K. brevis cells following attack by such bacteria. The fate and distribution of PbTx in K. brevis cultures exposed to these algicidal strains were thus examined by receptor binding assay and liquid chromatography/mass spectrometry (LC/MS) in three size fractions (>5, 0.22-5, <0.22microm) over a 2-week time course. In control cultures, brevetoxin concentrations in the >5microm particulate size fraction correlated with changes in cell density, whereas significant increases in dissolved (i.e., <0.22microm) toxin were observed in the later stages of culture growth. Exposure of K. brevis to either of the two algicidal bacteria tested caused cell lysis, coinciding with a rapid decline in the >5microm PbTX size fraction and a simultaneous release of dissolved toxin into the growth medium. Upon cell lysis, dissolved brevetoxin accounted for ca. 60% of total toxin and consisted of 51-82% open A-ring derivatives. Open A-ring PbTx-2 and PbTx-3 derivatives bound with lower affinity (approximately 22- and 57-fold, respectively) to voltage-gated sodium channels and were considerably less cytotoxic (86- and 142-fold, respectively) to N2A cells than their individual parent toxins (i.e., PbTx-2 and PbTx-3). These novel findings of changes in PbTx size-fractioned distribution and overall reduction in K. brevis toxicity following attack by algicidal bacteria improve our understanding of potential trophic transfer routes and the fate of PbTx during red tide events. Moreover, this information will be important to consider when evaluating the potential role of algicidal bacteria in harmful algal bloom (HAB) management strategies involving control of bloom populations.
Fielder, Thomas J; Yi, Charles S; Masumi, Juliet; Waymire, Katrina G; Chen, Hsiao-Wen; Wang, Shuling; Shi, Kai-Xuan; Wallace, Douglas C; MacGregor, Grant R
2012-12-01
To identify ways to improve the efficiency of generating chimeric mice via microinjection of blastocysts with ES cells, we compared production and performance of ES-cell derived chimeric mice using blastocysts from two closely related and commonly used sub-strains of C57BL/6. Chimeras were produced by injection of the same JM8.N4 (C57BL/6NTac) derived ES cell line into blastocysts of mixed sex from either C57BL/6J (B6J) or C57BL/6NTac (B6NTac) mice. Similar efficiency of production and sex-conversion of chimeric animals was observed with each strain of blastocyst. However, B6J chimeric males had fewer developmental abnormalities involving urogenital and reproductive tissues (1/12, 8%) compared with B6NTac chimeric males (7/9, 78%). The low sample size did not permit determination of statistical significance for many parameters. However, in each category analyzed the B6J-derived chimeric males performed as well, or better, than their B6NTac counterparts. Twelve of 14 (86%) B6J male chimeras were fertile compared with 6 of 11 (55%) B6NTac male chimeras. Ten of 12 (83%) B6J chimeric males sired more than 1 litter compared with only 3 of 6 (50%) B6NTac chimeras. B6J male chimeras produced more litters per productive mating (3.42 ± 1.73, n = 12) compared to B6NTac chimeras (2.17 ± 1.33, n = 6). Finally, a greater ratio of germline transmitting chimeric males was obtained using B6J blastocysts (9/14; 64%) compared with chimeras produced using B6NTac blastocysts (4/11; 36%). Use of B6J host blastocysts for microinjection of ES cells may offer improvements over blastocysts from B6NTac and possibly other sub-strains of C57BL/6 mice.
[Analysis on molecular epidemiology of rubella virus in Shandong province during 2000-2007].
Wang, Chang-Yin; Zhu, Zhen; Xu, Ai-Qiang; Xiong, Ping; Song, Li-Zhi; Xu, Qing; Feng, Lei; Xu, Wen-Bo
2010-11-01
Analyze the genetic characteristics of sixteen strains of wild-type rubella viruses derived from Vero cells, Rk13 cells or Vero/slam cells, and isolated from throat samples in Shandong province during 2000-2007. The 1107 nucleotide sequence of nucleoprotein (E1) gene of these isolates were amplified by RT-PCR, and the PCR products were directly sequenced. Comparing with the gene tree that was constructed based on the 739 gene sequences of the WHO reference strains, twelve isolated strains belonged to 1E genotype, one strain belonged to 1F genotype, three strains belonged to 2A genotype. The first strain belonged to 1E genotype was isolated in Shandong province in 2001, then genotype 1E became dominant genotype of wild rubella viruses circulated. The 1E genotype circulated from 2006-2007 was different compared with that circulated from 2001 to 2002, but no significant deviation in temporal and geographic distribution was found. The strain belonged to Genotype 1F was only isolated during 2000 to 2001. The three strains of 2A genotype of rubella viruses were similar to rubella viruses vaccine strain (BRDII). The most nucleotide mutation of rubella viruses among the sixteen strains were nonsense mutation, and the amino acid sequences were highly conservative with no change in important antigen sites. Alike the previous reports, there was the same amino acid mutation in protein E1 at the site of 338 in all of the 1E genotype rubella viruses isolated during 2001- 2007 in Shandong (Leu338 --> Phe338).
Early lysis of Lactobacillus helveticus CNRZ 303 in Swiss cheese is not prophage-related.
Deutsch, Stéphanie Marie; Neveu, Anthony; Guezenec, Stéphane; Ritzenthaler, Paul; Lortal, Sylvie
2003-03-15
Lactobacillus helveticus is mainly used as starter in Swiss-type cheeses. Often, lysogenic strains are eliminated because of the risk of early lysis and acidification failure due to phage expression. On the other hand, L. helveticus lysis was shown to positively influence cheese proteolysis during ripening. In order to better assess the relationship between lysis and lysogeny, a prophage-cured derivative of L. helveticus CNRZ 303 was isolated (LH 303-G11) and relysogenised (LH 303-G11R), as demonstrated by hybridisation using the whole phage DNA as probe. The growth, lysis in buffered solutions and lytic activities in zymogram using either Micrococcus luteus or L. helveticus as substrate were identical between the mother strain and its cured derivatives. Only morphological differences were observed by scanning electron microscopy: the cells of the cured derivative were shorter in length. The mother strain and its cured and relysogenised derivatives were assayed in triplicate in experimental Swiss cheeses (scale 1:100). No differences were noted during the cheese making: the three strains exhibited identical kinetics of acidification, leading to similar cheeses at day 1 in terms of gross composition and pH. Phages were detected only in the cheeses made with the mother strain and the relysogenised derivative. The lysis of L. helveticus, estimated by viability decrease and release of the intracellular marker D-lactate deshydrogenase, started early before brining and continued during the cold room ripening. No obvious differences of lysis extent were observed. These results demonstrated for the first time that, in the case of LH 303, the extensive lysis observed in cheese is mainly due to autolysin activity and not to prophage induction.
Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics
Keeley, Patrick W.; Zhou, Cuiqi; Lu, Lu; Williams, Robert W.; Melmed, Shlomo; Reese, Benjamin E.
2014-01-01
Neurons are commonly organized as regular arrays within a structure, and their patterning is achieved by minimizing the proximity between like-type cells, but molecular mechanisms regulating this process have, until recently, been unexplored. We performed a forward genetic screen using recombinant inbred (RI) strains derived from two parental A/J and C57BL/6J mouse strains to identify genomic loci controlling spacing of cholinergic amacrine cells, which is a subclass of retinal interneuron. We found conspicuous variation in mosaic regularity across these strains and mapped a sizeable proportion of that variation to a locus on chromosome 11 that was subsequently validated with a chromosome substitution strain. Using a bioinformatics approach to narrow the list of potential candidate genes, we identified pituitary tumor-transforming gene 1 (Pttg1) as the most promising. Expression of Pttg1 was significantly different between the two parental strains and correlated with mosaic regularity across the RI strains. We identified a seven-nucleotide deletion in the Pttg1 promoter in the C57BL/6J mouse strain and confirmed a direct role for this motif in modulating Pttg1 expression. Analysis of Pttg1 KO mice revealed a reduction in the mosaic regularity of cholinergic amacrine cells, as well as horizontal cells, but not in two other retinal cell types. Together, these results implicate Pttg1 in the regulation of homotypic spacing between specific types of retinal neurons. The genetic variant identified creates a binding motif for the transcriptional activator protein 1 complex, which may be instrumental in driving differential expression of downstream processes that participate in neuronal spacing. PMID:24927528
Immunological Relationship of Different Preparations of Coliform Enterotoxins
Klipstein, Frederick A.; Engert, Richard F.
1978-01-01
Antisera raised in rabbits to ultrafiltrate toxin preparations containing either the heat-labile (LT) toxin form obtained from whole cell lysates or broth filtrates or the heat-stable (ST) toxin form prepared from broth filtrates from nontoxigenic and toxigenic strains of Escherichia coli and Klebsiella were examined for their ability to neutralize the secretory effect on water transport of these toxins in the rat jejunum as determined by the in vivo marker perfusion technique. Antisera to the heat-labile toxin derived from whole cell lysate preparations from nontoxigenic strains had no neutralizing effect. Antisera to both types of LT preparation from both toxigenic strains neutralized, with several exceptions, all of the homologous and heterologous LT toxins as well as a heat-labile toxin preparation derived from sequential ultrafiltration of cell-free whole cell lysates which had a defined molecular weight of between 30,000 and 100,000. These antisera also neutralized homologous and heterologous ST preparations obtained from broth filtrates, but they had no neutraliziṅg effect on low-molecular-weight, ST toxin material obtained during the sequential ultrafiltration of cell lysates. Antisera to ST prepared from broth filtrates had no neutralizing capacity against either LT or ST toxin preparations. These observations (i) indicate that the immunological relationship of E. coli and Klebsiella LT and ST toxins extends to antisera raised against LT prepared by several different methods, (ii) raise the possibility that, based on the response to antisera to LT, there may be several immunologically heterogeneous forms of low-molecular-weight ST toxin, and (c) confirm the lack of immunogenicity of ST. PMID:361578
Heldens, Jacco; Hulskotte, Ellen; Voeten, Theo; Breedveld, Belinda; Verweij, Pierre; van Duijnhoven, Wilbert; Rudenko, Larissa; van Damme, Pierre; van den Bosch, Han
2014-09-03
Live attenuated influenza vaccine (LAIV) offers the promise of inducing a variety of immune responses thereby conferring protection to circulating field strains. LAIVs are based on cold adapted and temperature sensitive phenotypes of master donor viruses (MDVs) containing the surface glycoprotein genes of seasonal influenza strains. Two types of MDV lineages have been described, the Ann Arbor lineages and the A/Leningrad/17 and B/USSR/60 lineages. Here the safety and immunogenicity of a Madin Darby Canine Kidney - cell culture based, intranasal LAIV derived from A/Leningrad/17 and B/USSR, was evaluated in healthy influenza non-naive volunteers 18-50 years of age. In a double-blind, randomized, placebo-controlled design, single escalating doses of 1×10(5), 1×10(6), or 1×10(7) tissue culture infectious dose 50% (TCID50) of vaccine containing each of the three influenza virus re-assortants recommended by the World Health Organization for the 2008-2009 season were administered intranasally. A statistically significant geometric mean increase in hemagglutination inhibition titer was reached for influenza strain A/H3N2 after immunization with all doses of LAIV. For the A/H1N1 and B strains, the GMI in HI titer did not increase for any of the doses. Virus neutralization antibody titers showed a similar response pattern. A dose-response effect could not be demonstrated for any of the strains, neither for the HI antibody nor for the VN antibody responses. No influenza like symptoms, no nasal congestions, no rhinorrhea, or other influenza related upper respiratory tract symptoms were observed. In addition, no difference in the incidence or nature of adverse events was found between vaccine and placebo treated subjects. Overall, the results indicated that the LAIV for nasal administration is immunogenic (i.e. able to provoke an immune response) and safe both from the perspective of the attenuated virus and the MDCK cell line from which it was derived, and it warrants further development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Iwahi, T; Imada, A
1988-01-01
Two type 1 fimbria-producing strains of Escherichia coli, 31-B and K12W1-3, and two type 1 fimbriae-defective mutants derived from 31-B, BH5 and BH9, were compared for their capacity to induce vesical infection in mice undergoing water diuresis and to interact in vitro with murine peritoneal exudate polymorphonuclear leukocytes (PMN). Strains 31-B and BH5 caused rapid bacterial multiplication in the bladder wall after being inoculated intrabladderly; their log-phase cells grown at 37 degrees C, in striking contrast to their stationary-phase or 17 degrees C-grown cells, resisted phagocytic killing by PMN in the presence of normal murine serum. Strains K12W1-3 and BH9 failed to cause vesical infection, and their cells were always susceptible to the opsonophagocytic killing by PMN irrespective of the growth conditions. Nevertheless, the log-phase cells of the three isogenic strains, 31-B, BH5, and BH9, grown at 37 degrees C gave almost the same chemiluminescent response patterns during incubation with PMN in normal serum. The phagocytic resistance in strains 31-B and BH5 was eliminated by briefly treating bacterial cells with EDTA. These results suggest that the two virulent strains may express an antiphagocytic activity during their growth in the bladder and continue to stimulate the oxidative metabolic burst of PMN without being ingested and killed, and that the antiphagocytic activity may be related to a bacterial surface component(s) that is removed by EDTA. PMID:2894364
de Haan, G; Ausema, A; Wilkens, M; Molineux, G; Dontje, B
2000-09-01
We have compared the efficacy of a single injection of SD/01, a newly engineered, pegylated form of recombinant human granulocyte colony stimulating factor (rhG-CSF), with a single injection of glycosylated rhG-CSF (Filgrastim). SD/01 was administered to regular and recombinant inbred strains of mice (AKR, C57L/J, DBA/2, C57BL/6, AKXL) known to have widely distinct marrow-cell pool sizes and proliferation kinetics. A single injection of G-CSF was unable to mobilize granulocyte-macrophage colony-forming units (CFU-GM). In sharp contrast, a single dose of SD/01 resulted in massive mobilization of progenitors and stem cells. Although all mice strains showed qualitatively similar mobilization responses, large interstrain differences remained. C57L and C57BL/6 mice mobilized relatively poorly, whereas AKR and DBA/2 mice showed threefold to tenfold superior responses. In order to explain these different phenotypes, we studied the effects of SD/01 in nine AKXL recombinant inbred strains, derived from well-responding AKR and poorly responding C57L parental strains. The best predictor for SD/01 responsiveness in these strains was marrow cellularity prior to mobilization. Comparison of the AKXL strain distribution pattern for marrow cellularity with loci previously mapped in these strains showed complete concordance with Aat, a serine protease inhibitor mapping to chromosome 12.
Xu, Huiqing; Ling, Jielu; Gao, Qingqing; He, Hongbo; Mu, Xiaohui; Yan, Zhen; Gao, Song; Liu, Xiufan
2013-10-25
Lipopolysaccharide (LPS) is a major surface component of avian pathogenic Escherichia coli (APEC), and is a possible virulence factor in avian infections caused by this organism. The contribution of the lpxM gene, which encodes a myristoyl transferase that catalyzes the final step in lipid A biosynthesis, to the pathogenicity of APEC has not previously been assessed. In this study, an isogenic lpxM mutant, E058ΔlpxM, was constructed in APEC O2 strain E058 and then characterized. Structural analysis of lipid A from the parental strain and derived mutant showed that E058ΔlpxM lacked one myristoyl (C14:0) on its lipid A molecules. No differences were observed between the mutant and wild-type in a series of tests including growth rate in different broths and ability to survive in specific-pathogen-free chicken serum. However, the mutant showed significantly reduced invasion and intracellular survival in the avian macrophage HD11 cell line (P<0.05). Nitric oxide production reduction (P<0.05) and cytokine gene expression downregulation (P<0.05 or P<0.01) also showed in HD11 treated with E058ΔlpxM-derived LPS compared with that in cells treated with E058-derived LPS at different times. Compared to the parental strain E058, E058ΔlpxM had a significant reduction in bacterial load in heart (P<0.01), liver (P<0.01), spleen (P<0.01), lung (P<0.05), and kidney (P<0.05) tissues. The histopathological lesions in visceral organs of birds challenged with the wild-type strain were more severe than in birds infected with the mutant. However, the E058ΔlpxM mutant showed a similar sensitivity pattern to the parental strain following exposure to several hydrophobic reagents. These results indicate that the lpxM gene is important for the pathogenicity and biological activity of APEC strain E058. Copyright © 2013 Elsevier B.V. All rights reserved.
Novikoff, Alex B.; de Thé, Guy; Beard, D.; Beard, J. W.
1962-01-01
Thymus glands of chicks with leukemia induced by BAI strain A (myeloblastosis) virus were fixed in cold 4 per cent formaldehyde-sucrose. Frozen sections were incubated in the ATPase medium of Wachstein and Meisel and studied by light microscopy and electron microscopy. The ATPase activity of the virus is localized to the outermost membrane of the virus. The membrane of the blast-like cells of the thymus cortex from which the virus emerges, by budding, also possesses such activity. It appears likely that the outermost membrane of the virus is derived from the plasma membrane of these cells. PMID:13939125
Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V
2015-10-13
Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A
2006-07-01
The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.
Steinbuch, Kfir B; Benhamou, Raphael I; Levin, Lotan; Stein, Reuven; Fridman, Micha
2018-05-11
Antimicrobial cationic amphiphiles derived from aminoglycosides act through cell membrane permeabilization but have limited selectivity for microbial cell membranes. Herein, we report that an increased degree of unsaturation in the fatty acid segment of antifungal cationic amphiphiles derived from the aminoglycoside tobramycin significantly reduced toxicity to mammalian cells. A collection of tobramycin-derived cationic amphiphiles substituted with C 18 lipid chains varying in degree of unsaturation and double bond configuration were synthesized. All had potent activity against a panel of important fungal pathogens including strains with resistance to a variety of antifungal drugs. The tobramycin-derived cationic amphiphile substituted with linolenic acid with three cis double bonds (compound 6) was up to an order of magnitude less toxic to mammalian cells than cationic amphiphiles composed of lipids with a lower degree of unsaturation and than the fungal membrane disrupting drug amphotericin B. Compound 6 was 12-fold more selective (red blood cell hemolysis relative to antifungal activity) than compound 1, the derivative with a fully saturated lipid chain. Notably, compound 6 disrupted the membranes of fungal cells without affecting the viability of cocultured mammalian cells. This study demonstrates that the degree of unsaturation and the configuration of the double bond in lipids of cationic amphiphiles are important parameters that, if optimized, result in compounds with broad spectrum and potent antifungal activity as well as reduced toxicity toward mammalian cells.
Yoshimi, Akira; Sano, Motoaki; Inaba, Azusa; Kokubun, Yuko; Fujioka, Tomonori; Mizutani, Osamu; Hagiwara, Daisuke; Fujikawa, Takashi; Nishimura, Marie; Yano, Shigekazu; Kasahara, Shin; Shimizu, Kiminori; Yamaguchi, Masashi; Kawakami, Kazuyoshi; Abe, Keietsu
2013-01-01
Although α-1,3-glucan is one of the major cell wall polysaccharides in filamentous fungi, the physiological roles of α-1,3-glucan remain unclear. The model fungus Aspergillus nidulans possesses two α-1,3-glucan synthase (AGS) genes, agsA and agsB. For functional analysis of these genes, we constructed several mutant strains in A. nidulans: agsA disruption, agsB disruption, and double-disruption strains. We also constructed several CagsB strains in which agsB expression was controlled by the inducible alcA promoter, with or without the agsA-disrupting mutation. The agsA disruption strains did not show markedly different phenotypes from those of the wild-type strain. The agsB disruption strains formed dispersed hyphal cells under liquid culture conditions, regardless of the agsA genetic background. Dispersed hyphal cells were also observed in liquid culture of the CagsB strains when agsB expression was repressed, whereas these strains grew normally in plate culture even under the agsB-repressed conditions. Fractionation of the cell wall based on the alkali solubility of its components, quantification of sugars, and 13C-NMR spectroscopic analysis revealed that α-1,3-glucan was the main component of the alkali-soluble fraction in the wild-type and agsA disruption strains, but almost no α-1,3-glucan was found in the alkali-soluble fraction derived from either the agsB disruption strain or the CagsB strain under the agsB-repressed conditions, regardless of the agsA genetic background. Taken together, our data demonstrate that the two AGS genes are dispensable in A. nidulans, but that AgsB is required for normal growth characteristics under liquid culture conditions and is the major AGS in this species. PMID:23365684
Miyazaki, C; Kuroda, M; Ohta, A; Shibuya, I
1985-01-01
Unique mutants of Escherichia coli K-12, defective in phosphatidylglycerol synthesis, have been isolated from a temperature-sensitive strain incubated at its nonpermissive temperature. The parent strain had excess phosphatidylglycerol by harboring both the pss-1 allele [coding for a temperature-sensitive phosphatidylserine synthase (EC 2.7.8.8)] and the cls- allele (responsible for a defective cardiolipin synthase). The newly acquired mutations caused better growth at higher temperatures. One of the mutations (pgsA3) has been identified in the structural gene for phosphatidylglycerophosphate synthase [glycerophosphate phosphatidyltransferase (EC 2.7.8.5)]. Phospholipid compositions of these mutants were remarkable; phosphatidylethanolamine was the sole major lipid. In media with low osmotic pressures, these cells grew more slowly than the wild-type cells. They grew normally without recovering from the phospholipid abnormality in media appropriately supplemented with sucrose and MgCl2. Formation of cardiolipin and phosphoglycerol derivatives of membrane-derived oligosaccharides was reduced in a pgsA3 mutant. E. coli strains having the pgsA3, pss-1, and cls- mutations, either individually or in combination, constitute an empirical system in which the molar ratio of three major membrane phospholipids can be variously altered. Images PMID:2999767
Narahara, Shun; Matsushima, Haruna; Sakai, Eiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki
2012-04-01
Osteoclasts (OCLs) are multinucleated giant cells and are formed by the fusion of mononuclear progenitors of monocyte/macrophage lineage. It is known that macrophages derived from different genetic backgrounds exhibit quite distinct characteristics of immune responses. However, it is unknown whether OCLs from different genetic backgrounds show distinct characteristics. In this study, we showed that bone-marrow macrophages (BMMs) derived from C57BL/6, BALB/c and ddY mice exhibited considerably distinct morphological characteristics and cell differentiation into OCLs. The differentiation of BMMs into OCLs was comparatively quicker in the C57BL/6 and ddY mice, while that of BALB/c mice was rather slow. Morphologically, ddY OCLs showed a giant cell with a round shape, C57BL/6 OCLs were of a moderate size with many protrusions and BALB/c OCLs had the smallest size with fewer nuclei. The intracellular signaling of differentiation and expression levels of marker proteins of OCLs were different in the respective strains. Treatment of BMMs from the three different strains with the reducing agent N-acetylcysteine (NAC) or with the oxidation agent hydrogen peroxide (H(2)O(2)) induced changes in the shape and sizes of the cells and caused distinct patterns of cell differentiation and survival. Thus, genetic backgrounds and redox conditions regulate the morphological characteristics and cell differentiation of OCLs.
Atkinson, M. R.; Murray, A. W.
1965-01-01
1. A strain of Ehrlich ascites-tumour cells that showed little inhibition of growth in the presence of 6-mercaptopurine accumulated less than 5% as much 6-thioinosine 5′-phosphate in vivo, in the presence of 6-mercaptopurine, as did the sensitive strain from which it was derived. 2. Specific activities of the phosphoribosyltransferases that convert adenine, guanine, hypoxanthine and 6-mercaptopurine into AMP, GMP, IMP and 6-thioinosine 5′-phosphate were similar in extracts of the resistant and the sensitive cells. 3. As found previously with sensitive cells, 6-mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase and hypoxanthine phosphoribosyltransferase from the resistant cells and does not inhibit the adenine phosphoribosyltransferase from these cells. Michaelis constants and inhibitor constants of the purine phosphoribosyltransferases from resistant cells did not differ significantly from those measured with the corresponding enzymes from sensitive cells. 4. Resistance to 6-mercaptopurine in this case is probably not due to qualitative or quantitative changes in these transferases. PMID:14342251
Silencing Inhibits Cre-Mediated Recombination of the Z/AP and Z/EG Reporters in Adult Cells
Long, Michael A.; Rossi, Fabio M. V.
2009-01-01
Background The Cre-loxP system has been used to enable tissue specific activation, inactivation and mutation of many genes in vivo and has thereby greatly facilitated the genetic dissection of several cellular and developmental processes. In such studies, Cre-reporter strains, which carry a Cre-activated marker gene, are frequently utilized to validate the expression profile of Cre transgenes, to act as a surrogate marker for excision of a second allele, and to irreversibly label cells for lineage tracing experiments. Principal Findings We have studied three commonly used Cre-reporter strains, Z/AP, Z/EG and R26R-EYFP and have demonstrated that although each reporter can be reliably activated by Cre during early development, exposure to Cre in adult hematopoietic cells results in a much lower frequency of marker-positive cells in the Z/AP or Z/EG strains than in the R26R-EYFP strain. In marker negative cells derived from the Z/AP and Z/EG strains, the transgenic promoter is methylated and Cre-mediated recombination of the locus is inhibited. Conclusions These results show that the efficiency of Cre-mediated recombination is not only dependent on the genomic context of a given loxP-flanked sequence, but also on stochastic epigenetic mechanisms underlying transgene variegation. Furthermore, our data highlights the potential shortcomings of utilizing the Z/AP and Z/EG reporters as surrogate markers of excision or in lineage tracing experiments. PMID:19415111
Silencing inhibits Cre-mediated recombination of the Z/AP and Z/EG reporters in adult cells.
Long, Michael A; Rossi, Fabio M V
2009-01-01
The Cre-loxP system has been used to enable tissue specific activation, inactivation and mutation of many genes in vivo and has thereby greatly facilitated the genetic dissection of several cellular and developmental processes. In such studies, Cre-reporter strains, which carry a Cre-activated marker gene, are frequently utilized to validate the expression profile of Cre transgenes, to act as a surrogate marker for excision of a second allele, and to irreversibly label cells for lineage tracing experiments. We have studied three commonly used Cre-reporter strains, Z/AP, Z/EG and R26R-EYFP and have demonstrated that although each reporter can be reliably activated by Cre during early development, exposure to Cre in adult hematopoietic cells results in a much lower frequency of marker-positive cells in the Z/AP or Z/EG strains than in the R26R-EYFP strain. In marker negative cells derived from the Z/AP and Z/EG strains, the transgenic promoter is methylated and Cre-mediated recombination of the locus is inhibited. These results show that the efficiency of Cre-mediated recombination is not only dependent on the genomic context of a given loxP-flanked sequence, but also on stochastic epigenetic mechanisms underlying transgene variegation. Furthermore, our data highlights the potential shortcomings of utilizing the Z/AP and Z/EG reporters as surrogate markers of excision or in lineage tracing experiments.
Fraile, Benito; Alcover, Javier; Royuela, Mar; Rodríguez, David; Chaves, Concepción; Palacios, Ricardo; Piqué, Núria
2017-06-01
To assess the properties of a medical device containing xyloglucan, propolis and hibiscus to create a bioprotective barrier to avoid the contact of uropathogenic Escherichia coli strains on cell walls in models of intestinal (CacoGoblet) and uroepithelial (RWPE-1) cells (derived from normal human prostate epithelium). Two uropathogenic E. coli strains (expressing type 1 fimbriae and P fimbriae) were used to assess, by electronic microscopy and ELISA, the barrier properties of the medical device. The antimicrobial activity was assessed in broth dilution assays. The three components (xyloglucan, propolis and hibiscus) did not alter E. coli cell integrity in intestinal and uroepithelial cell models and were devoid of antibacterial activity. The three components avoided bacterial contact in both cell monolayers. The nonpharmacological barrier properties of xyloglucan, propolis and hibiscus confirm the role of the medical device for the management of urinary tract infections.
2016-01-01
The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE). We screened 72,000 compounds against both the Lep-UE and wild-type (wt) strains. We identified the phenylhydrazone (PHY) series as having higher activity against the LepB-UE strain. We conducted a limited structure–activity relationship determination around a representative PHY compound with differential activity (MICs of 3.0 μM against the LepB-UE strain and 18 μM against the wt); several analogues were less potent against the LepB overexpressing strain. A number of chemical modifications around the hydrazone moiety resulted in improved potency. Inhibition of LepB activity was observed for a number of compounds in a biochemical assay using cell membrane fraction derived from M. tuberculosis. Compounds did not increase cell permeability, dissipate membrane potential, or inhibit an unrelated mycobacterial enzyme, suggesting a specific mode of action related to the LepB secretory mechanism. PMID:27642770
Surface changes and polymyxin interactions with a resistant strain of Klebsiella pneumoniae.
Velkov, Tony; Deris, Zakuan Z; Huang, Johnny X; Azad, Mohammad A K; Butler, Mark; Sivanesan, Sivashangarie; Kaminskas, Lisa M; Dong, Yao-Da; Boyd, Ben; Baker, Mark A; Cooper, Matthew A; Nation, Roger L; Li, Jian
2014-05-01
This study examines the interaction of polymyxin B and colistin with the surface and outer membrane components of a susceptible and resistant strain of Klebsiella pneumoniae. The interaction between polymyxins and bacterial membrane and isolated LPS from paired wild type and polymyxin-resistant strains of K. pneumoniae were examined with N-phenyl-1-naphthylamine (NPN) uptake, fluorometric binding and thermal shift assays, lysozyme and deoxycholate sensitivity assays, and by (1)H NMR. LPS from the polymyxin-resistant strain displayed a reduced binding affinity for polymyxins B and colistin in comparison with the wild type LPS. The outer membrane NPN permeability of the resistant strain was greater compared with the susceptible strain. Polymyxin exposure enhanced the permeability of the outer membrane of the wild type strain to lysozyme and deoxycholate, whereas polymyxin concentrations up to 32 mg/ml failed to permeabilize the outer membrane of the resistant strain. Zeta potential measurements revealed that mid-logarithmic phase wild type cells exhibited a greater negative charge than the mid-logarithmic phase-resistant cells. Taken together, our findings suggest that the resistant derivative of K. pneumoniae can block the electrostatically driven first stage of polymyxin action, which thereby renders the hydrophobically driven second tier of polymyxin action on the outer membrane inconsequential.
Efficient Computation of Anharmonic Force Constants via q-space, with Application to Graphene
NASA Astrophysics Data System (ADS)
Kornbluth, Mordechai; Marianetti, Chris
We present a new approach for extracting anharmonic force constants from a sparse sampling of the anharmonic dynamical tensor. We calculate the derivative of the energy with respect to q-space displacements (phonons) and strain, which guarantees the absence of supercell image errors. Central finite differences provide a well-converged quadratic error tail for each derivative, separating the contribution of each anharmonic order. These derivatives populate the anharmonic dynamical tensor in a sparse mesh that bounds the Brillouin Zone, which ensures comprehensive sampling of q-space while exploiting small-cell calculations for efficient, high-throughput computation. This produces a well-converged and precisely-defined dataset, suitable for big-data approaches. We transform this sparsely-sampled anharmonic dynamical tensor to real-space anharmonic force constants that obey full space-group symmetries by construction. Machine-learning techniques identify the range of real-space interactions. We show the entire process executed for graphene, up to and including the fifth-order anharmonic force constants. This method successfully calculates strain-based phonon renormalization in graphene, even under large strains, which solves a major shortcoming of previous potentials.
Naumenko, Vladimir S; Bazovkina, Daria V; Morozova, Maryana V; Popova, Nina K
2013-08-29
Prepulse inhibition (PPI), the reduction in acoustic startle reflex when it is preceded by weak prepulse stimuli, is a measure of critical to normal brain functioning sensorimotor gating. PPI deficit was shown in a variety of psychiatric disorders including schizophrenia, and in DBA/2J mouse strain. In the current study, we examined the effects of brain-derived (BDNF) and glial cell line-derived (GDNF) neurotrophic factors on acoustic startle response and PPI in DBA/2J mice. It was found that BDNF (300 ng, i.c.v.) significantly increased amplitude of startle response and restored disrupted PPI in 7 days after acute administration. GDNF (800 ng, i.c.v.) did not produce significant alteration neither in amplitude of startle response nor in PPI in DBA/2J mice. The reversal effect of BDNF on PPI deficit was unusually long-lasting: significant increase in PPI was found 1.5 months after single acute BDNF administration. Long-term ameliorative effect BDNF on disrupted PPI suggested the implication of epigenetic mechanism in BDNF action on neurogenesis. BDNF rather than GDNF could be a perspective drug for the treatment of sensorimotor gating impairments. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Immunologgical self-tolerance in allophenic and embryo-aggregated mice
2010-01-01
Allophenic mice, supposedly containing almost equal numbers of cells derived from embryos of mouse strains C57Bl and FVB, were shown in a recent paper to grow the B16 melanoma, a long transplanted tumor of C57Bl origin, much better than did mice of either the parental C57Bl strain or the C57Bl × FVB F1 hybrid. Mice containing smaller proportions of C57Bl cells rejected the tumor. A reconsideration of these suprising data, in light of the current literature, suggests that the better growth of the tumor in the 50-50% allophenics than in the C57Bl parental strain was almost certainly caused by the tumor stimulation engendered by a weak anti-C57Bl immune reaction in the overtly healthy allophenic mice. PMID:20854686
XC-cell fusion induced by murine plasmocytoma cells. II. Cytological and ultrastructural study.
Lemay, P; Torpier, G; Lefebvre, J C; Samaille, J
1975-06-10
The MF2 strain, a mouse myeloma derived cell line, was found to induce the mixed culture cytopathogenicity test when cocultured with XC cells. Only one MF2 cell was present per syncytium, as shown by autoradiography. Pretreatment of cells with inhibitors of DNA, RNA or protein synthesis suggested that a normal RNA synthesis was required to obtain optimal polykaryon growth. Immunoelectron microscopy using a syngenic mouse MF2 cell antiserum and peroxydase labeling revealed a complete mixing and redistribution of the respective plasma membrane sites of MF2 and XC cells on polykaryon surface.
Li, Yang; Zhu, Xujun; Zhang, Xueyu; Fu, Jing; Wang, Zhiwen; Chen, Tao; Zhao, Xueming
2016-06-03
Genome streamlining has emerged as an effective strategy to boost the production efficiency of bio-based products. Many efforts have been made to construct desirable chassis cells by reducing the genome size of microbes. It has been reported that the genome-reduced Bacillus subtilis strain MBG874 showed clear advantages for the production of several heterologous enzymes including alkaline cellulase and protease. In addition to enzymes, B. subtilis is also used for the production of chemicals. To our best knowledge, it is still unknown whether genome reduction could be used to optimize the production of chemicals such as nucleoside products. In this study, we constructed a series of genome-reduced strains by deleting non-essential regions in the chromosome of B. subtilis 168. These strains with genome reductions ranging in size from 581.9 to 814.4 kb displayed markedly decreased growth rates, sporulation ratios, transformation efficiencies and maintenance coefficients, as well as increased cell yields. We re-engineered the genome-reduced strains to produce guanosine and thymidine, respectively. The strain BSK814G2, in which purA was knocked out, and prs, purF and guaB were co-overexpressed, produced 115.2 mg/L of guanosine, which was 4.4-fold higher compared to the control strain constructed by introducing the same gene modifications into the parental strain. We also constructed a thymidine producer by deleting the tdk gene and overexpressing the prs, ushA, thyA, dut, and ndk genes from Escherichia coli in strain BSK756, and the resulting strain BSK756T3 accumulated 151.2 mg/L thymidine, showing a 5.2-fold increase compared to the corresponding control strain. Genome-scale genetic manipulation has a variety of effects on the physiological characteristics and cell metabolism of B. subtilis. By introducing specific gene modifications related to guanosine and thymidine accumulation, respectively, we demonstrated that genome-reduced strains had greatly improved properties compared to the wild-type strain as chassis cells for the production of these two products. These strains also have great potential for the production of other nucleosides and similar derived chemicals.
Scavone, Paola; Villar, Silvia; Umpiérrez, Ana; Zunino, Pablo
2015-06-01
Proteus mirabilis is frequently associated with complicated urinary tract infections (UTI). It is proposed that several virulence factors are associated with P. mirabilis uropathogenicity. The aim of this work was to elucidate genotoxic and cytotoxic effects mediated by MR/P fimbriae and flagella in eukaryotic cells in vitro. Two cell lines (kidney- and bladder-derived) were infected with a clinical wild-type P. mirabilis strain and an MR/P and a flagellar mutant. We evaluated adhesion, genotoxicity and cytotoxicity by microscopy, comet assay and triple staining technique, respectively. Mutant strains displayed lower adhesion rates than the P. mirabilis wild-type strain and were significantly less effective to induce genotoxic and cytotoxic effects compared to the wild type. We report for the first time that P. mirabilis MR/P fimbriae and flagella mediate genotoxic and cytotoxic effects on eukaryotic cells, at least in in vitro conditions. These results could contribute to design new strategies for the control of UTI. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Soares, Roberta Reis; da Silva, José Marcio Fernandes; Carlos, Bianca Cecheto; da Fonseca, Camila Campos; de Souza, Laila Salomé Araújo; Lopes, Fernanda Valério; de Paula Dias, Rafael Mafra; Moreira, Paulo Otávio Lourenço; Abramo, Clarice; Viana, Gustavo Henrique Ribeiro; de Pila Varotti, Fernando; da Silva, Adilson David; Scopel, Kézia Katiani Gorza
2015-06-01
Malaria continues to be an important public health problem in the world. Nowadays, the widespread parasite resistance to many drugs used in antimalarial therapy has made the effective treatment of cases and control of the disease a constant challenge. Therefore, the discovery of new molecules with good antimalarial activity and tolerance to human use can be really important in the further treatment of the disease. In this study we have investigated the antiplasmodial activity of 10 synthetic compounds derived from quinoline, five of them combined to sulfonamide and five to the hydrazine or hydrazide group. The compounds were evaluated according to their cytotoxicity against HepG2 and HeLa cell lines, their antimalarial activity against CQ-sensitive and CQ-resistant Plasmodium falciparum strains and, finally, their schizonticide blood action in mice infected with Plasmodium berghei NK65. The compounds exhibited no cytotoxic action in HepG2 and HeLa cell lines when tested up to a concentration of 100 μg/mL. In addition, the hydrazine or hydrazide derivative compounds were less cytotoxic against cell lines and more active against CQ-sensitive and CQ-resistant P. falciparum strains, showing high SI (>1000 when SI was calculated using the CC50 from the 3D7 strain as reference). When tested in vivo, the hydrazine derivative 1f compound showed activity against the development of blood parasites similar to that observed with CQ, the reference drug. Interestingly, the 1f compound demonstrated the best LipE value (4.84) among all those tested in vivo. Considering the in vitro and in vivo activities of the compounds studied here and the LipE values, we believe the 1f compound to be the most promising molecule for further studies in antimalarial chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dijkman, Ronald; Jebbink, Maarten F.; Koekkoek, Sylvie M.; Deijs, Martin; Jónsdóttir, Hulda R.; Molenkamp, Richard; Ieven, Margareta; Goossens, Herman; Thiel, Volker
2013-01-01
The human airway epithelium (HAE) represents the entry port of many human respiratory viruses, including human coronaviruses (HCoVs). Nowadays, four HCoVs, HCoV-229E, HCoV-OC43, HCoV-HKU1, and HCoV-NL63, are known to be circulating worldwide, causing upper and lower respiratory tract infections in nonhospitalized and hospitalized children. Studies of the fundamental aspects of these HCoV infections at the primary entry port, such as cell tropism, are seriously hampered by the lack of a universal culture system or suitable animal models. To expand the knowledge on fundamental virus-host interactions for all four HCoVs at the site of primary infection, we used pseudostratified HAE cell cultures to isolate and characterize representative clinical HCoV strains directly from nasopharyngeal material. Ten contemporary isolates were obtained, representing HCoV-229E (n = 1), HCoV-NL63 (n = 1), HCoV-HKU1 (n = 4), and HCoV-OC43 (n = 4). For each strain, we analyzed the replication kinetics and progeny virus release on HAE cell cultures derived from different donors. Surprisingly, by visualizing HCoV infection by confocal microscopy, we observed that HCoV-229E employs a target cell tropism for nonciliated cells, whereas HCoV-OC43, HCoV-HKU1, and HCoV-NL63 all infect ciliated cells. Collectively, the data demonstrate that HAE cell cultures, which morphologically and functionally resemble human airways in vivo, represent a robust universal culture system for isolating and comparing all contemporary HCoV strains. PMID:23427150
Expression and use of the green fluorescent protein as a reporter system in Legionella pneumophila.
Köhler, R; Bubert, A; Goebel, W; Steinert, M; Hacker, J; Bubert, B
2000-01-01
The gene encoding the green fluorescent protein (GFP) was used as a reporter gene in Legionella pneumophila. To analyze GFP expression in Legionella, transcriptional fusions of gfp with the Legionella-specific mip (Macrophage Infectivity Potentiator) promoter (P(mip)) and the sod (SuperOxide Dismutase) promoter (P(sod)) derived from Listeria monocytogenes were constructed. Following transformation into the virulent L. pneumophila strain JR 32, strong GFP-mediated fluorescence was detected with both plasmids, although the sod promoter was associated with a 1ten-fold higher intensity. No fluorescence was observed in L. pneumophila transformed with the promoterless gfp gene. Comparison of fluorescence yields between various L. pneumophila strains that differ in their virulence characteristics and were transformed with the P(mip)-gfp carrying plasmid revealed no differences in GFP expression. Infection studies using Acanthamoeba castellanii as host and recombinant L. pneumophila strains carrying the P(mip)-gfp and P(sod)-gfp fusions indicated that the mip promoter was expressed when the bacteria replicated intracellularly. GFP expression was also used to monitor, in infected A. castellanii cells, the intracellular survival of, and incidence of host-cell killing by. L. pneumophila strains that vary in their virulence properties. As quantified by flow cytometry the highly virulent L. pneumophila strain Corby was twice as infectious to A. castellanii as the Philadelphia strain JR 32. Using the avirulent Philadelphia derivative 25D invasion but no intracellular multiplication was observed. In addition, we examined by flow cytometry the influence of cytochalasin D, cycloheximide, and methylamine on the uptake of Legionella by A. castellanii. In conclusion, gfp appears to be a convenient reporter gene whose expression in Legionella can be followed in real time and allows analysis of promoter activities in Legionella and monitoring of the infection process.
Herbert, A G; Le Gros, G S; Bidawid, S; Watson, J D
1984-01-01
Cytotoxic effector cell populations in murine spleen can be characterized by the phenotype of the cytotoxic cells or the nature of target cells. Lytic events can be antigen-specific, MHC-restricted and clonal, or target cell-specific but apparently non-MHC-restricted. Two cytotoxic effectors of this latter category are spontaneous and natural killers. Normal spleen cells from (BALB/c X DBA/2J)F1 mice (CDF1) cultured without added antigen develop a population of Thy-1+ spontaneous cytotoxic lymphocytes (SCTL) that lyse the DBA/2J mastocytoma P815, as well as the BALB/c-derived plasmacytomas MOPC-11 and SP2/0. Cold target competition experiments reveal the BALB/c-derived plasmacytomas MOPC-11, SP2/0, J558 and the A strain-derived T cell lymphoma YAC-1, but not normal lymphoblasts, block the lysis of P815 target cells. Thus, while these tumour cells appear to express common antigens which are recognized by SCTL cells, plasmacytomas such as J558 are not susceptible to lysis by SCTL. The relationship of SCTL to natural killer (NK) cells was examined. In-vivo treatment of mice with monoclonal anti-Thy-1 antibody leads to a rapid loss of SCTL and precursors from the spleen, but there is a concomitant increase in NK cell activity. PMID:6607213
Dhanaraj, Premnath; Devadas, Akila; Muthiah, Indiraleka
2018-04-01
Epigenetic characterization studies have clearly shown that the association of genital Human Papilloma Virus (HPV) with cervical cancer is strong, independent of other risk factors, and consistent in several countries. Even though all the strains of Human Papilloma Virus can cause cancer, the high-risk strains can cause severe cancer in a human. The E6 and E7 protein are responsible for the carcinogenic property of HPV. Among these two proteins, the HPV E7 protein plays a major role in the viral life cycle by allowing the virus to replicate in differentiating epithelial cells. All the strains of HPV are variants (High risk and low risk). A computational analysis study is done to find which low-risk strain is showing most similarity with the high risk there by predicting that this low-risk strain can be converted to high-risk if a mutation occurs in future. Through mutation, a normal strain will get converted to low-risk and a low-risk to high-risk. So the mutations are important and it can affect the viruses to a greater extent because of their smaller size. In order to inhibit the expression of Type 11 low-risk strain a noval suppressor molecule is synthesized and characterized using UV, FTIR and NMR spectrometry. The suppressor molecule is a quinazoline derivative, as it can act as an anti-cancer agent to inhibit the expression of the E7 protein in Type 11 strain. The efficiency of binding of type 11 E7 protein with quinazoline derivative is calculated through docking studies using G-Score (Schrodinger). Thus proposing this noval suppressor molecule can be lead against cervical cancer caused by HPV Type 11 strain after further in-vitro and in vivo characterization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Singh, Vineet K; Sirobhushanam, Sirisha; Ring, Robert P; Singh, Saumya; Gatto, Craig; Wilkinson, Brian J
2018-04-01
Membrane fluidity to a large extent is governed by the presence of branched-chain fatty acids (BCFAs). Branched-chain α-keto acid dehydrogenase (BKD) is the key enzyme in BCFA synthesis. A Staphylococcus aureus BKD-deficient strain still produced substantial levels of BCFAs. Pyruvate dehydrogenase (PDH) with structural similarity to BKD has been speculated to contribute to BCFAs in S. aureus. This study was carried out using BKD-, PDH- and BKD : PDH-deficient derivatives of methicillin-resistant S. aureus strain JE2. Differences in growth kinetics were evaluated spectrophotometrically, membrane BCFAs using gas chromatography and membrane fluidity by fluorescence polarization. Carotenoid levels were estimated by measuring A465 of methanol extracts from 48 h cultures. MIC values were determined by broth microdilution.Results/Key findings. BCFAs made up 50 % of membrane fatty acids in wild-type but only 31 % in the BKD-deficient mutant. BCFA level was ~80 % in the PDH-deficient strain and 38 % in the BKD : PDH-deficient strain. BKD-deficient mutant showed decreased membrane fluidity, the PDH-deficient mutant showed increased membrane fluidity. The BKD- and PDH-deficient strains grew slower and the BKD : PDH-deficient strain grew slowest at 37 °C. However at 20 °C, the BKD- and BKD : PDH-deficient strains grew only a little followed by autolysis of these cells. The BKD-deficient strain produced higher levels of staphyloxanthin. The PDH-deficient and BKD : PDH-deficient strains produced very little staphyloxanthin. The BKD-deficient strain showed increased susceptibility to daptomycin. The BCFA composition of the cell membrane in S. aureus seems to significantly impact cell growth, membrane fluidity and resistance to daptomycin.
BALB/c and C57BL6 mouse strains vary in their ability to heal corneal epithelial debridement wounds
Pal-Ghosh, Sonali; Tadvalkar, Gauri; Jurjus, Rosalyn A.; Zieske, James D.; Stepp, Mary Ann
2008-01-01
Genetically engineered mice are usually produced on a mixed genetic background and can be derived from several mouse strains including 129SvJ, C57BL6, and BALB/c. To determine whether differences in recurrent corneal epithelial erosions (RCEEs), corneal epithelial stem cell deficiency (CESCD), and cell migration rate vary between two different mouse strains (BALB/c and C57BL6), 8 week mice were subjected to 1.5 (small) or 2.8 mm (large) manual debridement wounds and allowed to heal for 4 weeks. Syndecan-1 (sdc-1) null mice backcrossed seven generations onto a BALB/c genetic background were also included in the RCEE and CESCD studies to permit comparisons between genotypes within a single strain. After sacrifice, corneas were assessed for the presence of recurrent erosions; no fewer than 15 corneas were used for each strain or genotype studied. Data show that the frequency of recurrent erosions after small wounds was 81 +/− 9% in the C57BL6 mice, 73 +/− 2% in the BALB/c mice, and 32 +/− 6% in sdc-1 null mice. Neither strain developed CESCD after small wounds. The frequency of erosions after large wounds was greater (88 +/− 8%) in the C57BL6 mice compared to BALB/c (60 +/− 2%), and sdc-1 null mice (32 +/− 5%). 4 weeks after the large wounds, fixed, flat mounted corneas were assessed for evidence of CESCD with antibodies against the conjunctival keratin K8 and the goblet cell marker, the mucin Muc5AC. The frequency of CESCD 4 weeks after the large wounds was significantly greater in the C57BL6 mice than in the BALB/c or sdc-1 null mice. To assess cell migration rates, corneas were subjected to 1.5 mm wounds and allowed to heal for 12, 15, 18, 21, and 24 hours. After sacrifice, corneas were stained with Richardson stain (BALB/c) or propidium iodide (C57BL6) to assess reepithelialization rates. While reepithelialization rates were similar for the early times after wounding, by 24 hours the C57BL6 corneas had healed faster: 16 of 30 corneas from the C57BL6 mice were closed compared to 9 of 30 of the BALB/c wounds. BALB/c corneas appeared larger overall compared to C57BL6 corneas; measurements of the overall mass of the enucleated eyes and diameters of the flat-mounted corneas confirmed that C57BL6 eyes and corneas were 6.8% and 4.4% smaller respectively than those of BALB/c mice even though the masses of the two mouse strains at 8 weeks of age were identical. Using BrdU to label dividing cells, we found that 18 hours after wounding, C57BL6 and BALB/c corneal epithelia showed similar numbers of proliferating cells. To determine if the enhanced corneal epithelial cell migration rate seen in the C57BL6 mice was specific to the cornea, we conducted time-lapse studies to assess random cell migration rates in vitro using primary cultures of mouse epidermal keratinocytes. Consistent with the in vivo data, epidermal keratinocytes derived from BALB/c mice migrated 60% slower than C57BL6 cells. These data prove that strain-specific differences in cell migration rate in vivo are present in the cornea and are accompanied by differences in the frequencies of recurrent erosions and corneal epithelial stem cell deficiency. PMID:18809399
Natronorubrum sediminis sp. nov., an archaeon isolated from a saline lake.
Gutiérrez, M C; Castillo, A M; Corral, P; Minegishi, H; Ventosa, A
2010-08-01
Two novel haloalkaliphilic archaea, strains CG-6T and CG-4, were isolated from sediment of the hypersaline Lake Chagannor in Inner Mongolia, China. Cells of the two strains were pleomorphic, non-motile and strictly aerobic. They required at least 2.5 M NaCl for growth, with optimum growth at 3.4 M NaCl. They grew at pH 8.0-11.0, with optimum growth at pH 9.0. Hypotonic treatment with less than 1.5 M NaCl caused cell lysis. The two strains had similar polar lipid compositions, possessing C20C20 and C20C25 derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. No glycolipids were detected. Comparison of 16S rRNA gene sequences and morphological features placed them in the genus Natronorubrum. 16S rRNA gene sequence similarities to strains of recognized species of the genus Natronorubrum were 96.2-93.8%. Detailed phenotypic characterization and DNA-DNA hybridization studies revealed that the two strains belong to a novel species in the genus Natronorubrum, for which the name Natronorubrum sediminis sp. nov. is proposed; the type strain is CG-6T (=CECT 7487T =CGMCC 1.8981T =JCM 15982T).
Ly, Hoai J; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro
2017-01-01
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Arabian Peninsula. The causative agent, Rift Valley fever phlebovirus (RVFV), belongs to the genus Phlebovirus in the family Phenuiviridae and causes high rates of abortions in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral maintenance by mosquito vectors has led to sporadic RVF outbreaks in ruminants and humans in endemic countries, and effective vaccination of animals and humans may minimize the impact of this disease. A live-attenuated MP-12 vaccine strain is one of the best characterized RVFV strains, and was conditionally approved as a veterinary vaccine in the U.S. Live-attenuated RVF vaccines including MP-12 strain may form reassortant strains with other bunyavirus species. This study thus aimed to characterize the occurrence of genetic reassortment between the MP-12 strain and bunyavirus species closely related to RVFV. The Arumowot virus (AMTV) and Gouleako goukovirus (GOLV), are transmitted by mosquitoes in Africa. The results of this study showed that GOLV does not form detectable reassortant strains with the MP-12 strain in co-infected C6/36 cells. The AMTV also did not form any reassortant strains with MP-12 strain in co-infected C6/36 cells, due to the incompatibility among N, L, and Gn/Gc proteins. A lack of reassortant formation could be due to a functional incompatibility of N and L proteins derived from heterologous species, and due to a lack of packaging via heterologous Gn/Gc proteins. The MP-12 strain did, however, randomly exchange L-, M-, and S-segments with a genetic variant strain, rMP12-GM50, in culture cells. The MP-12 strain is thus unlikely to form any reassortant strains with AMTV or GOLV in nature.
Mitotic Arrest in Teratoma Susceptible Fetal Male Germ Cells
Western, Patrick S.; Ralli, Rachael A.; Wakeling, Stephanie I.; Lo, Camden; van den Bergen, Jocelyn A.; Miles, Denise C.; Sinclair, Andrew H.
2011-01-01
Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27KIP1, p15INK4B, activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility. PMID:21674058
Use of bacteriophage cell wall-binding proteins for rapid diagnostics of Listeria.
Schmelcher, Mathias; Loessner, Martin J
2014-01-01
Diagnostic protocols for food-borne bacterial pathogens such as Listeria need to be sensitive, specific, rapid, and inexpensive. Conventional culture methods are hampered by lengthy enrichment and incubation steps. Bacteriophage-derived high-affinity binding molecules (cell wall-binding domains, CBDs) specific for Listeria cells have recently been introduced as tools for detection and differentiation of this pathogen in foods. When coupled with magnetic separation, these proteins offer advantages in sensitivity and speed compared to the standard diagnostic methods. Furthermore, fusion of CBDs to differently colored fluorescent reporter proteins enables differentiation of Listeria strains in mixed cultures. This chapter provides protocols for detection of Listeria in food by CBD-based magnetic separation and subsequent multiplexed identification of strains of different serotypes with reporter-CBD fusion proteins.
Chemical and Stress Resistances of Clostridium difficile Spores and Vegetative Cells
Edwards, Adrianne N.; Karim, Samiha T.; Pascual, Ricardo A.; Jowhar, Lina M.; Anderson, Sarah E.; McBride, Shonna M.
2016-01-01
Clostridium difficile is a Gram-positive, sporogenic and anaerobic bacterium that causes a potentially fatal colitis. C. difficile enters the body as dormant spores that germinate in the colon to form vegetative cells that secrete toxins and cause the symptoms of infection. During transit through the intestine, some vegetative cells transform into spores, which are more resistant to killing by environmental insults than the vegetative cells. Understanding the inherent resistance properties of the vegetative and spore forms of C. difficile is imperative for the development of methods to target and destroy the bacterium. The objective of this study was to define the chemical and environmental resistance properties of C. difficile vegetative cells and spores. We examined vegetative cell and spore tolerances of three C. difficile strains, including 630Δerm, a 012 ribotype and a derivative of a past epidemic strain; R20291, a 027 ribotype and current epidemic strain; and 5325, a clinical isolate that is a 078 ribotype. All isolates were tested for tolerance to ethanol, oxygen, hydrogen peroxide, butanol, chloroform, heat and sodium hypochlorite (household bleach). Our results indicate that 630Δerm vegetative cells (630 spo0A) are more resistant to oxidative stress than those of R20291 (R20291 spo0A) and 5325 (5325 spo0A). In addition, 5325 spo0A vegetative cells exhibited greater resistance to organic solvents. In contrast, 630Δerm spores were more sensitive than R20291 or 5325 spores to butanol. Spores from all three strains exhibited high levels of resistance to ethanol, hydrogen peroxide, chloroform and heat, although R20291 spores were more resistant to temperatures in the range of 60–75°C. Finally, household bleach served as the only chemical reagent tested that consistently reduced C. difficile vegetative cells and spores of all tested strains. These findings establish conditions that result in vegetative cell and spore elimination and illustrate the resistance of C. difficile to common decontamination methods. These results further demonstrate that the vegetative cells and spores of various C. difficile strains have different resistance properties that may impact decontamination of surfaces and hands. PMID:27833595
Opsenica, Igor; Burnett, James C; Gussio, Rick; Opsenica, Dejan; Todorović, Nina; Lanteri, Charlotte A; Sciotti, Richard J; Gettayacamin, Montip; Basilico, Nicoletta; Taramelli, Donatella; Nuss, Jonathan E; Wanner, Laura; Panchal, Rekha G; Solaja, Bogdan A; Bavari, Sina
2011-03-10
A 1,7-bis(alkylamino)diazachrysene-based small molecule was previously identified as an inhibitor of the botulinum neurotoxin serotype A light chain metalloprotease. Subsequently, a variety of derivatives of this chemotype were synthesized to develop structure-activity relationships, and all are inhibitors of the BoNT/A LC. Three-dimensional analyses indicated that half of the originally discovered 1,7-DAAC structure superimposed well with 4-amino-7-chloroquinoline-based antimalarial agents. This observation led to the discovery that several of the 1,7-DAAC derivatives are potent in vitro inhibitors of Plasmodium falciparum and, in general, are more efficacious against CQ-resistant strains than against CQ-susceptible strains. In addition, by inhibiting β-hematin formation, the most efficacious 1,7-DAAC-based antimalarials employ a mechanism of action analogous to that of 4,7-ACQ-based antimalarials and are well tolerated by normal cells. One candidate was also effective when administered orally in a rodent-based malaria model. Finally, the 1,7-DAAC-based derivatives were examined for Ebola filovirus inhibition in an assay employing Vero76 cells, and three provided promising antiviral activities and acceptably low toxicities.
Opsenica, Igor; Burnett, James C.; Gussio, Rick; Opsenica, Dejan; Todorović, Nina; Lanteri, Charlotte A.; Sciotti, Richard J.; Gettayacamin, Montip; Basilico, Nicoletta; Taramelli, Donatella; Nuss, Jonathan E.; Wanner, Laura; Panchal, Rekha G.; Šolaja, Bogdan A.; Bavari, Sina
2011-01-01
A 1,7-bis(alkylamino)diazachrysene-based small molecule was previously identified as an inhibitor of the botulinum neurotoxin serotype A light chain metalloprotease. Subsequently, a variety of derivatives of this chemotype were synthesized to develop structure-activity relationships, and all are inhibitors of the BoNT/A LC. Three-dimensional analyses indicated that half of the originally discovered 1,7-DAAC structure superimposed well with 4-amino-7-chloroquinoline-based antimalarial agents. This observation led to the discovery that several of the 1,7-DAAC derivatives are potent in vitro inhibitors of Plasmodium falciparum, and in general, are more efficacious against CQ-resistant strains than against CQ-susceptible strains. In addition, by inhibiting β-hematin formation, the most efficacious 1,7-DAAC-based antimalarials employ a mechanism of action analogous to that of 4,7-ACQ-based antimalarials, and are well tolerated by normal cells. One candidate was also effective when administered orally in a rodent-based malaria model. Finally, the 1,7-DAAC-based derivatives were examined for Ebola filovirus inhibition in an assay employing Vero76 cells, and three provided promising antiviral activities and acceptably low toxicities. PMID:21265542
Loschiavo, F; Giarrizzo, S
1977-01-01
L Forms derived from strains of coagulase positive Staphylococcus aureus, have, on the whole, preserved their DNAsic, haemolitic and coagulastic activities. L. forms showed high resistence to antibiotics acting on the bacterial cell-wall. The sensibility to other antibiotics was, roughly, analogous for the L forms as well as for the bacterial strains ones, with the exception of the clortetraciclin and the diidrostreptomicin, ehich proved to be comparatively more active on the L forms.
Copper-free click reactions with polar bicyclononyne derivatives for modulation of cellular imaging.
Leunissen, E H P; Meuleners, M H L; Verkade, J M M; Dommerholt, J; Hoenderop, J G J; van Delft, F L
2014-07-07
The ability of cells to incorporate azidosugars metabolically is a useful tool for extracellular glycan labelling. The exposed azide moiety can covalently react with alkynes, such as bicyclo[6.1.0]nonyne (BCN), by strain-promoted alkyne-azide cycloaddition (SPAAC). However, the use of SPAAC can be hampered by low specificity of the cycloalkyne. In this article we describe the synthesis of more polar BCN derivatives and their properties for selective cellular glycan labelling. The new polar derivatives [amino-BCN, glutarylamino-BCN and bis(hydroxymethyl)-BCN] display reaction rates similar to those of BCN and are less cell-permeable. The labelling specificity in HEK293 cells is greater than that of BCN, as determined by confocal microscopy and flow cytometry. Interestingly, amino-BCN appears to be highly specific for the Golgi apparatus. In addition, the polar BCN derivatives label the N-glycan of the membrane calcium channel TRPV5 in HEK293 cells with significantly enhanced signal-to-noise ratios. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oppezzo, Oscar J; Costa, Cristina S; Pizarro, Ramón A
2011-01-10
Salmonella enterica serovar Typhimurium is an important pathogen, and exhibits considerable resistance to the lethal effects of solar radiation. To evaluate the involvement of the RpoS transcription factor in the defense mechanisms of this organism, the sunlight response of a wild type strain (ATCC14028) was compared with that of an rpoS mutant, which exhibited increased sensitivity. Kinetics of cell death was complex in both strains, probably due to the presence of a variety of targets for the radiation. When ultraviolet radiation was excluded from the incident sunlight, lethal effects were abolished independently of the allelic state of rpoS. Reduction of oxygen concentration in the irradiation medium provided moderate protection to ATCC14028, but notably improved survival of the mutant. Similar assays were developed with another S. enterica strain (DA1468), which is a derivative of strain LT2 and produces low levels of RpoS. In this strain the loss of viability reveals the dependence on solar ultraviolet and oxygen concentration found for ATCC14028, but radiation resistance was slightly reduced. Increased sensitivity was observed in an rpoS mutant derived from DA1468, indicating that RpoS functions related to photoprotection are conserved in this strain. In addition, notable differences in the shape of the survival curves obtained for mutants derived from ATCC14028 and DA1468 were found, suggesting that genes beyond RpoS control are relevant in the sunlight response of these mutants. Copyright © 2010 Elsevier B.V. All rights reserved.
Yu, Siran; Zhao, Zhehao; Sun, Liming; Li, Ping
2017-02-15
The discovery of microRNAs encapsulated in milk-derived exosomes has revealed stability under extreme conditions reflecting the protection of membranes. We attempted to determine the variations in nanoparticles derived from milk after fermentation, and provide evidence to determine the effects of these exosomes on cells with potential bioactivity. Using scanning electron microscopy and dynamic light scattering, we compared the morphology and particle size distribution of exosomes from yogurt fermented with three different combinations of strains with those from raw milk. The protein content of the exosome was significantly reduced in fermented milk. The cycle threshold showed that the expression of miR-29b and miR-21 was relatively high in raw milk, indicating a loss of microRNA after fermentation. Milk-derived exosomes could promote cell growth and activate the mitogen-activated protein kinase pathway. These findings demonstrated biological functions in milk exosomes and provided new insight into the nutrient composition of dairy products.
USDA-ARS?s Scientific Manuscript database
The yeast Saccharomyces cerevisiae is able to adapt and in situ detoxify lignocellulose derived inhibitors such as furfural and hydroxymethylfurfural (HMF). The length of lag phase for cell growth in response to the inhibitor challenge has been used to measure tolerance of strain performance. Mechan...
Nordberg, Rachel C; Bodle, Josie C; Loboa, Elizabeth G
2018-01-01
It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.
Miliotis, M D; Morris, J G; Cianciosi, S; Wright, A C; Wood, P K; Robins-Browne, R M
1990-08-01
The virulence plasmid (pYV) of Yersinia enterocolitica is necessary for production of conjunctivitis in guinea pigs and for mouse lethality. To identify the genes responsible for production of conjunctivitis in guinea pigs, we subcloned the BamHI and SalI restriction fragments of the virulence plasmid of Y. enterocolitica A2635 (serotype O:8) into derivatives of the broad-host-range plasmid pRK290 and introduced the constructions into plasmid-negative Y. enterocolitica strains. A mild, transient conjunctivitis was evident 24 h after inoculation with strains containing a 2.8-kilobase (kb) BamHI fragment of pYV. These strains were cytotoxic to HEp-2 cells but did not cause death in iron-loaded adult mice. When the 2.8- and adjacent 0.5-kb BamHI fragments were deleted from the virulence plasmid of a fully virulent Y. enterocolitica isolate, the resultant strain did not cause conjunctivitis in guinea pigs and was not cytotoxic to HEp-2 cells. However, the strain with the deletion appeared to be more virulent for mice, with more rapid dissemination after orogastric inoculation, compared with that of the parent strain. When the deletion was complemented by introduction of a plasmid containing the 2.8-kb BamHI fragment, the strain again caused conjunctivitis but had decreased virulence for mice.
Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells.
Miyake, Yoshiaki; Furumatsu, Takayuki; Kubota, Satoshi; Kawata, Kazumi; Ozaki, Toshifumi; Takigawa, Masaharu
2011-06-03
Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates α1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells. Copyright © 2011 Elsevier Inc. All rights reserved.
Torres, Alfredo G.; Giron, Jorge A.; Perna, Nicole T.; Burland, Valerie; Blattner, Fred R.; Avelino-Flores, Fabiola; Kaper, James B.
2002-01-01
The mechanisms underlying the adherence of Escherichia coli O157:H7 and other enterohemorrhagic E. coli (EHEC) strains to intestinal epithelial cells are poorly understood. We have identified a chromosomal region (designated lpfABCC′DE) in EHEC O157:H7 containing six putative open reading frames that was found to be closely related to the long polar (LP) fimbria operon (lpf) of Salmonella enterica serovar Typhimurium, both in gene order and in conservation of the deduced amino acid sequences. We show that lpfABCC′DE is organized as an operon and that its expression is induced during the exponential growth phase. The lpf genes from EHEC strain EDL933 were introduced into a nonfimbriated (Fim−) E. coli K-12 strain, and the transformed strain produced fimbriae as visualized by electron microscopy and adhered to tissue culture cells. Anti-LpfA antiserum recognized a ca. 16-kDa LpfA protein when expressed under regulation of the T7 promoter system. The antiserum also cross-reacted with the LP fimbriae in immunogold electron microscopy and Western blot experiments. Isogenic E. coli O157:H7 lpf mutants derived from strains 86-24 and AGT300 showed slight reductions in adherence to tissue culture cells and formed fewer microcolonies compared with their wild-type parent strains. The adherence and microcolony formation phenotypes were restored when the lpf operon was introduced on a plasmid. We propose that LP fimbriae participate in the interaction of E. coli O157:H7 with eukaryotic cells by assisting in microcolony formation. PMID:12228266
Mouse mutants from chemically mutagenized embryonic stem cells
Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.
2010-01-01
The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192
Yang, Shihui; Vera, Jessica M; Grass, Jeff; Savvakis, Giannis; Moskvin, Oleg V; Yang, Yongfu; McIlwain, Sean J; Lyu, Yucai; Zinonos, Irene; Hebert, Alexander S; Coon, Joshua J; Bates, Donna M; Sato, Trey K; Brown, Steven D; Himmel, Michael E; Zhang, Min; Landick, Robert; Pappas, Katherine M; Zhang, Yaoping
2018-01-01
Zymomonas mobilis is a natural ethanologen being developed and deployed as an industrial biofuel producer. To date, eight Z. mobilis strains have been completely sequenced and found to contain 2-8 native plasmids. However, systematic verification of predicted Z. mobilis plasmid genes and their contribution to cell fitness has not been hitherto addressed. Moreover, the precise number and identities of plasmids in Z. mobilis model strain ZM4 have been unclear. The lack of functional information about plasmid genes in ZM4 impedes ongoing studies for this model biofuel-producing strain. In this study, we determined the complete chromosome and plasmid sequences of ZM4 and its engineered xylose-utilizing derivatives 2032 and 8b. Compared to previously published and revised ZM4 chromosome sequences, the ZM4 chromosome sequence reported here contains 65 nucleotide sequence variations as well as a 2400-bp insertion. Four plasmids were identified in all three strains, with 150 plasmid genes predicted in strain ZM4 and 2032, and 153 plasmid genes predicted in strain 8b due to the insertion of heterologous DNA for expanded substrate utilization. Plasmid genes were then annotated using Blast2GO, InterProScan, and systems biology data analyses, and most genes were found to have apparent orthologs in other organisms or identifiable conserved domains. To verify plasmid gene prediction, RNA-Seq was used to map transcripts and also compare relative gene expression under various growth conditions, including anaerobic and aerobic conditions, or growth in different concentrations of biomass hydrolysates. Overall, plasmid genes were more responsive to varying hydrolysate concentrations than to oxygen availability. Additionally, our results indicated that although all plasmids were present in low copy number (about 1-2 per cell), the copy number of some plasmids varied under specific growth conditions or due to heterologous gene insertion. The complete genome of ZM4 and two xylose-utilizing derivatives is reported in this study, with an emphasis on identifying and characterizing plasmid genes. Plasmid gene annotation, validation, expression levels at growth conditions of interest, and contribution to host fitness are reported for the first time.
Ramani-Mohan, Ram-Kumar; Schwedhelm, Ivo; Finne-Wistrand, Anna; Krug, Melanie; Schwarz, Thomas; Jakob, Franz; Walles, Heike; Hansmann, Jan
2018-03-01
Mesenchymal stem cells play a major role during bone remodelling and are thus of high interest for tissue engineering and regenerative medicine applications. Mechanical stimuli, that is, deformation strain and interstitial fluid-flow-induced shear stress, promote osteogenic lineage commitment. However, the predominant physical stimulus that drives early osteogenic cell maturation is not clearly identified. The evaluation of each stimulus is challenging, as deformation and fluid-flow-induced shear stress interdepend. In this study, we developed a bioreactor that was used to culture mesenchymal stem cells harbouring a strain-responsive AP-1 luciferase reporter construct, on porous scaffolds. In addition to the reporter, mineralization and vitality of the cells was investigated by alizarin red staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Quantification of the expression of genes associated to bone regeneration and bone remodelling was used to confirm alizarin red measurements. Controlled perfusion and deformation of the 3-dimensional scaffold facilitated the alteration of the expression of osteogenic markers, luciferase activity, and calcification. To isolate the specific impact of scaffold deformation, a computational model was developed to derive a perfusion flow profile that results in dynamic shear stress conditions present in periodically loaded scaffolds. In comparison to actually deformed scaffolds, a lower expression of all measured readout parameters indicated that deformation strain is the predominant stimulus for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation. Copyright © 2017 John Wiley & Sons, Ltd.
Case, J Brad; Palmer, Ross; Valdes-Martinez, Alex; Egger, Erick L; Haussler, Kevin K
2013-05-01
To report clinical findings and outcome in a dog with gastrocnemius tendon strain treated with autologous mesenchymal stem cells and a custom orthosis. Clinical report. A 4-year-old spayed female Border Collie. Bone-marrow derived, autologous mesenchymal stem cells were transplanted into the tendon core lesion. A custom, progressive, dynamic orthosis was fit to the tarsus. Serial orthopedic examinations and ultrasonography as well as long-term force-plate gait analysis were utilized for follow up. Lameness subjectively resolved and peak vertical force increased from 43% to 92% of the contralateral pelvic limb. Serial ultrasonographic examinations revealed improved but incomplete restoration of normal linear fiber pattern of the gastrocnemius tendon. Findings suggest that autologous mesenchymal stem cell transplantation with custom, progressive, dynamic orthosis may be a viable, minimally invasive technique for treatment of calcaneal tendon injuries in dogs. © Copyright 2013 by The American College of Veterinary Surgeons.
Koyama, Satoshi; Fujita, Hiroyuki; Shimosato, Takeshi; Kamijo, Aki; Ishiyama, Yasufumi; Yamamoto, Eri; Ishii, Yoshimi; Hattori, Yukako; Hagihara, Maki; Yamazaki, Etsuko; Tomita, Naoto; Nakajima, Hideaki
2018-02-17
Probiotic-rich foods are consumed without much restriction. We report here, a case of septic shock caused by yogurt derived Lactobacillus species in a 54-year-old male patient with acute promyelocytic leukemia, in second complete remission, and who was an autologous stem cell transplantation recipient. He received high dose chemotherapy and autologous peripheral blood stem cell transplantation. He ingested commercially available probiotic-enriched yogurt because of severe diarrhea. One week later, he developed septic shock, and the pathogen was determined by strain-specific PCR analysis as Lactobacillus rhamnosus GG (ATCC 53103), which was found to be identical with the strain in the yogurt he consumed. Thus, because even low virulent Lactobacilli in the probiotic products can be pathogenic in the compromised hosts, ingestion of such products should be considered with caution in neutropenic patients with severe diarrhea, such as stem cell transplantation recipients.
Chu, Edward P F; Elso, Colleen M; Pollock, Abigail H; Alsayb, May A; Mackin, Leanne; Thomas, Helen E; Kay, Thomas W H; Silveira, Pablo A; Mansell, Ashley S; Gaus, Katharina; Brodnicki, Thomas C
2017-02-01
During immune cell activation, serine-derived lipids such as phosphatidylserine and sphingolipids contribute to the formation of protein signaling complexes within the plasma membrane. Altering lipid composition in the cell membrane can subsequently affect immune cell function and the development of autoimmune disease. Serine incorporator 1 (SERINC1) is a putative carrier protein that facilitates synthesis of serine-derived lipids. To determine if SERINC1 has a role in immune cell function and the development of autoimmunity, we characterized a mouse strain in which a retroviral insertion abolishes expression of the Serinc1 transcript. Expression analyses indicated that the Serinc1 transcript is readily detectable and expressed at relatively high levels in wildtype macrophages and lymphocytes. The ablation of Serinc1 expression in these immune cells, however, did not significantly alter serine-derived lipid composition or affect macrophage function and lymphocyte proliferation. Analyses of Serinc1-deficient mice also indicated that systemic ablation of Serinc1 expression did not affect viability, fertility or autoimmune disease susceptibility. These results suggest that Serinc1 is dispensable for certain immune cell functions and does not contribute to previously reported links between lipid composition in immune cells and autoimmunity. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Fungal Metabolite, Pyrrocidine A, induces Apoptosis in HEPG2 Hepatocytes and PK15 Renal Cells
USDA-ARS?s Scientific Manuscript database
Pyrrocidines are polyketide-amino acid-derived antibiotics produced by Acremonium zeae, a prevalent seed-borne endophyte of corn. Pyrrocidines exhibit potent activity against Gram-positive bacteria, including drug resistant strains, and display significant activity against Candida albicans, as well...
Chuang, Olivia N.; Schlievert, Patrick M.; Wells, Carol L.; Manias, Dawn A.; Tripp, Timothy J.; Dunny, Gary M.
2009-01-01
Aggregation substance proteins encoded by sex pheromone plasmids increase the virulence of Enterococcus faecalis in experimental pathogenesis models, including infectious endocarditis models. These large surface proteins may contain multiple functional domains involved in various interactions with other bacterial cells and with the mammalian host. Aggregation substance Asc10, encoded by plasmid pCF10, is induced during growth in the mammalian bloodstream, and pCF10 carriage gives E. faecalis a significant selective advantage in this environment. We employed a rabbit model to investigate the role of various functional domains of Asc10 in endocarditis. The data suggested that the bacterial load of the infected tissue was the best indicator of virulence. Isogenic strains carrying either no plasmid, wild-type pCF10, a pCF10 derivative with an in-frame deletion of the prgB gene encoding Asc10, or pCF10 derivatives expressing other alleles of prgB were examined in this model. Previously identified aggregation domains contributed to the virulence associated with the wild-type protein, and a strain expressing an Asc10 derivative in which glycine residues in two RGD motifs were changed to alanine residues showed the greatest reduction in virulence. Remarkably, this strain and the strain carrying the pCF10 derivative with the in-frame deletion of prgB were both significantly less virulent than an isogenic plasmid-free strain. The data demonstrate that multiple functional domains are important in Asc10-mediated interactions with the host during the course of experimental endocarditis and that in the absence of a functional prgB gene, pCF10 carriage is actually disadvantageous in vivo. PMID:18955479
Guo, Jian-Kan; Shi, Hongmei; Koraishy, Farrukh; Marlier, Arnaud; Ding, Zhaowei; Shan, Alan; Cantley, Lloyd G
2013-11-01
Biomedical research often requires primary cultures of specific cell types, which are challenging to obtain at high purity in a reproducible manner. Here we engineered the murine Rosa26 locus by introducing the diphtheria toxin receptor flanked by loxP sites. The resultant strain was nicknamed the Terminator mouse. This approach results in diphtheria toxin-receptor expression in all non-Cre expressing cell types, making these cells susceptible to diphtheria toxin exposure. In primary cultures of kidney cells derived from the Terminator mouse, over 99.99% of cells were dead within 72 h of diphtheria toxin treatment. After crossing the Terminator with the podocin-Cre (podocyte specific) mouse or the Ggt-Cre (proximal tubule specific) mouse, diphtheria toxin treatment killed non-Cre expressing cells but spared podocytes and proximal tubule cells, respectively, enriching the primary cultures to over 99% purity, based on both western blotting and immunostaining of marker proteins. Thus, the Terminator mouse can be a useful tool to selectively and reproducibly obtain even low-abundant cell types at high quantity and purity.
Cookson, A L; Wray, A; Handley, P S; Jacob, A E
1996-02-15
By comparison of the cell surface proteins derived from the outer membrane and fibrils from 14 Prevotella intermedia and 19 Prevotella nigrescens strains using SDS and analysed by SDS-PAGE, it was possible to distinguish the two species. A polypeptide of approx. 21 kDa distinguished P. intermedia strains, whereas two polypeptides of approx. 18 and 22 kDa could be used to identify P. nigrescens strains. Four other human oral black pigmented bacterial species (Porphyromonas gingivalis, Prevotella denticola, Prevotella loescheii and Prevotella melaninogenica) did not have the 18-, 21- or 22-kDa polypeptides shown by P. intermedia or P. nigrescens. The cell-associated proteolytic activity of eight strains of P. intermedia, 14 strains of P. nigrescens and one strain of P. gingivalis (W50) was assessed using four chromogenic substrates. The hydrolysis of the substrate GPPNA (indicative of dipeptidyl peptidase IV-like activity) and SAAPPNA (elastase-like activity) by P. intermedia strains varied from 32 to 114 units and 0.5 to 12.6 units of activity respectively, where one unit was defined as the amount of protease enzyme catalysing the formation of 1 nmol of p-nitroaniline under experimental conditions. 37.5% (3 of 8) of P. intermedia strains hydrolysed SAAPPNA (chymotrypsin-like enzyme activity) with activities of between 7 and 12 units. The hydrolysis of GPPNA and SAAAPNA by P. nigrescens strains was 32-149 and 3-16 units, respectively. 57% (8 of 14) of P. nigrescens strains hydrolysed SAAPPPNA with activities ranging from 3 to 8 units. None of the P. intermedia or P. nigrescens strains examined were found to have trypsin-like enzyme activity (BAPNA hydrolysis). The GPPNA and SAAAPNA hydrolytic activity associated with the proteases from Porphyromonas gingivalis W50 was at least twice that of P. intermedia and P. nigrescens strains. The similar peptidase activities of P. intermedia and P. nigrescens against chromogenic substrates cannot be used to differentiate the species, but SDS-PAGE of cell surface protein extracts allowed unambiguous speciation between P. intermedia and P. nigrescens. This simple technique of cell surface protein analysis can be performed in most laboratories and offers a convenient way by which to differentiate the two species.
Secondary metabolites from marine-derived Streptomyces antibioticus strain H74-21.
Fu, Shuna; Wang, Fan; Li, Hongyu; Bao, Yixuan; Yang, Yu; Shen, Huifang; Lin, Birun; Zhou, Guangxiong
2016-11-01
A new secondary metabolite, (2S,3R)-l-threonine, N-[3-(formylamino)-2-hydroxybenzoyl]-ethyl ester (streptomyceamide C, 1), together with four known compounds 1, 4-dimethyl-3-isopropyl-2,5-piperidinedione (2), cyclo-((S)-Pro-8- hydroxy-(R)-Ile (3), cyclo-((S)-Pro-(R)-Leu (4), and seco-((S)-Pro-(R)-Val) (5), were isolated from the EtOH extract of the fermented mycelium of the marine-derived streptomycete strain H74-21, which was isolated from sea sediment in a mangrove site. The structure of the new compound was established on the basis of its spectroscopic data, including 1D and 2D NMR, HR-TOF-MS. Their antifungal activities against Candida albicans and cytotoxicities against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268 and human lung cancer cell line NCI-H460 were tested. Compounds 1 only displayed cytotoxicity against human breast adenocarcinoma cell line MCF-7 with the IC50 value of 27.0 μg/mL. However, compounds 1-5 do not show antifungal activities at the test concentration of 1 mg/mL, and 2-5 have no cytotoxicities at the test concentration of 50 μg/mL.
Shimada, Nao; Maeda, Mineko; Urushihara, Hideko; Kawata, Takefumi
2004-09-01
Signal Transducers and Activators of Transcription (STATs) are transcription factors which lie at the end of cytokine and growth signal transduction pathways. Dictyostelium Dd-STATa is a functional homologue of metazoan STATs. It is activated by cAMP and, at the slug stage, it translocates into the nuclei of the tip cells, which are a subset of the anterior, prestalk A (pstA) cells. Here we searched for novel Dd-STATa regulated genes by in situ hybridisation. A set of 54 cDNA clones whose gene expression patterns are known to be prestalk-specific (Maeda et al., 2003), were chosen as probes and we compared their expression patterns in parental and Dd-STATa-null strains. We identified 13 genes which are candidates for direct induction by Dd-STATa. In the parental strain, most of these genes are expressed in the cone shaped mass of pstAB cells which is located within the prestalk region. These cDNAs show little or no expression in the Dd-STATa-null strain. This contrasts markedly with the paradigmatic ecmB gene which is expressed in pstAB cells in parental cells, but which is expressed throughout the prestalk zone in the Dd-STATa-null strain. We also identified several genes which are normally expressed in pstA cells, or throughout the prestalk region, but whose expression is markedly down-regulated in the null mutant. Again, this contrasts with markers derived from the paradigmatic, ecmA gene which are expressed normally in the Dd-STATa-null strain. The identification of these novel genes provides valuable tools to investigate the role of Dd-STATa.
Chentoufi, Aziz A.; Kritzer, Elizabeth; Tran, Michael V.; Dasgupta, Gargi; Lim, Chang Hyun; Yu, David C.; Afifi, Rasha E.; Jiang, Xianzhi; Carpenter, Dale; Osorio, Nelson; Hsiang, Chinhui; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir
2011-01-01
Following ocular herpes simplex virus 1 (HSV-1) infection of C57BL/6 mice, HSV-specific (HSV-gB498–505 tetramer+) CD8+ T cells are induced, selectively retained in latently infected trigeminal ganglia (TG), and appear to decrease HSV-1 reactivation. The HSV-1 latency-associated transcript (LAT) gene, the only viral gene that is abundantly transcribed during latency, increases reactivation. Previously we found that during latency with HSV-1 strain McKrae-derived viruses, more of the total TG resident CD8 T cells expressed markers of exhaustion with LAT+ virus compared to LAT− virus. Here we extend these findings to HSV-1 strain 17syn+-derived LAT+ and LAT− viruses and to a virus expressing just the first 20% of LAT. Thus, the previous findings were not an artifact of HSV-1 strain McKrae, and the LAT function involved mapped to the first 1.5 kb of LAT. Importantly, to our knowledge, we show here for the first time that during LAT+ virus latency, most of the HSV-1-specific TG resident CD8 T cells were functionally exhausted, as judged by low cytotoxic function and decreased gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) production. This resulted in LAT− TG having more functional HSV-gB498–505 tetramer+ CD8+ T cells compared to LAT+ TG. In addition, LAT expression, in the absence of other HSV-1 gene products, appeared to be able to directly or indirectly upregulate both PD-L1 and major histocompatibility complex class I (MHC-I) on mouse neuroblastoma cells (Neuro2A). These findings may constitute a novel immune evasion mechanism whereby the HSV-1 LAT directly or indirectly promotes functional exhaustion (i.e., dysfunction) of HSV-specific CD8+ T cells in latently infected TG, resulting in increased virus reactivation. PMID:21715478
Piwat, S; Sophatha, B; Teanpaisan, R
2015-07-01
There is limited information concerning the adhesion and aggregation of human oral lactobacilli. In this study, the adhesion of 10 Lactobacillus species was investigated using H357 oral keratinocyte cells as an in vitro model for oral mucosa. Coaggregation with the representative oral pathogen, Streptococcus mutans ATCC 25175, and the physicochemical cell properties was also evaluated. The results demonstrated significant variations in adhesion (42-96%) and aggregation (autoaggregation, 14-95%; coaggregation, 19-65%). All strains showed a high affinity for chloroform, and most strains had a moderate-to-high hydrophobicity. All strains, except Lactobacillus casei and Lactobacillus gasseri, showed a moderate affinity for ethyl acetate. There was a strong association of autoaggregation with coaggregation (rs = 0·883, P < 0·001). The highest mean for autoaggregation (74%) and coaggregation (47%) belonged to the Lact. gasseri strains. Correlations between the adhesion and surface characteristics and aggregation were observed among the Lactobacillus fermentum and Lactobacillus paracasei strains; however, there was a variation in the strains properties within and between species. This study indicated that the Lact. gasseri, Lact. fermentum, and Lact. paracasei strains might be potential probiotics for the human oral cavity given their desirable properties. It should also be emphasized that a selective process for probiotic strains is required. Adhesion to host tissues and bacterial aggregation (auto- and coaggregation) are the highly important criteria for selecting strains with probiotic potential. These abilities are commonly involved with surface-charged characteristics. This is the first study to investigate the oral Lactobacillus species using an oral keratinocyte cell line. Significant results were found for the correlations between the adhesion and surface charge characteristics and for aggregation among certain strains of Lactobacillus gasseri, Lactobacillus fermentum and Lactobacillus paracasei. This observation could be useful when collecting background information for the selection of probiotic strains for use in oral health. © 2015 The Society for Applied Microbiology.
O'Callaghan, John; Buttó, Ludovica F; MacSharry, John; Nally, Kenneth; O'Toole, Paul W
2012-08-01
Lactobacillus salivarius strain UCC118 is a human intestinal isolate that has been extensively studied for its potential probiotic effects in human and animal models. The objective of this study was to determine the effect of L. salivarius UCC118 on gene expression responses in the Caco-2 cell line to improve understanding of how the strain might modulate intestinal epithelial cell phenotypes. Exposure of Caco-2 cells to UCC118 led to the induction of several human genes (TNFAIP3, NFKBIA, and BIRC3) that are negative regulators of inflammatory signaling pathways. Induction of chemokines (CCL20, CXCL-1, and CXCL-2) with antimicrobial functions was also observed. Disruption of the UCC118 sortase gene srtA causes reduced bacterial adhesion to epithelial cells. Transcription of three mucin genes was reduced significantly when Caco-2 cells were stimulated with the ΔsrtA derivative of UCC118 compared to cells stimulated with the wild type, but there was no significant change in the transcription levels of the anti-inflammatory genes. UCC118 genes that were significantly upregulated upon exposure to Caco-2 cells were identified by bacterial genome microarray and consisted primarily of two groups of genes connected with purine metabolism and the operon for synthesis of the Abp118 bacteriocin. Following incubation with Caco-2 cells, the bacteriocin synthesis genes were transcribed at higher levels in the wild type than in the ΔsrtA derivative. These data indicate that L. salivarius UCC118 influences epithelial cells both through modulation of the inflammatory response and by modulation of intestinal cell mucin production. Sortase-anchored cell surface proteins of L. salivarius UCC118 have a central role in promoting the interaction between the bacterium and epithelial cells.
Wakayama, Sayaka; Wakayama, Teruhiko
2010-01-01
Nuclear transfer-derived ES (ntES) cell lines can be established from somatic cell nuclei with a relatively high success rate. Although ntES cells have been shown to be equivalent to ES cells, there are ethical objections concerning human cells, such as the use of fresh oocyte donation from young healthy woman. In contrast, the use of induced pluripotent stem (iPS) cells for cloning poses few ethical problems and is a relatively easy technique compared with nuclear transfer. Therefore, although there are several reports proposing the use of ntES cells as a model of regenerative medicine, the use of these cells in preliminary medical research is waning. However, in theory, 5 to 10 donor cells can establish one ntES cell line and, once established, these cells will propagate indefinitely. These cells can be used to generate cloned animals from ntES cell lines using a second round of NT. Even in infertile and "unclonable" strains of mice, we can generate offspring from somatic cells by combining cloning with ntES technology. Moreover, cloned offspring can be generated potentially even from the nuclei of dead bodies or freeze-dried cells via ntES cells, such as from an extinct frozen animal. Currently, only the ntES technology is available for this purpose, because all other techniques, including iPS cell derivation, require significant numbers of living donor cells. This review describes how to improve the efficiency of cloning, the establishment of clone-derived embryonic stem cells and further applications.
Guo, X-L; Leng, P; Yang, Y; Yu, L-G; Lou, H-X
2008-03-01
In this study, we investigated the effect of plagiochin E (PLE), a botanic-derived phenolic natural product, on reversal of fungal resistance to fluconazole (FLC) in vitro and the related mechanism. A synergistic action of PLE and FLC was observed in the FLC-resistant Candida albicans strains and was evaluated using the fractional inhibited concentration index. The effect of PLE on FLC intracellular uptake was investigated in FLC-resistant C. albicans cells by liquid chromatography-tandem mass spectrometry, and the effect on efflux drug pump was assessed by measuring the efflux of Rhodamine 123 (Rh123). PLE significantly inhibited the efflux, but not the absorption, of Rh123 in FLC-resistant strains in phosphate-buffered saline with 5% glucose. Overexpression of the multidrug-resistance gene CDR1 in FLC-resistant C. albicans isolates was detected, and the introduction of PLE to the cells showed a significant reduction of the CDR1 expression in those FLC-resistant isolates. These findings indicate that PLE could reverse the fungal resistant to FLC by inhibiting the efflux of FLC from C. albicans, and this effect may be related to the efflux pump. These results indicate that the combination of PLE and FLC may provide an approach for the clinical therapy of fungus infection induced by FLC-resistant strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, W.; Mittal, A.; Mohagheghi, A.
PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose,more » glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.« less
Vargas Casanova, Yerly; Rodríguez Guerra, Jorge Antonio; Umaña Pérez, Yadi Adriana; Leal Castro, Aura Lucía; Almanzar Reina, Giovanni; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny
2017-09-29
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B, containing the RRWQWR motif, were designed, synthesized, purified, and characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry. The antibacterial activity of the designed peptides against E. coli (ATCC 11775 and 25922) and their cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines were evaluated. Dimeric and tetrameric peptides showed higher antibacterial activity in both bacteria strains than linear peptides. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strains. Furthermore, the peptides with high antibacterial activity exhibited significant cytotoxic effect against the tested breast cancer cell lines. This cytotoxic effect was fast and dependent on the peptide concentration. The tetrameric molecule containing RRWQWR motif has an optimal cytotoxic effect at a concentration of 22 µM. The evaluated dimeric and tetrameric peptides could be considered as candidates for developing new therapeutic agents against breast cancer. Polyvalence of linear sequences could be considered as a novel and versatile strategy for obtaining molecules with high anticancer activity.
Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells.
Jeon, Hyejin; Oh, Man Hwan; Jun, So Hyun; Kim, Seung Il; Choi, Chi Won; Kwon, Hyo Il; Na, Seok Hyeon; Kim, Yoo Jeong; Nicholas, Asiimwe; Selasi, Gati Noble; Lee, Je Chul
2016-04-01
Staphylococcus aureus secretes membrane-derived vesicles (MVs), which can deliver virulence factors to host cells and induce cytopathology. However, the cytopathology of host cells induced by MVs derived from different S. aureus strains has not yet been characterized. In the present study, the cytotoxic activity of MVs from different S. aureus isolates on host cells was compared and the proteomes of S. aureus MVs were analyzed. The MVs purified from S. aureus M060 isolated from a patient with staphylococcal scalded skin syndrome showed higher cytotoxic activity toward host cells than that shown by MVs from three other clinical S. aureus isolates. S. aureus M060 MVs induced HEp-2 cell apoptosis in a dose-dependent manner, but the cytotoxic activity of MVs was completely abolished by treatment with proteinase K. In a proteomic analysis, the MVs from three S. aureus isolates not only carry 25 common proteins, but also carry ≥60 strain-specific proteins. All S. aureus MVs contained δ-hemolysin (Hld), γ-hemolysin, leukocidin D, and exfoliative toxin C, but exfoliative toxin A (ETA) was specifically identified in S. aureus M060 MVs. ETA was delivered to HEp-2 cells via S. aureus MVs. Both rETA and rHld induced cytotoxicity in HEp-2 cells. In conclusion, MVs from clinical S. aureus isolates differ with respect to cytotoxic activity in host cells, and these differences may result from differences in the MV proteomes. Further proteogenomic analysis or mutagenesis of specific genes is necessary to identify cytotoxic factors in S. aureus MVs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger
2014-07-25
Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolatedmore » and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.« less
Yap, May Shin; Tang, Yin Quan; Yeo, Yin; Lim, Wei Ling; Lim, Lee Wei; Tan, Kuan Onn; Richards, Mark; Othman, Iekhsan; Poh, Chit Laa; Heng, Boon Chin
2016-01-06
The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials. This study thus investigated whether neural lineages derived from pluripotent human embryonic stem cells (hESC) can fulfil this purpose. EV71 infection of hESC-derived neural stem cells (NSC) and mature neurons (MN) was carried out in vitro, in comparison with RD and SH-SY5Y cell lines. Upon assessment of post-infection survivability and EV71 production by the various types, it was observed that NSC were significantly more susceptible to EV71 infection compared to MN, RD (rhabdomyosarcoma) and SH-SY5Y cells, which was consistent with previous studies on mice. The SP81 peptide had significantly greater inhibitory effect on EV71 production by NSC and MN compared to the cancer-derived RD and SH-SY5Y cell lines. Hence, this study demonstrates that hESC-derived neural lineages can be utilized as in vitro models for studying EV71 pathogenesis and for screening of antiviral therapeutics.
Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.
1999-01-01
Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576
Silva, Ellen C C; Cavalcanti, Bruno C; Amorim, Rodrigo C N; Lucena, Jorcilene F; Quadros, Dulcimar S; Tadei, Wanderli P; Montenegro, Raquel C; Costa-Lotufo, Letícia V; Pessoa, Cláudia; Moraes, Manoel O; Nunomura, Rita C S; Nunomura, Sergio M; Melo, Marcia R S; Andrade-Neto, Valter F de; Silva, Luiz Francisco R; Vieira, Pedro Paulo R; Pohlit, Adrian M
2009-02-01
In the present study, in vitro techniques were used to investigate a range of biological activities of known natural quassinoids isobrucein B (1) and neosergeolide (2), known semi-synthetic derivative 1,12-diacetylisobrucein B (3), and a new semi-synthetic derivative, 12-acetylneosergeolide (4). These compounds were evaluated for general toxicity toward the brine shrimp species Artemia franciscana, cytotoxicity toward human tumour cells, larvicidal activity toward the dengue fever mosquito vector Aedes aegypti, haemolytic activity in mouse erythrocytes and antimalarial activity against the human malaria parasite Plasmodium falciparum. Compounds 1 and 2 exhibited the greatest cytotoxicity against all the tumor cells tested (IC50 = 5-27 microg/L) and against multidrug-resistant P. falciparum K1 strain (IC50 = 1.0-4.0 g/L) and 3 was only cytotoxic toward the leukaemia HL-60 strain (IC50 = 11.8 microg/L). Quassinoids 1 and 2 (LC50 = 3.2-4.4 mg/L) displayed greater lethality than derivative 4 (LC50 = 75.0 mg/L) toward A. aegypti larvae, while derivative 3 was inactive. These results suggest a novel application for these natural quassinoids as larvicides. The toxicity toward A. franciscana could be correlated with the activity in several biological models, a finding that is in agreement with the literature. Importantly, none of the studied compounds exhibited in vitro haemolytic activity, suggesting specificity of the observed cytotoxic effects. This study reveals the biological potential of quassinoids 1 and 2 and to a lesser extent their semi-synthetic derivatives for their in vitro antimalarial and cytotoxic activities.
UV damage-specific DNA-binding protein in xeroderma pigmentosum complementation group E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, H.; Fujiwara, Y.
1991-03-29
The gel mobility shift assay method revealed a specifically ultraviolet (UV) damage recognizing, DNA-binding protein in nuclear extracts of normal human cells. The resulted DNA/protein complexes caused the two retarded mobility shifts. Four xeroderma pigmentosum complementation group E (XPE) fibroblast strains derived from unrelated Japanese families were not deficient in such a DNA damage recognition/binding protein because of the normal complex formation and gel mobility shifts, although we confirmed the reported lack of the protein in the European XPE (XP2RO and XP3RO) cells. Thus, the absence of this binding protein is not always commonly observed in all the XPE strains,more » and the partially repair-deficient and intermediately UV-hypersensitive phenotype of XPE cells are much similar whether or not they lack the protein.« less
Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides.
Antoszczak, Michał; Maj, Ewa; Napiórkowska, Agnieszka; Stefańska, Joanna; Augustynowicz-Kopeć, Ewa; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam
2014-11-25
A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.
Guillon, Jean; Cohen, Anita; Gueddouda, Nassima Meriem; Das, Rabindra Nath; Moreau, Stéphane; Ronga, Luisa; Savrimoutou, Solène; Basmaciyan, Louise; Monnier, Alix; Monget, Myriam; Rubio, Sandra; Garnerin, Timothée; Azas, Nadine; Mergny, Jean-Louis; Mullié, Catherine; Sonnet, Pascal
2017-12-01
Novel series of bis- and tris-pyrrolo[1,2-a]quinoxaline derivatives 1 were synthesized and tested for in vitro activity upon the intraerythrocytic stage of W2 and 3D7 Plasmodium falciparum strains. Biological results showed good antimalarial activity with IC 50 in the μM range. In attempting to investigate the large broad-spectrum antiprotozoal activities of these new derivatives, their properties toward Leishmania donovani were also investigated and revealed their selective antiplasmodial profile. In parallel, the in vitro cytotoxicity of these molecules was assessed on the human HepG2 cell line. Structure-activity relationships of these new synthetic compounds are discussed here. The bis-pyrrolo[1,2-a]quinoxalines 1n and 1p were identified as the most potent antimalarial candidates with selectivity index (SI) of 40.6 on W2 strain, and 39.25 on 3D7 strain, respectively. As the telomeres of the parasite could constitute an attractive target, we investigated the possibility of targeting Plasmodium telomeres by stabilizing the Plasmodium telomeric G-quadruplexes through a FRET melting assay by our new compounds.
Garcia, Estefânia Fernandes; de Oliveira Araújo, Amanda; Luciano, Winnie Alencar; de Albuquerque, Thatyane Mariano Rodrigues; de Oliveira Arcanjo, Narciza Maria; Madruga, Marta Suely; Dos Santos Lima, Marcos; Magnani, Marciane; Saarela, Maria; de Souza, Evandro Leite
2018-03-30
This study assessed the survival of the fruit-derived and freeze-dried L. plantarum 49, L. brevis 59, L. paracasei 108, L. fermentum 111 and L. pentosus 129 strains during frozen storage and when incorporated into apple, orange and grape juice stored under refrigeration. Physicochemical parameters of juices containing the freeze-dried Lactobacillus strains and the survival of the test strains in the fruit juices during in vitro digestion were also evaluated. No decreases in survival rates (log N/log N0) of the freeze-dried cells were observed up to 1 month of storage. The survival rates of the freeze-dried strains L. plantarum 49 and L. paracasei 108 were >0.75 up to 4 months of storage. All freeze-dried strains exhibited survival rates of >0.75 up to 2 weeks of storage in apple juice; only L. plantarum 49 and L. paracasei 108 showed similar survival rates in orange and grape juices up to 2 weeks of storage. The contents of the monitored organic acids or sugars during storage varied depending on the added strain and the type of fruit juice. At the end of the in vitro digestion, L. brevis 59, L. paracasei 108 and L. fermentum 111 showed survival rates of >0.80 in apple juice. Apple juice was as the best substrate to the survival of the tested freeze-dried Lactobacillus strains over time. L. paracasei 108 and L. plantarum 49 as the strains presenting the best performance for incorporation in potentially probiotic fruit juices. This article is protected by copyright. All rights reserved.
Chaudhury, Aritra; Ghosh, Rina
2017-02-07
Bacterial rare amino deoxy sugars are found in the cell surface polysaccharides of multiple pathogenic bacterial strains, but are absent in the human metabolism. This helps in the differentiation between pathogens and host cells which can be exploited for target specific drug discovery and carbohydrate based vaccine development. The principal bacterial atypical sugar derivatives include 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose (AAT), 2,4-diacetamido-2,4,6-trideoxy-d-galactose (DATDG) and N-acetylfucosamine (FucNAc). Herein, a highly streamlined protocol leading to the aforesaid derivatives is presented. The highlights of the method lie in radical mediated 6-deoxygenation along with a one-pot like protection profile manipulation on suitably derivatised d-glucosamine or d-mannose motifs to obtain a vital quinovosaminoside or rhamnoside from which rare sugar derivatives were synthesized in a diversity oriented manner.
Lee, Peiyu; Knight, Ronald; Smit, Jolanda M.; Wilschut, Jan; Griffin, Diane E.
2002-01-01
The amino acid at position 55 of the E2 glycoprotein (E255) of Sindbis virus (SV) is a critical determinant of SV neurovirulence in mice. Recombinant virus strain TE (E255 = histidine) differs only at this position from virus strain 633 (E255= glutamine), yet TE is considerably more neurovirulent than 633. TE replicates better than 633 in a neuroblastoma cell line (N18), but similarly in BHK cells. Immunofluorescence staining showed that most N18 cells were infected by TE at a multiplicity of infection (MOI) of 50 to 500 and by 633 only at an MOI of 5,000, while both viruses infected essentially 100% of BHK cells at an MOI of 5. When exposed to pH 5, TE and 633 viruses fused to similar extents with liposomes derived from BHK or N18 cell lipids, but fusion with N18-derived liposomes was less extensive (15 to 20%) than fusion with BHK-derived liposomes (∼50%). Binding of TE and 633 to N18, but not BHK, cells was dependent on the medium used for virus binding. Differences between TE and 633 binding to N18 cells were evident in Dulbecco's modified Eagle medium (DMEM), but not in RPMI. In DMEM, the binding efficiency of 633 decreased significantly as the pH was raised from 6.5 to 8.0, while that of TE did not change. The same pattern was observed with RPMI when the ionic strength of RPMI was increased to that of DMEM. TE bound better to heparin-Sepharose than 633, but this difference was not pH dependent. Growth of N18 and BHK cells in sodium chlorate to eliminate all sulfation decreased virus-cell binding, suggesting the involvement of sulfated molecules on the cell surface. Taken together, the presence of glutamine at E255 impairs SV binding to neural cells under conditions characteristic of interstitial fluid. We conclude that mutation to histidine participates in or stabilizes the interaction between the virus and the surface of neural cells, contributing to greater neurovirulence. PMID:12021363
Doersen, C J; Stanbridge, E J
1981-04-01
HeLa cells sensitive to the mitochondrial protein synthesis inhibitors erythromycin (ERY) and chloramphenicol (CAP) and HeLa variants resistant to the effects of these drugs were purposefully infected with drug-sensitive and -resistant mycoplasma strains. Mycoplasma hyorhinis and the ERY-resistant strain of Mycoplasma orale, MO-ERYr, did not influence the growth of HeLa and ERY-resistant ERY2301 cells in the presence or absence of ERY. M. hyorhinis also did not affect the growth of HeLa and CAP-resistant Cap-2 cells in the presence or absence of CAP. However, both HeLa and Cap-2 cells infected with the CAP-resistant strain of M. hyorhinis, MH-CAPr, were more sensitive to the cytotoxic effect of CAP. This may be due to the glucose dependence of the cells, which was compromised by the increased utilization of glucose by MH-CAPr in these infected cell cultures. In vitro protein synthesis by isolated mitochondria was significantly altered by mycoplasma infection of the various cell lines. A substantial number of mycoplasmas copurified with the mitochondria, resulting in up to a sevenfold increase in the incorporation of [3H]leucine into the trichloroacetic acid-insoluble material. More importantly, the apparent drug sensitivity or resistance of mitochondrial preparations from mycoplasma-infected cells reflected the drug sensitivity or resistance of the contaminating mycoplasmas. These results illustrate the hazards in interpreting mitochondrial protein synthesis data derived from mycoplasma-infected cell lines, particularly putative mitochondrially encoded mutants resistant to inhibitors of mitochondrial protein synthesis.
Comparative analysis of envelope proteomes in Escherichia coli B and K-12 strains.
Han, Mee-Jung; Lee, Sang Yup; Hong, Soon Ho
2012-04-01
Recent genome comparisons of E. coli B and K-12 strains have indicated that the makeup of the cell envelopes in these two strains is quite different. Therefore, we analyzed and compared the envelope proteomes of E. coli BL21(DE3) and MG1655. A total of 165 protein spots, including 62 nonredundant proteins, were unambiguously identified by two-dimensional gel electrophoresis and mass spectrometry. Of these, 43 proteins were conserved between the two strains, whereas 4 and 16 strain-specific proteins were identified only in E. coli BL21(DE3) and MG1655, respectively. Additionally, 24 proteins showed more than 2-fold differences in intensities between the B and K-12 strains. The reference envelope proteome maps showed that E. coli envelope mainly contained channel proteins and lipoproteins. Interesting proteomic observations between the two strains were as follows: (i) B produced more OmpF porin with a larger pore size than K-12, indicating an increase in the membrane permeability; (ii) B produced higher amounts of lipoproteins, which facilitates the assembly of outer membrane beta-barrel proteins; and (iii) motility- (FliC) and chemotaxis-related proteins (CheA and CheW) were detected only in K-12, which showed that E. coli B is restricted with regard to migration under unfavorable conditions. These differences may influence the permeability and integrity of the cell envelope, showing that E. coli B may be more susceptible than K-12 to certain stress conditions. Thus, these findings suggest that E. coli K-12 and its derivatives will be more favorable strains in certain biotechnological applications, such as cell surface display or membrane engineering studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, A.D.; Barrett, S.F.; Robbins, J.H.
1978-04-01
Xeroderma pigmentosum is an autosomal recessive disease in which DNA repair processes are defective. All xeroderma pigmentosum patients develop premature aging of sun exposed skin, and some develop neurological abnormalities due to premature death of nerve cells. Sensitivity to ultraviolet radiation of 24 xeroderma pigmentosum fibroblast strains was studied in vitro by measuring each strain's ability to divide and form colonies after irradiation. The most sensitive strains were derived from patients who had an early onset of neurological abnormalities; less sensitive strains were from patients with a later onset; and the most resistant strains were from patients without neurological abnormalities.more » The uv sensitivities of strains from each member of a sibling pair with xeroderma pigmentosum were identical, indicating that uv sensitivity of xeroderma pigmentosum strains is determined by the patient's inherited DNA repair defect. The results suggest that effective DNA repair is required to maintain the functional integrity of the human nervous system by preventing premature death of neurons.« less
2013-01-01
G protein–coupled receptor 84 (GPR84) is a 7-transmembrane protein expressed on myeloid cells that can bind to medium-chain free fatty acids in vitro. Here, we report the discovery of a 2-bp frameshift deletion in the second exon of the Gpr84 gene in several classical mouse inbred strains. This deletion generates a premature stop codon predicted to result in a truncated protein lacking the transmembrane domains 4-7. We sequenced Gpr84 exon 2 from 58 strains representing different groups in the mouse family tree and found that 14 strains are homozygous for the deletion. Some of these strains are DBA/1J, DBA/2J, FVB/NJ, LG/J, MRL/MpJ, NOD/LtJ, and SJL/J. However, the deletion was not found in any of the wild-derived inbred strains analyzed. Haplotype analysis suggested that the deletion originates from a unique mutation event that occurred more than 100 years ago, preceding the development of the first inbred strain (DBA), from a Mus musculus domesticus source. As GPR84 ostensibly plays a role in the biology of myeloid cells, it could be relevant 1) to consider the existence of this Gpr84 nonsense mutation in several mouse strains when choosing a mouse model to study immune processes and 2) to consider reevaluating data obtained using such strains. PMID:23616478
Perez, Carlos J; Dumas, Aline; Vallières, Luc; Guénet, Jean-Louis; Benavides, Fernando
2013-01-01
G protein-coupled receptor 84 (GPR84) is a 7-transmembrane protein expressed on myeloid cells that can bind to medium-chain free fatty acids in vitro. Here, we report the discovery of a 2-bp frameshift deletion in the second exon of the Gpr84 gene in several classical mouse inbred strains. This deletion generates a premature stop codon predicted to result in a truncated protein lacking the transmembrane domains 4-7. We sequenced Gpr84 exon 2 from 58 strains representing different groups in the mouse family tree and found that 14 strains are homozygous for the deletion. Some of these strains are DBA/1J, DBA/2J, FVB/NJ, LG/J, MRL/MpJ, NOD/LtJ, and SJL/J. However, the deletion was not found in any of the wild-derived inbred strains analyzed. Haplotype analysis suggested that the deletion originates from a unique mutation event that occurred more than 100 years ago, preceding the development of the first inbred strain (DBA), from a Mus musculus domesticus source. As GPR84 ostensibly plays a role in the biology of myeloid cells, it could be relevant 1) to consider the existence of this Gpr84 nonsense mutation in several mouse strains when choosing a mouse model to study immune processes and 2) to consider reevaluating data obtained using such strains.
Itoi, S; Yuasa, K; Washio, S; Abe, T; Ikuno, E; Sugita, H
2009-09-01
We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture. In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l-arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate. Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described. The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.
Piazza, Roxane M. F.; Delannoy, Sabine; Fach, Patrick; Saridakis, Halha O.; Pedroso, Margareth Z.; Rocha, Letícia B.; Gomes, Tânia A. T.; Vieira, Mônica A. M.; Beutin, Lothar
2013-01-01
Escherichia coli strains of serogroup O26 comprise two distinct groups of pathogens, characterized as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among the several genes related to type III secretion system-secreted effector proteins, espK was found to be highly specific for EHEC O26:H11 and its stx-negative derivative strains isolated in European countries. E. coli O26 strains isolated in Brazil from infant diarrhea, foods, and the environment have consistently been shown to lack stx genes and are thus considered atypical EPEC. However, no further information related to their genetic background is known. Therefore, in this study, we aimed to discriminate and characterize these Brazilian O26 stx-negative strains by phenotypic, genetic, and biochemical approaches. Among 44 isolates confirmed to be O26 isolates, most displayed flagellar antigen H11 or H32. Out of the 13 nonmotile isolates, 2 tested positive for fliCH11, and 11 were fliCH8 positive. The identification of genetic markers showed that several O26:H11 and all O26:H8 strains tested positive for espK and could therefore be discriminated as EHEC derivatives. The presence of H8 among EHEC O26 and its stx-negative derivative isolates is described for the first time. The interaction of three isolates with polarized Caco-2 cells and with intestinal biopsy specimen fragments ex vivo confirmed the ability of the O26 strains analyzed to cause attaching-and-effacing (A/E) lesions. The O26:H32 strains, isolated mostly from meat, were considered nonvirulent. Knowledge of the virulence content of stx-negative O26 isolates within the same serotype helped to avoid misclassification of isolates, which certainly has important implications for public health surveillance. PMID:23974139
Hackett, C J; Dietzschold, B; Gerhard, W; Ghrist, B; Knorr, R; Gillessen, D; Melchers, F
1983-08-01
The functional helper T cell line Vir-2, derived from a PR8 (H1N1) influenza virus-immunized BALB/c mouse, proliferates in response to syngeneic antigen-presenting cells and naturally occurring strains of subtype H1 human influenza virus from 1934-1957 and 1977-1980 isolates. A conserved region of the hemagglutinin molecule around amino acid position 115 in the heavy chain (HA1) was implicated as being important in this recognition by the lack of stimulatory activity associated with a glutamic acid to lysine substitution at position 115 in the laboratory mutant RV6, derived from wild-type PR8. Characterization of the stimulatory determinant on the wild-type hemagglutinin molecule was then undertaken using cleavage products and synthetic peptides. Vir-2 cells recognized the reduced and alkylated purified HA1 of PR8 virus, and this reactivity was retained after cleavage at methionine and tryptophan residues. High-pressure liquid chromatography separation of cleavage fragments indicated that a short sequence of the HA1 containing residue 115 was being recognized. This recognition was localized to a nine amino acid segment (positions 111-119) by assaying stimulation with synthetic peptide homologues of different lengths from that region. As with native hemagglutinin, Vir-2 cells responded to active peptides when presented by H-2d but not H-2k antigen-presenting cells.
Rao, Martin; Vogelzang, Alexis; Kaiser, Peggy; Schuerer, Stefanie; Kaufmann, Stefan H. E.; Gengenbacher, Martin
2013-01-01
Bacillus Calmette–Guérin (BCG), the only approved tuberculosis vaccine, provides only limited protection. Previously, we generated a recombinant derivative (BCG ΔureC::hly), which secretes the pore-forming toxin listeriolysin O (LLO) of Listeria monocytogenes. This vaccine shows superior protection against tuberculosis in preclinical models and is safe in humans. Here we describe two new vaccine strains which express human interleukin-7 (hIL)-7 or hIL-18 in the genetic background of BCG ΔureC::hly to modulate specific T cell immunity. Both strains exhibited an uncompromised in vitro growth pattern, while inducing a proinflammatory cytokine profile in human dendritic cells (DCs). Human DCs harbouring either strain efficiently promoted secretion of IL-2 by autologous T cells in a coculture system, suggesting superior immunogenicity. BALB/c mice vaccinated with BCG ΔureC::hly, BCG ΔureC::hly_hIL7 or BCG ΔureC::hly_hIL18 developed a more robust Th1 response than after vaccination with parental BCG. Both strains provided significantly better protection than BCG in a murine Mycobacterium tuberculosis challenge model but efficacy remained comparable to that afforded by BCG ΔureC::hly. We conclude that expression of hIL-7 or hIL-18 enhanced specific T cell responses but failed to improve protection over BCG ΔureC::hly in mice. PMID:24236077
A Comprehensive Repository of Normal and Tumor Human Breast Tissues and Cells
1999-07-01
mother was reported to have had cancer of the uterine cervix at the age of 22. Both maternal grandparents had died of colon cancer in their sixties...1 mutation). The repository also includes breast epithelial and stromal cell strains derived from non cancerous breast tissue as well as peripheral...tissue banks. 14. SUBJECT TERMS Breast Cancer 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE
Akkina, Ramesh; Berges, Bradford K.; Palmer, Brent E.; Remling, Leila; Neff, C. Preston; Kuruvilla, Jes; Connick, Elizabeth; Folkvord, Joy; Gagliardi, Kathy; Kassu, Afework; Akkina, Sarah R.
2011-01-01
Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2−/−γc−/−, NOD/SCID, NOD/SCIDγc−/− and NOD/SCIDβ2m−/− strains. Transplantation of these mice with CD34+ human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1−/−γ−/− strain for engraftment by human fetal liver derived CD34+ hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2−/−γc−/− mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1−/−γc−/− mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting. PMID:21695116
Microscopic and Spectroscopic Analyses of Chlorhexidine Tolerance in Delftia acidovorans Biofilms
Rema, Tara; Lawrence, John R.; Dynes, James J.; Hitchcock, Adam P.
2014-01-01
The physicochemical responses of Delftia acidovorans biofilms exposed to the commonly used antimicrobial chlorhexidine (CHX) were examined in this study. A CHX-sensitive mutant (MIC, 1.0 μg ml−1) was derived from a CHX-tolerant (MIC, 15.0 μg ml−1) D. acidovorans parent strain using transposon mutagenesis. D. acidovorans mutant (MT51) and wild-type (WT15) strain biofilms were cultivated in flow cells and then treated with CHX at sub-MIC and inhibitory concentrations and examined by confocal laser scanning microscopy (CLSM), scanning transmission X-ray microscopy (STXM), and infrared (IR) spectroscopy. Specific morphological, structural, and chemical compositional differences between the CHX-treated and -untreated biofilms of both strains were observed. Apart from architectural differences, CLSM revealed a negative effect of CHX on biofilm thickness in the CHX-sensitive MT51 biofilms relative to those of the WT15 strain. STXM analyses showed that the WT15 biofilms contained two morphochemical cell variants, whereas only one type was detected in the MT51 biofilms. The cells in the MT51 biofilms bioaccumulated CHX to a similar extent as one of the cell types found in the WT15 biofilms, whereas the other cell type in the WT15 biofilms did not bioaccumulate CHX. STXM and IR spectral analyses revealed that CHX-sensitive MT51 cells accumulated the highest levels of CHX. Pretreating biofilms with EDTA promoted the accumulation of CHX in all cells. Thus, it is suggested that a subpopulation of cells that do not accumulate CHX appear to be responsible for greater CHX resistance in D. acidovorans WT15 biofilm in conjunction with the possible involvement of bacterial membrane stability. PMID:25022584
Yunes, R A; Poluektova, E U; Dyachkova, M S; Klimina, K M; Kovtun, A S; Averina, O V; Orlova, V S; Danilenko, V N
2016-12-01
Gamma-amino butyric acid (GABA) is an active biogenic substance synthesized in plants, fungi, vertebrate animals and bacteria. Lactic acid bacteria are considered the main producers of GABA among bacteria. GABA-producing lactobacilli are isolated from food products such as cheese, yogurt, sourdough, etc. and are the source of bioactive properties assigned to those foods. The ability of human-derived lactobacilli and bifidobacteria to synthesize GABA remains poorly characterized. In this paper, we screened our collection of 135 human-derived Lactobacillus and Bifidobacterium strains for their ability to produce GABA from its precursor monosodium glutamate. Fifty eight strains were able to produce GABA. The most efficient GABA-producers were Bifidobacterium strains (up to 6 g/L). Time profiles of cell growth and GABA production as well as the influence of pyridoxal phosphate on GABA production were studied for L. plantarum 90sk, L. brevis 15f, B. adolescentis 150 and B. angulatum GT102. DNA of these strains was sequenced; the gadB and gadC genes were identified. The presence of these genes was analyzed in 14 metagenomes of healthy individuals. The genes were found in the following genera of bacteria: Bacteroidetes (Bacteroides, Parabacteroides, Alistipes, Odoribacter, Prevotella), Proteobacterium (Esherichia), Firmicutes (Enterococcus), Actinobacteria (Bifidobacterium). These data indicate that gad genes as well as the ability to produce GABA are widely distributed among lactobacilli and bifidobacteria (mainly in L. plantarum, L. brevis, B. adolescentis, B. angulatum, B. dentium) and other gut-derived bacterial species. Perhaps, GABA is involved in the interaction of gut microbiota with the macroorganism and the ability to synthesize GABA may be an important feature in the selection of bacterial strains - psychobiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Qi; Schneider, Irene C.; Gallet, Manuela
2011-05-10
The measles virus (MV) glycoproteins hemagglutinin (H) and fusion (F) were recently shown to mediate transduction of resting lymphocytes by lentiviral vectors. MV vaccine strains use CD46 or signaling lymphocyte activation molecule (SLAM) as receptor for cell entry. A panel of H protein mutants derived from vaccine strain or wild-type MVs that lost or gained CD46 or SLAM receptor usage were investigated for their ability to mediate gene transfer into unstimulated T lymphocytes. The results demonstrate that CD46 is sufficient for efficient vector particle association with unstimulated lymphocytes. For stable gene transfer into these cells, however, both MV receptors weremore » found to be essential.« less
Mechanical characterization of disordered and anisotropic cellular monolayers
NASA Astrophysics Data System (ADS)
Nestor-Bergmann, Alexander; Johns, Emma; Woolner, Sarah; Jensen, Oliver E.
2018-05-01
We consider a cellular monolayer, described using a vertex-based model, for which cells form a spatially disordered array of convex polygons that tile the plane. Equilibrium cell configurations are assumed to minimize a global energy defined in terms of cell areas and perimeters; energy is dissipated via dynamic area and length changes, as well as cell neighbor exchanges. The model captures our observations of an epithelium from a Xenopus embryo showing that uniaxial stretching induces spatial ordering, with cells under net tension (compression) tending to align with (against) the direction of stretch, but with the stress remaining heterogeneous at the single-cell level. We use the vertex model to derive the linearized relation between tissue-level stress, strain, and strain rate about a deformed base state, which can be used to characterize the tissue's anisotropic mechanical properties; expressions for viscoelastic tissue moduli are given as direct sums over cells. When the base state is isotropic, the model predicts that tissue properties can be tuned to a regime with high elastic shear resistance but low resistance to area changes, or vice versa.
Gingival Fibroblasts as Autologous Feeders for Induced Pluripotent Stem Cells.
Yu, G; Okawa, H; Okita, K; Kamano, Y; Wang, F; Saeki, M; Yatani, H; Egusa, H
2016-01-01
Human gingival fibroblasts (hGFs) present an attractive source of induced pluripotent stem cells (iPSCs), which are expected to be a powerful tool for regenerative dentistry. However, problems to be addressed prior to clinical application include the use of animal-derived feeder cells for cultures. The aim of this study was to establish an autologous hGF-derived iPSC (hGF-iPSC) culture system by evaluating the feeder ability of hGFs. In both serum-containing and serum-free media, hGFs showed higher proliferation than human dermal fibroblasts (hDFs). Three hGF strains were isolated under serum-free conditions, although 2 showed impaired proliferation. When hGF-iPSCs were transferred onto mitomycin C-inactivated hGFs, hDFs, or mouse-derived SNL feeders, hGF and SNL feeders were clearly hGF-iPSC supportive for more than 50 passages, whereas hDF feeders were only able to maintain undifferentiated hGF-iPSC growth for a few passages. After 20 passages on hGF feeders, embryonic stem cell marker expression and CpG methylation at the NANOG and OCT3/4 promoters were similar for hGF-iPSCs cultured on hGF and SNL feeder cells. Long-term cultures of hGF-iPSCs on hGF feeders sustained their normal karyotype and pluripotency. On hGF feeders, hGF-iPSC colonies were surrounded by many colony-derived fibroblast-like cells, and the size of intact colonies at 7 d after passage was significantly larger than that on SNL feeders. Allogeneic hGF strains also maintained hGF-iPSCs for 10 passages. Compared with hDFs, hGFs showed a higher production of laminin-332, laminin α5 chain, and insulin-like growth factor-II, which have been reported to sustain the long-term self-renewal of pluripotent stem cells. These results suggest that hGFs possess an excellent feeder capability and thus can be used as alternatives to conventional mouse-derived SNL and hDF feeders. In addition, our findings suggest that hGF feeders are promising candidates for animal component-free ex vivo expansion of autologous hGF-iPSCs, thus providing an important step toward the future therapeutic application of hGF-iPSCs. © International & American Associations for Dental Research 2015.
Mao, Jiwei; Liu, Quanli; Song, Xiaofei; Wang, Hesuiyuan; Feng, Hui; Xu, Haijin; Qiao, Mingqiang
2017-07-01
To identify new enzymatic bottlenecks of L-tyrosine pathway for further improving the production of L-tyrosine and its derivatives. When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l -1 , respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l -1 ) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain. Combinatorial metabolic engineering provides a new strategy for further improvement of L-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.
Stompor, Monika; Kałużny, Mateusz; Żarowska, Barbara
2016-10-01
Microbial strains of the genera Dietzia, Micrococcus, Pseudomonas, Rhodococcus, Gordonia, Streptomyces, Pseudomonas, Bacillus, Penicillium, Rhodotorula and Lactobacillus were screened for the ability to convert chalcones. Synthesis of chalcones was performed by the Claisen-Schmidt reaction. There were three groups of chalcones obtained as the products, which included the derivatives containing 4-substituted chalcone, 2'-hydroxychalcone and 4'-methoxychalcone. The B ring of the chalcones was substituted in the para position with different groups, such as halide, hydroxyl, nitro, methyl, ethyl and ethoxy one. The structure-activity relationship of the tested chalcones in biotransformation processes was studied. It has been proven that Gram-positive bacterial strains Rhodococcus and Lactobacillus catalyzed reduction of C=C bond in the chalcones to give respective dihydrochalcones. The strain Rhodotorula rubra AM 82 transformed chalcones into dihydrochalcones and respective secondary alcohols. These results suggest that the probiotic strain of Lactobacillus can be used for biotransformations of chalcones, which has not been described before. The structure of new metabolites 14a and 15b were established as 4-ethoxy-4'-methoxydihydrochalcone and 3-(4-bromophenyl)-1-(4'-O-methylphenyl)-2-propan-1-ol, respectively, which was confirmed by (1)H NMR and (13)C NMR analysis.
Vimberg, Vladimir; Cavanagh, Jorunn Pauline; Benada, Oldřich; Kofroňová, Olga; Hjerde, Erik; Zieglerová, Leona; Balíková Novotná, Gabriela
2018-03-01
We investigated the genetic basis of glycopeptide resistance in laboratory-derived strains of S. haemolyticus with emphasis on differences between vancomycin and teicoplanin. The genomes of two stable teicoplanin-resistant laboratory mutants selected on vancomycin or teicoplanin were sequenced and compared to parental S. haemolyticus strain W2/124. Only the two non-synonymous mutations, VraS Q289K and WalK V550L were identified. No other mutations or genome rearrangements were detected. Increased cell wall thickness, resistance to lysostaphin-induced lysis and adaptation of cell growth rates specifically to teicoplanin were phenotypes observed in a sequenced strain with the VraS Q289K mutation. Neither of the VraS Q289K and WalK V550L mutations was present in the genomes of 121S. haemolyticus clinical isolates. However, all but two of the teicoplanin resistant strains carried non-synonymous SNPs in vraSRTU and walKR-YycHIJ operons pointing to their importance for the glycopeptide resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
Aniline Is an Inducer, and Not a Precursor, for Indole Derivatives in Rubrivivax benzoatilyticus JA2
Mohammed, Mujahid; Ch, Sasikala; Ch, Ramana V.
2014-01-01
Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway. PMID:24533057
Mujahid, Mohammed; Sasikala, Ch; Ramana, Ch V
2014-01-01
Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway.
Establishment of rat embryonic stem-like cells from the morula using a combination of feeder layers.
Sano, Chiaki; Matsumoto, Asako; Sato, Eimei; Fukui, Emiko; Yoshizawa, Midori; Matsumoto, Hiromichi
2009-08-01
Embryonic stem (ES) cells are characterized by pluripotency, in particular the ability to form a germline on injection into blastocysts. Despite numerous attempts, ES cell lines derived from rat embryos have not yet been established. The reason for this is unclear, although certain intrinsic biological differences among species and/or strains have been reported. Herein, using Wistar-Imamichi rats, specific characteristics of preimplantation embryos are described. At the blastocyst stage, Oct4 (also called Pou5f1) was expressed in both the inner cell mass (ICM) and the trophectoderm (TE), whereas expression of Cdx2 was localized to the TE. In contrast, at an earlier stage, expression of Oct4 was detected in all the nuclei in the morula. These stages were examined using a combination of feeder layers (rat embryonic fibroblast [REF] for primary outgrowth and SIM mouse embryo-derived thioguanine- and ouabain-resistant [STO] cells for passaging) to establish rat ES-like cell lines. The rat ES-like cell lines obtained from the morula maintained expression of Oct4 over long-term culture, whereas cell lines derived from blastocysts lost pluripotency during early passage. The morula-derived ES-like cell lines showed Oct4 expression in a long-term culture, even after cryogenic preservation, thawing and EGFP transfection. These results indicate that rat ES-like cell lines with long-term Oct4 expression can be established from the morula of Wistar-Imamichi rats using a combination of feeder layers.
Kuiper, Melanie W.; Valster, Rinske M.; Wullings, Bart A.; Boonstra, Harry; Smidt, Hauke; van der Kooij, Dick
2006-01-01
A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 × 10−1 and 1.14 × 104 cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 ± 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (≥98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water. PMID:16957190
Quiliano, Miguel; Pabón, Adriana; Ramirez-Calderon, Gustavo; Barea, Carlos; Deharo, Eric; Galiano, Silvia; Aldana, Ignacio
2017-04-15
We report the design (in silico ADMET criteria), synthesis, cytotoxicity studies (HepG-2 cells), and biological evaluation of 15 hydrazine/hydrazide quinoxaline 1,4-di-N-oxide derivatives against the 3D7 chloroquine sensitive strain and FCR-3 multidrug resistant strain of Plasmodium falciparum and Leishmania infantum (axenic amastigotes). Fourteen of derivatives are novel quinoxaline 1,4-di-N-oxide derivatives. Compounds 18 (3D7 IC 50 =1.40μM, FCR-3 IC 50 =2.56μM) and 19 (3D7 IC 50 =0.24μM, FCR-3 IC 50 =2.8μM) were identified as the most active against P. falciparum, and they were the least cytotoxic (CC 50 -values>241μM) and most selective (SI>86). None of the compounds tested against L. infantum were considered to be active. Additionally, the functional role of the hydrazine and hydrazide structures were studied in the quinoxaline 1,4-di-N-oxide system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dandoy, Damien; Fremaux, Christophe; de Frahan, Marie Henry; Horvath, Philippe; Boyaval, Patrick; Hols, Pascal; Fontaine, Laetitia
2011-08-30
In industrial fermentation processes, the rate of milk acidification by Streptococcus thermophilus is of major technological importance. The cell-envelope proteinase PrtS was previously shown to be a key determinant of the milk acidification activity in this species. The PrtS enzyme is tightly anchored to the cell wall via a mechanism involving the typical sortase A (SrtA) and initiates the breakdown of milk casein into small oligopeptides. The presence or absence of PrtS divides the S. thermophilus strains into two phenotypic groups i.e. the slow and the fast acidifying strains. The aim of this study was to improve the milk acidification rate of slow S. thermophilus strains, and hence optimise the fermentation process of dairy products. In the present work, we developed for the first time a strategy based on natural transformation to confer the rapid acidification phenotype to slow acidifying starter strains of S. thermophilus. First, we established by gene disruption that (i) prtS, encoding the cell-envelope proteinase, is a key factor responsible for rapid milk acidification in fast acidifying strains, and that (ii) srtA, encoding sortase A, is not absolutely required to express the PrtS activity. Second, a 15-kb PCR product encompassing the prtS genomic island was transferred by natural transformation using the competence-inducing peptide in three distinct prtS-defective genetic backgrounds having or not a truncated sortase A gene. We showed that in all cases the milk acidification rate of transformants was significantly increased, reaching a level similar to that of wild-type fast acidifying strains. Furthermore, it appeared that the prtS-encoded activity does not depend on the prtS copy number or on its chromosomal integration locus. We have successfully used natural competence to transfer the prtS locus encoding the cell-envelope proteinase in three slow acidifying strains of S. thermophilus, allowing their conversion into fast acidifying derivatives. The efficient protocol developed in this article will provide the dairy industry with novel and optimised S. thermophilus starter strains.
Accessory genetic content in Campylobacter jejuni ST21CC isolates from feces and blood.
Skarp, C P A; Akinrinade, O; Kaden, R; Johansson, C; Rautelin, H
2017-06-01
Campylobacter jejuni is an important foodborne pathogen and the most commonly reported bacterial cause of gastroenteritis. C. jejuni is occasionally found in blood, although mechanisms important for invasiveness have remained unclear. C. jejuni is divided into many different lineages, of which the ST21 clonal complex (CC) is widely distributed. Here, we performed comparative genomic and in vitro analyses on 17C. jejuni ST21CC strains derived from human blood and feces in order to identify features associated with isolation site. The ST21CC lineage is divided into two large groups; centered around ST-21 and ST-50. Our clinical strains, typed as ST-50, showed further microevolution into two distinct clusters. These clusters were distinguished by major differences in their capsule loci and the distribution of accessory genetic content, including C. jejuni integrated elements (CJIEs) and plasmids. Accessory genetic content was more common among fecal than blood strains, whereas blood strains contained a hybrid capsule locus which partially consisted of C. jejuni subsp. doylei-like content. In vitro infection assays with human colon cell lines did not show significant differences in adherence and invasion between the blood and fecal strains. Our results showed that CJIEs and plasmid derived genetic material were less common among blood isolates than fecal isolates; in contrast, hybrid capsule loci, especially those containing C. jejuni subsp. doylei-like gene content, were found among many isolates derived from blood. The role of these findings requires more detailed investigation. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Xu, Yuan; Wang, Qiang; Li, Yudong; Gan, Yibo; Li, Pei; Li, Songtao; Zhou, Yue; Zhou, Qiang
2015-01-01
Different loading regimens of cyclic tensile strain impose different effects on cell proliferation and tenogenic differentiation of TDSCs in three-dimensional (3D) culture in vitro, which has been little reported in previous literatures. In this study we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation in the custom-designed 3D tensile bioreactor, which revealed that cyclic tensile strain with different frequencies (0.3 Hz, 0.5 Hz, and 1.0 Hz) and amplitudes (2%, 4%, and 8%) had no influence on TDSC viability, while it had different effects on the proliferation and the expression of type I collagen, tenascin-C, tenomodulin, and scleraxis of TDSCs, which was most obvious at 0.5 Hz frequency with the same amplitude and at 4% amplitude with the same frequency. Moreover, signaling pathway from microarray analysis revealed that reduced extracellular matrix (ECM) receptor interaction signaling initiated the tendon genius switch. Cyclic tensile strain highly upregulated genes encoding regulators of NPM1 and COPS5 transcriptional activities as well as MYC related transcriptional factors, which contributed to cell proliferation and differentiation. In particular, the transcriptome analysis provided certain new insights on the molecular and signaling networks for TDSCs loaded in these conditions.
Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.
Bottoms, Scott; Dickinson, Quinn; McGee, Mick; Hinchman, Li; Higbee, Alan; Hebert, Alex; Serate, Jose; Xie, Dan; Zhang, Yaoping; Coon, Joshua J; Myers, Chad L; Landick, Robert; Piotrowski, Jeff S
2018-01-12
Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain. This strain represents a xylose fermenting yeast specifically tailored to GVL produced hydrolysates.
Makino, Seiya; Sato, Asako; Goto, Ayako; Nakamura, Marie; Ogawa, Miho; Chiba, Yoshika; Hemmi, Jun; Kano, Hiroshi; Takeda, Kazuyoshi; Okumura, Ko; Asami, Yukio
2016-02-01
Yogurt is generally recognized as a beneficial food for our health, but research into its physiological effects has focused mainly on intestinal dysfunctions such as constipation and diarrhea. We previously found yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (hereafter OLL1073R-1) could reduce risks of catching the common cold and flu in human trials. It was assumed that immunostimulatory exopolysaccharide (EPS) produced from OLL1073R-1 play an important role in this context. However, few studies have examined the immunostimulatory effects of traditional Bulgarian yogurts fermented with different strains of lactobacilli and their metabolites. Therefore, we screened 139 L. delbrueckii ssp. bulgaricus strains and identified OLL1073R-1 as the most robust producer of EPS. This strain was also the only strain that induced the production of IFN-γ in vitro. Oral administration of the EPS or yogurt fermented with OLL1073R-1 and Streptococcus thermophilus OLS3059 (OLL1073R-1 yogurt) augmented natural killer (NK) cell activity and induced IFN-γ production in spleen cells in mice, whereas 2 other yogurts fermented with other strains had no effect on NK cell activity. Cellular preparations of the OLL1073R-1 strain also slightly augmented NK cell activity, but were less effective than EPS itself. The EPS-dependent stimulation of NK cell activity was abrogated in IFN-γ knockout mice and in myeloid differentiation factor 88 knockout mice. Furthermore, IFN-γ production from spleen cells stimulated with EPS was completely blocked with both anti-IL-12 and anti-IL-18 antibodies in vitro. These findings suggest that NK cell activation by OLL1073R-1 yogurt is EPS-dependent, occurs via IL-12- and IL-18-mediated IFN-γ production, and requires myeloid differentiation factor 88. We showed that traditional Bulgarian yogurt could exert immunostimulatory effects by selecting starter strains and part of the mechanisms depend on IFN-γ inducible EPS produced from L. delbrueckii ssp. bulgaricus. Further investigations on processes of fermentation to increase of the EPS may lead to the development of new functional foods that keep our immune functions stable. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Replication of human noroviruses in stem cell-derived human enteroids
USDA-ARS?s Scientific Manuscript database
The major barrier to research and development of effective interventions for human noroviruses (HuNoVs) has been the lack of a robust and reproducible in vitro cultivation system. HuNoVs are the leading cause of gastroenteritis worldwide. We report successful cultivation of multiple HuNoV strains in...
Sun, Zhang-Hua; Liang, Fa-Liang; Wu, Wen; Chen, Yu-Chan; Pan, Qing-Ling; Li, Hao-Hua; Ye, Wei; Liu, Hong-Xin; Li, Sai-Ni; Tan, Guo-Hui; Zhang, Wei-Min
2015-12-21
Four new meroterpenoids, guignardones P-S (1-4), and three known analogues (5-7) were isolated from the endophytic fungal strain Guignardia mangiferae A348. Their structures were elucidated on the basis of spectroscopic analysis and single crystal X-ray diffraction. All the isolated compounds were evaluated for their inhibitory effects on SF-268, MCF-7, and NCI-H460 human cancer cell lines. Compounds 2 and 4 exhibited weak inhibitions of cell proliferation against MCF-7 cell line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorur, A.; Leung, C. M.; Jorgens, D.
2010-06-01
Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches,more » but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell, where the chromosome is located. Two other proteins - Thiosulfate reductase and ATP binding protein were found to be cytoplasmically distributed, whereas a molybdenum transporter was found to locate to the cell periphery. We judge labeling outcome by (1) SDS gel electrophoresis, followed by direct fluorescence imaging of the gel to address specificity of labeling/confirm expected molecular weight, and subsequent Coomassie analysis to ensure comparable protein levels (2) fluorescence intensity of culture by plate reader for statistical sampling (after adjustment for respective cell numbers) and (3) fluorescence microscopy for addressing cell-to-cell signal variation and potential localization patterns. All three assays were usually found to be consistent with one another. While we have been able to improve the efficacy of photoconversion by drastically reducing (eliminating) non-specific binding with our altered labeling protocol, we are currently working on reducing non-specific photoconversion reaction arising occasionally in non-labeled cells. In addition, we have confirmed the presence of SNAP tagged constructs in three recently cloned E.coli strains under promotor control, and are in the process of utilizing them for evaluating the sensitivity of the photoconversion protocol. Fluorescent Activated Cell Sorting was successfully applied to labeled E.coli cells containing SNAP tagged AtpA protein. Different batches of sorted cells, representing low and high labeling intensity, were re-grown and re-labeled and displayed a labeling efficiency similar to the starter culture, supporting the notion that cell-to-cell differences in labeling reflect difference in protein expression, rather then genetic differences.« less
Dyková, Iva; Fiala, Ivan; Dvoráková, Helena; Pecková, Hana
2008-11-01
Two protists isolated simultaneously from the same sample of gill tissue of Psetta maxima (L.) were identified as Thecamoeba hilla Schaeffer, 1926 and Labyrinthula sp. A Labyrinthula strain (LTH) derived from a mixed culture of both organisms was well established in a short time, while subcultures of T. hilla continued to be associated with Labyrinthula cells despite all efforts to eliminate them. Ultrastructural examination, repeated several times in the course of long-lasting subculturing of amoebae, revealed that trophozoites of T. hilla host in their cytoplasm multiplying labyrinthulid cells. Comparison of SSU rDNA sequences of the Labyrinthula strain LTH and those from labyrinthulid endosymbionts from T. hilla verified the assumption that the extra- and intra-cellularly multiplying Labyrinthula cells are identical organisms. The association of the marine amoeba T. hilla and Labyrinthula sp. displayed signs of mutualistic symbiosis.
Brummelman, Jolanda; Veerman, Rosanne E.; Hamstra, Hendrik Jan; Deuss, Anna J. M.; Schuijt, Tim J.; Sloots, Arjen; Kuipers, Betsy; van Els, Cécile A. C. M.; van der Ley, Peter; Mooi, Frits R.; Han, Wanda G. H.
2014-01-01
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Despite high vaccination coverage, outbreaks are being increasingly reported worldwide. Possible explanations include adaptation of this pathogen, which may interfere with recognition by the innate immune system. Here, we describe innate immune recognition and responses to different B. pertussis clinical isolates. By using HEK-Blue cells transfected with different pattern recognition receptors, we found that 3 out of 19 clinical isolates failed to activate Toll-like receptor 4 (TLR4). These findings were confirmed by using the monocytic MM6 cell line. Although incubation with high concentrations of these 3 strains resulted in significant activation of the MM6 cells, it was found to occur mainly through interaction with TLR2 and not through TLR4. When using live bacteria, these 3 strains also failed to activate TLR4 on HEK-Blue cells, and activation of MM6 cells or human monocyte-derived dendritic cells was significantly lower than activation induced by the other 16 strains. Mass spectrum analysis of the lipid A moieties from these 3 strains indicated an altered structure of this molecule. Gene sequence analysis revealed mutations in genes involved in lipid A synthesis. Findings from this study indicate that B. pertussis isolates that do not activate TLR4 occur naturally and that this phenotype may give this bacterium an advantage in tempering the innate immune response and establishing infection. Knowledge on the strategies used by this pathogen in evading the host immune response is essential for the improvement of current vaccines or for the development of new ones. PMID:25348634
Skrzypek, M; Lester, R L; Spielmann, P; Zingg, N; Shelling, J; Dickson, R C
2000-11-01
Strains of Saccharomyces cerevisiae termed sphingolipid compensatory (SLC) do not grow at low pH when the cells lack sphingolipids. To begin to understand why sphingolipids are required for growth at low pH, we isolated derivatives of SLC strains, termed low pH resistant (LprR), carrying the LPR suppressor gene that allows growth at pH 4.1 when cells lack sphingolipids. Suppression is due to mutation of a single nuclear gene. The LPR suppressor gene functions, at least in part, by enhancing the ability of cells lacking sphingolipids to generate a net efflux of protons in suspension fluid with a pH range of 4.0-6.0. The LPR suppressor gene also enables cells lacking sphingolipids to maintain their intracellular pH near neutrality when the pH of the suspension fluid is low, unlike cells lacking the suppressor gene, which cannot maintain their intracellular pH in the face of a low external pH. These results demonstrate that some functions(s) of sphingolipids necessary for growth at low pH can be bypassed by a suppressor mutation. Attempts to clone the LPR suppressor gene were not successful, but they led to the isolation of the CWP2 gene, which encodes a major mannoprotein component of the outer cell wall. It was isolated because an increased copy number has the unusual property of increasing the frequency at which LprR strains arise. As we show here, part of the reason for this effect is that the CWP2 gene is essential for generating a net efflux of protons and for controlling intracellular pH in LprR strains that lack sphingolipids. These results suggest new cellular functions for the Cwp2 protein.
Rodrigues, M L; Rozental, S; Couceiro, J N; Angluster, J; Alviano, C S; Travassos, L R
1997-01-01
Sialic acids from sialoglycoconjugates present at the cell surface of Cryptococcus neoformans yeast forms were analyzed by high-performance thin-layer chromatography, binding of influenza A and C virus strains, enzymatic treatment, and flow cytofluorimetry with fluorescein isothiocyanate-labeled lectins. C. neoformans yeast forms grown in a chemically defined medium contain N-acetylneuraminic acid and its 9-O-acetylated derivative. A density of 3 x 10(6) residues of sialic acid per cell was found in C. neoformans. Sialic acids in cryptococcal cells are glycosidically linked to galactopyranosyl units as inferred from the increased reactivity of neuraminidase-treated yeasts with peanut agglutinin. N-Acetylneuraminic acids are alpha-2,6 and alpha-2,3 linked, as indicated by using virus strains M1/5 and M1/5 HS8, respectively, as agglutination probes. The alpha-2,6 linkage markedly predominated. These findings were essentially confirmed by the interaction of cryptococcal cells with the lectins Sambucus nigra agglutinin and Maackia amurensis agglutinin. We also investigated whether the sialyl residues present in C. neoformans are involved in the fungal interaction with a cationic solid-phase substrate and with mouse resident macrophages. Adhesion of yeast cells to poly-L-lysine was mediated, in part, by sialic acid residues, since the number of adherent cells was markedly reduced after treatment with bacterial neuraminidase. The enzymatic removal of sialic acids also made C. neoformans yeast cells more susceptible to endocytosis by macrophages. The results show that sialic acids are components of the cryptococcal cell surface that contribute to its negative charge and protect yeast forms against phagocytosis. PMID:9393779
Saroha, Ashish; Pewzner-Jung, Yael; Ferreira, Natalia S; Sharma, Piyush; Jouan, Youenn; Kelly, Samuel L; Feldmesser, Ester; Merrill, Alfred H; Trottein, François; Paget, Christophe; Lang, Karl S; Futerman, Anthony H
2017-01-01
The role of sphingolipids (SLs) in the immune system has come under increasing scrutiny recently due to the emerging contributions that these important membrane components play in regulating a variety of immunological processes. The acyl chain length of SLs appears particularly critical in determining SL function. Here, we show a role for very-long acyl chain SLs (VLC-SLs) in invariant natural killer T ( i NKT) cell maturation in the thymus and homeostasis in the liver. Ceramide synthase 2-null mice, which lack VLC-SLs, were susceptible to a hepatotropic strain of lymphocytic choriomeningitis virus, which is due to a reduction in the number of i NKT cells. Bone marrow chimera experiments indicated that hematopoietic-derived VLC-SLs are essential for maturation of i NKT cells in the thymus, whereas parenchymal-derived VLC-SLs are crucial for i NKT cell survival and maintenance in the liver. Our findings suggest a critical role for VLC-SL in i NKT cell physiology.
Chen, Fan; Rydzewski, Kerstin; Kutzner, Erika; Häuslein, Ina; Schunder, Eva; Wang, Xinzhe; Meighen-Berger, Kevin; Grunow, Roland; Eisenreich, Wolfgang; Heuner, Klaus
2017-01-01
Francisella tularensis is an intracellular pathogen for many animals causing the infectious disease, tularemia. Whereas F. tularensis subsp. holarctica is highly pathogenic for humans, F. novicida is almost avirulent for humans, but virulent for mice. In order to compare metabolic fluxes between these strains, we performed 13C-labeling experiments with F. tularensis subsp. holarctica wild type (beaver isolate), F. tularensis subsp. holarctica strain LVS, or F. novicida strain U112 in complex media containing either [U-13C6]glucose, [1,2-13C2]glucose, [U-13C3]serine, or [U-13C3]glycerol. GC/MS-based isotopolog profiling of amino acids, polysaccharide-derived glucose, free fructose, amino sugars derived from the cell wall, fatty acids, 3-hydroxybutyrate, lactate, succinate and malate revealed uptake and metabolic usage of all tracers under the experimental conditions with glucose being the major carbon source for all strains under study. The labeling patterns of the F. tularensis subsp. holarctica wild type were highly similar to those of the LVS strain, but showed remarkable differences to the labeling profiles of the metabolites from the F. novicida strain. Glucose was directly used for polysaccharide and cell wall biosynthesis with higher rates in F. tularensis subsp. holarctica or metabolized, with higher rates in F. novicida, via glycolysis and the non-oxidative pentose phosphate pathway (PPP). Catabolic turnover of glucose via gluconeogenesis was also observed. In all strains, Ala was mainly synthesized from pyruvate, although no pathway from pyruvate to Ala is annotated in the genomes of F. tularensis and F. novicida. Glycerol efficiently served as a gluconeogenetic substrate in F. novicida, but only less in the F. tularensis subsp. holarctica strains. In any of the studied strains, serine did not serve as a major substrate and was not significantly used for gluconeogenesis under the experimental conditions. Rather, it was only utilized, at low rates, in downstream metabolic processes, e.g., via acetyl-CoA in the citrate cycle and for fatty acid biosynthesis, especially in the F. tularensis subsp. holarctica strains. In summary, the data reflect differential metabolite fluxes in F. tularensis subsp. holarctica and F. novicida suggesting that the different utilization of substrates could be related to host specificity and virulence of Francisella. PMID:28680859
Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao
2015-01-01
Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α,6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1–5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1–5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways. PMID:25913704
Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao
2015-04-22
Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α, 6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1-5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1-5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways.
meso-Dihydroguaiaretic acid derivatives with antibacterial and antimycobacterial activity.
Reyes-Melo, Karen; García, Abraham; Romo-Mancillas, Antonio; Garza-González, Elvira; Rivas-Galindo, Verónica M; Miranda, Luis D; Vargas-Villarreal, Javier; Favela-Hernández, Juan Manuel J; Camacho-Corona, María Del Rayo
2017-10-15
Thirty-three meso-dihydroguaiaretic acid (meso-DGA) derivatives bearing esters, ethers, and amino-ethers were synthesized. All derivatives were tested against twelve drug-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including sensitive (H37Rv) and multidrug-resistant Mycobacterium tuberculosis strains. Among the tested compounds, four esters (7, 11, 13, and 17), one ether (23), and three amino-ethers (30, 31, and 33) exhibited moderate activity against methicillin-resistant Staphylococcus aureus, whereas 30 and 31 showed better results than levofloxacin against vancomycin-resistant Enterococcus faecium. Additionally, nineteen meso-DGA derivatives displayed moderate to potent activity against M. tuberculosis H37Rv with minimum inhibitory concentration (MIC) values ranging from 3.125 to 50µg/mL. Seven meso-DGA derivatives bearing amino-ethers (26-31 and 33) exhibited the lowest MICs against M. tuberculosis H37Rv and G122 strains, with 31 being as potent as ethambutol (MICs of 3.125 and 6.25µg/mL). The presence of positively charged group precursors possessing steric and hydrophobic features (e.g. N-ethylpiperidine moieties in meso-31) resulted essential to significantly increase the antimycobacterial properties of parent meso-DGA as supported by the R-group pharmacophoric and field-based QSAR analyses. To investigate the safety profile of the antimycobacterial compounds, cytotoxicity on Vero cells was determined. The amino-ether 31 exhibited a selectivity index value of 23, which indicate it was more toxic to M. tuberculosis than to mammalian cells. Therefore, 31 can be considered as a promising antitubercular agent for further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sokalskis, Vladislavs; Peluso, Diletta; Jagodzinski, Annika; Sinning, Christoph
2017-06-01
Right heart dysfunction has been found to be a strong prognostic factor predicting adverse outcome in various cardiopulmonary diseases. Conventional echocardiographic measurements can be limited by geometrical assumptions and impaired reproducibility. Speckle tracking-derived strain provides a robust quantification of right ventricular function. It explicitly evaluates myocardial deformation, as opposed to tissue Doppler-derived strain, which is computed from tissue velocity gradients. Right ventricular longitudinal strain provides a sensitive tool for detecting right ventricular dysfunction, even at subclinical levels. Moreover, the longitudinal strain can be applied for prognostic stratification of patients with pulmonary hypertension, pulmonary embolism, and congestive heart failure. Speckle tracking-derived right atrial strain, right ventricular longitudinal strain-derived mechanical dyssynchrony, and three-dimensional echocardiography-derived strain are emerging imaging parameters and methods. Their application in research is paving the way for their clinical use. © 2017, Wiley Periodicals, Inc.
Couttolenc, Alan; Espinoza, Cesar; Fernández, José J; Norte, Manuel; Plata, Gabriela B; Padrón, José M; Shnyreva, Alla; Trigos, Ángel
2016-08-01
It is well known that marine fungi are an excellent source of biologically active secondary metabolites, and by 2011, it was reported that over 400 bioactive metabolites were derived from marine fungi. This study establishes the basis for future research on antiproliferative compounds of marine endophytes inhabited in the Veracruz Reef System. Isolation of the 34 fungal strains was carried out by microbiological method from samples of sponges, corals, and other biological material from the Veracruz Reef System. The fungal biomass and broth were separated and extracted with a mixture of solvents MeOH:CHCl3. Characterization and molecular identification of the fungal strains were performed through microbiological methods and the analysis of the ITS-rDNA regions. Antiproliferative activity was tested at a dose of 250 μg/mL on human solid tumor cell lines HBL-100, HeLa, SW1573, T-47D, and WiDr by the SRB assay after 48 h-exposure to the fungal extracts. The extracts from five isolates showed an antiproliferative effect against one or more of the tested cell lines (percentage growth < 50%). The mycelial extract from the isolate LAEE 03 manifested the highest activity against the five cell lines (% PG of 17 HBL-100, 19 HeLa, 23 SW1573, -6 T-47D, and 10 WiDr) and the strain was identified as Curvularia trifolii (Kauffman) Boedijn (Pleosporaceae). The results obtained indicate that the extract from a marine derived C. trifolii has the antiproliferative effect, thus suggesting that this organism is a good candidate for further analysis of its metabolites.
Chai, Yun-Jing; Cui, Cheng-Bin; Li, Chang-Wei; Wu, Chang-Jing; Tian, Cong-Kui; Hua, Wei
2012-03-01
A new approach to activate silent gene clusters for dormant secondary metabolite production has been developed by introducing gentamicin-resistance to an originally inactive, marine-derived fungal strain Penicillium purpurogenum G59. Upon treatment of the G59 spores with a high concentration of gentamicin in aqueous DMSO, a total of 181 mutants were obtained by single colony isolation. In contrast to the strain G59, the EtOAc extracts of nine mutant cultures showed inhibitory effects on K562 cells, indicating that the nine mutants had acquired capability to produce antitumor metabolites. This was evidenced by TLC and HPLC analysis of EtOAc extracts of G59 and the nine mutants. Further isolation and characterization demonstrated that four antitumor secondary metabolites, janthinone (1), fructigenine A (2), aspterric acid methyl ester (3) and citrinin (4), were newly produced by mutant 5-1-4 compared to the parent strain G59, and which were also not found in the secondary metabolites of other Penicillium purpurogenum strains. However, Compounds 1-4 inhibited the proliferation of K562 cells with inhibition rates of 34.6% (1), 60.8% (2), 31.7% (3) and 67.1% (4) at 100 μg/mL, respectively. The present study demonstrated the effectiveness of a simple, yet practical approach to activate the production of dormant fungal secondary metabolites by introducing acquired resistance to aminoglycoside antibiotics, which could be applied to the studies for eliciting dormant metabolic potential of fungi to obtain cryptic secondary metabolites.
Chai, Yun-Jing; Cui, Cheng-Bin; Li, Chang-Wei; Wu, Chang-Jing; Tian, Cong-Kui; Hua, Wei
2012-01-01
A new approach to activate silent gene clusters for dormant secondary metabolite production has been developed by introducing gentamicin-resistance to an originally inactive, marine-derived fungal strain Penicillium purpurogenum G59. Upon treatment of the G59 spores with a high concentration of gentamicin in aqueous DMSO, a total of 181 mutants were obtained by single colony isolation. In contrast to the strain G59, the EtOAc extracts of nine mutant cultures showed inhibitory effects on K562 cells, indicating that the nine mutants had acquired capability to produce antitumor metabolites. This was evidenced by TLC and HPLC analysis of EtOAc extracts of G59 and the nine mutants. Further isolation and characterization demonstrated that four antitumor secondary metabolites, janthinone (1), fructigenine A (2), aspterric acid methyl ester (3) and citrinin (4), were newly produced by mutant 5-1-4 compared to the parent strain G59, and which were also not found in the secondary metabolites of other Penicillium purpurogenum strains. However, Compounds 1–4 inhibited the proliferation of K562 cells with inhibition rates of 34.6% (1), 60.8% (2), 31.7% (3) and 67.1% (4) at 100 μg/mL, respectively. The present study demonstrated the effectiveness of a simple, yet practical approach to activate the production of dormant fungal secondary metabolites by introducing acquired resistance to aminoglycoside antibiotics, which could be applied to the studies for eliciting dormant metabolic potential of fungi to obtain cryptic secondary metabolites. PMID:22611354
Oppezzo, O J; Avanzati, B; Antón, D N
1991-01-01
Isogenic derivatives carrying envB6, envB9, or envB+ alleles were obtained from a strain of Salmonella typhimurium that was partially resistant to mecillinam, a beta-lactam antibiotic specific for penicillin-binding protein 2 (PBP 2). Testing of the isogenic strains with several antibacterial agents demonstrated that envB mutations either increased resistance (mecillinam) or did not affect the response (imipemen) to beta-lactams that act primarily on PBP 2, while susceptibilities to beta-lactams that act on PBP 1B, PBP 3, or both were increased. Furthermore, the susceptibilities of envB strains to hydrophobic compounds such as rifampin, novobiocin, or chloramphenicol were not modified, even though their susceptibilities to deoxycholate and crystal violet were enhanced. Outer cell membranes of envB mutants presented a 50% reduction in protein content compared with that of the isogenic envB+ strains, and OmpF and OmpD porins were particularly affected by the reduction. No alteration in the amount or pattern of periplasmic proteins was noticed, and lipopolysaccharides from envB mutants appeared to be normal by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. By using derivatives that produced a plasmid-encoded beta-lactamase, it was demonstrated that envB cells are slightly less permeable to cephalothin than envB+ bacteria are. It is concluded that the high susceptibility of envB mutants to beta-lactams is due to the increased effectiveness of the antibiotics on PBP 1B, PBP 3, or both. Images PMID:1656857
Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains.
Pliaka, V; Kyriakopoulou, Z; Tsakogiannis, D; Ruether, I G A; Gartzonika, C; Levidiotou-Stefanou, S; Krikelis, A; Markoulatos, P
2010-12-01
Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and, in rare cases, may cause vaccine-associated paralytic poliomyelitis (VAPP). The genetic instability of Sabin strains constitutes one of the main causes of VAPP, a disease that is most frequently associated with type 3 and type 2 Sabin strains, and more rarely with type 1 Sabin strains. In the present study, the growth phenotype of eight oral poliovirus vaccine (OPV) isolates (two non-recombinants and six recombinants), as well as of Sabin vaccine strains, was evaluated using two different assays, the reproductive capacity at different temperatures (Rct) test and the one-step growth curve test in Hep-2 cells at two different temperatures (37°C and 40°C). The growth phenotype of isolates was correlated with genomic modifications in order to identify the determinants and mechanisms of reversion towards neurovirulence. All of the recombinant OPV isolates showed a thermoresistant phenotype in the Rct test. Moreover, both recombinant Sabin-3 isolates showed significantly higher viral yield than Sabin 3 vaccine strain at 37°C and 40°C in the one-step growth curve test. All of the OPV isolates displayed mutations at specific sites of the viral genome, which are associated with the attenuated and temperature-sensitive phenotype of Sabin strains. The results showed that both mutations and recombination events could affect the phenotype traits of Sabin derivatives and may lead to the reversion of vaccinal strains to neurovirulent ones. The use of phenotypic markers along with the genomic analysis may shed additional light on the molecular determinants of the reversed neurovirulent phenotype of Sabin derivatives.
Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola
2013-09-01
Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements. Copyright © 2013 John Wiley & Sons, Ltd.
Aakko, J; Sánchez, B; Gueimonde, M; Salminen, S
2014-07-01
The purpose of this study was to investigate the heat-shock response at molecular level in Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. lactis BB-12 and their heat-tolerant derivatives and to characterize the changes that make the derivatives more robust in terms of heat stress. The study strains were exposed for 2 h to a heat-shock treatment, Bif. animalis subsp. lactis BB-12 and its derivative at 50°C and the Lact. rhamnosus GG and its derivative at 60°C. Protein synthesis before and after heat shock was examined using proteomics and RT-qPCR. The analysis revealed that the regulation of seven proteins in both strain pairs was modified as a response to heat or between the original and the derivative strain. The comparison of wild-type strains and the heat-tolerant derivatives suggests that the acquisition of heat tolerance in the Bif. animalis subsp. lactis BB-12 derivative is due to a slightly increased constitutive level of chaperones, while in Lact. rhamnosus GG derivative, the main reason seems to be a higher ability to induce the production of chaperones. This study revealed possible markers of heat tolerance in B. lactis and Lact. rhamnosus strains. This study increases our knowledge on how Lactobacillus and Bifidobacterium strains may acquire heat tolerance. These findings may be useful for improving the heat tolerance of existing probiotic strains as well as screening new heat-tolerant strains. © 2014 The Society for Applied Microbiology.
Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa
2016-10-01
Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m 2 was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V. © 2016 Japanese Dermatological Association.
Novel Marine Phenazines as Potential Cancer Chemopreventive and Anti-Inflammatory Agents
Kondratyuk, Tamara P.; Park, Eun-Jung; Yu, Rui; van Breemen, Richard B.; Asolkar, Ratnakar N.; Murphy, Brian T.; Fenical, William; Pezzuto, John M.
2012-01-01
Two new (1 and 2) and one known phenazine derivative (lavanducyanin, 3) were isolated and identified from the fermentation broth of a marine-derived Streptomyces sp. (strain CNS284). In mammalian cell culture studies, compounds 1, 2 and 3 inhibited TNF-α-induced NFκB activity (IC50 values of 4.1, 24.2, and 16.3 μM, respectively) and LPS-induced nitric oxide production (IC50 values of >48.6, 15.1, and 8.0 μM, respectively). PGE2 production was blocked with greater efficacy (IC50 values of 7.5, 0.89, and 0.63 μM, respectively), possibly due to inhibition of cyclooxygenases in addition to the expression of COX-2. Treatment of cultured HL-60 cells led to dose-dependent accumulation in the subG1 compartment of the cell cycle, as a result of apoptosis. These data provide greater insight on the biological potential of phenazine derivatives, and some guidance on how various substituents may alter potential anti-inflammatory and anti-cancer effects. PMID:22412812
Hovingh, Elise S.; van Gent, Marjolein; Hamstra, Hendrik-Jan; Demkes, Marc; Mooi, Frits R.; Pinelli, Elena
2017-01-01
Vaccines against pertussis have been available for more than 60 years. Nonetheless, this highly contagious disease is reemerging even in countries with high vaccination coverage. Genetic changes of Bordetella pertussis over time have been suggested to contribute to the resurgence of pertussis, as these changes may favor escape from vaccine-induced immunity. Nonetheless, studies on the effects of these bacterial changes on the immune response are limited. Here, we characterize innate immune recognition and activation by a collection of genetically diverse B. pertussis strains isolated from Dutch pertussis patients before and after the introduction of the pertussis vaccines. For this purpose, we used HEK-Blue cells transfected with human pattern recognition receptors TLR2, TLR4, NOD2 and NOD1 as a high throughput system for screening innate immune recognition of more than 90 bacterial strains. Physiologically relevant human monocyte derived dendritic cells (moDC), purified from peripheral blood of healthy donors were also used. Findings indicate that, in addition to inducing TLR2 and TLR4 signaling, all B. pertussis strains activate the NOD-like receptor NOD2 but not NOD1. Furthermore, we observed a significant increase in TLR2 and NOD2, but not TLR4, activation by strains circulating after the introduction of pertussis vaccines. When using moDC, we observed that the recently circulating strains induced increased activation of these cells with a dominant IL-10 production. In addition, we observed an increased expression of surface markers including the regulatory molecule PD-L1. Expression of PD-L1 was decreased upon blocking TLR2. These in vitro findings suggest that emerging B. pertussis strains have evolved to dampen the vaccine-induced inflammatory response, which would benefit survival and transmission of this pathogen. Understanding how this disease has resurged in a highly vaccinated population is crucial for the design of improved vaccines against pertussis. PMID:28076445
Krishnan, Subramanian; Chang, Alexander C; Hodges, Jacqueline; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette; Nicholson, Bryon A; Nolan, Lisa K; Prasadarao, Nemani V
2015-01-01
Neonatal meningitis Escherichia coli K1 (NMEC) are thought to be transmitted from mothers to newborns during delivery or by nosocomial infections. However, the source of E. coli K1 causing these infections is not clear. Avian pathogenic E. coli (APEC) have the potential to cause infection in humans while human E. coli have potential to cause colibacillosis in poultry, suggesting that these strains may lack host specificity. APEC strains are capable of causing meningitis in newborn rats; however, it is unclear whether these bacteria use similar mechanisms to that of NMEC to establish disease. Using four representative APEC and NMEC strains that belong to serotype O18, we demonstrate that these strains survive in human serum similar to that of the prototypic NMEC strain E44, a derivative of RS218. These bacteria also bind and enter both macrophages and human cerebral microvascular endothelial cells (HCMEC/D3) with similar frequency as that of E44. The amino acid sequences of the outer membrane protein A (OmpA), an important virulence factor in the pathogenesis of meningitis, are identical within these representative APEC and NMEC strains. Further, these strains also require FcγRI-α chain (CD64) and Ecgp96 as receptors for OmpA in macrophages and HCMEC/D3, respectively, to bind and enter these cells. APEC and NMEC strains induce meningitis in newborn mice with varying degree of pathology in the brains as assessed by neutrophil recruitment and neuronal apoptosis. Together, these results suggest that serotype O18 APEC strains utilize similar pathogenic mechanisms as those of NMEC strains in causing meningitis.
de Lange, Christo; Coertzen, Dina; Smit, Frans J; Wentzel, Johannes F; Wong, Ho Ning; Birkholtz, Lyn-Marie; Haynes, Richard K; N'Da, David D
2017-12-26
Novel derivatives bearing a ferrocene attached via a piperazine linker to C-10 of the artemisinin nucleus were prepared from dihydroartemisinin and screened against chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf) parasites. The overall aim is to imprint oxidant (from the artemisinin) and redox (from the ferrocene) activities. In a preliminary assessment, these compounds were shown to possess activities in the low nM range with the most active being compound 6 with IC 50 values of 2.79 nM against Pf K1 and 3.2 nM against Pf W2. Overall the resistance indices indicate that the compounds have a low potential for cross resistance. Cytotoxicities were determined with Hek293 human embryonic kidney cells and activities against proliferating cells were assessed against A375 human malignant melanoma cells. The selectivity indices of the amino-artemisinin ferrocene derivatives indicate there is overall an appreciably higher selectivity towards the malaria parasite than mammalian cells. Copyright © 2017. Published by Elsevier Ltd.
Antolak, Hubert; Czyzowska, Agata; Kregiel, Dorota
2017-01-01
This study was conducted to investigate the antibacterial and antiadhesive activities of ethanol extracts from five edible plant parts: cinnamon bark ( Cinnamomum zeylanicum ), licorice root ( Glycyrrhiza radix ), nettle leaves ( Urtica dioica ), green tea leaves ( Camellia sinensis ), and elderberry flowers ( Sambucus nigra ). The chemical constituents of the extracts were identified using high-performance liquid chromatography and liquid chromatography plus mass spectrometry. Six strains of Asaia lannensis and Asaia bogorensis bacteria isolated from spoiled commercial fruit-flavored noncarbonated mineral water were used. Bacterial adhesion to polystyrene as an attachment substrate in culture media supplemented with 10% plant extract was evaluated using luminometric measurement of the ATP extracted from adhered cells. The viability of the adhered and planktonic cells was assessed using the plate count method, and the relative adhesion coefficient was calculated. All tested crude extracts contained flavonols (kaempferol, quercetin, and their derivatives), flavanols (catechin and derivatives), flavanones (glabrol, licorice glycoside A, and liquiritin), and phenolic acids (gallic, quinic, chlorogenic, neochlorogenic, caffeic, coumaric, and ferulic). The culture medium with 10% elderberry extract provided the least favorable environment for all tested bacterial strains. Extracts from green tea, cinnamon, and licorice also had significant inhibitory effects on the adhesion of the tested bacterial strains. This research suggests that the addition of selected edible plant extracts could improve the microbial stability of noncarbonated soft drinks.
Biofuels. Engineering alcohol tolerance in yeast.
Lam, Felix H; Ghaderi, Adel; Fink, Gerald R; Stephanopoulos, Gregory
2014-10-03
Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation. Copyright © 2014, American Association for the Advancement of Science.
Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH.
Overbeck, Tom J; Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R
2017-10-15
This study explored transient inactivation of the gene encoding the DNA mismatch repair enzyme MutS as a tool for adaptive evolution of Lactobacillus casei MutS deletion derivatives of L. casei 12A and ATCC 334 were constructed and subjected to a 100-day adaptive evolution process to increase lactic acid resistance at low pH. Wild-type parental strains were also subjected to this treatment. At the end of the process, the Δ mutS lesion was repaired in representative L. casei 12A and ATCC 334 Δ mutS mutant isolates. Growth studies in broth at pH 4.0 (titrated with lactic acid) showed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. However, the adapted Δ mutS derivative mutants showed the greatest increases in growth and lactic acid production. Further characterization of the L. casei 12A-adapted Δ mutS derivative revealed that it had a significantly smaller cell volume, a rougher cell surface, and significantly better survival at pH 2.5 than parental L. casei 12A. Genome sequence analysis confirmed that transient mutS inactivation decreased DNA replication fidelity in both L. casei strains, and it identified genetic changes that might contribute to the lactic acid-resistant phenotypes of adapted cells. Targeted inactivation of three genes that had acquired nonsense mutations in the adapted L. casei 12A Δ mutS mutant derivative showed that NADH dehydrogenase ( ndh ), phosphate transport ATP-binding protein PstB ( pstB ), and two-component signal transduction system (TCS) quorum-sensing histidine protein kinase ( hpk ) genes act in combination to increase lactic acid resistance in L. casei 12A. IMPORTANCE Adaptive evolution has been applied to microorganisms to increase industrially desirable phenotypes, including acid resistance. We developed a method to increase the adaptability of Lactobacillus casei 12A and ATCC 334 through transient inactivation of the DNA mismatch repair enzyme MutS. Here, we show this method was effective in increasing the resistance of L. casei to lactic acid at low pH. Additionally, we identified three genes that contribute to increased acid resistance in L. casei 12A. These results provide valuable insight on methods to enhance an organism's fitness to complex phenotypes through adaptive evolution and targeted gene inactivation. Copyright © 2017 American Society for Microbiology.
Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH
Overbeck, Tom J.; Welker, Dennis L.; Hughes, Joanne E.; Steele, James L.
2017-01-01
ABSTRACT This study explored transient inactivation of the gene encoding the DNA mismatch repair enzyme MutS as a tool for adaptive evolution of Lactobacillus casei. MutS deletion derivatives of L. casei 12A and ATCC 334 were constructed and subjected to a 100-day adaptive evolution process to increase lactic acid resistance at low pH. Wild-type parental strains were also subjected to this treatment. At the end of the process, the ΔmutS lesion was repaired in representative L. casei 12A and ATCC 334 ΔmutS mutant isolates. Growth studies in broth at pH 4.0 (titrated with lactic acid) showed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. However, the adapted ΔmutS derivative mutants showed the greatest increases in growth and lactic acid production. Further characterization of the L. casei 12A-adapted ΔmutS derivative revealed that it had a significantly smaller cell volume, a rougher cell surface, and significantly better survival at pH 2.5 than parental L. casei 12A. Genome sequence analysis confirmed that transient mutS inactivation decreased DNA replication fidelity in both L. casei strains, and it identified genetic changes that might contribute to the lactic acid-resistant phenotypes of adapted cells. Targeted inactivation of three genes that had acquired nonsense mutations in the adapted L. casei 12A ΔmutS mutant derivative showed that NADH dehydrogenase (ndh), phosphate transport ATP-binding protein PstB (pstB), and two-component signal transduction system (TCS) quorum-sensing histidine protein kinase (hpk) genes act in combination to increase lactic acid resistance in L. casei 12A. IMPORTANCE Adaptive evolution has been applied to microorganisms to increase industrially desirable phenotypes, including acid resistance. We developed a method to increase the adaptability of Lactobacillus casei 12A and ATCC 334 through transient inactivation of the DNA mismatch repair enzyme MutS. Here, we show this method was effective in increasing the resistance of L. casei to lactic acid at low pH. Additionally, we identified three genes that contribute to increased acid resistance in L. casei 12A. These results provide valuable insight on methods to enhance an organism's fitness to complex phenotypes through adaptive evolution and targeted gene inactivation. PMID:28802267
Synthesis and Antibacterial Activity of Quaternary Ammonium 4-Deoxypyridoxine Derivatives
Shtyrlin, Nikita V.; Sapozhnikov, Sergey V.; Galiullina, Albina S.; Kayumov, Airat R.; Bondar, Oksana V.; Mirchink, Elena P.; Isakova, Elena B.; Firsov, Alexander A.; Balakin, Konstantin V.
2016-01-01
A series of novel quaternary ammonium 4-deoxypyridoxine derivatives was synthesized. Two compounds demonstrated excellent activity against a panel of Gram-positive methicillin-resistant S. aureus strains with MICs in the range of 0.5–2 μg/mL, exceeding the activity of miramistin. At the same time, both compounds were inactive against the Gram-negative E. coli and P. aeruginosa strains. Cytotoxicity studies on human skin fibroblasts and embryonic kidney cells demonstrated that the active compounds possessed similar toxicity with benzalkonium chloride but were slightly more toxic than miramistin. SOS-chromotest in S. typhimurium showed the lack of DNA-damage activity of both compounds; meanwhile, one compound showed some mutagenic potential in the Ames test. The obtained results make the described chemotype a promising starting point for the development of new antibacterial therapies. PMID:27800491
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shihui; Vera, Jessica M.; Grass, Jeff
Zymomonas mobilis is a natural ethanologen being developed and deployed as an industrial biofuel producer. To date, eight Z. mobilis strains have been completely sequenced and found to contain 2-8 native plasmids. However, systematic verification of predicted Z. mobilis plasmid genes and their contribution to cell fitness has not been hitherto addressed. Moreover, the precise number and identities of plasmids in Z. mobilis model strain ZM4 have been unclear. The lack of functional information about plasmid genes in ZM4 impedes ongoing studies for this model biofuel-producing strain. In this study, we determined the complete chromosome and plasmid sequences of ZM4more » and its engineered xylose-utilizing derivatives 2032 and 8b. Compared to previously published and revised ZM4 chromosome sequences, the ZM4 chromosome sequence reported here contains 65 nucleotide sequence variations as well as a 2400-bp insertion. Four plasmids were identified in all three strains, with 150 plasmid genes predicted in strain ZM4 and 2032, and 153 plasmid genes predicted in strain 8b due to the insertion of heterologous DNA for expanded substrate utilization. Plasmid genes were then annotated using Blast2GO, InterProScan, and systems biology data analyses, and most genes were found to have apparent orthologs in other organisms or identifiable conserved domains. To verify plasmid gene prediction, RNA-Seq was used to map transcripts and also compare relative gene expression under various growth conditions, including anaerobic and aerobic conditions, or growth in different concentrations of biomass hydrolysates. Overall, plasmid genes were more responsive to varying hydrolysate concentrations than to oxygen availability. Additionally, our results indicated that although all plasmids were present in low copy number (about 1-2 per cell), the copy number of some plasmids varied under specific growth conditions or due to heterologous gene insertion. The complete genome of ZM4 and two xylose-utilizing derivatives is reported in this study, with an emphasis on identifying and characterizing plasmid genes. Furthermore, plasmid gene annotation, validation, expression levels at growth conditions of interest, and contribution to host fitness are reported for the first time.« less
Yang, Shihui; Vera, Jessica M.; Grass, Jeff; ...
2018-05-02
Zymomonas mobilis is a natural ethanologen being developed and deployed as an industrial biofuel producer. To date, eight Z. mobilis strains have been completely sequenced and found to contain 2-8 native plasmids. However, systematic verification of predicted Z. mobilis plasmid genes and their contribution to cell fitness has not been hitherto addressed. Moreover, the precise number and identities of plasmids in Z. mobilis model strain ZM4 have been unclear. The lack of functional information about plasmid genes in ZM4 impedes ongoing studies for this model biofuel-producing strain. In this study, we determined the complete chromosome and plasmid sequences of ZM4more » and its engineered xylose-utilizing derivatives 2032 and 8b. Compared to previously published and revised ZM4 chromosome sequences, the ZM4 chromosome sequence reported here contains 65 nucleotide sequence variations as well as a 2400-bp insertion. Four plasmids were identified in all three strains, with 150 plasmid genes predicted in strain ZM4 and 2032, and 153 plasmid genes predicted in strain 8b due to the insertion of heterologous DNA for expanded substrate utilization. Plasmid genes were then annotated using Blast2GO, InterProScan, and systems biology data analyses, and most genes were found to have apparent orthologs in other organisms or identifiable conserved domains. To verify plasmid gene prediction, RNA-Seq was used to map transcripts and also compare relative gene expression under various growth conditions, including anaerobic and aerobic conditions, or growth in different concentrations of biomass hydrolysates. Overall, plasmid genes were more responsive to varying hydrolysate concentrations than to oxygen availability. Additionally, our results indicated that although all plasmids were present in low copy number (about 1-2 per cell), the copy number of some plasmids varied under specific growth conditions or due to heterologous gene insertion. The complete genome of ZM4 and two xylose-utilizing derivatives is reported in this study, with an emphasis on identifying and characterizing plasmid genes. Furthermore, plasmid gene annotation, validation, expression levels at growth conditions of interest, and contribution to host fitness are reported for the first time.« less
Doersen, C J; Stanbridge, E J
1981-01-01
HeLa cells sensitive to the mitochondrial protein synthesis inhibitors erythromycin (ERY) and chloramphenicol (CAP) and HeLa variants resistant to the effects of these drugs were purposefully infected with drug-sensitive and -resistant mycoplasma strains. Mycoplasma hyorhinis and the ERY-resistant strain of Mycoplasma orale, MO-ERYr, did not influence the growth of HeLa and ERY-resistant ERY2301 cells in the presence or absence of ERY. M. hyorhinis also did not affect the growth of HeLa and CAP-resistant Cap-2 cells in the presence or absence of CAP. However, both HeLa and Cap-2 cells infected with the CAP-resistant strain of M. hyorhinis, MH-CAPr, were more sensitive to the cytotoxic effect of CAP. This may be due to the glucose dependence of the cells, which was compromised by the increased utilization of glucose by MH-CAPr in these infected cell cultures. In vitro protein synthesis by isolated mitochondria was significantly altered by mycoplasma infection of the various cell lines. A substantial number of mycoplasmas copurified with the mitochondria, resulting in up to a sevenfold increase in the incorporation of [3H]leucine into the trichloroacetic acid-insoluble material. More importantly, the apparent drug sensitivity or resistance of mitochondrial preparations from mycoplasma-infected cells reflected the drug sensitivity or resistance of the contaminating mycoplasmas. These results illustrate the hazards in interpreting mitochondrial protein synthesis data derived from mycoplasma-infected cell lines, particularly putative mitochondrially encoded mutants resistant to inhibitors of mitochondrial protein synthesis. PMID:6965101
1,2-disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarial agents.
Herrmann, Christoph; Salas, Paloma F; Patrick, Brian O; de Kock, Carmen; Smith, Peter J; Adam, Michael J; Orvig, Chris
2012-06-07
This work presents a new family of organometallic antimalarial compounds consisting of ferrocene bearing a chloroquine-derived moiety as well as a 1,2;3,5-diisopropylidene glucofuranose moiety at a cyclopentadienyl scaffold in a 1,2-substitution pattern. The synthetic route proceeds via a stereoselective functionalization of ferrocene carboxaldehyde to the 1,2-disubstituted conjugates. After complete characterization of these new, trifunctional conjugates, they were examined for their cytotoxicity in two cancerous cell lines (MDA-MB-435S and Caco2) and one non-cancerous cell line (MCF-10A), showing that increased cytotoxicity can be observed for the chloroquine ferrocenyl conjugates compared to their carbohydrate-substituted precursors. The antiplasmodial activity of the conjugates in a chloroquine-sensitive strain of Plasmodium falciparum (D10) and a chloroquine-resistant strain (Dd2) was determined. Monosubstituted conjugates 13, 14 and 15 exhibit decreasing activity with increasing alkyl chain length between the ferrocene and quinoline moiety, bifunctional conjugates 16, 17, 18 show constant activity, performing better than chloroquine in the Dd2 strain.
Brown, William R. A.; Liti, Gianni; Rosa, Carlos; James, Steve; Roberts, Ian; Robert, Vincent; Jolly, Neil; Tang, Wen; Baumann, Peter; Green, Carter; Schlegel, Kristina; Young, Jonathan; Hirchaud, Fabienne; Leek, Spencer; Thomas, Geraint; Blomberg, Anders; Warringer, Jonas
2011-01-01
The fission yeast Schizosaccharomyces pombe has been widely used to study eukaryotic cell biology, but almost all of this work has used derivatives of a single strain. We have studied 81 independent natural isolates and 3 designated laboratory strains of Schizosaccharomyces pombe. Schizosaccharomyces pombe varies significantly in size but shows only limited variation in proliferation in different environments compared with Saccharomyces cerevisiae. Nucleotide diversity, π, at a near neutral site, the central core of the centromere of chromosome II is approximately 0.7%. Approximately 20% of the isolates showed karyotypic rearrangements as detected by pulsed field gel electrophoresis and filter hybridization analysis. One translocation, found in 6 different isolates, including the type strain, has a geographically widespread distribution and a unique haplotype and may be a marker of an incipient speciation event. All of the other translocations are unique. Exploitation of this karyotypic diversity may cast new light on both the biology of telomeres and centromeres and on isolating mechanisms in single-celled eukaryotes. PMID:22384373
Kaneko, Mei; Takanashi, Sayaka; Thongprachum, Aksara; Hanaoka, Nozomu; Fujimoto, Tsuguto; Nagasawa, Koo; Kimura, Hirokazu; Okitsu, Shoko; Mizuguchi, Masashi; Ushijima, Hiroshi
2017-01-01
Two live attenuated oral rotavirus vaccines, Rotarix and RotaTeq, have been introduced as voluntary vaccination in Japan since 2011 and 2012, respectively. Effectiveness of the vaccines has been confirmed, whereas concerns such as shedding of the vaccine strains and gastroenteritis cases caused by vaccine strains are not well assessed. We aimed to identify the vaccine strains in children with acute gastroenteritis (AGE) to investigate the prevalence of AGE caused by vaccination or horizontal transmission of vaccine strains. A total of 1,824 stool samples were collected from children with AGE at six outpatient clinics in 2012-2015. Among all, 372 group A rotavirus (RVA) positive samples were screened for vaccine components by real-time RT-PCR which were designed to differentiate vaccine strains from rotavirus wild-type strains with high specificity. For samples possessing both vaccine and wild-type strains, analyses by next-generation sequencing (NGS) were conducted to characterize viruses existed in the intestine. As a result, Rotarix-derived strains were identified in 6 of 372 (1.6%) RVA positive samples whereas no RotaTeq strain was detected. Among six samples, four possessed Rotarix-derived strains while two possessed both Rotarix-derived strains and wild-type strains. In addition, other pathogens such as norovirus, enterovirus and E.coli were detected in four samples. The contribution of these vaccine strains to each patient's symptoms was unclear as all of the cases were vaccinated 2-14 days before sample collection. Proportion of average coverage for each segmented gene by NGS strongly suggested the concurrent infection of the vaccine-derived strain and the wild-type strain rather than reassortment of these two strains in one sample. This is the first study to report the prevalence of vaccine-derived strains in patients with RVA AGE in Japan as 1.6% without evidence of horizontal transmission. The results emphasized the importance of continuous monitoring on vaccine strains and their clinical impacts on children.
Kaneko, Mei; Thongprachum, Aksara; Hanaoka, Nozomu; Fujimoto, Tsuguto; Nagasawa, Koo; Kimura, Hirokazu; Okitsu, Shoko; Mizuguchi, Masashi; Ushijima, Hiroshi
2017-01-01
Two live attenuated oral rotavirus vaccines, Rotarix and RotaTeq, have been introduced as voluntary vaccination in Japan since 2011 and 2012, respectively. Effectiveness of the vaccines has been confirmed, whereas concerns such as shedding of the vaccine strains and gastroenteritis cases caused by vaccine strains are not well assessed. We aimed to identify the vaccine strains in children with acute gastroenteritis (AGE) to investigate the prevalence of AGE caused by vaccination or horizontal transmission of vaccine strains. A total of 1,824 stool samples were collected from children with AGE at six outpatient clinics in 2012–2015. Among all, 372 group A rotavirus (RVA) positive samples were screened for vaccine components by real-time RT-PCR which were designed to differentiate vaccine strains from rotavirus wild-type strains with high specificity. For samples possessing both vaccine and wild-type strains, analyses by next-generation sequencing (NGS) were conducted to characterize viruses existed in the intestine. As a result, Rotarix-derived strains were identified in 6 of 372 (1.6%) RVA positive samples whereas no RotaTeq strain was detected. Among six samples, four possessed Rotarix-derived strains while two possessed both Rotarix-derived strains and wild-type strains. In addition, other pathogens such as norovirus, enterovirus and E.coli were detected in four samples. The contribution of these vaccine strains to each patient’s symptoms was unclear as all of the cases were vaccinated 2–14 days before sample collection. Proportion of average coverage for each segmented gene by NGS strongly suggested the concurrent infection of the vaccine-derived strain and the wild-type strain rather than reassortment of these two strains in one sample. This is the first study to report the prevalence of vaccine-derived strains in patients with RVA AGE in Japan as 1.6% without evidence of horizontal transmission. The results emphasized the importance of continuous monitoring on vaccine strains and their clinical impacts on children. PMID:28902863
Liang, Chao; Tong, Wu; Zheng, Hao; Liu, Fei; Wu, Jiqiang; Li, Guoxin; Zhou, En-Min; Tong, Guangzhi
2017-06-01
Emerging variant of pseudorabies virus (PRV) have evaded the antiviral immunity of commercially available PRV vaccine and have led to PRV outbreaks in Chinese pig farms. Here, we attenuated a PRV variant strain by serial passages in vitro and evaluate the protective efficacy of the attenuated strain as a vaccine candidate. The virulent PRV variant strain JS-2012 was continuously passaged in Vero cells at 40°C and attenuated rapidly. After 90 passages in Vero cells, the passaged virus lost its ability to cause death in 2-week-old piglets. The 120th passage virus was avirulent in the sucking piglets. An attenuated strain, JS-2012-F120 derived from the 120th passage virus by three rounds of plaque cloning grew better than its parent strain JS-2012 in Vero cells and showed notably different cytopathic effects and plaque morphology from JS-2012. PCR combined with sequence analysis showed that JS-2012-F120 contained a 2307-bp deletion covering nucleotide 487 of gE gene to 531 of US2 gene. After inoculation with JS-2012-F120, young piglets were completely protected from challenge with the classical and emerging virulent PRVs. Moreover, the piglets did not develop specific gE antibodies. Thus, JS-2012-F120 appears to be a promising marker vaccine to control PRV variant circulating in Chinese pig farms, and the high-temperature passaging in vitro was an efficient method to attenuated alphaherpesvirus. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure and activity of lobophorins from a turrid mollusk-associated Streptomyces sp.
Lin, Zhenjian; Koch, Michael; Pond, Christopher D; Mabeza, Gaiselle; Seronay, Romell A; Concepcion, Gisela P; Barrows, Louis R; Olivera, Baldomero M; Schmidt, Eric W
2014-01-01
A novel lumun-lumun sampling methodology was used to obtain a large diversity of micromollusks, including the new species Lienardia totopotens. In turn, from L. totopotens we cultivated a Streptomyces sp. strain that contained new and known spirotetronate polyketides, lobophorins (1-5). The structures were elucidated using spectroscopy, and the compounds were evaluated for cytotoxicity to human cells and activity against Mycobacterium tuberculosis, Bacillus subtilis, Pseudomonas aeruginosa and Burkholderia cepacia. Compounds 2-5 showed varying degrees of activity against human cells, M. tuberculosis and B. subtilis in the low μM to mid nM range but were inactive against the other strains, while 1 lacking digitoxose was inactive. Very slight structural changes in 2-5 led to varying antibacterial:cytotoxicity ratios, providing a possible basis to synthesize more selective derivatives.
Hayashi, K; Kawahara, K; Nakai, C; Sankawa, U; Seto, H; Hayashi, T
2000-08-01
(1R,2R)-1-(5'-Methylfur-3'-yl)propane-1,2,3-triol (MFPT), a stable anhydro derivative of sphydrofuran, was obtained from the culture broth of STREPTOMYCES: sp. strain FV60 as an inhibitor of herpes simplex virus type 1 (HSV-1). The compound showed antiherpetic activity with a 50% inhibitory concentration of 1.2 IM in an in vitro assay system. Although the binding of virus to host cells was not inhibited, the penetration of virus into cells was moderately blocked by MFPT. Some of the viruses, once they had penetrated cells, failed to form plaques in the presence of MFPT. When added to the late stages of HSV-1 replication, MFPT also inhibited virus production. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of isotope-labelled HSV-specific proteins revealed that a protein or proteins with reduced molecular weight (about 120 kDa) was clearly detected in cells treated with MFPT. Western blot analysis with antibodies against three HSV-specific glycoproteins (gB, gC and gD) showed a significant difference in gC synthesis between untreated and MFPT-treated cells. Release of progeny viruses was suppressed by MFPT. Syncytium formation by HSV-1 strain HF was inhibited and small plaques with rounded cells were formed in MFPT-treated cell cultures. When wild-type HSV-1 was serially propagated under the selective pressure of MFPT, resistant virus emerged. MFPT-resistant progeny were accompanied by the formation of plaques with rounded cells. These results, taken together, suggest that MFPT might act by limiting the maturation of HSV-specific glycoproteins, particularly of HSV-1 gC.
Duran, Jason M.; Makarewich, Catherine A.; Sharp, Thomas E.; Starosta, Timothy; Fang, Zhu; Hoffman, Nicholas E.; Chiba, Yumi; Madesh, Muniswamy; Berretta, Remus M.; Kubo, Hajime; Houser, Steven R.
2013-01-01
Rationale Autologous bone marrow- or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is key toward improving clinical outcomes. Objective To determine the mechanism by which novel bone-derived stem cells support the injured heart. Methods and Results Cortical bone stem cells (CBSCs) and cardiac-derived stem cells (CDCs) were isolated from EGFP+ transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction (MI) with injection of CBSCs (n=67), CDCs (n=36) or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor) and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to CDC- or saline-treated MI controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle and endothelial cells could be identified in CBSC- but not in CDC-treated animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. Conclusions CBSCs improve survival, cardiac function, and attenuate remodeling through two mechanisms:1) secretion of pro-angiogenic factors that stimulate endogenous neovascularization, and 2) differentiation into functional adult myocytes and vascular cells. PMID:23801066
Castorena, Gladys; Suárez, Claudia; Valdez, Idania; Amador, Guadalupe; Fernández, Luis; Le Borgne, Sylvie
2002-09-24
New desulfurizing bacteria able to convert dibenzothiophene into 2-hydroxybiphenyl and sulfate were isolated from contaminated soils collected in Mexican refineries. Random amplified polymorphic DNA analysis showed they were different from previously reported Rhodococcus erythropolis desulfurizing strains. According to 16S rRNA gene sequencing and fatty acid analyses, these new isolates belonged to the genus Rhodococcus. These strains could desulfurize 4,6-dimethyldibenzothiophene which is one of the most difficult dibenzothiophene derivatives to remove by hydrodesulfurization. A deeply hydrodesulfurized diesel oil containing significant amounts of 4,6-dimethyldibenzothiophene was treated with Rhodococcus sp. IMP-S02 cells. Up to 60% of the total sulfur was removed and all the 4,6-dimethyldibenzothiophene disappeared as a result of this treatment.
Thymus-autonomous T cell development in the absence of progenitor import.
Martins, Vera C; Ruggiero, Eliana; Schlenner, Susan M; Madan, Vikas; Schmidt, Manfred; Fink, Pamela J; von Kalle, Christof; Rodewald, Hans-Reimer
2012-07-30
Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell-deficient mice resulted in a wave of T cell export from the thymus, followed by colonization of the thymus by host-derived progenitors, and cessation of T cell development. Compound Rag2(-/-)γ(c)(-/-)Kit(W/Wv) mutants lack competitive hematopoietic stem cells (HSCs) and are devoid of T cell progenitors. In this study, using this strain as recipients for wild-type thymus grafts, we noticed thymus-autonomous T cell development lasting several months. However, we found no evidence for export of donor HSCs from thymus to bone marrow. A diverse T cell antigen receptor repertoire in progenitor-deprived thymus grafts implied that many thymocytes were capable of self-renewal. Although the process was most efficient in Rag2(-/-)γ(c)(-/-)Kit(W/Wv) hosts, γ(c)-mediated signals alone played a key role in the competition between thymus-resident and bone marrow-derived progenitors. Hence, the turnover of each generation of thymocytes is not only based on short life span but is also driven via expulsion of resident thymocytes by fresh progenitors entering the thymus.
Guo, Xia; Chen, Dan-Dan; Peng, Kai-Song; Cui, Zheng-Wei; Zhang, Xu-Jie; Li, Shun; Zhang, Yong-An
2016-05-01
Bacillus subtilis is widely used as probiotic species in aquaculture for water quality control, growth promoting, or immunity enhancing. The aim of this study is to find novel B. subtilis strains from fish as potential probiotics for aquaculture. Eleven B. subtilis isolates derived from the intestinal tract of grass carp were identified by gene sequencing and biochemical tests. These isolates were classified into 4 groups, and the representatives (GC-5, GC-6, GC-21 and GC-22) of each group were further investigated for antibiotic susceptibility, sporulation rate, biofilm formation, activity against pathogenic bacteria, resistance to stress conditions of intestinal tract (high percentage of bile and low pH) and high temperature, which are important for probiotics to be used as feed additives. Additionally, the adhesion properties of the 4 characterized strains were assessed using Caco-2 cell and gut mucus models. The results showed that the 4 strains differed in their capacities to adhere to intestinal epithelial cells and mucus. Furthermore, the strains GC-21 and GC-22 up-regulated the expression levels of IL-10 and TGF-β but down-regulated IL-1β, suggesting their potential anti-inflammatory abilities. Based on physiological properties of the 4 characterized B. subtilis strains, one or more strains may have potential to be used as probiotics in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.J.; Greene, M.H.; Adams, D.
The dysplastic nevus syndrome (DNS) is a preneoplastic melanocyte abnormality which occurs in families affected by hereditary cutaneous malignant melanoma (HCMM). A putative role of host-environmental interactions in the etiology of hereditary melanoma has been strengthened by the recent finding that fibroblasts derived from HCMM/DNS patients demonstrated enhanced sensitivity to u.v.-irradiation in vitro. An extension of these studies is reported in which we have examined the invitro responses to a model environmental carcinogen, 4-nitroquinoline 1-oxide (4NQO), of six non-tumor skin fibroblast strains from HCMM/DNS patients representing five families. Three of the six HCMM/DNS strains showed enhanced cell killing with sensitivitiesmore » greater than that of a xeroderma pigmentosum (XP) variant strain but less than those of ataxia telangiectasia and XP Group D cell strains. The inhibition and recovery of de novo DNA synthesis, together with the expression of repair synthesis, following 4NQO exposure appeared to be normal in HCMM/DNS strains, irrespective of their subsequent clonogenic potential. The data point to a metabolic anomaly which may contribute to the carcinogenic risk of the melanoma prone preneoplastic state presented by some DNS patients.« less
Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi
2017-01-01
Streptococcus agalactiae , or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain ( P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28-39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin-antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.
Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi
2017-01-01
Streptococcus agalactiae, or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination. PMID:29056932
Mintz, Beatrice; Palm, Joy
1969-01-01
Erythropoietic cells of two unrelated strains, C3H (or C3Hf) and C57BL/6, can coexist throughout hematopoiesis in allophenic mice experimentally produced from aggregated, undifferentiated blastomeres of separate genotypes. The presence of two red cell genotypes in these circumstances signifies that the erythroid population must normally be multiclonal, i.e., derived mitotically from at least two genetically determined cells. The two strains were detected by hemagglutination and absorption tests of erythrocytes for the specific histocompatibility antigens dictated by the H-2k and H-2b alleles. Of 34 C3H(f) ↔ C57BL/6 allophenics tested, 16 had both red cell types; the remaining 18 showed only C3H or C57 red cells and included 12 mice with both cell strains present in some other tissues. All animals with evidence of two H-2 phenotypes among circulating erythrocytes were permanently immunologically tolerant of both antigenic types and remained free of runt disease. They lived a full lifespan, up to 2 yr 7½ months of age. The data suggest a possible specific selective advantage of C57BL/6 over C3H erythropoietic tissue. There is considerable individual variability, not only in proportions of antigenically distinct erythrocytes, but also in strain composition of other tissues in the same animals. A broad spectrum of distinctive situations is found, in which parameters are varied within or outside of the circulatory system. Allophenic mice can therefore serve as investigative tools for entirely new kinds of experimental studies of gene control mechanisms and blood physiology in normal hematopoiesis and in a number of hereditary blood diseases. PMID:5778785
Luo, Jianmei; Wang, Tingting; Li, Xiao; Yang, Yanan; Zhou, Minghua; Li, Ming; Yan, Zhongli
2018-05-30
Low electricity power output (EPT) is still the main bottleneck limited the industrial application of microbial fuel cells (MFCs). Herein, EPT enhancement by introducing an exogenous global regulator IrrE derived from Deinococcus radiodurans into electrochemically active bacteria (EAB) was explored using Pseudomonas aeruginosa PAO1 as a model strain, achieving a power density 71% higher than that of the control strain. Moreover, IrrE-expressing strain exhibited a remarkable increase in the total amount of electron shuttles (majorly phenazines compounds) and a little decrease in internal resistance, which should underlie the enhancement in extracellular electron transfer (EET) efficiency and EPT. Strikingly, IrrE significantly affected substrate utilization profiling, improved cell growth characterization and cell tolerance to various stresses. Further quantitative RT-PCR analysis revealed that IrrE led to many differentially expressed genes, which were responsible for phenazines core biosynthesis, biofilm formation, QS systems, transcriptional regulation, glucose metabolism and general stress response. The results substantiated that targeting cellular regulatory network by the introduction of exogenous global regulators could be a facile and promising approach for the enhancement of bioelectricity generation and cell multiple phenotypes, and thus would be of great potential application in the practical MFCs. Copyright © 2018 Elsevier B.V. All rights reserved.
Vijayabharathi, Rajendran; Bruheim, Per; Andreassen, Trygve; Raja, Duraisamy Senthil; Devi, Palanisamy Bruntha; Sathyabama, Sathyaseelan; Priyadarisini, Venkatesan Brindha
2011-12-01
A new actinomycete strain, isolated from humus soils in the Western Ghats, was found to be an efficient pigment producer. The strain, designated AAA5, was identified as a putative Streptomyces aurantiacus strain based on cultural properties, morphology, carbon source utilization, and analysis of the 16S rRNA gene. The strain produced a reddish-brown pigmented compound during the secondary metabolites phase. A yellow compound was derived from the extracted pigment and was identified as the quinone-related antibiotic resistomycin based on ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, liquid chromatography and mass spectroscopy, and nuclear magnetic resonance analyses. The AAA5 strain was found to produce large quantities of resistomycin (52.5 mg/L). It showed potent cytotoxic activity against cell lines viz. HepG2 (hepatic carcinoma) and HeLa (cervical carcinoma) in vitro, with growth inhibition (GI(50)) of 0.006 and 0.005 μg/ml, respectively. The strain also exhibited broad antimicrobial activities against both Gram-positive and Gram-negative bacteria. Therefore, AAA5 may have great potential as an industrial resistomycin-producing strain.
Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea).
Todorov, Svetoslav D; Dicks, Leon M T
2009-06-30
Strain ST44AM, isolated from marula, was identified as Pediococcus pentosaceus based on biochemical tests, sugar fermentation reactions (API 50CHL), PCR with species-specific primers and 16S rDNA sequencing. Strain ST44AM produces a 6.5 kDa class IIa bacteriocin, active against lactic acid bacteria, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Listeria innocua, Listeria ivanovii subsp. ivanovii and Listeria monocytogenes. The peptide is inactivated by proteolytic enzymes, but not when treated with alpha-amylase, Triton X-100, Triton X-114, SDS, Tween 20, Tween 80, urea, NaCl and EDTA. No change in activity was recorded after 2 h at pH values between 2.0 and 12.0, and after treatment at 100 degrees C for 120 min or 121 degrees C for 20 min. The mode of activity against L. ivanovii susbp. ivanovii ATCC19119 and Enterococcus faecium HKLHS is bactericidal, resulting in cell lyses and enzyme- and DNA-leakage. No significant differences in cell growth and bacteriocin production were observed when strain ST44AM was cultured in MRS broth at 26 degrees C, 30 degrees C and 37 degrees C for 24 h and tested against the same target strain. L. ivanovii subsp. ivanovii ATCC 19119 and E. faecium HKLHS did, however, differ in sensitivity to bacteriocin ST44AM (3.3x10(6) AU/mL and 2.6x10(4) AU/mL, respectively). Peptide ST44AM adsorbs at high levels (1600 AU/mL) to producer cells. Bacteriocin ST44AM may be a derivative of pediocin PA-1. This is the first report on the presence of P. pentosaceus in marula and a pediocin PA-1 derivative produced by this species. We are also the first to report on the synergetic effect ciprofloxacin has on a pediocin-like bacteriocin.
Cellular Aspects of Prion Replication In Vitro
Grassmann, Andrea; Wolf, Hanna; Hofmann, Julia; Graham, James; Vorberg, Ina
2013-01-01
Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders in mammals that are caused by unconventional agents predominantly composed of aggregated misfolded prion protein (PrP). Prions self-propagate by recruitment of host-encoded PrP into highly ordered β-sheet rich aggregates. Prion strains differ in their clinical, pathological and biochemical characteristics and are likely to be the consequence of distinct abnormal prion protein conformers that stably replicate their alternate states in the host cell. Understanding prion cell biology is fundamental for identifying potential drug targets for disease intervention. The development of permissive cell culture models has greatly enhanced our knowledge on entry, propagation and dissemination of TSE agents. However, despite extensive research, the precise mechanism of prion infection and potential strain effects remain enigmatic. This review summarizes our current knowledge of the cell biology and propagation of prions derived from cell culture experiments. We discuss recent findings on the trafficking of cellular and pathologic PrP, the potential sites of abnormal prion protein synthesis and potential co-factors involved in prion entry and propagation. PMID:23340381
Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai
2015-02-01
Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tran, Cong Tri; Garcia, Magali; Garnier, Martine; Burucoa, Christophe; Bodet, Charles
2017-02-01
Inflammatory signaling pathways induced by Helicobacter pylori remain unclear, having been studied mostly on cell-line models derived from gastric adenocarcinoma with potentially altered signaling pathways and nonfunctional receptors. Here, H. pylori-induced signaling pathways were investigated in primary human gastric epithelial cells. Inflammatory response was analyzed on chemokine mRNA expression and production after infection of gastric epithelial cells by H. pylori strains, B128 and B128Δ cagM, a cag type IV secretion system defective strain. Signaling pathway involvement was investigated using inhibitors of epidermal growth factor receptor (EGFR), MAPK, JAK and blocking Abs against TLR2 and TLR4. Inhibitors of EGFR, MAPK and JAK significantly reduced the chemokine mRNA expression and production induced by both H. pylori strains at 3 h and 24 h post-infection. JNK inhibitor reduced chemokine production at 24 h post-infection. Blocking Abs against TLR2 but not TLR4 showed significant reduction of chemokine secretion. Using primary culture of human gastric epithelial cells, our data suggest that H. pylori can be recognized by TLR2, leading to chemokine induction, and that EGFR, MAPK and the JAK/STAT signaling pathways play a key role in the H. pylori-induced CXCL1, CXCL5 and CXCL8 response in a cag pathogenicity island-independent manner.
Marinović, Mila; Aguilar-Pontes, Maria Victoria; Zhou, Miaomiao; Miettinen, Otto; de Vries, Ronald P; Mäkelä, Miia R; Hildén, Kristiina
2018-03-01
The basidiomycete white-rot fungus Obba rivulosa, a close relative of Gelatoporia (Ceriporiopsis) subvermispora, is an efficient degrader of softwood. The dikaryotic O. rivulosa strain T241i (FBCC949) has been shown to selectively remove lignin from spruce wood prior to depolymerization of plant cell wall polysaccharides, thus possessing potential in biotechnological applications such as pretreatment of wood in pulp and paper industry. In this work, we studied the time-course of the conversion of spruce by the genome-sequenced monokaryotic O. rivulosa strain 3A-2, which is derived from the dikaryon T241i, to get insight into transcriptome level changes during prolonged solid state cultivation. During 8-week cultivation, O. rivulosa expressed a constitutive set of genes encoding putative plant cell wall degrading enzymes. High level of expression of the genes targeted towards all plant cell wall polymers was detected at 2-week time point, after which majority of the genes showed reduced expression. This implicated non-selective degradation of lignin by the O. rivulosa monokaryon and suggests high variation between mono- and dikaryotic strains of the white-rot fungi with respect to their abilities to convert plant cell wall polymers. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Yi-Ping; Ramirez, Santseharay; Mikkelsen, Lotte; Bukh, Jens
2015-01-01
The first discovered and sequenced hepatitis C virus (HCV) genome and the first in vivo infectious HCV clones originated from the HCV prototype strains HCV-1 and H77, respectively, both widely used in research of this important human pathogen. In the present study, we developed efficient infectious cell culture systems for these genotype 1a strains by using the HCV-1/SF9_A and H77C in vivo infectious clones. We initially adapted a genome with the HCV-1 5'UTR-NS5A (where UTR stands for untranslated region) and the JFH1 NS5B-3'UTR (5-5A recombinant), including the genotype 2a-derived mutations F1464L/A1672S/D2979G (LSG), to grow efficiently in Huh7.5 cells, thus identifying the E2 mutation S399F. The combination of LSG/S399F and reported TNcc(1a)-adaptive mutations A1226G/Q1773H/N1927T/Y2981F/F2994S promoted adaptation of the full-length HCV-1 clone. An HCV-1 recombinant with 17 mutations (HCV1cc) replicated efficiently in Huh7.5 cells and produced supernatant infectivity titers of 10(4.0) focus-forming units (FFU)/ml. Eight of these mutations were identified from passaged HCV-1 viruses, and the A970T/I1312V/C2419R/A2919T mutations were essential for infectious particle production. Using CD81-deficient Huh7 cells, we further demonstrated the importance of A970T/I1312V/A2919T or A970T/C2419R/A2919T for virus assembly and that the I1312V/C2419R combination played a major role in virus release. Using a similar approach, we found that NS5B mutation F2994R, identified here from culture-adapted full-length TN viruses and a common NS3 helicase mutation (S1368P) derived from viable H77C and HCV-1 5-5A recombinants, initiated replication and culture adaptation of H77C containing LSG and TNcc(1a)-adaptive mutations. An H77C recombinant harboring 19 mutations (H77Ccc) replicated and spread efficiently after transfection and subsequent infection of naive Huh7.5 cells, reaching titers of 10(3.5) and 10(4.4) FFU/ml, respectively. Hepatitis C virus (HCV) was discovered in 1989 with the cloning of the prototype strain HCV-1 genome. In 1997, two molecular clones of H77, the other HCV prototype strain, were shown to be infectious in chimpanzees, but not in vitro. HCV research was hampered by a lack of infectious cell culture systems, which became available only in 2005 with the discovery of JFH1 (genotype 2a), a genome that could establish infection in Huh7.5 cells. Recently, we developed in vitro infectious clones for genotype 1a (TN), 2a (J6), and 2b (J8, DH8, and DH10) strains by identifying key adaptive mutations. Globally, genotype 1 is the most prevalent. Studies using HCV-1 and H77 prototype sequences have generated important knowledge on HCV. Thus, the in vitro infectious clones developed here for these 1a strains will be of particular value in advancing HCV research. Moreover, our findings open new avenues for the culture adaptation of HCV isolates of different genotypes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M
2017-01-01
Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn-Rotnycki-Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1 β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1 β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1 β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy
Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the averagemore » nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.« less
Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.
Späte, Anne-Katrin; Schart, Verena F; Schöllkopf, Sophie; Niederwieser, Andrea; Wittmann, Valentin
2014-12-08
The Diels-Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5-tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate-linked side chains of varying length terminated by alkene groups and their suitability for labeling cell-surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N-butenyloxycarbonylmannosamine, was especially well suited for labeling cell-surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Isolation and characterization of 2-pyridone alkaloids and alloxazines from Beauveria bassiana.
Andrioli, W J; Lopes, A A; Cavalcanti, B C; Pessoa, C; Nanayakkara, N P D; Bastos, J K
2017-08-01
Two novel compounds bearing heterocyclic nitrogen, 2-pyridone alkaloid (1) and alloxazine derivative (2), along with the known pretenellin B (3), pyridovericin (4) and lumichrome (5) were isolated from a culture of the entomopathogenic fungal strain Beauveria bassiana. The chemical structures of 2-pyridone alkaloid and alloxazine derivative were established on the basis of the interpretation of spectroscopic data. The isolated compounds were evaluated in a panel of five cancer cell lines and pyridovericin exhibited cytotoxicity (IC 50 , μM) against cancer cell lines: HL-60 (25.9 ± 0.3), HCT8 (34.6 ± 3.6), MDA-MB435 (34.8 ± 3.8) and SF295 (31.1 ± 0.6). Considering that other pyridone compounds display good cytotoxic activity, it would be suggested to obtain new semi synthetic derivatives of pyridovericin, for the development of new cytotoxic chemical entities.
Sardi, Janaína de Cássia Orlandi; Gullo, Fernanda Patrícia; Freires, Irlan Almeida; Pitangui, Nayla de Souza; Segalla, Maicon Petrônio; Fusco-Almeida, Ana Marisa; Rosalen, Pedro Luiz; Regasini, Luís Octávio; Mendes-Giannini, Maria José Soares
2016-12-01
We tested the antifungal potential of caffeic acid and 8 of its derivative esters against Candidaalbicans ATCC 90028 and 9 clinical isolatesand carried out a synergism assay with fluconazole and nystatin. Propyl caffeate (C3) showed the best antifungal activity against the tested strains. When in combination, C3 markedly reduced the MIC of fluconazole and nystatin with synergistic effect up to 64-fold. Finally, C3 showed a high IC 50 value and selective indexagainst oral keratinocytes, demonstrating low toxicity against this cell type and selectivity for yeast cells. Further research should confirm its antifungal potential for development of combined therapy to treat C. albicans infections. Copyright © 2016 Elsevier Inc. All rights reserved.
Establishment and characterization of a normal melanocyte cell line derived from pig skin.
Julé, Sophia; Bossé, Philippe; Egidy, Giorgia; Panthier, Jean-Jacques
2003-08-01
Several minipig strains develop spontaneous malignant melanoma. As a first step toward the analysis of genes involved in the tumoral progression of melanoma in these animal models, we developed culture conditions for pig melanocytes whereby melanocytes from normal epidermis can be isolated directly onto mitotically inactivated keratinocytes in Eagle's minimal essential medium supplemented with fetal calf serum, tetradecanoyl phorbol acetate (TPA) and cholera toxin. We also derived an immortal line of pigmented melanocytes from the epidermis of a healthy Meishan pig. This cell line, designated PigMel, retains differentiation function in culture, dependence on TPA and cholera toxin and a diploid chromosome number. PigMel melanocytes exhibit morphological and molecular characteristics common to normal mammalian skin melanocytes.
Szabo, R; Samson, A L; Lawrence, D A; Medcalf, R L; Bugge, T H
2016-08-01
Essentials C57BL/6J-tissue plasminogen activator (tPA)-deficient mice are widely used to study tPA function. Congenic C57BL/6J-tPA-deficient mice harbor large 129-derived chromosomal segments. The 129-derived chromosomal segments contain gene mutations that may confound data interpretation. Passenger mutation-free isogenic tPA-deficient mice were generated for study of tPA function. Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density single nucleotide polymorphism (SNP) analysis, bioinformatics and genome editing were used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat(-/-) mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel 'passenger mutation'-free isogenic C57BL/6J-Plat(-/-) and FVB/NJ-Plat(-/-) mouse strains by introducing an 11 bp deletion into the exon encoding the signal peptide. These novel mouse strains will be a useful community resource for further exploration of tPA function in physiological and pathological processes. © 2016 International Society on Thrombosis and Haemostasis.
Comparative In Vitro and In Vivo Studies of Porcine Rotavirus G9P[13] and Human Rotavirus Wa G1P[8
Shao, Lulu; Fischer, David D.; Kandasamy, Sukumar; Rauf, Abdul; Langel, Stephanie N.; Wentworth, David E.; Stucker, Karla M.; Halpin, Rebecca A.; Lam, Ham Ching; Marthaler, Douglas
2015-01-01
ABSTRACT The changing epidemiology of group A rotavirus (RV) strains in humans and swine, including emerging G9 strains, poses new challenges to current vaccines. In this study, we comparatively assessed the pathogenesis of porcine RV (PRV) G9P[13] and evaluated the short-term cross-protection between this strain and human RV (HRV) Wa G1P[8] in gnotobiotic pigs. Complete genome sequencing demonstrated that PRV G9P[13] possessed a human-like G9 VP7 genotype but shared higher overall nucleotide identity with historic PRV strains. PRV G9P[13] induced longer rectal virus shedding and RV RNAemia in pigs than HRV Wa G1P[8] and generated complete short-term cross-protection in pigs challenged with HRV or PRV, whereas HRV Wa G1P[8] induced only partial protection against PRV challenge. Moreover, PRV G9P[13] replicated more extensively in porcine monocyte-derived dendritic cells (MoDCs) than did HRV Wa G1P[8]. Cross-protection was likely not dependent on serum virus-neutralizing (VN) antibodies, as the heterologous VN antibody titers in the sera of G9P[13]-inoculated pigs were low. Thus, our results suggest that heterologous protection by the current monovalent G1P[8] HRV vaccine against emerging G9 strains should be evaluated in clinical and experimental studies to prevent further dissemination of G9 strains. Differences in the pathogenesis of these two strains may be partially attributable to their variable abilities to replicate and persist in porcine immune cells, including dendritic cells (DCs). Additional studies are needed to evaluate the emerging G9 strains as potential vaccine candidates and to test the susceptibility of various immune cells to infection by G9 and other common HRV/PRV genotypes. IMPORTANCE The changing epidemiology of porcine and human group A rotaviruses (RVs), including emerging G9 strains, may compromise the efficacy of current vaccines. An understanding of the pathogenesis and genetic, immunological, and biological features of the new emerging RV strains will contribute to the development of new surveillance and prevention tools. Additionally, studies of cross-protection between the newly identified emerging G9 porcine RV strains and a human G1 RV vaccine strain in a susceptible host (swine) will allow evaluation of G9 strains as potential novel vaccine candidates to be included in porcine or human vaccines. PMID:26468523
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padilla-Crespo, Elizabeth; Yan, Jun; Swift, Cynthia M
2014-01-01
Dehalococcoides mccartyi (Dhc) strains KS and RC grow with 1,2-dichloropropane (1,2-D) as an electron acceptor in enrichment cultures derived from hydrocarbon-contaminated and pristine river sediments, respectively. Transcription, expression, enzymatic and PCR analyses implicated the reductive dehalogenase gene dcpA in 1,2-D dichloroelimination to propene and inorganic chloride. Quantitative real-time PCR (qPCR) analyses demonstrated Dhc cell increase during growth with 1,2-D and suggested that both Dhc strains carried a single dcpA gene copy per genome. Dhc strain RC and strain KS produced 1.8 0.1 x 107 and 1.4 0.5 x 107 cells per mole of propene formed, respectively. The dcpA gene wasmore » identified in 1,2-D-to-propene-dechlorinating microcosms established with sediment samples collected from different geographical locations in Europe and North and South America. Clone library analysis revealed two distinct dcpA phylogenetic clusters, both of which the dcpA gene-targeted qPCR assay captured, suggesting the qPCR assay is useful for site assessment and bioremediation monitoring at 1,2-D-contaminated sites.« less
Relationship between Glycolysis and Exopolysaccharide Biosynthesis in Lactococcus lactis
Ramos, Ana; Boels, Ingeborg C.; de Vos, Willem M.; Santos, Helena
2001-01-01
The relationships between glucose metabolism and exopolysaccharide (EPS) production in a Lactococcus lactis strain containing the EPS gene cluster (Eps+) and in nonproducer strain MG5267 (Eps−) were characterized. The concentrations of relevant phosphorylated intermediates in EPS and cell wall biosynthetic pathways or glycolysis were determined by 31P nuclear magnetic resonance. The concentrations of two EPS precursors, UDP-glucose and UDP-galactose, were significantly lower in the Eps+ strain than in the Eps− strain. The precursors of the peptidoglycan pathway, UDP-N-acetylglucosamine and UDP-N-acetylmuramoyl-pentapeptide, were the major UDP-sugar derivatives detected in the two strains examined, but the concentration of the latter was greater in the Eps+ strain, indicating that there is competition between EPS synthesis and cell growth. An intermediate in biosynthesis of histidine and nucleotides, 5-phosphorylribose 1-pyrophosphate, accumulated at concentrations in the millimolar range, showing that the pentose phosphate pathway was operating. Fructose 1,6-bisphosphate and glucose 6-phosphate were the prominent glycolytic intermediates during exponential growth of both strains, whereas in the stationary phase the main metabolites were 3-phosphoglyceric acid, 2-phosphoglyceric acid, and phosphoenolpyruvate. The activities of relevant enzymes, such as phosphoglucose isomerase, α-phosphoglucomutase, and UDP-glucose pyrophosphorylase, were identical in the two strains. 13C enrichment on the sugar moieties of pure EPS showed that glucose 6-phosphate is the key metabolite at the branch point between glycolysis and EPS biosynthesis and ruled out involvement of the triose phosphate pool. This study provided clues for ways to enhance EPS production by genetic manipulation. PMID:11133425
Identification of fungi isolated from banana rachis and characterization of their surface activity.
Méndez-Castillo, L; Prieto-Correa, E; Jiménez-Junca, C
2017-03-01
Filamentous fungi are an unexplored source for the production of biosurfactants, but over a decade one of the most surface active molecules called hydrophobins was discovered. There are few techniques to determine the surface activity of fungi without any kind of manipulation that can affect the final results. In this work, we identified 33 strains of filamentous fungi isolated from banana rachis which may have potential in producing biosurfactants. Further, the production of surface active compounds by the strains was measured by two techniques. First, the surface tension of supernatants was evaluated in liquid cultures of the strains. We found that three strains belonging to the genus Fusarium, Penicillium and Trichoderma showed activity in the reduction of surface tension, which indicate a putative production of biosurfactants. Second, we measured the contact angle between the drop of water and the solid culture of strains to determine the surface activity of cells, classifying the strains as hydrophilic or hydrophobic. These techniques can be used as a quantitative measurement of the surface activity of fungi without cell manipulation. Biosurfactants are an alternative to petrochemical derivatives, and filamentous fungi are a promising source of these molecules. This work identified 33 strains of filamentous fungi in agroindustrial wastes. This is important because these results open the opportunity of finding new biosurfactants (hydrophobins) with unique properties. We propose the evaluation of surface tension in the supernatant as a quantitative screening to determine the production of biosurfactants from the strains of fungi. © 2017 The Society for Applied Microbiology.
TAKAMATSU, Daisuke; SATO, Masumi; YOSHIYAMA, Mikio
2015-01-01
Melissococcus plutonius is an important pathogen that causes European foulbrood (EFB) in honeybee larvae. Recently, we discovered a group of M. plutonius strains that are phenotypically and genetically distinct from other strains. These strains belong to clonal complex (CC) 12, as determined by multilocus sequence typing analysis, and show atypical cultural and biochemical characteristics in vitro compared with strains of other CCs tested. Although EFB is considered to be a purely intestinal infection according to early studies, it is unknown whether the recently found CC12 strains cause EFB by the same pathomechanism. In this study, to obtain a better understanding of EFB, we infected European honeybee (Apis mellifera) larvae per os with a well-characterized CC12 strain, DAT561, and analyzed the larvae histopathologically. Ingested DAT561 was mainly localized in the midgut lumen surrounded by the peritrophic matrix (PM) in the larvae. In badly affected larvae, the PM and midgut epithelial cells degenerated, and some bacterial cells were detected outside of the midgut. However, they did not proliferate in the deep tissues actively. By immunohistochemical analysis, the PM was stained with anti-M. plutonius serum in most of the DAT561-infected larvae. In some larvae, luminal surfaces of the PM were more strongly stained than the inside. These results suggest that infection of CC12 strain in honeybee larvae is essentially confined to the intestine. Moreover, our results imply the presence of M. plutonius-derived substances diffusing into the larval tissues in the course of infection. PMID:26256232
Kim, Sun-Ki; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho
2017-05-01
Construction of robust and efficient yeast strains is a prerequisite for commercializing a biofuel production process. We have demonstrated that high intracellular spermidine (SPD) contents in Saccharomyces cerevisiae can lead to improved tolerance against various fermentation inhibitors, including furan derivatives and acetic acid. In this study, we examined the potential applicability of the S. cerevisiae strains with high SPD contents under two cases of ethanol fermentation: glucose fermentation in repeated-batch fermentations and xylose fermentation in the presence of fermentation inhibitors. During the sixteen times of repeated-batch fermentations using glucose as a sole carbon source, the S. cerevisiae strains with high SPD contents maintained higher cell viability and ethanol productivities than a control strain with lower SPD contents. Specifically, at the sixteenth fermentation, the ethanol productivity of a S. cerevisiae strain with twofold higher SPD content was 31% higher than that of the control strain. When the SPD content was elevated in an engineered S. cerevisiae capable of fermenting xylose, the resulting S. cerevisiae strain exhibited much 40-50% higher ethanol productivities than the control strain during the fermentations of synthetic hydrolysate containing high concentrations of fermentation inhibitors. These results suggest that the strain engineering strategy to increase SPD content is broadly applicable for engineering yeast strains for robust and efficient production of ethanol.
Halder, Sujata; Cotmore, Susan; Heimburg-Molinaro, Jamie; Smith, David F.; Cummings, Richard D.; Chen, Xi; Trollope, Alana J.; North, Simon J.; Haslam, Stuart M.; Dell, Anne; Tattersall, Peter; McKenna, Robert; Agbandje-McKenna, Mavis
2014-01-01
The recognition of sialic acids by two strains of minute virus of mice (MVM), MVMp (prototype) and MVMi (immunosuppressive), is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA) capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM). Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3′SIA-LN) and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3′SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3′SIA-LeX identified in a previous glycan microarray screen. PMID:24475195
Kubohara, Yuzuru; Kikuchi, Haruhisa; Nguyen, Van Hai; Kuwayama, Hidekazu; Oshima, Yoshiteru
2017-06-15
Differentiation-inducing factor-1 [1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one (DIF-1)] is an important regulator of cell differentiation and chemotaxis in the development of the cellular slime mold Dictyostelium discoideum However, the entire signaling pathways downstream of DIF-1 remain to be elucidated. To characterize DIF-1 and its potential receptor(s), we synthesized two fluorescent derivatives of DIF-1, boron-dipyrromethene (BODIPY)-conjugated DIF-1 (DIF-1-BODIPY) and nitrobenzoxadiazole (NBD)-conjugated DIF-1 (DIF-1-NBD), and investigated their biological activities and cellular localization. DIF-1-BODIPY (5 µM) and DIF-1 (2 nM) induced stalk cell differentiation in the DIF-deficient strain HM44 in the presence of cyclic adenosine monosphosphate (cAMP), whereas DIF-1-NBD (5 µM) hardly induced stalk cell differentiation under the same conditions. Microscopic analyses revealed that the biologically active derivative, DIF-1-BODIPY, was incorporated by stalk cells at late stages of differentiation and was localized to mitochondria. The mitochondrial uncouplers carbonyl cyanide m -chlorophenylhydrazone (CCCP), at 25-50 nM, and dinitrophenol (DNP), at 2.5-5 µM, induced partial stalk cell differentiation in HM44 in the presence of cAMP. DIF-1-BODIPY (1-2 µM) and DIF-1 (10 nM), as well as CCCP and DNP, suppressed chemotaxis in the wild-type strain Ax2 in shallow cAMP gradients. These results suggest that DIF-1-BODIPY and DIF-1 induce stalk cell differentiation and modulate chemotaxis, at least in part, by disturbing mitochondrial activity. © 2017. Published by The Company of Biologists Ltd.
Kikuchi, Haruhisa; Nguyen, Van Hai; Kuwayama, Hidekazu; Oshima, Yoshiteru
2017-01-01
ABSTRACT Differentiation-inducing factor-1 [1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one (DIF-1)] is an important regulator of cell differentiation and chemotaxis in the development of the cellular slime mold Dictyostelium discoideum. However, the entire signaling pathways downstream of DIF-1 remain to be elucidated. To characterize DIF-1 and its potential receptor(s), we synthesized two fluorescent derivatives of DIF-1, boron-dipyrromethene (BODIPY)-conjugated DIF-1 (DIF-1-BODIPY) and nitrobenzoxadiazole (NBD)-conjugated DIF-1 (DIF-1-NBD), and investigated their biological activities and cellular localization. DIF-1-BODIPY (5 µM) and DIF-1 (2 nM) induced stalk cell differentiation in the DIF-deficient strain HM44 in the presence of cyclic adenosine monosphosphate (cAMP), whereas DIF-1-NBD (5 µM) hardly induced stalk cell differentiation under the same conditions. Microscopic analyses revealed that the biologically active derivative, DIF-1-BODIPY, was incorporated by stalk cells at late stages of differentiation and was localized to mitochondria. The mitochondrial uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP), at 25–50 nM, and dinitrophenol (DNP), at 2.5–5 µM, induced partial stalk cell differentiation in HM44 in the presence of cAMP. DIF-1-BODIPY (1–2 µM) and DIF-1 (10 nM), as well as CCCP and DNP, suppressed chemotaxis in the wild-type strain Ax2 in shallow cAMP gradients. These results suggest that DIF-1-BODIPY and DIF-1 induce stalk cell differentiation and modulate chemotaxis, at least in part, by disturbing mitochondrial activity. PMID:28619991
Kunji, E R; Hagting, A; De Vries, C J; Juillard, V; Haandrikman, A J; Poolman, B; Konings, W N
1995-01-27
In the proteolytic pathway of Lactococcus lactis, milk proteins (caseins) are hydrolyzed extracellularly to oligopeptides by the proteinase (PrtP). The fate of these peptides, i.e. extracellular hydrolysis followed by amino acid uptake or transport followed by intracellular hydrolysis, has been addressed. Mutants have been constructed that lack a functional di-tripeptide transport system (DtpT) and/or oligopeptide transport system (Opp) but do express the P1-type proteinase (specific for hydrolysis of beta- and to a lesser extent kappa-casein). The wild type strain and the DtpT- mutant accumulate all beta-casein-derived amino acids in the presence of beta-casein as protein substrate and glucose as a source of metabolic energy. The amino acids are not accumulated significantly inside the cells by the Opp- and DtpT- Opp- mutants. When cells are incubated with a mixture of amino acids mimicking the composition of beta-casein, the amino acids are taken up to the same extent in all four strains. Analysis of the extracellular peptide fraction, formed by the action of PrtP on beta-casein, indicates that distinct peptides disappear only when the cells express an active Opp system. These and other experiments indicate that (i) oligopeptide transport is essential for the accumulation of all beta-casein-derived amino acids, (ii) the activity of the Opp system is sufficiently high to support high growth rates on beta-casein provided leucine and histidine are present as free amino acids, and (iii) extracellular peptidase activity is not present in L. lactis.
Efficient culture of Chlamydia pneumoniae with cell lines derived from the human respiratory tract.
Wong, K H; Skelton, S K; Chan, Y K
1992-01-01
Two established cell lines, H 292 and HEp-2, originating from the human respiratory tract, were found to be significantly more efficient and practical than the currently used HeLa 229 cells for growth of Chlamydia pneumoniae. Six strains of C. pneumoniae recently isolated from patients with respiratory ailments were used as test cultures. The H 292 and HEp-2 cells yielded much higher inclusion counts for all the test strains than did HeLa 229 cells. When they were compared with each other, H 292 cells yielded more inclusions than did HEp-2 cells, and the differences were statistically significant in 10 of 18 test sets. A simple system with these two cell lines appeared to be very efficient for culturing C. pneumoniae. It does not require treatment of tissue cells with DEAE-dextran before infection, and it may eliminate the need for serial subpassages of specimens to increase culture sensitivity. Monolayers of these cells remained intact and viable in the Chlamydia growth medium so that reinfection could take place, resulting in greatly increased inclusion counts for specimens containing few infectious units. This system may make it more practical for laboratories to culture for C. pneumoniae for treatment of infections and outbreak intervention and will facilitate studies on this recently recognized pathogen. PMID:1629316
Dubey, J P; Sundar, N; Kwok, O C H; Saville, W J A
2013-09-01
The protozoan Sarcocystis neurona is the primary cause of Equine Protozoal Myeloencephalitis (EPM). EPM or EPM-like illness has been reported in horses, sea otters, and several other mammals. The gamma interferon gene knockout (KO) mouse is often used as a model to study biology and discovery of new therapies against S. neurona because it is difficult to induce clinical EPM in other hosts, including horses. In the present study, infectivity of three life cycle stages (merozoites, bradyzoites, sporozoites) to KO mice and cell culture was studied. Two strains of KO mice (C57-black, and BALB/c-derived, referred here as black or white) were inoculated orally graded doses of S. neurona sporocysts; 12 sporocysts were infective to both strains of mice and all infected mice died or became ill within 70 days post-inoculation. Although there was no difference in infectivity of sporocysts to the two strains of KO mice, the disease was more severe in black mice. S. neurona bradyzoites were not infectious to KO mice and cell culture. S. neurona merozoites survived 120 min incubation in 0.25% trypsin, indicating that trypsin digestion can be used to recover S. neurona from tissues of acutely infected animals. Published by Elsevier B.V.
Kotani, Osamu; Suzuki, Tadaki; Yokoyama, Masaru; Iwata-Yoshikawa, Naoko; Nakajima, Noriko; Sato, Hironori; Hasegawa, Hideki; Taguchi, Fumihiro; Shimizu, Hiroyuki
2016-01-01
ABSTRACT Saffold virus (SAFV), a human cardiovirus, is occasionally detected in infants with neurological disorders, including meningitis and cerebellitis. We recently reported that SAFV type 3 isolates infect cerebellar glial cells, but not large neurons, in mice. However, the impact of this infection remained unclear. Here, we determined the neuropathogenesis of SAFV type 3 in the cerebella of neonatal ddY mice by using SAFV passaged in the cerebella of neonatal BALB/c mice. The virus titer in the cerebellum increased following the inoculation of each of five passaged strains. The fifth passaged strain harbored amino acid substitutions in the VP2 (H160R and Q239R) and VP3 (K62M) capsid proteins. Molecular modeling of the capsid proteins suggested that the VP2-H160R and VP3-K62M mutations alter the structural dynamics of the receptor binding surface via the formation of a novel hydrophobic interaction between the VP2 puff B and VP3 knob regions. Compared with the original strain, the passaged strain showed altered growth characteristics in human-derived astroglial cell lines and greater replication in the brains of neonatal mice. In addition, the passaged strain was more neurovirulent than the original strain, while both strains infected astroglial and neural progenitor cells in the mouse brain. Intracerebral inoculation of either the original or the passaged strain affected brain Purkinje cell dendrites, and a high titer of the passaged strain induced cerebellar hypoplasia in neonatal mice. Thus, infection by mouse-passaged SAFV affected cerebellar development in neonatal mice. This animal model contributes to the understanding of the neuropathogenicity of SAFV infections in infants. IMPORTANCE Saffold virus (SAFV) is a candidate neuropathogenic agent in infants and children, but the neuropathogenicity of the virus has not been fully elucidated. Recently, we evaluated the pathogenicity of two clinical SAFV isolates in mice. Similar to other neurotropic picornaviruses, these isolates showed mild infectivity of glial and neural progenitor cells, but not of large neurons, in the cerebellum. However, the outcome of this viral infection in the cerebellum has not been clarified. Here, we examined the tropism of SAFV in the cerebellum. We obtained an in vivo-passaged strain from the cerebella of neonatal mice and examined its genome and its neurovirulence in the neonatal mouse brain. The passaged virus showed high infectivity and neurovirulence in the brain, especially the cerebellum, and affected cerebellar development. This unique neonatal mouse model will be helpful for elucidating the neuropathogenesis of SAFV infections occurring early in life. PMID:27581974
Johann, Susana; Rosa, Luiz H; Rosa, Carlos A; Perez, Pilar; Cisalpino, Patrícia S; Zani, Carlos L; Cota, Betania B
2012-01-01
Altenusin is a biphenyl derivative isolated from different species of fungi, which presents several biological activities. We report the antifungal activity of the altenusin isolated from the endophytic fungus Alternaria sp., against clinical isolates of Paracoccidioides brasiliensis, and its action on cell walls of P. brasiliensis and the nonpathogenic yeast Schizosaccharomyces pombe. In vitro antifungal activity of altenusin was evaluated using the broth microdilution method against 11 strains of P. brasiliensis and one strain of S. pombe. The effects of the altenusin on the cell wall were estimated using the sorbitol protection assay. The altenusin presented strong activity against P. brasiliensis with MIC values ranging between 1.9 and 31.2 μg/ml, and 62.5 μg/ml for S. pombe. Our results demonstrated that the MIC values for altenusin were increased for P. brasiliensis Pb18 and for S. pombe when the medium was supplemented with sorbitol. Additionally, S. pombe cells treated with altenusin were more rounded in shape than untreated cells. Altenusin showed activity against clinical strains of P. brasiliensis at the concentration tested, and this compound probably affects fungal cell walls. These findings suggest that altenusin could act through the inhibition of cell wall synthesis or assembly in P. brasiliensis and S. pombe, and could be considered as a lead compound for the design of new antifungals. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
In vitro virucidal activity of a styrylpyrone derivative against herpes simplex virus strain KOS-1
NASA Astrophysics Data System (ADS)
Moses, Micheal; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina
2014-09-01
In this study, styrylpyrone derivative (SPD) extracted from Goniothalamus umbrosus root was tested against herpes simplex virus (HSV) strain KOS-1. Firstly, the cytotoxicity of SPD on Vero cells was tested and the value of cytotoxic concentration, CC50, was 44 μM (8.88 μg/mL), and the 50% Effective Concentration, EC50, was 3.35 μM (0.67 μg/mL). Selectivity index of SPD against HSV Kos-1 was more than 13 indicating potential as antiviral agent. Three treatments were used in the antiviral test; 1) post-treatment, 2) pre-treatment, and 3) virucidal. The results revealed that the post-treatment was more effective in inhibiting viral replication compared to pre-treatment. The findings indicated that the SPD from G. umbrosus has good potential for prospective nature-based antiviral drug.
Radix, Sylvie; Jordheim, Anne Doléans; Rocheblave, Luc; N'Digo, Serge; Prignon, Anne-Laure; Commun, Carine; Michalet, Serge; Dijoux-Franca, Marie-Geneviève; Mularoni, Angélique; Walchshofer, Nadia
2018-04-25
A multi-step procedure has been described which afforded satisfactory yields of N,N'-disubstituted cinnamamides derived from N-Boc-protected amino acids (Boc-Gly, Boc-Val, Boc-Phe). The key step of this synthesis was a regioselective RedAl reduction of an amide function in presence of a carbamate group. Next, these cinnamamides were evaluated in co-admnistration with ciprofloxacin as efflux pump inhibitors against two S. aureus strains, NorA overexpressing SA1199B and wild type SA1199. In parallel, their intrinsic toxicity was appreciated on human lung fibroblast MRC5 cells. Therefore, the cinnamamide combining both carbamate and indol-3-yl groups, was found to be the most active and one of the less toxic EPI and constituted a promising hit. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Rapid strain improvement through optimized evolution in the cytostat.
Gilbert, Alan; Sangurdekar, Dipen P; Srienc, Friedrich
2009-06-15
Acetate is present in lignocellulosic hydrolysates at growth inhibiting concentrations. Industrial processes based on such feedstock require strains that are tolerant of this and other inhibitors present. We investigated the effect of acetate on Saccharomyces cerevisiae and show that elevated acetate concentrations result in a decreased specific growth rate, an accumulation of cells in the G1 phase of the cell cycle, and an increased cell size. With the cytostat cultivation technology under previously derived optimal operating conditions, several acetate resistant mutants were enriched and isolated in the shortest possible time. In each case, the isolation time was less than 5 days. The independently isolated mutant strains have increased specific growth rates under conditions of high acetate concentrations, high ethanol concentrations, and high temperature. In the presence of high acetate concentrations, the isolated mutants produce ethanol at higher rates and titers than the parental strain and a commercial ethanol producing strain that has been analyzed for comparison. Whole genome microarray analysis revealed gene amplifications in each mutant. In one case, the LPP1 gene, coding for lipid phosphate phosphatase, was amplified. Two mutants contained amplified ENA1, ENA2, and ENA5 genes, which code for P-type ATPase sodium pumps. LPP1 was overexpressed on a plasmid, and the growth data at elevated acetate concentrations suggest that LPP1 likely contributes to the phenotype of acetate tolerance. A diploid cross of the two mutants with the amplified ENA genes grew faster than either individual haploid parent strain when 20 g/L acetate was supplemented to the medium, which suggests that these genes contribute to acetate tolerance in a gene dosage dependent manner. 2009 Wiley Periodicals, Inc.
Nogueira, Paula M.; Ribeiro, Kleber; Silveira, Amanda C. O.; Campos, João H.; Martins-Filho, Olindo A.; Bela, Samantha R.; Campos, Marco A.; Pessoa, Natalia L.; Colli, Walter; Alves, Maria J. M.; Soares, Rodrigo P.; Torrecilhas, Ana Claudia
2015-01-01
Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas Disease, shed extracellular vesicles (EVs) enriched with glycoproteins of the gp85/trans-sialidase (TS) superfamily and other α-galactosyl (α-Gal)-containing glycoconjugates, such as mucins. Here, purified vesicles from T. cruzi strains (Y, Colombiana, CL-14 and YuYu) were quantified according to size, intensity and concentration. Qualitative analysis revealed differences in their protein and α-galactosyl contents. Later, those polymorphisms were evaluated in the modulation of immune responses (innate and in the chronic phase) in C57BL/6 mice. EVs isolated from YuYu and CL-14 strains induced in macrophages higher levels of proinflammatory cytokines (TNF-α and IL-6) and nitric oxide via TLR2. In general, no differences were observed in MAPKs activation (p38, JNK and ERK 1/2) after EVs stimulation. In splenic cells derived from chronically infected mice, a different modulation pattern was observed, where Colombiana (followed by Y strain) EVs were more proinflammatory. This modulation was independent of the T. cruzi strain used in the mice infection. To test the functional importance of this modulation, the expression of intracellular cytokines after in vitro exposure was evaluated using EVs from YuYu and Colombiana strains. Both EVs induced cytokine production with the appearance of IL-10 in the chronically infected mice. A high frequency of IL-10 in CD4+ and CD8+ T lymphocytes was observed. A mixed profile of cytokine induction was observed in B cells with the production of TNF-α and IL-10. Finally, dendritic cells produced TNF-α after stimulation with EVs. Polymorphisms in the vesicles surface may be determinant in the immunopathologic events not only in the early steps of infection but also in the chronic phase. PMID:26613751
Nogueira, Paula M; Ribeiro, Kleber; Silveira, Amanda C O; Campos, João H; Martins-Filho, Olindo A; Bela, Samantha R; Campos, Marco A; Pessoa, Natalia L; Colli, Walter; Alves, Maria J M; Soares, Rodrigo P; Torrecilhas, Ana Claudia
2015-01-01
Trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas Disease, shed extracellular vesicles (EVs) enriched with glycoproteins of the gp85/trans-sialidase (TS) superfamily and other α-galactosyl (α-Gal)-containing glycoconjugates, such as mucins. Here, purified vesicles from T. cruzi strains (Y, Colombiana, CL-14 and YuYu) were quantified according to size, intensity and concentration. Qualitative analysis revealed differences in their protein and α-galactosyl contents. Later, those polymorphisms were evaluated in the modulation of immune responses (innate and in the chronic phase) in C57BL/6 mice. EVs isolated from YuYu and CL-14 strains induced in macrophages higher levels of proinflammatory cytokines (TNF-α and IL-6) and nitric oxide via TLR2. In general, no differences were observed in MAPKs activation (p38, JNK and ERK 1/2) after EVs stimulation. In splenic cells derived from chronically infected mice, a different modulation pattern was observed, where Colombiana (followed by Y strain) EVs were more proinflammatory. This modulation was independent of the T. cruzi strain used in the mice infection. To test the functional importance of this modulation, the expression of intracellular cytokines after in vitro exposure was evaluated using EVs from YuYu and Colombiana strains. Both EVs induced cytokine production with the appearance of IL-10 in the chronically infected mice. A high frequency of IL-10 in CD4+ and CD8+ T lymphocytes was observed. A mixed profile of cytokine induction was observed in B cells with the production of TNF-α and IL-10. Finally, dendritic cells produced TNF-α after stimulation with EVs. Polymorphisms in the vesicles surface may be determinant in the immunopathologic events not only in the early steps of infection but also in the chronic phase.
Wallace-Salinas, Valeria; Brink, Daniel P; Ahrén, Dag; Gorwa-Grauslund, Marie F
2015-07-09
Laboratory evolution is an important tool for developing robust yeast strains for bioethanol production since the biological basis behind combined tolerance requires complex alterations whose proper regulation is difficult to achieve by rational metabolic engineering. Previously, we reported on the evolved industrial Saccharomyces cerevisiae strain ISO12 that had acquired improved tolerance to grow and ferment in the presence of lignocellulose-derived inhibitors at high temperature (39 °C). In the current study, we used comparative genomics to uncover the extent of the genomic alterations that occurred during the evolution process and investigated possible associations between the mutations and the phenotypic traits in ISO12. Through whole-genome sequencing and variant calling we identified a high number of strain-unique SNPs and INDELs in both ISO12 and the parental strain Ethanol Red. The variants were predicted to have 760 non-synonymous effects in both strains combined and were significantly enriched in Gene Ontology terms related to cell periphery, membranes and cell wall. Eleven genes, including MTL1, FLO9/FLO11, and CYC3 were found to be under positive selection in ISO12. Additionally, the FLO genes exhibited changes in copy number, and the alterations to this gene family were correlated with experimental results of multicellularity and invasive growth in the adapted strain. An independent lipidomic analysis revealed further differences between the strains in the content of nine lipid species. Finally, ISO12 displayed improved viability in undiluted spruce hydrolysate that was unrelated to reduction of inhibitors and changes in cell wall integrity, as shown by HPLC and lyticase assays. Together, the results of the sequence comparison and the physiological characterisations indicate that cell-periphery proteins (e.g. extracellular sensors such as MTL1) and peripheral lipids/membranes are important evolutionary targets in the process of adaptation to the combined stresses. The capacity of ISO12 to develop complex colony formation also revealed multicellularity as a possible evolutionary strategy to improve competitiveness and tolerance to environmental stresses (also reflected by the FLO genes). Although a panel of altered genes with high relevance to the novel phenotype was detected, this study also demonstrates that the observed long-term molecular effects of thermal and inhibitor stress have polygenetic basis.
Shima, Jun; Hino, Akihiro; Yamada-Iyo, Chie; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Mori, Katsumi; Takano, Hiroyuki
1999-01-01
Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Δnth1), acid trehalase mutants (Δath1), and double mutants (Δnth1 ath1) by using commercial baker’s yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Δnth1 and Δath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Δnth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough. PMID:10388673
Wang, Ge; Romero-Gallo, Judith; Benoit, Stéphane L; Piazuelo, M Blanca; Dominguez, Ricardo L; Morgan, Douglas R; Peek, Richard M; Maier, Robert J
2016-08-16
A known virulence factor of Helicobacter pylori that augments gastric cancer risk is the CagA cytotoxin. A carcinogenic derivative strain, 7.13, that has a greater ability to translocate CagA exhibits much higher hydrogenase activity than its parent noncarcinogenic strain, B128. A Δhyd mutant strain with deletion of hydrogenase genes was ineffective in CagA translocation into human gastric epithelial AGS cells, while no significant attenuation of cell adhesion was observed. The quinone reductase inhibitor 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) was used to specifically inhibit the H2-utilizing respiratory chain of outer membrane-permeabilized bacterial cells; that level of inhibitor also greatly attenuated CagA translocation into AGS cells, indicating the H2-generated transmembrane potential is a contributor to toxin translocation. The Δhyd strain showed a decreased frequency of DNA transformation, suggesting that H. pylori hydrogenase is also involved in energizing the DNA uptake apparatus. In a gerbil model of infection, the ability of the Δhyd strain to induce inflammation was significantly attenuated (at 12 weeks postinoculation), while all of the gerbils infected with the parent strain (7.13) exhibited a high level of inflammation. Gastric cancer developed in 50% of gerbils infected with the wild-type strain 7.13 but in none of the animals infected with the Δhyd strain. By examining the hydrogenase activities from well-defined clinical H. pylori isolates, we observed that strains isolated from cancer patients (n = 6) have a significantly higher hydrogenase (H2/O2) activity than the strains isolated from gastritis patients (n = 6), further supporting an association between H. pylori hydrogenase activity and gastric carcinogenesis in humans. Hydrogen-utilizing hydrogenases are known to be important for some respiratory pathogens to colonize hosts. Here a gastric cancer connection is made via a pathogen's (H. pylori) use of molecular hydrogen, a host microbiome-produced gas. Delivery of the known carcinogenic factor CagA into host cells is augmented by the H2-utilizing respiratory chain of the bacterium. The role of hydrogenase in carcinogenesis is demonstrated in an animal model, whereby inflammation markers and cancer development were attenuated in the hydrogenase-null strain. Hydrogenase activity comparisons of clinical strains of the pathogen also support a connection between hydrogen metabolism and gastric cancer risk. While molecular hydrogen use is acknowledged to be an alternative high-energy substrate for some pathogens, this work extends the roles of H2 oxidation to include transport of a carcinogenic toxin. The work provides a new avenue for exploratory treatment of some cancers via microflora alterations. Copyright © 2016 Wang et al.
Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K
2013-12-01
The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuemket, Nipawan; Tanaka, Yoshikazu; Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810
2011-07-29
Highlights: {yields} We determined the crystal structure of the receptor binding domain of BoNT in complex with 3'-sialyllactose. {yields} An electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. {yields} Alanine site-directed mutagenesis showed that GBS and GBL are important for ganglioside binding. {yields} A cell binding mechanism, which involves cooperative contribution of two sites, was proposed. -- Abstract: Clostridium botulinum type D strain OFD05, which produces the D/C mosaic neurotoxin, was isolated from cattle killed by the recent botulism outbreak in Japan. The D/C mosaic neurotoxin is the most toxic of the botulinummore » neurotoxins (BoNT) characterized to date. Here, we determined the crystal structure of the receptor binding domain of BoNT from strain OFD05 in complex with 3'-sialyllactose at a resolution of 3.0 A. In the structure, an electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. Alanine site-directed mutagenesis showed the significant contribution of the residues surrounding the cleft to ganglioside recognition. In addition, a loop adjoining the cleft also plays an important role in ganglioside recognition. In contrast, little effect was observed when the residues located around the surface previously identified as the protein receptor binding site in other BoNTs were substituted. The results of cell binding analysis of the mutants were significantly correlated with the ganglioside binding properties. Based on these observations, a cell binding mechanism of BoNT from strain OFD05 is proposed, which involves cooperative contribution of two ganglioside binding sites.« less
Lin, Chun-Ming; Hou, Yixuan; Marthaler, Douglas G; Gao, Xiang; Liu, Xinsheng; Zheng, Lanlan; Saif, Linda J; Wang, Qiuhong
2017-03-01
Although porcine epidemic diarrhea (PED) has caused huge economic losses in the pork industry worldwide, an effective live, attenuated vaccine is lacking. In this study, an original US, highly virulent PED virus (PEDV) strain PC22A was serially passaged in Vero CCL81 and Vero BI cells. The virus growth kinetics in cell culture, virulence in neonatal pigs and the whole genomic sequences of selected passages were examined. Increased virus titers and sizes of syncytia were observed at the 65th passage level (P65) and P120, respectively. Based on the severity of clinical signs, histopathological lesions and the distribution of PEDV antigens in the gut, the virulence of P100 and above, but not P95C13 (CCL81), was markedly reduced in 4-day-old, caesarian-derived, colostrum-deprived piglets. Subsequently, the attenuation of P120 and P160 was confirmed in 4-day-old, conventional suckling piglets. Compared with P120, P160 replicated less efficiently in the intestine of pigs and induced a lower rate of protection after challenge. Sequence analysis revealed that the virulent viruses [P3 and P95C13 (CCL81)] had one, one, sixteen (including an early termination of nine amino acids) and two amino acid differences in non-structure protein 1 (nsp1), nsp4, spike and membrane proteins, respectively, from the fully attenuated P160. However, the overall pattern of attenuation-related genetic changes in PC22A differed from those of the other four pairs of PEDV wild type strains and their attenuated derivatives. These results suggest that PEDV attenuation can occur through multiple molecular mechanisms. The knowledge provides insights into potential molecular mechanisms of PEDV attenuation. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Ahreum; Hur, Yun-Gyoung; Gu, Sunwha; Cho, Sang-Nae
2017-11-01
The aim of this study was to evaluate the protective efficacy of MTBK_24820, a complete form of PPE39 protein derived from a predominant Beijing/K strain of Mycobacterium tuberculosis in South Korea. Mice were immunized with MTKB_24820, M. bovis Bacilli Calmette-Guérin (BCG), or adjuvant prior to a high-dosed Beijing/K strain aerosol infection. After 4 and 9 weeks, bacterial loads were determined and histopathologic and immunologic features in the lungs and spleens of the M. tuberculosis -infected mice were analyzed. Putative immunogenic T-cell epitopes were examined using synthetic overlapping peptides. Successful immunization of MTBK_24820 in mice was confirmed by increased IgG responses ( P < 0.05) and recalled gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-6, and IL-17 responses ( P < 0.05 or P < 0.01) to MTBK_24820. After challenge with the Beijing/K strain, an approximately 0.5 to 1.0 log 10 reduction in CFU in lungs and fewer lung inflammation lesions were observed in MTBK_24820-immunized mice compared to those for control mice. Moreover, MTBK_24820 immunization elicited significantly higher numbers of CD4 + T cells producing protective cytokines, such as IFN-γ and IL-17, in lungs and spleens ( P < 0.01) and CD4 + multifunctional T cells producing IFN-γ, tumor necrosis factor alpha (TNF-α), and/or IL-17 ( P < 0.01) than in control mice, suggesting protection comparable to that of BCG against the hypervirulent Beijing/K strain. The dominant immunogenic T-cell epitopes that induced IFN-γ production were at the N terminus (amino acids 85 to 102 and 217 to 234). Its vaccine potential, along with protective immune responses in vivo , may be informative for vaccine development, particularly in regions where the M. tuberculosis Beijing/K-strain is frequently isolated from TB patients. Copyright © 2017 American Society for Microbiology.
Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de Los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore
2015-01-01
Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.
Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore
2015-01-01
Background Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. Methodology/Principal Findings We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. Conclusions/Significance We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods. PMID:25859853
Ishida, Kelly; Fernandes Rodrigues, Juliany Cola; Cammerer, Simon; Urbina, Julio A; Gilbert, Ian; de Souza, Wanderley; Rozental, Sonia
2011-01-21
Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51), but other enzymes of this pathway, such as squalene synthase (SQS) which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy)-phenyl}]-quinuclidine-2-ene) (WSP1267) had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a) loss of cell wall integrity, (b) detachment of the plasma membrane from the fungal cell wall, (c) accumulation of small vesicles in the periplasmic region, (d) presence of large electron-dense vacuoles and (e) significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new antifungal drugs.
Iwamoto, Masashi; Watashi, Koichi; Tsukuda, Senko; Aly, Hussein Hassan; Fukasawa, Masayoshi; Fujimoto, Akira; Suzuki, Ryosuke; Aizaki, Hideki; Ito, Takayoshi; Koiwai, Osamu; Kusuhara, Hiroyuki; Wakita, Takaji
2014-01-17
Hepatitis B virus (HBV) entry has been analyzed using infection-susceptible cells, including primary human hepatocytes, primary tupaia hepatocytes, and HepaRG cells. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) membrane transporter was reported as an HBV entry receptor. In this study, we established a strain of HepG2 cells engineered to overexpress the human NTCP gene (HepG2-hNTCP-C4 cells). HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood-borne and cell culture-derived HBV. HBV infection was facilitated by pretreating cells with 3% dimethyl sulfoxide permitting nearly 50% of the cells to be infected with HBV. Knockdown analysis suggested that HBV infection of HepG2-hNTCP-C4 cells was mediated by NTCP. HBV infection was blocked by an anti-HBV surface protein neutralizing antibody, by compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its derivatives. The infection assay suggested that cyclosporin B was a more potent inhibitor of HBV entry than was cyclosporin A. Further chemical screening identified oxysterols, oxidized derivatives of cholesterol, as inhibitors of HBV infection. Thus, the HepG2-hNTCP-C4 cell line established in this study is a useful tool for the identification of inhibitors of HBV infection as well as for the analysis of the molecular mechanisms of HBV infection. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Koike, K; Takaiwa, M; Ara, K; Inoue, S; Kimura, Y; Ito, S
2000-02-01
Resting cells of a double mutant noted as KSM-MT66, derived from Rhodococcus sp. strain KSM-B-3 by UV irradiation, were found to cis-desaturate isopropyl hexadecanoate, yielding isopropyl cis-6-hexadecenoate. Addition of sodium glutamate (1.0%), Mg SO4 (2 mM), and thiamine (2 mM) increased the productivity of the unsaturated product in phosphate buffer. Optimal temperature and pH for the reaction were around 26 degrees C and 7, respectively. Under the optimized conditions, more than 50 g/l of isopropyl cis-6-hexadecenoate was produced after a 3-day incubation by resting cells of the mutant. Thus, cis-6-hexadecenoic acid, the main component of human sebaceous lipids, can be manufactured economically by the rhodococcal bioconversion.
Dinant, Alexa; Boulos, Ramiz A
2016-01-01
Acne is a prominent skin condition affecting >80% of teenagers and young adults and ~650 million people globally. Isotretinoin, a vitamin A derivative, is currently the standard of care for treatment. However, it has a well-established teratogenic activity, a reason for the development of novel and low-risk treatment options for acne. To investigate the effectiveness of Zolav(®), (a p-carboethoxy-tristyrylbenzene derivative) [corrected] a novel antibiotic as a treatment for acne vulgaris. Minimum inhibitory concentration of Zolav(®) (a p-carboethoxy-tristyrylbenzene derivative) against Propionibacterium acnes was determined by following a standard protocol using Mueller-Hinton broth and serial dilutions in a 96-well plate. Cytotoxicity effects on human umbilical vein endothelial cells and lung cells in the presence of Zolav(®) (a p-carboethoxy-tristyrylbenzene derivative) were investigated by determining the growth inhibition (GI50) concentration, total growth inhibition concentration, and the lethal concentration of 50% (LC50). The tryptophan auxotrophic mutant of Escherichia coli strain, WP2 uvrA (ATCC 49979), was used for the AMES assay with the addition of Zolav(®) (a p-carboethoxy-tristyrylbenzene derivative) tested for its ability to reverse the mutation and induce bacterial growth. The in vivo effectiveness of Zolav(®) (a p-carboethoxy-tristyrylbenzene derivative) was tested in a P. acnes mouse intradermal model where the skin at the infection site was removed, homogenized, and subjected to colony-forming unit (CFU) counts. Susceptibility testing of Zolav(®) (a p-carboethoxy-tristyrylbenzene derivative) against P. acnes showed a minimum inhibitory concentration of 2 µg/mL against three strains with no cytotoxicity and no mutagenicity observed at the highest concentrations tested, 30 µM and 1,500 µg/plate, respectively. The use of Zolav(®) (a p-carboethoxy-tristyrylbenzene derivative) at a concentration of 50 µg/mL (q8h) elicited a two-log difference in CFU/g between the treatment group and the control. This study demonstrates the potential of Zolav(®) (a p-carboethoxy-tristyrylbenzene derivative) as a novel treatment for acne vulgaris.
USDA-ARS?s Scientific Manuscript database
Yarrowia lipolytica is an oleaginous yeast that has garnered interest for commercial production of single cell oil and other fatty acid-derived chemicals because of its GRAS status and genetic tractability. Three recent peer-reviewed studies have highlighted the possibility of lipid production by th...
Newer Vaccines against Mosquito-borne Diseases.
Aggarwal, Anju; Garg, Neha
2018-02-01
Mosquitos are responsible for a number of protozoal and viral diseases. Malaria, dengue, Japanese encephalitis (JE) and chikungunya epidemics occur commonly all over the world, leading to marked mortality and morbidity in children. Zika, Yellow fever and West Nile fever are others requiring prevention. Environmental control and mosquito bite prevention are useful in decreasing the burden of disease but vaccination has been found to be most cost-effective and is the need of the hour. RTS,S/AS01 vaccine is the first malaria vaccine being licensed for use against P. falciparum malaria. Dengvaxia (CYD-TDV) against dengue was licensed first in Mexico in 2015. A Vero-cell derived, inactivated and alum-adjuvanted JE vaccine based on the SA14-14-2 strain was approved in 2009 in North America, Australia and various European countries. It can be used from 2 mo of age. In India, immunization is carried out in endemic regions at 1 y of age. Another inactivated Vero-cell culture derived Kolar strain, 821564XY, JE vaccine is being used in India. Candidate vaccines against dengue, chikungunya and West Nile fever are been discussed. A continued research and development of new vaccines are required for controlling these mosquito-borne diseases.
In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells.
Ramachandran, Sarada Devi; Schirmer, Katharina; Münst, Bernhard; Heinz, Stefan; Ghafoory, Shahrouz; Wölfl, Stefan; Simon-Keller, Katja; Marx, Alexander; Øie, Cristina Ionica; Ebert, Matthias P; Walles, Heike; Braspenning, Joris; Breitkopf-Heinlein, Katja
2015-01-01
In this study we used differentiated adult human upcyte® cells for the in vitro generation of liver organoids. Upcyte® cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte® process). Proliferating upcyte® cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte® cells (hepatocytes, liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs)) was cultured in vitro on a thick layer of Matrigel™, they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions.
Rowan, Neil J.; Deans, Karen; Anderson, John G.; Gemmell, Curtis G.; Hunter, Iain S.; Chaithong, Thararat
2001-01-01
Forty-seven strains representing 14 different Bacillus species isolated from clinical and food samples were grown in reconstituted infant milk formulae (IMF) and subsequently assessed for adherence to, invasion of, and cytotoxicity toward HEp-2 and Caco-2 cells. Cell-free supernatant fluids from 38 strains (81%) were shown to be cytotoxic, 43 strains (91%) adhered to the test cell lines, and 23 strains (49%) demonstrated various levels of invasion. Of the 21 Bacillus cereus strains examined, 5 (24%) were invasive. A larger percentage of clinically derived Bacillus species (20%) than of similar species tested from the food environment were invasive. Increased invasion occurred after growth of selected Bacillus species in reconstituted IMF containing glucose. While PCR primer studies revealed that many different Bacillus species contained DNA sequences encoding the hemolysin BL (HBL) enterotoxin complex and B. cereus enterotoxin T, not all of these isolates expressed these diarrheagenic genes after growth in reconstituted IMF. Of the 47 Bacillus isolates examined, 3 isolates of B. cereus and 1 isolate of B. subtilis produced the HBL enterotoxin after 18 h of growth in brain heart infusion broth. However, eight isolates belonging to the species B. cereus, B. licheniformis, B. circulans, and B. megaterium were found to produce this enterotoxin after growth in reconstituted IMF when assessed with the B. cereus enterotoxin (diarrheal type) reversed passive latex agglutination (RPLA) kit. It is concluded that several Bacillus species occurring occasionally in clinical specimens and food samples are of potential medical significance due to the expression of putative virulence factors. PMID:11525980
Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation.
Cui, Yue; Franciszkiewicz, Katarzyna; Mburu, Yvonne K; Mondot, Stanislas; Le Bourhis, Lionel; Premel, Virginie; Martin, Emmanuel; Kachaner, Alexandra; Duban, Livine; Ingersoll, Molly A; Rabot, Sylvie; Jaubert, Jean; De Villartay, Jean-Pierre; Soudais, Claire; Lantz, Olivier
2015-11-02
Mucosal-associated invariant T cells (MAITs) have potent antimicrobial activity and are abundant in humans (5%-10% in blood). Despite strong evolutionary conservation of the invariant TCR-α chain and restricting molecule MR1, this population is rare in laboratory mouse strains (≈0.1% in lymphoid organs), and lack of an appropriate mouse model has hampered the study of MAIT biology. Herein, we show that MAITs are 20 times more frequent in clean wild-derived inbred CAST/EiJ mice than in C57BL/6J mice. Increased MAIT frequency was linked to one CAST genetic trait that mapped to the TCR-α locus and led to higher usage of the distal Vα segments, including Vα19. We generated a MAIThi congenic strain that was then crossed to a transgenic Rorcgt-GFP reporter strain. Using this tool, we characterized polyclonal mouse MAITs as memory (CD44+) CD4-CD8lo/neg T cells with tissue-homing properties (CCR6+CCR7-). Similar to human MAITs, mouse MAITs expressed the cytokine receptors IL-7R, IL-18Rα, and IL-12Rβ and the transcription factors promyelocytic leukemia zinc finger (PLZF) and RAR-related orphan receptor γ (RORγt). Mouse MAITs produced Th1/2/17 cytokines upon TCR stimulation and recognized a bacterial compound in an MR1-dependent manner. During experimental urinary tract infection, MAITs migrated to the bladder and decreased bacterial load. Our study demonstrates that the MAIThi congenic strain allows phenotypic and functional characterization of naturally occurring mouse MAITs in health and disease.
The Artemisinin Derivative Artemisone Is a Potent Inhibitor of Human Cytomegalovirus Replication.
Oiknine-Djian, E; Weisblum, Y; Panet, A; Wong, H N; Haynes, R K; Wolf, D G
2018-04-30
Human cytomegalovirus (HCMV) is a major cause of disease in immunocompromised individuals and the most common cause of congenital infection and neuro-sensorial disease. The expanding target populations for HCMV antiviral treatment along with the limitations of the currently available HCMV DNA polymerase inhibitors underscore the need for new antiviral agents with alternative modes of action. The anti-malarial artemisinin derivative artesunate was shown to inhibit HCMV in vitro , yet has demonstrated limited antiviral efficacy in vivo , prompting our search for more potent anti-HCMV artemisinin derivatives. Here we show that the innovative artemisinin derivative artemisone, which has been screened against malaria in human clinical studies, is a potent and non-cytotoxic inhibitor of HCMV. Artemisone exhibited an antiviral efficacy comparable to ganciclovir (EC 50 1.20 ± 0.46 μM) in human foreskin fibroblasts, with enhanced relative potency in lung fibroblasts and epithelial cells. Significantly, the antiviral efficacy of artemisone was consistently ≥10-fold superior to that of artesunate in all cells. Artemisone effectively inhibited both laboratory-adapted and low-passage clinical strains, as well as drug-resistant HCMV strains. By using quantitative viral kinetics and gene expression studies, we showed that artemisone is a reversible inhibitor, targeting an earlier phase of the viral replication cycle than ganciclovir. Importantly, artemisone most effectively inhibited HCMV infection ex vivo in a clinically-relevant multicellular model of integral human placental tissues maintained in organ culture. Our promising findings encourage preclinical and clinical studies of artemisone as a new inhibitor against HCMV. Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, H.B.; Kown, H.C.; Lee, C.H.
The nutrient conditions present in abandoned coal mine drainages create an extreme environment where defensive and offensive microbial interactions could be critical for survival and fitness. Coculture of a mine drainage-derived Sphingomonas bacterial strain, KMK-001, and a mine drainage-derived Aspergillus fumigatus fungal strain, KMC-901, resulted in isolation of a new diketopiperazine disulfide, glionitrin A (1). Compound 1 was not detected in monoculture broths of KMK-001 or KMC-901. The structure of 1, a (3S,10aS) diketopiperazine disulfide containing a nitro aromatic ring, was based on analysis of MS, NMR, and circular dichroism spectra and confirmed by X-ray crystal data. Glionitrin A displayedmore » significant antibiotic activity against a series of microbes including methicillin-resistant Staphylococcus aureus. An in vitro MTT cytotoxicity assay revealed that 1 had potent submicromolar cytotoxic activity against four human cancer cell lines: HCT-116, A549, AGS, and DU145. The results provide further evidence that microbial coculture can produce novel biologically relevant molecules.« less
Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production
Argueso, Juan Lucas; Carazzolle, Marcelo F.; Mieczkowski, Piotr A.; Duarte, Fabiana M.; Netto, Osmar V.C.; Missawa, Silvia K.; Galzerani, Felipe; Costa, Gustavo G.L.; Vidal, Ramon O.; Noronha, Melline F.; Dominska, Margaret; Andrietta, Maria G.S.; Andrietta, Sílvio R.; Cunha, Anderson F.; Gomes, Luiz H.; Tavares, Flavio C.A.; Alcarde, André R.; Dietrich, Fred S.; McCusker, John H.; Petes, Thomas D.; Pereira, Gonçalo A.G.
2009-01-01
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (∼2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies. PMID:19812109
Vaughan, K.; Blythe, M.; Greenbaum, J.; Zhang, Q.; Peters, B.; Doolan, D. L.; Sette, A.
2012-01-01
Summary We present a comprehensive meta-analysis of more than 500 references, describing nearly 5000 unique B cell and T cell epitopes derived from the Plasmodium genus, and detailing thousands of immunological assays. This is the first inventory of epitope data related to malaria-specific immunology, plasmodial pathogenesis, and vaccine performance. The survey included host and pathogen species distribution of epitopes, the number of antibody vs. CD4+ and CD8+ T cell epitopes, the genomic distribution of recognized epitopes, variance among epitopes from different parasite strains, and the characterization of protective epitopes and of epitopes associated with parasite evasion of the host immune response. The results identify knowledge gaps and areas for further investigation. This information has relevance to issues, such as the identification of epitopes and antigens associated with protective immunity, the design and development of candidate malaria vaccines, and characterization of immune response to strain polymorphisms. PMID:19149776
Štofilová, Jana; Langerholc, Tomaž; Botta, Cristian; Treven, Primož; Gradišnik, Lidija; Salaj, Rastislav; Šoltésová, Alena; Bertková, Izabela; Hertelyová, Zdenka; Bomba, Alojz
2017-10-01
Over the past decade, it has become clear that specific probiotic lactobacilli are valuable in the prevention and treatment of infectious and inflammatory diseases of gastrointestinal tract but their successful application would benefit greatly from a better understanding of the mechanisms of individual strains. Hence, each probiotic strain should be characterized for their immune activity before being proposed for clinical applications. The aim of the study was to characterize the immunomodulatory activity of the strain Lactobacillus (L.) plantarum LS/07 in vitro using functional gut model and to study its anti-inflammatory potential in dextran sulphate sodium (DSS)-induced colitis in rats. We showed that L. plantarum LS/07 induced production of IL-10 in macrophages derived from blood monocytes as well as monocyte/macrophages cell line stimulated indirectly via enterocytes in vitro. In rat model of colitis, L. plantarum LS/07 attenuated the DSS-induced signs of inflammatory process in colon such as weight loss, diarrhoea, infiltration of inflammatory cells associated with decreased colon weight/length ratio, inhibited gut mucosa destruction and depletion of goblet cells. Moreover, the strain increased the concentration of anti-inflammatory cytokine IL-10 in mucosal tissue. In conclusion, the protective effects of L. plantarum LS/07 in the DSS-induced colitis model seem to be related to the stimulation of IL-10 and the restoration of goblet cells and indicate it as a good candidate to prevent and treat diseases associated with inflammation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
ter Schure, Eelko G.; Flikweert, Marcel T.; van Dijken, Johannes P.; Pronk, Jack T.; Verrips, C. Theo
1998-01-01
The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production. PMID:9546164
Pan-Genotype Hepatitis E Virus Replication in Stem Cell-Derived Hepatocellular Systems.
Wu, Xianfang; Dao Thi, Viet Loan; Liu, Peng; Takacs, Constantin N; Xiang, Kuanhui; Andrus, Linda; Gouttenoire, Jérôme; Moradpour, Darius; Rice, Charles M
2018-02-01
The 4 genotypes of hepatitis E virus (HEV) that infect humans (genotypes 1-4) vary in geographical distribution, transmission, and pathogenesis. Little is known about the properties of HEV or its hosts that contribute to these variations. Primary isolates grow poorly in cell culture; most studies have relied on variants adapted to cancer cell lines, which likely alter virus biology. We investigated the infection and replication of primary isolates of HEV in hepatocyte-like cells (HLCs) derived from human embryonic and induced pluripotent stem cells. Using a cell culture-adapted genotype 3 strain and primary isolates of genotypes 1 to 4, we compared viral replication kinetics, sensitivity to drugs, and ability of HEV to activate the innate immune response. We studied HLCs using quantitative reverse-transcriptase polymerase chain reaction and immunofluorescence assay and enzyme-linked immunosorbent assays. We used an embryonic stem cell line that can be induced to express the CRISPR-Cas9 machinery to disrupt the peptidylprolyl isomerase A gene, encoding cyclophilin A (CYPA), a protein reported to inhibit replication of cell culture-adapted HEV. We further modified this line to rescue expression of CYPA before terminal differentiation to HLCs and performed HEV infection studies. HLCs were permissive for infection by nonadapted, primary isolates of HEV genotypes 1 to 4. HEV infection of HLCs induced a replication-dependent type III interferon response. Replication of primary HEV isolates, unlike the cell culture-adapted strain, was not affected by disruption of the peptidylprolyl isomerase A gene or exposure to the CYPA inhibitor cyclosporine A. Cell culture adaptations alter the replicative capacities of HEV. HLCs offer an improved, physiologically relevant, and genetically tractable system for studying the replication of primary HEV isolates. HLCs could provide a model to aid development of HEV drugs and a system to guide personalized regimens, especially for patients with chronic hepatitis E who have developed resistance to ribavirin. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Jorge-Peñas, Alvaro; Bové, Hannelore; Sanen, Kathleen; Vaeyens, Marie-Mo; Steuwe, Christian; Roeffaers, Maarten; Ameloot, Marcel; Van Oosterwyck, Hans
2017-08-01
To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 μm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chlorinated metronidazole as a promising alternative for treating trichomoniasis.
Chacon, M O; Fonseca, T H S; Oliveira, S B V; Alacoque, M A; Franco, L L; Tagliati, C A; Cassali, G D; Campos-Mota, G P; Alves, R J; Capettini, L S A; Gomes, Maria Aparecida
2018-05-01
Trichomoniasis is the most common non-viral, sexually transmitted infection affecting humans worldwide. The main treatment for trichomoniasis is metronidazole (MTZ). However, adverse effects and reports of resistance have stimulated the development of therapeutic alternatives. The ease of manipulation of the side chains of MTZ coupled with its safety makes this molecule attractive for the development of new drugs. In this context, we evaluated the activity of the chlorinated MTZ derivative, MTZ-Cl, on sensitive and resistant strains of Trichomonas vaginalis. MTZ-Cl presented a remarkable activity against both sensitive and resistant strains. In vitro and in vivo toxicity assays indicated that the new molecule is safe for future clinical trials. Furthermore, we noticed different rates of free radical production between the sensitive and resistant strains. MTZ-Cl induced a higher release of nitric oxide (NO, ~ 9000 a.u.) by both sensitive and resistant strains. However, the sensitive strain produced a greater amount of H 2 O 2 (~ 1,800,000 a.u.) and superoxide radicals (~ 350,000 a.u.) in the presence of MTZ. In the resistant strain, production of these radicals was more prominent when MTZ-Cl was used. Collectively, these results suggest that NO is an important molecule in the trichomonacidal activity against resistant and sensitive strains, suggesting an alternative pathway for MTZ-Cl activation. We highlight the high trichomonacidal potential of MTZ-Cl, improving the effectiveness of treatment and reducing side effects. In addition, MTZ-Cl is derived from a well-established drug on the world market that presents low toxicity to human cells, suggesting its safety to proceed with future clinical trials.
Litsanov, Boris; Brocker, Melanie
2012-01-01
Previous studies have demonstrated the capability of Corynebacterium glutamicum for anaerobic succinate production from glucose under nongrowing conditions. In this work, we have addressed two shortfalls of this process, the formation of significant amounts of by-products and the limitation of the yield by the redox balance. To eliminate acetate formation, a derivative of the type strain ATCC 13032 (strain BOL-1), which lacked all known pathways for acetate and lactate synthesis (Δcat Δpqo Δpta-ackA ΔldhA), was constructed. Chromosomal integration of the pyruvate carboxylase gene pycP458S into BOL-1 resulted in strain BOL-2, which catalyzed fast succinate production from glucose with a yield of 1 mol/mol and showed only little acetate formation. In order to provide additional reducing equivalents derived from the cosubstrate formate, the fdh gene from Mycobacterium vaccae, coding for an NAD+-coupled formate dehydrogenase (FDH), was chromosomally integrated into BOL-2, leading to strain BOL-3. In an anaerobic batch process with strain BOL-3, a 20% higher succinate yield from glucose was obtained in the presence of formate. A temporary metabolic blockage of strain BOL-3 was prevented by plasmid-borne overexpression of the glyceraldehyde 3-phosphate dehydrogenase gene gapA. In an anaerobic fed-batch process with glucose and formate, strain BOL-3/pAN6-gap accumulated 1,134 mM succinate in 53 h with an average succinate production rate of 1.59 mmol per g cells (dry weight) (cdw) per h. The succinate yield of 1.67 mol/mol glucose is one of the highest currently described for anaerobic succinate producers and was accompanied by a very low level of by-products (0.10 mol/mol glucose). PMID:22389371
de Souza Filho, Job Alves; Diniz, Cláudio Galuppo; Barbosa, Natália Bento; de Freitas, Michele Cristine Ribeiro; Lopes Neves, Mariana Silva; da Gama Mazzei, Rafaella Nogueira; Gameiro, Jacy; Coelho, Cíntia Marques; da Silva, Vânia Lúcia
2012-12-01
Subinhibitory concentrations (SICs) of antimicrobials may result in alterations in bacterial biology with implications for its potential aggression. This has considerable importance for the resident microbiota. Our aim was to analyze the effects of SICs of antimicrobials on the morphological, biochemical, physiological and molecular characteristics of the resident anaerobic Fusobacterium nucleatum. Fourteen strains were obtained from F. nucleatum ATCC 25586, selected by culturing on SICs of ampicillin, ampicillin/sulbactam, clindamycin, chloramphenicol, levofloxacin, metronidazole and piperacillin/tazobactam and subsequent culturing in the absence of drugs. Antimicrobial susceptibility, bacterial morphology, biochemical profiles and biofilm formation were evaluated. Genotyping and analysis of protein profiles were also performed. The antimicrobial susceptibility patterns showed that most of the derived strains were less sensitive to the antimicrobials, even after culturing them without drugs. Morphological and cell complexity alterations were observed, mainly in strains grown in SICs of β-lactam; these strains also expressed a reduced ability for biofilm formation. The other strains showed an increase in biofilm formation but no apparent morphological changes. Alterations were observed in the carbohydrate metabolism patterns and in the activity of microbial enzymes. Several proteins were positively or negatively regulated and there was polymorphism in the DNA from all derived strains. Therefore, SICs of antimicrobials induce alterations in F. nucleatum, which directly impact its biology. These results emphasize the risk of inadequate antibioticotherapy, which may have serious implications for clinical microbiology and infectious diseases and also may interfere with the host-bacteria relationship. Copyright © 2012 Elsevier Ltd. All rights reserved.
Youssef, Diaa T A; Ibrahim, Sabrin R M; Shaala, Lamiaa A; Mohamed, Gamal A; Banjar, Zainy M
2016-03-09
In the course of our ongoing efforts to identify marine-derived bioactive compounds, the marine cyanobacterium Moorea producens was investigated. The organic extract of the Red Sea cyanobacterium afforded one new cerebroside, mooreaside A (1), two new nucleoside derivatives, 3-acetyl-2'-deoxyuridine (2) and 3-phenylethyl-2'-deoxyuridine (3), along with the previously reported compounds thymidine (4) and 2,3-dihydroxypropyl heptacosanoate (5). The structures of the compounds were determined by different spectroscopic studies (UV, IR, 1D, 2D NMR, and HRESIMS), as well as comparison with the literature data. Compounds 1-5 showed variable cytotoxic activity against three cancer cell lines.
Jagannathan, S; Chaansha, S; Rajesh, K; Santhiya, T; Charles, C; Venkataramana, K N
2009-09-15
Vero cells are utilized for production of rabies vaccine. This study deals with the optimize quantity media require for the rabies vaccine production in the smooth roller surface. The rabies virus (Pasteur vaccine strain) is infected to monolayer of the various experimented bottles. To analyze the optimal quantity of media for the production of rabies viral harvest during the process of Vero cell derived rabies vaccine. The trials are started from 200 to 400 mL (PTARV-1, PTARV-2, PTARV-3, PTARV-4 and PTARV-5). The samples are taken in an appropriate time intervals for analysis of In Process Quality Control (IPQC) tests. The collected viral harvests are further processed to rabies vaccine in a pilot level and in addition to scale up an industrial level. Based on the evaluation the PTARV-2 (250 mL) show highly encouraging results for the Vero cell derived rabies vaccine production.
Characterization of Reemerging Chikungunya Virus
Sourisseau, Marion; Schilte, Clémentine; Casartelli, Nicoletta; Trouillet, Céline; Guivel-Benhassine, Florence; Rudnicka, Dominika; Sol-Foulon, Nathalie; Roux, Karin Le; Prevost, Marie-Christine; Fsihi, Hafida; Frenkiel, Marie-Pascale; Blanchet, Fabien; Afonso, Philippe V; Ceccaldi, Pierre-Emmanuel; Ozden, Simona; Gessain, Antoine; Schuffenecker, Isabelle; Verhasselt, Bruno; Zamborlini, Alessia; Saïb, Ali; Rey, Felix A; Arenzana-Seisdedos, Fernando; Desprès, Philippe; Michault, Alain; Albert, Matthew L; Schwartz, Olivier
2007-01-01
An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host. PMID:17604450
Connolly, James; Kaufman, Megan; Rothman, Adam; Gupta, Rashmi; Redden, George; Schuster, Martin; Colwell, Frederick; Gerlach, Robin
2013-09-01
Two bacterial strains, Pseudomonas aeruginosa MJK1 and Escherichia coli MJK2, were constructed that both express green fluorescent protein (GFP) and carry out ureolysis. These two novel model organisms are useful for studying bacterial carbonate mineral precipitation processes and specifically ureolysis-driven microbially induced calcium carbonate precipitation (MICP). The strains were constructed by adding plasmid-borne urease genes (ureABC, ureD and ureFG) to the strains P. aeruginosa AH298 and E. coli AF504gfp, both of which already carried unstable GFP derivatives. The ureolytic activities of the two new strains were compared to the common, non-GFP expressing, model organism Sporosarcina pasteurii in planktonic culture under standard laboratory growth conditions. It was found that the engineered strains exhibited a lower ureolysis rate per cell but were able to grow faster and to a higher population density under the conditions of this study. Both engineered strains were successfully grown as biofilms in capillary flow cell reactors and ureolysis-induced calcium carbonate mineral precipitation was observed microscopically. The undisturbed spatiotemporal distribution of biomass and calcium carbonate minerals were successfully resolved in 3D using confocal laser scanning microscopy. Observations of this nature were not possible previously because no obligate urease producer that expresses GFP had been available. Future observations using these organisms will allow researchers to further improve engineered application of MICP as well as study natural mineralization processes in model systems. © 2013.
Kwon, Hyuk Woo; Choi, Min Ah; Yun, Yeo Hong; Oh, Youn-Lee; Kong, Won-Sik
2015-01-01
To promote the selection of promising monokaryotic strains of button mushroom (Agaricus bisporus) during breeding, 61 progeny strains derived from basidiospores of two different lines of dikaryotic parental strains, ASI1038 and ASI1346, were analyzed by nucleotide sequencing of the intergenic spacer I (IGS I) region in their rDNA and by extracellular enzyme assays. Nineteen different sizes of IGS I, which ranged from 1,301 to 1,348 bp, were present among twenty ASI1346-derived progeny strains, while 15 different sizes of IGS I, which ranged from 700 to 1,347 bp, were present among twenty ASI1038-derived progeny strains. Phylogenetic analysis of the IGS sequences revealed that different clades were present in both the ASI10388- and ASI1346-derived progeny strains. Plating assays of seven kinds of extracellular enzymes (β-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease) also revealed apparent variation in the ability to produce extracellular enzymes among the 40 tested progeny strains from both parental A. bisporus strains. Overall, this study demonstrates that characterization of IGS I regions and extracellular enzymes is useful for the assessment of the substrate-degrading ability and heterogenicity of A. bisporus monokaryotic strains. PMID:25892920
Human stem cell-derived astrocytes replicate human prions in a PRNP genotype-dependent manner.
Krejciova, Zuzana; Alibhai, James; Zhao, Chen; Krencik, Robert; Rzechorzek, Nina M; Ullian, Erik M; Manson, Jean; Ironside, James W; Head, Mark W; Chandran, Siddharthan
2017-12-04
Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype-dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery. © 2017 Krejciova et al.
NASA Astrophysics Data System (ADS)
Kalziqi, Arben; Yunker, Peter; Thomas, Jacob
Unlike equilibrium atomic solids, biofilms do not experience significant thermal fluctuations at the constituent level. However, cells inside the biofilm stochastically die and reproduce, provoking a mechanical response. We investigate the mechanical response of biofilms to the death and reproduction of cells by measuring surface-height fluctuations of biofilms with two mutual predator strains of Vibrio cholerae which kill one another on contact via the Type VI Secretion System. Biofilm surface topography is measured in the homeostatic limit, wherein cell division and death occur at roughly the same rate, via white light interferometry. Although biofilms are far from equilibrium systems, measured height correlation functions line up with expectations from a generalized fluctuation-response relation derived from replication and death events, as predicted by Risler et al. (PRL 2015). Using genetically modified strains of V. cholerae which cannot kill, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction. Thus, high-precision measurement of surface topography reveals the physical consequences of death and reproduction within a biofilm, providing a new approach to studying interactions between bacteria and cells.
Isolation of Phaffia rhodozyma Mutants with Increased Astaxanthin Content
An, Gil-Hwan; Schuman, Donald B.; Johnson, Eric A.
1989-01-01
Plating of the astaxanthin-producing yeast Phaffia rhodozyma onto yeast-malt agar containing 50 μM antimycin A gave rise to colonies of unusual morphology, characterized by a nonpigmented lower smooth surface that developed highly pigmented vertical papillae after 1 to 2 months. Isolation and purification of the pigmented papillae, followed by testing for pigment production in shake flasks, demonstrated that several antimycin isolates were increased two- to fivefold in astaxanthin content compared with the parental natural isolate (UCD-FST 67-385). One of the antimycin strains (ant-1) and a nitrosoguanidine derivative of ant-1 (ant-1-4) produced considerably more astaxanthin than the parent (ant-1 had 800 to 900 μg/g; ant-1-4 had 900 to 1,300 μg/g; and 67-385 had 300 to 450 μg/g). The mutant strains were compared physiologically with the parent. The antimycin mutants grew slower on ammonia, glutamate, or glutamine as nitrogen sources compared with the natural isolate and also had lower cell yields on several carbon sources. Although isolated on antimycin plates, they were found to be more susceptible to antimycin A, apparently owing to the spatial separation of the papillae from the agar. They were also more susceptible than the parent to the respiratory inhibitor thenoyltrifluoroacetone and were slightly more susceptible to cyanide, but did not differ from the natural isolate in susceptibility to azide. The antimycin-derived strains were also killed faster than the parent by hydrogen peroxide. The carotenoid compositions of the parent and the antimycin-derived strains were similar to those previously determined in the type strain (UCD-FST 67-210) except that two carotenoids not previously found in the type strain were present in increased quantities in the antimycin mutants and phoenicoxanthin was a minor component. The chemical properties of the unknown carotenoids suggested that the strains isolated on antimycin agar tended to oxygenate and desaturate carotene precursors to a greater extent than the parent. The physiology of the antimycin isolates and the known specificity of antimycin for cytochrome b in the respiratory chain suggests that alteration of cytochrome b or cytochrome P-450 components involved in oxygenation and desaturation of carotenes in mitochondria are affected, which results in increased astaxanthin production. These astaxanthin-overproducing mutants and more highly pigmented derivative strains could be useful in providing a natural source of astaxanthin for the pen-reared-salmon industry or for other farmed animals that contain astaxanthin as their principal carotenoid. Images PMID:16347815
Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation.
Ren, Chengcheng; Zhang, Qiuxiang; de Haan, Bart J; Zhang, Hao; Faas, Marijke M; de Vos, Paul
2016-10-06
Although many lactic acid bacteria (LAB) influence the consumer's immune status it is not completely understood how this is established. Bacteria-host interactions between bacterial cell-wall components and toll-like receptors (TLRs) have been suggested to play an essential role. Here we investigated the interaction between LABs with reported health effects and TLRs. By using cell-lines expressing single or combination of TLRs, we show that LABs can signal via TLR-dependent and independent pathways. The strains only stimulated and did not inhibit TLRs. We found that several strains such as L. plantarum CCFM634, L. plantarum CCFM734, L. fermentum CCFM381, L. acidophilus CCFM137, and S. thermophilus CCFM218 stimulated TLR2/TLR6. TLR2/TLR6 is essential in immune regulatory processes and of interest for prevention of diseases. Specificity of the TLR2/TLR6 stimulation was confirmed with blocking antibodies. Immunomodulatory properties of LABs were also studied by assessing IL-10 and IL-6 secretion patterns in bacteria-stimulated THP1-derived macrophages, which confirmed species and strain specific effects of the LABs. With this study we provide novel insight in LAB specific host-microbe interactions. Our data demonstrates that interactions between pattern recognition receptors such as TLRs is species and strain specific and underpins the importance of selecting specific strains for promoting specific health effects.
Webb, R; Troyan, T; Sherman, D; Sherman, L A
1994-08-01
Growth of Synechococcus sp. strain PCC 7942 in iron-deficient media leads to the accumulation of an approximately 34-kDa protein. The gene encoding this protein, mapA (membrane-associated protein A), has been cloned and sequenced (GenBank accession number, L01621). The mapA transcript is not detectable in normally grown cultures but is stably accumulated by cells grown in iron-deficient media. However, the promoter sequence for this gene does not resemble other bacterial iron-regulated promoters described to date. The carboxyl-terminal region of the derived amino acid sequence of MapA resembles bacterial proteins involved in iron acquisition, whereas the amino-terminal end of MapA has a high degree of amino acid identity with the abundant, chloroplast envelope protein E37. An approach employing improved cellular fractionation techniques as well as electron microscopy and immunocytochemistry was essential in localizing MapA protein to the cytoplasmic membrane of Synechococcus sp. strain PCC 7942. When these cells were grown under iron-deficient conditions, a significant fraction of MapA could also be localized to the thylakoid membranes.
Investigating the Role of Helicobacter pylori PriA Protein.
Singh, Aparna; Blaskovic, Dusan; Joo, Jungsoo; Yang, Zhen; Jackson, Sharon H; Coleman, William G; Yan, Ming
2016-08-01
In bacteria, PriA protein, a conserved DEXH-type DNA helicase, plays a central role in replication restart at stalled replication forks. Its unique DNA binding property allows it to recognize and stabilize stalled forks and the structures derived from them. PriA plays a very critical role in replication fork stabilization and DNA repair in E. coli and N. gonorrhoeae. In our in vivo expression technology screen, priA gene was induced in vivo when Helicobacter pylori infects mouse stomach. We decided to elucidate the role of H. pylori PriA protein in survival in mouse stomach, survival in gastric epithelial cells and macrophage cells, DNA repair, acid stress, and oxidative stress. The priA null mutant strain was unable to colonize mice stomach mucosa after long-term infections. Mouse colonization was observed after 1 week of infection, but the levels were much lower than the wild-type HpSS1 strain. PriA protein was found to be important for intracellular survival of epithelial cell-/macrophage cell-ingested H. pylori. Also, a priA null mutant was more sensitive to DNA-damaging agents and was much more sensitive to acid and oxidative stress as compared to the wild-type strain. These data suggest that the PriA protein is needed for survival and persistence of H. pylori in mice stomach mucosa. © 2016 John Wiley & Sons Ltd.
Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis
Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J
2014-01-01
Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866
Asymptomatic Carriage of Group A Streptococcus Is Associated with Elimination of Capsule Production
Jewell, Brittany E.; Olsen, Randall J.; Shelburne, Samuel A.; Fittipaldi, Nahuel; Beres, Stephen B.; Musser, James M.
2014-01-01
Humans commonly carry pathogenic bacteria asymptomatically, but despite decades of study, the underlying molecular contributors remain poorly understood. Here, we show that a group A streptococcus carriage strain contains a frameshift mutation in the hasA gene resulting in loss of hyaluronic acid capsule biosynthesis. This mutation was repaired by allelic replacement, resulting in restoration of capsule production in the isogenic derivative strain. The “repaired” isogenic strain was significantly more virulent than the carriage strain in a mouse model of necrotizing fasciitis and had enhanced growth ex vivo in human blood. Importantly, the repaired isogenic strain colonized the mouse oropharynx with significantly greater bacterial burden and had significantly reduced ability to internalize into cultured epithelial cells than the acapsular carriage strain. We conducted full-genome sequencing of 81 strains cultured serially from 19 epidemiologically unrelated human subjects and discovered the common theme that mutations negatively affecting capsule biosynthesis arise in vivo in the has operon. The significantly decreased capsule production is a key factor contributing to the molecular détente between pathogen and host. Our discoveries suggest a general model for bacterial pathogens in which mutations that downregulate or ablate virulence factor production contribute to carriage. PMID:25024363
Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming
2016-01-01
Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar "Zenith" root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected "Zenith" roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of "Zenith" root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of "Zenith" root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain.
Li, Kai; Liu, Yongzhen; Liu, Changjun; Gao, Li; Gao, Yulong; Zhang, Yanping; Cui, Hongyu; Qi, Xiaole; Zhong, Li; Wang, Xiaomei
2017-03-01
Attenuated strains of Marek's disease virus serotype 1 (MDV1), and the closely related herpesvirus of turkeys, are among the most potent vectors for development of recombinant vaccines for poultry. To investigate the effects of MDV1 strain characteristics on the protective efficacy of the recombinant vaccines, we developed two recombinant MDV1 vaccines for expressing the VP2 gene of infectious bursal disease virus (IBDV) based on two different MDV1 strains, the attenuated strain 814 and the Meq gene-deleted recombinant MDV1 strain rLMS△Meq, as the viral vectors. The r814-VP2 virus based on the 814 strain exhibited higher replication efficiency in cell culture while lower viral titers in chickens, compared to rLMS△Meq-VP2 derived from the rLMS△Meq strain. Further studies indicated that r814-VP2 produced higher levels of VP2 protein in cells and elicited stronger immune responses against IBDV in chickens than rLMS△Meq-VP2. After IBDV challenge, rLMS△Meq-VP2 provided 50% protection against mortality, and the birds that survived developed bursal atrophy and gross lesions. In contrast, r814-VP2 conferred complete protection not only against development of clinical signs and mortality, but also against the formation of bursal lesions. The results indicate that different MDV1 vector influences the protective efficacy of recombinant MDV1 vaccines. The r814-VP2 has the potential to serve as a bivalent vaccine against two important lethal pathogens of chickens. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasumizu, R.; Hiai, H.; Sugiura, K.
1988-09-15
The transplantation of bone marrow cells from BALB/c (but not C57BL/6 and C3H/HeN) mice was observed to lead to the development of thymic lymphomas (leukemias) in AKR/J mice. Two leukemic cell lines, CAK1.3 and CAK4.4, were established from the primary culture of two thymic lymphoma, and surface phenotypes of these cell lines found to be H-2d and Thy-1.2+, indicating that these lymphoma cells are derived from BALB/c donor bone marrow cells. Further analyses of surface markers revealed that CAK1.3 is L3T4+ Lyt2+ IL2R-, whereas CAK4.4 is L3T4- Lyt2- IL2R+. Both CAK1.3 and CAK4.4 were transplantable into BALB/c but not AKR/Jmore » mice, further indicating that these cells are of BALB/c bone marrow donor origin. The cells were found to produce XC+-ecotropic viruses, but xenotropic and mink cell focus-forming viruses were undetectable. Inasmuch as thymic lymphomas are derived from bone marrow cells of leukemia-resistant BALB/c strain of mice under the allogeneic environment of leukemia-prone AKR/J mice, this animal model may serve as a useful tool not only for the analysis of leukemic relapse after bone marrow transplantation but also for elucidation of the mechanism of leukemogenesis.« less
Sorrell, Tania C; Juillard, Pierre-Georges; Djordjevic, Julianne T; Kaufman-Francis, Keren; Dietmann, Anelia; Milonig, Alban; Combes, Valery; Grau, Georges E R
2016-01-01
Cryptococcus neoformans (Cn) and Cryptococcus gattii (Cg) cause neurological disease and cross the BBB as free cells or in mononuclear phagocytes via the Trojan horse mechanism, although evidence for the latter is indirect. There is emerging evidence that Cn and the North American outbreak Cg strain (R265) more commonly cause neurological and lung disease, respectively. We have employed a widely validated in vitro model of the BBB, which utilizes the hCMEC/D3 cell line derived from human brain endothelial cells (HBEC) and the human macrophage-like cell line, THP-1, to investigate whether transport of dual fluorescence-labelled Cn and Cg across the BBB occurs within macrophages. We showed that phagocytosis of Cn by non-interferon (IFN)-γ stimulated THP-1 cells was higher than that of Cg. Although Cn and Cg-loaded THP-1 bound similarly to TNF-activated HBECs under shear stress, more Cn-loaded macrophages were transported across an intact HBEC monolayer, consistent with the predilection of Cn for CNS infection. Furthermore, Cn exhibited a higher rate of expulsion from transmigrated THP-1 compared with Cg. Our results therefore provide further evidence for transmigration of both Cn and Cg via the Trojan horse mechanism and a potential explanation for the predilection of Cn to cause CNS infection. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Zweerink, Alwin; Allaart, Cornelis P; Kuijer, Joost P A; Wu, LiNa; Beek, Aernout M; van de Ven, Peter M; Meine, Mathias; Croisille, Pierre; Clarysse, Patrick; van Rossum, Albert C; Nijveldt, Robin
2017-12-01
Although myocardial strain analysis is a potential tool to improve patient selection for cardiac resynchronization therapy (CRT), there is currently no validated clinical approach to derive segmental strains. We evaluated the novel segment length in cine (SLICE) technique to derive segmental strains from standard cardiovascular MR (CMR) cine images in CRT candidates. Twenty-seven patients with left bundle branch block underwent CMR examination including cine imaging and myocardial tagging (CMR-TAG). SLICE was performed by measuring segment length between anatomical landmarks throughout all phases on short-axis cines. This measure of frame-to-frame segment length change was compared to CMR-TAG circumferential strain measurements. Subsequently, conventional markers of CRT response were calculated. Segmental strains showed good to excellent agreement between SLICE and CMR-TAG (septum strain, intraclass correlation coefficient (ICC) 0.76; lateral wall strain, ICC 0.66). Conventional markers of CRT response also showed close agreement between both methods (ICC 0.61-0.78). Reproducibility of SLICE was excellent for intra-observer testing (all ICC ≥0.76) and good for interobserver testing (all ICC ≥0.61). The novel SLICE post-processing technique on standard CMR cine images offers both accurate and robust segmental strain measures compared to the 'gold standard' CMR-TAG technique, and has the advantage of being widely available. • Myocardial strain analysis could potentially improve patient selection for CRT. • Currently a well validated clinical approach to derive segmental strains is lacking. • The novel SLICE technique derives segmental strains from standard CMR cine images. • SLICE-derived strain markers of CRT response showed close agreement with CMR-TAG. • Future studies will focus on the prognostic value of SLICE in CRT candidates.
Arai, Ayako; Imadome, Ken-ichi; Wang, Ludan; Wu, Nan; Kurosu, Tetsuya; Wake, Atsushi; Yamamoto, Hisashi; Ota, Yasunori; Harigai, Masayoshi; Fujiwara, Shigeyoshi; Miura, Osamu
2012-01-01
We report the case of a 35-year-old woman with chronic active Epstein-Barr virus (EBV) infection (CAEBV). She underwent allogeneic bone marrow transplantation (BMT) from an unrelated male donor and achieved a complete response. However, her CAEBV relapsed one year after BMT. EBV-infected cells proliferated clonally and revealed a 46XY karyotype. In addition, the infecting EBV strain differed from that detected before BMT. These findings indicated that her disease had developed from donor cells. This is the first report of donor cell-derived CAEBV that recurred after transplantation, suggesting that host factors may be responsible for the development of this disease.
NASA Astrophysics Data System (ADS)
Bazylinski, D. A.; Williams, T. J.; Zhang, C. L.; Scott, J. H.
2005-12-01
All cultured, marine, magnetite-producing, magnetotactic bacteria (MB) are capable of chemolithoautotrophy and use a number of electron donors to support this mode of growth including reduced sulfur compounds. Several vibrioid strains are known to rely on the Calvin-Benson-Bassham (CBB) cycle for autotrophy. An obligately microaerophilic, magnetite-producing, coccoid strain (MC-1) grew with sulfide and thiosulfate as electron donors and 14C-labelling experiments showed that virtually all cell C was derived from H14CO3-/14CO2 confirming autotrophy in this strain. Cell-free extracts of strain MC-1 did not exhibit ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO) activity and nor were RubisCO genes found in the draft genome of the organism. Cell extracts also did not exhibit carbon monoxide dehydrogenase activity indicating that the acetyl-CoA pathway also does not function in strain MC-1. The 13C content of whole cells of strain MC-1 relative to the 13C content of the H14CO3-/14CO2 used for growth (Δδ13C) was -11.4 ppt. Cellular fatty acids showed enrichment of 13C relative to biomass. Activities for three key enzymes of the reverse or reductive tricarboxylic acid (rTCA) cycle were demonstrated for MC-1: fumarate reductase, pyruvate: acceptor oxidoreductase and 2-oxoglutarate: acceptor oxidoreductase. Although ATP citrate lyase (another key enzyme of the rTCA cycle) activity was not detected in cell-free extracts of strain MC-1 using commonly used assays for this enzyme, cell-free extract was found to rapidly cleave citrate, and the reaction was dependent upon the presence of ATP, coenzyme A and NADH. Thus, we infer the presence of an ATP-dependent citrate-cleaving enzyme or enzymes. The Δδ13C value and results from enzyme studies are consistent with the operation of the rTCA cycle for autotrophy in strain MC-1. Strain MC-1 appears to be the first known member of the alpha-Proteobacteria to assimilate CO2 during autotrophic growth using the rTCA cycle. Based on the type of chemolithoautotrophy described above, it is clear why marine magnetite-producing MB occupy a precise location, the oxic-anoxic interface, in vertical chemical gradients within chemically-stratified coastal environments: they must have an electron donor, sulfide and perhaps others, and an electron acceptor, O2. The presumed function of magnetosomes is that the magnetic dipole resulting from the magnetosomes aids the cell in locating and maintaining an optimal position within vertical chemical gradients. MB process large amounts of Fe in the biomineralization of magnetosomes: cells consist of 1-3% Fe (dry wt). Because of this, and the fact that many chemolithoautotrophic, non-magnetotactic bacteria occupy a similar niche, we have been investigating possible physiological reasons for the production of magnetosomes and the processing of such large amounts of Fe. We have found that some marine vibrioid strains grow in O2-gradient medium with Fe(II) as the electron donor. Cells appear to oxidize the Fe(II) and produce a layer of Fe oxyhydroxides within the gradient suggesting that cells obtain energy from the oxidation of Fe(II).
Antiretroviral Activity Of a Novel Pyrimidyl-Di(Diazaspiroalkane) Derivative.
Novoselova, E A; Riabova, O B; Leneva, I A; Nesterenko, V G; Bolgarin, R N; Makarov, V A
2017-01-01
A novel compound, 3,3'-(5-nitropyrimidine-4,6-diyl)bis-3,12-diaza-6,9-diazoniadispiro[5.2.5.2]hexadecane tetrachloride dihydrochloride, was synthesized. The compound was found to inhibit the replication of various viral families by blocking specific heparan sulfate receptors on the host cell's surface. In experiments, the compound was found to be highly effective against several strains of HIV retroviruses.
Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyake, Yoshiaki; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama; Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp
Highlights: {yields} CCN2/CTGF localizes to the ligament-to-bone interface, but is not to the midsubstance region of human anterior cruciate ligament (ACL). {yields} Mechanical stretch induces higher increase of CCN2/CTGF gene expression and protein secretion in ACL interface cells compared with ACL midsubstance cells. {yields} CCN2/CTGF treatment stimulates the proliferation of ACL interface cells. -- Abstract: Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS)more » stimulates {alpha}1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.« less
Persistent Infection of Human Fetal Endothelial Cells with Rubella Virus
Perelygina, Ludmila; Zheng, Qi; Metcalfe, Maureen; Icenogle, Joseph
2013-01-01
Cardiovascular abnormalities are the leading cause of neonatal death among patients with congenital rubella syndrome (CRS). Although persistence of rubella virus (RV) in fetal endothelium has been repeatedly suggested as a possible cause of cardiovascular birth defects, evidence of the permissiveness of fetal endothelial cells to RV is lacking. In this study we evaluated the ability of RV to infect and persist in primary fetal endothelial cells derived from human umbilical vein (HUVEC). We found that wild type (wt) low passage clinical RV productively infected HUVEC cultures without producing cytopathology or ultrastructural changes. RV did not inhibit host cell protein synthesis, cell proliferation, or interfere with the cell cycle. Persistently infected cultures were easily established at low and high multiplicities of infection (MOI) with both laboratory and wt clinical RV strains. However, synchronous infections of entire HUVEC monolayers were only observed with clinical RV strains. The release of infectious virions into media remained at consistently high levels for several subcultures of infected HUVEC. The results indicate that macrovascular fetal endothelial cells are highly permissive to RV and allow slow persistent RV replication. The findings provide more evidence for the suggestion that vascular pathologies in CRS are triggered by persistent rubella virus infection of the endothelium. PMID:23940821
A Subset of Mouse Colonic Goblet Cells Expresses the Bitter Taste Receptor Tas2r131
Prandi, Simone; Bromke, Marta; Hübner, Sandra; Voigt, Anja; Boehm, Ulrich; Meyerhof, Wolfgang; Behrens, Maik
2013-01-01
The concept that gut nutrient sensing involves taste receptors has been fueled by recent reports associating the expression of taste receptors and taste-associated signaling molecules in the gut and in gut-derived cell lines with physiological responses induced by known taste stimuli. However, for bitter taste receptors (Tas2rs), direct evidence for their functional role in gut physiology is scarce and their cellular expression pattern remained unknown. We therefore investigated Tas2r expression in mice. RT-PCR experiments assessed the presence of mRNA for Tas2rs and taste signaling molecules in the gut. A gene-targeted mouse strain was established to visualize and identify cell types expressing the bitter receptor Tas2r131. Messenger RNA for various Tas2rs and taste signaling molecules were detected by RT-PCR in the gut. Using our knock-in mouse strain we demonstrate that a subset of colonic goblet cells express Tas2r131. Cells that express this receptor are absent in the upper gut and do not correspond to enteroendocrine and brush cells. Expression in colonic goblet cells is consistent with a role of Tas2rs in defense mechanisms against potentially harmful xenobiotics. PMID:24367558
Osteogenic differentiation of periosteum-derived stromal cells in blast-associated traumatic loading
NASA Astrophysics Data System (ADS)
Sory, David R.; Amin, Harsh D.; Rankin, Sara M.; Proud, William G.
2017-06-01
One of the most recurrent medical complications resulting from blast trauma includes blast-induced heterotopic ossification. Heterotopic ossification refers to the pathologic formation of extraskeletal bone in non-osseous tissue. Although a number of studies have established the interaction between mechanics and biology in bone formation following shock trauma, the exact nature of the mechanical stimuli associated to blast-loading and their influence on the activation of osteogenic differentiation of cells remain unanswered. Here we present the design and calibration of a loading platform compatible with living cells to examine the effects of mechanical stress pulses of blast-associated varying strain rates on the activation of osteogenic differentiation of periosteum (PO) cells. Multiaxial compression loadings of PO cells are performed at different magnitudes of stress and ranges of strain rate. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injuries at the cellular level. This work was conducted under the auspices of the Royal British Legion Centre for Blast Injury Studies at Imperial College London. The authors would like to acknowledge the financial support of the Royal British Legion.
Escherichia coli K1 induces IL-8 expression in human brain microvascular endothelial cells.
Galanakis, Emmanouil; Di Cello, Francescopaolo; Paul-Satyaseela, Maneesh; Kim, Kwang Sik
2006-12-01
Microbial penetration of the blood-brain barrier (BBB) into the central nervous system is essential for the development of meningitis. Considerable progress has been achieved in understanding the pathophysiology of meningitis, however, relatively little is known about the early inflammatory events occurring at the time of bacterial crossing of the BBB. We investigated, using real-time quantitative PCR, the expression of the neutrophil chemoattractants alpha-chemokines CXCL1 (Groalpha) and CXCL8 (IL-8), and of the monocyte chemoattractant beta-chemokine CCL2 (MCP-1) by human brain microvascular endothelial cells (HBMEC) in response to the meningitis-causing E. coli K1 strain RS218 or its isogenic mutants lacking the ability to bind to and invade HBMEC. A nonpathogenic, laboratory E. coli strain HB101 was used as a negative control. CXCL8 was shown to be significantly expressed in HBMEC 4 hours after infection with E. coli K1, while no significant alterations were noted for CXCL1 and CCL2 expression. This upregulation of CXCL8 was induced by E. coli K1 strain RS218 and its derivatives lacking the ability to bind and invade HBMEC, but was not induced by the laboratory strain HB101. In contrast, no upregulation of CXCL8 was observed in human umbilical vein endothelial cells (HUVEC) after stimulation with E. coli RS218. These findings indicate that the CXCL8 expression is the result of the specific response of HBMEC to meningitis-causing E. coli K1.
Jia, Bo; Liu, Xingyan; Zhan, Jicheng; Li, Jingyuan; Huang, Weidong
2015-06-01
Proanthocyanidins (PAs) derived from the grape skin, as well as from grape seeds, grape stems, are an important group of polyphenols in wine. The aim of this study was to understand the effect of PAs (0.1, 1.0 g/L) on growth and alcoholic fermentation of 2 strains of Saccharomyces cerevisiae (commercial strain FREDDO and newly selected strain BH8) during copper-stress fermentation, using a simple model fermentation system. Our results showed that both PAs and Cu(2+) could pose significant inhibition effects on the growth of yeast cells, CO2 release, sugar consumption, and ethanol production during the initial phase of the fermentation. Compared to PAs, Cu(2+) performed more obvious inhibition on the yeast growth and fermentation. However, adding 1.0 g/L PAs increased in the vitality and metabolism activity of yeast cells at the mid-exponential phase of fermentation in the mediums with no copper and 0.1 mM Cu(2+) added, shortened the period of wine fermentation, and decreased the copper residues. It indicated that PAs could improve the ability of wine yeast to resist detrimental effects under copper-stress fermentation condition, maintaining cells metabolic activity, and fermentation could be controlled by manipulating PAs supplementation. © 2015 Institute of Food Technologists®
Janeczko, Monika; Kubiński, Konrad; Martyna, Aleksandra; Muzyczka, Angelika; Boguszewska-Czubara, Anna; Czernik, Sławomir; Tokarska-Rodak, Małgorzata; Chwedczuk, Marta; Demchuk, Oleg M; Golczyk, Hieronim; Masłyk, Maciej
2018-04-01
In this study, we applied various assays to find new activities of 1,4-naphthoquinone derivatives for potential anti-Candida albicans applications. These assays determined (a) the antimicrobial effect on growth/cell multiplication in fungal cultures, (b) the effect on formation of hyphae and biofilm, (c) the influence on cell membrane integrity, (d) the effect on cell morphology using atomic force microscopy, and (e) toxicity against zebrafish embryos. We have demonstrated the activity of these compounds against different Candida species and clinical isolates of C. albicans. 1,4-Naphthoquinones significantly affected fungal strains at 8-250 mg l -1 of MIC. Interestingly, at concentrations below MICs, the chemicals showed effectiveness in inhibition of hyphal formation and cell aggregation in Candida. Of note, atomic force microscopy (AFM) analysis revealed an influence of the compounds on cell morphological properties. However, at low concentrations (0.8-31.2 mg l -1 ), it did not exert any evident toxic effects on zebrafish embryos. Our research has evidenced the effectiveness of 1,4-naphthoquinones as potential anti-Candida agents.
Kimura, Wataru; Sharkar, Mohammad Tofael Kabir; Sultana, Nishat; Islam, Mohammod Johirul; Uezato, Tadayoshi; Miura, Naoyuki
2013-06-01
Thymus development is a complicated process that includes highly dynamic morphological changes and reciprocal tissue interactions between endoderm-derived epithelial cells of the anterior foregut and neural crest-derived mesenchymal cells. We generated and characterized a Tbx1-AmCyan1 reporter transgenic mouse to visualize thymus precursor cells during early embryonic development. In transgenic embryos, AmCyan1 fluorescence was specifically detected in the endoderm of the developing 3rd and 4th pharyngeal pouches and later in thymus epithelium until E14.5. Cells expressing AmCyan1 that were isolated based on AmCyan1 fluorescence expressed endodermal, thymic, and parathyroid markers, but they did not express neural crest or endothelial markers; these findings indicated that this transgenic mouse strain could be used to collect thymic or parathyroid precursor cells or both. We also showed that in nude mice, which exhibit defects in thymus development, the thymus precursors were clearly labeled with AmCyan1. In summary, these AmCyan1-fluorescent transgenic mice are useful for investigating early thymus development.
Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR.
Jakočiūnas, Tadas; Jensen, Emil D; Jensen, Michael K; Keasling, Jay D
2018-01-01
Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. CasEMBLR capitalizes on the CRISPR/Cas9 technology to generate double-strand breaks in genomic loci, thus prompting native homologous recombination (HR) machinery to integrate exogenously derived homology templates. As proof-of-principle for microbial cell factory development, CasEMBLR was used for one-step assembly and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking out two genes. This new method complements and improves the field of genome engineering in S. cerevisiae by providing a more flexible platform for rapid and precise strain building.
Kasalický, Vojtěch; Jezbera, Jan; Hahn, Martin W.; Šimek, Karel
2013-01-01
Bacteria of the genus Limnohabitans, more precisely the R-BT lineage, have a prominent role in freshwater bacterioplankton communities due to their high rates of substrate uptake and growth, growth on algal-derived substrates and high mortality rates from bacterivory. Moreover, due to their generally larger mean cell volume, compared to typical bacterioplankton cells, they contribute over-proportionally to total bacterioplankton biomass. Here we present genetic, morphological and ecophysiological properties of 35 bacterial strains affiliated with the Limnohabitans genus newly isolated from 11 non-acidic European freshwater habitats. The low genetic diversity indicated by the previous studies using the ribosomal SSU gene highly contrasted with the surprisingly rich morphologies and different patterns in substrate utilization of isolated strains. Therefore, the intergenic spacer between 16S and 23S rRNA genes was successfully tested as a fine-scale marker to delineate individual lineages and even genotypes. For further studies, we propose the division of the Limnohabitans genus into five lineages (provisionally named as LimA, LimB, LimC, LimD and LimE) and also additional sublineages within the most diversified lineage LimC. Such a delineation is supported by the morphology of isolated strains which predetermine large differences in their ecology. PMID:23505469
Johnson, Monica; Alsaleh, Nasser; Mendoza, Ryan P; Persaud, Indushekhar; Bauer, Alison K; Saba, Laura; Brown, Jared M
2018-01-01
Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.
Conjugation in Escherichia coli
Boyer, Herbert
1966-01-01
Boyer, Herbert (Yale University, New Haven, Conn.). Conjugation in Escherichia coli. J. Bacteriol. 91:1767–1772. 1966.—The sex factor of Escherichia coli K-12 was introduced into an E. coli B/r strain by circumventing the host-controlled modification and restriction incompatibilities known to exist between these closely related strains. The sexual properties of the constructed F+ B strain and its Hfr derivatives were examined. These studies showed that the E. coli strain B/r F+ and Hfr derivatives are similar to the E. coli strain K-12 F+ and Hfr derivatives. However, the site of sex factor integration was found to be dependent on the host genome. PMID:5327905
Kulichevskaya, Irina S; Kostina, Lilia A; Valásková, Vendula; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; de Boer, Wietse; Dedysh, Svetlana N
2012-07-01
Two strains of subdivision 1 Acidobacteria, a pink-pigmented bacterium KA1(T) and a colourless isolate WH120(T), were obtained from acidic Sphagnum peat and wood under decay by the white-rot fungus Hyploma fasciculare, respectively. Cells of these isolates were Gram-negative-staining, non-motile, short rods, which were covered by large polysaccharide capsules and occurred singly, in pairs, or in short chains. Strains KA1(T) and WH120(T) were strictly aerobic mesophiles that grew between 10 and 33 °C, with an optimum at 22-28 °C. Both isolates developed under acidic conditions, but strain WH120(T) was more acidophilic (pH growth range 3.5-6.4; optimum, 4.0-4.5) than strain KA1(T) (pH growth range 3.5-7.3; optimum , 5.0-5.5). The preferred growth substrates were sugars. In addition, the wood-derived isolate WH120(T) grew on oxalate, lactate and xylan, while the peat-inhabiting acidobacterium strain KA1(T) utilized galacturonate, glucuronate and pectin. The major fatty acids were iso-C(15:0) and iso-C(17:1)ω8c; the cells also contained significant amounts of 13,16-dimethyl octacosanedioic acid. The quinone was MK-8. The DNA G+C contents of strains KA1(T) and WH120(T) were 54.1 and 51.7 mol%, respectively. Strains KA1(T) and WH120(T) displayed 97.8% 16S rRNA gene sequence similarity to each other. The closest recognized relatives were Acidobacterium capsulatum and Telmatobacter bradus (93.4-94.3% 16S rRNA gene sequence similarity). These species differed from strains KA1(T) and WH120(T) by their ability to grow under anoxic conditions, the absence of capsules, presence of cell motility and differing fatty acid composition. Based on these differences, the two new isolates are proposed as representing a novel genus, Acidicapsa gen. nov., and two novel species. Acidicapsa borealis gen. nov., sp. nov. is the type species for the new genus with strain KA1(T) (=DSM 23886(T)=LMG 25897(T)=VKM B-2678(T)) as the type strain. The name Acidicapsa ligni sp. nov. is proposed for strain WH120(T) (=LMG 26244(T)=VKM B-2677(T)=NCCB 100371(T)).
Cloning and expression of L-asparaginase gene in Escherichia coli.
Wang, Y; Qian, S; Meng, G; Zhang, S
2001-08-01
The L-asparaginase (ASN) from Escherichia coli AS1.357 was cloned as a DNA fragment generated using polymerase chain reaction technology and primers derived from conserved regions of published ASN gene sequences. Recombinant plasmid pASN containing ASN gene and expression vector pBV220 was transformed in different E. coli host strains. The activity and expression level of ASN in the engineering strains could reach 228 IU/mL of culture fluid and about 50% of the total soluble cell protein respectively, more than 40-fold the enzyme activity of the wild strain. The recombinant plasmid in E. coli AS1.357 remained stable after 72 h of cultivation and 5 h of heat induction without selective pressure. The ASN gene of E. coli AS1.357 was sequenced and had high homology compared to the reported data.
NASA Technical Reports Server (NTRS)
Van Alstine, J. M.; Trust, T. J.; Brooks, D. E.
1986-01-01
Two-polymer aqueous-phase systems in which partitioning of biological matter between the phases occurs according to surface properties such as hydrophobicity, charge, and lipid composition are used to compare the surface properties of strains of the fish pathogen Aeromonas salmonicida. The differential ability of strains to produce a surface protein array crucial to their virulence, the A layer, and to produce smooth lipopolysaccharide is found to be important in the partitioning behavior of Aeromonas salmonicida. The presence of the A layer is shown to decrease the surface hydrophilicity of the pathogen, and to increase specifically its surface affinity for fatty acid esters of polyethylene glycol. The method has application to the analysis of surface properties crucial to bacterial virulence, and to the selection of strains and mutants with specific surface characteristics.
Use of biochemical lesions for selection of human cells with hybrid cytoplasms.
Wright, W E; Hayflick, L
1975-01-01
Techniques for preparing large populations of anucleate cytoplasms from cultured eukaryotic cells have only recently been described. The principal value of anucleate cytoplasms derives from studies that can be done after they are fused to whole cells. Since present methods for the isolation of heterokaryons are unsuitable for the selection of hybrids between whole cells and anucleate cytoplasms (heteroplasmons), a selective system has been developed which is based on the capacity of anucleate cytoplasms containing active enzymes to rescue whole cells poisoned with iodoacetate. Ethidium bromide, a partially effective agent, was used in conjunction with iodoacetate to demonstrate the feasibility of selecting heterokaryons by producing complementary biochemical lesions in the parental cell strains. The potential for artifact in these systems is not, however, entirely precluded. Images PMID:1057172
Rho, Man-Kwang; Kim, Young-Eun; Rho, Hyun-In; Kim, Tae-Rahk; Kim, Yoon-Bum; Sung, Won-Kyung; Kim, Taw-Woo; Kim, Dae-Ok; Kang, Hee
2017-06-28
A rise in the occurrence of allergic diseases is attributed to the dysregulated balance of type 1/type 2 immunity, where type 2 T-helper (Th2) cells predominate over type 1 T-helper (Th1) cells, leading to an abnormally increased production of IgE in response to unharmful antigens. Kimchi, a traditional Korean fermented food, is a rich source of beneficial lactic acid bacteria. In this study, we investigated the ability of Enterococcus faecium FC-K derived from kimchi to induce type I immunity in the presence of Th2 polarizing conditions in vitro and in vivo. Stimulation of mouse peritoneal macrophages with E. faecium FC-K induced the production of tumor necrosis factor alpha, interleukin (IL)-6, and IL-12. Under the in vitro Th2 conditions in which splenic T cells were activated in the presence of IL-4, E. faecium FC-K enhanced the ability of T cells to produce interferon (IFN)-γ. Using the ovalbumin (OVA)-induced allergy model, male BALB/c mice receiving E. faecium FC-K reduced the serum level of total IgE, but not that of OVA-specific IgE. Furthermore, the population of activated splenic B cells during OVA immunization was decreased in E. faecium FC-K-treated mice, accounting for a reduction of total IgE in the serum. Restimulating splenocytes from OVA-immunized mice with OVA ex vivo resulted in an increased production of IFN-γ, with no effect on IL-4, in E. faecium FC-Ktreated mice. These observations provide the evidence that E. faecium FC-K can be a beneficial probiotic strain that can modulate the Th2-mediated pathologic response.
Tøndervik, Anne; Sletta, Håvard; Klinkenberg, Geir; Emanuel, Charlotte; Powell, Lydia C.; Pritchard, Manon F.; Khan, Saira; Craine, Kieron M.; Onsøyen, Edvar; Rye, Phil D.; Wright, Chris; Thomas, David W.; Hill, Katja E.
2014-01-01
The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity. PMID:25409186
Masias, Emilse; Dupuy, Fernando G; da Silva Sanches, Paulo Ricardo; Farizano, Juan Vicente; Cilli, Eduardo; Bellomio, Augusto; Saavedra, Lucila; Minahk, Carlos
2017-07-01
Enterocin CRL35 is a class IIa bacteriocin with anti-Listeria activity. Resistance to these peptides has been associated with either the downregulation of the receptor expression or changes in the membrane and cell walls. The scope of the present work was to characterize enterocin CRL35 resistant Listeria strains with MICs more than 10,000 times higher than the MIC of the WT sensitive strain. Listeria monocytogenes INS7 resistant isolates R2 and R3 were characterized by 16S RNA gene sequencing and rep-PCR. Bacterial growth kinetic was studied in different culture media. Plasma membranes of sensitive and resistant bacteria were characterized by FTIR and Langmuir monolayer techniques. The growth kinetic of the resistant isolates was slower as compared to the parental strain in TSB medium. Moreover, the resistant isolates barely grew in a glucose-based synthetic medium, suggesting that these cells had a major alteration in glucose transport. Resistant bacteria also had alterations in their cell wall and, most importantly, membrane lipids. In fact, even though enterocin CRL35 was able to bind to the membrane-water interface of both resistant and parental sensitive strains, this peptide was only able to get inserted into the latter membranes. These results indicate that bacteriocin receptor is altered in combination with membrane structural modifications in enterocin CRL35-resistant L. monocytogenes strains. Highly enterocin CRL35-resistant isolates derived from Listeria monocytogenes INS7 have not only an impaired glucose transport but also display structural changes in the hydrophobic core of their plasma membranes. Copyright © 2017. Published by Elsevier B.V.
Choi, Su-In; Park, Jihoon; Kim, Pil
2017-03-28
To investigate the potential applications of bacterial heme, aminolevulinic acid synthase (HemA) was expressed in a Corynebacterium glutamicum HA strain that had been adaptively evolved against oxidative stress. The red pigment from the constructed strain was extracted and it exhibited the typical heme absorbance at 408 nm from the spectrum. To investigate the potential of this strain as an iron additive for swine, a prototype feed additive was manufactured in pilot scale by culturing the strain in a 5 ton fermenter followed by spray-drying the biomass with flour as an excipient (biomass: flour = 1:10 (w/w)). The 10% prototype additive along with regular feed was supplied to a pig, resulting in a 1.1 kg greater increase in weight gain with no diarrhea in 3 weeks as compared with that in a control pig that was fed an additive containing only flour. To verify if C. glutamicum -synthesized heme is a potential electron carrier, lactic acid bacteria were cultured under aerobic conditions with the extracted heme. The biomasses of the aerobically grown Lactococcus lactis , Lactobacillus rhamosus , and Lactobacillus casei were 97%, 15%, and 4% greater, respectively, than those under fermentative growth conditions. As a potential preservative, cultures of the four strains of lactic acid bacteria were stored at 4°C with the extracted heme and living lactic acid bacterial cells were counted. There were more L. lactis and L. plantarum live cells when stored with heme, whereas L. rhamosus and L. casei showed no significant differences in live-cell numbers. The potential uses of the heme from C. glutamicum are further discussed.
Benoit, Vivian M; Fischer, Joshua R; Lin, Yi-Pin; Parveen, Nikhat; Leong, John M
2011-09-01
After transmission by an infected tick, the Lyme disease spirochete, Borrelia burgdorferi sensu lato, colonizes the mammalian skin and may disseminate systemically. The three major species of Lyme disease spirochete--B. burgdorferi sensu stricto, B. garinii, and B. afzelii--are associated with different chronic disease manifestations. Colonization is likely promoted by the ability to bind to target tissues, and Lyme disease spirochetes utilize multiple adhesive molecules to interact with diverse mammalian components. The allelic variable surface lipoprotein decorin binding protein A (DbpA) promotes bacterial binding to the proteoglycan decorin and to the glycosaminoglycan (GAG) dermatan sulfate. To assess allelic variation of DbpA in GAG-, decorin-, and cell-binding activities, we expressed dbpA alleles derived from diverse Lyme disease spirochetes in B. burgdorferi strain B314, a noninfectious and nonadherent strain that lacks dbpA. Each DbpA allele conferred upon B. burgdorferi strain B314 the ability to bind to cultured kidney epithelial (but not glial or endothelial) cells, as well as to purified decorin and dermatan sulfate. Nevertheless, allelic variation of DbpA was associated with dramatic differences in substrate binding activity. In most cases, decorin and dermatan sulfate binding correlated well, but DbpA of B. afzelii strain VS461 promoted differential binding to decorin and dermatan sulfate, indicating that the two activities are separable. DbpA from a clone of B. burgdorferi strain N40 that can cause disseminated infection in mice displayed relatively low adhesive activity, indicating that robust DbpA-mediated adhesive activity is not required for spread in the mammalian host.
Pais, Thiago M.; Foulquié-Moreno, María R.; Hubmann, Georg; Duitama, Jorge; Swinnen, Steve; Goovaerts, Annelies; Yang, Yudi; Dumortier, Françoise; Thevelein, Johan M.
2013-01-01
The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. PMID:23754966
Adherence of Moraxella bovis to cell cultures of bovine origin.
Annuar, B O; Wilcox, G E
1985-09-01
The adherence of five strains of Moraxella bovis to cell cultures was investigated. M bovis adhered to cultures of bovine corneal epithelial and Madin-Darby bovine kidney cells but not to cell types of non-bovine origin. Both piliated and unpiliated strains adhered but piliated strains adhered to a greater extent than unpiliated strains. Antiserum against pili of one strain inhibited adherence of piliated strains but caused only slight inhibition of adherence to the unpiliated strains. Treatment of bacteria with magnesium chloride caused detachment of pili from the bacterial cell and markedly inhibited adherence of piliated strains but caused only slight inhibition of adherence by the unpiliated strains. The results suggested that adhesion of piliated strains to cell cultures was mediated via pili but that adhesins other than pili may be involved in the attachment of unpiliated strains of M bovis to cells.
Human stem cell–derived astrocytes replicate human prions in a PRNP genotype–dependent manner
Krejciova, Zuzana; Alibhai, James; Zhao, Chen; Rzechorzek, Nina M.; Ullian, Erik M.; Manson, Jean
2017-01-01
Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt–Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype–dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery. PMID:29141869
Al-Marhabi, Aisha R; Abbas, Hebat-Allah S; Ammar, Yousry A
2015-11-03
In continuation of our endeavor towards the development of potent and effective anticancer and antimicrobial agents; the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory effects towards the three tested tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic to normal cells (IC50 values > 100 μg/mL). Also, most of synthesized compounds exhibited the highest degrees of inhibition against the tested strains of Gram positive and negative bacteria, so tetrazolo[1,5-a]quinoxaline derivatives show dual activity as anticancer and antimicrobial agents.
Sundarrajan, Sudarson; Raghupatil, Junjappa; Vipra, Aradhana; Narasimhaswamy, Nagalakshmi; Saravanan, Sanjeev; Appaiah, Chemira; Poonacha, Nethravathi; Desai, Srividya; Nair, Sandhya; Bhatt, Rajagopala Narayana; Roy, Panchali; Chikkamadaiah, Ravisha; Durgaiah, Murali; Sriram, Bharathi; Padmanabhan, Sriram; Sharma, Umender
2014-10-01
P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth in vitro. One of the mutants tested was found to show reduced virulence in animal models of S. aureus septicaemia suggesting loss of fitness in vivo as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other β-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the femA gene of three P128-resistant mutants showed either a truncation or deletion in femA, suggesting that improper cross-bridge formation in S. aureus could be causing resistance to P128. Using glutathione S-transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing S. aureus by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of Staphylococcus haemolyticus (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of S. haemolyticus to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant Staphylococcus strains. © 2014 The Authors.
Kim, Kwan-Woo; Kim, Hye Jin; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol
2018-02-01
In the course of searching for anti-neuroinflammatory metabolites from marine-derived fungi, three fungal metabolites, 6,8,1'-tri-O-methylaverantin, 6,8-di-O-methylaverufin, and 5-methoxysterigmatocystin were isolated from a marine-derived fungal strain Aspergillus sp. SF-6796. Among these, 6,8,1'-tri-O-methylaverantin induced the expression of heme oxygenase (HO)-1 protein in BV2 microglial cells. The induction of HO-1 protein was mediated by the activation of nuclear transcription factor erythroid-2 related factor 2 (Nrf2), and was regulated by the p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. Furthermore, 6,8,1'-tri-O-methylaverantin suppressed the overproduction of pro-inflammatory mediators, such as nitric oxide, prostaglandin E 2 , inducible nitric oxide synthase, and cyclooxygenase-2 in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. These anti-neuroinflammatory effects were mediated through the negative regulation of the nuclear factor kappa B pathway, repressing the phosphorylation and degradation of inhibitor kappa B-α, translocation into the nucleus of p65/p50 heterodimer, and DNA-binding activity of p65 subunit. The anti-neuroinflammatory effect of 6,8,1'-tri-O-methylaverantin was partially blocked by a selective HO-1 inhibitor, suggesting that its anti-neuroinflammatory effect is at least partly mediated by HO-1 induction. In this study, 6,8,1'-tri-O-methylaverantin also induced HO-1 protein expression in primary microglial cells, and this correlated with anti-neuroinflammatory effects observed in LPS-stimulated primary microglial cells. In conclusion, 6,8,1'-tri-O-methylaverantin represents a potential candidate for use in the development of therapeutic agents for the regulation of neuroinflammation in neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct coordinate-free derivation of the compatibility equation for finite strains
NASA Astrophysics Data System (ADS)
Ryzhak, E. I.
2014-07-01
The compatibility equation for the Cauchy-Green tensor field (squared tensor of pure extensionwith respect to the reference configuration) is directly derived from the well-known relation expressing this tensor via the vector field determining the mapping (transformation) of the reference configuration into the actual one. The derivation is based on the use of the apparatus of coordinatefree tensor calculus and does not apply any notions and relations of Riemannian geometry at all. The method is illustrated by deriving the well-known compatibility equation for small strains. It is shown that when the obtained compatibility equation for finite strains is linearized, it becomes the compatibility equation for small strains which indirectly confirms its correctness.
Yamamoto, K; Kaji, K; Kondo, H; Matsuo, M; Shibata, Y; Tasaki, Y; Utakoji, T; Ooka, H
1991-01-01
A new human diploid cell strain, TIG-7, which has the male karyotype, was established and characterized. Isozyme and histocompatibility typing of the cell strain was performed. The average in vitro life span of the cells is 73 population doublings. Changes in cell volume, doubling time, saturation density, the efficiency of cell attachment, plating efficiency, and relative DNA content were examined during in vitro cellular aging. Hydrocortisone slightly prolongs the life span of the cell strain when the hormone is administered to the cultures during middle passages. The age-related changes in the parameters of TIG-7 are not appreciably different from those of the previously established TIG-1 cell strain. These results show that this cell strain is useful for research on cellular aging; further profit is anticipated from research using a combination of these two sexually different cell strains.
Genomic diversity of Bombyx mori nucleopolyhedrovirus strains.
Xu, Yi-Peng; Cheng, Ruo-Lin; Xi, Yu; Zhang, Chuan-Xi
2013-07-01
Bombyx mori nucleopolyhedrovirus (BmNPV) is a baculovirus that selectively infects the domestic silkworm. In this study, six BmNPV strains were compared at the whole genome level. We found that the number of bro genes and the composition of the homologous regions (hrs) are the two primary areas of divergence within these genomes. When we compared the ORFs of these BmNPV variants, we noticed a high degree of sequence divergence in the ORFs that are not baculovirus core genes. This result is consistent with the results derived from phylogenetic trees and evolutionary pressure analyses of these ORFs, indicating that ORFs that are not core genes likely play important roles in the evolution of BmNPV strains. The evolutionary relationships of these BmNPV strains might be explained by their geographic origins or those of their hosts. In addition, the total number of hr palindromes seems to affect viral DNA replication in Bm5 cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Zheng, Dao-Qiong; Wu, Xue-Chang; Wang, Pin-Mei; Chi, Xiao-Qin; Tao, Xiang-Lin; Li, Ping; Jiang, Xin-Hang; Zhao, Yu-Hua
2011-03-01
Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress. Ethanol production of YZ2 (within 60 h) was 21.6% higher than that of 308 when 0.5% (v/v) acetic acid was added to fermentation medium. Membrane integrity, higher in vivo activity of the H+-ATPase, and lower oxidative damage after acetic acid treatment are the possible reasons for the acetic acid-tolerance phenotype of YZ2. These results indicated that this novel genome shuffling approach is powerful to rapidly improve the complex traits of industrial yeast strains.
Hovi, Tapani; Paananen, Anja; Blomqvist, Soile; Savolainen-Kopra, Carita; Al-Hello, Haider; Smura, Teemu; Shimizu, Hiroyuki; Nadova, Katarina; Sobotova, Zdenka; Gavrilin, Eugene; Roivainen, Merja
2013-01-01
Vaccine derived poliovirus (VDPV) type 2 strains strongly divergent from the corresponding vaccine strain, Sabin 2, were repeatedly isolated from sewage in Slovakia over a period of 22 months in 2003–2005. Cell cultures of stool specimens from known immune deficient patients and from an identified putative source population of 500 people failed to identify the potential excretor(s) of the virus. The occurrence of VDPV in sewage stopped without any intervention. No paralytic cases were reported in Slovakia during the episode. According to a GenBank search and similarity plotting-analysis, the closest known relative of the first isolate PV2/03/SVK/E783 through all main sections of the genome was the type 2 poliovirus Sabin strain, with nucleotide identities in 5′UTR, P1, P2, P3, and 3′UTR parts of the genome of 88.6, 85.9, 87.3, 88.5, and 94.0 percent, respectively. Phenotypic properties of selected Slovakian aVDPV strains resembled those of VDPV strains isolated from immune deficient individuals with prolonged PV infection (iVDPV), including antigenic changes and moderate neurovirulence in the transgenic mouse model. One hundred and two unique VP1 coding sequences were determined from VDPV strains isolated from 34 sewage specimens. Nucleotide differences from Sabin 2 in the VP1 coding region ranged from 12.5 to 15.6 percent, and reached a maximum of 9.6 percent between the VDPV strains under study. Most of the nucleotide substitutions were synonymous but as many as 93 amino acid positions out of 301 in VP1 showed substitutions. We conclude that (1) individuals with prolonged poliovirus infection are not as rare as suggested by the studies on immune deficient patients known to the health care systems and (2) genetic divergence of VDPV strains may remain extensive during years long replication in humans. PMID:23935826
Arjunan, P; El-Awady, A; Dannebaum, R O; Kunde-Ramamoorthy, G; Cutler, C W
2016-02-01
The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Halococcus agarilyticus sp. nov., an agar-degrading haloarchaeon isolated from commercial salt.
Minegishi, Hiroaki; Echigo, Akinobu; Shimane, Yasuhiro; Kamekura, Masahiro; Itoh, Takashi; Ohkuma, Moriya; Usami, Ron
2015-05-01
Two agar-degrading halophilic archaeal strains, 62 E(T) and 197 A, were isolated from commercial salt samples. Cells were non-motile cocci, approximately 1.2-2.0 µm in diameter and stained Gram-negative. Colonies were pink-pigmented. Strain 62 E(T) was able to grow with 24-30% (w/v) NaCl (optimum, 27%), at pH 6.5-8.5 (optimum, pH 7.5) and at 22-47 °C (optimum, 42 °C). The 16S rRNA gene sequences of strains 62 E(T) and 197 A were identical, and the level of DNA-DNA relatedness between them was 90 and 90% (reciprocally). The closest relative was Halococcus saccharolyticus JCM 8878(T) with 99.7% similarity in 16S rRNA orthologous gene sequences, followed by Halococcus salifodinae JCM 9578(T) (99.6%), while similarities with other species of the genus Halococcus were equal to or lower than 95.1%. The rpoB' gene tree strongly supported that the two strains were members of the genus Halococcus . Mean DNA-DNA relatedness between strain 62 E(T) and H. saccharolyticus JCM 8878(T) and H. salifodinae JCM 9578(T) was 46 and 44%, respectively. The major polar lipids were archaeol derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, derived from both C20C20 and C20C25 archaeol, and sulfated diglycosyl archaeol-1. Several unidentified glycolipids were present. Based on the phenotypic and phylogenetic analyses, the isolates are considered to represent a novel species of the genus Halococcus , for which the name Halococcus agarilyticus sp. nov. is proposed. The type strain is 62 E(T) ( = JCM 19592(T) =KCTC 4143(T)). © 2015 IUMS.
Tamay-Cach, Feliciano; Correa-Basurto, José; Villa-Tanaca, Lourdes; Mancilla-Percino, Teresa; Juárez-Montiel, Margarita; Trujillo-Ferrara, José G
2013-10-01
Three glutamic acid derivatives, two boron-containing and one imide-containing compound, were synthesized and tested for antimicrobial activity targeting glutamate-racemase. Antimicrobial effect was evaluated over Bacillus spp. Docking analysis shown that the test compounds bind near the active site of racemase isoforms, suggesting an allosteric effect. The boron derivatives had greater affinity than the imide derivative. In vitro assays shown good antimicrobial activity for the boron-containing compounds, and no effectiveness for the imide-containing compounds. The minimum inhibitory concentration of tetracycline, used as standard, was lower than that of the boron-containing derivatives. However, it seems that the boron-containing derivatives are more selective for bacteria. Experimental evidence suggests that the boron-containing derivatives act by inhibiting the racemase enzyme. Therefore, these test compounds probably impede the formation of the bacterial cell wall. Thus, the boron-containing glutamic acid derivatives should certainly be of interest for future studies as antimicrobial agents for Bacillus spp.
Ma, Liang; Salas, Omar; Bowler, Kyle
2017-01-01
ABSTRACT Can accumulation of a normally transient metabolite affect fungal biology? UDP-4-keto-6-deoxyglucose (UDP-KDG) represents an intermediate stage in conversion of UDP-glucose to UDP-rhamnose. Normally, UDP-KDG is not detected in living cells, because it is quickly converted to UDP-rhamnose by the enzyme UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase (ER). We previously found that deletion of the er gene in Botrytis cinerea resulted in accumulation of UDP-KDG to levels that were toxic to the fungus due to destabilization of the cell wall. Here we show that these negative effects are at least partly due to inhibition by UDP-KDG of the enzyme UDP-galactopyranose mutase (UGM), which reversibly converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). An enzymatic activity assay showed that UDP-KDG inhibits the B. cinerea UGM enzyme with a Ki of 221.9 µM. Deletion of the ugm gene resulted in strains with weakened cell walls and phenotypes that were similar to those of the er deletion strain, which accumulates UDP-KDG. Galf residue levels were completely abolished in the Δugm strain and reduced in the Δer strain, while overexpression of the ugm gene in the background of a Δer strain restored Galf levels and alleviated the phenotypes. Collectively, our results show that the antifungal activity of UDP-KDG is due to inhibition of UGM and possibly other nucleotide sugar-modifying enzymes and that the rhamnose metabolic pathway serves as a shunt that prevents accumulation of UDP-KDG to toxic levels. These findings, together with the fact that there is no Galf in mammals, support the possibility of developing UDP-KDG or its derivatives as antifungal drugs. PMID:29162710
Dissociation of tsl-tif-Induced Filamentation and recA Protein Synthesis in Escherichia coli K-12
Huisman, Olivier; D'Ari, Richard; George, Jacqueline
1980-01-01
In Escherichia coli, expression of the tif-1 mutation (in the recA gene) induces the “SOS response” at 40°C, including massive synthesis of the recA(tif) protein, cell filamentation, appearance of new repair and mutagenic activities, and prophage induction. Expression of the tsl-1 mutation (in the lexA gene) induces massive synthesis of the recA protein and cell filamentation at 42°C, although other SOS functions are not induced. In this paper we show that the septation inhibition induced in tif and tsl strains at 42°C is not due to the presence of a high concentration of recA protein since (i) no recA mutants (≤10−8) were isolated among thermoresistant nonfilamenting revertants of a tif-1 tsl-1 strain, (ii) in a tsl-1 zab-53 strain, only the low basal level of recA protein was synthesized at 42°C, yet cell division was inhibited, and (iii) in a tsl-1 recA99 (amber) strain, no recA protein could be detected at 42°C, yet cell division was inhibited. Among suppressors of tsl-tif-induced lethality are mutations at a locus which we call infB, located in the 66- to 83-min region. The infB1 mutation confers a highly pleiotropic phenotype, which is suggestive of a regulatory defect; it suppressed tsl-tif-induced filamentation but not recA protein synthesis, it did not suppress ultraviolet-induced filamentation (in a lon derivative), and it reduced but did not abolish tif-mediated induction of λ prophage and bacterial mutagenesis. The dissociation of tsl-tif-induced septation inhibition and recA protein synthesis in the tif-1 tsl-1 infB1 strain suggests that the control of SOS filamentation may not be strictly identical to the control of recA protein synthesis. Images PMID:6445897
Gal-Mor, Ohad; Suez, Jotham; Elhadad, Dana; Porwollik, Steffen; Leshem, Eyal; Valinsky, Lea; McClelland, Michael; Schwartz, Eliezer; Rahav, Galia
2012-02-01
Enteric fever is an invasive life-threatening systemic disease caused by the Salmonella enterica human-adapted serovars Typhi and Paratyphi. Increasing incidence of infections with Salmonella enterica serovar Paratyphi A and the spreading of its antibiotic-resistant derivates pose a significant health concern in some areas of the world. Herein, we describe a molecular and phenotypic characterization of an S. Paratyphi A strain accounted for a recent paratyphoid outbreak in Nepal that affected at least 37 travelers. Pulsed-field gel electrophoresis analysis of the outbreak isolates revealed one genetic clone (pulsotype), confirming a single infecting source. Genetic profiling of the outbreak strain demonstrated the contribution of specific bacteriophages as a prime source of genetic diversity among clinical isolates of S. Paratyphi A. Phenotypic characterization in comparison with the S. Paratyphi A ATCC 9150 reference sequenced strain showed differences in flagellar morphology and increased abilities of the outbreak strain with respect to its motility, invasion into nonphagocytic cells, intracellular multiplication, survival within macrophages, and higher induction of interleukin-8 (IL-8) secreted by host cells. Collectively, these differences suggest an enhanced virulence potential of this strain and demonstrate an interesting phenotypic variation among S. Paratyphi A isolates. In vivo profiling of 16 inflammatory cytokines in patients infected with the outbreak strain revealed a common profile of a remarkable gamma interferon (IFN-γ) induction together with elevated concentrations of tumor necrosis factor alpha (TNF-α), IL-6, IL-8, IL-10, and IL-15, but not IL-12, which was previously demonstrated as elevated in nontyphoidal Salmonella infections. This apparent profile implies a distinct immune response to paratyphoid infections.
Beyer, Andrea R; VieBrock, Lauren; Rodino, Kyle G; Miller, Daniel P; Tegels, Brittney K; Marconi, Richard T; Carlyon, Jason A
2015-10-01
A rising theme among intracellular microbes is the delivery of ankyrin repeat-containing effectors (Anks) that interact with target proteins to co-opt host cell functions. Orientia tsutsugamushi, an obligate intracellular bacterium and the etiologic agent of scrub typhus, encodes one of the largest Ank repertoires of any sequenced microorganism. They have been previously identified as type 1 secretion system substrates. Here, in silico and manual sequence analyses revealed that a large proportion of O. tsutsugamushi strain Ikeda Anks bear a eukaryotic/poxvirus-like F-box motif, which is known to recruit host cell SCF1 ubiquitin ligase machinery. We assessed the Anks for the ability to serve as F-box proteins. Coimmunoprecipitation assays demonstrated that F-box-containing Anks interact with overexpressed and/or endogenous SCF1 components. When coexpressed with FLAG-Ank4_01 or FLAG-Ank9, a glutathione S-transferase (GST)-tagged version of the SCF1 component SKP1 localized to subcellular sites of FLAG-Ank accumulation. The abilities of recombinant Anks to interact and colocalize with SKP1 were F-box dependent. GST-SKP1 precipitated O. tsutsugamushi-derived Ank9 from infected host cells, verifying both that the pathogen expresses Ank9 during infection and the protein's capability to bind SKP1. Aligning O. tsutsugamushi, poxviral, and eukaryotic F-box sequences delineated three F-box residues that are highly conserved and likely to be functionally important. Substitution of these residues ablated the ability of GFP-Ank9 to interact with GST-SKP1. These results demonstrate that O. tsutsugamushi strain Ikeda Anks can co-opt host cell polyubiquitination machinery, provide the first evidence that an O. tsutsugamushi Ank does so during infection, and advance overall understanding of microbial F-box proteins. Ankyrin repeat-containing proteins (Anks) are important virulence factors of intracellular bacteria that mediate protein-protein interactions with host cell targets. Orientia tsutsugamushi, which causes a debilitating infection called scrub typhus in one of the most densely populated regions of the world, encodes one of the largest Ank armamentariums of any sequenced bacterium. This study demonstrates that O. tsutsugamushi strain Ikeda Anks also bear F-box motifs that interact with host cell polyubiquitination machinery. By proving that an Orientia-derived Ank interacts with SKP1 in infected cells, this evidences the first bona fide Orientia effector and the first example of an endogenous F-box-containing Ank-mammalian-host ligand interaction for any intracellular bacterium. Also, importantly, this work identifies key residues that are essential for microbial F-box function. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Beyer, Andrea R.; VieBrock, Lauren; Rodino, Kyle G.; Miller, Daniel P.; Tegels, Brittney K.; Marconi, Richard T.
2015-01-01
ABSTRACT A rising theme among intracellular microbes is the delivery of ankyrin repeat-containing effectors (Anks) that interact with target proteins to co-opt host cell functions. Orientia tsutsugamushi, an obligate intracellular bacterium and the etiologic agent of scrub typhus, encodes one of the largest Ank repertoires of any sequenced microorganism. They have been previously identified as type 1 secretion system substrates. Here, in silico and manual sequence analyses revealed that a large proportion of O. tsutsugamushi strain Ikeda Anks bear a eukaryotic/poxvirus-like F-box motif, which is known to recruit host cell SCF1 ubiquitin ligase machinery. We assessed the Anks for the ability to serve as F-box proteins. Coimmunoprecipitation assays demonstrated that F-box-containing Anks interact with overexpressed and/or endogenous SCF1 components. When coexpressed with FLAG-Ank4_01 or FLAG-Ank9, a glutathione S-transferase (GST)-tagged version of the SCF1 component SKP1 localized to subcellular sites of FLAG-Ank accumulation. The abilities of recombinant Anks to interact and colocalize with SKP1 were F-box dependent. GST-SKP1 precipitated O. tsutsugamushi-derived Ank9 from infected host cells, verifying both that the pathogen expresses Ank9 during infection and the protein's capability to bind SKP1. Aligning O. tsutsugamushi, poxviral, and eukaryotic F-box sequences delineated three F-box residues that are highly conserved and likely to be functionally important. Substitution of these residues ablated the ability of GFP-Ank9 to interact with GST-SKP1. These results demonstrate that O. tsutsugamushi strain Ikeda Anks can co-opt host cell polyubiquitination machinery, provide the first evidence that an O. tsutsugamushi Ank does so during infection, and advance overall understanding of microbial F-box proteins. IMPORTANCE Ankyrin repeat-containing proteins (Anks) are important virulence factors of intracellular bacteria that mediate protein-protein interactions with host cell targets. Orientia tsutsugamushi, which causes a debilitating infection called scrub typhus in one of the most densely populated regions of the world, encodes one of the largest Ank armamentariums of any sequenced bacterium. This study demonstrates that O. tsutsugamushi strain Ikeda Anks also bear F-box motifs that interact with host cell polyubiquitination machinery. By proving that an Orientia-derived Ank interacts with SKP1 in infected cells, this evidences the first bona fide Orientia effector and the first example of an endogenous F-box-containing Ank–mammalian-host ligand interaction for any intracellular bacterium. Also, importantly, this work identifies key residues that are essential for microbial F-box function. PMID:26170417
Nyame, Theodore T.; Lemon, Katherine P.; Kolter, Roberto; Liao, Eric C.
2013-01-01
Background There has been increasing use of various synthetic and biologically derived materials in surgery. Biologic surgical materials are used in many plastic surgery procedures, ranging from breast reconstruction to hernia repairs. In particular, acellular dermal matrix (ADM) material has gained popularity in these applications. There is a paucity of data on how ADM compares to other surgical materials as a substrate for bacterial adhesion, the first step in formation biofilm, which occurs in prosthetic wound infections. We have designed a high throughput assay to evaluate Staphylococcus aureus adherence on various synthetic and biologically derived materials. Methods Clinical isolates of Staphylococcus aureus (strains SC-1 and UAMS-1) were cultured with different materials and bacterial adherence was measured using a resazurin cell vitality reporter microtiter assay. Four materials that are commonly utilized in reconstructive procedures were evaluated: prolene mesh, vicryl mesh, and two different ADM preparations (AlloDerm®, FlexHD®). We were able to develop a high throughput and reliable assay for quantifying bacterial adhesion on synthetic and biologically derived materials. Results The resazurin vitality assay can be reliably used to quantify bacterial adherence to acellular dermal matrix material, as well as synthetic material. S. aureus strains SC-1 and UAMS-1 both adhered better to ADM materials (AlloDerm® vs. FlexHD®) than to the synthetic material prolene. S. aureus also adhered better to vicryl than to prolene. Strain UAMS-1 adhered better to vicryl and ADM materials than did strain SC-1. Conclusion Our results suggest that S. aureus adheres more readily to ADM material than to synthetic material. We have developed an assay to rapidly test bacterial formation on surgical materials, using two S. aureus bacterial strains. This provides a standard method to evaluate existing and new materials with regard to bacterial adherence and potential propensity for infection. This assay is particularly important in the clinical context of the severe sequelae of post-operative infection. PMID:22030489
Naik, Milind Mohan; Pandey, Anju; Dubey, Santosh Kumar
2012-09-01
A lead resistant bacterial strain isolated from effluent of lead battery manufacturing company of Goa, India has been identified as Enterobacter cloacae strain P2B based on morphological, biochemical characters, FAME profile and 16S rDNA sequence data. This bacterial strain could resist lead nitrate up to 1.6 mM. Significant increase in exopolysaccharide (EPS) production was observed as the production increased from 28 to 108 mg/L dry weight when exposed to 1.6 mM lead nitrate in Tris buffered minimal medium. Fourier-transformed infrared spectroscopy of this EPS revealed presence of several functional groups involved in metal binding viz. carboxyl, hydroxyl and amide groups along with glucuronic acid. Gas chromatography coupled with mass spectrometry analysis of alditol-acetate derivatives of acid hydrolysed EPS produced in presence of 1.6 mM lead nitrate demonstrated presence of several neutral sugars such as rhamnose, arabinose, xylose, mannose, galactose and glucose, which contribute to lead binding hydroxyl groups. Scanning electron microscope coupled with energy dispersive X-ray spectrometric analysis of this lead resistant strain exposed to 1.6 mM lead nitrate interestingly revealed mucous EPS surrounding bacterial cells which sequestered 17 % lead (as weight %) extracellularly and protected the bacterial cells from toxic effects of lead. This lead resistant strain also showed multidrug resistance. Thus these results significantly contribute to better understanding of structure, function and environmental application of lead-enhanced EPSs produced by bacteria. This lead-enhanced biopolymer can play a very important role in bioremediation of several heavy metals including lead.
Mata, G; Delpech, P; Savoie, J M
2001-09-01
Mycelial growth rates are presented for 11 strains of Lentinula edodes and six strains of Lentinula boryana cultivated on solid media: derived from malt extract (MEA); malt yeast extract (YMEA); and, YMEA plus soluble lignin derivatives (YMEA+WSLD). The results were compared with data for mycelial growth rates, of the same strains cultivated on substrates derived from wheat straw treated at different temperatures (50, 65, 75 and autoclaving at 121 degrees C). In general, the addition of WSLD significantly reduced mycelial growth rates in both species. The greatest mycelial growth rate was obtained on sterilized straw at 121 degrees C for the majority of strains. However, this growth was not significantly different from that obtained at 75 degrees C. L. edodes showed greater growth rates than L. boryana. The feasibility of using estimates of mycelial growth rate on YMEA and YMEA+WSLD are discussed as possible indicators of a strain's potential for mycelial growth on substrates derived from wheat straw.
Characteristics of Sleep and Wakefulness inWild-Derived Inbred Mice
HIYOSHI, Hideyuki; TERAO, Akira; OKAMATSU-OGURA, Yuko; KIMURA, Kazuhiro
2014-01-01
Genetic variations in the wild-derived inbred mouse strains are more diverse than that of classical laboratory inbred mouse strains, including C57BL/6J (B6). The sleep/wake and monoamine properties of six wild-derived inbred mouse strains (PGN2, NJL, BLG2, KJR, MSM, HMI) were characterized and compared with those of B6 mice. All examined mice were nocturnal and had a polyphasic sleep pattern with a “main sleep period” identified during the light period. However, there were three sleep/wake phenotypic differences between the wild-derived mouse strains and B6 strain. First, the amount of sleep during the dark phase was comparable with that of B6 mice. However, the amount of sleep during the light phase was more varied among strains, in particular, NJL and HMI had significantly less sleep compared with that of B6 mice. Second, PGN2, NJL, BLG2, and KJR mice showed a “highly awake period” (in which the hourly total sleep time was <10%) immediately after the onset of the dark period, which was not seen in B6 mice. Third, relative to that of B6 mice, PGN2 and KJR mice showed longer duration of wakefulness episodes during the 12-h dark phase. Differences in whole brain noradrenaline, dopamine, and 5-hydroxy-tryptamine contents between the wild-derived mouse strains and B6 strain were also found. These identified phenotypes might be potentially under strong genetic control. Hence, wild-derived inbred mice could be useful for identifying the genetic factors underlying the regulation of sleep and wakefulness. PMID:24770646
Characteristics of a Virus Isolated from a Feline Fibrosarcoma
McKissick, G. E.; Lamont, P. H.
1970-01-01
A virus was isolated from a radioresistant feline fibrosarcoma. It induced multi-nucleated giant-cell formation and lysis in a cell line derived from a canine fibro-sarcoma, which was used to characterize the virus. End-point titrations in these cells required 28 days. The virus was sensitive to ether and heat and was destroyed at pH 3. Replication was not inhibited by 5-bromodeoxyuridine. Electron microscopy revealed assembly by a budding process from the plasma membrane of infected cells. The average diameter of the virion was 106 nm. Intracisternal particles with an average diameter of 45 nm were present within infected cells. In two instances secondary monolayers of feline renal cells underwent morphological transformation after inoculation of the virus. The two strains of transformed cells are now in continuous culture and do not yield infectious virus. Images PMID:4194169
A new laboratory cultivation of Paramecium bursaria using non-pathogenic bacteria strains.
Bator, Tomasz
2010-01-01
In most studies dealing with the laboratory cultivation of paramecia (Paramecium bursaria), Klebsiella pneumoniae bacteria are used to inoculate the medium. However, Klebsiella pneumoniae is a typical pathogen, and its use is always associated with a risk of infection. The aim of the present research was to examine non-pathogenic bacteria strains as components of the medium for Paramecium bursaria. The paramecia were incubated on lettuce infusions bacterized with different bacteria strains: Bacillus subtilis DSM 10, Bacillus megaterium DSM 32, Escherichia coli DSM 498, Micrococcus luteus DSM 348. A strain derived from the natural habitat of Paramecium bursaria was used as the control one. Experiments were conducted under constant light and in the dark. Paramecia cells were counted under a stereomicroscope on consecutive days of incubation. The obtained results show that the most intensive growth of Paramecium bursaria occurs in the presence of Escherichia coli DSM 498. The use of this strain as a component of the medium allows one to obtain a high number of ciliates regardless of the light conditions. It can be concluded that the Paramecium bursaria cultivation procedure can be modified by using the non-pathogenic bacteria strain Escherichia coli DSM 498 instead of Klebsiella pneumoniae.
Miyazaki, Chiaki; Okada, Kenji; Ozaki, Takao; Hirose, Mizuo; Iribe, Kaneshige; Ishikawa, Yuji; Togashi, Takehiro; Ueda, Kohji
2014-01-01
The immunogenicity and safety of an inactivated cell culture Japanese encephalitis vaccine (CC-JEV) were compared with those of an inactivated mouse brain-derived Japanese encephalitis vaccine (MB-JEV) in phase III clinical multicenter trials conducted in children. The vaccines contain the same Japanese encephalitis virus strain, the Beijing-1 strain. Two independent clinical trials (trials 1 and 2) were conducted. Trial 1 was conducted in 468 healthy children. Each subject was injected with 17 μg per dose of either CC-JEV or MB-JEV, and the immunogenicity and safety of the vaccines were investigated. Trial 1 showed that CC-JEV was more immunogenic and reactive than MB-JEV at the same dose. Therefore, to adjust the immunogenicity of CC-JEV to that of MB-JEV, a vaccine that has had a good track record regarding its efficacy for a long time, trial 2 was conducted in 484 healthy children. To improve the stability, CC-JEV was converted from a liquid type to a freeze-dried type of vaccine. Each subject was injected subcutaneously with either 4 μg per dose of CC-JEV, 8 μg per dose of CC-JEV, or 17 μg per dose of MB-JEV twice, at an interval of 2 to 4 weeks, followed by an additional booster immunization 1 to 15 months after the primary immunization. Based on the results of trial 2, 4 μg per dose of the freeze-dried CC-JEV (under the label Encevac) was selected as a substitute for the MB-JEV. Encevac was approved and launched in 2011 and has since been in use as a 2nd-generation Japanese encephalitis vaccine in Japan. (These studies have been registered at the JapicCTI under registration no. JapicCTI-132063 and JapicCTI-080586 for trials 1 and 2, respectively.) PMID:24334689
USDA-ARS?s Scientific Manuscript database
The diversity of contemporary swine influenza virus (SIV) strains impedes effective immunization of swine herds. Mucosally delivered, attenuated virus vaccines are one approach with potential to provide broad cross-protection. Reverse genetics-derived H3N2 SIV virus with truncated NS1 (NS1delta126 T...
Kolet, Swati P; Haldar, Saikat; Niloferjahan, Siddiqui; Thulasiram, Hirekodathakallu V
2014-07-01
Transformation of testosterone and progesterone into synthetically challenging 14α-hydroxy derivatives was achieved by using fungal strain Mucor hiemalis. Prolonged incubation led to the formation of corresponding 6β/7α,14α-dihydroxy metabolites. The position and stereochemistry of newly introduced hydroxyl group was determined by detailed spectroscopic analyses. The time course experiment indicated that fungal strain initiated transformation by hydroxylation at 14α-position followed by at 6β- or 7α-positions. Studies using cell-free extracts suggest that the 14α-hydroxylase activity is NADPH dependent and belongs to the cytochrome P450 family. Copyright © 2014 Elsevier Inc. All rights reserved.
Eroshenko, G A; Smirnova, N I
2002-01-01
Infection of V. cholerae 01 (classical and eltor biovars) cells with the temperate cholera phage 139 derived from V. cholerae serogroup 0139 followed by integration of the phage genome into the bacterial chromosome significantly increased the production of cholera toxin, the main virulence factor. The level of toxin biosynthesis in the lysogenic V. cholerae classical strain increased 3-fold and that in V. eltor thirty times in comparison with the parental strains. Increased production of cholera toxin was not associated with an increase in the number of copies of genes involved in its biosynthesis but seemed to be due to changes in toxinogenesis regulation.
PRODUCTION OF IMMUNOLOGICAL TOLERANCE IN MICE AFTER REPEATED INJECTIONS OF DISRUPTED SPLEEN CELLS
Martinez, C.; Smith, J. M.; Blaese, M.; Good, R. A.
1963-01-01
1. Tolerance of male skin isografts has been regularly produced in female mice of the C57B1 strain sublines 1, 4, and 6 during adult life by repeated injection of completely disrupted spleen cells derived from male donors. The tolerant state is long-lasting since such grafts have remained in place more than 9 months. 2. Prolonged survival of homotransplants of skin has regularly been produced in DBA/2 mice during adult life by repeated injections of completely disrupted spleen cells from Balb/C donors. When injections of disrupted spleen cell material are continued over a sufficiently long period, permanent acceptance of the skin homografts may be obtained between these strains. 3. Immunological tolerance across even the strong H-2 histocompatibility barrier was obtained in the neonatal period and during adult life by repeated injection of disrupted spleen cell preparations. The tolerant state has been revealed by both mammary adenocarcinoma and skin homografting across this strong histocompatibility barrier. 4. In contradistinction to the tolerant state produced by injection of intact spleen cells in neonatal animals or during adult life or that produced by parabiotic union, the tolerance produced by repeated injection of disrupted spleen cell preparations cannot be transferred to syngenic neonatal mice with spleen cells of the tolerant animal. 5. The implications of these findings in transplantation biology and in consideration of the basic nature of tolerance are discussed. PMID:14087619
Zapata Lesmes, Angela Cristina; Cárdenas Castro, Estrella; Bello, Felio
2005-12-01
The sand fly Lutzomyia spinicrassa (Morales, Osorno-Mesa, Osorno & de Hoyos, 1969) is a vector of Leishmania (Viannia) braziliensis, an etiological agent of cutaneous leishmaniasis in Colombia. The present article describes, for the first time, the morphological, karyotypical, and isozymatic characteristics of cell cultures derived from L. Spinicrassa embryonic tissues as well as the interaction of L. Braziliensis with these cell cultures. L. Spinicrassa embryonated eggs and neonate larvae were taken for tissue explants. These were seeded in Grace, L-15, Grace/L-15, MM/VP12, and MK/VP12 culture media. The pH range in these media was 6.7 to 6.9 and the cultures were incubated at 28 degrees C. The MHOM/CO/86/CL250 strain of L. Braziliensis was used for experimental infection of cell cultures of L. Spinicrassa. Cell growth was achieved in L-15 medium and a confluent monolayer was obtained 180 days after the embryonated eggs were explanted. The cell morphology of the primary cell cultures was initially heterogeneous, but in the confluent monolayer of these cell cultures and in the subcultures the predominant cell types were later fibroblast-like and epithelial-like. Cultured cells were predominantly diploid (2n=8); however, significant percentages of aneuploids were also recorded. The cell culture isozyme patterns of L. Spinicrassa coincided with pupae samples from the same species. Promastigote forms of L. Braziliensis could invade cells and transform into amastigote-like forms inside them. The characteristics of cell cultures derived from L. Spinicrassa embryonic tissues were determined. These cultures emerge as a new model to study the life-cycle of L. Braziliensis.
Krumme, M.L.; Smith, R.L.; Egestorff, J.; Thiem, S.M.; Tiedje, J.M.; Timmis, K.N.; Dwyer, D.F.
1994-01-01
Bioremediation via environmental introductions of degradative microorganisms requires that the microbes survive in substantial numbers and effect an increase in the rate and extent of pollutant removal. Combined field and microcosm studies were used to assess these abilities for laboratory-grown bacteria. Following introduction into a contaminated aquifer, viable cells of Pseudomonas sp. B13 were present in the contaminant plume for 447 days; die-off was rapid in pristine areas. In aquifer microcosms, survival of B13 and FR120, a genetically engineered derivative of B13 having enhanced catabolic capabilities for substituted aromatics, was comparable to B13 field results; both bacteria degraded target pollutants in microcosms made with aquifer samples from the aerobic zone of the pollutant plume. Results suggest that field studies with nonrecombinant microorganisms may be coupled to laboratory studies with derivative strains to estimate their bioremediative efficacy. Furthermore, laboratory strains of bacteria can survive for extended periods of time in nature and thus may have important bioremediative applications. ?? 1994 American Chemical Society.
Klejborowska, Greta; Maj, Ewa; Wietrzyk, Joanna; Stefańska, Joanna; Huczyński, Adam
2018-05-02
Monensin A (MON) is a polyether ionophore antibiotic, which shows a wide spectrum of biological activity. New MON derivatives such as double-modified ester-carbonates and double-modified amide-carbonates were obtained by a new and efficient one-pot synthesis with triphosgene as the activating reagent and the respective alcohol or amine. All new derivatives were tested for their antiproliferative activity against two drug-sensitive (MES-SA, LoVo) and two drug-resistant (MES-SA/DX5, LoVo/DX) cancer cell lines, and were also studied for their antimicrobial activity against different Staphylococcus aureus and Staphylococcus epidermidis bacterial strains. For the first time, the activity of MON and its derivatives against MES-SA and MES-SA/DX5 were evaluated. © 2018 John Wiley & Sons A/S.
Fellner, Lea; Huptas, Christopher; Simon, Svenja; Mühlig, Anna; Neuhaus, Klaus
2016-01-01
Escherichia coli O157:H7 EDL933, isolated in 1982 in the United States, was the first enterohemorrhagic E. coli (EHEC) strain sequenced. Unfortunately, European labs can no longer receive the original strain. We checked three European EDL933 derivatives and found major genetic deviations (deletions, inversions) in two strains. All EDL933 strains contain the cryptic EHEC-plasmid, not reported before. PMID:27056239
Narisawa, Naoki; Haruta, Shin; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo
2008-06-01
Antibiotic-sensitive bacteria have been found to coexist with antibiotic-producing bacteria in biofilms, but little is known about how the former develop in such an environment. Here we isolated pyocyanin-sensitive bacteria belonging to the genus Brevibacillus from a biofilm derived from soil extract and based on the preestablished biofilm of a pyocyanin producer, Pseudomonas aeruginosa strain P1. In addition, pyocyanin-resistant strains belonging to the genus Raoultella were isolated from the same biofilm. Microbial relationships within biofilms were examined by using three strains, strain P1, Brevibacillus strain S1, and Raoultella strain R1, each of which individually formed a biofilm within 2 days in a flow cell. Strain S1 did not fully develop on the preestablished biofilm of strain P1 during 4 days of cultivation, whereas a mutant of strain P1 which was deficient in pyocyanin production allowed strain S1 to cocolonize within a biofilm. On the other hand, strain R1 developed on the biofilm of strain P1 regardless of pyocyanin production. When mixed 1:1 inocula of strains S1 and R1 were introduced into the strain P1 biofilm, all three species were found in the 4-day biofilm. In the mixed biofilm, strain S1 was surrounded by the layer of strain R1 and seemed to be separated from strain P1 and the outflow solution. However, strain S1 did not survive in a three-species mixed culture under planktonic conditions. These results indicate that the survival of sensitive bacteria in biofilm with a pyocyanin producer is achieved by covering them with a layer of resistant bacteria. We also evaluated the influence of antibiotic production on the producer.
Imamura, Morikazu; Kato, Nobuko; Okada, Hiroyuki; Yoshioka, Miyako; Iwamaru, Yoshifumi; Shimizu, Yoshihisa; Mohri, Shirou; Yokoyama, Takashi; Murayama, Yuichi
2013-01-01
The central event in prion infection is the conformational conversion of host-encoded cellular prion protein (PrPC) into the pathogenic isoform (PrPSc). Diverse mammalian species possess the cofactors required for in vitro replication of PrPSc by protein-misfolding cyclic amplification (PMCA), but lower organisms, such as bacteria, yeasts, and insects, reportedly lack the essential cofactors. Various cellular components, such as RNA, lipids, and other identified cofactor molecules, are commonly distributed in both eukaryotes and prokaryotes, but the reasons for the absence of cofactor activity in lower organisms remain to be elucidated. Previously, we reported that brain-derived factors were necessary for the in vitro replication of glycosylphosphatidylinositol-anchored baculovirus-derived recombinant PrP (Bac-PrP). Here, we demonstrate that following protease digestion and heat treatment, insect cell lysates had the functional cofactor activity required for Bac-PrP replication by PMCA. Mammalian PrPSc seeds and Bac-PrPSc generated by PMCA using Bac-PrP and insect cell-derived cofactors showed similar pathogenicity and produced very similar lesions in the brains of inoculated mice. These results suggested that the essential cofactors required for the high-fidelity replication of mammalian PrPSc were present in the insect cells but that the cofactor activity was masked or inhibited in the native state. We suggest that not only RNA, but also DNA, are the key components of PMCA, although other cellular factors were necessary for the expression of the cofactor activity of nucleic acids. PMCA using only insect cell-derived substances (iPMCA) was highly useful for the ultrasensitive detection of PrPSc of some prion strains. PMID:24367521
Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yupei; Zou, Minda; Lv, Weiqiang
2016-05-07
Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes formore » high-performance flexible device applications.« less
Lobo, Lis; Cabral, Lília I L; Sena, Maria Inês; Guerreiro, Bruno; Rodrigues, António Sebastião; de Andrade-Neto, Valter Ferreira; Cristiano, Maria L S; Nogueira, Fatima
2018-04-03
The emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy in Southeast Asia prompted the need to develop new endoperoxide-type drugs. A chemically diverse library of endoperoxides was designed and synthesized. The compounds were screened for in vitro and in vivo anti-malarial activity using, respectively, the SYBR Green I assay and a mouse model. Ring survival and mature stage survival assays were performed against artemisinin-resistant and artemisinin-sensitive P. falciparum strains. Cytotoxicity was evaluated against mammalian cell lines V79 and HepG2, using the MTT assay. The synthesis and anti-malarial activity of 21 new endoperoxide-derived compounds is reported, where the peroxide pharmacophore is part of a trioxolane (ozonide) or a tetraoxane moiety, flanked by adamantane and a substituted cyclohexyl ring. Eight compounds exhibited sub-micromolar anti-malarial activity (IC 50 0.3-71.1 nM), no cross-resistance with artemisinin or quinolone derivatives and negligible cytotoxicity towards mammalian cells. From these, six produced ring stage survival < 1% against the resistant strain IPC5202 and three of them totally suppressed Plasmodium berghei parasitaemia in mice after oral administration. The investigated, trioxolane-tetrazole conjugates LC131 and LC136 emerged as potential anti-malarial candidates; they show negligible toxicity towards mammalian cells, ability to kill intra-erythrocytic asexual stages of artemisinin-resistant P. falciparum and capacity to totally suppress P. berghei parasitaemia in mice.
Westman, Johan O; Mapelli, Valeria; Taherzadeh, Mohammad J; Franzén, Carl Johan
2014-11-01
Yeast has long been considered the microorganism of choice for second-generation bioethanol production due to its fermentative capacity and ethanol tolerance. However, tolerance toward inhibitors derived from lignocellulosic materials is still an issue. Flocculating yeast strains often perform relatively well in inhibitory media, but inhibitor tolerance has never been clearly linked to the actual flocculation ability per se. In this study, variants of the flocculation gene FLO1 were transformed into the genome of the nonflocculating laboratory yeast strain Saccharomyces cerevisiae CEN.PK 113-7D. Three mutants with distinct differences in flocculation properties were isolated and characterized. The degree of flocculation and hydrophobicity of the cells were correlated to the length of the gene variant. The effect of different strength of flocculation on the fermentation performance of the strains was studied in defined medium with or without fermentation inhibitors, as well as in media based on dilute acid spruce hydrolysate. Strong flocculation aided against the readily convertible inhibitor furfural but not against less convertible inhibitors such as carboxylic acids. During fermentation of dilute acid spruce hydrolysate, the most strongly flocculating mutant with dense cell flocs showed significantly faster sugar consumption. The modified strain with the weakest flocculation showed a hexose consumption profile similar to the untransformed strain. These findings may explain why flocculation has evolved as a stress response and can find application in fermentation-based biorefinery processes on lignocellulosic raw materials. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Tang, Peng; Wu, Jie; Liu, Hou; Liu, Youcai; Zhou, Xingding
2018-01-01
One of the newly developed methods for Assimilable organic carbon (AOC) determination is leveraged on the cell enumeration by flow cytometry (FC) which could provide a rapid and automated solution for AOC measurement. However, cell samples staining with fluorescence dye is indispensable to reduce background and machine noise. This step would bring additional cost and time consuming for this method. In this study, a green fluorescence protein (GFP) tagged strain derived of AOC testing strain Pseudomonas fluorescens P-17 (GFP-P17) was generated using Tn5 transposon mutagenesis. Continuous culture of this mutant GFP-P17 showed stable expression of eGFP signal detected by flow cytometry without staining step. In addition, this GFP-P17 strain displayed faster growth rate and had a wider range of carbon substrate utilization patterns as compared with P17 wild-type. With this strain, the capability of a new FC method with no dye staining was explored in standard acetate solution, which suggests linear correlation of counts with acetate carbon concentration. Furthermore, this FC method with GFP-P17 strain is applicable in monitoring GAC/BAC efficiency and condition as similar trends of AOC level in water treatment process were measured by both FC method and conventional spread plating count method. Therefore, this fast and easily applicable GFP-P17 based FC method could serve as a tool for routine microbiological drinking water monitoring.
NASA Astrophysics Data System (ADS)
Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael
2013-12-01
In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.
Geiger, M; Guitton, Y; Vansteelandt, M; Kerzaon, I; Blanchet, E; Robiou du Pont, T; Frisvad, J C; Hess, P; Pouchus, Y F; Grovel, O
2013-11-01
In order to assess the putative toxigenic risk associated with the presence of fungal strains in shellfish-farming areas, Penicillium strains were isolated from bivalve molluscs and from the surrounding environment, and the influence of the sample origin on the cytotoxicity of the extracts was evaluated. Extracts obtained from shellfish-derived Penicillia exhibited higher cytotoxicity than the others. Ten of these strains were grown on various media including a medium based on mussel extract (Mytilus edulis), mussel flesh-based medium (MES), to study the influence of the mussel flesh on the production of cytotoxic compounds. The MES host-derived medium was created substituting the yeast extract of YES medium by an aqueous extract of mussel tissues, with other constituent identical to YES medium. When shellfish-derived strains of fungi were grown on MES medium, extracts were found to be more cytotoxic than on the YES medium for some of the strains. HPLC-UV/DAD-MS/MS dereplication of extracts from Penicillium marinum and P. restrictum strains grown on MES medium showed the enhancement of the production of some cytotoxic compounds. The mycotoxin patulin was detected in some P. antarcticum extracts, and its presence seemed to be related to their cytotoxicity. Thus, the enhancement of the toxicity of extracts obtained from shellfish-derived Penicillium strains grown on a host-derived medium, and the production of metabolites such as patulin suggests that a survey of mycotoxins in edible shellfish should be considered. © 2013 The Society for Applied Microbiology.
Phuoc, L H; Defoirdt, T; Sorgeloos, P; Bossier, P
2009-04-01
This study was conducted to test the virulence of luminescent (L) and non-luminescent (NL) isogenic strains of Vibrio campbellii LMG21363, Vibrio harveyi BB120 (wild type) and quorum-sensing mutant strains derived from the wild type such as Vibrio harveyi BB152, BB170, MM30 and BB886. The NL strains could be obtained by culturing rifampicin-resistant luminescent strains in the dark under static condition. The virulence of the L and NL strains was tested in gnotobiotic Artemia franciscana larvae challenged with 10(4) CFU ml(-1) of bacteria. All luminescent isogenic tested strains showed higher virulence compared to the NL strains. The virulence of L and NL V. campbellii and V. harveyi BB120 was also tested in specific pathogen-free juvenile shrimp upon intramuscular injection with 10(6) CFU of bacteria. In contrast with Artemia, there was no significant difference in mortality between the groups challenged with L and NL strains (P > 0.05). The non-luminescent strains were not able to revert back to the luminescent state and quorum sensing did not influence this phenotypic shift. Luminescent Vibrio strains can switch to a non-luminescent state by culturing them in static conditions. The NL strains become less virulent as verified in Artemia. The luminescent state of Vibrio cells in a culture needs to be verified in order to assure maintenance of virulence.
Elevated Cell Wall Serine in Pleiotropic Staphylococcal Mutants
Korman, Ruth Z.
1966-01-01
Korman, Ruth Z. (Cornell University, Ithaca, N.Y.). Elevated cell wall serine in pleiotropic staphylococcal mutants. J. Bacteriol. 92:762–768. 1966.—Physically purified cell walls were prepared from two staphylococcal strains and from pleiotropic variants derived from them. The quantitative amino acid and amino sugar content of these walls is reported. The pleiotypes, which are identified culturally by their failure to elaborate coagulase, their resistance to bacteriophage, and their sensitivity to mannitol, have altered molar ratios of amino acids and amino sugars in their cell walls. In comparison with lysine content, the serine content of the mutant wall is elevated and the glycine content is reduced. The glucosamine content is reduced also. It is postulated that the pleiotropic mutants possess an altered cell wall biosynthetic pathway. Images PMID:5922547
An avian cell line designed for production of highly attenuated viruses.
Jordan, Ingo; Vos, Ad; Beilfuss, Stefanie; Neubert, Andreas; Breul, Sabine; Sandig, Volker
2009-01-29
Several viral vaccines, including highly promising vectors such as modified vaccinia Ankara (MVA), are produced on chicken embryo fibroblasts. Dependence on primary cells complicates production especially in large vaccination programs. With primary cells it is also not possible to create packaging lines for replication-deficient vectors that are adapted to proliferation in an avian host. To obviate requirement for primary cells permanent lines from specific tissues of muscovy duck were derived (AGE1.CR, CS, and CA) and further modified: we demonstrate that stable expression of the structural gene pIX from human adenovirus increases titers for unrelated poxvirus in the avian cells. This augmentation appears to be mediated via induction of heat shock and thus provides a novel cellular substrate that may allow further attenuation of vaccine strains.
Matsumoto, S; Hara, T; Hori, T; Mitsuyama, K; Nagaoka, M; Tomiyasu, N; Suzuki, A; Sata, M
2005-01-01
IL-6/STAT-3 signals play key roles in inflammatory bowel disease (IBD). It is known that Lactobacillus casei strain Shirota (LcS) improves inflammatory disorders. This study aimed to elucidate the effect of LcS on murine chronic IBD and to clarify the mechanism. We focused the inhibitory effect of LcS on the production of IL-6 in lipopolysaccharide (LPS)-stimulated large intestinal lamina propria mononuclear cells (LI-LPMC) isolated from mice with chronic colitis and in RAW264·7 cells in vitro. We also determined in vivo the effect of LcS on murine chronic IBD models induced with dextran sodium sulphate and SAMP1/Yit mice. Finally, we examined the cellular determinants of LcS for the down-regulation of IL-6 secretion by LI-LPMC, RAW264·7 cells and peripheral blood mononuclear cells (PBMC) derived from patients with ulcerative colitis (UC). LcS, but not other strains of Lactobacillus, inhibited the production of IL-6 in LPS-stimulated LI-LPMC and RAW264·7 cells, down-regulating the nuclear translocation of NF-κB. The LcS-diet-improved murine chronic colitis is associated with the reduction of IL-6 synthesis by LI-LPMC. LcS also improved chronic ileitis in SAMP1/Yit mice. The release of IL-6 in vitro in LPS-stimulated LI-LPMC, RAW 264·7 cells and UC-PBMC was inhibited by a polysaccharide-peptidoglycan complex (PSPG) derived from LcS. This probiotic-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines such as IL-6 and IFN-γ production in LPMC. Therefore, LcS may be a useful probiotic for the treatment of human inflammatory bowel disease. PMID:15932502
Ogusucu, Renata; Rettori, Daniel; Netto, Luis E S; Augusto, Ohara
2009-02-27
Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1Deltatsa2Delta) are more resistant to hydrogen peroxide than wild-type (WT) cells and consume it faster under fermentative conditions. Also, tsa1Deltatsa2Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1Deltatsa2Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu,Zn-superoxide dismutase (Sod1), whose expression and activity increased approximately 5- and 2-fold, respectively, in tsa1Deltatsa2Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1Deltatsa2Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1Deltatsa2Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.
Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand.
Tapingkae, Wanaporn; Tanasupawat, Somboon; Itoh, Takashi; Parkin, Kirk L; Benjakul, Soottawat; Visessanguan, Wonnop; Valyasevi, Ruud
2008-10-01
Two Gram-negative, rod-shaped, halophilic archaea, designated strains HIS40-3(T) and HDS3-1, were isolated from anchovy fish sauce (nam-pla) collected from two different locations in Thailand. The two strains were able to grow at 20-60 degrees C (optimum 37-40 degrees C), at 1.7-5.1 M NaCl (optimum 2.6-3.4 M NaCl) and at pH 5.5-8.5 (optimum pH 6.0-6.5). Hypotonic treatment with less than 1.7 M NaCl caused cell lysis. The major polar lipids of the isolates were C(20)C(20) and C(20)C(25) derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, two glycolipids and one unidentified lipid. The DNA G+C contents were 64.0-65.4 mol%. In addition to phenotypic and chemotaxonomic characteristics, phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strains HIS40-3(T) and HDS3-1 were related most closely to species of the genus Natrinema. Levels of 16S rRNA gene sequence similarity between strains HIS40-3(T) and HDS3-1 and the type strains of recognized Natrinema species were 99.1-96.6 %. The two novel strains could be distinguished from recognized Natrinema species on the basis of low levels of DNA-DNA relatedness and differences in whole-cell protein patterns and phenotypic properties. Levels of 16S rRNA gene sequence similarity and DNA-DNA relatedness between the two strains were 99.7 and 77.7 %, respectively, suggesting that they should be classified as representing a single species. Based on these taxonomic data, strains HIS40-3(T) and HDS3-1 are considered to represent a novel species of the genus Natrinema, for which the name Natrinema gari sp. nov. is proposed. The type strain is HIS40-3(T) (=BCC 24370(T) =JCM 14663(T) =PCU 303(T)).
Labeling proteins on live mammalian cells using click chemistry.
Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A
2015-05-01
We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.
Xiu, Pengyuan; Liu, Rui
2017-01-01
ABSTRACT Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote cellular aggregation without inducing cell death. These findings suggest that CLPs hold great promise as potential drug candidates targeting bacterial motility and biofilm formation with a low overall potential for triggering antibiotic resistance. PMID:28389538
Characterization of a novel bioreactor system for 3D cellular mechanobiology studies.
Cook, Colin A; Huri, Pinar Y; Ginn, Brian P; Gilbert-Honick, Jordana; Somers, Sarah M; Temple, Joshua P; Mao, Hai-Quan; Grayson, Warren L
2016-08-01
In vitro engineering systems can be powerful tools for studying tissue development in response to biophysical stimuli as well as for evaluating the functionality of engineered tissue grafts. It has been challenging, however, to develop systems that adequately integrate the application of biomimetic mechanical strain to engineered tissue with the ability to assess functional outcomes in real time. The aim of this study was to design a bioreactor system capable of real-time conditioning (dynamic, uniaxial strain, and electrical stimulation) of centimeter-long 3D tissue engineered constructs simultaneously with the capacity to monitor local strains. The system addresses key limitations of uniform sample loading and real-time imaging capabilities. Our system features an electrospun fibrin scaffold, which exhibits physiologically relevant stiffness and uniaxial alignment that facilitates cell adhesion, alignment, and proliferation. We have demonstrated the capacity for directly incorporating human adipose-derived stromal/stem cells into the fibers during the electrospinning process and subsequent culture of the cell-seeded constructs in the bioreactor. The bioreactor facilitates accurate pre-straining of the 3D constructs as well as the application of dynamic and static uniaxial strains while monitoring bulk construct tensions. The incorporation of fluorescent nanoparticles throughout the scaffolds enables in situ monitoring of local strain fields using fluorescent digital image correlation techniques, since the bioreactor is imaging compatible, and allows the assessment of local sample stiffness and stresses when coupled with force sensor measurements. In addition, the system is capable of measuring the electromechanical coupling of skeletal muscle explants by applying an electrical stimulus and simultaneously measuring the force of contraction. The packaging of these technologies, biomaterials, and analytical methods into a single bioreactor system has produced a powerful tool that will enable improved engineering of functional 3D ligaments, tendons, and skeletal muscles. Biotechnol. Bioeng. 2016;113: 1825-1837. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen
2017-01-01
Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold depend on the scaffold's internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve scaffold design for tissue engineering purposes.
Hendrikson, Wim J.; Deegan, Anthony J.; Yang, Ying; van Blitterswijk, Clemens A.; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen
2017-01-01
Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress–strain distributions throughout the scaffold depend on the scaffold’s internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve scaffold design for tissue engineering purposes. PMID:28239606
Xiu, Pengyuan; Liu, Rui; Zhang, Dechao; Sun, Chaomin
2017-06-15
Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium ( Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes ( flgA and flgP ) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote cellular aggregation without inducing cell death. These findings suggest that CLPs hold great promise as potential drug candidates targeting bacterial motility and biofilm formation with a low overall potential for triggering antibiotic resistance. Copyright © 2017 American Society for Microbiology.
Kurniawan, Nicholas A; Vos, Bart E; Biebricher, Andreas; Wuite, Gijs J L; Peterman, Erwin J G; Koenderink, Gijsje H
2016-09-06
Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces.
Ban, Ehsan; Franklin, J Matthew; Nam, Sungmin; Smith, Lucas R; Wang, Hailong; Wells, Rebecca G; Chaudhuri, Ovijit; Liphardt, Jan T; Shenoy, Vivek B
2018-01-23
Contractile cells can reorganize fibrous extracellular matrices and form dense tracts of fibers between neighboring cells. These tracts guide the development of tubular tissue structures and provide paths for the invasion of cancer cells. Here, we studied the mechanisms of the mechanical plasticity of collagen tracts formed by contractile premalignant acinar cells and fibroblasts. Using fluorescence microscopy and second harmonic generation, we quantified the collagen densification, fiber alignment, and strains that remain within the tracts after cellular forces are abolished. We explained these observations using a theoretical fiber network model that accounts for the stretch-dependent formation of weak cross-links between nearby fibers. We tested the predictions of our model using shear rheology experiments. Both our model and rheological experiments demonstrated that increasing collagen concentration leads to substantial increases in plasticity. We also considered the effect of permanent elongation of fibers on network plasticity and derived a phase diagram that classifies the dominant mechanisms of plasticity based on the rate and magnitude of deformation and the mechanical properties of individual fibers. Plasticity is caused by the formation of new cross-links if moderate strains are applied at small rates or due to permanent fiber elongation if large strains are applied over short periods. Finally, we developed a coarse-grained model for plastic deformation of collagen networks that can be employed to simulate multicellular interactions in processes such as morphogenesis, cancer invasion, and fibrosis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mattei, G.; Ahluwalia, A.
2018-04-01
We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.
Bacteria Provide Cleanup of Oil Spills, Wastewater
NASA Technical Reports Server (NTRS)
2010-01-01
Through Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center, Micro-Bac International Inc., of Round Rock, Texas, developed a phototrophic cell for water purification in space. Inside the cell: millions of photosynthetic bacteria. Micro-Bac proceeded to commercialize the bacterial formulation it developed for the SBIR project. The formulation is now used for the remediation of wastewater systems and waste from livestock farms and food manufacturers. Strains of the SBIR-derived bacteria also feature in microbial solutions that treat environmentally damaging oil spills, such as that resulting from the catastrophic 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico.
Ohyoshi, Takayuki; Tamura, Yuki; Hayakawa, Ichiro; Hirai, Go; Miyazawa, Yamato; Funakubo, Shota; Sodeoka, Mikiko; Kigoshi, Hideo
2016-12-28
We have established an efficient synthetic methodology for the 13-oxyingenol natural derivative (13-oxyingenol-13-dodecanoate-20-hexanoate), featuring a ring-closing olefin metathesis reaction for the "direct" construction of a highly strained inside-outside framework and a Mislow-Evans-type [2,3]-sigmatropic rearrangement for the stereoselective introduction of the hydroxy group at C5. We also synthesized artificial analogs of 13-oxyingenol and ingenol by using our synthetic strategy. In vitro activation assays of protein kinase C (PKC) α and δ revealed that the dodecanoyl group at O13 on 13-oxyingenol analogs had a significant role in PKCδ activation. The PKCα- or PKCδ-activating 13-oxyingenol and ingenol analogs induced both distinct morphological changes and increases of CD11b expression in HL-60 cells, which would be typical signs of HL-60 cell differentiation to macrophage-like cells, as expected by previous reports. Intriguingly, however, similar differentiation phenotypes were observed with the use of 13-oxyingenol natural derivatives and 13-oxyingenol-13-dodecanoate showing a remarkably less potent PKCα or PKCδ activation ability, which the PKC inhibitor Gö6983 diminished. This indicated the involvement of other PKC isozymes or related kinase activities. 13-Oxyingenol analogs, which induced HL-60 cell differentiation, also induced HL-60 cell death, similar to the action of a phorbol ester, a strong PKC activator.
Sasaki, Yuri; Furuta, Emiko; Kirinoki, Masashi; Seo, Naomi; Matsuda, Hajime
2003-10-01
Two morphologically distinct blood cell types (hemocytes), Type I and Type II were found coexisting in hemolymph from two kinds of snails, Oncomelania nosophora strain, viz. from the Nirasaki strain (schistosome-resistant snail) and the Kisarazu strain (schistosome-susceptible snail). Ten min after inoculation of SRBC, the majority of Type I cells from Nirasaki strain flattened and spread over the surface of the glass plate by extending pseudopodia. In the Kisarazu strain, Type I cells adhered to the surface of substrate with spike-like filopodia, but did not form spreading lamellipodia. Type I cell from the Nirasaki strain phagocytosed SRBC but that from the Kisarazu strain did not. The starting time of recognition of foreign materials was slightly different in the Type I hemocytes from the two strains. Type II cells from both strains were round and lymphocyte-like. Ten or sixty min after incubation, Type II cells from neither strain adhered to the surface of substrate or SRBC, and did not phagocytose SRBC. Type II cells from the Nirasaki strain were quite similar to those from the Kisarazu strain. We concluded that Type I cells from the schistosome-resistant snail, Nirasaki strain, possessed higher phagocytic activity than those from the susceptible snail, Kisarazu strain, despite the morphological similarities of the hemocytes from both strains.
A comparative study of live attenuated F strain-derived Mycoplasma gallisepticum vaccines
USDA-ARS?s Scientific Manuscript database
Commercially available attenuated strains of Mycoplasma gallisepticum (MG) are commonly used within the layer industry to control MG-induced mycoplasmosis. Among these are two live MG vaccines derived from the moderately pathogenic MG “chick F” strain. In the present study, the commercially availa...
Pertino, Mariano Walter; Petrera, Erina; Alché, Laura Edith; Schmeda-Hirschmann, Guillermo
2018-06-03
Naturally occurring terpenes were combined by click reactions to generate sixteen hybrid molecules. The diterpene imbricatolic acid (IA) containing an azide group was used as starting compound for the synthesis of all the derivatives. The alkyne group in the terpenes cyperenoic acid, dehydroabietinol, carnosic acid γ-lactone, ferruginol, oleanolic acid and aleuritolic acid was obtained by esterification using appropriate alcohols or acids. The hybrid compounds were prepared by combining the IA azide function with the different terpene-alkynes under click chemistry conditions. The cytotoxic activity of the terpene hybrids 1 ⁻ 16 was assessed against Vero cells and tumour cell lines (HEP-2, C6 and Raw 264.7). Compounds 1 , 2 , 3 and 7 showed cytotoxic activity against the tested cell lines. The antiviral activity of the compounds was evaluated against HSV-1 KOS, Field and B2006 strain. For the pairs of hybrid compounds formed between IA-diterpene (compounds 3 ⁻ 8 , except for compound 7 ), a moderate activity was observed against the three HSV-1 strains with an interesting selectivity index (SI ≥10, SI = CC 50 /CE 50 ) for some compounds.
Matejczyk, Marzena; Swislocka, Renata; Kalinowska, Monika; Swidersk, Grzegorz; Lewandowsk, Wlodzimierz; Jablonska-Trypuo, Agata
2017-05-01
Caffeic acid and its derivatives because of its biological activities, including antioxidants, antithrombosis, antihypertensive, antifibrosis, antiviral, and anti-tumor properties are good candidates as adjuvants in anticancer therapy. The aim of this study was the examination of cyto- and genotoxic effect of caffeic acid on Escherichia coli K-12 recA::gfp strain treated with dacarbazine. Obtained results indicate that dacarbazine and caffeic acid influenced the reactivity of recA promoter and modulate the level of gfp expression in genetic construct rrcA::gfpmut2 in E. coli K-12. Simultaneuos administration of dacarbazine with caffeic acid caused the stronger inhibition of the bacteria growth than the dacarbazine and caffeic acid separated administration to bacteria cells. The simultaneous effect of the both tested chemicals - dacarbazine and caffeic acid indicated (cytostatic effect) anticancer activity in relation to bacteria cells. It suggests, that combination of known anticancer drug - dacarbazine w ith caffeic acid exerted synergistic cytotoxic and genotoxic effects toward E. coli K- 12 cells and indicated the possibility of usefulness of caffeic acid as a natural adjuvant in anticancer therapy.
Reimer, Daniela; Hughes, Chambers C
2017-01-27
To date, 16 members of the ammosamide family of natural products have been discovered, and except for ammosamide D each of these metabolites is characterized by an unusual chlorinated pyrrolo[4,3,2-de]quinoline skeleton. Several ammosamides have been shown to inhibit quinone reductase 2, a flavoenzyme responsible for quelling toxic oxidative species in cells or for killing cancer cells outright. Treatment of the extract from an ammosamide-producing culture (Streptomyces strain CNR-698) with a thiol-based reagent designed to label electrophilic natural products produced an ammosamide C-thiol adduct. This observation led us to hypothesize, and then demonstrate through experimentation, that all of the other ammosamides are derived from ammosamide C via nonenzymatic processes involving exposure to nucleophiles, air, and light. Like many established electrophilic natural products, reaction with the thiol probe suggests that ammosamide C is itself an electrophilic natural product. Although ammosamide C did not show substantial cytotoxicity against cancer cells, its activity against a marine Bacillus bacterial strain may reflect its ecological role.
Elucidating Duramycin's Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope.
Hasim, Sahar; Allison, David P; Mendez, Berlin; Farmer, Abigail T; Pelletier, Dale A; Retterer, Scott T; Campagna, Shawn R; Reynolds, Todd B; Doktycz, Mitchel J
2018-01-01
The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus -derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin's mode of action and a better understanding of its selectivity.
A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17.
Gao, Xiaochun; Lu, Yuanyuan; Xing, Yingying; Ma, Yihua; Lu, Jiansheng; Bao, Weiwei; Wang, Yiming; Xi, Tao
2012-12-20
A marine actinomycete, designated strain BM-17, was isolated from a sediment sample collected in the Arctic Ocean. The strain was identified as Nocardia dassonvillei based on morphological, cultural, physiological, biochemical characteristics, along with the cell wall analysis and 16S rDNA gene sequence analysis. A new secondary metabolite (1), N-(2-hydroxyphenyl)-2-phenazinamine (NHP), and six known antibiotics (2-7) have been isolated from the saline culture broth of the stain by sequentially purification over macroporous resin D101, silica gel, Sephadex LH-20 column chromatography and preparative HPLC after the stain was incubated in soy bean media at 28°C for 7 days. The chemical structures of the compounds were elucidated on the basis of spectroscopic analysis, including two-dimensional (2D) NMR and HR-ESI-MS data. The new compound showed significant antifungal activity against Candida albicans, with a MIC of 64 μg/ml and high cancer cell cytotoxicity against HepG2, A549, HCT-116 and COC1 cells. Copyright © 2012 Elsevier GmbH. All rights reserved.
Ahl, D; Liu, H; Schreiber, O; Roos, S; Phillipson, M; Holm, L
2016-08-01
The aim of this study was to investigate whether two Lactobacillus reuteri strains (rat-derived R2LC and human-derived ATCC PTA 4659 (4659)) could protect mice against colitis, as well as delineate the mechanisms behind this protection. Mice were given L. reuteri R2LC or 4659 by gavage once daily for 14 days, and colitis was induced by addition of 3% DSS (dextran sulphate sodium) to drinking water for the last 7 days of this period. The severity of disease was assessed through clinical observations, histological evaluation and ELISA measurements of myeloperoxidase (MPO) and pro-inflammatory cytokines from colonic samples. Mucus thickness was measured in vivo with micropipettes, and tight junction protein expression was assessed using immunohistochemistry. Colitis severity was significantly reduced by L. reuteri R2LC or 4659 when evaluated both clinically and histologically. The inflammation markers MPO, IL-1β, IL-6 and mKC (mouse keratinocyte chemoattractant) were increased by DSS and significantly reduced by the L. reuteri strains. The firmly adherent mucus thickness was reduced by DSS, but significantly increased by L. reuteri in both control and DSS-treated mice. Expression of the tight junction proteins occludin and ZO-1 was significantly increased in the bottom of the colonic crypts by L. reuteri R2LC. These results demonstrate that each of the two different L. reuteri strains, one human-derived and one-rat-derived, protects against colitis in mice. Mechanisms behind this protection could at least partly be explained by the increased mucus thickness as well as a tightened epithelium in the stem cell area of the crypts. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Fellner, Lea; Huptas, Christopher; Simon, Svenja; Mühlig, Anna; Scherer, Siegfried; Neuhaus, Klaus
2016-04-07
Escherichia coliO157:H7 EDL933, isolated in 1982 in the United States, was the first enterohemorrhagicE. coli(EHEC) strain sequenced. Unfortunately, European labs can no longer receive the original strain. We checked three European EDL933 derivatives and found major genetic deviations (deletions, inversions) in two strains. All EDL933 strains contain the cryptic EHEC-plasmid, not reported before. Copyright © 2016 Fellner et al.
Ferrocenyl and organic novobiocin derivatives: Synthesis and their in vitro biological activity.
Mbaba, Mziyanda; Mabhula, Amanda N; Boel, Natasha; Edkins, Adrienne L; Isaacs, Michelle; Hoppe, Heinrich C; Khanye, Setshaba D
2017-07-01
A focused series of novobiocin derivatives containing a ferrocene unit together with their corresponding organic novobiocin analogues have been synthesized in modest to good yields. These compounds were screened for biological activity against a chloroquine-sensitive strain of Plasmodium falciparum (3D7) and human breast cancer cell line (HCC38). With the exception of compounds 5c and 5d, the general trend observed is that incorporation of the ferrocene moiety into novobiocin scaffold resulted in compounds 6a-d/6f showing enhanced activity compared to organic analogues 5a-b and 5e-f. Copyright © 2017 Elsevier Inc. All rights reserved.
Rodríguez-Herva, J J; Ramos-Gonzalez, M I; Ramos, J L
1996-01-01
Pseudomonas putida 14G-3, a derivative of the natural soil inhabitant P. putida KT2440, exhibited a chromosomal insertion of a mini-Tn5/'phoA transposon that resulted in reduced ability to colonize soil. In vitro characterization of P. putida 14G-3 revealed that it exhibited an altered cell morphology and envelope, as revealed by electron microscopy. The derived strain was sensitive to sodium dodecyl sulfate, deoxycholate, and EDTA, produced clumps when it reached high cell densities in the late logarithmic growth phase, and did not grow on low-osmolarity medium. The P. putida DNA surrounding the mini-Tn5/'phoA insertion was cloned and used as a probe to rescue the wild-type gene, which was sequenced. Comparison of the deduced peptide sequence with sequences in the Swiss-Prot database allowed the knocked-out gene to be identified as that encoding the peptidoglycan-associated lipoprotein (Pal or OprL) of P. putida. The protein was identified in coupled transcription and translation assays in vitro. PMID:8626299
Fusion and Compatibility of Camphor and Octane Plasmids in Pseudomonas
Chou, George I. N.; Katz, Dvorah; Gunsalus, I. C.
1974-01-01
The octane (OCT) plasmid in Pseudomonas putida derived from the ω-hydroxylase-carrying strain of Coon and coworkers is transferable to the camphor (CAM) plasmid-bearing strain by conjugation or by transduction. While the majority of the Cam +Oct+ exconjugants segregate Cam+ or Oct+ cells, exconjugants with stable Cam +Oct+ phenotype (CAM-OCT) can be detected at a low frequency. The transductants are all of the CAM-OCT phenotype. In the stable Cam +Oct+ strains, the OCT plasmid resembles the CAM plasmid with respect to curing by mitomycin C, transfer in conjugation, and reaction to ts (temperature-sensitive) mutation specifically affecting CAM plasmid replication. Therefore, it is suggested that certain regions of homology exist between the CAM and OCT plasmids that enable them to recombine to form a single plasmid, and to overcome the incompatibility barrier that prevents their coexisting. PMID:4527812
Recent Advances in Algal Genetic Tool Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Dahlin, Lukas; T. Guarnieri, Michael
The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less
Recent Advances in Algal Genetic Tool Development
R. Dahlin, Lukas; T. Guarnieri, Michael
2016-06-24
The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less
Egg-Independent Influenza Vaccines and Vaccine Candidates
Manini, Ilaria; Pozzi, Teresa; Rossi, Stefania; Montomoli, Emanuele
2017-01-01
Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines. PMID:28718786
NASA Technical Reports Server (NTRS)
Kedar, Sharon; Baxter, Sean C.; Parker, Jay W.; Webb, Frank H.; Owen, Susan E.; Sibthorpe, Anthony J.; Dong, Danan
2011-01-01
A geodetic software analysis tool enables the user to analyze 2D crustal strain from geodetic ground motion, and create models of crustal deformation using a graphical interface. Users can use any geodetic measurements of ground motion and derive the 2D crustal strain interactively. This software also provides a forward-modeling tool that calculates a geodetic velocity and strain field for a given fault model, and lets the user compare the modeled strain field with the strain field obtained from the user s data. Users may change parameters on-the-fly and obtain a real-time recalculation of the resulting strain field. Four data products are computed: maximum shear, dilatation, shear angle, and principal components. The current view and data dependencies are processed first. The remaining data products and views are then computed in a round-robin fashion to anticipate view changes. When an analysis or display parameter is changed, the affected data products and views are invalidated and progressively re-displayed as available. This software is designed to facilitate the derivation of the strain fields from the GPS and strain meter data that sample it to facilitate the understanding of the strengths and weaknesses of the strain field derivation from continuous GPS (CGPS) and other geodetic data from a variety of tectonic settings, to converge on the "best practices" strain derivation strategy for the Solid Earth Science ESDR System (SESES) project given the CGPS station distribution in the western U.S., and to provide SESES users with a scientific and educational tool to explore the strain field on their own with user-defined parameters.
2014-01-01
Background Agrobacterium tumefaciens-based transient assays have become a common tool for answering questions related to protein localization and gene expression in a cellular context. The use of these assays assumes that the transiently transformed cells are observed under relatively authentic physiological conditions and maintain ‘normal’ sub-cellular behaviour. Although this premise is widely accepted, the question of whether cellular organization and organelle morphology is altered in Agrobacterium-infiltrated cells has not been examined in detail. The first indications of an altered sub-cellular environment came from our observation that a common laboratory strain, GV3101(pMP90), caused a drastic increase in stromule frequency. Stromules, or ‘stroma-filled-tubules’ emanate from the surface of plastids and are sensitive to a variety of biotic and abiotic stresses. Starting from this observation, the goal of our experiments was to further characterize the changes to the cell resulting from short-term bacterial infestation, and to identify the factor responsible for eliciting these changes. Results Using a protocol typical of transient assays we evaluated the impact of GV3101(pMP90) infiltration on chloroplast behaviour and morphology in Nicotiana benthamiana. Our experiments confirmed that GV3101(pMP90) consistently induces stromules and alters plastid position relative to the nucleus. These effects were found to be the result of strain-dependant secretion of cytokinin and its accumulation in the plant tissue. Bacterial production of the hormone was found to be dependant on the presence of a trans-zeatin synthase gene (tzs) located on the Ti plasmid of GV3101(pMP90). Bacteria-derived cytokinins were also correlated with changes to both soluble sugar level and starch accumulation. Conclusion Although we have chosen to focus on how transient Agrobacterium infestation alters plastid based parameters, these changes to the morphology and position of a single organelle, combined with the measured increases in sugar and starch content, suggest global changes to cell physiology. This indicates that cells visualized during transient assays may not be as ‘normal’ as was previously assumed. Our results suggest that the impact of the bacteria can be minimized by choosing Agrobacterium strains devoid of the tzs gene, but that the alterations to sub-cellular organization and cell carbohydrate status cannot be completely avoided using this strategy. PMID:24886417
Sørensen, Sebastian R; Ronen, Zeev; Aamand, Jens
2002-07-01
Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the beta-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of (14)C-labeled isoproturon to (14)CO(2) and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.
Sørensen, Sebastian R.; Ronen, Zeev; Aamand, Jens
2002-01-01
Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the β-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of 14C-labeled isoproturon to 14CO2 and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent. PMID:12089031
Dupont, Christopher D.; Christian, David A.; Selleck, Elizabeth M.; Pepper, Marion; Leney-Greene, Michael; Harms Pritchard, Gretchen; Koshy, Anita A.; Wagage, Sagie; Reuter, Morgan A.; Sibley, L. David; Betts, Michael R.; Hunter, Christopher A.
2014-01-01
During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naïve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naïve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses. PMID:24722202
Pinto, Rachel; Nambiar, Jonathan K; Leotta, Lisa; Counoupas, Claudio; Britton, Warwick J; Triccas, James A
2016-07-01
The characterisation of mycobacterial factors that influence or modulate the host immune response may aid the development of more efficacious TB vaccines. We have previously reported that Mycobacterium tuberculosis deficient in export of Phthiocerol Dimycocerosates (DIM) (MT103(ΔdrrC)) is more attenuated than wild type M. tuberculosis and provides sustained protective immunity compared to the existing BCG vaccine. Here we sought to define the correlates of immunity associated with DIM deficiency by assessing the impact of MT103(ΔdrrC) delivery on antigen presenting cell (APC) function and the generation of CD4(+) T cell antigen-specific immunity. MT103(ΔdrrC) was a potent activator of bone marrow derived dendritic cells, inducing significantly greater expression of CD86 and IL-12p40 compared to BCG or the MT103 parental strain. This translated to an increased ability to initiate early in vivo priming of antigen-specific CD4(+) T cells compared to BCG with enhanced release of IFN-γ and TNF upon antigen-restimulation. The heightened immunity induced by MT103(ΔdrrC) correlated with greater persistence within the spleen compared to BCG, however both MT103(ΔdrrC) and BCG were undetectable in the lung at 70 days post-vaccination. In immunodeficient RAG (-/-) mice, MT103(ΔdrrC) was less virulent than the parental MT103 strain, yet MT103(ΔdrrC) infected mice succumbed more rapidly compared to BCG-infected animals. These results suggest that DIM translocation plays a role in APC stimulation and CD4(+) T cell activation during M. tuberculosis infection and highlights the potential of DIM-deficient strains as novel TB vaccine candidates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lian, Qizhou; Yeo, KengSuan; Que, Jianwen; Tan, EileenKhiaWay; Yu, Fenggang; Yin, Yijun; Salto-Tellez, Manuel; Oakley, Reida Menshawe El; Lim, Sai-Kiang
2006-01-01
Background Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. Methodology/Principal Findings We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r2 = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9hi, SSEA-1− while ESCs are CD9lo, SSEA-1+. Isolation of CD9hi, SSEA-1− cells that constituted 1%–10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r2 = 0.95) and a propensity to differentiate into endothelial-like cells. Conclusions By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs. PMID:17183690