The influence of surface integrin binding patterns on specific biomaterial-cell interactions
NASA Astrophysics Data System (ADS)
Beranek, Maggi Marie
As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second aim, the response of surface-bound integrins to flow-related shear stress was examined. Based on fluorescent analysis, total alphavbeta 3, alpha1beta1, and alpha5beta 1 appeared to increase on stainless steel after 90-minute low shear stress exposure, whereas only alpha5beta1 appeared to increase when exposed to high shear. 65/35 poly(D, L-lactide-co-glycolide) exhibited increased total binding of alpha5beta1 and alphaMbeta2, when exposed to either shear stress level. Exposure to either shear stress regimen appeared to increase binding of all integrins on the combinational surface. These responses to shear stress suggest differential integrin binding affinity compared to stainless steel. Using antibodies specific to the integrin subunits, the apparent increase in surface-bound integrins was found to be related to a surface disassociation of alpha and beta subunits. The third aim evaluated human aortic endothelial cells and acute monocytic leukemia cells (THP-1) cell binding to the tested biomaterial surfaces under both static and flow conditions. Both stainless steel and the combinational surface had increased endothelial cell binding compared to monocyte attachment. Pre-incubation of the surface with the specific integrins significantly inhibited human aortic endothelial cell binding. Aim four was designed to investigate the influence of surface bound integrins on human aortic endothelial cell migration under shear stress. If biomaterial surface integrin binding patterns are specific, then pre-bound surface integrins should competitively inhibit binding of cellular integrins to the surface. Cell migration distance on to alphavbeta3, alpha 1beta1, and alpha5beta1 pre-incubated stainless steel was decreased ten-fold, and decreased by three-fold on both 65/35 poly(D, L-lactide-coglycolide) and combinational surfaces compared to the respective bare surfaces. In contrast, migration distance on to alphaMbeta2 pre-coated stainless steel and combinational surface was decreased by only sixty percent and only fifty percent on alphaMbeta2 precoated 65/35 poly(D, L -lactide-co-glycolide). These results suggested that surface binding sites are selective and critical in governing endothelial cell migration. In conclusion, these results support the hypothesis that a surface that encourages specific integrin binding would promote differential cell binding. The novel integrin binding model used in this investigation may be a methodology that can be employed to evaluate potential vascular biomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Nazarul; Hu, Chuan, E-mail: chuan.hu@louisville.edu
2010-01-01
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cellmore » surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.« less
Olivares-Navarrete, Rene; Rodil, Sandra E.; Hyzy, Sharon L.; Dunn, Ginger R.; Almaguer-Flores, Argelia; Schwartz, Zvi; Boyan, Barbara D.
2015-01-01
Surface roughness, topography, chemistry, and energy promote osteoblast differentiation and increase osteogenic local factor production in vitro and bone-to-implant contact in vivo, but the mechanisms involved are not well understood. Knockdown of integrin heterodimer alpha2beta1 (α2β1) blocks the osteogenic effects of the surface, suggesting signaling by this integrin homodimer is required. The purpose of the present study was to separate effects of surface chemistry and surface structure on integrin expression by coating smooth or rough titanium (Ti) substrates with graphitic carbon, retaining surface morphology but altering surface chemistry. Ti surfaces (smooth [Ra<0.4μm], rough [Ra≥3.4μm]) were sputter-coated using a magnetron sputtering system with an ultrapure graphite target, producing a graphitic carbon thin film. Human mesenchymal stem cells and MG63 osteoblast-like cells had higher mRNA for integrin subunits α1, α2, αv, and β1 on rough surfaces in comparison to smooth, and integrin αv on graphitic-carbon-coated rough surfaces in comparison to Ti. Osteogenic differentiation was greater on rough surfaces in comparison to smooth, regardless of chemistry. Silencing integrins β1, α1, or α2 decreased osteoblast maturation on rough surfaces independent of surface chemistry. Silencing integrin αv decreased maturation only on graphitic carbon-coated surfaces, not on Ti. These results suggest a major role of the integrin β1 subunit in roughness recognition, and that integrin alpha subunits play a major role in surface chemistry recognition. PMID:25770999
Priglinger, Claudia S.; Szober, Christoph M.; Priglinger, Siegfried G.; Merl, Juliane; Euler, Kerstin N.; Kernt, Marcus; Gondi, Gabor; Behler, Jennifer; Geerlof, Arie; Kampik, Anselm; Ueffing, Marius; Hauck, Stefanie M.
2013-01-01
Proliferative vitreoretinopathy (PVR) is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE) cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers clustering of CD147 and integrin-β1 via interaction with β1,6-branched N-glycans on RPE cells and hypothesize that Gal-3 acts as a positive regulator for CD147/integrin-β1 clustering and therefore modifies RPE cell behavior contributing to the pathogenesis of PVR. Further investigations at this pathway may aid in the development of specific therapies for PVR. PMID:23922889
Beyond the Matrix: The Many Non-ECM Ligands for Integrins
LaFoya, Bryce; Munroe, Jordan A.; Miyamoto, Alison; Detweiler, Michael A.; Crow, Jacob J.; Gazdik, Tana
2018-01-01
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins. PMID:29393909
Kim, Hwa-Young; Baek, Song; Han, Na Rae; Lee, Eunsong; Park, Choon-Keun; Lee, Seung Tae
2018-05-29
In vitro expansion of undifferentiated porcine primed embryonic stem (ES) cells is facilitated by use of non-cellular niches that mimic three-dimensional (3D) microenvironments enclosing an inner cell mass of porcine blastocysts. Therefore, we investigated the integrin heterodimers on the surface of undifferentiated porcine primed ES cells for the purpose of developing a non-cellular niche to support in vitro maintenance of the self-renewal ability of porcine primed ES cells. Immunocytochemistry and a fluorescence immunoassay were performed to assess integrin α and β subunit levels, and attachment and antibody inhibition assays were used to evaluate the function of integrin heterodimers. The integrin α 3 , α 5 , α 6 , α 9 , α V , and β 1 subunits, but not the α 1 , α 2 , α 4 , α 7 , and α 8 subunits, were identified on the surface of undifferentiated porcine primed ES cells. Subsequently, significant increase of their adhesion to fibronectin, tenascin C and vitronectin were observed and functional blocking of integrin heterodimer α 5 β 1 , α 9 β 1 , or α V β 1 showed significantly inhibited adhesion to fibronectin, tenascin C, or vitronectin. No integrin α 6 β 1 heterodimer?mediated adhesion to laminin was detected. These results demonstrate that active α 5 β 1 , α 9 β 1 , and α V β 1 integrin heterodimers are present on the surface of undifferentiated porcine primed ES cells, together with inactive integrin α 3 (presumed) and α 6 subunits. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Miyamoto, Yuko J.; Mitchell, Jason S.; McIntyre, Bradley W.
2003-01-01
CD98 is a cell surface protein previously characterized as a cell activation marker, an amino acid transporter, and has recently been implicated in integrin-related functions. Integrins are cell surface proteins, important for homotypic cell aggregation, cell adhesion, and coactivation of T lymphocytes. We have previously shown that the anti-CD98 mAb 80A10, when coimmobilized with anti-CD3 mAb OKT3, is able to mediate human T cell coactivation that is inhibited by anti-beta1 integrin specific mAb 18D3. These results indicated a functional association of CD98 and beta1 integrin signaling but left open the question of a physical association. We now show the induction of homotypic aggregation through CD98 among human T cells and this aggregation was inhibited by anti-beta1 integrin mAb. Therefore, CD98-dependent lymphocyte proliferation and adhesion may involve integrins. Competitive binding assays and fluorescence colocalization analysis suggested that CD98 and beta1 integrin were physically associated. Differential extraction techniques and immunoprecipitations provided the first evidence that the alpha4beta1 integrin and CD98 are specifically associated on human T lymphocytes.
Insulin promotes cell migration by regulating PSA-NCAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monzo, Hector J.; Coppieters, Natacha; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland
Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cellmore » migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. - Highlights: • Insulin modulates PSA-NCAM turnover through upregulation of p-FAK. • P-FAK modulates αv-integrin/PSA-NCAM clustering. • αv-integrin acts as a carrier for PSA-NCAM endocytosis. • Cell migration is promoted by cell surface PSA. • Insulin promotes PSA-dependent migration in vitro.« less
Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression.
Cowden Dahl, Karen D; Robertson, Sarah E; Weaver, Valerie M; Simon, M Celeste
2005-04-01
Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of alpha and beta aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt(-/-) and Hifalpha(-/-) TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin alphavbeta3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O(2)). Culturing B16F0 melanoma cells at 1.5% O(2) resulted in increased alphavbeta3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O(2) tension influence placental invasion and tumor migration by increasing cell surface expression of alphavbeta3 integrin.
Hypoxia-inducible Factor Regulates αvβ3 Integrin Cell Surface Expression
Cowden Dahl, Karen D.; Robertson, Sarah E.; Weaver, Valerie M.; Simon, M. Celeste
2005-01-01
Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of α and β aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt-/- and Hifα-/- TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin αvβ3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O2). Culturing B16F0 melanoma cells at 1.5% O2 resulted in increased αvβ3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O2 tension influence placental invasion and tumor migration by increasing cell surface expression of αvβ3 integrin. PMID:15689487
Mechanotransduction through Integrins
NASA Technical Reports Server (NTRS)
Ingber, Donald
2004-01-01
The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses through cell surface integrin receptors and through their interconnections with the underlying cytoskeleton. Work completed and published in past funding period had provided direct support for this hypothesis. In particular, we demonstrated that application of mechanical stresses to activated integrin receptors (but not inactive integrins or other control transmembrane receptors) resulted in stress-dependent activation of the CAMP signaling pathway leading to gene transcription. We also showed that this form of mechanotransduction requires activation of heterotrimeric G proteins. In this grant, our specific aims included: 1) to characterize the signal processing capabilities of different integrins and other cell surface receptors, 2) to identify heterotrimeric G proteins that mediate CAMP signaling by stresses applied to integrins, 3) to identify molecules that mediate transmembrane mechanochemical coupling between integrins and G proteins, and 4) to use genome-wide gene expression profiling techniques to identify other genes and signaling pathways that are activated by mechanical forces transmitted over specific cell surface receptors. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation.
Zhuang, Shufei; Kelo, Lisha; Nardi, James B; Kanost, Michael R
2008-01-01
The cell-mediated responses of the insect innate immune system-phagocytosis, nodulation, encapsulation-involve multiple cell adhesion molecules of hemocyte surfaces. A hemocyte-specific (HS) integrin and a member of the immunoglobulin (Ig) superfamily (neuroglian) are involved in the encapsulation response of hemocytes in Manduca sexta. In addition, two new integrin alpha (alpha) subunits have been found on these hemocytes. The alpha2 subunit is mainly expressed in epidermis and Malphigian tubules, whereas the alpha3 subunit is primarily expressed on hemocytes and fat body cells. Of the three known alpha subunits, the alpha1 subunit found in HS integrin is the predominant subunit of hemocytes. Cell adhesion assays indicate that alpha2 belongs to the integrin family with RGD-binding motifs, confirming the phylogenetic analysis of alpha subunits based on the amino-acid sequence alignment of different alpha subunits. Double-stranded RNAs (dsRNAs) targeting each of these three integrin alpha subunits not only specifically decreased transcript expression of each alpha subunit in hemocytes, but also abolished the cell-mediated encapsulation response of hemocytes to foreign surfaces. The individual alpha subunits of M. sexta integrins, like their integrin counterparts in mammalian immune systems, have critical, individual roles in cell-substrate and cell-cell interactions during immune responses.
deHart, Gregory W; Healy, Kevin E; Jones, Jonathan C R
2003-02-01
Analyses of mice with targeted deletions in the genes for alpha3 and beta1 integrin suggest that the alpha3beta1 integrin heterodimer likely determines the organization of the extracellular matrix within the basement membrane of skin. Here we tested this hypothesis using keratinocytes derived from alpha3 integrin-null mice. We have compared the organizational state of laminin-5, a ligand of alpha3beta1 integrin, in the matrix of wild-type keratinocytes with that of laminin-5 in the matrix of alpha3 integrin-null cells. Laminin-5 distributes diffusely in arc structures in the matrix of wild-type mouse keratinocytes, whereas laminin-5 is organized into linear, spike-like arrays by the alpha3 integrin-null cells. The fact that alpha3 integrin-null cells are deficient in their ability to assemble a proper laminin-5 matrix is also shown by their failure to remodel laminin-5 when plated onto surfaces coated with purified laminin-5 protein. In sharp contrast, wild-type keratinocytes organize exogenously added laminin-5 into discrete ring-like organizations. These findings led us next to assess whether differences in laminin-5 organization in the matrix of the wild-type and alpha3 integrin-null cells impact cell behavior. Our results indicate that alpha3 integrin-null cells are more motile than their wild-type counterparts and leave extensive trails of laminin-5 over the surface on which they move. Moreover, HEK 293 cells migrate significantly more on the laminin-5-rich matrix derived from the alpha3 integrin-null cells than on the wild-type keratinocyte laminin-5 matrix. In addition, alpha3 integrin-null cells show low strength of adhesion to surfaces coated with purified laminin-5 compared to wild-type cells although both the wild type and the alpha3 integrin-null keratinocytes adhere equally strongly to laminin-5 that has been organized into arrays by other epithelial cells. These data suggest: (1) that alpha3beta1 integrin plays an important role in determining the incorporation of laminin-5 into its proper higher-order structure within the extracellular matrix of keratinocytes and (2) that the organizational state of laminin-5 has an influence on laminin-5 matrix function. Copyright 2003 Elsevier Science (USA)
Sarkar, Anwesha; Zhao, Yuanchang; Wang, Yongliang; Wang, Xuefeng
2018-06-25
Integrin-transmitted cellular forces are crucial mechanical signals regulating a vast range of cell functions. Although various methods have been developed to visualize and quantify cellular forces at the cell-matrix interface, a method with high performance and low technical barrier is still in demand. Here we developed a force-activatable coating (FAC), which can be simply coated on regular cell culture apparatus' surfaces by physical adsorption, and turn these surfaces to force reporting platforms that enable cellular force mapping directly by fluorescence imaging. The FAC molecule consists of an adhesive domain for surface coating and a force-reporting domain which can be activated to fluoresce by integrin molecular tension. The tension threshold required for FAC activation is tunable in 10-60 piconewton (pN), allowing the selective imaging of cellular force contributed by integrin tension at different force levels. We tested the performance of two FACs with tension thresholds of 12 and 54 pN (nominal values), respectively, on both glass and polystyrene surfaces. Cellular forces were successfully mapped by fluorescence imaging on all the surfaces. FAC-coated surfaces also enable co-imaging of cellular forces and cell structures in both live cells and immunostained cells, therefore opening a new avenue for the study of the interplay of force and structure. We demonstrated the co-imaging of integrin tension and talin clustering in live cells, and concluded that talin clustering always occurs before the generation of integrin tension above 54 pN, reinforcing the notion that talin is an important adaptor protein for integrin tension transmission. Overall, FAC provides a highly convenient approach that is accessible to general biological laboratories for the study of cellular forces with high sensitivity and resolution, thus holding the potential to greatly boost the research of cell mechanobiology.
Saeki, Noritaka; Nishino, Shingo; Shimizu, Tomohiro; Ogawa, Kazushige
2015-01-01
Eph signaling, which arises following stimulation by ephrins, is known to induce opposite cell behaviors such as promoting and inhibiting cell adhesion as well as promoting cell-cell adhesion and repulsion by altering the organization of the actin cytoskeleton and influencing the adhesion activities of integrins. However, crosstalk between Eph/ephrin with integrin signaling has not been fully elucidated in leukocytes, including monocytes and their related cells. Using a cell attachment stripe assay, we have shown that, following stimulation with ephrin-A1, kinase-independent EphA2 promoted cell spreading/elongation as well as adhesion to integrin ligand-coated surfaces in cultured U937 (monocyte) and J774.1 (monocyte/macrophage) cells as well as sublines of these cells expressing dominant negative EphA2 that lacks most of the intracellular region. Moreover, a pull-down assay showed that dominant negative EphA2 is recruited to the β2 integrin/ICAM1 and β2 integrin/VCAM1 molecular complexes in the subline cells following stimulation with ephrin-A1-Fc. Notably, this study is the first comprehensive analysis of the effects of EphA2 receptors on integrin-mediated cell adhesion in monocytic cells. Based on these findings we propose that EphA2 promotes cell adhesion by an unknown signaling pathway that largely depends on the extracellular region of EphA2 and the activation of outside-in integrin signaling.
Strachan, Lauren R; Condic, Maureen L
2004-11-08
Cell migration is essential for proper development of numerous structures derived from embryonic neural crest cells (NCCs). Although the migratory pathways of NCCs have been determined, the molecular mechanisms regulating NCC motility remain unclear. NCC migration is integrin dependent, and recent work has shown that surface expression levels of particular integrin alpha subunits are important determinants of NCC motility in vitro. Here, we provide evidence that rapid cranial NCC motility on laminin requires integrin recycling. NCCs showed both ligand- and receptor-specific integrin regulation in vitro. On laminin, NCCs accumulated internalized laminin but not fibronectin receptors over 20 min, whereas on fibronectin neither type of receptor accumulated internally beyond 2 min. Internalized laminin receptors colocalized with receptor recycling vesicles and were subsequently recycled back to the cell surface. Blocking receptor recycling with bafilomycin A inhibited NCC motility on laminin, indicating that substratum-dependent integrin recycling is essential for rapid cranial neural crest migration.
Galectin-3 modulates the polarized surface delivery of β1-integrin in epithelial cells.
Hönig, Ellena; Ringer, Karina; Dewes, Jenny; von Mach, Tobias; Kamm, Natalia; Kreitzer, Geri; Jacob, Ralf
2018-05-10
Epithelial cells require a precise intracellular transport and sorting machinery in order to establish and maintain their polarized architecture. This machinery includes beta-galactoside binding galectins for glycoprotein targeting to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analyzed the role of galectin-3 in the polarized distribution of β1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of β1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of β1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized β1-integrin to the apical membrane and promotes apical delivery of β1-integrin internalized from the basolateral membrane. In parallel, galectin-3 knockout results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of β1-integrin and affects the morphogenesis of polarized cells. © 2018. Published by The Company of Biologists Ltd.
Insulin promotes cell migration by regulating PSA-NCAM.
Monzo, Hector J; Coppieters, Natacha; Park, Thomas I H; Dieriks, Birger V; Faull, Richard L M; Dragunow, Mike; Curtis, Maurice A
2017-06-01
Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. Copyright © 2017 Elsevier Inc. All rights reserved.
Integrin traffic - the update.
De Franceschi, Nicola; Hamidi, Hellyeh; Alanko, Jonna; Sahgal, Pranshu; Ivaska, Johanna
2015-03-01
Integrins are a family of transmembrane cell surface molecules that constitute the principal adhesion receptors for the extracellular matrix (ECM) and are indispensable for the existence of multicellular organisms. In vertebrates, 24 different integrin heterodimers exist with differing substrate specificity and tissue expression. Integrin-extracellular-ligand interaction provides a physical anchor for the cell and triggers a vast array of intracellular signalling events that determine cell fate. Dynamic remodelling of adhesions, through rapid endocytic and exocytic trafficking of integrin receptors, is an important mechanism employed by cells to regulate integrin-ECM interactions, and thus cellular signalling, during processes such as cell migration, invasion and cytokinesis. The initial concept of integrin traffic as a means to translocate adhesion receptors within the cell has now been expanded with the growing appreciation that traffic is intimately linked to the cell signalling apparatus. Furthermore, endosomal pathways are emerging as crucial regulators of integrin stability and expression in cells. Thus, integrin traffic is relevant in a number of pathological conditions, especially in cancer. Nearly a decade ago we wrote a Commentary in Journal of Cell Science entitled 'Integrin traffic'. With the advances in the field, we felt it would be appropriate to provide the growing number of researchers interested in integrin traffic with an update. © 2015. Published by The Company of Biologists Ltd.
The adapter protein SLP-76 mediates "outside-in" integrin signaling and function in T cells.
Baker, R G; Hsu, C J; Lee, D; Jordan, M S; Maltzman, J S; Hammer, D A; Baumgart, T; Koretzky, G A
2009-10-01
The adapter protein SH2 domain-containing leukocyte protein of 76 kDa (SLP-76) is an essential mediator of signaling from the T-cell antigen receptor (TCR). We report here that SLP-76 also mediates signaling downstream of integrins in T cells and that SLP-76-deficient T cells fail to support adhesion to integrin ligands. In response to both TCR and integrin stimulation, SLP-76 relocalizes to surface microclusters that colocalize with phosphorylated signaling proteins. Disruption of SLP-76 recruitment to the protein named LAT (linker for activation of T cells) inhibits SLP-76 clustering downstream of the TCR but not downstream of integrins. Conversely, an SLP-76 mutant unable to bind ADAP (adhesion and degranulation-promoting adapter protein) forms clusters following TCR but not integrin engagement and fails to support T-cell adhesion to integrin ligands. These findings demonstrate that SLP-76 relocalizes to integrin-initiated signaling complexes by a mechanism different from that employed during TCR signaling and that SLP-76 relocalization corresponds to SLP-76-dependent integrin function in T cells.
Expression of {beta}{sub 1} integrins in human endometrial stromal and decidual cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiokawa, Shigetatsu; Yoshimura, Yasunori; Nakamura, Yukio
The present study was undertaken to investigate the expression of {beta}{sub 1} integrins in human endometrium and decidua using flow cytometry, immunohistochemistry, and immunoprecipitation. Fluorescence-activated flow cytometry demonstrated the greater expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 5} subunits of the {beta}{sub 1} integrin family in cultured stromal cells from the midsecretory phase, than in those of the early proliferative phase. The addition of estradiol (E{sub 2}) and progesterone (P) to cultured stromal cells in the early proliferative phase increased the expression of {beta}{sub 1} integrins in vitro. Flow cytometry also demonstrated the expression of themore » {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}, {alpha}{sub 5}, and {alpha}{sub 6} subunits of {beta}{sub 1} integrin family in cultured decidual cells, and the enriched-fraction of prolactin (PRL)-producing decidual cells isolated by Percoll gradients showed high levels of {beta}{sub 1} integrins expression. Immunohistochemistry confirmed the {beta}{sub 1} integrin cell surface phenotypes in cultured decidual cells observed by flow cytometry. In summary, the present study demonstrated that endometrial stromal and decidual cells expressed {beta}{sub 1} integrin subunits at their surfaces. The expression exhibited a variability throughout the menstrual cycles, being predominantly detected in the secretory phase, and was maintained highly in the decidua. Thus, {beta}{sub 1} integrins in human endometrium and decidua may be important in mediating the organization of extracellular matrix proteins derived from embryos during the early stage of implantation. 43 refs., 7 figs., 2 tabs.« less
Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rieken, Stefan, E-mail: Stefan.Rieken@med.uni-heidelberg.de; Habermehl, Daniel; Wuerth, Lena
2012-05-01
Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration onmore » both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.« less
Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie
2012-07-01
To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.
Nishibaba, Rie; Higashi, Yuko; Su, Juan; Furukawa, Tatsuhiko; Kawai, Kazuhiro; Kanekura, Takuro
2012-01-01
CD147/basigin, highly expressed on the surface of malignant tumor cells including malignant melanoma (MM) cells, plays a critical role in the invasiveness and metastasis of MM. Metastasis is an orchestrated process comprised of multiple steps including adhesion and invasion. Integrin, a major adhesion molecule, co-localizes with CD147/basigin on the cell surface. Using the human MM cell line A375 that highly expresses CD147/basigin, we investigated whether CD147/basigin is involved in adhesion in association with integrin. CD147/basigin was knocked-down using siRNA targeting CD147 to elucidate the role of CD147/basigin. Cell adhesion was evaluated by adhesion assay on matrix-coated plates. The localization of integrin was inspected under a confocal microscope and the expression and phosphorylation of focal adhesion kinase (FAK), a downstream kinase of integrin, were examined by western blot analysis. Silencing of CD147/basigin in A375 cells by siRNA induced the phosphorylation of FAK at Y397. Integrin identified on the surface of parental cells was distributed in a speckled fashion in the cytoplasm of CD147 knockdown cells, resulting in morphological changes from a round to a polygonal shape with pseudopodial protrusions. Silencing of CD147/basigin in A375 cells clearly weakened their adhesiveness to collagen I and IV. Our results suggest that CD147/basigin regulates the adhesion of MM cells to extracellular matrices and of integrin β1 signaling via the phosphorylation of FAK. © 2011 Japanese Dermatological Association.
Integrin activation by a cold atmospheric plasma jet
NASA Astrophysics Data System (ADS)
Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael
2012-05-01
Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. In this paper, we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. We focus on the study of CAP interaction with fibroblasts and corneal epithelial cells. The data show that fibroblasts and corneal epithelial cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration. Both cell types reduced their migration rates by ˜30-40% after CAP compared to control cells. Also, the impact of CAP treatment on cell migration and persistence of fibroblasts after integrin activation by MnCl2, serum starvation or replating cells onto surfaces coated with integrin ligands is assessed; the results show that activation by MnCl2 or starvation attenuates cells’ responses to plasma. Studies carried out to assess the impact of CAP treatment on the activation state of β1 integrin and focal adhesion size by using immunofluorescence show that fibroblasts have more active β1 integrin on their surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly.
Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke
2008-01-01
Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737
Imamaki, Rie; Ogawa, Kazuko; Kizuka, Yasuhiko; Komi, Yusuke; Kojima, Soichi; Kotani, Norihiro; Honke, Koichi; Honda, Takashi; Taniguchi, Naoyuki; Kitazume, Shinobu
2018-05-02
Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 -/- mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 -/- endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 -/- mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.
Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells.
Das, Lipsa; Anderson, Todd A; Gard, Jaime M C; Sroka, Isis C; Strautman, Stephanie R; Nagle, Raymond B; Morrissey, Colm; Knudsen, Beatrice S; Cress, Anne E
2017-05-01
Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modeling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (k actual ) of 3.25 min -1 , threefold faster than α3 integrin (1.0 min -1 ), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min -1 ), and significantly slower than the unrelated transferrin receptor (CD71) (15 min -1 ). Silencing of α3 integrin protein expression in DU145, PC3, and PC3B1 cells resulted in up to a 1.71-fold increase in k actual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8-fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the k actual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. J. Cell. Biochem. 118: 1038-1049, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2
De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna
2016-01-01
Integrins are heterodimeric cell-surface adhesion molecules comprising one of possible 18 α-chains and one of possible 8 β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalised by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalisation by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with AP2 C-µ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions. PMID:26779610
Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2.
De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna
2016-02-01
Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-μ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.
Austin, Pamela; Heller, Markus; Williams, David E.; McIntosh, Lawrence P.; Vogl, A. Wayne; Foster, Leonard J.; Andersen, Raymond J.; Roberge, Michel; Roskelley, Calvin D.
2010-01-01
Background Neopetrosiamide A (NeoA) is a 28-amino acid tricyclic peptide originally isolated from a marine sponge as a tumor cell invasion inhibitor whose mechanism of action is unknown. Methodology/Principal Findings We show that NeoA reversibly inhibits tumor cell adhesion, disassembles focal adhesions in pre-attached cells, and decreases the level of β1 integrin subunits on the cell surface. NeoA also induces the formation of dynamic, membrane-bound protrusions on the surface of treated cells and the release of membrane-bound vesicles into the culture medium. Proteomic analysis indicates that the vesicles contain EGF and transferrin receptors as well as a number of proteins involved in adhesion and migration including: β1 integrin and numerous α integrin subunits; actin and actin-binding proteins such as cofilin, moesin and myosin 1C; and membrane modulating eps15 homology domain (EHD) proteins. Surface labeling, trafficking inhibition, and real-time imaging experiments all suggest that β1 integrin-containing vesicles are released directly from NeoA-induced cell surface protrusions rather than from vesicles generated intracellularly. The biological activity of NeoA is dependent on its disulfide bond pattern and NMR spectroscopy indicates that the peptide is globular with a continuous ridge of hydrophobic groups flanked by charged amino acid residues that could facilitate a simultaneous interaction with lipids and proteins in the membrane. Conclusions/Significance NeoA is an anti-adhesive peptide that decreases cell surface integrin levels through a novel, yet to be elucidated, mechanism that involves the release of adhesion molecule-containing vesicles from the cell surface. PMID:20520768
Kochi, Shinsuke; Yamashiro, Keisuke; Hongo, Shoichi; Yamamoto, Tadashi; Ugawa, Yuki; Shimoe, Masayuki; Kawamura, Mari; Hirata-Yoshihara, Chiaki; Ideguchi, Hidetaka; Maeda, Hiroshi; Takashiba, Shogo
2017-12-01
Gingival epithelial cells form a physiological barrier against bacterial invasion. Excessive bacterial invasion destroys the attachment between the tooth surface and the epithelium, resulting in periodontitis. Integrins play a significant role in cell attachment; therefore, we hypothesized that bacterial infection might decrease the expressions of these integrins in gingival epithelial cells, resulting in reduced cell adhesion. Immortalized human gingival epithelial cells were co-cultured with Aggregatibacter actinomycetemcomitans Y4 (Aa Y4), and the gene expression levels of IL-8, proliferating cell nuclear antigen (PCNA), and integrins (α2, α3, α5, β4, and β6) were measured using quantitative reverse transcription polymerase chain reaction. Expression of PCNA and integrins, except integrin α5, was significantly downregulated, while expression of IL-8 and integrin α5 was significantly upregulated in the cells co-cultured with Aa Y4. The number of adherent cells significantly decreased when co-cultured with Aa Y4, as determined using cell adhesion assays. In the cells co-cultured with Aa Y4 and an integrin α5 neutralizing antibody, there was no effect on the expression of IL-8 and PCNA, while the expressions of integrins α2, α3, β4, and β6, and the number of adherent cells did not decrease. The number of invading bacteria in the cells was reduced in the presence of the antibody and increased in the presence of TLR2/4 inhibitor. Therefore, integrin α5 might be involved in Aa Y4 invasion into gingival epithelial cells, and the resulting signal transduction cascade reduces cell adhesion by decreasing the expression of integrins, while the TLR2/4 signaling cascade regulates IL-8 expression.
The cancer glycocalyx mechanically primes integrin-mediated growth and survival
Paszek, Matthew J.; DuFort, Christopher C.; Rossier, Olivier; Bainer, Russell; Mouw, Janna K.; Godula, Kamil; Hudak, Jason E.; Lakins, Jonathon N.; Wijekoon, Amanda C.; Cassereau, Luke; Rubashkin, Matthew G.; Magbanua, Mark J.; Thorn, Kurt S.; Davidson, Michael W.; Rugo, Hope S.; Park, John W.; Hammer, Daniel A.; Giannone, Grégory; Bertozzi, Carolyn R.; Weaver, Valerie M.
2015-01-01
Malignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function. We tested this prediction by investigating whether bulky glycoproteins in the glycocalyx promote a tumour phenotype in human cells by increasing integrin adhesion and signalling. Our data revealed that a bulky glycocalyx facilitates integrin clustering by funnelling active integrins into adhesions and altering integrin state by applying tension to matrix-bound integrins, independent of actomyosin contractility. Expression of large tumour-associated glycoproteins in non-transformed mammary cells promoted focal adhesion assembly and facilitated integrin-dependent growth factor signalling to support cell growth and survival. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with advanced disease. Thus, a bulky glycocalyx is a feature of tumour cells that could foster metastasis by mechanically enhancing cell-surface receptor function. PMID:25030168
The role of α9β1 integrin and its ligands in the development of autoimmune diseases.
Kon, Shigeyuki; Uede, Toshimitsu
2018-03-01
Adhesion of cells to extracellular matrix proteins through integrins expressed on the cell surface is important for cell adhesion/motility, survival, and differentiation. Recently, α9β1 integrin was reported to be important for the development of autoimmune diseases including rheumatoid arthritis, multiple sclerosis, and their murine models. In addition, ligands for α9β1 integrin, such as osteopontin and tenascin-C, are well established as key regulators of autoimmune diseases. Therefore, this review focused on the role of interactions between α9β1 integrin and its ligands in the development of autoimmune diseases.
Zhao, Cancan; Wang, Xiaoya; Gao, Long; Jing, Linguo; Zhou, Quan; Chang, Jiang
2018-06-01
The micro/nano hybrid structure is considered to be a biomaterial characteristic to stimulate osteogenesis by mimicking the three-dimensional structure of the bone matrix. However, the mechanism of the hybrid structure induced osteogenic differentiation of stem cells is still unknown. For elucidating the mechanisms, one of the challenge is to directly fabricate micro/nano hybrid structure on bioceramics because of its brittleness. In this study, hydroxyapatite (HA) bioceramics with the micro/nano hybrid structure were firstly fabricated via a hydrothermal treatment and template method, and the effect of the different surface structures on the expression of integrins, BMP2 signaling pathways and cell-cell communication was investigated. Interestingly, the results suggested that the osteogenic differentiation induced by micro/nano structures was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, while activated BMP2 could in turn activate integrins and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect. The micro/nano hybrid structure has been found to have synergistic bioactivity on osteogenesis. However, it is still a challenge to fabricate the hybrid structure directly on the bioceramics, and the role of micro- and nano-structure, in particular the mechanism of the micro/nano-hybrid structure induced stem cell differentiation is still unknown. In this study, we firstly fabricated hydroxyapatite bioceramics with the micro/nano hybrid structure, and then investigated the effect of different surface structure on expression of integrins, BMP2 signaling pathways and cell-cell communication. Interestingly, we found that the osteogenic differentiation induced by structure was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, and activated BMP2 could in turn activate some integrin subunits and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
β3 integrin expression is required for invadopodia-mediated ECM degradation in lung carcinoma cells
Morales, Xabier; Salvo, Elizabeth; Garasa, Saray; Ortiz de Solórzano, Carlos; Martínez, Alfredo; Larrayoz, Ignacio M.; Rouzaut, Ana
2017-01-01
Cancer related deaths are primarily due to tumor metastasis. To facilitate their dissemination to distant sites, cancer cells develop invadopodia, actin-rich protrusions capable of degrading the surrounding extracellular matrix (ECM). We aimed to determine whether β3 integrin participates in invadopodia formed by lung carcinoma cells, based on our previous findings of specific TGF-β induction of β3 integrin dependent metastasis in animal models of lung carcinoma. In this study, we demonstrate that lung carcinoma cells form invadopodia in response to TGF-β exposure. Invadopodia formation and degradation activity is dependent on β3 integrin expression since β3 integrin deficient cells are not able to degrade gelatin-coated surfaces. Even more, transient over-expression of SRC did not restore invadopodia formation in β3 integrin deficient cells. Finally, we observed that blockade of PLC-dependent signaling leads to more intense labeling for β3 integrin in invadopodia. Our results suggest that β3 integrin function, and location, in lung cancer cells are essential for invadopodia formation, and this integrin regulates the activation of different signal pathways necessary for the invasive structure. β3 integrin has been associated with poor prognosis and increased metastasis in several carcinoma types, including lung cancer. Our findings provide new evidence to support the use of targeted therapies against this integrin to combat the onset of metastases. PMID:28767724
Mitchell, Jason S.; Brown, Wells S.; Woodside, Darren G.; Vanderslice, Peter; McIntyre, Bradley W.
2008-01-01
Lipid rafts are small laterally mobile microdomains that are highly enriched in lymphocyte signaling molecules. GM1 gangliosides are a common lipid raft component and have been shown to be important in many T cell functions. The aggregation of specific GM1 lipid rafts can control many T cell activation events, including their novel association with T cell integrins. We found that clustering GM1 lipid rafts can regulate β1 integrin function. This was apparent through increased resistance to shear flow dependent detachment of T cells adherent to the α4β1 and α5β1 integrin ligand fibronectin (FN). Adhesion strengthening as a result of clustering GM1 enriched lipid rafts correlated with increased cellular rigidity and morphology through the localization of cortical F-actin, the resistance to shear induced cell stretching, and an increase in the surface area and symmetry of the contact area between the cell surface and adhesive substrate. Furthermore, clustering GM1 lipid rafts could initiate integrin “inside-out” signaling mechanisms. This was seen through increased integrin-cytoskeleton associations and enhanced soluble binding of FN and VCAM-1 suggesting the induction of high affinity integrin conformations. The activation of these adhesion strengthening characteristics appear to be specific for the aggregation of GM1 lipid rafts as the aggregation of the heterogeneous raft associated molecule CD59 failed to activate these functions. These findings indicate a novel mechanism to signal to β1 integrins and to activate adhesion strengthening processes. PMID:19139760
Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio
2015-01-01
Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion. PMID:25973543
Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio
2015-06-10
Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.
Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells†
Das, Lipsa; Anderson, Todd A.; Gard, Jaime M.C.; Sroka, Isis C.; Strautman, Stephanie R.; Nagle, Raymond B.; Morrissey, Colm; Knudsen, Beatrice S.; Cress, Anne E.
2017-01-01
Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modelling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (kactual) of 3.25min−1, 3-fold faster than α3 integrin (1.0 min−1), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min−1), and significantly slower than the unrelated transferrin receptor (CD71) (15 min−1). Silencing of α3 integrin protein expression in DU145, PC3 and PC3B1 cells resulted in up to a 1.71-fold increase in kactual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8 fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the kactual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. This article is protected by copyright. All rights reserved PMID:27509031
Glia Maturation Factor-γ Regulates Monocyte Migration through Modulation of β1-Integrin*
Aerbajinai, Wulin; Liu, Lunhua; Zhu, Jianqiong; Kumkhaek, Chutima; Chin, Kyung; Rodgers, Griffin P.
2016-01-01
Monocyte migration requires the dynamic redistribution of integrins through a regulated endo-exocytosis cycle, but the complex molecular mechanisms underlying this process have not been fully elucidated. Glia maturation factor-γ (GMFG), a novel regulator of the Arp2/3 complex, has been shown to regulate directional migration of neutrophils and T-lymphocytes. In this study, we explored the important role of GMFG in monocyte chemotaxis, adhesion, and β1-integrin turnover. We found that knockdown of GMFG in monocytes resulted in impaired chemotactic migration toward formyl-Met-Leu-Phe (fMLP) and stromal cell-derived factor 1α (SDF-1α) as well as decreased α5β1-integrin-mediated chemoattractant-stimulated adhesion. These GMFG knockdown impaired effects could be reversed by cotransfection of GFP-tagged full-length GMFG. GMFG knockdown cells reduced the cell surface and total protein levels of α5β1-integrin and increased its degradation. Importantly, we demonstrate that GMFG mediates the ubiquitination of β1-integrin through knockdown or overexpression of GMFG. Moreover, GMFG knockdown retarded the efficient recycling of β1-integrin back to the plasma membrane following normal endocytosis of α5β1-integrin, suggesting that the involvement of GMFG in maintaining α5β1-integrin stability may occur in part by preventing ubiquitin-mediated degradation and promoting β1-integrin recycling. Furthermore, we observed that GMFG interacted with syntaxin 4 (STX4) and syntaxin-binding protein 4 (STXBP4); however, only knockdown of STXBP4, but not STX4, reduced monocyte migration and decreased β1-integrin cell surface expression. Knockdown of STXBP4 also substantially inhibited β1-integrin recycling in human monocytes. These results indicate that the effects of GMFG on monocyte migration and adhesion probably occur through preventing ubiquitin-mediated proteasome degradation of α5β1-integrin and facilitating effective β1-integrin recycling back to the plasma membrane. PMID:26895964
The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis.
Aidoudi, Sallouha; Bujakowska, Kinga; Kieffer, Nelly; Bikfalvi, Andreas
2008-07-16
The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet alpha-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with alphavbeta3 on the surface of alphavbeta3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through alphavbeta3 integrin, and also through other integrins, such as alphavbeta5 and alpha5beta1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.
Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.
Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V
2007-09-14
The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.
Tang, Bolin; Zhang, Bo; Zhuang, Junjun; Wang, Qi; Dong, Lingqing; Cheng, Kui; Weng, Wenjian
2018-07-01
Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding state of integrin α5β1 with fibronectin induces effective activation of integrin-mediated FAK/ERK signaling pathway to upregulate cellular osteogenic differentiation. This work provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Integrins in bone metastasis formation and potential therapeutic implications.
Clëzardin, P
2009-11-01
Integrins constitute a family of cell surface receptors that are heterodimers composed of noncovalently associated alpha and beta subunits. Integrins bind to extracellular matrix proteins and immunogobulin superfamily molecules. They exert a stringent control on cell migration, survival and proliferation. However, their expression and functions are often deregulated in cancer, and many lines of evidence implicate them as key regulators during progression from primary tumor growth to metastasis. Here, we review the role of integrins in bone metastasis formation and present evidence that the use of integrin-targeted therapeutic agents may be an efficient strategy to block tumor metastasis.
Tumbarello, David A; Temple, Jillian; Brenton, James D
2012-05-28
The extracellular matrix (ECM) has a key role in facilitating the progression of ovarian cancer and we have shown recently that the secreted ECM protein TGFBI modulates the response of ovarian cancer to paclitaxel-induced cell death. We have determined TGFBI signaling from the extracellular environment is preferential for the cell surface αvß3 integrin heterodimer, in contrast to periostin, a TGFBI paralogue, which signals primarily via a ß1 integrin-mediated pathway. We demonstrate that suppression of ß1 integrin expression, in ß3 integrin-expressing ovarian cancer cells, increases adhesion to rTGFBI. In addition, Syndecan-1 and -4 expression is dispensable for adhesion to rTGFBI and loss of Syndecan-1 cooperates with the loss of ß1 integrin to further enhance adhesion to rTGFBI. The RGD motif present in the carboxy-terminus of TGFBI is necessary, but not sufficient, for SKOV3 cell adhesion and is dispensable for adhesion of ovarian cancer cells lacking ß3 integrin expression. In contrast to TGFBI, the carboxy-terminus of periostin, lacking a RGD motif, is unable to support adhesion of ovarian cancer cells. Suppression of ß3 integrin in SKOV3 cells increases resistance to paclitaxel-induced cell death while suppression of ß1 integrin has no effect. Furthermore, suppression of TGFBI expression stimulates a paclitaxel resistant phenotype while suppression of fibronectin expression, which primarily signals through a ß1 integrin-mediated pathway, increases paclitaxel sensitivity. Therefore, different ECM components use distinct signaling mechanisms in ovarian cancer cells and in particular, TGFBI preferentially interacts through a ß3 integrin receptor mediated mechanism to regulate the response of cells to paclitaxel-induced cell death.
Mechanical control of cyclic AMP signalling and gene transcription through integrins
NASA Technical Reports Server (NTRS)
Meyer, C. J.; Alenghat, F. J.; Rim, P.; Fong, J. H.; Fabry, B.; Ingber, D. E.
2000-01-01
This study was carried out to discriminate between two alternative hypotheses as to how cells sense mechanical forces and transduce them into changes in gene transcription. Do cells sense mechanical signals through generalized membrane distortion or through specific transmembrane receptors, such as integrins? Here we show that mechanical stresses applied to the cell surface alter the cyclic AMP signalling cascade and downstream gene transcription by modulating local release of signals generated by activated integrin receptors in a G-protein-dependent manner, whereas distortion of integrins in the absence of receptor occupancy has no effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamoto, Eiji; Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507; Okamoto, Takayuki, E-mail: okamotot@doc.medic.mie-u.ac.jp
LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding ofmore » PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells. - Highlights: • LFA-1 and Mac-1 integrins bind to the anti-coagulant molecule thrombomodulin. • The serine/threonine-rich domain of thrombomodulin is essential to interact with the LFA-1 and Mac-1 integrins on PBMCs. • Integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells.« less
Horii, Yoshio; Iino, Yuichi; Maemura, Michio; Horiguchi, Jun; Morishita, Yasuo
2005-02-01
We investigated the potent inhibitory effects of OK-432 (Picibanil) on both cellular adhesion and cell proliferation of estrogen-dependent (MCF-7) or estrogen-independent (MDA-MB-231) breast carcinoma cells. Cellular proliferation of both MCF-7 and MDA-MB-231 cells was markedly inhibited in a dose-dependent manner, when the carcinoma cells were exposed to OK-432. Cell attachment assay demonstrated that incubation with OK-432 for 24 h reduced integrin-mediated cellular adhesion of both cell types. However, fluorescence activated cell sorter (FACS) analysis revealed that incubation with OK-432 for 24 h did not decrease the cell surface expressions of any integrins. These results suggest that the binding avidity of integrins is reduced by OK-432 without alteration of the integrin expression. We conclude that OK-432 inhibits integrin-mediated cellular adhesion as well as cell proliferation of breast carcinoma cells regardless of estrogen-dependence, and that these actions of OK-432 contribute to prevention or inhibition of breast carcinoma invasion and metastasis.
Rooj, Arun K.; Liu, Zhiyong; McNicholas, Carmel M.
2015-01-01
Major plasma membrane components of the tumor cell, ion channels, and integrins play crucial roles in metastasis. Glioma cells express an amiloride-sensitive nonselective cation channel composed of acid-sensing ion channel (ASIC)-1 and epithelial Na+ channel (ENaC) α- and γ-subunits. Inhibition of this channel is associated with reduced cell migration and proliferation. Using the ASIC-1 subunit as a reporter for the channel complex, we found a physical and functional interaction between this channel and integrin-β1. Short hairpin RNA knockdown of integrin-β1 attenuated the amiloride-sensitive current, which was due to loss of surface expression of ASIC-1. In contrast, upregulation of membrane expression of integrin-β1 increased the surface expression of ASIC-1. The link between the amiloride-sensitive channel and integrin-β1 was mediated by α-actinin. Downregulation of α-actinin-1 or -4 attenuated the amiloride-sensitive current. Mutation of the putative binding site for α-actinin on the COOH terminus of ASIC-1 reduced the membrane localization of ASIC-1 and also resulted in attenuation of the amiloride-sensitive current. Our data suggest a novel interaction between the amiloride-sensitive glioma cation channel and integrin-β1, mediated by α-actinin. This interaction may form a mechanism by which channel activity can regulate glioma cell proliferation and migration. PMID:26108662
Boisset, Jean-Charles; Clapes, Thomas; Van Der Linden, Reinier; Dzierzak, Elaine; Robin, Catherine
2013-01-01
Summary Integrins are transmembrane receptors that play important roles as modulators of cell behaviour through their adhesion properties and the initiation of signaling cascades. The αIIb integrin subunit (CD41) is one of the first cell surface markers indicative of hematopoietic commitment. αIIb pairs exclusively with β3 to form the αIIbβ3 integrin. β3 (CD61) also pairs with αv (CD51) to form the αvβ3 integrin. The expression and putative role of these integrins during mouse hematopoietic development is as yet unknown. We show here that hematopoietic stem cells (HSCs) differentially express αIIbβ3 and αvβ3 integrins throughout development. Whereas the first HSCs generated in the aorta at mid-gestation express both integrins, HSCs from the placenta only express αvβ3, and most fetal liver HSCs do not express either integrin. By using αIIb deficient embryos, we show that αIIb is not only a reliable HSC marker but it also plays an important and specific function in maintaining the HSC activity in the mouse embryonic aorta. PMID:23789102
The CXC-Chemokine CXCL4 Interacts with Integrins Implicated in Angiogenesis
Aidoudi, Sallouha; Bujakowska, Kinga; Kieffer, Nelly; Bikfalvi, Andreas
2008-01-01
The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet α-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with αvβ3 on the surface of αvβ3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through αvβ3 integrin, and also through other integrins, such as αvβ5 and α5β1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect. PMID:18648521
β1-integrin controls cell fate specification in early lens development
Pathania, Mallika; Wang, Yan; Simirskii, Vladimir N.; Duncan, Melinda K.
2016-01-01
Integrins are heterodimeric cell surface molecules that mediate cell-extracellular matrix (ECM) adhesion, ECM assembly, and regulation of both ECM and growth factor induced signaling. However, the developmental context of these diverse functions is not clear. Loss of β1-integrin from the lens vesicle (mouse E10.5) results in abnormal exit of anterior lens epithelial cells (LECs) from the cell cycle and their aberrant elongation toward the presumptive cornea by E12.5. These cells lose expression of LEC markers and initiate expression of the Maf (also known as c-Maf) and Prox1 transcription factors as well as other lens fiber cell markers, β1-integrin null LECs also upregulate the ERK, AKT and Smad1/5/8 phosphorylation indicative of BMP and FGF signaling. By E14.5, β1-integrin null lenses have undergone a complete conversion of all lens epithelial cells into fiber cells. These data suggest that shortly after lens vesicle closure, β1-integrin blocks inappropriate differentiation of the lens epithelium into fibers, potentially by inhibiting BMP and/or FGF receptor activation. Thus, β1-integrin has an important role in fine-tuning the response of the early lens to the gradient of growth factors that regulate lens fiber cell differentiation. PMID:27596755
The opposing roles of laminin-binding integrins in cancer.
Ramovs, Veronika; Te Molder, Lisa; Sonnenberg, Arnoud
2017-01-01
Integrins play an important role in cell adhesion by linking the cytoskeleton of cells to components in the extracellular matrix. In this capacity, integrins cooperate with different cell surface receptors, including growth factor receptors and G-protein coupled receptors, to regulate intracellular signaling pathways that control cell polarization, spreading, migration, survival, and gene expression. A distinct subfamily of molecules in the integrin family of adhesion receptors is formed by receptors that mediate cell adhesion to laminins, major components of the basement membrane that lie under clusters of cells or surround them, separating them from other cells and/or adjacent connective tissue. During the past decades, many studies have provided evidence for a role of laminin-binding integrins in tumorigenesis, and both tumor-promoting and suppressive activities have been identified. In this review we discuss the dual role of the laminin-binding integrins α3β1 and α6β4 in tumor development and progression, and examine the factors and mechanisms involved in these opposing effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Prichard, David O; Byrne, Anne Marie; Murphy, James O; Reynolds, John V; O'Sullivan, Jacintha; Feighery, Ronan; Doyle, Brendan; Eldin, Osama Sharaf; Finn, Stephen P; Maguire, Aoife; Duff, Deirdre; Kelleher, Dermot P; Long, Aideen
2017-12-01
The fundamental mechanisms underlying erosive oesophagitis and subsequent development of Barrett's oesophagus (BO) are poorly understood. Here, we investigated the contribution of specific components of the gastric refluxate on adhesion molecules involved in epithelial barrier maintenance. Cell line models of squamous epithelium (HET-1A) and BO (QH) were used to examine the effects of bile acids on cell adhesion to extracellular matrix proteins (Collagen, laminin, vitronectin, fibronectin) and expression of integrin ligands (α 3 , α 4, α 5 , α 6 and α ν ). Experimental findings were validated in human explant oesophageal biopsies, a rat model of gastroesophageal reflux disease (GORD) and in patient tissue microarrays. The bile acid deoxycholic acid (DCA) specifically reduced adhesion of HET-1A cells to vitronectin and reduced cell-surface expression of integrin-α ν via effects on endocytic recycling processes. Increased expression of integrin-α v was observed in ulcerated tissue in a rat model of GORD and in oesophagitis and Barrett's intestinal metaplasia patient tissue compared to normal squamous epithelium. Increased expression of integrin-α ν was observed in QH BO cells compared to HET-1A cells. QH cells were resistant to DCA-mediated loss of adhesion and reduction in cell-surface expression of integrin-α ν . We demonstrated that a specific component of the gastric refluxate, DCA, affects the epithelial barrier through modulation of integrin α ν expression, providing a novel mechanism for bile acid-mediated erosion of oesophageal squamous epithelium and promotion of BO. Strategies aimed at preventing bile acid-mediated erosion should be considered in the clinical management of patients with GORD. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Wang, Ruifei; Bi, Jiajia; Ampah, Khamal Kwesi; Zhang, Chunmei; Li, Ziyi; Jiao, Yang; Wang, Xiaoru; Ba, Xueqing; Zeng, Xianlu
2013-08-01
Cell adhesion and spreading require integrins-mediated cell-extracellular matrix interaction. Integrins function through binding to extracellular matrix and subsequent clustering to initiate focal adhesion formation and actin cytoskeleton rearrangement. Lipid raft, a liquid ordered plasma membrane microdomain, has been reported to play major roles in membrane motility by regulating cell surface receptor function. Here, we identified that lipid raft integrity was required for β1 integrin-mediated initial spreading of melanoma A375 cells on fibronectin. We found that lipid raft disruption with methyl-β-cyclodextrin led to the inability of focal adhesion formation and actin cytoskeleton rearrangement by preventing β1 integrin clustering. Furthermore, we explored the possible mechanism by which lipid raft regulates β1 integrin clustering and demonstrated that intact lipid raft could recruit and modify some adaptor proteins, such as talin, α-actinin, vinculin, paxillin and FAK. Lipid raft could regulate the location of these proteins in lipid raft fractions and facilitate their binding to β1 integrin, which may be crucial for β1 integrin clustering. We also showed that lipid raft disruption impaired A375 cell migration in both transwell and wound healing models. Together, these findings provide a new insight for the relationship between lipid raft and the regulation of integrins. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cell-Matrix Interactions in Breast Carcinoma Invasion.
1998-01-01
concentrated in hemidesmosomes, adhesive junctions which connect the basement membrane to the intracellular keratin cytoskeleton. In virtually all...fibronectin receptor contribute to the adhesive abnormalities of transformed fibroblasts by overexpressing this integrin in Chinese hamster ovary (CHO) cells...normal breast epithelium , the integrins expressed in breast carcinoma cells are diffusely distributed over the cell surface (Zutter et al., 1990
Jiang, Wenting; Fu, Yuanting; Yang, Fang; Yang, Yufeng; Liu, Ting; Zheng, Wenjie; Zeng, Lilan; Chen, Tianfeng
2014-08-27
The poor permeability of glioma parenchyma represents a major limit for antiglioblastoma drug delivery. Gracilaria lemaneiformis polysaccharide (GLP), which has a high binding affinity to αvβ3 integrin overexpressed in glioma cells, was employed in the present study to functionalize selenium nanoparticles (SeNPs) to achieve antiglioblastoma efficacy. GLP-SeNPs showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. In U87 glioma cell membrane, which has a high integrin expression level, GLP-SeNPs exhibited significantly higher cellular uptake than unmodified SeNPs. As expected, U87 cells exhibited a greater uptake of GLP-SeNPs than C6 cells with low integrin expression level. Furthermore, the internalization of GLP-SeNPs was inhibited by cyclo-(Arg-Gly-Asp-Phe-Lys) peptides, suggesting that cellular uptake into U87 cells and C6 cells occurred via αvβ3 integrin-mediated endocytosis. For U87 cells, the cytotoxicity of SeNPs decorated by GLP was enhanced significantly because of the induction of various apoptosis signaling pathways. Internalized GLP-SeNPs triggered intracellular reactive oxygen species downregulation. Therefore, p53, MAPKs, and AKT pathways were activated to advance cell apoptosis. These findings suggest that surface decoration of nanomaterials with GLP could be an efficient strategy for design and preparation of glioblastoma targeting nanodrugs.
ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons.
Eva, Richard; Crisp, Sarah; Marland, Jamie R K; Norman, Jim C; Kanamarlapudi, Venkateswarlu; ffrench-Constant, Charles; Fawcett, James W
2012-07-25
Integrins are involved in axon growth and regeneration. Manipulation of integrins is a route to promoting axon regeneration and understanding regeneration failure in the CNS. Expression of α9 integrin promotes axon regeneration, so we have investigated α9β1 trafficking and transport in axons and at the growth cone. We have previously found that α9 and β1 integrins traffic via Rab11-positive recycling endosomes in peripheral axons and growth cones. However, transport via Rab11 is slow, while rapid transport occurs in vesicles lacking Rab11. We have further studied α9 and β1 integrin transport and traffic in adult rat dorsal root ganglion axons and PC12 cells. Integrins are in ARF6 vesicles during rapid axonal transport and during trafficking in the growth cone. We report that rapid axonal transport of these integrins and their trafficking at the cell surface is regulated by ARF6. ARF6 inactivation by expression of ACAP1 leads to increased recycling of β1 integrins to the neuronal surface and to increased anterograde axonal transport. ARF6 activation by expression of the neuronal guanine nucleotide exchange factors, ARNO or EFA6, increases retrograde integrin transport in axons and increases integrin internalization. ARF6 inactivation increases integrin-mediated outgrowth, while activation decreases it. The coordinated changes in integrin transport and recycling resulting from ARF6 activation or inactivation are the probable mechanism behind this regulation of axon growth. Our data suggest a novel mechanism of integrin traffic and transport in peripheral axons, regulated by the activation state of ARF6, and suggest that ARF6 might be targeted to enhance integrin-dependent axon regeneration after injury.
Iturri, Jagoba; García-Fernández, Luis; Reuning, Ute; García, Andrés J.; Campo, Aránzazu del; Salierno, Marcelo J.
2015-01-01
The Quartz Crystal Microbalance with dissipation (QCM-D) technique was applied to monitor and quantify integrin-RGD recognition during the early stages of cell adhesion. Using QCM-D crystals modified with a photo-activatable RGD peptide, the time point of presentation of adhesive ligand at the surface of the QCM-D crystal could be accurately controlled. This allowed temporal resolution of early integrin-RGD binding and the subsequent cell spreading process, and their separate detection by QCM-D. The specificity of the integrin-RGD binding event was corroborated by performing the experiments in the presence of soluble cyclicRGD as a competitor, and cytochalasin D as inhibitor of cell spreading. Larger frequency change in the QCM-D signal was observed for cells with larger spread area, and for cells overexpressing integrin αvβ3 upon stable transfection. This strategy enables quantification of integrin activity which, in turn, may allow discrimination among different cell types displaying distinct integrin subtypes and expression levels thereof. On the basis of these findings, we believe the strategy can be extended to other photoactivatable ligands to characterize cell membrane receptors activity, a relevant issue for cancer diagnosis (and prognosis) as other several pathologies. PMID:25825012
Zhang, Y; Chen, M; Venugopal, S; Zhou, Y; Xiang, W; Li, Y-H; Lin, Q; Kini, R M; Chong, Y-S; Ge, R
2011-05-05
Isthmin (ISM) is a 60 kDa secreted-angiogenesis inhibitor that suppresses tumor growth in mouse and disrupts vessel patterning in zebrafish embryos. It selectively binds to alphavbeta5 (αvβ5) integrin on the surface of endothelial cells (ECs), but the mechanism of its antiangiogenic action remains unknown. In this work, we establish that soluble ISM suppresses in vitro angiogenesis and induces EC apoptosis by interacting with its cell surface receptor αvβ5 integrin through a novel 'RKD' motif localized within its adhesion-associated domain in MUC4 and other proteins domain. ISM induces EC apoptosis through integrin-mediated death (IMD) by direct recruitment and activation of caspase-8 without causing anoikis. On the other hand, immobilized ISM loses its antiangiogenic function and instead promotes EC adhesion, survival and migration through αvβ5 integrin by activating focal adhesion kinase (FAK). ISM unexpectedly has both a pro-survival and death-promoting effect on ECs depending on its physical state. This dual function of a single antiangiogenic protein may impact its antiangiogenic efficacy in vivo.
Kalli, Antreas C; Rog, Tomasz; Vattulainen, Ilpo; Campbell, Iain D; Sansom, Mark S P
2017-08-01
Integrins are heterodimeric (αβ) cell surface receptors that are potential therapeutic targets for a number of diseases. Despite the existence of structural data for all parts of integrins, the structure of the complete integrin receptor is still not available. We have used available structural data to construct a model of the complete integrin receptor in complex with talin F2-F3 domain. It has been shown that the interactions of integrins with their lipid environment are crucial for their function but details of the integrin/lipid interactions remain elusive. In this study an integrin/talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin/talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2-F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction across cell membranes.
The impact of quercetin on wound healing relates to changes in αV and β1 integrin expression.
Doersch, Karen M; Newell-Rogers, M Karen
2017-08-01
Overly fibrotic wound healing can lead to excess scar formation, causing functional impairment and undesirable cosmetic results. However, there are few successful treatments available to prevent or remediate scars. This study sought to explore the molecular mechanisms by which quercetin, a naturally-occurring antifibrotic agent, diminishes scar formation. Using both mice and fibroblast cells, we examined quercetin's impact on fibrosis and the wound healing rate, and potential molecular mechanisms underlying the quercetin-mediated reduction of fibrosis. While cultured fibroblasts demonstrated normal growth in response to quercetin, quercetin increased surface αV integrin and decreased β1 integrin. These changes in surface integrin expression may impact factors that contribute to fibrosis including cell migration, proliferation, and extracellular matrix production. In both quercetin-treated and control mice, wounds healed in about 14 days. Masson's trichrome stain revealed diminished fibrosis at the wound site in quercetin-treated animals despite the normal healing rate, indicating the potential for better cosmetic results without delaying healing. An in vitro scratch wound model using cells plated on an artificial extracellular matrix demonstrated delayed closure following quercetin treatment. The extracellular matrix also ameliorated quercetin's effect on αV integrin. Thus, αV integrin recruitment in response to quercetin treatment may promote the quercetin-mediated decrease extracellular matrix because cells require less extracellular matrix to migrate into a wound. With added extracellular matrix, β1 integrin remained diminished in response to quercetin, indicating that quercetin's effect on β1 integrin expression is independent of extracellular matrix -mediated signaling and is likely driven by inhibition of the intracellular mechanisms driving β1 expression. These findings suggest that quercetin could alter the cells' interactions with the extracellular matrix through the regulation of integrin expression to promote a decrease in fibrosis. Furthermore, this work demonstrates that this naturally occurring and commercially available supplement could be used to improve wound healing by impacting integrin expression, leading to a lower extracellular matrix requirement to achieve healing. Impact statement Scar formation during wound healing can be problematic for patients but there are limited therapies available to treat or prevent excess fibrosis at wound sites. This work examines the impact of quercetin, a flavonoid that decreases fibrosis, on wound healing, and relates quercetin's effects to changes in integrin expression on the surface of fibroblast cells. To our knowledge, this is the first report that quercetin alters integrin expression or that this impact may be part of the mechanism by which quercetin prevents fibrosis. This work demonstrates that quercetin can be used to modulate integrin expression and that this effect may in turn reduce fibrosis during wound healing. Furthermore, this paper identifies the modulation of integrin expression as a possible therapeutic target in preventing scars. This information could be used to improve therapeutics to aid in the cosmetic and functional results following wound healing.
Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions
NASA Technical Reports Server (NTRS)
Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.
1998-01-01
The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.
Receptor-based differences in human aortic smooth muscle cell membrane stiffness
NASA Technical Reports Server (NTRS)
Huang, H.; Kamm, R. D.; So, P. T.; Lee, R. T.
2001-01-01
Cells respond to mechanical stimuli with diverse molecular responses. The nature of the sensory mechanism involved in mechanotransduction is not known, but integrins may play an important role. The integrins are linked to both the cytoskeleton and extracellular matrix, suggesting that probing cells via integrins should yield different mechanical properties than probing cells via non-cytoskeleton-associated receptors. To test the hypothesis that the mechanical properties of a cell are dependent on the receptor on which the stress is applied, human aortic smooth muscle cells were plated, and magnetic beads, targeted either to the integrins via fibronectin or to the transferrin receptor by use of an IgG antibody, were attached to the cell surface. The resistance of the cell to deformation ("stiffness") was estimated by oscillating the magnetic beads at 1 Hz by use of single-pole magnetic tweezers at 2 different magnitudes. The ratio of bead displacements at different magnitudes was used to explore the mechanical properties of the cells. Cells stressed via the integrins required approximately 10-fold more force to obtain the same bead displacements as the cells stressed via the transferrin receptors. Cells stressed via integrins showed stiffening behavior as the force was increased, whereas this stiffening was significantly less for cells stressed via the transferrin receptor (P<0.001). Mechanical characteristics of vascular smooth muscle cells depend on the receptor by which the stress is applied, with integrin-based linkages demonstrating cell-stiffening behavior.
Integrin-directed modulation of macrophage responses to biomaterials.
Zaveri, Toral D; Lewis, Jamal S; Dolgova, Natalia V; Clare-Salzler, Michael J; Keselowsky, Benjamin G
2014-04-01
Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Zequn; Biswas, Siddhartha; Liang, Benjia; Zou, Xueqing; Shan, Liqun; Li, Yang; Fang, Ruliang; Niu, Jun
2016-07-21
Cholangiocarcinoma is a devastating malignancy that is notoriously difficult to diagnose and is associated with a high mortality. Despite extensive efforts to improve the diagnosis and treatment of this neoplasm, limited progress has been made. Integrin β6 is a subtype of integrin that is expressed exclusively on the surfaces of epithelial cells and is associated with a variety of tumors. In the present study, we investigated the expression and roles of integrin β6 in cholangiocarcinoma. β6 upregulation in cholangiocarcinoma was correlated with lymph node metastasis and distant metastasis. Moreover, integrin β6 was identified as a biomarker for the diagnosis of cholangiocarcinoma and an indicator of lymph node metastasis. Integrin β6 significantly promoted the proliferation, migration and invasion of cholangiocarcinoma cells. Furthermore, integrin β6 increased Rac1-GTPase, resulting in the upregulation of metalloproteinase-9 (MMP9) and F-actin polymerization. Taken together, our results indicate that integrin β6 promotes tumor invasiveness in a Rac1-dependent manner and is a potential biomarker for tumor metastasis. Integrin β6 may help to improve the diagnostic accuracy, and targeting β6 may be a novel strategy for the treatment of cholangiocarcinoma.
Acidic Extracellular pH Promotes Activation of Integrin αvβ3
Paradise, Ranjani K.; Lauffenburger, Douglas A.; Van Vliet, Krystyn J.
2011-01-01
Acidic extracellular pH is characteristic of the cell microenvironment in several important physiological and pathological contexts. Although it is well established that acidic extracellular pH can have profound effects on processes such as cell adhesion and migration, the underlying molecular mechanisms are largely unknown. Integrin receptors physically connect cells to the extracellular matrix, and are thus likely to modulate cell responses to extracellular conditions. Here, we examine the role of acidic extracellular pH in regulating activation of integrin αvβ3. Through computational molecular dynamics simulations, we find that acidic extracellular pH promotes opening of the αvβ3 headpiece, indicating that acidic pH can thereby facilitate integrin activation. This prediction is consistent with our flow cytometry and atomic force microscope-mediated force spectroscopy assays of integrin αvβ3 on live cells, which both demonstrate that acidic pH promotes activation at the intact cell surface. Finally, quantification of cell morphology and migration measurements shows that acidic extracellular pH affects cell behavior in a manner that is consistent with increased integrin activation. Taken together, these computational and experimental results suggest a new and complementary mechanism of integrin activation regulation, with associated implications for cell adhesion and migration in regions of altered pH that are relevant to wound healing and cancer. PMID:21283814
Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert
2014-02-07
A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.
β1 Integrin is an Adhesion Protein for Sperm Binding to Eggs
Baessler, Keith A.; Lee, Younjoo; Sampson, Nicole S.
2009-01-01
We investigated the role of β1 integrin in mammalian fertilization and the mode of inhibition of fertilinβ-derived polymers. We determined that polymers displaying the Glu-Cys-Asp peptide from the fertilinβ disintegrin domain mediate inhibition of mammalian fertilization through a β1 integrin receptor on the egg surface. Inhibition of fertilization is a consequence of competition with sperm binding to the cell surface, not activation of an egg-signaling pathway. The presence of the β1 integrin on the egg surface increases the rate of sperm attachment, but does not alter the total number of sperm that can attach or fuse to the egg. We conclude that the presence of β1 integrin enhances the initial adhesion of sperm to the egg plasma membrane and that subsequent attachment and fusion are mediated by additional egg and sperm proteins present in the β1 integrin complex. Therefore, the mechanisms by which sperm fertilize wild-type and β1 knockout eggs are different. PMID:19338281
Koyama, T; Hughes, R C
1992-12-25
We have examined the properties of the alpha 5 beta 1 integrin of baby hamster kidney (BHK) cells, a ricin-resistant variant Ric14 lacking N-acetylglucosaminyl transferase I, and hence unable to complete assembly of hybrid- or complex-type N-glycans, and BHK cells treated with 1-deoxymannojirimycin (dMM), an inhibitor of Golgi mannosidases involved in the initial processing of N-glycan precursors. Comparable amounts of alpha 5 beta 1 integrin were isolated from these cells by chromatography of detergent extracts on a fibronectin cell-binding fragment affinity column and elution with EDTA. The alpha 5 beta 1 integrin obtained from normal BHK cells by fibronectin affinity chromatography contained mainly endoglycosidase H-resistant oligosaccharides, whereas in RicR14 cells or dMM-treated BHK cells these were entirely endoglycosidase H-sensitive. Analysis of lactoperoxidase labeled or long term biosynthetically 35S-labeled proteins from cultures of normal or glycosylation deficient cells showed similar steady state levels of alpha 5 beta 1 integrin and expression at the cell surface. Pulse-chase experiments in normal BHK cells showed rapid conversion of the alpha 5 subunit into a mature form containing oligosaccharides resistant to endoglycosidase H and slower maturation of a precursor beta 1 subunit, as in other cell types. In Ric14 cells the precursor beta 1 subunit was found to carry glycans larger than the fully processed Man5GlcNAc2 glycan of the mature subunit, indicating that the bulk precursor pool had not been translocated into the cis-Golgi compartment containing mannosidase I. We conclude that in BHK cells terminal oligosaccharide processing of alpha 5 beta 1 integrin subunits is not required for dimer formation, surface expression, and fibronectin binding, and that expression of the glycosylation defect of Ric14 cells on the alpha 5 beta 1 integrin does not account for the reduced adhesiveness of these cells on fibronectin compared with normal and dMM-treated BHK cells.
Walther, Christa G; Whitfield, Robert; James, David C
2016-04-01
The biopharmaceutical production process relies upon mammalian cell technology where single cells proliferate in suspension in a chemically defined synthetic environment. This environment lacks exogenous growth factors, usually contributing to proliferation of fibroblastic cell types such as Chinese hamster ovary (CHO) cells. Use of CHO cells for production hence requires a lengthy 'adaptation' process to select clones capable of proliferation as single cells in suspension. The underlying molecular changes permitting proliferation in suspension are not known. Comparison of the non-suspension-adapted clone CHO-AD and a suspension-adapted propriety cell line CHO-SA by flow cytometric analysis revealed a highly variable bi-modal expression pattern for cell-to-cell contact proteins in contrast to the expression pattern seen for integrins. Those have a uni-modal expression on suspension and adherent cells. Integrins showed a conformation distinguished by regularly distributed clusters forming a sphere on the cell membrane of suspension-adapted cells. Actin cytoskeleton analysis revealed reorganisation from the typical fibrillar morphology found in adherent cells to an enforced spherical subcortical actin sheath in suspension cells. The uni-modal expression and specific clustering of integrins could be confirmed for CHO-S, another suspension cell line. Cytochalasin D treatment resulted in breakdown of the actin sheath and the sphere-like integrin conformation demonstrating the link between integrins and actin in suspension-adapted CHO cells. The data demonstrates the importance of signalling changes, leading to an integrin rearrangement on the cell surface, and the necessity of the reinforcement of the actin cytoskeleton for proliferation in suspension conditions.
Edwards, Justin P; Thornton, Angela M; Shevach, Ethan M
2014-09-15
Activated T regulatory cells (Tregs) express latent TGF-β1 on their cell surface bound to GARP. Although integrins have been implicated in mediating the release of active TGF-β1 from the complex of latent TGF-β1 and latent TGF-β1 binding protein, their role in processing latent TGF-β1 from the latent TGF-β1/GARP complex is unclear. Mouse CD4(+)Foxp3(+) Treg, but not CD4(+)Foxp3(-) T cells, expressed integrin β8 (Itgb8) as detected by quantitative RT-PCR. Itgb8 expression was a marker of thymically derived (t)Treg, because it could not be detected on Foxp3(+)Helios(-) Tregs or on Foxp3(+) T cells induced in vitro. Tregs from Itgb8 conditional knockouts exhibited normal suppressor function in vitro and in vivo in a model of colitis but failed to provide TGF-β1 to drive Th17 or induced Treg differentiation in vitro. In addition, Itgb8 knockout Tregs expressed higher levels of latent TGF-β1 on their cell surface consistent with defective processing. Thus, integrin αvβ8 is a marker of tTregs and functions in a cell intrinsic manner in mediating the processing of latent TGF-β1 from the latent TGF-β1/GARP complex on the surface of tTregs.
Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J
2001-09-18
It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.
Kawai, R; Ozeki, N; Yamaguchi, H; Tanaka, T; Nakata, K; Mogi, M; Nakamura, H
2014-05-01
We examined whether mouse embryonic stem (ES) cells can differentiate into odontoblast-like cells without epithelial-mesenchymal interaction. Cells were cultured by the 'hanging drop' method using a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). Expression of odontoblast-related mRNA and protein, and cell proliferation were performed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and WST-1 assay, respectively. Cells potently expressed odontoblast-related cell marker mRNAs following induction of odontoblastic differentiation. Dentin sialophosphoprotein, a marker of mature odontoblasts, was strongly expressed in differentiated ES cells. The cells also acquired an odontoblast-like functional phenotype, as evidenced by the appearance of alkaline phosphatase activity and calcification. The cell-surface expression of α2, α6, αV and αVβ3 integrin proteins was rapidly upregulated in differentiated cells. Finally, anti-α2 integrin antibody suppressed the expression of odontoblastic markers in cells grown using this culture system, suggesting that α2 integrin expression in ES cells triggers their differentiation into odontoblast-like cells. Mouse ES cells cultured by the 'hanging drop' method are able to differentiate into cells with odontoblast-specific physiological functions and cell-surface integrin protein expression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan
2013-07-01
To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.
Diverse roles of integrin receptors in articular cartilage.
Shakibaei, M; Csaki, C; Mobasheri, A
2008-01-01
Integrins are heterodimeric integral membrane proteins made up of alpha and beta subunits. At least eighteen alpha and eight beta subunit genes have been described in mammals. Integrin family members are plasma membrane receptors involved in cell adhesion and active as intra- and extracellular signalling molecules in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic spread of tumour cells. Integrin beta 1 (beta1-integrin), the protein encoded by the ITGB1 gene (also known as CD29 and VLAB), is a multi-functional protein involved in cell-matrix adhesion, cell signalling, cellular defense, cell adhesion, protein binding, protein heterodimerisation and receptor-mediated activity. It is highly expressed in the human body (17.4 times higher than the average gene in the last updated revision of the human genome). The extracellular matrix (ECM) of articular cartilage is a unique environment. Interactions between chondrocytes and the ECM regulate many biological processes important to homeostasis and repair of articular cartilage, including cell attachment, growth, differentiation and survival. The beta1-integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these fundamental processes. Chondrocyte mechanoreceptors have been proposed to incorporate beta1-integrins and mechanosensitive ion channels which link with key ECM, cytoskeletal and signalling proteins to maintain the chondrocyte phenotype, prevent chondrocyte apoptosis and regulate chondrocyte-specific gene expression. This review focuses on the expression and function of beta1-integrins in articular chondrocytes, its role in the unique biology of these cells and its distribution in cartilage.
Utilizing Fibronectin Integrin-Binding Specificity to Control Cellular Responses
Bachman, Haylee; Nicosia, John; Dysart, Marilyn; Barker, Thomas H.
2015-01-01
Significance: Cells communicate with the extracellular matrix (ECM) protein fibronectin (Fn) through integrin receptors on the cell surface. Controlling integrin–Fn interactions offers a promising approach to directing cell behavior, such as adhesion, migration, and differentiation, as well as coordinated tissue behaviors such as morphogenesis and wound healing. Recent Advances: Several different groups have developed recombinant fragments of Fn that can control epithelial to mesenchymal transition, sequester growth factors, and promote bone and wound healing. It is thought that these physiological responses are, in part, due to specific integrin engagement. Furthermore, it has been postulated that the integrin-binding domain of Fn is a mechanically sensitive switch that drives binding of one integrin heterodimer over another. Critical Issues: Although computational simulations have predicted the mechano-switch hypothesis and recent evidence supports the existence of varying strain states of Fn in vivo, experimental evidence of the Fn integrin switch is still lacking. Future Directions: Evidence of the integrin mechano-switch will enable the development of new Fn-based peptides in tissue engineering and wound healing, as well as deepen our understanding of ECM pathologies, such as fibrosis. PMID:26244106
Lishko, Valeryi K.; Moreno, Benjamin; Podolnikova, Nataly P.; Ugarova, Tatiana P.
2016-01-01
LL-37, a cationic antimicrobial peptide, has numerous immune-modulating effects. However, the identity of a receptor(s) mediating the responses in immune cells remains uncertain. We have recently demonstrated that LL-37 interacts with the αMI-domain of integrin αMβ2 (Mac-1), a major receptor on the surface of myeloid cells, and induces a migratory response in Mac-1-expressing monocyte/macrophages as well as activation of Mac-1 on neutrophils. Here, we show that LL-37 and its C-terminal derivative supported strong adhesion of various Mac-1-expressing cells, including HEK293 cells stably transfected with Mac-1, human U937 monocytic cells and murine IC-21 macrophages. The cell adhesion to LL-37 was partially inhibited by specific Mac-1 antagonists, including mAb against the αM integrin subunit and neutrophil inhibitory factor, and completely blocked when anti-Mac-1 antibodies were combined with heparin, suggesting that cell surface heparan sulfate proteoglycans act cooperatively with integrin Mac-1. Coating both Gram-negative and Gram-positive bacteria with LL-37 significantly potentiated their phagocytosis by macrophages, and this process was blocked by a combination of anti-Mac-1 mAb and heparin. Furthermore, phagocytosis by wild-type murine peritoneal macrophages of LL-37-coated latex beads, a model of foreign surfaces, was several fold higher than that of untreated beads. By contrast, LL-37 failed to augment phagocytosis of beads by Mac-1-deficient macrophages. These results identify LL-37 as a novel ligand for integrin Mac-1 and demonstrate that the interaction between Mac-1 on macrophages and bacteria-bound LL-37 promotes phagocytosis. PMID:27990411
Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.
Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L
1996-07-01
Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.
A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System.
Qin, Yan; Garrison, Brian S; Ma, Wenjiang; Wang, Rui; Jiang, Aiping; Li, Jing; Mistry, Meeta; Bronson, Roderick T; Santoro, Daria; Franco, Charlotte; Robinton, Daisy A; Stevens, Beth; Rossi, Derrick J; Lu, Chafen; Springer, Timothy A
2018-06-12
Extracellular proTGF-β is covalently linked to "milieu" molecules in the matrix or on cell surfaces and is latent until TGF-β is released by integrins. Here, we show that LRRC33 on the surface of microglia functions as a milieu molecule and enables highly localized, integrin-αVβ8-dependent TGF-β activation. Lrrc33 -/- mice lack CNS vascular abnormalities associated with deficiency in TGF-β-activating integrins but have microglia with a reactive phenotype and after 2 months develop ascending paraparesis with loss of myelinated axons and death by 5 months. Whole bone marrow transplantation results in selective repopulation of Lrrc33 -/- brains with WT microglia and halts disease progression. The phenotypes of WT and Lrrc33 -/- microglia in the same brain suggest that there is little spreading of TGF-β activated from one microglial cell to neighboring microglia. Our results suggest that interactions between integrin-bearing cells and cells bearing milieu molecule-associated TGF-β provide localized and selective activation of TGF-β. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Jing; Thielemann, Christiane; Reuning, Ute; Johannsmann, Diethelm
2005-01-15
The quartz crystal microbalance (QCM) was used to monitor specific, integrin-mediated adhesion of human ovarian cancer cells to distinct extracellular matrix (ECM) proteins immobilized on gold-coated quartz crystal resonators. The QCM was operated in the impedance analysis mode, where frequency shift as well as bandwidth are accessible on a broad range of overtones. The increase in bandwidth caused by covering the quartz resonator with cells was reproducible and largely independent of overtone order, whereas the frequency shift displayed some variability. Thus the bandwidth proved to be the more robust parameter for sensing cell adhesive events. The bandwidth increased in proportion to the number of seeded cells to the quartz crystal as long as the number was below 150,000 cells/ml. Comparing the resonance parameters on different harmonics, one finds that viscoelastic modeling with homogeneous layer systems cannot reproduce the results: lateral heterogeneity has to be taken into account. The differences in adhesive strength of human ovarian cancer cells towards selected ECM proteins monitored by QCM was in good agreement with data obtained by conventional cell adhesion assays. Strong cell adhesion was observed to the ECM proteins vitronectin (VN) and fibronectin (FN), while only weak attachment occurred on laminin. In order to prove specific, integrin alphavbeta3-mediated cell adhesion to its ligands FN and VN, the cyclic integrin alphavbeta3-directed peptide c(RGDfV) was used as competitor and significantly reversed cell adhesion. Since integrin interaction with ECM proteins is dependent on the presence of bivalent cations, cell detachment was also seen after treatment of cell monolayers with the chelator ethylene-dinitro-tetra-acetic acid (EDTA). The QCM technique is a reliable method to monitor cell adsorption to ECM-pretreated surfaces in real time. It may be an alternative tool for screening specific and selective antagonists of integrin/ECM interaction.
Peripheral myelin protein-22 (PMP22) modulates alpha 6 integrin expression in the human endometrium.
Rao, Rajiv G; Sudhakar, Deepthi; Hogue, Claire P; Amici, Stephanie; Gordon, Lynn K; Braun, Jonathan; Notterpek, Lucia; Goodglick, Lee; Wadehra, Madhuri
2011-04-25
PMP22, a member of the GAS3 family of tetraspan proteins, is associated with a variety of neurological diseases. Previous studies have shown that PMP22 is expressed in proliferative endometrium, but its function within this tissue is poorly understood. In this study, we first characterized the expression of PMP22 in the human menstrual cycle and began to characterize its function in the endometrium. Using a combination of immunohistochemistry and quantitative PCR, we characterized the expression of PMP22 in both proliferative and secretory endometrium. Differences in PMP22 expression between proliferative and secretory endometrium were determined using a Mann-Whitney U test. In order to investigate the influence of PMP22 on α6 integrin expression, cells were created that ectopically overexpressed PMP22 or expressed a siRNA to inhibit its expression. These cells were analyzed for changes in integrins and binding to extracellular matrices. In this study, we show that PMP22 expression is higher in proliferative phase than secretory phase. Functionally, we have begun to characterize the functional significance of this expression. Previous studies have suggested a link between PMP22 and α6 integrin, and therefore we asked whether PMP22 could associate or potentially modulate the expression of α6 integrin. Expression of both PMP22 and α6 integrin were detectable in endometrial epithelial and stromal cells, and we show that both proteins can associate and colocalize with each other. To understand if PMP22 directly altered the expression of a6 integrin, we examined cell lines with modulated levels of the protein. Overexpression of PMP22 was sufficient to increase α6 integrin surface expression with a concominant increase in binding to the extracellular matrix laminin, while a reduction in PMP22 suppressed α6 integrin surface expression. These findings suggest a physiologic role for PMP22 on the expression of α6 integrin. We predict that this may be important for the maintainence of endometrial integrity and to the disease biology associated with altered levels of α6 integrin expression in the endometrium.
Zhang, Y; Chen, M; Venugopal, S; Zhou, Y; Xiang, W; Li, Y-H; Lin, Q; Kini, R M; Chong, Y-S; Ge, R
2011-01-01
Isthmin (ISM) is a 60 kDa secreted-angiogenesis inhibitor that suppresses tumor growth in mouse and disrupts vessel patterning in zebrafish embryos. It selectively binds to alphavbeta5 (αvβ5) integrin on the surface of endothelial cells (ECs), but the mechanism of its antiangiogenic action remains unknown. In this work, we establish that soluble ISM suppresses in vitro angiogenesis and induces EC apoptosis by interacting with its cell surface receptor αvβ5 integrin through a novel ‘RKD' motif localized within its adhesion-associated domain in MUC4 and other proteins domain. ISM induces EC apoptosis through integrin-mediated death (IMD) by direct recruitment and activation of caspase-8 without causing anoikis. On the other hand, immobilized ISM loses its antiangiogenic function and instead promotes EC adhesion, survival and migration through αvβ5 integrin by activating focal adhesion kinase (FAK). ISM unexpectedly has both a pro-survival and death-promoting effect on ECs depending on its physical state. This dual function of a single antiangiogenic protein may impact its antiangiogenic efficacy in vivo. PMID:21544092
Anamelechi, Charles C.; Clermont, Edward C.; Novak, Matthew T.; Reichert, William M.
2014-01-01
Surfaces decorated with high affinity ligands can be used to facilitate rapid attachment of endothelial cells; however, standard equilibrium cell detachment studies are poorly suited for assessing these initial adhesion events. Here, a dynamic seeding and cell retention method was used to examine the initial attachment of perfusing human umbilical vein endothelial cells (HUVECs) to bare Teflon-AF substrates, substrates pre-adsorbed with fibronectin alone, or substrates co-pre-adsorbed with two dual-function cell-adhesion ligands: biotinylated fibronectin (bFN) and RGD-streptavidin mutant (RGD-SA). Cell attachment was evaluated as a function of cell trypsinization (integrin digestion), surface protein formulation, and cell perfusion rate. Surfaces co-pre-adsorbed with bFN and RGD-SA showed the highest density of attached cells after 8 min of perfusion and the highest percent retention when subjected to shear flow at 60 dynes/cm2 for 2 min. Surfaces with no ligand treatment showed the lowest cell attachment and retention under flow in all cases. HUVECs trypsinized with mild 0.025% trypsin/ethylenediaminetetraacetic acid (EDTA) showed greater cell adhesion after perfusion and higher percent retention after shear flow than those trypsinized using harsher 0.05% trypsin/EDTA. The preferential affinities of the two dual-function ligands for α5β1 and αvβ3 integrins were also examined by surface plasmon resonance (SPR) spectroscopy. The dynamic cell seeding studies confirmed that the dual-function ligand system promotes HUVEC adhesion and retention at short time points when tested using a perfusion assay. SPR studies showed that the two ligands exhibited equal affinity for both α5β1 and αvβ3 integrins but that the combined ligands bound more total integrins than the two ligands tested separately. PMID:19348476
Li, Zequn; Biswas, Siddhartha; Liang, Benjia; Zou, Xueqing; Shan, Liqun; Li, Yang; Fang, Ruliang; Niu, Jun
2016-01-01
Cholangiocarcinoma is a devastating malignancy that is notoriously difficult to diagnose and is associated with a high mortality. Despite extensive efforts to improve the diagnosis and treatment of this neoplasm, limited progress has been made. Integrin β6 is a subtype of integrin that is expressed exclusively on the surfaces of epithelial cells and is associated with a variety of tumors. In the present study, we investigated the expression and roles of integrin β6 in cholangiocarcinoma. β6 upregulation in cholangiocarcinoma was correlated with lymph node metastasis and distant metastasis. Moreover, integrin β6 was identified as a biomarker for the diagnosis of cholangiocarcinoma and an indicator of lymph node metastasis. Integrin β6 significantly promoted the proliferation, migration and invasion of cholangiocarcinoma cells. Furthermore, integrin β6 increased Rac1-GTPase, resulting in the upregulation of metalloproteinase-9 (MMP9) and F-actin polymerization. Taken together, our results indicate that integrin β6 promotes tumor invasiveness in a Rac1-dependent manner and is a potential biomarker for tumor metastasis. Integrin β6 may help to improve the diagnostic accuracy, and targeting β6 may be a novel strategy for the treatment of cholangiocarcinoma. PMID:27440504
The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker.
Krebsbach, Paul H; Villa-Diaz, Luis G
2017-08-01
Stem cells have the capacity for self-renewal and differentiation into specialized cells that form and repopulated all tissues and organs, from conception to adult life. Depending on their capacity for differentiation, stem cells are classified as totipotent (ie, zygote), pluripotent (ie, embryonic stem cells), multipotent (ie, neuronal stem cells, hematopoietic stem cells, epithelial stem cells, etc.), and unipotent (ie, spermatogonial stem cells). Adult or tissue-specific stem cells reside in specific niches located in, or nearby, their organ or tissue of origin. There, they have microenvironmental support to remain quiescent, to proliferate as undifferentiated cells (self-renewal), and to differentiate into progenitors or terminally differentiated cells that migrate from the niche to perform specialized functions. The presence of proteins at the cell surface is often used to identify, classify, and isolate stem cells. Among the diverse groups of cell surface proteins used for these purposes, integrin α6, also known as CD49f, may be the only biomarker commonly found in more than 30 different populations of stem cells, including some cancer stem cells. This broad expression among stem cell populations indicates that integrin α6 may play an important and conserved role in stem cell biology, which is reaffirmed by recent demonstrations of its role maintaining self-renewal of pluripotent stem cells and breast and glioblastoma cancer stem cells. Therefore, this review intends to highlight and synthesize new findings on the importance of integrin α6 in stem cell biology.
Edwards, Justin P.; Thornton, Angela M.; Shevach, Ethan M.
2014-01-01
Activated T regulatory cells (Treg) express latent TGF-β1 on their cell surface bound to GARP. Although integrins have been implicated in mediating the release of active TGF-β1 from the complex of latent TGF-β1 and latent TGF-β1 binding protein, their role in processing latent TGF-β1 from the latent TGF-β1/GARP complex is unclear. Mouse CD4+Foxp3+ Treg, but not CD4+Foxp3− T cells, expressed integrin β8 (Itgb8) as detected by qRT-PCR. Itgb8 expression was a marker of thymically-derived (t)Treg, as it could not be detected on Foxp3+Helios− Tregs or on Foxp3+ T cells induced in vitro. Tregs from Itgb8 conditional knockouts exhibited normal suppressor function in vitro and in vivo in a model of colitis, but failed to provide TGF-β1 to drive Th17 or iTreg differentiation in vitro. In addition, Itgb8 knockout Tregs expressed higher levels of latent TGF-β1 on their cell surface consistent with defective processing. Thus, integrin αvβ8 is a marker of tTregs and functions in a cell intrinsic manner in mediating the processing of latent TGF-β1 from the latent TGF-β1/GARP complex on the surface of tTregs. PMID:25127859
Nanoparticle Imaging of Integrins on Tumor Cells1
Montet, Xavier; Montet-Abou, Karin; Reynolds, Fred; Weissleder, Ralph; Josephson, Lee
2006-01-01
Abstract Nanoparticles 10 to 100 nm in size can deliver large payloads to molecular targets, but undergo slow diffusion and/or slow transport through delivery barriers. To examine the feasibility of nanoparticles targeting a marker expressed in tumor cells, we used the binding of cyclic arginine-glycine-aspartic acid (RGD) nanoparticle targeting integrins on BT-20 tumor as a model system. The goals of this study were: 1) to use nanoparticles to image αvβ3 integrins expressed in BT-20 tumor cells by fluorescence-based imaging and magnetic resonance imaging, and, 2) to identify factors associated with the ability of nanoparticles to target tumor cell integrins. Three factors were identified: 1) tumor cell integrin expression (the αvβ3 integrin was expressed in BT-20 cells, but not in 9L cells); 2) nanoparticle pharmacokinetics (the cyclic RGD peptide cross-linked iron oxide had a blood half-life of 180 minutes and was able to escape from the vasculature over its long circulation time); and 3) tumor vascularization (the tumor had a dense capillary bed, with distances of <100 µm between capillaries). These results suggest that nanoparticles could be targeted to the cell surface markers expressed in tumor cells, at least in the case wherein the nanoparticles and the tumor model have characteristics similar to those of the BT-20 tumor employed here. PMID:16611415
Karimi, Fatemeh; O'Connor, Andrea J; Qiao, Greg G; Heath, Daniel E
2018-03-25
Material systems that exhibit tailored interactions with cells are a cornerstone of biomaterial and tissue engineering technologies. One method of achieving these tailored interactions is to biofunctionalize materials with peptide ligands that bind integrin receptors present on the cell surface. However, cell biology research has illustrated that both integrin binding and integrin clustering are required to achieve a full adhesion response. This biophysical knowledge has motivated researchers to develop material systems biofunctionalized with nanoscale clusters of ligands that promote both integrin occupancy and clustering of the receptors. These materials have improved a wide variety of biological interactions in vitro including cell adhesion, proliferation, migration speed, gene expression, and stem cell differentiation; and improved in vivo outcomes including increased angiogenesis, tissue healing, and biomedical device integration. This review first introduces the techniques that enable the fabrication of these nanopatterned materials, describes the improved biological effects that have been achieved, and lastly discusses the current limitations of the technology and where future advances may occur. Although this technology is still in its nascency, it will undoubtedly play an important role in the future development of biomaterials and tissue engineering scaffolds for both in vitro and in vivo applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Clustering of adhesion receptors following exposure of insect blood cells to foreign surfaces.
Nardi, James B; Zhuang, Shufei; Pilas, Barbara; Bee, Charles Mark; Kanost, Michael R
2005-05-01
Cell-mediated immune responses of insects involve interactions of two main classes of blood cells (hemocytes) known as granular cells and plasmatocytes. In response to a foreign surface, these hemocytes suddenly transform from circulating, non-adherent cells to cells that interact and adhere to each other and the foreign surface. This report presents evidence that during this adhesive transformation the extracellular matrix (ECM) proteins lacunin and a ligand for peanut agglutinin (PNA) lectin are released by granular cells and bind to surfaces of both granular cells and plasmatocytes. ECM protein co-localizes on cell surfaces with the adhesive receptors integrin and neuroglian, a member of the immunoglobulin superfamily. The ECM protein(s) secreted by granular cells are hypothesized to interact with adhesion receptors such as neuroglian and integrin by cross linking and clustering them on hemocyte surfaces. This clustering of receptors is known to enhance the adhesiveness (avidity) of interacting mammalian immune cells. The formation of ring-shaped clusters of these adhesion receptors on surfaces of insect immune cells represents an evolutionary antecedent of the mammalian immunological synapse.
Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors
Yang, Esther H.; Rode, Julia; Howlader, Md. Amran; Eckermann, Marina; Santos, Jobette T.; Hernandez Armada, Daniel; Zheng, Ruixiang; Zou, Chunxia
2017-01-01
Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5β1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased β1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3–integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins. PMID:29016609
Fibrinogen Motif Discriminates Platelet and Cell Capture in Peptide-Modified Gold Micropore Arrays.
Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E
2018-01-16
Human blood platelets and SK-N-AS neuroblastoma cancer-cell capture at spontaneously adsorbed monolayers of fibrinogen-binding motifs, GRGDS (generic integrin adhesion), HHLGGAKQAGDV (exclusive to platelet integrin α IIb β 3 ), or octanethiol (adhesion inhibitor) at planar gold and ordered 1.6 μm diameter spherical cap gold cavity arrays were compared. In all cases, arginine/glycine/aspartic acid (RGD) promoted capture, whereas alkanethiol monolayers inhibited adhesion. Conversely only platelets adhered to alanine/glycine/aspartic acid (AGD)-modified surfaces, indicating that the AGD motif is recognized preferentially by the platelet-specific integrin, α IIb β 3 . Microstructuring of the surface effectively eliminated nonspecific platelet/cell adsorption and dramatically enhanced capture compared to RGD/AGD-modified planar surfaces. In all cases, adhesion was reversible. Platelets and cells underwent morphological change on capture, the extent of which depended on the topography of the underlying substrate. This work demonstrates that both the nature of the modified interface and its underlying topography influence the capture of cancer cells and platelets. These insights may be useful in developing cell-based cancer diagnostics as well as in identifying strategies for the disruption of platelet cloaks around circulating tumor cells.
Current Anti-Integrin Therapy for Ocular Disease.
Gonzalez-Salinas, Roberto; Hernández-Zimbrón, Luis F; Gulias-Cañizo, Rosario; Sánchez-Vela, Mario Alberto; Ochoa-De La Paz, Lenin; Zamora, Ruben; Quiroz-Mercado, Hugo
2017-10-31
The integrin family of cell adhesion molecules mediates homeostasis, signal transduction, and various other interactions between the cell and the extracellular matrix. Integrins are type-1 transmembrane glycoproteins located on the cell surface, widely expressed in leukocytes, which play an important role in the inflammatory pathway. The purpose of this review is to summarize the current state of anti-integrin therapy and to assess ongoing clinical trials in ocular disease. We performed a search on PubMed, CINAHL, and Embase for the published literature available using the MeSH terms: "integrin therapy" and "αLβ2," "α4β1" and "α4β7," "αvβ3," "αvβ5," and "αvβ1" and/or "ophthalmology," and "clinical trials." We used no language restrictions. We generated searches to account for synonyms of these keywords and MESH headings as follows: (1) "integrin," "therapy," or "treatment"; (2) "clinical trials," "ophthalmology," or "ocular." In addition, the analysis included phase 2 and phase 3 clinical trials with a minimal follow-up of six months. Integrin antagonists have shown their capacity to improve signs and symptoms of patients with dry eye disease, age-related macular degeneration, diabetic macular edema, and vitreomacular traction.
Lee, Monica Y.; Skoura, Athanasia; Park, Eon Joo; Landskroner-Eiger, Shira; Jozsef, Levente; Luciano, Amelia K.; Murata, Takahisa; Pasula, Satish; Dong, Yunzhou; Bouaouina, Mohamed; Calderwood, David A.; Ferguson, Shawn M.; De Camilli, Pietro; Sessa, William C.
2014-01-01
Here we show that dynamin 2 (Dnm2) is essential for angiogenesis in vitro and in vivo. In cultured endothelial cells lacking Dnm2, vascular endothelial growth factor (VEGF) signaling and receptor levels are augmented whereas cell migration and morphogenesis are impaired. Mechanistically, the loss of Dnm2 increases focal adhesion size and the surface levels of multiple integrins and reduces the activation state of β1 integrin. In vivo, the constitutive or inducible loss of Dnm2 in endothelium impairs branching morphogenesis and promotes the accumulation of β1 integrin at sites of failed angiogenic sprouting. Collectively, our data show that Dnm2 uncouples VEGF signaling from function and coordinates the endocytic turnover of integrins in a manner that is crucially important for angiogenesis in vitro and in vivo. PMID:24598168
Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins
NASA Technical Reports Server (NTRS)
Alenghat, Francis J.; Ingber, Donald E.
2002-01-01
Mechanical stresses modulate cell function by either activating or tuning signal transduction pathways. Mechanotransduction, the process by which cells convert mechanical stimuli into a chemical response, occurs both in cells specialized for sensing mechanical cues and in parenchymal cells whose primary function is not mechanosensory. However, common among the various responses to mechanical stress is the importance of direct or indirect connections between the internal cytoskeleton, the extracellular matrix (ECM), and traditional signal transducing molecules. In many instances, these elements converge at focal adhesions, sites of structural attachment between the cytoskeleton and ECM that are anchored by cell surface integrin receptors. Alenghat and Ingber discuss the accumulating evidence for the central role of cytoskeleton, ECM, and integrin-anchored focal adhesions in several mechanotransduction pathways.
NASA Technical Reports Server (NTRS)
Gens, J. S.; Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)
1996-01-01
Using higher-resolution wide-field computational optical-sectioning fluorescence microscopy, the distribution of antigens recognized by antibodies against animal beta 1 integrin, fibronectin, and vitronectin has been visualized at the outer surface of enzymatically protoplasted onion epidermis cells and in depectinated cell wall fragments. On the protoplast all three antigens are colocalized in an array of small spots, as seen in raw images, in Gaussian filtered images, and in images restored by two different algorithms. Fibronectin and vitronectin but not beta 1 integrin antigenicities colocalize as puncta in comparably prepared and processed images of the wall fragments. Several control visualizations suggest considerable specifity of antibody recognition. Affinity purification of onion cell extract with the same anti-integrin used for visualization has yielded protein that separates in SDS-PAGE into two bands of about 105-110 and 115-125 kDa. These bands are again recognized by the visualization antibody, which was raised against the extracellular domain of chicken beta 1 integrin, and are also recognized by an antibody against the intracellular domain of chicken beta 1 integrin. Because beta 1 integrin is a key protein in numerous animal adhesion sites, it appears that the punctate distribution of this protein in the cell membranes of onion epidermis represents the adhesion sites long known to occur in cells of this tissue. Because vitronectin and fibronection are matrix proteins that bind to integrin in animals, the punctate occurrence of antigenically similar proteins both in the wall (matrix) and on enzymatically prepared protoplasts reinforces the concept that onion cells have adhesion sites with some similarity to certain kinds of adhesion sites in animals.
Rapuano, Bruce E.; MacDonald, Daniel E.
2010-01-01
In the current study, we have altered the surface oxide properties of a Ti6Al4V alloy using heat treatment or radiofrequency glow discharge (RFGD) in order to evaluate the relationship between the physico-chemical and biological properties of the alloy's surface oxide. The effects of surface pretreatments on the attachment of cells from two osteogenic cell lines (MG63 and MC3T3) and a mesenchymal stem cell line (C3H10T1/2) to fibronectin adsorbed to the alloy were measured. Both heat and RFGD pretreatments produced a several-fold increase in the number of cells that attached to fibronectin adsorbed to the alloy (0.001 and 10 nM FN) for each cell line tested. An antibody (HFN7.1) directed against the central integrin binding domain of fibronectin produced a 65-70% inhibition of cell attachment to fibronectin-coated disks, incdicating that cell attachment to the metal discs was dependent on fibronectin binding to cell integrin receptors. Both treatments also accelerated the cell spreading response manifested by extensive flattening and an increase in mean cellular area. The treatment-induced increases in the cell attachment activity of adsorbed fibronectin were correlated with previously demonstrated increases in Ti6Al4V oxide negative net surface charge at physiological pH produced by both heat and RFGD pretreatments. Since neither treatment increased the adsorption mass of fibronectin, these findings suggest that negatively charged surface oxide functional groups in Ti6Al4V can modulate fibronectin's integrin receptor activity by altering the adsorbed protein's conformation. Our results further suggest that negatively charged functional groups in the surface oxide can play a prominent role in the osseointegration of metallic implant materials. PMID:20884181
Juengel, Eva; Afschar, Masud; Makarević, Jasmina; Rutz, Jochen; Tsaur, Igor; Mani, Jens; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A
2016-03-01
Information about the natural compound amygdalin, which is employed as an antitumor agent, is sparse and thus its efficacy remains controversial. In this study, to determine whether amygdalin exerts antitumor effects on renal cell carcinoma (RCC) cells, its impact on RCC metastatic activity was investigated. The RCC cell lines, Caki-1, KTC-26 and A498, were exposed to amygdalin from apricot kernels, and adhesion to human vascular endothelium, immobilized collagen or fibronectin was investigated. The influence of amygdalin on chemotactic and invasive activity was also determined, as was the influence of amygdalin on surface and total cellular α and β integrin expression, which are involved in metastasis. We noted that amygdalin caused significant reductions in chemotactic activity, invasion and adhesion to endothelium, collagen and fibronectin. Using FACScan analysis, we noted that amygdalin also induced reductions, particularly in integrins α5 and α6, in all three cell lines. Functional blocking of α5 resulted in significantly diminished adhesion of KTC-26 and A498 to collagen and also in decreased chemotactic behavior in all three cell lines. Blocking α6 integrin significantly reduced chemotactic activity in all three cell lines. Thus, we suggest that exposing RCC cells to amygdalin inhibits metastatic spread and is associated with downregulation of α5 and α6 integrins. Therefore, we posit that amygdalin exerts antitumor activity in vitro, and this may be linked to integrin regulation.
Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling
Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.
2013-01-01
Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osawa, Sho; Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511; Kurachi, Masashi
We previously reported transplantation of brain microvascular endothelial cells (MVECs) into cerebral white matter infarction model improved the animal's behavioral outcome by increasing the number of oligodendrocyte precursor cells (OPCs). We also revealed extracellular vesicles (EVs) derived from MVECs promoted survival and proliferation of OPCs in vitro. In this study, we investigated the mechanism how EVs derived from MVECs contribute to OPC survival and proliferation. Protein mass spectrometry and enzyme-linked immunosorbent assay revealed fibronectin was abundant on the surface of EVs from MVECs. As fibronectin has been reported to promote OPC survival and proliferation via integrin signaling pathway, we blocked themore » binding between fibronectin and integrins using RGD sequence mimics. Blocking the binding, however, did not attenuate the survival and proliferation promoting effect of EVs on OPCs. Flow cytometric and imaging analyses revealed fibronectin on EVs mediates their internalization into OPCs by its binding to heparan sulfate proteoglycan on OPCs. OPC survival and proliferation promoted by EVs were attenuated by blocking the internalization of EVs into OPCs. These lines of evidence suggest that fibronectin on EVs mediates their internalization into OPCs, and the cargo of EVs promotes survival and proliferation of OPCs, independent of integrin signaling pathway. - Highlights: • Fibronectin exists on the surface of extracellular vesicles from endothelial cells. • Integrin signaling is not involved in effects of extracellular vesicles on OPCs. • Fibronectin on the surface of extracellular vesicles mediates their uptake into OPCs.« less
Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta
2014-06-01
T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion.
Expression and in vitro regulation of integrins by normal human urothelial cells.
Southgate, J; Kennedy, W; Hutton, K A; Trejdosiewicz, L K
1995-08-01
Integrins are thought to be essential adhesion receptors for the maintenance of tissue histioarchitecture. The purpose of this study was to determine integrin expression patterns in the human stratified transitional epithelium of the urinary tract (urothelium). In situ expression patterns were compared with in vitro expression, using a normal cell culture model system in which the effects of cell stratification can be studied independently of differentiation. By immunohistological criteria, the urothelia of bladder, ureter and renal pelvis expressed alpha 2 beta 1 and alpha 3 beta 1 integrins in all layers at intercellular junctions, and cytoplasmically in the lower strata. By contrast, alpha 6 beta 4 and occasionally alpha v beta 4 were expressed only by basal cells and localised to the basal lamina. These expression patterns were unaltered in specimens where an inflammatory cell infiltrate was present. In long-term cultures of normal urothelial cells maintained in a low-Ca++ serum-free medium, the monolayer cultures expressed alpha 2 beta 1, alpha 3 beta 1 and alpha 5 beta 1 integrins at intercellular junctions and in cytoplasmic inclusions, whereas alpha 6 beta 4 was distributed in a random pattern over the substratum. Increasing exogenous Ca++ concentrations induced cell stratification and desmosome formation, but not cytodifferentiation. Under these conditions, alpha 6 beta 4 became cell-, rather than substratum-associated, localising particularly to filopodia and lamellipodia. Quantitation of integrin expression by flow cytometry confirmed increased surface expression of alpha 6 beta 4 in high Ca++ media, and also of alpha 3 and alpha 5, but not alpha 2, subunits. These results suggest that alpha 2 beta 1 and alpha 3 beta 1 integrins, although differentially regulated, are mainly involved in homotypic cell-cell interactions and the maintenance of a stratified morphology, whereas alpha 6 beta 4 is the principal integrin involved in substratum adhesion.
A screen to identify Drosophila genes required for integrin-mediated adhesion.
Walsh, E P; Brown, N H
1998-01-01
Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function. PMID:9755209
Tringali, Cristina; Lupo, Barbara; Silvestri, Ilaria; Papini, Nadia; Anastasia, Luigi; Tettamanti, Guido; Venerando, Bruno
2012-01-01
The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy. PMID:23139422
Conservation of the Human Integrin-Type Beta-Propeller Domain in Bacteria
Chouhan, Bhanupratap; Denesyuk, Alexander; Heino, Jyrki; Johnson, Mark S.; Denessiouk, Konstantin
2011-01-01
Integrins are heterodimeric cell-surface receptors with key functions in cell-cell and cell-matrix adhesion. Integrin α and β subunits are present throughout the metazoans, but it is unclear whether the subunits predate the origin of multicellular organisms. Several component domains have been detected in bacteria, one of which, a specific 7-bladed β-propeller domain, is a unique feature of the integrin α subunits. Here, we describe a structure-derived motif, which incorporates key features of each blade from the X-ray structures of human αIIbβ3 and αVβ3, includes elements of the FG-GAP/Cage and Ca2+-binding motifs, and is specific only for the metazoan integrin domains. Separately, we searched for the metazoan integrin type β-propeller domains among all available sequences from bacteria and unicellular eukaryotic organisms, which must incorporate seven repeats, corresponding to the seven blades of the β-propeller domain, and so that the newly found structure-derived motif would exist in every repeat. As the result, among 47 available genomes of unicellular eukaryotes we could not find a single instance of seven repeats with the motif. Several sequences contained three repeats, a predicted transmembrane segment, and a short cytoplasmic motif associated with some integrins, but otherwise differ from the metazoan integrin α subunits. Among the available bacterial sequences, we found five examples containing seven sequential metazoan integrin-specific motifs within the seven repeats. The motifs differ in having one Ca2+-binding site per repeat, whereas metazoan integrins have three or four sites. The bacterial sequences are more conserved in terms of motif conservation and loop length, suggesting that the structure is more regular and compact than those example structures from human integrins. Although the bacterial examples are not full-length integrins, the full-length metazoan-type 7-bladed β-propeller domains are present, and sometimes two tandem copies are found. PMID:22022374
Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate
NASA Astrophysics Data System (ADS)
Dalby, Matthew J.; Gadegaard, Nikolaj; Oreffo, Richard O. C.
2014-06-01
Stem cells respond to nanoscale surface features, with changes in cell growth and differentiation mediated by alterations in cell adhesion. The interaction of nanotopographical features with integrin receptors in the cells' focal adhesions alters how the cells adhere to materials surfaces, and defines cell fate through changes in both cell biochemistry and cell morphology. In this Review, we discuss how cell adhesions interact with nanotopography, and we provide insight as to how materials scientists can exploit these interactions to direct stem cell fate and to understand how the behaviour of stem cells in their niche can be controlled. We expect knowledge gained from the study of cell-nanotopography interactions to accelerate the development of next-generation stem cell culture materials and implant interfaces, and to fuel discovery of stem cell therapeutics to support regenerative therapies.
Isolation of integrin-based adhesion complexes.
Jones, Matthew C; Humphries, Jonathan D; Byron, Adam; Millon-Frémillon, Angélique; Robertson, Joseph; Paul, Nikki R; Ng, Daniel H J; Askari, Janet A; Humphries, Martin J
2015-03-02
The integration of cells with their extracellular environment is facilitated by cell surface adhesion receptors, such as integrins, which play important roles in both normal development and the onset of pathologies. Engagement of integrins with their ligands in the extracellular matrix, or counter-receptors on other cells, initiates the intracellular assembly of a wide variety of proteins into adhesion complexes such as focal contacts, focal adhesions, and fibrillar adhesions. The proteins recruited to these complexes mediate bidirectional signaling across the plasma membrane, and, as such, help to coordinate and/or modulate the multitude of physical and chemical signals to which the cell is subjected. The protocols in this unit describe two approaches for the isolation or enrichment of proteins contained within integrin-associated adhesion complexes, together with their local plasma membrane/cytosolic environments, from cells in culture. In the first protocol, integrin-associated adhesion structures are affinity isolated using microbeads coated with extracellular ligands or antibodies. The second protocol describes the isolation of ventral membrane preparations that are enriched for adhesion complex structures. The protocols permit the determination of adhesion complex components via subsequent downstream analysis by western blotting or mass spectrometry. Copyright © 2015 John Wiley & Sons, Inc.
Tóth, Beáta; Garabuczi, Eva; Sarang, Zsolt; Vereb, György; Vámosi, György; Aeschlimann, Daniel; Blaskó, Bernadett; Bécsi, Bálint; Erdõdi, Ferenc; Lacy-Hulbert, Adam; Zhang, Ailiang; Falasca, Laura; Birge, Raymond B; Balajthy, Zoltán; Melino, Gerry; Fésüs, László; Szondy, Zsuzsa
2009-02-15
Transglutaminase 2 (TG2), a protein cross-linking enzyme with many additional biological functions, acts as coreceptor for integrin beta(3). We have previously shown that TG2(-/-) mice develop an age-dependent autoimmunity due to defective in vivo clearance of apoptotic cells. Here we report that TG2 on the cell surface and in guanine nucleotide-bound form promotes phagocytosis. Besides being a binding partner for integrin beta(3), a receptor known to mediate the uptake of apoptotic cells via activating Rac1, we also show that TG2 binds MFG-E8 (milk fat globulin EGF factor 8), a protein known to bridge integrin beta(3) to apoptotic cells. Finally, we report that in wild-type macrophages one or two engulfing portals are formed during phagocytosis of apoptotic cells that are characterized by accumulation of integrin beta(3) and Rac1. In the absence of TG2, integrin beta(3) cannot properly recognize the apoptotic cells, is not accumulated in the phagocytic cup, and its signaling is impaired. As a result, the formation of the engulfing portals, as well as the portals formed, is much less efficient. We propose that TG2 has a novel function to stabilize efficient phagocytic portals.
Yamasaki, Masao; Iwase, Masahiro; Kawano, Kazuo; Sakakibara, Yoichi; Suiko, Masahito; Nishiyama, Kazuo
2012-05-01
Here, we focused on the effects of racemic α-lipoic acid on proliferation and adhesion properties of 3Y1 rat fibroblasts and the v-H-ras-transformed derivative, HR-3Y1-2 cells. Racemic α-lipoic acid inhibited proliferation of HR-3Y1-2 but not 3Y1 cells at 0.3 and 1.0 mM. R-(+)-α-lipoic acid also inhibited proliferation of HR-3Y1-2 cells equivalent to that of racemic α-lipoic acid. In addition, racemic α-lipoic acid decreased intracellular reactive oxygen species levels in HR-3Y1 cells but not 3Y1 cells. Next, we evaluated the effects of racemic α-lipoic acid on cell adhesion to fibronectin. The results indicated that racemic α-lipoic acid decreased adhesive ability of HR-3Y1-2 cells to fibronectin-coated plates. As blocking antibody experiment revealed that β1-integrin plays a key role in cell adhesion in this experimental system, the effects of racemic α-lipoic acid on the expression of β1-integrin were examined. The results indicated that racemic α-lipoic acid selectively downregulated the expression of cell surface β1-integrin expression in HR-3Y1-2 cells. Intriguingly, exogenous hydrogen peroxide upregulated cell surface β1-integrin expression in 3Y1 cells. Taken together, these data suggest that reduction of intracellular reactive oxygen species levels by α-lipoic acid could be an effective means of ameliorating abnormal growth and adhesive properties in v-H-ras transformed cells.
Nelson, Katja; Helmstaedter, Victor; Moreau, Cynthia; Lage, Hermann
2008-01-01
Adhesion molecules such as integrins and extracellular matrix proteins like laminins have been identified to play an important role in cell proliferation, migration and invasion by regulating cell-extracellular matrix interaction in various cancers including oral squamous cell carcinoma (OSCC). In this study, the effect of estradiol (E2), and the E2 antagonists tamoxifen (TAM) and ICI 182,780 (ICI) on the expression of integrins and adhesion to laminin-1 in different OSCC in vitro models was analyzed. TAM and ICI inhibited growth in all OSCC cell lines. Dependent on estrogen receptor (ER) status E2 displayed a significant influence on growth after long-term administration. ICI reduced laminin-1 adhesion in all cell lines. beta1 Integrin transcription is reduced with TAM and E2 and alpha3 cell surface expression with TAM. This study shows that OSCC is estrogen and SERM sensitive and that these compounds can modulate cell-matrix interaction in part by modulating integrin expression and translation. The investigation also confirms that growth is significantly influenced by these adjuvant therapeutics. These data suggest that a greater understanding of basic biology and mechanisms of the ER and its ligands in oral squamous cells is needed to elucidate the use of specific pharmacological agents as therapeutics of anti-tumorigenic pathways.
Mechanotransduction through Cytoskeleton
NASA Technical Reports Server (NTRS)
Ingber, Donald
2002-01-01
The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses, such as those due to gravity, through their cell surface adhesion receptors (e.g., integrins) and that they respond as a result of structural arrangements with their internal cytoskeleton (CSK) which are orchestrated through use of tensegrity architecture. In this project, we carried out studies to define the architectural and molecular basis of cellular mechanotransduction. Our major goal was to define the molecular pathway that mediates mechanical force transfer between integrins and the CSK and to determine how mechanical deformation of integrin-CSK linkages is transduced into a biochemical response. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation. The specific aims of this proposal were: 1. To define the molecular basis of mechanical coupling between integrins, vinculin, and the actin CSK; 2. To develop a computer simulation of how mechanical stresses alter CSK structure and test this model in living cells; 3. To determine how mechanical deformation of integrin-CSK linkages is transduced into a biochemical response.
Marchiò, Serena; Soster, Marco; Cardaci, Sabrina; Muratore, Andrea; Bartolini, Alice; Barone, Vanessa; Ribero, Dario; Monti, Maria; Bovino, Paola; Sun, Jessica; Giavazzi, Raffaella; Asioli, Sofia; Cassoni, Paola; Capussotti, Lorenzo; Pucci, Piero; Bugatti, Antonella; Rusnati, Marco; Pasqualini, Renata; Arap, Wadih; Bussolino, Federico
2012-01-01
Homing of colorectal cancer (CRC) cells to the liver is a non-random process driven by a crosstalk between tumour cells and components of the host tissue. Here we report the isolation of a liver metastasis-specific peptide ligand (CGIYRLRSC) that binds a complex of E-cadherin and α6 integrin on the surface of CRC cells. We identify angiopoietin-like 6 protein as a peptide-mimicked natural ligand enriched in hepatic blood vessels of CRC patients. We demonstrate that an interaction between hepatic angiopoietin-like 6 and tumoural α6 integrin/E-cadherin drives liver homing and colonization by CRC cells, and that CGIYRLRSC inhibits liver metastasis through interference with this ligand/receptor system. Our results indicate a mechanism for metastasis whereby a soluble factor accumulated in normal vessels functions as a specific ligand for circulating cancer cells. Consistently, we show that high amounts of coexpressed α6 integrin and E-cadherin in primary tumours represent a poor prognostic factor for patients with advanced CRC. PMID:23070965
Yang, Jeong In; Park, Chanho; Kho, Inseong; Lee, Sujin; Suh, Kyung-Suk; Kim, Tae Jin
2017-12-01
We previously reported peritoneal innate-like integrin α4 (CD49d) high CD4 + T cells that provided help for B-1a cells. Here we analyzed the expression of various integrin chains on the peritoneal and pleural integrin α4 high CD4 + T cells and investigated the functional heterogeneity of the subpopulations based on the integrin expression. Pleural cavity contained a lower ratio of integrin α4 high CD4 + T cells to integrin α4 low CD4 + T cells than peritoneal cavity, but the pleural integrin α4 high CD4 + T cells have the same characteristics of the peritoneal integrin α4 high CD4 + T cells. Most of integrin α4 high CD4 + T cells were integrin β1 high β7 - , but a minor population of integrin α4 high CD4 + T cells was integrin β1 + β7 + . Interestingly, the integrin α4 high β1 high β7 - CD4 + T cells expressed high levels of integrin α4β1 and α6β1, whereas integrin α4 high β1 + β7 + CD4 + T cells expressed high levels of integrin α4β1 and α4β7, suggesting an alternative expression of integrin α6β1 or α4β7 in combination with α4β1 in respective major and minor populations of integrin α4 high CD4 + T cells. The minor population, integrin α4 high β1 + β7 + CD4 + T cells, were different from the integrin α4 high β1 high β7 - CD4 + T cells in that they secreted a smaller amount of Th1 cytokines upon stimulation and expressed lower levels of Th1-related chemokine receptors CCR5 and CXCR3 than the integrin α4 high β 1 high β 7 - CD4 + T cells. In summary, the innate-like integrin α4 high CD4 + T cells could be divided into 2 populations, integrin α4β1 + α6β1 + α4β7 - and α4β1 + α6β1 - α4β7 + cells. The functional significance of serosal integrin α4β7 + CD4 + T cells needed to be investigated especially in view of mucosal immunity.
Clustered Integrin Ligands as a Novel Approach for the Targeting of Non-Viral Vectors
NASA Astrophysics Data System (ADS)
Ng, Quinn Kwan Tai
Gene transfer or gene delivery is described as the process in which foreign DNA is introduced into cells. Over the years, gene delivery has gained the attention of many researchers and has been developed as powerful tools for use in biotechnology and medicine. With the completion of the Human Genome Project, such advances in technology allowed for the identification of diseases ranging from hereditary disorders to acquired ones (cancer) which were thought to be incurable. Gene therapy provides the means necessary to treat or eliminate genetic diseases from its origin, unlike traditional medicine which only treat symptoms. With ongoing clinical trials for gene therapy increasing, the greatest difficulty still lies in developing safe systems which can target cells of interest to provide efficient delivery. Nature, over millions of years of evolution, has provided an example of one of the most efficient delivery systems: viruses. Although the use of viruses for gene delivery has been well studied, the safety issues involving immunogenicity, insertional mutagenesis, high cost, and poor reproducibility has provided problems for their clinical application. From understanding viruses, we gain insight to designing new systems for non-viral gene delivery. One of these techniques utilized by adenoviruses is the clustering of ligands on its surface through the use of a protein called a penton base. Through the use of nanotechnology we can mimic this basic concept in non-viral gene delivery systems. This dissertation research is focused on developing and applying a novel system for displaying the integrin binding ligand (RGD) in a constrained manner to form a clustered integrin ligand binding platform to be used to enhance the targeting and efficiency of non-viral gene delivery vectors. Peptide mixed monolayer protected gold nanoparticles provides a suitable surface for ligand clustering. A relationship between the peptide ratios in the reaction solution used to form these ligand clusters compared to the reacted amounts on the surface of the particle was studied. This provided us the ability to control the size of the clusters formed and the spacing between the integrins for gold nanoparticles of various sizes. We then applied the clustered ligand binding system for targeting of DNA/PEI polyplexes and demonstrated that the use of RGD nanoclusters enhances gene transfer up to 35-fold which was dependent on the density of alphavbeta3 integrins on the cell surface. Cell integrin sensitivity was shown in which cells with higher alpha vbeta3 densities resulting in higher luciferase transgene expression. The targeting of RGD nanoclusters for DNA/PEI polyplexes was further shown in vivo using PET/CT technology which displayed improved targeting towards high level alphavbeta3 integrin expression (U87MG) tumors over medium level alphavbeta 3 integrin expression (HeLa). In addition to studying the clustered integrin binding system, the current non-viral vectors used suffer from stability and toxicity issues in vitro and in vivo. We have applied a new chemistry for synthesizing nanogels utilizing a Traut's reagent initiated Michael addition reaction for modification of diamine containing crosslikers which will allow for the development of stable and cell demanded release of oligonucleotides. We have shown bulk gels made were capable of encapsulating and holding DNA within the gel and were able to synthesize them into nanogels. The combined research shown here using clustered integrin ligands and a new type of nanogel synthesis provides an ideal system for gene delivery in the future.
Crystal Structure of the Heterotrimeric Integrin-Binding Region of Laminin-111.
Pulido, David; Hussain, Sadaf-Ahmahni; Hohenester, Erhard
2017-03-07
Laminins are cell-adhesive glycoproteins that are essential for basement membrane assembly and function. Integrins are important laminin receptors, but their binding site on the heterotrimeric laminins is poorly defined structurally. We report the crystal structure at 2.13 Å resolution of a minimal integrin-binding fragment of mouse laminin-111, consisting of ∼50 residues of α1β1γ1 coiled coil and the first three laminin G-like (LG) domains of the α1 chain. The LG domains adopt a triangular arrangement, with the C terminus of the coiled coil situated between LG1 and LG2. The critical integrin-binding glutamic acid residue in the γ1 chain tail is surface exposed and predicted to bind to the metal ion-dependent adhesion site in the integrin β1 subunit. Additional contacts to the integrin are likely to be made by the LG1 and LG2 surfaces adjacent to the γ1 chain tail, which are notably conserved and free of obstructing glycans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Malcor, Jean-Daniel; Bax, Daniel; Hamaia, Samir W.; Davidenko, Natalia; Best, Serena M.; Cameron, Ruth E.; Farndale, Richard W.; Bihan, Dominique
2016-01-01
Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons. PMID:26854392
Jessen, Tammy N; Jessen, Jason R
2017-12-15
Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Blocking immunosuppression by human Tregs in vivo with antibodies targeting integrin αVβ8.
Stockis, Julie; Liénart, Stéphanie; Colau, Didier; Collignon, Amandine; Nishimura, Stephen L; Sheppard, Dean; Coulie, Pierre G; Lucas, Sophie
2017-11-21
Human regulatory T cells (Tregs) suppress other T cells by converting the latent, inactive form of TGF-β1 into active TGF-β1. In Tregs, TGF-β1 activation requires GARP, a transmembrane protein that binds and presents latent TGF-β1 on the surface of Tregs stimulated through their T cell receptor. However, GARP is not sufficient because transduction of GARP in non-Treg T cells does not induce active TGF-β1 production. RGD-binding integrins were shown to activate TGF-β1 in several non-T cell types. Here we show that αVβ8 dimers are present on stimulated human Tregs but not in other T cells, and that antibodies against αV or β8 subunits block TGF-β1 activation in vitro. We also show that αV and β8 interact with GARP/latent TGF-β1 complexes in human Tregs. Finally, a blocking antibody against β8 inhibited immunosuppression by human Tregs in a model of xenogeneic graft-vs.-host disease induced by the transfer of human T cells in immunodeficient mice. These results show that TGF-β1 activation on the surface of human Tregs implies an interaction between the integrin αVβ8 and GARP/latent TGF-β1 complexes. Immunosuppression by human Tregs can be inhibited by antibodies against GARP or against the integrin β8 subunit. Such antibodies may prove beneficial against cancer or chronic infections.
Expression Profile of the Integrin Receptor Subunits in the Guinea Pig Sclera.
Wang, Kevin K; Metlapally, Ravikanth; Wildsoet, Christine F
2017-06-01
The ocular dimensional changes in myopia reflect increased scleral remodeling, and in high myopia, loss of scleral integrity leads to biomechanical weakening and continued scleral creep. As integrins, a type of cell surface receptors, have been linked to scleral remodeling, they represent potential targets for myopia therapies. As a first step, this study aimed to characterize the integrin subunits at the messenger RNA level in the sclera of the guinea pig, a more recently added but increasingly used animal model for myopia research. Primers for α and β integrin subunits were designed using NCBI/UCSC Genome Browser and Primer3 software tools. Total RNA was extracted from normal scleral tissue and isolated cultured scleral fibroblasts, as well as liver and lung, as reference tissues, all from guinea pig. cDNA was produced by reverse transcription, PCR was used to amplify products of predetermined sizes, and products were sequenced using standard methods. Guinea pig scleral tissue expressed all known integrin alpha subunits except αD and αE. The latter integrin subunits were also not expressed by cultured guinea pig scleral fibroblasts; however, their expression was confirmed in guinea pig liver. In addition, isolated cultured fibroblasts did not express integrin subunits αL, αM, and αX. This difference between results for cultured cells and intact sclera presumably reflects the presence in the latter of additional cell types. Both guinea pig scleral tissue and isolated scleral fibroblasts expressed all known integrin beta subunits. All results were verified through sequencing. The possible contributions of integrins to scleral remodeling make them plausible targets for myopia prevention. Data from this study will help guide future ex vivo and in vitro studies directed at understanding the relationship between scleral integrins and ocular growth regulation in the guinea pig model for myopia.
Festuccia, Claudio; Angelucci, Adriano; Gravina, Giovanni; Eleuterio, Enrica; Vicentini, Carlo; Bologna, Mauro
2002-10-15
Bombesin-like peptides, including the mammalian homologue gastrin-releasing peptide, are highly expressed and secreted by neuroendocrine cells in prostate carcinoma tissues and are likely to be related to the progression of this neoplastic disease. Previously, we demonstrated that bombesin increased migration and protease expression in androgen-independent cells. In this work we show that bombesin is able to activate pro-MMP-9 through a mechanism involving the beta1 integrin subunit. In fact, MMP-9 processing was evident only when beta1 integrin was engaged with specific adhesive substrates, such as type I collagen, or when cells were seeded on dishes coated with antibodies against beta1 integrin, resulting in activation of the surface ligand. When exogenous pro-MMP-9 was added to PC3 cells, MMP-9 active forms were produced within 30 min by bombesin-treated cultures while control cultures expressed activated forms only after a longer time and at lower levels. MMP-9 activation required cytoskeleton integrity since this effect was abolished by cytochalasin D. Engagement of beta1 integrin caused an increased membrane-linked uPA activity which was required for MMP-9 activation. The cross talk between bombesin- and beta1-integrin-engaged signals seems to be crucial for the modulation of both membrane-linked uPA activity and MMP-9 activation and triggers complex intracellular signaling pathways requiring activation of tyrosine kinase activity, including that of src and PI3K. The beta1 integrin may be considered an important mechanism by which bombesin induces MMP-9 activation. This finding supports the idea that cellular responses to growth factors may be driven by cell-matrix interactions and stresses the role of neuroendocrine factors in prostate carcinoma progression.
PDGF-A suppresses contact inhibition during directional collective cell migration.
Nagel, Martina; Winklbauer, Rudolf
2018-06-08
The leading edge mesendoderm (LEM) of the Xenopus gastrula moves as an aggregate by collective migration. However, LEM cells on fibronectin in vitro show contact inhibition of locomotion by quickly retracting lamellipodia upon mutual contact. We found that a fibronectin-integrin-syndecan module acts between p21-activated kinase-1 upstream and ephrinB1 downstream to promote the contact-induced collapse of lamellipodia. To function in this module, fibronectin has to be present as puncta on the surface of LEM cells. To overcome contact inhibition in LEM cell aggregates, PDGF-A deposited in the endogenous substratum of LEM migration blocks the fibronectin-integrin-syndecan module at the integrin level. This stabilizes lamellipodia preferentially in the direction of normal LEM movement and supports cell orientation and the directional migration of the coherent LEM cell mass. © 2018. Published by The Company of Biologists Ltd.
Pathogenetic role of Arg-Gly-Asp-recognizing integrins in acute renal failure. off.
Goligorsky, M S; DiBona, G F
1993-01-01
Reorientation of the alpha 3 subunit of integrins from predominantly basal to the apical cell surface of cultured renal tubular epithelial cells subjected to oxidant stress has previously been demonstrated. The present study was designed to assess functional competence of ectopically expressed apical integrins. Cell-cell adhesion assay revealed enhanced cytoatractant properties of stressed cells. Stressed epithelial cells exhibited specific recognition and binding of laminin-coated latex beads. These processes were inhibited with the peptide Gly-Arg-Gly-Asp-Asn-Pro (GRGDNP) suggesting a role of RGD-recognizing integrins in augmented adhesion to stressed cells. Given that such enhanced adhesion in in vivo acute renal failure may govern tubular obstruction by desquamated epithelium, a physiological marker of patency of tubular lumen, proximal tubular pressure, was monitored in rats subjected to 60 min of renal ischemia followed by reperfusion. Proximal tubular pressure increased 2-fold after 2 hr of reperfusion in animals that had undergone 60 min of ischemia. Infusion of GRGDNP into the renal artery during reperfusion period virtually abolished an increase in proximal tubular pressure observed in ischemic acute renal failure. These in vitro and in vivo findings are consistent with the hypothesis that RGD-recognizing integrins play an important role in the pathogenesis of tubular obstruction in ischemic acute renal failure. Images Fig. 2 Fig. 3 PMID:8516318
Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry
NASA Technical Reports Server (NTRS)
Wang, N.; Ingber, D. E.
1995-01-01
We recently developed a magnetic twisting cytometry technique that allows us to apply controlled mechanical stresses to specific cell surface receptors using ligand-coated ferromagnetic microbeads and to simultaneously measure the mechanical response in living cells. Using this technique, we have previously shown the following: (i) beta 1 integrin receptors mediate mechanical force transfer across the cell surface and to the cytoskeleton, whereas other transmembrane receptors (e.g., scavenger receptors) do not; (ii) cytoskeletal stiffness increases in direct proportion to the level of stress applied to integrins; and (iii) the slope of this linear stiffening response differs depending on the shape of the cell. We now show that different integrins (beta 1, alpha V beta 3, alpha V, alpha 5, alpha 2) and other transmembrane receptors (scavenger receptor, platelet endothelial cell adhesion molecule) differ in their ability to mediate force transfer across the cell surface. In addition, the linear stiffening behavior previously observed in endothelial cells was found to be shared by other cell types. Finally, we demonstrate that dynamic changes in cell shape that occur during both cell spreading and retraction are accompanied by coordinate changes in cytoskeletal stiffness. Taken together, these results suggest that the magnetic twisting cytometry technique may be a powerful and versatile tool for studies analyzing the molecular basis of transmembrane mechanical coupling to the cytoskeleton as well as dynamic relations between changes in cytoskeletal structure and alterations in cell form and function.
Medda, Rebecca; Helth, Arne; Herre, Patrick; Pohl, Darius; Rellinghaus, Bernd; Perschmann, Nadine; Neubauer, Stefanie; Kessler, Horst; Oswald, Steffen; Eckert, Jürgen; Spatz, Joachim P.; Gebert, Annett; Cavalcanti-Adam, Elisabetta A.
2014-01-01
Multi-potent adult mesenchymal stem cells (MSCs) derived from bone marrow have therapeutic potential for bone diseases and regenerative medicine. However, an intrinsic heterogeneity in their phenotype, which in turn results in various differentiation potentials, makes it difficult to predict the response of these cells. The aim of this study is to investigate initial cell–surface interactions of human MSCs on modified titanium alloys. Gold nanoparticles deposited on β-type Ti–40Nb alloys by block copolymer micelle nanolithography served as nanotopographical cues as well as specific binding sites for the immobilization of thiolated peptides present in several extracellular matrix proteins. MSC heterogeneity persists on polished and nanopatterned Ti–40Nb samples. However, cell heterogeneity and donor variability decreased upon functionalization of the gold nanoparticles with cyclic RGD peptides. In particular, the number of large cells significantly decreased after 24 h owing to the arrangement of cell anchorage sites, rather than peptide specificity. However, the size and number of integrin-mediated adhesion clusters increased in the presence of the integrin-binding peptide (cRGDfK) compared with the control peptide (cRADfK). These results suggest that the use of integrin ligands in defined patterns could improve MSC-material interactions, not only by regulating cell adhesion locally, but also by reducing population heterogeneity. PMID:24501674
Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.
Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M
2010-03-01
beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.
Mai, Anja; Muharram, Ghaffar; Barrow-McGee, Rachel; Baghirov, Habib; Rantala, Juha; Kermorgant, Stéphanie; Ivaska, Johanna
2014-05-01
Many carcinomas have acquired oncogenic mechanisms for activating c-Met, including c-Met overexpression and excessive autocrine or paracrine stimulation with hepatocyte growth factor (HGF). However, the biological outcome of c-Met activation through these distinct modes remains ambiguous. Here, we report that HGF-mediated c-Met stimulation triggers a mesenchymal-type collective cell invasion. By contrast, the overexpression of c-Met promotes cell rounding. Moreover, in a high-throughput siRNA screen that was performed using a library of siRNAs against putative regulators of integrin activity, we identified RhoA and the clathrin-adapter protein HIP1 as crucial c-Met effectors in these morphological changes. Transient RhoA activation was necessary for the HGF-induced invasion, whereas sustained RhoA activity regulated c-Met-induced cell rounding. In addition, c-Met-induced cell rounding correlated with the phosphorylation of filamin A and the downregulation of active cell-surface integrins. By contrast, a HIP1-mediated increase in β1-integrin turnover was required for the invasion triggered by HGF. Taken together, our results indicate that c-Met induces distinct cell morphology alterations depending on the stimulus that activates c-Met.
Nisato, Riccardo E; Hosseini, Ghamartaj; Sirrenberg, Christian; Butler, Georgina S; Crabbe, Thomas; Docherty, Andrew J P; Wiesner, Matthias; Murphy, Gillian; Overall, Christopher M; Goodman, Simon L; Pepper, Michael S
2005-10-15
Matrix metalloproteinase (MMP)-2 and its hemopexin C domain autolytic fragment (also called PEX) have been proposed to be crucial for angiogenesis. Here, we have investigated the dependency of in vitro angiogenesis on MMP-mediated extracellular proteolysis and integrin alpha(v)beta3-mediated cell adhesion in a three-dimensional collagen I model. The hydroxamate-based synthetic inhibitors BB94, CT1399, and CT1847 inhibited endothelial cell invasion, as did neutralizing anti-membrane-type 1-MMP (MT1-MMP) antibodies and tissue inhibitor of MMP (TIMP)-2 and TIMP-3 but not TIMP-1. This confirmed the pivotal importance of MT1-MMP over other MMPs in this model. Invasion was also inhibited by a nonpeptidic antagonist of integrin alpha(v)beta3, EMD 361276. Although PEX strongly inhibited pro-MMP-2 activation, when contaminating lipopolysaccharide was neutralized, PEX neither affected angiogenesis nor bound integrin alpha(v)beta(3). Moreover, no specific binding of pro-MMP-2 to integrin alpha(v)beta3 was found, whereas only one out of four independently prepared enzymatically active MMP-2 preparations could bind integrin alpha(v)beta3 , and this in a PEX-independent manner. Likewise, integrin alpha(v)beta3 -expressing cells did not bind MMP-2-coated surfaces. Hence, these findings show that endothelial cell invasion of collagen I gels is MT1-MMP and alpha(v)beta3 - dependent but MMP-2 independent and does not support a role for PEX in alpha(v)beta3 integrin binding or in modulating angiogenesis in this system.
Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches
Bellin, Robert M.; Kubicek, James D.; Frigault, Matthew J.; Kamien, Andrew J.; Steward, Robert L.; Barnes, Hillary M.; DiGiacomo, Michael B.; Duncan, Luke J.; Edgerly, Christina K.; Morse, Elizabeth M.; Park, Chan Young; Fredberg, Jeffrey J.; Cheng, Chao-Min; LeDuc, Philip R.
2009-01-01
The ability of cells to respond to external mechanical stimulation is a complex and robust process involving a diversity of molecular interactions. Although mechanotransduction has been heavily studied, many questions remain regarding the link between physical stimulation and biochemical response. Of significant interest has been the contribution of the transmembrane proteins involved, and integrins in particular, because of their connectivity to both the extracellular matrix and the cytoskeleton. Here, we demonstrate the existence of a mechanically based initiation molecule, syndecan-4. We first demonstrate the ability of syndecan-4 molecules to support cell attachment and spreading without the direct extracellular binding of integrins. We also examine the distribution of focal adhesion-associated proteins through controlling surface interactions of beads with molecular specificity in binding to living cells. Furthermore, after adhering cells to elastomeric membranes via syndecan-4-specific attachments we mechanically strained the cells via our mechanical stimulation and polymer surface chemical modification approach. We found ERK phosphorylation similar to that shown for mechanotransductive response for integrin-based cell attachments through our elastomeric membrane-based approach and optical magnetic twisting cytometry for syndecan-4. Finally, through the use of cytoskeletal disruption agents, this mechanical signaling was shown to be actin cytoskeleton dependent. We believe that these results will be of interest to a wide range of fields, including mechanotransduction, syndecan biology, and cell–material interactions. PMID:20080785
Coopman, P J; Thomas, D M; Gehlsen, K R; Mueller, S C
1996-11-01
The mechanisms and receptors involved in phagocytosis by nonhematopoietic cells are not well understood. The involvement of the alpha 3 beta 1 integrin in phagocytosis of the extracellular matrix by human breast cancer cells was studied. The possible role of this integrin was suggested since alpha 3 and beta 1 but not alpha 2 subunits are concentrated at membrane sites where local degradation of fluorescently labeled gelatin occurs. Strikingly, anti-alpha 3 integrin monoclonal antibodies (mAbs) stimulate the phagocytosis of fluorescently labeled gelatin films, gelatin beads, and Matrigel films in a quantitative phagocytosis assay. Stimulation of the gelatin uptake by the anti-alpha 3 mAb is dose responsive, saturable, and time dependent. Antibodies against other integrin subunits have a lower stimulatory effect (anti-beta 1) or no significant effect (anti-alpha 2, -alpha 5, -alpha 6, and -alpha v) on gelatin phagocytosis. The synthetic HGD-6 human laminin peptide that binds specifically the alpha 3 beta 1 integrin, but not the scrambled HSGD-6 control peptide, also markedly stimulates gelatin uptake in a dose-responsive way. Furthermore, the stimulatory effects of the HGD-6 peptide and the anti-alpha 3 mAb are additive, suggesting that they might promote phagocytosis in different ways. Other laminin (YIGSR, IKVAV) and fibronectin (GRGDS) peptides have no effect on gelatin phagocytosis. Immunofluorescence shows that the alpha 3 and the beta 1, but not the alpha 2 integrin subunit, concentrate into patches on the cell surface after treatment with their respective mAbs. And, both gelatin and the alpha 3 beta 1 but not the alpha 2 beta 1 integrin are cointernalized and routed to acidic vesicles such as lysosomes. In conclusion, we demonstrate that human breast cancer cells locally degrade and phagocytose the extracellular matrix and show for the first time that the alpha 3 beta 1 integrin participates in this phagocytosis. We hypothesize that the anti-alpha 3 antibodies and the laminin peptide HGD-6 activate the alpha 3 beta 1 integrin, which results in a downstream signaling cascade stimulating phagocytosis.
Cheshenko, Natalia; Trepanier, Janie B; González, Pablo A; Eugenin, Eliseo A; Jacobs, William R; Herold, Betsy C
2014-09-01
Herpes simplex virus (HSV) entry requires multiple interactions at the cell surface and activation of a complex calcium signaling cascade. Previous studies demonstrated that integrins participate in this process, but their precise role has not been determined. These studies were designed to test the hypothesis that integrin αvβ3 signaling promotes the release of intracellular calcium (Ca2+) stores and contributes to viral entry and cell-to-cell spread. Transfection of cells with small interfering RNA (siRNA) targeting integrin αvβ3, but not other integrin subunits, or treatment with cilengitide, an Arg-Gly-Asp (RGD) mimetic, impaired HSV-induced Ca2+ release, viral entry, plaque formation, and cell-to-cell spread of HSV-1 and HSV-2 in human cervical and primary genital tract epithelial cells. Coimmunoprecipitation studies and proximity ligation assays indicated that integrin αvβ3 interacts with glycoprotein H (gH). An HSV-2 gH-null virus was engineered to further assess the role of gH in the virus-induced signaling cascade. The gH-2-null virus bound to cells and activated Akt to induce a small Ca2+ response at the plasma membrane, but it failed to trigger the release of cytoplasmic Ca2+ stores and was impaired for entry and cell-to-cell spread. Silencing of integrin αvβ3 and deletion of gH prevented phosphorylation of focal adhesion kinase (FAK) and the transport of viral capsids to the nuclear pore. Together, these findings demonstrate that integrin signaling is activated downstream of virus-induced Akt signaling and facilitates viral entry through interactions with gH by activating the release of intracellular Ca2+ and FAK phosphorylation. These findings suggest a new target for HSV treatment and suppression. Herpes simplex viruses are the leading cause of genital disease worldwide, the most common infection associated with neonatal encephalitis, and a major cofactor for HIV acquisition and transmission. There is no effective vaccine. These epidemiological findings underscore the urgency to develop novel HSV treatment or prevention strategies. This study addresses this gap by further defining the signaling pathways the virus usurps to enter human genital tract epithelial cells. Specifically, the study defines the role played by integrins and by the viral envelope glycoprotein H in entry and cell-to-cell spread. This knowledge will facilitate the identification of new targets for the development of treatment and prevention. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Bonsor, Daniel A.; Pham, Kieu T.; Beadenkopf, Robert; Diederichs, Kay; Haas, Rainer; Beckett, Dorothy; Fischer, Wolfgang; Sundberg, Eric J.
2015-01-01
Arginine-aspartate-glycine (RGD) motifs are recognized by integrins to bridge cells to one another and the extracellular matrix. RGD motifs typically reside in exposed loop conformations. X-ray crystal structures of the Helicobacter pylori protein CagL revealed that RGD motifs can also exist in helical regions of proteins. Interactions between CagL and host gastric epithelial cell via integrins are required for the translocation of the bacterial oncoprotein CagA. Here, we have investigated the molecular basis of the CagL-host cell interactions using structural, biophysical, and functional analyses. We solved an x-ray crystal structure of CagL that revealed conformational changes induced by low pH not present in previous structures. Using analytical ultracentrifugation, we found that pH-induced conformational changes in CagL occur in solution and not just in the crystalline environment. By designing numerous CagL mutants based on all available crystal structures, we probed the functional roles of CagL conformational changes on cell surface integrin engagement. Together, our data indicate that the helical RGD motif in CagL is buried by a neighboring helix at low pH to inhibit CagL binding to integrin, whereas at neutral pH the neighboring helix is displaced to allow integrin access to the CagL RGD motif. This novel molecular mechanism of regulating integrin-RGD motif interactions by changes in the chemical environment provides new insight to H. pylori-mediated oncogenesis. PMID:25837254
Marchiò, Serena; Soster, Marco; Cardaci, Sabrina; Muratore, Andrea; Bartolini, Alice; Barone, Vanessa; Ribero, Dario; Monti, Maria; Bovino, Paola; Sun, Jessica; Giavazzi, Raffaella; Asioli, Sofia; Cassoni, Paola; Capussotti, Lorenzo; Pucci, Piero; Bugatti, Antonella; Rusnati, Marco; Pasqualini, Renata; Arap, Wadih; Bussolino, Federico
2012-11-01
Homing of colorectal cancer (CRC) cells to the liver is a non-random process driven by a crosstalk between tumour cells and components of the host tissue. Here we report the isolation of a liver metastasis-specific peptide ligand (CGIYRLRSC) that binds a complex of E-cadherin and α(6) integrin on the surface of CRC cells. We identify angiopoietin-like 6 protein as a peptide-mimicked natural ligand enriched in hepatic blood vessels of CRC patients. We demonstrate that an interaction between hepatic angiopoietin-like 6 and tumoural α(6) integrin/E-cadherin drives liver homing and colonization by CRC cells, and that CGIYRLRSC inhibits liver metastasis through interference with this ligand/receptor system. Our results indicate a mechanism for metastasis whereby a soluble factor accumulated in normal vessels functions as a specific ligand for circulating cancer cells. Consistently, we show that high amounts of coexpressed α(6) integrin and E-cadherin in primary tumours represent a poor prognostic factor for patients with advanced CRC. Copyright © 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
Krayem, Najeh; Abdelkefi-Koubaa, Zaineb; Gargouri, Youssef; Luis, José
2018-05-01
Integrins are a large family of cell surface receptors mediating the interaction of cells with their microenvironment and they play an important role in glioma biology. In the present work, we reported the anti-tumor effect of Sm-PLGV a phospholipase A 2 from Tunisian scorpion venom glands-as well as its recombinant forms expressed in Escherichia coli-through interference with integrin receptor function in malignant glioma cells U87. These phospholipases inhibited in a dose dependent manner the adhesion, migration and invasion onto fibrinogen and fibronectin without any cytotoxicity. We showed that Sm-PLGV and its recombinant constructs blocked U87 migration by reducing their velocity and directional persistence. The inhibitory effect was related to a blockage of the integrins αvβ3 and α5β1 function. Inactivation of the enzymatic activity of Sm-PLGV by chemical modification with p-bromophenacyl bromide did not affect its anti-tumor properties, suggesting the presence of 'pharmacological sites' distinct from the catalytic site in scorpion venom phospholipases A 2 . Copyright © 2018 Elsevier Inc. All rights reserved.
Sangboonruang, S; Thammasit, P; Intasai, N; Kasinrerk, W; Tayapiwatana, C; Tragoolpua, K
2014-06-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) exhibits overexpression in various cancers and promotes cancer progression and metastasis via the interaction with its associated molecules. The scFv-M6-1B9 intrabody has a potential ability to reduce EMMPRIN cell surface expression. However, the subsequent effect of scFv-M6-1B9 intrabody-mediated EMMPRIN abatement on its related molecules, α3β1-integrin, MCT1, MMP-2 and MMP-9, is undefined. Our results demonstrated that the scFv-M6-1B9 intrabody efficiently decreased α3β1-integrin cell surface expression levels. In addition, intracellular accumulation of MCT1 and lactate were increased. These results lead to suppression of features characteristic for tumor progression, including cell migration, proliferation and invasion, in a colorectal cancer cell line (Caco-2) although there was no difference in MMP expression. Thus, EMMPRIN represents an attractive target molecule for the disruption of cancer proliferation and metastasis. An scFv-M6-1B9 intrabody-based approach could be relevant for cancer gene therapy.
Wan, Chunyan; Yuan, Guohua; Luo, Daoshu; Zhang, Lu; Lin, Heng; Liu, Huan; Chen, Lei; Yang, Guobin; Chen, Shuo; Chen, Zhi
2016-01-01
Dentin sialophosphoprotein (DSPP) is a dentin extracellular matrix protein that is processed into dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP). DSP is mainly expressed in odontoblasts. We hypothesized that DSP interacts with cell surface receptors and subsequently activates intracellular signaling. Using DSP as bait for screening a protein library, we demonstrate that DSP acts as a ligand and binds to integrin β6. The 36 amino acid residues of DSP are sufficient to bind to integrin β6. This peptide promoted cell attachment, migration, differentiation and mineralization of dental mesenchymal cells. In addition, DSP aa183-219 stimulated phosphorylation of ERK1/2 and P38 kinases. This activation was inhibited by an anti-integrin β6 antibody and siRNA. Furthermore, we demonstrate that this DSP fragment induces SMAD1/5/8 phosphorylation and nuclear translocation via ERK1/2 and P38 signaling. SMAD1/5/8 binds to SMAD binding elements (SBEs) in the DSPP gene promoter. SBE mutations result in a decrease in DSPP transcriptional activity. Endogenous DSPP expression was up-regulated by DSP aa183-219 in dental mesenchymal cells. The data in the current study demonstrate for the first time that this DSP domain acts as a ligand in a RGD-independent manner and is involved in intracellular signaling via interacting with integrin β6. The DSP domain regulates DSPP expression and odontoblast homeostasis via a positive feedback loop. PMID:27430624
Wan, Chunyan; Yuan, Guohua; Luo, Daoshu; Zhang, Lu; Lin, Heng; Liu, Huan; Chen, Lei; Yang, Guobin; Chen, Shuo; Chen, Zhi
2016-07-19
Dentin sialophosphoprotein (DSPP) is a dentin extracellular matrix protein that is processed into dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP). DSP is mainly expressed in odontoblasts. We hypothesized that DSP interacts with cell surface receptors and subsequently activates intracellular signaling. Using DSP as bait for screening a protein library, we demonstrate that DSP acts as a ligand and binds to integrin β6. The 36 amino acid residues of DSP are sufficient to bind to integrin β6. This peptide promoted cell attachment, migration, differentiation and mineralization of dental mesenchymal cells. In addition, DSP (aa183-219) stimulated phosphorylation of ERK1/2 and P38 kinases. This activation was inhibited by an anti-integrin β6 antibody and siRNA. Furthermore, we demonstrate that this DSP fragment induces SMAD1/5/8 phosphorylation and nuclear translocation via ERK1/2 and P38 signaling. SMAD1/5/8 binds to SMAD binding elements (SBEs) in the DSPP gene promoter. SBE mutations result in a decrease in DSPP transcriptional activity. Endogenous DSPP expression was up-regulated by DSP (aa183-219) in dental mesenchymal cells. The data in the current study demonstrate for the first time that this DSP domain acts as a ligand in a RGD-independent manner and is involved in intracellular signaling via interacting with integrin β6. The DSP domain regulates DSPP expression and odontoblast homeostasis via a positive feedback loop.
WU, YINGJEN JEFFREY; PAGEL, MICHAEL A.; MULDOON, LESLIE L.; FU, RONGWEI; NEUWELT, EDWARD A.
2018-01-01
Background/Aim Brain metastases commonly occur in patients with malignant skin, lung and breast cancers resulting in high morbidity and poor prognosis. Integrins containing an αv subunit are cell adhesion proteins that contribute to cancer cell migration and cancer progression. We hypothesized that high expression of αv integrin cell adhesion protein promoted metastatic phenotypes in cancer cells. Materials and Methods Cancer cells from different origins were used and studied regarding their metastatic ability and intetumumab, anti-αv integrin mAb, sensitivity using in vitro cell migration assay and in vivo brain metastases animal models. Results The number of brain metastases and the rate of occurrence were positively correlated with cancer cell αv integrin levels. High αv integrin-expressing cancer cells showed significantly faster cell migration rate in vitro than low αv integrin-expressing cells. Intetumumab significantly inhibited cancer cell migration in vitro regardless of αv integrin expression level. Overexpression of αv integrin in cancer cells with low αv integrin level accelerated cell migration in vitro and increased the occurrence of brain metastases in vivo. Conclusion αv integrin promotes brain metastases in cancer cells and may mediate early steps in the metastatic cascade, such as adhesion to brain vasculature. Targeting αv integrin with intetumumab could provide clinical benefit in treating cancer patients who develop metastases. PMID:28739685
Kouro, Hitomi; Kon, Shigeyuki; Matsumoto, Naoki; Miyashita, Tomoe; Kakuchi, Ayaka; Ashitomi, Dai; Saitoh, Kodai; Nakatsuru, Takuya; Togi, Sumihito; Muromoto, Ryuta; Matsuda, Tadashi
2014-01-01
Integrins affect the motility of multiple cell types to control cell survival, growth, or differentiation, which are mediated by cell-cell and cell-extracellular matrix interactions. We reported previously that the α9 integrin splicing variant, SFα9, promotes WT α9 integrin-dependent adhesion. In this study, we introduced a new murine α4 integrin splicing variant, α4B, which has a novel short cytoplasmic tail. In inflamed tissues, the expression of α4B, as well as WT α4 integrin, was up-regulated. Cells expressing α4B specifically bound to VCAM-1 but not other α4 integrin ligands, such as fibronectin CS1 or osteopontin. The binding of cells expressing WT α4 integrin to α4 integrin ligands is inhibited by coexpression of α4B. Knockdown of α4B in metastatic melanoma cell lines results in a significant increase in lung metastasis. Expression levels of WT α4 integrin are unaltered by α4B, with α4B acting as a regulatory subunit for WT α4 integrin by a dominant-negative effect or inhibiting α4 integrin activation. PMID:24755217
Mechanotransduction across the cell surface and through the cytoskeleton
NASA Technical Reports Server (NTRS)
Wang, N.; Butler, J. P.; Ingber, D. E.
1993-01-01
Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin beta 1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct proportion to the applied stress and required intact microtubules and intermediate filaments as well as microfilaments. Tensegrity models that incorporate mechanically interdependent struts and strings that reorient globally in response to a localized stress mimicked this response. These results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton. Mechanotransduction, in turn, may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytoskeleton.
Modulating macrophage response to biomaterials
NASA Astrophysics Data System (ADS)
Zaveri, Toral
Macrophages recruited to the site of biomaterial implantation are the primary mediators of the chronic foreign body response to implanted materials. Since foreign body response limits performance and functional life of numerous implanted biomaterials/medical devices, various approaches have been investigated to modulate macrophage interactions with biomaterial surfaces to mitigate this response. In this work we have explored two independent approaches to modulate the macrophage inflammatory response to biomaterials. The first approach targets surface integrins, cell surface receptors that mediate cell adhesion to biomaterials through adhesive proteins spontaneously adsorbed on biomaterial surfaces. The second approach involves surface modification of biomaterials using nanotopographic features since nanotopography has been reported to modulate cell adhesion and viability in a cell type-dependent manner. More specifically, Zinc Oxide (ZnO) nanorod surface was investigated for its role in modulating macrophage adhesion and survival in vitro and foreign body response in vivo. For the first approach, we have investigated the role of integrin Mac-1 and RGD-binding integrins in the in-vivo osteolysis response and macrophage inflammatory processes of phagocytosis as well as inflammatory cytokine secretion in response to particulate biomaterials. We have also investigated the in vivo foreign body response (FBR) to subcutaneously implanted biomaterials by evaluating the thickness of fibrous capsule formed around the implants after 2 weeks of implantation. The role of Mac-1 integrin was isolated using a Mac-1 KO mouse and comparing it to a WT control. The role of RGD binding integrins in FBR was investigated by coating the implanted biomaterial with ELVAX(TM) polymer loaded with Echistatin which contains the RGD sequence. For the in-vivo osteolysis study and to study the in-vitro macrophage response to particulate biomaterials, we used the RGD peptide encapsulated in ELVAX(TM) and dissolved in macrophage media respectively. By studying the phagocytosis, inflammatory and FBR of macrophages from integrin knockout mice, as well as using various integrin blocking techniques we aim to identify the role of various integrins in macrophage inflammatory response. These integrins can serve as therapeutic targets for mitigating this inflammatory response and improve functional life of implanted biomaterials. Zinc oxide (ZnO) has been investigated in a number of biomedical applications and surfaces presenting well-controlled nanorod structures of ZnO have recently been developed. In order to investigate the influence of nanotopography on macrophage adhesive response, we evaluated macrophage adhesion and viability on ZnO nanorods, compared to a relatively flat sputtered ZnO controls and using glass substrates for reference. We found that although macrophages are capable of initially adhering to and spreading on ZnO nanorod substrates, the number of adherent macrophages on ZnO nanorods was reduced compared to ZnO flat substrate and glass. While these data suggest nanotopography may modulate macrophage adhesion, reduced cell viability on both sputtered and nanorod ZnO substrate indicates appreciable toxicity associated with ZnO. In order to determine long-term physiological responses, ZnO nanorodcoated and sputtered ZnO-coated polyethylene terephthalate (PET) discs were implanted subcutaneously in mice for 14 days. Upon implantation, both ZnO-coated discs resulted in a discontinuous cellular fibrous capsule indicative of unresolved inflammation, in contrast to uncoated PET discs, which resulted in typical foreign body capsule formation. Hence although ZnO substrates presenting nanorod topography have previously been shown to modulate cellular adhesion in a topography-dependent fashion for specific cell types, this work demonstrates that for primary murine macrophages, cell adhesion and viability correlate to both nanotopography and toxicity of dissolved Zn, parameters which are likely interdependent. Considering the toxicity of ZnO nanorod surface towards macrophages, their role as an antibacterial surface was explored. Antibacterial coating approaches are being investigated to modify implants to reduce bacterial adhesion and viability in order to reduce implant-associated infection. To assess the efficacy of ZnO nanorod surfaces as an anti-bacterial coating, we evaluated bacterial adhesion and viability, compared to sputtered ZnO and glass substrates. Common implant-associated pathogens, Pseudomonas aeruginosa and Staphylococcus epidermidis were investigated. ZnO nanorod surface and sputtered ZnO demonstrated a significant bactericidal effect, killing respectively 2.5x and 1.7x times the number of bacteria dead on glass. A similar bactericidal effect of ZnO substrates on S. epidermidis was also evident, with sputtered ZnO and ZnO nanorod substrates killing respectively 22x and 32x times bacteria dead on glass. These data support the further investigation of ZnO nanorod coatings for bacterial adhesion resistance and bactericidal properties.
Cardiac integrins the ties that bind.
Simpson, D G; Reaves, T A; Shih, D T; Burgess, W; Borg, T K; Terracio, L
1998-01-01
An elaborate series of morphogenetic events must be precisely coordinated during development to promote the formation of the elaborate three-dimensional structure of the normal heart. In this study we focus on discussing how interconnections between the cardiac myocyte and its surrounding environment regulate cardiac form and function. In vitro experiments from our laboratories provide direct evidence that cardiac cell shape is regulated by a dynamic interaction between constituents of the extracellular matrix (ECM) and by specific members of the integrin family of matrix receptors. Our data indicates that phenotypic information is stored in the tertiary structure and chemical identity of the ECM. This information appears to be actively communicated and transduced by the α1β1 integrin molecule into an intracellular signal that regulates cardiac cell shape and myofibrillar organization. In this study we have assessed the phenotypic consequences of suppressing the expression and accumulation of the α1 integrin molecule in aligned cultures of cardiac myocytes. In related experiments we have examined how the overexpression of α2 and α5 integrin, integrins normally not present or present at very low copy number on the cell surface of neonatal cardiac myocytes, affect cardiac protein metabolism. We also consider how biochemical signals and the mechanical signals mediated by the integrins may converge on common intracellular signaling pathways in the heart. Experiments with the whole embryo culture system indicate that angiotensin II, a peptide that carries information concerning cardiac load, plays a role in controling cardiac looping and the proliferation of myofibrils during development.
Kubo, Miyoko; Clark, Richard A F; Katz, Anne B; Taichman, Lorne B; Jin, Zaishun; Zhao, Ying; Moriguchi, Takahiko
2007-04-01
alphavbeta3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express alphavbeta3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with beta3 integrin subunit cDNA by a retrovirus-mediated transduction method express alphavbeta3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with beta-galactosidase (beta-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these beta3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. beta3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (beta-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to alphavbeta3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that beta3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.
Wu, Yingjen Jeffrey; Pagel, Michael A; Muldoon, Leslie L; Fu, Rongwei; Neuwelt, Edward A
2017-08-01
Brain metastases commonly occur in patients with malignant skin, lung and breast cancers resulting in high morbidity and poor prognosis. Integrins containing an αv subunit are cell adhesion proteins that contribute to cancer cell migration and cancer progression. We hypothesized that high expression of αv integrin cell adhesion protein promoted metastatic phenotypes in cancer cells. Cancer cells from different origins were used and studied regarding their metastatic ability and intetumumab, anti-αv integrin mAb, sensitivity using in vitro cell migration assay and in vivo brain metastases animal models. The number of brain metastases and the rate of occurrence were positively correlated with cancer cell αv integrin levels. High αv integrin-expressing cancer cells showed significantly faster cell migration rate in vitro than low αv integrin-expressing cells. Intetumumab significantly inhibited cancer cell migration in vitro regardless of αv integrin expression level. Overexpression of αv integrin in cancer cells with low αv integrin level accelerated cell migration in vitro and increased the occurrence of brain metastases in vivo. αv integrin promotes brain metastases in cancer cells and may mediate early steps in the metastatic cascade, such as adhesion to brain vasculature. Targeting αv integrin with intetumumab could provide clinical benefit in treating cancer patients who develop metastases. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Kokkinos, Petros A; Koutsoukos, Petros G; Deligianni, Despina D
2012-06-01
Hydroxyapatite (HA) has been widely used as a bone substitute in dental, maxillofacial and orthopaedic surgery and as osteoconductive bone substitute or precoating of pedicle screws and cages in spine surgery. The aim of the present study was to investigate the osteoblastic adhesion strength on HA substrata with different surface topography and biochemistry (pre-adsorption of fibronectin) after blocking of specific integrin subunits with monoclonal antibodies. Stoichiometric HA was prepared by precipitation followed by ageing and characterized by SEM, EDX, powder XRD, Raman spectroscopy, TGA, and specific surface area analysis. Human bone marrow derived osteoblasts were cultured on HA disc-shaped substrata which were sintered and polished resulting in two surface roughness grades. For attachment evaluation, cells were incubated with monoclonal antibodies and seeded for 2 h on the substrata. Cell detachment strength was determined using a rotating disc device. Cell detachment strength was surface roughness, fibronectin preadsorption and intergin subunit sensitive.
Single Cell Force Spectroscopy for Quantification of Cellular Adhesion on Surfaces
NASA Astrophysics Data System (ADS)
Christenson, Wayne B.
Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is alpha Mbeta2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering quantitative insights.
Activation states of blood eosinophils in asthma
Johansson, Mats W.
2014-01-01
Asthma is characterized by airway inflammation rich in eosinophils. Airway eosinophilia is associated with exacerbations and has been suggested to play a role in airway remodeling. Recruitment of eosinophils from the circulation requires that blood eosinophils become activated, leading to their arrest on the endothelium and extravasation. Circulating eosinophils can be envisioned as potentially being in different activation states, including non-activated, pre-activated or “primed”, or fully activated. In addition, the circulation can potentially be deficient of pre-activated or activated eosinophils, because such cells have marginated on activated endothelium or extravasated into the tissue. A number of eosinophil-surface proteins, including CD69, L-selectin, intercellular adhesion molecule-1 (ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1 (PSGL-1, CD162), cytokine receptors, Fc receptors, integrins including αM integrin (CD11b), and activated conformations of Fc receptors and integrins have been proposed to report cell activation. Variation in eosinophil activation states may be associated with asthma activity. Eosinophil-surface proteins proposed to be activation markers, with a particular focus on integrins, and evidence for associations between activation states of blood eosinophils and features of asthma are reviewed here. Partial activation of β1 and β2 integrins on blood eosinophils, reported by monoclonal antibodies (mAb) N29 and KIM-127, is associated with impaired pulmonary function and airway eosinophilia, respectively, in non-severe asthma. The association with lung function does not occur in severe asthma, presumably due to greater eosinophil extravasation, specifically of activated or pre-activated cells, in severe disease. PMID:24552191
Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions.
Blandin, Anne-Florence; Noulet, Fanny; Renner, Guillaume; Mercier, Marie-Cécile; Choulier, Laurence; Vauchelles, Romain; Ronde, Philippe; Carreiras, Franck; Etienne-Selloum, Nelly; Vereb, Gyorgy; Lelong-Rebel, Isabelle; Martin, Sophie; Dontenwill, Monique; Lehmann, Maxime
2016-07-01
Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mana, Giulia; Clapero, Fabiana; Panieri, Emiliano; Panero, Valentina; Böttcher, Ralph T.; Tseng, Hui-Yuan; Saltarin, Federico; Astanina, Elena; Wolanska, Katarzyna I.; Morgan, Mark R.; Humphries, Martin J.; Santoro, Massimo M.; Serini, Guido; Valdembri, Donatella
2016-01-01
Basolateral polymerization of cellular fibronectin (FN) into a meshwork drives endothelial cell (EC) polarity and vascular remodelling. However, mechanisms coordinating α5β1 integrin-mediated extracellular FN endocytosis and exocytosis of newly synthesized FN remain elusive. Here we show that, on Rab21-elicited internalization, FN-bound/active α5β1 is recycled to the EC surface. We identify a pathway, comprising the regulators of post-Golgi carrier formation PI4KB and AP-1A, the small GTPase Rab11B, the surface tyrosine phosphatase receptor PTPRF and its adaptor PPFIA1, which we propose acts as a funnel combining FN secretion and recycling of active α5β1 integrin from the trans-Golgi network (TGN) to the EC surface, thus allowing FN fibrillogenesis. In this framework, PPFIA1 interacts with active α5β1 integrin and localizes close to EC adhesions where post-Golgi carriers are targeted. We show that PPFIA1 is required for FN polymerization-dependent vascular morphogenesis, both in vitro and in the developing zebrafish embryo. PMID:27876801
Harlow, Danielle E.; Saul, Katherine E.; Komuro, Hitoshi
2015-01-01
In previous studies, stimulation of ionotropic AMPA/kainate glutamate receptors on cultured oligodendrocyte cells induced the formation of a signaling complex that includes the AMPA receptor, integrins, calcium-binding proteins, and, surprisingly, the myelin proteolipid protein (PLP). AMPA stimulation of cultured oligodendrocyte progenitor cells (OPCs) also caused an increase in OPC migration. The current studies focused primarily on the formation of the PLP–αv integrin–AMPA receptor complex in vivo and whether complex formation impacts OPC migration in the brain. We found that in wild-type cerebellum, PLP associates with αv integrin and the calcium-impermeable GluR2 subunit of the AMPA receptor, but in mice lacking PLP, αv integrin did not associate with GluR2. Live imaging studies of OPC migration in ex vivo cerebellar slices demonstrated altered OPC migratory responses to neurotransmitter stimulation in the absence of PLP and GluR2 or when αv integrin levels were reduced. Chemotaxis assays of purified OPCs revealed that AMPA stimulation was neither attractive nor repulsive but clearly increased the migration rate of wild-type but not PLP null OPCs. AMPA receptor stimulation of wild-type OPCs caused decreased cell-surface expression of the GluR2 AMPA receptor subunit and increased intracellular Ca2+ signaling, whereas PLP null OPCs did not reduce GluR2 at the cell surface or increase Ca2+ signaling in response to AMPA treatment. Together, these studies demonstrate that PLP is critical for OPC responses to glutamate signaling and has important implications for OPC responses when levels of glutamate are high in the extracellular space, such as following demyelination. SIGNIFICANCE STATEMENT After demyelination, such as occurs in multiple sclerosis, remyelination of axons is often incomplete, leading to loss of neuronal function and clinical disability. Remyelination may fail because oligodendrocyte precursor cells (OPCs) do not completely migrate into demyelinated areas or OPCs in lesions may not mature into myelinating oligodendrocytes. We have found that the myelin proteolipid protein is critical to regulating OPC migratory responses to the neurotransmitter glutamate through modulation of cell-surface expression of the calcium-impermeable GluR2 subunit of the AMPA glutamate receptor and increased intercellular Ca2+ signaling. Altered glutamate homeostasis has been reported in demyelinated lesions. Therefore, understanding how OPCs respond to glutamate has important implications for treatment after white matter injury and disease. PMID:26311781
Novel Regulation of Integrin Trafficking by Rab11-FIP5 in Aggressive Prostate Cancer.
Das, Lipsa; Gard, Jaime M C; Prekeris, Rytis; Nagle, Raymond B; Morrissey, Colm; Knudsen, Beatrice S; Miranti, Cindy K; Cress, Anne E
2018-05-14
The laminin-binding integrins, α3β1 and α6β1, are needed for tumor metastasis and their surface expression is regulated by endocytic recycling. β1 integrins share the Rab11 recycling machinery but the trafficking of α3β1 and α6β1 are distinct by an unknown mechanism. Using a mouse PDX tumor model containing human metastatic prostate cancer, Rab11 family interacting protein 5 (Rab11-FIP5) was identified as a lead candidate for α6β1 trafficking. Rab11-FIP5 and its membrane binding domain were required for α6β1 recycling, without affecting the other laminin-binding integrin (i.e., α3β1) or unrelated membrane receptors like CD44, transferrin receptor, or E-cadherin. Depletion of Rab11-FIP5 resulted in the intracellular accumulation of α6β1 in the Rab11 recycling compartment, loss of cell migration on laminin, and an unexpected loss of α6β1 recycling in cell-cell locations. Taken together, these data demonstrate that α6β1 is distinct from α3β1 via Rab11-FIP5 recycling and recycles in an unexpected cell-cell location. Rab11-FIP5 dependent a6b1 integrin recycling may be selectively targeted to limit migration of prostate cancer cells into laminin-rich tissues. Copyright ©2018, American Association for Cancer Research.
Knox, J. D.; Cress, A. E.; Clark, V.; Manriquez, L.; Affinito, K. S.; Dalkin, B. L.; Nagle, R. B.
1994-01-01
The epithelial basal lamina composition and integrin expression profile of normal and neoplastic human prostate was characterized using immunohistochemical analysis of frozen samples. The major components of the basal lamina surrounding normal acini were laminin, type IV collagen, entactin, and type VII collagen with variable amounts of tenascin. The basal lamina of neoplastic acini had a similar composition, except for the loss of type VII collagen, which was observed in all grades of carcinoma. The basal cells of the normal prostate express the alpha 6-, beta 1-, and beta 4-integrin subunits, suggesting that both the alpha 6 beta 1- and alpha 6 beta 4-integrin complexes are formed. In prostate carcinoma there is a complete loss of beta 4 expression and the alpha 6- and beta 1-integrin subunits, which are restricted to the basal and basal lateral surfaces of basal cells, are distributed diffusely throughout the cytoplasmic membrane. The differential expression of type VII collagen and beta 4 are discussed in relationship to their possible role in tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8030747
Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.
2013-01-01
Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486
Effects of space flight on surface marker expression
NASA Astrophysics Data System (ADS)
Sonnenfeld, G.
1999-01-01
Space flight has been shown to affect expression of several cell surface markers. These markers play important roles in regulation of immune responses, including CD4 and CD8. The studies have involved flight of experimental animals and humans followed by analysis of tissue samples (blood in humans, rats and monkeys, spleen, thymus, lymph nodes and bone marrow in rodents). The degree and direction of the changes induced by space flight have been determined by the conditions of the flight. Also, there may be compartmentalization of the response of surface markers to space flight, with differences in the response of cells isolated from blood and local immune tissue. The same type of compartmentalization was also observed with cell adhesion molecules (integrins). In this case, the expression of integrins from lymph node cells differed from that of splenocytes isolated from rats immediately after space flight. Cell culture studies have indicated that there may be an inhibition in conversion of a precursor cell line to cells exhibiting mature macrophage characteristics after space flight, however, these experiments were limited as a result of technical difficulties. In general, it is clear that space flight results in alterations of cell surface markers. The biological significance of these changes remains to be established.
Caicedo-Carvajal, Carlos E.; Shinbrot, Troy; Foty, Ramsey A.
2010-01-01
Background Tissue organization during embryonic development and wound healing depends on the ability of cells on the one hand to exchange adhesive bonds during active rearrangement and on the other to become fixed in place as tissue homeostasis is reached. Cells achieve these contradictory tasks by regulating either cell-cell adhesive bonds, mediated by cadherins, or cell-extracellular matrix (ECM) connections, regulated by integrins. Integrin α5β1 and soluble fibronectin (sFN) are key players in cell-ECM force generation and in ECM polymerization. Here, we explore the interplay between integrin α5β1 and sFN and its influence on tissue mechanical properties and cell sorting behavior. Methodology/Principal Findings We generated a series of cell lines varying in α5β1 receptor density. We then systematically explored the effects of different sFN concentrations on aggregate biomechanical properties using tissue surface tensiometry. We found previously unreported complex behaviors including the observation that interactions between fibronectin and integrin α5β1 generates biphasic tissue cohesion profiles. Specifically, we show that at constant sFn concentration, aggregate cohesion increases linearly as α5β1 receptor density is increased from low to moderate levels, producing a transition from viscoelastic-liquid to pseudo viscoelastic-solid behavior. However, further increase in receptor density causes an abrupt drop in tissue cohesion and a transition back to viscoelastic-liquid properties. We propose that this may be due to depletion of sFn below a critical value in the aggregate microenvironment at high α5β1 levels. We also show that differential expression of α5β1 integrin can promote phase-separation between cells. Conclusions/Significance The interplay between α5-integrin and sFn contributes significantly to tissue cohesion and, depending on their level of expression, can mediate a shift from liquid to elastic behavior. This interplay represents a tunable level of control between integrins and the ECM that can influence tissue cohesion and other mechanical properties, which may translate to the specification of tissue structure and function. These studies provide insights into important biological processes such as embryonic development, wound healing, and for tissue engineering applications. PMID:20686611
De Nichilo, M O; Burns, G F
1993-03-15
The colony-stimulating factors (CSFs) greatly influence mature macrophage function in vitro: macrophage (M)-CSF induces maturation of monocytes and enhances differentiated cell function; granulocyte-macrophage (GM)-CSF stimulates a variety of antimicrobial functions. In vivo M-CSF is thought to promote differentiation, and GM-CSF is thought to potentiate the inflammatory response. One mechanism by which these differential effects may be achieved is through the receptor-mediated interaction of macrophages with their extracellular matrix. Here we show that M-CSF induces specifically the expression of the alpha v beta 5 integrin receptor, whereas GM-CSF rapidly induces mRNA and surface expression of the alpha v beta 3 integrin. The M-CSF-treated cells acquire a flattened epitheloid phenotype, and on vitronectin the alpha v beta 5 is located in adhesion plaques. These cells do not bind collagen or laminin. In contrast, cells treated with GM-CSF adopt an elongated phenotype on a number of substrates, including collagen and laminin, and express alpha v beta 3 at the leading edge of cells on vitronectin. These results suggest that a primary means by which the CSFs exert their individual effects on mature cells may be through regulating integrin expression.
Singh, Chandrajeet; Shyanti, Ritis K; Singh, Virendra; Kale, Raosaheb K; Mishra, Jai P N; Singh, Rana P
2018-05-05
Integrins are the major cell adhesion glycoproteins involved in cell-extracellular matrix (ECM) interaction and metastasis. Further, glycosylation on integrin is necessary for its proper folding and functionality. Herein, differential expression of integrins viz., αvβ3 and αvβ6 was examined in MDA-MB-231, MDA-MB-468 and MCF-10A cells, which signify three different stages of breast cancer development from highly metastatic to non-tumorigenic stage. The expression of αvβ3 and αvβ6 integrins at mRNA and protein levels was observed in all three cell lines and the results displayed a distinct pattern of expression. Highly metastatic cells showed enhanced expression of αvβ3 than moderate metastatic and non-tumorigenic cells. The scenario was reversed in case of αvβ6 integrin, which was strongly expressed in moderate metastatic and non-tumorigenic cells. N-glycosylation of αvβ3 and αvβ6 integrins is required for the attachment of cells to ECM proteins like fibronectin. The cell adhesion properties were found to be different in these cancer cells with respect to the type of integrins expressed. The results testify that αvβ3 integrin in highly metastatic cells, αvβ6 integrin in both moderate metastatic and non-tumorigenic cells play an important role in cell adhesion. The investigation typify that N-glycosylation on integrins is also necessary for cell-ECM interaction. Further, glycosylation inhibition by Swainsonine is found to be more detrimental to invasive property of moderate metastatic cells. Conclusively, types of integrins expressed as well as their N-glycosylation pattern alter during the course of breast cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.
Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping
2016-11-07
Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal-regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway.
Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping
2016-01-01
Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal–regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway. PMID:27827993
Riaz, Maryam; Versaevel, Marie; Mohammed, Danahe; Glinel, Karine; Gabriele, Sylvain
2016-09-28
Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of α v β 3 or α 5 β 1 integrins, we show that α V β 3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α 5 β 1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of α v β 3 and α 5 β 1 integrins in the molecular clutch model.
NASA Technical Reports Server (NTRS)
Maniotis, A. J.; Chen, C. S.; Ingber, D. E.
1997-01-01
We report here that living cells and nuclei are hard-wired such that a mechanical tug on cell surface receptors can immediately change the organization of molecular assemblies in the cytoplasm and nucleus. When integrins were pulled by micromanipulating bound microbeads or micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nucleoli redistributed along the axis of the applied tension field. These effects were specific for integrins, independent of cortical membrane distortion, and were mediated by direct linkages between the cytoskeleton and nucleus. Actin microfilaments mediated force transfer to the nucleus at low strain; however, tearing of the actin gel resulted with greater distortion. In contrast, intermediate filaments effectively mediated force transfer to the nucleus under both conditions. These filament systems also acted as molecular guy wires to mechanically stiffen the nucleus and anchor it in place, whereas microtubules acted to hold open the intermediate filament lattice and to stabilize the nucleus against lateral compression. Molecular connections between integrins, cytoskeletal filaments, and nuclear scaffolds may therefore provide a discrete path for mechanical signal transfer through cells as well as a mechanism for producing integrated changes in cell and nuclear structure in response to changes in extracellular matrix adhesivity or mechanics.
Retriever, a multiprotein complex for retromer-independent endosomal cargo recycling
McNally, Kerrie E.; Faulkner, Rebecca; Steinberg, Florian; Gallon, Matthew; Ghai, Rajesh; Pim, David; Langton, Paul; Pearson, Neil; Danson, Chris M.; Nägele, Heike; Morris, Lindsey M; Singla, Arnika; Overlee, Brittany L; Heesom, Kate J.; Sessions, Richard; Banks, Lawrence; Collins, Brett M; Berger, Imre; Billadeau, Daniel D.; Burstein, Ezra; Cullen, Peter J.
2018-01-01
Following endocytosis and entry into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are alternatively retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multi-protein complex which orchestrates cargo retrieval and recycling and importantly, is biochemically and functionally distinct to the established retromer pathway. Composed of a heterotrimer of DSCR3, C16orf62 and VPS29, and bearing striking similarity with retromer, we have called this complex ‘retriever’. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to the CCC and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1-integrin. Through quantitative proteomic analysis we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, which require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major new endosomal retrieval and recycling pathway. PMID:28892079
Integrin Expression Regulates Neuroblastoma Attachment and Migration1
Meyer, Amy; van Golen, Cynthia M.; Kim, Bhumsoo; van Golen, Kenneth L.; Feldman, Eva L.
2004-01-01
Abstract Neuroblastoma (NBL) is the most common malignant disease of infancy, and children with bone metastasis have a mortality rate greater than 90%. Two major classes of proteins, integrins and growth factors, regulate the metastatic process. We have previously shown that tumorigenic NBL cells express higher levels of the type I insulin-like growth factor receptor (IGF-IR) and that β1 integrin expression is inversely proportional to tumorigenic potential in NBL. In the current study, we analyze the effect of β1 integrin and IGF-IR on NBL cell attachment and migration. Nontumorigenic S-cells express high levels of β1 integrin, whereas tumorigenic N-cells express little β1 integrin. Alterations in β1 integrin are due to regulation at the protein level, as translation is decreased in N-type cells. Moreover, inhibition of protein synthesis shows that β1 integrin is degraded more slowly in S-type cells (SHEP) than in N-type cells (SH-SY5Y and IMR32). Inhibition of α5β1 integrin prevents SHEP (but not SH-SY5Y or IMR32) cell attachment to fibronectin and increases SHEP cell migration. Increases in IGF-IR decrease β1 integrin expression, and enhance SHEP cell migration, potentially through increased expression of αvβ3. These data suggest that specific classes of integrins in concert with IGF-IR regulate NBL attachment and migration. PMID:15256055
Hogg, Nancy; Stewart, Mairi P.; Scarth, Sarah L.; Newton, Rebecca; Shaw, Jacqueline M.; Law, S.K. Alex; Klein, Nigel
1999-01-01
In the leukocyte adhesion deficiency (LAD)-1 syndrome, there is diminished expression of β2(CD18) integrins. This is caused by lesions in the β2-subunit gene and gives rise to recurrent bacterial infections, impaired pus formation, and poor wound healing. We describe a patient with clinical features compatible with a moderately severe phenotype of LAD-1 but who expresses the β2 integrins lymphocyte function– associated molecule (LFA)-1 and Mac-1 at 40%–60% of normal levels. This level of expression should be adequate for normal integrin function, but both the patient's Mac-1 on neutrophils and LFA-1 on T cells failed to bind ligands such as fibrinogen and intercellular adhesion molecule (ICAM)-1, respectively, or to display a β2-integrin activation epitope after adhesion-inducing stimuli. Unexpectedly, divalent cation treatment induced the patient's T cells to bind to ICAM-2 and ICAM-3. Sequencing of the patient's two CD18 alleles revealed the mutations S138P and G273R. Both mutations are in the β2-subunit conserved domain, with S138P a putative divalent cation coordinating residue in the metal ion–dependent adhesion site (MIDAS) motif. After K562 cell transfection with α subunits, the mutated S138P β subunit was coexpressed but did not support function, whereas the G273R mutant was not expressed. In summary, the patient described here exhibits failure of the β2 integrins to function despite adequate levels of cell-surface expression. PMID:9884339
Zhuang, Shufei; Kelo, Lisha; Nardi, James B; Kanost, Michael R
2007-01-01
Neuroglian, a member of the L1 family of cell adhesion molecules (L1-CAMs), is expressed on surfaces of granular cells and a subset of large plasmatocytes of Manduca sexta that act as foci for hemocyte aggregation during the innate immune response. Neuroglian expressed on surfaces of transfected Sf9 cells induced their homophilic aggregation, with the aggregation being abolished in the presence of recombinant immunoglobulin (Ig) domains of neuroglian. Neuroglian and its Ig domains also can interact with hemocyte-specific integrin (HS integrin) as demonstrated with an enzyme-linked immunoassay and a surface plasmon resonance (SPR) assay. Neuroglian double-stranded (ds) RNA not only depresses expression of neuroglian in hemocytes but also depresses the cell-mediated encapsulation response of these hemocytes to foreign surfaces. After injection of a monoclonal antibody (MAb 3B11) into M. sexta larvae that recognizes the Ig domains of neuroglian, the cell-mediated encapsulation response of hemocytes was likewise inhibited. The Ig domains of neuroglian are involved in both homophilic and heterophilic interactions, and subsets of these six different Ig domains may affect different functions of neuroglian.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E.
Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changesmore » in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.« less
Integrins in T Cell Physiology
Alabiso, Oscar; Galetto, Alessandra Silvia; Baldanzi, Gianluca
2018-01-01
From the thymus to the peripheral lymph nodes, integrin-mediated interactions with neighbor cells and the extracellular matrix tune T cell behavior by organizing cytoskeletal remodeling and modulating receptor signaling. LFA-1 (αLβ2 integrin) and VLA-4 (α4β1 integrin) play a key role throughout the T cell lifecycle from thymocyte differentiation to lymphocyte extravasation and finally play a fundamental role in organizing immune synapse, providing an essential costimulatory signal for the T cell receptor. Apart from tuning T cell signaling, integrins also contribute to homing to specific target organs as exemplified by the importance of α4β7 in maintaining the gut immune system. However, apart from those well-characterized examples, the physiological significance of the other integrin dimers expressed by T cells is far less understood. Thus, integrin-mediated cell-to-cell and cell-to-matrix interactions during the T cell lifespan still represent an open field of research. PMID:29415483
An Integrin from Shrimp Litopenaeus vannamei Mediated Microbial Agglutination and Cell Proliferation
Zhang, Ying; Wang, Leilei; Wang, Lingling; Wu, Ning; Zhou, Zhi; Song, Linsheng
2012-01-01
Background Integrins are a family of adhesion receptors which regulate cell proliferation, differentiation, leukocyte migration, and complement receptor-dependent phagocytosis. In invertebrates, as a cell adhesion receptor, β integrins play an important role for the balanced activation of immune defense responses especially during the encounter of infections. The present study attempts to characterize the immune functions of shrimp integrin (LvIntegrin) to have better understanding on the immune system and its regulation mechanisms in shrimps. Methodology A shrimp integrin was identified from the Pacific white shrimp Litopenaeus vannamei (designated as LvIntegrin). Its full-length cDNA was of 2621 bp with an open reading frame (ORF) of 2439 bp encoding a polypeptide of 812 amino acids. The mRNA expression of LvIntegrin was significantly up-regulated at 3, 6 and 12 h after Listonella anguillarum challenge. The cDNA fragment encoding β integrin domains (βA and hybrid domain) of LvIntegrin was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvIntegrin) could significantly agglutinate the tested microbe including E. coli JM109, L. anguillarum, Micrococcus luteus and Candida dattiladattila in the presence of divalent cations. Moreover, when NIH3T3 cells were cultured with rLvIntegrin, the proliferation rate increased significantly in a dose-dependent manner. Conclusions LvIntegrin, a shrimp β integrin was identified from L. vannamei, shared several highly conserved features. LvIntegrin exhibited broad-spectrum agglutination activity towards both bacteria and fungi and could improve the proliferation of NIH3T3 cells, indicating that LvIntegrin is involved in the immune response against microbe challenge and regulation of cell proliferation as a cell adhesion receptor in shrimp. PMID:22792387
Zhang, Ying; Wang, Leilei; Wang, Lingling; Wu, Ning; Zhou, Zhi; Song, Linsheng
2012-01-01
Integrins are a family of adhesion receptors which regulate cell proliferation, differentiation, leukocyte migration, and complement receptor-dependent phagocytosis. In invertebrates, as a cell adhesion receptor, β integrins play an important role for the balanced activation of immune defense responses especially during the encounter of infections. The present study attempts to characterize the immune functions of shrimp integrin (LvIntegrin) to have better understanding on the immune system and its regulation mechanisms in shrimps. A shrimp integrin was identified from the Pacific white shrimp Litopenaeus vannamei (designated as LvIntegrin). Its full-length cDNA was of 2621 bp with an open reading frame (ORF) of 2439 bp encoding a polypeptide of 812 amino acids. The mRNA expression of LvIntegrin was significantly up-regulated at 3, 6 and 12 h after Listonella anguillarum challenge. The cDNA fragment encoding β integrin domains (βA and hybrid domain) of LvIntegrin was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvIntegrin) could significantly agglutinate the tested microbe including E. coli JM109, L. anguillarum, Micrococcus luteus and Candida dattiladattila in the presence of divalent cations. Moreover, when NIH3T3 cells were cultured with rLvIntegrin, the proliferation rate increased significantly in a dose-dependent manner. LvIntegrin, a shrimp β integrin was identified from L. vannamei, shared several highly conserved features. LvIntegrin exhibited broad-spectrum agglutination activity towards both bacteria and fungi and could improve the proliferation of NIH3T3 cells, indicating that LvIntegrin is involved in the immune response against microbe challenge and regulation of cell proliferation as a cell adhesion receptor in shrimp.
Schlaepfer, D D; Hanks, S K; Hunter, T; van der Geer, P
The cytoplasmic focal adhesion protein-tyrosine kinase (FAK) localizes with surface integrin receptors at sites where cells attach to the extracellular matrix. Increased FAK tyrosine phosphorylation occurs upon integrin engagement with fibronectin. Here we show that adhesion of murine NIH3T3 fibroblasts to fibronectin promotes SH2-domain-mediated association of the GRB2 adaptor protein and the c-Src protein-tyrosine kinase (PTK) with FAK in vivo, and also results in activation of mitogen-activated protein kinase (MAPK). In v-Src-transformed NIH3T3, the association of v-Src, GRB2 and Sos with FAK is independent of cell adhesion to fibronectin. The GRB2 SH2 domain binds directly to tyrosine-phosphorylated FAK. Mutation of tyrosine residue 925 of FAK (YENV motif) to phenylalanine blocks GRB2 SH2-domain binding to FAK in vitro. Our results show that fibronectin binding to integrins on NIH3T3 fibroblasts promotes c-Src and FAK association and formation of an integrin-activated signalling complex. Phosphorylation of FAK at Tyr 925 upon fibronectin stimulation creates an SH2-binding site for GRB2 which may link integrin engagement to the activation of the Ras/MAPK signal transduction pathway.
Force loading explains spatial sensing of ligands by cells
NASA Astrophysics Data System (ADS)
Oria, Roger; Wiegand, Tina; Escribano, Jorge; Elosegui-Artola, Alberto; Uriarte, Juan Jose; Moreno-Pulido, Cristian; Platzman, Ilia; Delcanale, Pietro; Albertazzi, Lorenzo; Navajas, Daniel; Trepat, Xavier; García-Aznar, José Manuel; Cavalcanti-Adam, Elisabetta Ada; Roca-Cusachs, Pere
2017-12-01
Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking ‘adaptor’ protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds—the molecular clutches—respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.
Integrin β1 activation induces an anti-melanoma host response
Sole, Xavier; Salony; Chowdhury, Joeeta; Ross, Kenneth N.; Ramaswamy, Sridhar
2017-01-01
TGF-β is a cytokine thought to function as a tumor promoter in advanced malignancies. In this setting, TGF-β increases cancer cell proliferation, survival, and migration, and orchestrates complex, pro-tumorigenic changes in the tumor microenvironment. Here, we find that in melanoma, integrin β1-mediated TGF-β activation may also produce tumor suppression via an altered host response. In the A375 human melanoma cell nu/nu xenograft model, we demonstrate that cell surface integrin β1-activation increases TGF-β activity, resulting in stromal activation, neo-angiogenesis and, unexpectedly for this nude mouse model, increase in the number of intra-tumoral CD8+ T lymphocytes within the tumor microenvironment. This is associated with attenuation of tumor growth and long-term survival benefit. Correspondingly, in human melanomas, TGF-β1 correlates with integrin β1/TGF-β1 activation and the expression of markers for vasculature and stromal activation. Surprisingly, this integrin β1/TGF-β1 transcriptional footprint also correlates with the expression of markers for tumor-infiltrating lymphocytes, multiple immune checkpoints and regulatory pathways, and, importantly, better long-term survival of patients. These correlations are unique to melanoma, in that we do not observe similar associations between β1 integrin/TGF-β1 activation and better long-term survival in other human tumor types. These results suggest that activation of TGF-β1 in melanoma may be associated with the generation of an anti-tumor host response that warrants further study. PMID:28448494
Evidence that Distinct States of the Integrin α6β1 Interact with Laminin and an ADAM
Chen, M.S.; Almeida, E.A.C.; Huovila, A.-P.J.; Takahashi, Y.; Shaw, L.M.; Mercurio, A.M.; White, J.M.
1999-01-01
Integrins can exist in different functional states with low or high binding capacity for particular ligands. We previously provided evidence that the integrin α6β1, on mouse eggs and on α6-transfected cells, interacted with the disintegrin domain of the sperm surface protein ADAM 2 (fertilin β). In the present study we tested the hypothesis that different states of α6β1 interact with fertilin and laminin, an extracellular matrix ligand for α6β1. Using α6-transfected cells we found that treatments (e.g., with phorbol myristate acetate or MnCl2) that increased adhesion to laminin inhibited sperm binding. Conversely, treatments that inhibited laminin adhesion increased sperm binding. Next, we compared the ability of fluorescent beads coated with either fertilin β or with the laminin E8 fragment to bind to eggs. In Ca2+-containing media, fertilin β beads bound to eggs via an interaction mediated by the disintegrin loop of fertilin β and by the α6 integrin subunit. In Ca2+-containing media, laminin E8 beads did not bind to eggs. Treatment of eggs with phorbol myristate acetate or with the actin disrupting agent, latrunculin A, inhibited fertilin bead binding, but did not induce laminin E8 bead binding. Treatment of eggs with Mn2+ dramatically increased laminin E8 bead binding, and inhibited fertilin bead binding. Our results provide the first evidence that different states of an integrin (α6β1) can interact with an extracellular matrix ligand (laminin) or a membrane-anchored cell surface ligand (ADAM 2). PMID:9971748
Mathew, E C; Shaw, J M; Bonilla, F A; Law, S K A; Wright, D A
2000-01-01
Leucocyte adhesion deficiency type 1 (LAD-1) is characterized by the incapacity of leucocytes to carry out their adhesion functions via their CD11/CD18 antigens, which are also referred to as the leucocyte integrins. The patients generally suffer from poor wound healing and recurrent bacterial and fungal infections. In severe cases, the infections are often systemic and life-threatening. A LAD patient (AW) of moderate phenotype has been identified but, unlike most other cases, the level of CD11/CD18 antigens on her leucocytes are uncharacteristically high for a LAD patient. Molecular analysis revealed that she is a compound heterozygote for CD18 mutations. She has inherited a D231H mutation from her father and a G284S mutation from her mother. By transfection studies, it was established that the G284S mutation does not support CD11/CD18 antigen expression on the cell surface. In contrast, the D231H mutation does not affect CD18 forming integrin heterodimers with the CD11 antigens on the cell surface. However, the expressed integrins with the D231H mutation are not adhesive to ligands. PMID:10886250
Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul
2010-01-01
Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579
Cell adhesion monitoring of human induced pluripotent stem cell based on intrinsic molecular charges
NASA Astrophysics Data System (ADS)
Sugimoto, Haruyo; Sakata, Toshiya
2014-01-01
We have shown a simple way for real-time, quantitative, non-invasive, and non-label monitoring of human induced pluripotent stem (iPS) cell adhesion by use of a biologically coupled-gate field effect transistor (bio-FET), which is based on detection of molecular charges at cell membrane. The electrical behavior revealed quantitatively the electrical contacts of integrin-receptor at the cell membrane with RGDS peptide immobilized at the gate sensing surface, because that binding site was based on cationic α chain of integrin. The platform based on the bio-FET would provide substantial information to evaluate cell/material bio-interface and elucidate biding mechanism of adhesion molecules, which could not be interpreted by microscopic observation.
αV-class integrins exert dual roles on α5β1 integrins to strengthen adhesion to fibronectin
Bharadwaj, Mitasha; Strohmeyer, Nico; Colo, Georgina P.; Helenius, Jonne; Beerenwinkel, Niko; Schiller, Herbert B.; Fässler, Reinhard; Müller, Daniel J.
2017-01-01
Upon binding to the extracellular matrix protein, fibronectin, αV-class and α5β1 integrins trigger the recruitment of large protein assemblies and strengthen cell adhesion. Both integrin classes have been functionally specified, however their specific roles in immediate phases of cell attachment remain uncharacterized. Here, we quantify the adhesion of αV-class and/or α5β1 integrins expressing fibroblasts initiating attachment to fibronectin (≤120 s) by single-cell force spectroscopy. Our data reveals that αV-class integrins outcompete α5β1 integrins. Once engaged, αV-class integrins signal to α5β1 integrins to establish additional adhesion sites to fibronectin, away from those formed by αV-class integrins. This crosstalk, which strengthens cell adhesion, induces α5β1 integrin clustering by RhoA/ROCK/myosin-II and Arp2/3-mediated signalling, whereas overall cell adhesion depends on formins. The dual role of both fibronectin-binding integrin classes commencing with an initial competition followed by a cooperative crosstalk appears to be a basic cellular mechanism in assembling focal adhesions to the extracellular matrix. PMID:28128308
NASA Astrophysics Data System (ADS)
Ross, Michael H.
Breast cancer is the most common cancer for women worldwide, representing approximately 25% of all new cancer cases in this population. While early detection and removal of breast cancer still confined to the primary site results in a good prognosis, approximately one- third of patients will develop distant metastases. In these patients, overall survival is markedly reduced. Of the common sites for breast cancer metastasis, the skeletal system is the most frequent. Treating breast cancer bone metastases has proven particularly difficult for several reasons, such as dissemination of metastases throughout the skeleton, poor drug localization to sites of interest, a lack of tumor-specific targets expressed across breast cancer subtypes, and the chemo-protective nature of the bone microenvironment. This dissertation is focused on investigating a potential tumor-target expressed on breast cancer bone metastases, and to improve drug treatment efficacy against tumor cells in the bone microenvironment. Integrins are heterodimeric cell surface receptors, composed of an alpha and beta subunit from a large family of selectively-compatible integrin subunits. As a heterodimeric complex, integrins can bind to components of the extracellular matrix or to other cells. One particular integrin complex, integrin alphavbeta3, is composed of the tightly regulated integrin subunit beta3 and the more widely expressed alphav subunit. I examined the expression of integrin beta3 on primary breast cancer as compared to metastases in murine cancer models, and observed that integrin expression is significantly elevated on bone metastases as compared to the primary tumors or visceral metastases. In addition, I evaluated tumor-associated integrin beta3 expression on a tissue microarray (TMA) composed of primary breast cancer and patient-matched bone metastatic tissue from 42 patients. Across nearly all patients, tumor-associated integrin beta3 expression was significantly elevated on bone metastases as compared to the primary tumor. For the first time, I demonstrate that tumor-associated integrin beta3 is elevated on bone metastases across all breast cancer subtypes, supporting the translational potential of targeting integrin beta3 in breast cancer patients with bone metastases. Integrin beta3 was weakly expressed on tumor cells in vitro and on tumor cells in the primary mammary fat pad (MFP). Additional analysis demonstrated that integrin beta3 on circulating tumor cells is dispensable for strong expression of integrin beta3 on subsequent bone metastases, suggested that integrin beta3 may be induced within the bone microenvironment. I identified transforming growth factor beta (TGF-beta) to be a potent inducer of integrin beta3 in vitro, and further demonstrate canonical TGF-beta signaling through the SMAD2 and SMAD3 (SMAD2/3) pathway is responsible for breast cancer upregulation of integrin beta3 induction on bone metastases, both in vitro and in vivo. Utilizing this information, I sought to evaluate the targeting potential of nanotherapy coated with a targeting ligand specific for integrin alphavbeta3. Nanotherapy has the potential to increase therapeutic efficacy and reduce toxicity versus traditional chemotherapies by enhancing drug delivery to specific targets of interest. I explored the localization potential of two nanoparticles with significantly different sizes: polysorbate (tween) 80 micelle nanoparticles (MPs, 12.5 nm) or perfluorocarbon (PFC) nanoparticles ( 250 nm). The smaller integrin alphavbeta3- targeted micelle nanoparticle (alphavbeta3-MP) could more effectively penetrate breast cancer bone metastases than larger integrin alphavbeta3-targeted PFC nanoparticles (alphavbeta3-PFCs). With these observations, I evaluated whether alphavbeta3-MP-mediated drug delivery could more effectively attenuate bone metastatic tumor burden and bone destruction than free drug delivery. Using the chemotherapeutic agent docetaxel (DTX), a potent microtubule inhibitor that is a first-line therapy for metastatic breast cancer, I observe that DTX is only weakly tumor- suppressive in our mouse model of breast cancer metastases. However, treating mice bearing breast cancer metastases with alphavbeta3-MP-delivery of a docetaxel-prodrug (DTX-PD) significantly reduced bone tumor burden and bone destruction, and with less hepatotoxicity. I observed a significant decrease in bone-residing tumor cell proliferation in mice treated with alphavbeta3-MP- delivery of DTX-PD, without overt osteoclast killing or inhibition of osteoclast formation. Together, these results provide support that nanotherapy-mediated attenuation of bone metastases and bone destruction occurs through enhanced drug efficacy against breast cancer cells within the bone. In this Dissertation, Chapter 1 will provide an overview of breast cancer, bone metastases, integrins, and the therapeutic potential of nanotherapy. In Chapter 2, my work on the expression and physiologic regulation of integrin beta3 on breast cancer during metastases will be explored. In Chapter 3, the role of the cytokine TGF-beta in regulating tumoral expression of integrin beta3 will be discussed. And in Chapter 4, I discuss the use of integrin alphavbeta3-targeted nanotherapy directed against breast cancer metastases. Collectively, I provide evidence that chemotherapeutic efficacy against breast cancer cells within bone can be enhanced by exploiting the expression of tumoral integrin beta3 at that metastatic site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko
We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blotmore » and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.« less
Majeed, Sophia R; Vasudevan, Lavanya; Chen, Chih-Ying; Luo, Yi; Torres, Jorge A; Evans, Timothy M; Sharkey, Andrew; Foraker, Amy B; Wong, Nicole M L; Esk, Christopher; Freeman, Theresa A; Moffett, Ashley; Keen, James H; Brodsky, Frances M
2014-05-23
The clathrin light chain (CLC) subunits participate in several membrane traffic pathways involving both clathrin and actin, through binding the actin-organizing huntingtin-interacting proteins (Hip). However, CLCs are dispensable for clathrin-mediated endocytosis of many cargoes. Here we observe that CLC depletion affects cell migration through Hip binding and reduces surface expression of β1-integrin by interference with recycling following normal endocytosis of inactive β1-integrin. CLC depletion and expression of a modified CLC also inhibit the appearance of gyrating (G)-clathrin structures, known mediators of rapid recycling of transferrin receptor from endosomes. Expression of the modified CLC reduces β1-integrin and transferrin receptor recycling, as well as cell migration, implicating G-clathrin in these processes. Supporting a physiological role for CLC in migration, the CLCb isoform of CLC is upregulated in migratory human trophoblast cells during uterine invasion. Together, these studies establish CLCs as mediating clathrin-actin interactions needed for recycling by G-clathrin during migration.
Integrins and Integrin-Associated Proteins in the Cardiac Myocyte
Ross, Robert S.
2014-01-01
Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. While it is likely that cardiovascular clinicians and scientists have highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. Following a general introduction to integrin biology, the manuscript will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study. PMID:24481847
Integrin β1 regulates leiomyoma cytoskeletal integrity and growth
Malik, Minnie; Segars, James; Catherino, William H.
2014-01-01
Uterine leiomyomas are characterized by an excessive extracellular matrix, increased mechanical stress, and increased active RhoA. Previously, we observed that mechanical signaling was attenuated in leiomyoma, but the mechanisms responsible remain unclear. Integrins, especially integrin β1, are transmembrane adhesion receptors that couple extracellular matrix stresses to the intracellular cytoskeleton to influence cell proliferation and differentiation. Here we characterized integrin and laminin to signaling in leiomyoma cells. We observed a 2.25 ± 0.32 fold increased expression of integrin β1 in leiomyoma cells, compared to myometrial cells. Antibody-mediated inhibition of integrin β1 led to significant growth inhibition in leiomyoma cells and a loss of cytoskeletal integrity. Specifically, polymerization of actin filaments and formation of focal adhesions were reduced by inhibition of integrin p1. Inhibition of integrin β1 in leiomyoma cells led to 0.81 ± 0.02 fold decrease in active RhoA, and resembled levels found in serum-starved cells. Likewise, inhibition of integrin β1 was accompanied by a decrease in phospho-ERK. Compared to myometrial cells, leiomyoma cells demonstrated increased expression of integrin α6 subunit to laminin receptor (1.91 ± 0.11 fold), and increased expression of laminin 5α (1.52±0.02), laminin 5β (3.06±0.92), and laminin 5γ (1.66 ± 0.06). Of note, leiomyoma cells grown on laminin matrix appear to realign themselves. Taken together, the findings reveal that the attenuated mechanical signaling in leiomyoma cells is accompanied by an increased expression and a dependence on integrin β1 signaling in leiomyoma cells, compared to myometrial cells. PMID:23023061
2012-01-01
The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96. PMID:22292497
Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J
2012-03-02
The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.
Philippova, Maria; Ivanov, Danila; Joshi, Manjunath B.; Kyriakakis, Emmanouil; Rupp, Katharina; Afonyushkin, Taras; Bochkov, Valery; Erne, Paul; Resink, Therese J.
2008-01-01
There is scant knowledge regarding how cell surface lipid-anchored T-cadherin (T-cad) transmits signals through the plasma membrane to its intracellular targets. This study aimed to identify membrane proteins colocalizing with atypical glycosylphosphatidylinositol (GPI)-anchored T-cad on the surface of endothelial cells and to evaluate their role as signaling adaptors for T-cad. Application of coimmunoprecipitation from endothelial cells expressing c-myc-tagged T-cad and high-performance liquid chromatography revealed putative association of T-cad with the following proteins: glucose-related protein GRP78, GABA-A receptor α1 subunit, integrin β3, and two hypothetical proteins, LOC124245 and FLJ32070. Association of Grp78 and integrin β3 with T-cad on the cell surface was confirmed by surface biotinylation and reciprocal immunoprecipitation and by confocal microscopy. Use of anti-Grp78 blocking antibodies, Grp78 small interfering RNA, and coexpression of constitutively active Akt demonstrated an essential role for surface Grp78 in T-cad-dependent survival signal transduction via Akt in endothelial cells. The findings herein are relevant in the context of both the identification of transmembrane signaling partners for GPI-anchored T-cad as well as the demonstration of a novel mechanism whereby Grp78 can influence endothelial cell survival as a cell surface signaling receptor rather than an intracellular chaperone. PMID:18411300
Xiao, Wenwu; Wang, Yan; Lau, Edmond Y.; Luo, Juntao; Yao, Nianhuan; Shi, Changying; Meza, Leah; Tseng, Harry; Maeda, Yoshiko; Kumaresan, Pappanaicken; Liu, Ruiwu; Lightstone, Felice C.; Takada, Yoshikazu; Lam, Kit S.
2012-01-01
The αvβ3 integrin, expressed on the surface of various normal and cancer cells, is involved in numerous physiological processes such as angiogenesis, apoptosis, and bone resorption. Because this integrin plays a key role in angiogenesis and metastasis of human tumors, αvβ3 integrin ligands are of great interest to advances in targeted-therapy and cancer imaging. In this report, one-bead-one-compound (OBOC) combinatorial libraries containing the RGD motif were designed and screened against K562 myeloid leukemia cells that had been transfected with human αvβ3 integrin gene. Cyclic peptide LXW7 was identified as a leading ligand with a build-in handle that binds specifically to αvβ3 and showed comparable binding affinity (IC50 = 0.68±0.08 μM) to some of the well-known RGD “head-to-tail” cyclic pentapeptide ligands reported in the literature. The biotinylated form of LXW7 ligand showed similar binding strength as LXW7 against αvβ3 integrin, whereas biotinylated RGD cyclopentapeptide ligands revealed a 2 to 8 fold weaker binding affinity than their free forms. LXW7 was able to bind to both U-87MG glioblastoma and A375M melanoma cell lines, both of which express high levels of αvβ3 integrin. In vivo and ex vivo optical imaging studies with biotinylated-ligand/streptavidin-Cy5.5 complex in nude mice bearing U-87MG or A375M xenografts revealed preferential uptake of biotinylated LXW7 in tumor. When compared with biotinylated RGD cyclopentapeptide ligands, biotinylated LXW7 showed higher tumor uptake but lower liver uptake. PMID:20858725
Reinforcement of integrin-mediated T-Lymphocyte adhesion by TNF-induced Inside-out Signaling
NASA Astrophysics Data System (ADS)
Li, Qian; Huth, Steven; Adam, Dieter; Selhuber-Unkel, Christine
2016-07-01
Integrin-mediated leukocyte adhesion to endothelial cells is a crucial step in immunity against pathogens. Whereas the outside-in signaling pathway in response to the pro-inflammatory cytokine tumour necrosis factor (TNF) has already been studied in detail, little knowledge exists about a supposed TNF-mediated inside-out signaling pathway. In contrast to the outside-in signaling pathway, which relies on the TNF-induced upregulation of surface molecules on endothelium, inside-out signaling should also be present in an endothelium-free environment. Using single-cell force spectroscopy, we show here that stimulating Jurkat cells with TNF significantly reinforces their adhesion to fibronectin in a biomimetic in vitro assay for cell-surface contact times of about 1.5 seconds, whereas for larger contact times the effect disappears. Analysis of single-molecule ruptures further demonstrates that TNF strengthens sub-cellular single rupture events at short cell-surface contact times. Hence, our results provide quantitative evidence for the significant impact of TNF-induced inside-out signaling in the T-lymphocyte initial adhesion machinery.
Novel Mechanistic Link between Focal Adhesion Remodeling and Glucose-stimulated Insulin Secretion*
Rondas, Dieter; Tomas, Alejandra; Soto-Ribeiro, Martinho; Wehrle-Haller, Bernhard; Halban, Philippe A.
2012-01-01
Actin cytoskeleton remodeling is well known to be positively involved in glucose-stimulated pancreatic β cell insulin secretion. We have observed glucose-stimulated focal adhesion remodeling at the β cell surface and have shown this to be crucial for glucose-stimulated insulin secretion. However, the mechanistic link between such remodeling and the insulin secretory machinery remained unknown and was the major aim of this study. MIN6B1 cells, a previously validated model of primary β cell function, were used for all experiments. Total internal reflection fluorescence microscopy revealed the glucose-responsive co-localization of focal adhesion kinase (FAK) and paxillin with integrin β1 at the basal cell surface after short term stimulation. In addition, blockade of the interaction between β1 integrins and the extracellular matrix with an anti-β1 integrin antibody (Ha2/5) inhibited short term glucose-induced phosphorylation of FAK (Tyr-397), paxillin (Tyr-118), and ERK1/2 (Thr-202/Tyr-204). Pharmacological inhibition of FAK activity blocked glucose-induced actin cytoskeleton remodeling and glucose-induced disruption of the F-actin/SNAP-25 association at the plasma membrane as well as the distribution of insulin granules to regions in close proximity to the plasma membrane. Furthermore, FAK inhibition also completely blocked short term glucose-induced activation of the Akt/AS160 signaling pathway. In conclusion, these results indicate 1) that glucose-induced activation of FAK, paxillin, and ERK1/2 is mediated by β1 integrin intracellular signaling, 2) a mechanism whereby FAK mediates glucose-induced actin cytoskeleton remodeling, hence allowing docking and fusion of insulin granules to the plasma membrane, and 3) a possible functional role for the Akt/AS160 signaling pathway in the FAK-mediated regulation of glucose-stimulated insulin secretion. PMID:22139838
Truttmann, Matthias C; Misselwitz, Benjamin; Huser, Sonja; Hardt, Wolf-Dietrich; Critchley, David R; Dehio, Christoph
2011-11-01
The VirB/D4 type IV secretion system (T4SS) of the bacterial pathogen Bartonella henselae (Bhe) translocates seven effector proteins (BepA-BepG) into human cells that subvert host cellular functions. Two redundant pathways dependent on BepG or the combination of BepC and BepF trigger the formation of a bacterial uptake structure termed the invasome. Invasome formation is a multi-step process consisting of bacterial adherence, effector translocation, aggregation of bacteria on the cell surface and engulfment, and eventually, complete internalization of the bacterial aggregate occurs in an F-actin-dependent manner. In the present study, we show that Bhe-triggered invasome formation depends on integrin-β1-mediated signaling cascades that enable assembly of the F-actin invasome structure. We demonstrate that Bhe interacts with integrin β1 in a fibronectin- and VirB/D4 T4SS-independent manner and that activated integrin β1 is essential for both effector translocation and the actin rearrangements leading to invasome formation. Furthermore, we show that talin1, but not talin2, is required for inside-out activation of integrin β1 during invasome formation. Finally, integrin-β1-mediated outside-in signaling by FAK, Src, paxillin and vinculin is necessary for invasome formation. This is the first example of a bacterial entry process that fully exploits the bi-directional signaling capacity of integrin receptors in a talin1-specific manner.
Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal
2017-09-05
Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form a heteroternary complex with cucurbit[8]uril (CB[8]) and surface-tethered methylviologen (MV 2+ ). The binding affinity of the knottins with CB[8] and MV 2+ surfaces was evaluated using surface plasmon resonance spectroscopy. Specific binding occurred, and the affinity increased with the valency of tryptophans on the knottin. Additionally, increased multilayer formation was observed, attributed to homoternary complex formation between tryptophan residues of different knottins and CB[8]. Thus, we were able to control the surface coverage of the knottins by valency and concentration. Cell experiments with mouse myoblast (C2C12) cells on the self-assembled knottin surfaces showed specific integrin recognition by the RGD-displaying knottins. Moreover, cells were observed to elongate more on the supramolecular knottin surfaces with a higher valency, and in addition, more pronounced focal adhesion formation was observed on the higher-valency knottin surfaces. We attribute this effect to the enhanced coverage and the enhanced affinity of the knottins in their interaction with the CB[8] surface. Collectively, these results are promising for the development of biomaterials including knottins via CB[8] ternary complexes for tunable interactions with cells.
Yuan, Jie; Liu, Manran; Yang, Li; Tu, Gang; Zhu, Qing; Chen, Maoshan; Cheng, Hong; Luo, Haojun; Fu, Weijie; Li, Zhenhua; Yang, Guanglun
2015-05-21
Acquired tamoxifen resistance remains the major obstacle to breast cancer endocrine therapy. β1-integrin was identified as one of the target genes of G protein-coupled estrogen receptor (GPER), a novel estrogen receptor recognized as an initiator of tamoxifen resistance. Here, we investigated the role of β1-integrin in GPER-mediated tamoxifen resistance in breast cancer. The expression of β1-integrin and biomarkers of epithelial-mesenchymal transition were evaluated immunohistochemically in 53 specimens of metastases and paired primary tumors. The function of β1-integrin was investigated in tamoxifen-resistant (MCF-7R) subclones, derived from parental MCF-7 cells, and MCF-7R β1-integrin-silenced subclones in MTT and Transwell assays. Involved signaling pathways were identified using specific inhibitors and Western blotting analysis. GPER, β1-integrin and mesenchymal biomarkers (vimentin and fibronectin) expression in metastases increased compared to the corresponding primary tumors; a close expression pattern of β1-integrin and GPER were in metastases. Increased β1-integrin expression was also confirmed in MCF-7R cells compared with MCF-7 cells. This upregulation of β1-integrin was induced by agonists of GPER and blocked by both antagonist and knockdown of it in MCF-7R cells. Moreover, the epidermal growth factor receptor/extracellular regulated protein kinase (EGFR/ERK) signaling pathway was involved in this transcriptional regulation since specific inhibitors of these kinases also reduced the GPER-induced upregulation of β1-integrin. Interestingly, silencing of β1-integrin partially rescued the sensitivity of MCF-7R cells to tamoxifen and the α5β1-integrin subunit is probably responsible for this phenomenon. Importantly, the cell migration and epithelial-mesenchymal transition induced by cancer-associated fibroblasts, or the product of cancer-associated fibroblasts, fibronectin, were reduced by knockdown of β1-integrin in MCF-7R cells. In addition, the downstream kinases of β1-integrin including focal adhesion kinase, Src and AKT were activated in MCF-7R cells and may be involved in the interaction between cancer cells and cancer-associated fibroblasts. GPER/EGFR/ERK signaling upregulates β1-integrin expression and activates downstream kinases, which contributes to cancer-associated fibroblast-induced cell migration and epithelial-mesenchymal transition, in MCF-7R cells. GPER probably contributes to tamoxifen resistance via interaction with the tumor microenvironment in a β1-integrin-dependent pattern. Thus, β1-integrin may be a potential target to improve anti-hormone therapy responses in breast cancer patients.
Watanabe, Kazunori; Watanabe, Kazuhiro; Watanabe, Yosuke; Fujioka, Daisuke; Nakamura, Takamitsu; Nakamura, Kazuto; Obata, Jun-Ei; Kugiyama, Kiyotaka
2018-05-23
Murine membrane-bound phospholipase A 2 receptor 1 (PLA 2 R) is shed and released into plasma in a soluble form that retains all of the extracellular domains. Relatively little is known about human PLA 2 R. This study examined whether human soluble PLA 2 R may have biological functions and whether soluble PLA 2 R may exist in human plasma. Here, we showed that human recombinant soluble PLA 2 R (rsPLA 2 R) bound to collagen-I and inhibited interaction of collagen-I with the extracellular domain of integrin β1 on the cell surface of HEK293 cells. As a result, rsPLA 2 R suppressed integrin β1-mediated migratory responses of HEK293 cells to collagen-I in Boyden chamber experiments. Inhibition of phosphorylation of FAK Tyr397 was also observed. Similar results were obtained with experiments using soluble PLA 2 R released from HEK293 cells transfected with a construct encoding human soluble PLA 2 R. rsPLA 2 R lacking the fibronectin-like type II (FNII) domain had no inhibitory effects on cell responses to collagen-I, suggesting an important role of the FNII domain in the interaction of rsPLA 2 R with collagen-I. In addition, rsPLA 2 R suppressed the migratory response to collagen-IV and binding of collagen-IV to the cell surface of human podocytes that endogenously express membrane-bound full-length PLA 2 R. Immunoprecipitation and Western blotting showed the existence of immuno-reactive PLA 2 R in human plasma. In conclusion, human recombinant soluble PLA 2 R inhibits integrin β1-mediated cell responses to collagens. Further studies are warranted to elucidate whether immuno-reactive PLA 2 R in human plasma has the same properties as rsPLA 2 R.
Two conformations of the integrin A-domain (I-domain): a pathway for activation?
Lee, J O; Bankston, L A; Arnaout, M A; Liddington, R C
1995-12-15
Integrins are plasma membrane proteins that mediate adhesion to other cells and to components of the extracellular matrix. Most integrins are constitutively inactive in resting cells, but are rapidly and reversibly activated in response to agonists, leading to highly regulated cell adhesion. This activation is associated with conformational changes in their extracellular portions, but the nature of the structural changes that lead to a change in adhesiveness is not understood. The interactions of several integrins with their extracellular ligands are mediated by an A-type domain (generally called the I-domain in integrins). Binding of the I-domain to protein ligands is dependent on divalent cations. We have described previously the structure of the I-domain from complement receptor 3 with bound Mg2+, in which the glutamate side chain from a second I-domain completes the octahedral coordination sphere of the metal, acting as a ligand mimetic. We now describe a new crystal form of the I-domain with bound Mn2+, in which water completes the metal coordination sphere and there is no equivalent of the glutamate ligand. Comparison of the two crystal forms reveals a change in metal coordination which is linked to a large (10 A) shift of the C-terminal helix and the burial of two phenylalanine residues into the hydrophobic core of the Mn2+ form. These structural changes, analogous to those seen in the signal-transducing G-proteins, alter the electrophilicity of the metal, reducing its ability to bind ligand-associated acidic residues, and dramatically alter the surface of the protein implicated in binding ligand. Our observations provide the first atomic resolution view of conformational changes in an integrin domain, and suggest how these changes are linked to a change in integrin adhesiveness. We propose that the Mg2+ form represents the conformation of the domain in the active state and the Mn2+ form the conformation in the inactive state of the integrin.
Cold plasma selectivity in the interaction with various types of the cells
NASA Astrophysics Data System (ADS)
Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael
2011-10-01
Present research in the area of cold atmospheric plasma (CAP) demonstrates great potential in various areas including medicine and biology. Depending on their configuration they can be used for wound healing, sterilization, targeted cell/tissue removal, and cancer treatments. Here we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. The migration studies are focused on the CAP interaction with fibroblasts and corneal epithelial cells. Data show that various types of cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration which is around ~30-40%. Studies to assess the impact of CAP treatment on the activation state of integrins and focal adhesion size by immunofluorescence showed more active b1 integrin on the cell surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly. Also responses of the various types of the cells to the cold plasma treatment on the example of the epithelial keratinocytes, papilloma and carcinoma cells are studied. Cell cycle, migration and cell vitality analysis were performed. The goal of this study is to understand the mechanism by which the CAP jet alters cell migration, influences adhesion and cell survival.
Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik
2016-07-01
The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. Copyright © 2016 Elsevier B.V. All rights reserved.
Semon, Julie A; Nagy, Lauren H; Llamas, Claire B; Tucker, H Alan; Lee, Ryang Hwa; Prockop, Darwin J
2010-07-01
Multipotent mesenchymal stromal cells (MSCs) home to damaged tissue by processes partly regulated by integrins. Integrin subunits expressed by MSCs were identified by flow cytometry (FC), immunocytochemistry (IC), and a panel of integrin-binding antibodies. In subconfluent cultures, over 80% of MSCs expressed integrin subunits beta1, beta2, and alpha3, 20%-55% expressed alpha1, alpha2, alpha4, alpha5, alpha6, and alphaV, and about 10% expressed beta3 when assayed by FC. None of the cells expressed significant levels of 13 other integrins as assayed by FC, but seven of the 13 integrins were detected by IC: beta5, alpha7, alpha8, alpha9, alpha11, alphaX, and alphaD. Expression of some integrins changed with MSC confluency: integrins beta3, alpha1, alpha3, alpha5, and alphaV increased, and alpha6 decreased. Furthermore, alpha4 was the only integrin to vary among preparations of MSCs from different donors. The results resolved some discrepancies in the literature concerning integrin expression by MSCs. We also investigated the role of specific integrins in MSC adhesion to endothelial cells (ECs) from the pulmonary artery (HPAEC), cardiac-derived microvasculature (HMVEC-C), and umbilical veins (HUVEC). In experiments with blocking antibodies to beta integrins, anti-beta5 reduced MSC adhesion to all types of ECs, anti-beta1 to both HUVEC and HPAEC, anti-beta3 to HUVEC, and anti-beta2 to HMVEC-C. With blocking antibodies to alpha integrins, anti-alphaX reduced adhesion to HPAEC and HMVEC-C, anti-alphaV to HPAEC, and both anti-alpha7 and anti-alphaD to HMVEC-C. Thus, MSCs use diverse integrins to adhere to EC from various blood vessels in vitro.
Selective Modulation of Integrin-mediated Cell Migration by Distinct ADAM Family MembersV⃞
Huang, Jing; Bridges, Lance C.; White, Judith M.
2005-01-01
A disintegrin and a metalloprotease (ADAM) family members have been implicated in many biological processes. Although it is recognized that recombinant ADAM disintegrin domains can interact with integrins, little is known about ADAM-integrin interactions in cellular context. Here, we tested whether ADAMs can selectively regulate integrin-mediated cell migration. ADAMs were expressed in Chinese hamster ovary cells that express defined integrins (α4β1, α5β1, or both), and cell migration on full-length fibronectin or on its α4β1 or α5β1 binding fragments was studied. We found that ADAMs inhibit integrin-mediated cell migration in patterns dictated by the integrin binding profiles of their isolated disintegrin domains. ADAM12 inhibited cell migration mediated by the α4β1 but not the α5β1 integrin. ADAM17 had the reciprocal effect; it inhibited α5β1- but not α4β1-mediated cell migration. ADAM19 and ADAM33 inhibited migration mediated by both α4β1 and α5β1 integrins. A point mutation in the ADAM12 disintegrin loop partially reduced the inhibitory effect of ADAM12 on cell migration on the α4β1 binding fragment of fibronectin, whereas mutations that block metalloprotease activity had no effect. Our results indicate that distinct ADAMs can modulate cell migration mediated by specific integrins in a pattern dictated, at least in part, by their disintegrin domains. PMID:16079176
Hematopoietic organs of Manduca sexta and hemocyte lineages.
Nardi, James B; Pilas, Barbara; Ujhelyi, Elizabeth; Garsha, Karl; Kanost, Michael R
2003-10-01
Cells of the moth immune system are derived from organs that loosely envelop the four wing imaginal discs. The immune response in these insects is believed to depend on the activities of two main classes of hemocytes: plasmatocytes and granular cells. The fates of cells that arise from these hematopoietic organs have been followed by immunolabeling with plasmatocyte-specific and granular-cell-specific antibodies. Cells within each hematopoietic organ differ in their coherence and in their expression of two plasmatocyte-specific surface proteins, integrin and neuroglian. Within an organ there is no overlap in the expression of these two surface proteins; neuroglian is found on the surfaces of the coherent cells while integrin is expressed on cells that are losing coherence, rounding up, and dispersing. A granular-cell-specific marker for the protein lacunin labels the basal lamina that delimits each organ but only a small number of granular cells that lie on or near the periphery of the hematopoietic organ. When organs are cultured in the absence of hemolymph, all cells derived from hematopoietic organs turn out to immunolabel with the plasmatocyte-specific antibody MS13. The circulating plasmatocytes derived from hematopoietic organs have higher ploidy levels than the granular cells and represent a separate lineage of hemocytes.
Zoppi, Nicoletta; Chiarelli, Nicola; Ritelli, Marco; Colombi, Marina
2018-01-01
The αvβ3 integrin, an endothelial cells’ receptor-binding fibronectin (FN) in the extracellular matrix (ECM) of blood vessels, regulates ECM remodeling during migration, invasion, angiogenesis, wound healing and inflammation, and is also involved in the epithelial mesenchymal transition. In vitro-grown human control fibroblasts organize a fibrillar network of FN, which is preferentially bound on the entire cell surface to its canonical α5β1 integrin receptor, whereas the αvβ3 integrin is present only in rare patches in focal contacts. We report on the preferential recruitment of the αvβ3 integrin, due to the lack of FN–ECM and its canonical integrin receptor, in dermal fibroblasts from Ehlers–Danlos syndromes (EDS) and arterial tortuosity syndrome (ATS), which are rare multisystem connective tissue disorders. We review our previous findings that unraveled different biological mechanisms elicited by the αvβ3 integrin in fibroblasts derived from patients affected with classical (cEDS), vascular (vEDS), hypermobile EDS (hEDS), hypermobility spectrum disorders (HSD), and ATS. In cEDS and vEDS, respectively, due to defective type V and type III collagens, αvβ3 rescues patients’ fibroblasts from anoikis through a paxillin-p60Src-mediated cross-talk with the EGF receptor. In hEDS and HSD, without a defined molecular basis, the αvβ3 integrin transduces to the ILK-Snail1-axis inducing a fibroblast-to-myofibroblast-transition. In ATS cells, the deficiency of the dehydroascorbic acid transporter GLUT10 leads to redox imbalance, ECM disarray together with the activation of a non-canonical αvβ3 integrin-TGFBRII signaling, involving p125FAK/p60Src/p38MAPK. The characterization of these different biological functions triggered by αvβ3 provides insights into the multifaced nature of this integrin, at least in cultured dermal fibroblasts, offering future perspectives for research in this field. PMID:29587413
Tsuda, Kayoko; Furuta, Nobumichi; Inaba, Hiroaki; Kawai, Shinji; Hanada, Kentaro; Yoshimori, Tamotsu; Amano, Atsuo
2008-01-01
Porphyromonas gingivalis, a periodontal pathogen, was previously suggested to exploit alpha5beta1 integrin and lipid rafts to invade host cells. However, it is unknown if the functional roles of these host components are distinct from one another during bacterial invasion. In the present study, we analyzed the mechanisms underlying P. gingivalis invasion, using fluorescent beads coated with bacterial membrane vesicles (MV beads). Cholesterol depletion reagents including methyl-beta-cyclodextrin (MbetaCD) drastically inhibited the entry of MV beads into epithelial cells, while they were less effective on bead adhesion to the cells. Bead entry was also abolished in CHO cells deficient in sphingolipids, components of lipid rafts, whereas adhesion was negligibly influenced. Following MbetaCD treatment, downstream events leading to actin polymerization were abolished; however, alpha5beta1 integrin was recruited to beads attached to the cell surface. Dominant-negative Rho GTPase Rac1 abolished cellular engulfment of the beads, whereas dominant-negative Cdc42 did not. Following cellular interaction with the beads, Rac1 was found to be translocated to the lipid rafts fraction, which was inhibited by MbetaCD. These results suggest that alpha5beta1 integrin, independent of lipid rafts, promotes P. gingivalis adhesion to epithelial cells, while the subsequent uptake process requires lipid raft components for actin organization, with Rho GTPase Rac1.
Walker, Tiffany N.; Cimakasky, Lisa M.; Coleman, Ebony M.; Madison, M. Nia
2013-01-01
Abstract HIV-1 infection induces formation of a virological synapse wherein CD4, chemokine receptors, and cell-adhesion molecules such as lymphocyte function-associated antigen 1 (LFA-1) form localized domains on the cell surface. Studies show that LFA-1 on the surface of HIV-1 particles retains its adhesion function and enhances virus attachment to susceptible cells by binding its counterreceptor intercellular adhesion molecule 1 (ICAM-1). This virus–cell interaction augments virus infectivity by facilitating binding and entry events. In this study, we demonstrate that inhibition of the LFA-1/ICAM-1 interaction by a monoclonal antibody leads to decreased virus production and spread in association with increased apoptosis of HIV-infected primary T cells. The data indicate that the LFA-1/ICAM-1 interaction may limit apoptosis in HIV-1-infected T cells. This phenomenon appears similar to anoikis wherein epithelial cells are protected from apoptosis conferred by ligand-bound integrins. These results have implications for further understanding HIV pathogenesis and replication in peripheral compartments and lymphoid organs. PMID:22697794
Integrin Based Isolation Enables Purification of Murine Lineage Committed Cardiomyocytes
Tarnawski, Laura; Xian, Xiaojie; Monnerat, Gustavo; Macaulay, Iain C.; Malan, Daniela; Borgman, Andrew; Wu, Sean M.; Fleischmann, Bernd K.; Jovinge, Stefan
2015-01-01
In contrast to mature cardiomyocytes which have limited regenerative capacity, pluripotent stem cells represent a promising source for the generation of new cardiomyocytes. The tendency of pluripotent stem cells to form teratomas and the heterogeneity from various differentiation stages and cardiomyocyte cell sub-types, however, are major obstacles to overcome before this type of therapy could be applied in a clinical setting. Thus, the identification of extracellular markers for specific cardiomyocyte progenitors and mature subpopulations is of particular importance. The delineation of cardiomyocyte surface marker patterns not only serves as a means to derive homogeneous cell populations by FACS, but is also an essential tool to understand cardiac development. By using single-cell expression profiling in early mouse embryonic hearts, we found that a combination of integrin alpha-1, alpha-5, alpha-6 and N-cadherin enables isolation of lineage committed murine cardiomyocytes. Additionally, we were able to separate trabecular cardiomyocytes from solid ventricular myocardium and atrial murine cells. These cells exhibit expected subtype specific phenotype confirmed by electrophysiological analysis. We show that integrin expression can be used for the isolation of living, functional and lineage-specific murine cardiomyocytes. PMID:26323090
Vedolizumab: A novel anti-integrin drug for treatment of inflammatory bowel disease
Singh, Harmanjit; Grewal, Nipunjot; Arora, Ekta; Kumar, Harish; Kakkar, Ashish Kumar
2016-01-01
Inflammatory bowel disease (IBD) is the chronic inflammatory disorder of gastrointestinal tract consisting of two subtypes: Ulcerative colitis and Crohn's disease. IBD occurs due to infiltration of leukocytes in intestinal mucosa and derangements in intestinal barrier function. One of the most important steps in pathogenesis of IBD is the interactions between integrins on the surface of leukocyte. The α4β7 integrin expressing T-cell is an important leukocyte involved in pathogenesis and represents a new drug target for the treatment of IBD. Vedolizumab is a humanized monoclonal antibody, which acts against α4β7 integrin heterodimer and blocks the interaction of α4β7 integrin with MAdCAM-1. It prevents leukocyte binding to endothelial surface and its extravasation into affected tissue. The efficacy and safety of the vedolizumab have been established in many clinical studies. It has shown promising results in various clinical studies where a greater percentage of patients as compared to a placebo achieved and maintained clinical response, clinical remission, and corticosteroid-free clinical remission. Vedolizumab has been shown to be well tolerated with slightly higher risk of infections, headache, naspharyngitis as compared to placebo. This review focuses on the potential role of vedolizumab for the treatment of IBD. PMID:27003961
Wang, Xiaoming; Rodda, Lauren; Bannard, Oliver; Cyster, Jason G.
2014-01-01
Integrin-ligand interactions between germinal center (GC) B cells and antigen-presenting follicular dendritic cells (FDCs) have been suggested to play central roles during GC responses but their in vivo requirement has not been directly tested. Here we show that while integrins αLβ2 and α4β1 are highly expressed and functional on mouse GC B cells, removal of single integrins or their ligands had little effect on B cell participation in the GC response. Combined β2-integrin deficiency and α4-integrin blockade also did not affect the GC response against a particulate antigen. However, the combined integrin deficiency did cause B cells to be outcompeted in splenic GC responses against a soluble protein antigen and in mesenteric lymph node GC responses against gut-derived antigens. Similar findings were made for β2-deficient B cells in mice lacking VCAM1 on FDCs. The reduced fitness of the GC B cells did not appear to be due to decreased antigen acquisition, proliferation rates or pAKT levels. In summary, our findings provide evidence that αLβ2 and α4β1 play overlapping and context-dependent roles in supporting interactions with FDCs that can augment the fitness of responding GC B cells. We also find that mouse GC B cells upregulate αvβ3 and adhere to vitronectin and milk fat globule EGF-factor-8 protein. Integrin β3-deficient B cells contributed in a slightly exaggerated manner to GC responses suggesting this integrin has a regulatory function in GC B cells. PMID:24740506
Whelan, Jarrett T.; Chen, Jianming; Miller, Jabin; Morrow, Rebekah L.; Lingo, Joshuah D.; Merrell, Kaitlin; Shaikh, Saame Raza; Bridges, Lance C.
2012-01-01
Retinoids are essential in the proper establishment and maintenance of immunity. Although retinoids are implicated in immune related processes, their role in immune cell adhesion has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) on human hematopoietic cell adhesion was investigated. 9-cis-RA treatment specifically induced cell adhesion of the human immune cell lines HuT-78, NB4, RPMI 8866, and U937. Due to the prominent role of integrin receptors in mediating immune cell adhesion, we sought to evaluate if cell adhesion was integrin-dependent. By employing a variety of integrin antagonist including function-blocking antibodies and EDTA, we establish that 9-cis-RA prompts immune cell adhesion through established integrin receptors in addition to a novel integrin-independent process. The novel integrin-independent adhesion required the presence of retinoid and was attenuated by treatment with synthetic corticosteroids. Finally, we demonstrate that 9-cis-RA treatment of primary murine B-cells induces ex vivo adhesion that persists in the absence of integrin function. Our study is the first to demonstrate that 9-cis-retinoic acid influences immune cell adhesion through at least two functionally distinct mechanisms. PMID:22925918
Integrin trafficking regulated by Rab21 is necessary for cytokinesis.
Pellinen, Teijo; Tuomi, Saara; Arjonen, Antti; Wolf, Maija; Edgren, Henrik; Meyer, Hannelore; Grosse, Robert; Kitzing, Thomas; Rantala, Juha K; Kallioniemi, Olli; Fässler, Reinhard; Kallio, Marko; Ivaska, Johanna
2008-09-01
Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.
Yu, Feng; Li, Hua; Bu, Xuefeng; Zhang, Yongjun
2012-01-01
To investigate the effects of integrin-β1 gene expression inhibited by shRNA on invasion of pancreatic carcinoma PANC-1 cells in vitro. The eukaryotic expression plasmid of short hairpin RNA (shRNA) targeting integrin-β1 gene (integrin-β1-shRNA) was constructed and transfected into PANC-1 cells. The expressions of integrin-β1 mRNA and protein were detected by real-time quantitative polymerase chain reaction (PCR) and western blot assay, respectively. The invasive ability of PANC-1 cells was observed with a transwell cell culture chamber and the expressions of MMP-2 and MMP-9 were assayed. Compared to the untransfected group, recombinant expression plasmid integrin-β1-shRNA resulted in reduction of integrin-β1 mRNA and protein by 78.58%±7.24% and 92.88%±3.18%, respectively and the average number of invading PANC-1 cells were decreased from 52±5 to 21±4 (p<0.01) and the expressions of MMP-2 and MMP-9 were inhibited. Recombinant expression plasmid integrin-β1- shRNA can inhibit the expression of integrin-β1 gene and suppress the invasion of PANC-1 cells in vitro significantly.
Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A
2005-01-01
Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype. PMID:15644133
Kozyulina, Polina Y; Loskutov, Yuriy V; Kozyreva, Varvara K; Rajulapati, Anuradha; Ice, Ryan J; Jones, Brandon C; Pugacheva, Elena N
2015-03-01
The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of the prometastatic protein, NEDD9, in breast cancer cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and colocalizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand-integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Reexpression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9-depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. This study provides valuable new insight into the potential therapeutic benefit of NEDD9 depletion to reduce dissemination of tumor cells and discovers a new regulatory role of NEDD9 in promoting migration through modulation of CAV1-dependent trafficking of integrins. ©2014 American Association for Cancer Research.
Behzad, F; Jones, C J; Ball, S; Alvares, T; Aplin, J D
1995-01-01
A method is described for the sequential detergent and high ionic strength extraction of human amnion with the progressive enrichment of the intermediate filament (IF) cytoskeleton and its associated structures including hemidesmosomes (HD). TEM of the extracted epithelium in situ reveals IF bundles beneath the apical cell surface, around the nucleus and at the lateral edges of the cells where association with desmosomes occurs. IF bundles are also very prominent within basal cell processes where they loop through the cytoplasm adjacent to the HDs. A novel connecting filament network is observed running between the IFs and the hemidesmosomal dense plaque. The adjacent IF network contains both cytokeratin and vimentin, the latter revealed much more fully as a result of the extraction protocol. The hemidesmosomal plasma membrane contains integrin subunits alpha 6 and beta 4 and these are quantitatively retained as the basal cell surface during extraction, while nonjunctional plasma membrane is solubilised. Integrin beta 1 is found at the basolateral cell surface but, like actin, is extracted quantitatively and is not present in HDs. The extracted epithelial cells may be recovered by scraping and the IF network depolymerised to produce a particulate fraction containing short residual IFs, associated thin filaments and plaque material. This fraction contains immunoreactive cytokeratin and vimentin. Integrin alpha 6 beta 4 has been used as a biochemical criterion of the presence of HD material in the fraction. Both subunits are highly enriched. The fraction also contains the hemidesmosomal components HD1, BP230 and BP180. This method is likely to be useful in further characterisation of the HD.
Yu, Sheng-ji; Qiu, Gui-xing; Burton, Yang; Sandra, Roth; Cari, Whyne; Albert, Yee
2005-12-15
To investigate the expression of integrin alpha5 and actin in the cells of intervertebral disc under cyclic hydrostatic pressure in vitro. The porcine lumbar intervertebral disc cells were isolated and cultured in vitro, and the cells underwent cyclic hydrostatic loading. After that, the expression of integrin alpha5 and actin in intervertebral disc cells were studied by means of morphology observing, Western blot and immunohistochemistry staining. The morphology of intervertebral disc cells were changed into smaller and flatten shape, and the expression of integrin alpha5 and actin were decreased after loading. The expression of integrin alpha5 decreases under cyclic hydrostatic pressure, and the actin is affected at the same time when signals are transferred into the cells by integrin alpha5. That may be one of the important mechanisms of the mechanotransduction in the cells of intervertebral disc.
El-Amin, Saadiq F; Attawia, Mohamed; Lu, Helen H; Shah, Asist K; Chang, Richard; Hickok, Noreen J; Tuan, Rocky S; Laurencin, Cato T
2002-01-01
The use of biodegradable polymers in the field of orthopaedic surgery has gained increased popularity, as surgical pins and screws, and as potential biological scaffolds for repairing cartilage and bone defects. One such group of polymers that has gained considerable attention are the polyesters, poly(lactide-co-glycolide) (PLAGA) and polylactic acid (PLA), because of their minimal tissue inflammatory response, favorable biocompatibility and degradation characteristics. The objective of this study was to evaluate human osteoblastic cell adherence and growth on PLAGA and PLA scaffolds by examining integrin receptor (alpha2, alpha3, alpha4, alpha5, alpha6 and beta1) expression. Primary human osteoblastic cells isolated from trabecular bone adhered efficiently to both PLAGA and PLA, with the rate of adherence on PLAGA comparable to that of control tissue culture polystyrene (TCPS), and significantly higher than on PLA polymers at 3, 6 and 12 h. Human osteoblastic phenotypic expression, alkaline phosphatase (ALP) activity was positive on both degradable matrices, whereas osteocalcin levels were significantly higher on cells grown on PLAGA than on PLA composites. Interestingly, the integrin subunits, alpha2, alpha3, alpha4, alpha5, alpha6 and beta1 were all expressed at higher levels by osteoblasts cultured on PLAGA than those on PLA as analyzed by westerns blots and by flow cytometry. Among the integrins, alpha2, beta5 and beta1 showed the greatest difference in levels between the two surfaces. Thus, both PLA and PLAGA support osteoblastic adhesion and its accompanying engagement of integrin receptor and expression of osteocalcin and ALP. However PLAGA consistently appeared to be a better substrate for osteoblastic cells based on these parameters. This study is one of the first to investigate the ability of primary human osteoblastic cells isolated from trabecular bone to adhere to the biodegradable polymers PLAGA and PLA, and to examine the expression of their key adhesion receptors (integrins) on these substrates.
Peptide ligands targeting integrin alpha3beta1 in non-small cell lung cancer.
Lau, Derick; Guo, Linlang; Liu, Ruiwu; Marik, Jan; Lam, Kit
2006-06-01
Lung cancer is one of the most common cancers and is the leading cause of cancer death. We wish to identify peptide ligands for unique cell surface receptors of non-small lung cancer with the hope of developing these ligands as diagnostic and therapeutic agents. Using the method of 'one-bead one-peptide' combinatorial chemistry, a library of random cyclic octapeptides was synthesized on polystyrene beads. This library was used to screen for peptides that promoted attachment of lung adenocarcinoma cells employing a 'cell-growth-on-bead' assay. Consensus peptide sequences of cNGXGXXc were identified. These peptides promoted cell adhesion by targeting integrin alpha3beta1 over-expressed in non-small lung cancer cells. These peptide beads can be applied to capture cancer cells in malignant pleural fluid for purpose of diagnosis of lung cancer.
Oyman Eyrilmez, Gizem; Doran, Sean; Murtezi, Eljesa; Demir, Bilal; Odaci Demirkol, Dilek; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf
2015-09-01
N-Acetyl-l-cysteine (NAC)-capped poly(methyl methacrylate)-b-polycaprolactone block copolymer (PMMA-b-PCL-NAC) was prepared using the previously described one-pot photoinduced sequential CuAAC/thiol-ene double click procedure. PMMA-b-PCL-NAC had previously shown good applicability as a matrix for cell adhesion of cells from the Vero cell line (African green monkey kidney epithelial). Here, in this work, PMMA-b-PCL-NAC served as an excellent immobilization matrix for biomolecule conjugation. Covalent binding of RGD (R: arginine, G: glycine, and D: aspartic acid) peptide sequence onto the PMMA-b-PCL-NAC-coated surface was performed via EDC chemistry. RGD-modified PMMA-b-PCL-NAC (PMMA-b-PCL-NAC-RGD) as a non-toxic cell proliferation platform was used for selective "integrin αvβ3-mediated cell adhesion and biosensing studies. Both optical and electrochemical techniques were used to monitor the adhesion differences between "integrin αvβ3" receptor positive and negative cell lines on to the designed biofunctional surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kozyulina, Polina Y.; Loskutov, Yuriy V.; Kozyreva, Varvara K.; Rajulapati, Anuradha; Ice, Ryan J.; Jones, Brandon. C.; Pugacheva, Elena N.
2014-01-01
The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of pro-metastatic protein, NEDD9, in breast cancer (BC) cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and co-localizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand/integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Re-expression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9 depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. PMID:25319010
Tumour exosome integrins determine organotropic metastasis
Hoshino, Ayuko; Costa-Silva, Bruno; Shen, Tang-Long; Rodrigues, Goncalo; Hashimoto, Ayako; Mark, Milica Tesic; Molina, Henrik; Kohsaka, Shinji; Di Giannatale, Angela; Ceder, Sophia; Singh, Swarnima; Williams, Caitlin; Soplop, Nadine; Uryu, Kunihiro; Pharmer, Lindsay; King, Tari; Bojmar, Linda; Davies, Alexander E.; Ararso, Yonathan; Zhang, Tuo; Zhang, Haiying; Hernandez, Jonathan; Weiss, Joshua M.; Dumont-Cole, Vanessa D.; Kramer, Kimberly; Wexler, Leonard H.; Narendran, Aru; Schwartz, Gary K.; Healey, John H.; Sandstrom, Per; Labori, Knut Jørgen; Kure, Elin H.; Grandgenett, Paul M.; Hollingsworth, Michael A.; de Sousa, Maria; Kaur, Sukhwinder; Jain, Maneesh; Mallya, Kavita; Batra, Surinder K.; Jarnagin, William R.; Brady, Mary S.; Fodstad, Oystein; Muller, Volkmar; Pantel, Klaus; Minn, Andy J.; Bissell, Mina J.; Garcia, Benjamin A.; Kang, Yibin; Rajasekhar, Vinagolu K.; Ghajar, Cyrus M.; Matei, Irina; Peinado, Hector; Bromberg, Jacqueline; Lyden, David
2015-01-01
Ever since Stephen Paget’s 1889 hypothesis, metastatic organotropism has remained one of cancer’s greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis. PMID:26524530
Tumour exosome integrins determine organotropic metastasis
Hoshino, Ayuko; Costa-Silva, Bruno; Shen, Tang-Long; ...
2015-10-28
Ever since Stephen Paget’s 1889 hypothesis, metastatic organotropism has remained one of cancer’s greatest mysteries. In this paper, we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α 6β 4 and α 6β 1 weremore » associated with lung metastasis, while exosomal integrin α vβ 5 was linked to liver metastasis. Targeting the integrins α 6β 4 and α vβ 5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. In conclusion, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.« less
Tumour exosome integrins determine organotropic metastasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshino, Ayuko; Costa-Silva, Bruno; Shen, Tang-Long
Ever since Stephen Paget’s 1889 hypothesis, metastatic organotropism has remained one of cancer’s greatest mysteries. In this paper, we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α 6β 4 and α 6β 1 weremore » associated with lung metastasis, while exosomal integrin α vβ 5 was linked to liver metastasis. Targeting the integrins α 6β 4 and α vβ 5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. In conclusion, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.« less
Tumour exosome integrins determine organotropic metastasis.
Hoshino, Ayuko; Costa-Silva, Bruno; Shen, Tang-Long; Rodrigues, Goncalo; Hashimoto, Ayako; Tesic Mark, Milica; Molina, Henrik; Kohsaka, Shinji; Di Giannatale, Angela; Ceder, Sophia; Singh, Swarnima; Williams, Caitlin; Soplop, Nadine; Uryu, Kunihiro; Pharmer, Lindsay; King, Tari; Bojmar, Linda; Davies, Alexander E; Ararso, Yonathan; Zhang, Tuo; Zhang, Haiying; Hernandez, Jonathan; Weiss, Joshua M; Dumont-Cole, Vanessa D; Kramer, Kimberly; Wexler, Leonard H; Narendran, Aru; Schwartz, Gary K; Healey, John H; Sandstrom, Per; Labori, Knut Jørgen; Kure, Elin H; Grandgenett, Paul M; Hollingsworth, Michael A; de Sousa, Maria; Kaur, Sukhwinder; Jain, Maneesh; Mallya, Kavita; Batra, Surinder K; Jarnagin, William R; Brady, Mary S; Fodstad, Oystein; Muller, Volkmar; Pantel, Klaus; Minn, Andy J; Bissell, Mina J; Garcia, Benjamin A; Kang, Yibin; Rajasekhar, Vinagolu K; Ghajar, Cyrus M; Matei, Irina; Peinado, Hector; Bromberg, Jacqueline; Lyden, David
2015-11-19
Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.
The effect of ligand affinity on integrins' lateral diffusion in cultured cells.
Mainali, Dipak; Smith, Emily A
2013-04-01
The role of ligand affinity in altering αPS2CβPS integrins' lateral mobility was studied using single particle tracking (SPT) with ligand-functionalized quantum dots (QDs) and fluorescence recovery after photobleaching (FRAP) with fluorescent protein tagged integrins. Integrins are ubiquitous transmembrane proteins that are vital for numerous cellular functions, including bidirectional signaling and cell anchorage. Wild-type and high ligand affinity mutant (αPS2CβPS-V409D) integrins were studied in S2 cells. As measured by SPT, the integrin mobile fraction decreased by 22% and had a 4× slower diffusion coefficient for αPS2CβPS-V409D compared to wild-type integrins. These differences are partially the result of αPS2CβPS-V409D integrins' increased clustering. For the wild-type integrins, the average of all diffusion coefficients measured by SPT was statistically similar to the ensemble FRAP results. A 75% slower average diffusion coefficient was measured by SPT compared to FRAP for αPS2CβPS-V409D integrins, and this may be the result of SPT measuring only ligand-bound integrins, in contrast all ligand-bound and ligand-unbound integrins are averaged in FRAP measurements. Specific binding of the ligand-functionalized QDs was 99% for integrin expressing cells. The results prove that the ligand binding affinity affects the lateral dynamics of a subset of integrins based on the complementary SPT and FRAP data.
Bix, Gregory; Fu, Jian; Gonzalez, Eva M.; Macro, Laura; Barker, Amy; Campbell, Shelly; Zutter, Mary M.; Santoro, Samuel A.; Kim, Jiyeun K.; Höök, Magnus; Reed, Charles C.; Iozzo, Renato V.
2004-01-01
Endorepellin, the COOH-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits several aspects of angiogenesis. We provide evidence for a novel biological axis that links a soluble fragment of perlecan protein core to the major cell surface receptor for collagen I, α2β1 integrin, and provide an initial investigation of the intracellular signaling events that lead to endorepellin antiangiogenic activity. The interaction between endorepellin and α2β1 integrin triggers a unique signaling pathway that causes an increase in the second messenger cAMP; activation of two proximal kinases, protein kinase A and focal adhesion kinase; transient activation of p38 mitogen-activated protein kinase and heat shock protein 27, followed by a rapid down-regulation of the latter two proteins; and ultimately disassembly of actin stress fibers and focal adhesions. The end result is a profound block of endothelial cell migration and angiogenesis. Because perlecan is present in both endothelial and smooth muscle cell basement membranes, proteolytic activity during the initial stages of angiogenesis could liberate antiangiogenic fragments from blood vessels' walls, including endorepellin. PMID:15240572
Schaufler, Viktoria; Czichos-Medda, Helmi; Hirschfeld-Warnecken, Vera; Neubauer, Stefanie; Rechenmacher, Florian; Medda, Rebecca; Kessler, Horst; Geiger, Benjamin; Spatz, Joachim P.; Cavalcanti-Adam, E. Ada
2016-01-01
ABSTRACT Coordination of the specific functions of α5β1 and αvβ3 integrins is crucial for the precise regulation of cell adhesion, spreading and migration, yet the contribution of differential integrin-specific crosstalk to these processes remains unclear. To determine the specific functions of αvβ3 and α5β1 integrins, we used nanoarrays of gold particles presenting immobilized, integrin-selective peptidomimetic ligands. Integrin binding to the peptidomimetics is highly selective, and cells can spread on both ligands. However, spreading is faster and the projected cell area is greater on α5β1 ligand; both depend on ligand spacing. Quantitative analysis of adhesion plaques shows that focal adhesion size is increased in cells adhering to αvβ3 ligand at 30 and 60 nm spacings. Analysis of αvβ3 and α5β1 integrin clusters indicates that fibrillar adhesions are more prominent in cells adhering to α5β1 ligand, while clusters are mostly localized at the cell margins in cells adhering to αvβ3 ligand. αvβ3 integrin clusters are more pronounced on αvβ3 ligand, though they can also be detected in cells adhering to α5β1 ligand. Furthermore, α5β1 integrin clusters are present in cells adhering to α5β1 ligand, and often colocalize with αvβ3 clusters. Taken together, these findings indicate that the activation of αvβ3 integrin by ligand binding is dispensable for initial adhesion and spreading, but essential to formation of stable focal adhesions. PMID:27003228
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Madhumathy G.; Desai, Krisha; Prabhu, Jyothi S.
Resistance to anthracycline based chemotherapy is a major limitation in the treatment of breast cancer, particularly of the triple negative sub-type that lacks targeted therapies. Resistance that arises from tumor-stromal interaction facilitated by integrins provides the possibility of targeted disruption. In the present study, we demonstrate that integrin β3 signaling inhibits apoptosis induced by a DNA-damaging chemotherapeutic agent, epirubicin, in MDA-MB-231 breast cancer cells. Drug efflux based mechanisms do not contribute to this effect. We show that integrin β3 employs the PI3K-Akt and the MAPK pathway for enabling cell survival and proliferation. Further, our results indicate that integrin β3 helpsmore » inhibit epirubicin induced cytotoxicity by repression of the pro-apoptotic protein BAD, thus promoting an anti-apoptotic response. Myristoylated RGT peptide and a monoclonal antibody against integrin β3 brought about a reversal of this effect and chemosensitized the cells. These results identify β3 integrin signaling via repression of BAD as an important survival pathway used by breast cancer cells to evade chemotherapy induced stress. - Highlights: • Integrin β3 signaling promotes chemoresistance to epirubicin in breast cancer cells. • Integrin β3 promotes cell survival and proliferation in drug treated cells through the PI3K and MAPK pathways. • Integrin signaling helps evade drug induced cytotoxicity by repression of pro-apoptotic molecule; BAD.« less
Eniola, A. Omolola; Willcox, P. Jeanene; Hammer, Daniel A.
2003-01-01
The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl LewisX (sLeX), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLeX/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLeX/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLeX/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLeX mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLeX/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for β2-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology. PMID:14507735
Radil controls neutrophil adhesion and motility through β2-integrin activation
Liu, Lunhua; Aerbajinai, Wulin; Ahmed, Syed M.; Rodgers, Griffin P.; Angers, Stephane; Parent, Carole A.
2012-01-01
Integrin activation is required to facilitate multiple adhesion-dependent functions of neutrophils, such as chemotaxis, which is critical for inflammatory responses to injury and pathogens. However, little is known about the mechanisms that mediate integrin activation in neutrophils. We show that Radil, a novel Rap1 effector, regulates β1- and β2-integrin activation and controls neutrophil chemotaxis. On activation and chemotactic migration of neutrophils, Radil quickly translocates from the cytoplasm to the plasma membrane in a Rap1a-GTP–dependent manner. Cells overexpressing Radil show a substantial increase in cell adhesion, as well as in integrin/focal adhesion kinase (FAK) activation, and exhibit an elongated morphology, with severe tail retraction defects. This phenotype is effectively rescued by treatment with either β2-integrin inhibitory antibodies or FAK inhibitors. Conversely, knockdown of Radil causes severe inhibition of cell adhesion, β2-integrin activation, and chemotaxis. Furthermore, we found that inhibition of Rap activity by RapGAP coexpression inhibits Radil-mediated integrin and FAK activation, decreases cell adhesion, and abrogates the long-tail phenotype of Radil cells. Overall, these studies establish that Radil regulates neutrophil adhesion and motility by linking Rap1 to β2-integrin activation. PMID:23097489
Radil controls neutrophil adhesion and motility through β2-integrin activation.
Liu, Lunhua; Aerbajinai, Wulin; Ahmed, Syed M; Rodgers, Griffin P; Angers, Stephane; Parent, Carole A
2012-12-01
Integrin activation is required to facilitate multiple adhesion-dependent functions of neutrophils, such as chemotaxis, which is critical for inflammatory responses to injury and pathogens. However, little is known about the mechanisms that mediate integrin activation in neutrophils. We show that Radil, a novel Rap1 effector, regulates β1- and β2-integrin activation and controls neutrophil chemotaxis. On activation and chemotactic migration of neutrophils, Radil quickly translocates from the cytoplasm to the plasma membrane in a Rap1a-GTP-dependent manner. Cells overexpressing Radil show a substantial increase in cell adhesion, as well as in integrin/focal adhesion kinase (FAK) activation, and exhibit an elongated morphology, with severe tail retraction defects. This phenotype is effectively rescued by treatment with either β2-integrin inhibitory antibodies or FAK inhibitors. Conversely, knockdown of Radil causes severe inhibition of cell adhesion, β2-integrin activation, and chemotaxis. Furthermore, we found that inhibition of Rap activity by RapGAP coexpression inhibits Radil-mediated integrin and FAK activation, decreases cell adhesion, and abrogates the long-tail phenotype of Radil cells. Overall, these studies establish that Radil regulates neutrophil adhesion and motility by linking Rap1 to β2-integrin activation.
Quantifying Osteogenic Cell Degradation of Silk Biomaterials
Sengupta, Sejuti; Park, Sang-Hyug; Seok, Gil Eun; Patel, Atur; Numata, Keiji; Lu, Chia-Li; Kaplan, David L.
2010-01-01
The degradation of silk protein films by human mesenchymal stem cells (hMSCs), osteoblasts and osteoclasts, cells involved in osteogenic functions in normal and diseased bone, was assessed in vitro. The involvement of specific matrix metalloproteinases (MMPs) and integrin signaling in the degradation process was determined. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to quantitatively compare degradation by the different cell types using surface patterned silk films. Osteoblasts and osteoclasts demonstrated significant degradation of the silk films in vitro in comparison to the hMSCs and the film controls without cells. The osteoclasts degraded the silk films the most and also generated the highest level of MMPs 1 and 2. The osteoblasts upregulated integrins α5 and β1 while the osteoclasts upregulated integrins α2 and β1. There was significant contrast in responses on the silk matrices between osteogenic cells vs undifferentiated hMSCs to illustrate in vitro the role of cell type on matrix remodeling. These are important issues in matching biomaterial matrix features and studies in vitro to remodeling in vivo, in both normal and disease tissue systems. Cell populations and niche factors impact tissue regeneration, wound healing and physiological state and the ability to better understand the role of different cell types is critical to overall regenerative outcomes. PMID:21105641
Thys, Mirjan; Nauwynck, Hans; Maes, Dominiek; Hoogewijs, Maarten; Vercauteren, Dries; Rijsselaere, Tom; Favoreel, Herman; Van Soom, Ann
2009-09-01
Fibronectin (Fn) is a 440 kDa glycoprotein assumed to participate in sperm-egg interaction in human. Recently, it has been demonstrated that Fn--when present during bovine IVF--strongly inhibits sperm penetration. The present study was conducted firstly to evaluate the expression of Fn and its integrin receptor (alpha(5)beta(1)) on male and female bovine gametes using indirect immunofluorescence and secondly, to determine the function of Fn during bovine IVF. Endogenous Fn was detected underneath the zona pellucida (ZP) and integrin alpha(5) on the oolemma of cumulus-denuded oocytes. Bovine spermatozoa displayed integrin alpha(5) at their equatorial segment after acrosome reaction. We established that the main inhibitory effect of exogenously supplemented Fn was located at the sperm-oolemma binding, with a (concurrent) effect on fusion, and this can probably be attributed to the binding of Fn to spermatozoa at the equatorial segment, as shown by means of Alexa Fluor 488-conjugated Fn. Combining these results, the inhibitory effect of exogenously supplemented Fn seemed to be exerted on the male gamete by binding to the exposed integrin alpha(5)beta(1) receptor after acrosome reaction. The presence of endogenous Fn underneath the ZP together with integrin alpha(5) expression on oolemma and acrosome-reacted (AR) sperm cell surface suggests a 'velcro' interaction between the endogenous Fn ligand and corresponding receptors on both (AR) sperm cell and oolemma, initiating sperm-egg binding.
Barbariga, Marco; Curnis, Flavio; Spitaleri, Andrea; Andolfo, Annapaola; Zucchelli, Chiara; Lazzaro, Massimo; Magnani, Giuseppe; Musco, Giovanna; Corti, Angelo; Alessio, Massimo
2014-01-01
Asparagine deamidation occurs spontaneously in proteins during aging; deamidation of Asn-Gly-Arg (NGR) sites can lead to the formation of isoAsp-Gly-Arg (isoDGR), a motif that can recognize the RGD-binding site of integrins. Ceruloplasmin (Cp), a ferroxidase present in the cerebrospinal fluid (CSF), contains two NGR sites in its sequence: one exposed on the protein surface (568NGR) and the other buried in the tertiary structure (962NGR). Considering that Cp can undergo oxidative modifications in the CSF of neurodegenerative diseases, we investigated the effect of oxidation on the deamidation of both NGR motifs and, consequently, on the acquisition of integrin binding properties. We observed that the exposed 568NGR site can deamidate under conditions mimicking accelerated Asn aging. In contrast, the hidden 962NGR site can deamidate exclusively when aging occurs under oxidative conditions, suggesting that oxidation-induced structural changes foster deamidation at this site. NGR deamidation in Cp was associated with gain of integrin-binding function, intracellular signaling, and cell pro-adhesive activity. Finally, Cp aging in the CSF from Alzheimer disease patients, but not in control CSF, causes Cp deamidation with gain of integrin-binding function, suggesting that this transition might also occur in pathological conditions. In conclusion, both Cp NGR sites can deamidate during aging under oxidative conditions, likely as a consequence of oxidative-induced structural changes, thereby promoting a gain of function in integrin binding, signaling, and cell adhesion. PMID:24366863
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, R D; Natarajan, A; Lau, E Y
2010-02-08
The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin is an attractive yet poorly understood target for selective diagnosis and treatment of T- and B-cell lymphomas. This report focuses on the rapid microwave preparation of medicinally pertinent benzimidazole heterocycles, structure-activity relationships (SAR) of novel halobenzimidazole carboxamide antagonists 3-6, and preliminary biological evaluation of radioiodinated agents 7, 8, and 18. The I-125 derivative 18 had good tumor uptake (12 {+-} 1% ID/g at 24 h; 4.5 {+-} 1% ID/g at 48 h) and tumor:kidney ratio ({approx}4:1 at 24 h; 2.5:1 at 48 h) in xenograft murine models of B-cell lymphoma. Molecular homologymore » models of {alpha}{sub 4}{beta}{sub 1} integrin have predicted that docked halobenzimidazole carboxamides have the halogen atom in a suitable orientation for halogen-hydrogen bonding. These high affinity ({approx} pM binding) halogenated ligands are attractive tools for medicinal and biological use; the fluoro and iodo derivatives are potential radiodiagnostic ({sup 18}F) or radiotherapeutic ({sup 131}I) agents, whereas the chloro and bromo analogues could provide structural insight into integrin-ligand interactions through photoaffinity cross-linking/mass spectroscopy experiments, as well as co-crystallization X-ray studies.« less
The Interaction of CD154 with the α5β1 Integrin Inhibits Fas-Induced T Cell Death
Yacoub, Daniel; Salti, Suzanne; Alaaeddine, Nada; Aoudjit, Fawzi; Hassan, Ghada S.; Mourad, Walid
2016-01-01
CD154, a critical regulator of the immune response, is usually associated with chronic inflammatory, autoimmune diseases as well as malignant disorders. In addition to its classical receptor CD40, CD154 is capable of binding other receptors, members of the integrin family, the αIIbβ3, αMβ2 and α5β1. Given the role attributed to integrins and particularly the β1 integrins in inhibiting apoptotic events in normal as well as malignant T cells, we were highly interested in investigating the role of the CD154/α5β1 interaction in promoting survival of malignant T cells contributing as such to tumor development and/or propagation. To support our hypothesis, we first show that soluble CD154 binds to the T-cell acute lymphoblastic leukemia cell line, Jurkat E6.1 in a α5β1-dependent manner. Binding of soluble CD154 to α5β1 integrin of Jurkat cells leads to the activation of key survival proteins, including the p38 and ERK1/2 mitogen-activated protein kinases (MAPKs), phosphoinositide 3 kinase (PI-3K), and Akt. Interestingly, soluble CD154 significantly inhibits Fas-mediated apoptosis in T cell leukemia-lymphoma cell lines, Jurkat E6.1 and HUT78 cells, an important hallmark of T cell survival during malignancy progression. These anti-apoptotic effects were mainly mediated by the activation of the PI-3K/Akt pathway but also involved the p38 and the ERK1/2 MAPKs cascades. Our data also demonstrated that the CD154-triggered inhibition of the Fas-mediated cell death response was dependent on a suppression of caspase-8 cleavage, but independent of de novo protein synthesis or alterations in Fas expression on cell surface. Together, our results highlight the impact of the CD154/α5β1 interaction in T cell function/survival and identify novel targets for the treatment of malignant disorders, particularly of T cell origin. PMID:27391025
The Interaction of CD154 with the α5β1 Integrin Inhibits Fas-Induced T Cell Death.
Bachsais, Meriem; Naddaf, Nadim; Yacoub, Daniel; Salti, Suzanne; Alaaeddine, Nada; Aoudjit, Fawzi; Hassan, Ghada S; Mourad, Walid
2016-01-01
CD154, a critical regulator of the immune response, is usually associated with chronic inflammatory, autoimmune diseases as well as malignant disorders. In addition to its classical receptor CD40, CD154 is capable of binding other receptors, members of the integrin family, the αIIbβ3, αMβ2 and α5β1. Given the role attributed to integrins and particularly the β1 integrins in inhibiting apoptotic events in normal as well as malignant T cells, we were highly interested in investigating the role of the CD154/α5β1 interaction in promoting survival of malignant T cells contributing as such to tumor development and/or propagation. To support our hypothesis, we first show that soluble CD154 binds to the T-cell acute lymphoblastic leukemia cell line, Jurkat E6.1 in a α5β1-dependent manner. Binding of soluble CD154 to α5β1 integrin of Jurkat cells leads to the activation of key survival proteins, including the p38 and ERK1/2 mitogen-activated protein kinases (MAPKs), phosphoinositide 3 kinase (PI-3K), and Akt. Interestingly, soluble CD154 significantly inhibits Fas-mediated apoptosis in T cell leukemia-lymphoma cell lines, Jurkat E6.1 and HUT78 cells, an important hallmark of T cell survival during malignancy progression. These anti-apoptotic effects were mainly mediated by the activation of the PI-3K/Akt pathway but also involved the p38 and the ERK1/2 MAPKs cascades. Our data also demonstrated that the CD154-triggered inhibition of the Fas-mediated cell death response was dependent on a suppression of caspase-8 cleavage, but independent of de novo protein synthesis or alterations in Fas expression on cell surface. Together, our results highlight the impact of the CD154/α5β1 interaction in T cell function/survival and identify novel targets for the treatment of malignant disorders, particularly of T cell origin.
Matsuura, N.; Puzon-McLaughlin, W.; Irie, A.; Morikawa, Y.; Kakudo, K.; Takada, Y.
1996-01-01
Cell adhesion receptors (eg, integrins and CD44) play an important role in invasion and metastasis during tumor progression. The increase in integrin alpha 4 beta 1 expression on primary melanomas has been reported to significantly correlate with the development of metastases. alpha 4 beta 1 is a cell surface heterodimer that mediates cell-cell and cell-extracellular matrix interactions through adhesion to vascular cell adhesion molecule (VCAM)-1 and to the IIICS region of fibronectin. To test the effects of alpha 4 beta 1 expression on tumor cell metastasis, Chinese hamster ovary cells were transfected with human alpha 4 cDNA. Whereas alpha 4-negative Chinese hamster ovary cells developed only pulmonary metastasis, alpha 4-positive Chinese hamster ovary cells developed bone and pulmonary metastasis in 3 to 4 weeks when injected intravenously into nude mice. Bone metastasis was inhibited by antibody against alpha 4 or VCAM-1. Expression of alpha 3 beta 1, alpha 6 beta 1, or alpha V beta 1 did not induce bone metastasis. Expression of alpha 4 beta 1 also induced bone metastasis in K562 human erythroleukemia cells injected into SCID mice. These results demonstrate that alpha 4 beta 1 can induce tumor cell trafficking to bone, probably via interaction with VCAM-1 that is constitutively expressed on bone marrow stromal cells. Images Figure 1 Figure 3 PMID:8546226
Burgett, Monica E.; Lathia, Justin D.; Roth, Patrick; Nowacki, Amy S.; Galileo, Deni S.; Pugacheva, Elena; Huang, Ping; Vasanji, Amit; Li, Meizhang; Byzova, Tatiana; Mikkelsen, Tom; Bao, Shideng; Rich, Jeremy N.; Weller, Michael; Gladson, Candece L.
2016-01-01
The secretion of soluble pro-angiogenic factors by tumor cells and stromal cells in the perivascular niche promotes the aggressive angiogenesis that is typical of glioblastoma (GBM). Here, we show that angiogenesis also can be promoted by a direct interaction between brain tumor cells, including tumor cells with cancer stem-like properties (CSCs), and endothelial cells (ECs). As shown in vitro, this direct interaction is mediated by binding of integrin αvβ3 expressed on ECs to the RGD-peptide in L1CAM expressed on CSCs. It promotes both EC network formation and enhances directed migration toward basic fibroblast growth factor. Activation of αvβ3 and bone marrow tyrosine kinase on chromosome X (BMX) is required for migration stimulated by direct binding but not for migration stimulated by soluble factors. RGD-peptide treatment of mice with established intracerebral GBM xenografts significantly reduced the percentage of Sox2-positive tumor cells and CSCs in close proximity to ECs, decreased integrin αvβ3 and BMX activation and p130CAS phosphorylation in the ECs, and reduced the vessel surface area. These results reveal a previously unrecognized aspect of the regulation of angiogenesis in GBM that can impact therapeutic anti-angiogenic targeting. PMID:27270311
The solid state environment orchestrates embryonic development and tissue remodeling
NASA Technical Reports Server (NTRS)
Damsky, C. H.; Moursi, A.; Zhou, Y.; Fisher, S. J.; Globus, R. K.
1997-01-01
Cell interactions with extracellular matrix and with other cells play critical roles in morphogenesis during development and in tissue homeostasis and remodeling throughout life. Extracellular matrix is information-rich, not only because it is comprised of multifunctional structural ligands for cell surface adhesion receptors, but also because it contains peptide signaling factors, and proteinases and their inhibitors. The functions of these groups of molecules are extensively interrelated. In this review, three primary cell culture models are described that focus on adhesion receptors and their roles in complex aspects of morphogenesis and remodeling: the regulation of proteinase expression by fibronectin and integrins in synovial fibroblasts; the regulation of osteoblast differentiation and survival by fibronectin, and the regulation of trophoblast differentiation and invasion by integrins, cadherins and immunoglobulin family adhesion receptors.
The influence of Pyk2 on the mechanical properties in fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemm, Anna H.; Kienle, Sandra; Rheinlaender, Johannes
2010-03-19
The cell surface receptor integrin is involved in signaling mechanical stresses via the focal adhesion complex (FAC) into the cell. Within FAC, the focal adhesion kinase (FAK) and Pyk2 are believed to act as important scaffolding proteins. Based on the knowledge that many signal transducing molecules are transiently immobilized within FAC connecting the cytoskeleton with integrins, we applied magnetic tweezer and atomic force microscopic measurements to determine the influence of FAK and Pyk2 in cells mechanically. Using mouse embryonic fibroblasts (MEF; FAK{sup +/+}, FAK{sup -/-}, and siRNA-Pyk2 treated FAK{sup -/-} cells) provided a unique opportunity to describe the function ofmore » FAK and Pyk2 in more detail and to define their influence on FAC and actin distribution.« less
Xiao, Wenwu; Wang, Yan; Lau, Edmond Y; Luo, Juntao; Yao, Nianhuan; Shi, Changying; Meza, Leah; Tseng, Harry; Maeda, Yoshiko; Kumaresan, Pappanaicken; Liu, Ruiwu; Lightstone, Felice C; Takada, Yoshikazu; Lam, Kit S
2010-10-01
The αvβ3 integrin, expressed on the surface of various normal and cancer cells, is involved in numerous physiologic processes such as angiogenesis, apoptosis, and bone resorption. Because this integrin plays a key role in angiogenesis and metastasis of human tumors, αvβ3 integrin ligands are of great interest to advances in targeted therapy and cancer imaging. In this report, one-bead one-compound (OBOC) combinatorial libraries containing the arginine-glycine-aspartic acid (RGD) motif were designed and screened against K562 myeloid leukemia cells that had been transfected with the human αvβ3 integrin gene. Cyclic peptide LXW7 was identified as a leading ligand with a built-in handle that binds specifically to αvβ3 and showed comparable binding affinity (IC(50) = 0.68 ± 0.08 μmol/L) to some of the well-known RGD "head-to-tail" cyclic pentapeptide ligands reported in the literature. The biotinylated form of LXW7 ligand showed similar binding strength as LXW7 against αvβ3 integrin, whereas biotinylated RGD cyclopentapeptide ligands revealed a 2- to 8-fold weaker binding affinity than their free forms. LXW7 was able to bind to both U-87MG glioblastoma and A375M melanoma cell lines, both of which express high levels of αvβ3 integrin. In vivo and ex vivo optical imaging studies with the biotinylated ligand/streptavidin-Cy5.5 complex in nude mice bearing U-87MG or A375M xenografts revealed preferential uptake of biotinylated LXW7 in tumor. When compared with biotinylated RGD cyclopentapeptide ligands, biotinylated LXW7 showed higher tumor uptake but lower liver uptake.
Hao, Lijing; Fu, Xiaoling; Li, Tianjie; Zhao, Naru; Shi, Xuetao; Cui, Fuzhai; Du, Chang; Wang, Yingjun
2016-12-01
Self-assembled monolayers (SAMs) of alkanethiols on gold are highly controllable model substrates and have been employed to mimic the extracellular matrix for cell-related studies. This study aims to systematically explore how surface chemistry influences the adhesion, morphology, proliferation and osteogenic differentiation of mouse mesenchymal stem cells (mMSCs) using various functional groups (-OEG, -CH 3 , -PO 3 H 2 , -OH, -NH 2 and -COOH). Surface analysis demonstrated that these functional groups produced a wide range of wettability and charge: -OEG (hydrophilic and moderate iso-electric point (IEP)), -CH 3 (strongly hydrophobic and low IEP), -PO 3 H 2 (moderate wettability and low IEP), -OH (hydrophilic and moderate IEP), -NH 2 (moderate wettability and high IEP) and -COOH (hydrophilic and low IEP). In terms of cell responses, the effect of wettability may be more influential than charge for these groups. Moreover, compared to -OEG and -CH 3 groups, -PO 3 H 2 , -OH, -NH 2 and -COOH functionalities tended to promote not only cell adhesion, proliferation and osteogenic differentiation but also the expression of α v and β 1 integrins. This finding indicates that the surface chemistry may guide mMSC activities through α v and β 1 integrin signaling pathways. Model surfaces with controllable chemistry may provide insight into biological responses to substrate surfaces that would be useful for the design of biomaterial surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Lin, Hung-Yun; Hsieh, Meng-Ti; Cheng, Guei-Yun; Lai, Hsuan-Yu; Chin, Yu-Tang; Shih, Ya-Jung; Nana, André Wendindondé; Lin, Shin-Ying; Yang, Yu-Chen S H; Tang, Heng-Yuan; Chiang, I-Jen; Wang, Kuan
2017-09-01
Nonpeptide hormones, such as thyroid hormone, dihydrotestosterone, and estrogen, have been shown to stimulate cancer proliferation via different mechanisms. Aside from their cytosolic or membrane-bound receptors, there are receptors on integrin α v β 3 for nonpeptide hormones. Interaction between hormones and integrin α v β 3 can induce signal transduction and eventually stimulate cancer cell proliferation. Resveratrol induces inducible COX-2-dependent antiproliferation via integrin α v β 3 . Resveratrol and hormone-induced signals are both transduced by activated extracellular-regulated kinases 1 and 2 (ERK1/2); however, hormones promote cell proliferation, while resveratrol induces antiproliferation in cancer cells. Hormones inhibit resveratrol-stimulated phosphorylation of p53 on Ser15, resveratrol-induced nuclear COX-2 accumulation, and formation of p53-COX-2 nuclear complexes. Subsequently, hormones impair resveratrol-induced COX-2-/p53-dependent gene expression. The inhibitory effects of hormones on resveratrol action can be blocked by different antagonists of specific nonpeptide hormone receptors but not integrin α v β 3 blockers. Results suggest that nonpeptide hormones inhibit resveratrol-induced antiproliferation in cancer cells downstream of the interaction between ligand and receptor and ERK1/2 activation to interfere with nuclear COX-2 accumulation. Thus, the surface receptor sites for resveratrol and nonpeptide hormones are distinct and can induce discrete ERK1/2-dependent downstream antiproliferation biological activities. It also indicates the complex pathways by which antiproliferation is induced by resveratrol in various physiological hormonal environments. . © 2017 New York Academy of Sciences.
Rolaki, Alexandra; Coukos, George; Loutradis, Dimitris; DeLisser, Horace M.; Coutifaris, Christos; Makrigiannakis, Antonis
2007-01-01
The formation of the corpus luteum (CL) is critical for the establishment of a successful pregnancy. After ovulation, the CL develops from the remnants of the ovulated ovarian follicle. This process, which involves varying cell-matrix interactions, is poorly characterized. To understand the role and potential regulation of cell-matrix interactions in the formation of the CL, we investigated the expression and activity of the matrix protein fibronectin (FN) and several of its integrin receptors on luteinized granulosa cells (GCs). In situ, FN and several FN-binding integrins were detected around luteinizing GCs during the early luteal phase, although expression declined in the late luteal phase. In vitro, GCs released FN, and stimulation of these cells with human chorionic gonadotropin increased the surface expression of FN, α5β1, and αvβ3. Up-regulation of these proteins on GCs was reproduced by stimulation with vascular endothelial growth factor (VEGF) and was inhibited by anti-VEGF antibody. Lastly, expression of α5β1 and αvβ3 mediated adhesion to FN, facilitated migration, and prevented apoptosis. These data suggest that in vivo luteogenic hormones, in part through a VEGF-dependent mechanism, stimulate selected integrin-matrix adhesive interactions that promote the motility and survival of GCs and thus contribute to the formation and preservation of the CL. PMID:17456762
Villa-Diaz, Luis G; Kim, Jin Koo; Laperle, Alex; Palecek, Sean P; Krebsbach, Paul H
2016-07-01
Self-renewal of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs)-known as pluripotent stem cells (PSC)-is influenced by culture conditions, including the substrate on which they are grown. However, details of the molecular mechanisms interconnecting the substrate and self-renewal of these cells remain unclear. We describe a signaling pathway in hPSCs linking self-renewal and expression of pluripotency transcription factors to integrin α6β1 and inactivation of focal adhesion kinase (FAK). Disruption of this pathway results in hPSC differentiation. In hPSCs, α6β1 is the dominant integrin and FAK is not phosphorylated at Y397, and thus, it is inactive. During differentiation, integrin α6 levels diminish and Y397 FAK is phosphorylated and activated. During reprogramming of fibroblasts into iPSCs, integrin α6 is upregulated and FAK is inactivated. Knockdown of integrin α6 and activation of β1 integrin lead to FAK phosphorylation and reduction of Nanog, Oct4, and Sox2, suggesting that integrin α6 functions in inactivation of integrin β1 and FAK signaling and prevention of hPSC differentiation. The N-terminal domain of FAK, where Y397 is localized, is in the nuclei of hPSCs interacting with Oct4 and Sox2, and this immunolocalization is regulated by Oct4. hPSCs remodel the extracellular microenvironment and deposit laminin α5, the primary ligand of integrin α6β1. Knockdown of laminin α5 resulted in reduction of integrin α6 expression, phosphorylation of FAK and decreased Oct4. In conclusion, hPSCs promote the expression of integrin α6β1, and nuclear localization and inactivation of FAK to supports stem cell self-renewal. Stem Cells 2016;34:1753-1764. © 2016 AlphaMed Press.
Cattavarayane, Sandhanakrishnan; Palovuori, Riitta; Tanjore Ramanathan, Jayendrakishore; Manninen, Aki
2015-02-27
The growth properties and self-renewal capacity of embryonic stem (ES) cells are regulated by their immediate microenvironment such as the extracellular matrix (ECM). Integrins, a central family of cellular ECM receptors, have been implicated in these processes but their specific role in ES cell self-renewal remains unclear. Here we have studied the effects of different ECM substrates and integrins in mouse ES cells in the absence of Leukemia Inhibitory Factor (LIF) using short-term assays as well as long-term cultures. Removal of LIF from ES cell culture medium induced morphological differentiation of ES cells into polarized epistem cell-like cells. These cells maintained epithelial morphology and expression of key stemness markers for at least 10 passages in the absence of LIF when cultured on laminin, fibronectin or collagen IV substrates. The specific functional roles of α6-, αV- and β1-integrin subunits were dissected using stable lentivirus-mediated RNAi methodology. β1-integrins were required for ES cell survival in long-term cultures and for the maintenance of stem cell marker expression. Inhibition of α6-integrin expression compromised self-renewal on collagen while αV-integrins were required for robust ES cell adhesion on laminin. Analysis of the stemness marker expression revealed subtle differences between α6- and αV-depleted ES cells but the expression of both was required for optimal self-renewal in long-term ES cell cultures. In the absence of LIF, long-term ES cell cultures adapt an epistem cell-like epithelial phenotype and retain the expression of multiple stem cell markers. Long-term maintenance of such self-renewing cultures depends on the expression of β1-, α6- and αV-integrins.
EMMPRIN regulates β1 integrin-mediated adhesion through Kindlin-3 in human melanoma cells.
Delyon, Julie; Khayati, Farah; Djaafri, Ibtissem; Podgorniak, Marie-Pierre; Sadoux, Aurélie; Setterblad, Niclas; Boutalbi, Zineb; Maouche, Kamel; Maskos, Uwe; Menashi, Suzanne; Lebbé, Céleste; Mourah, Samia
2015-06-01
EMMPRIN is known to promote tumor invasion through extracellular matrix (ECM) degradation. Here we report that EMMPRIN can regulate melanoma cell adhesion to the ECM through an interaction with β1 integrin involving kindlin-3. In this study, EMMPRIN knockdown in the human melanoma cell line M10 using siRNA decreased cell invasion and significantly increased cell adhesion and spreading. A morphological change from a round to a spread shape was observed associated with enhanced phalloidin-labelled actin staining. In situ proximity ligation assay and co-immunoprecipitation revealed that EMMPRIN silencing increased the interaction of β1 integrin with kindlin-3, a focal adhesion protein. This was associated with an increase in β1 integrin activation and a decrease in the phosphorylation of the downstream integrin kinase FAK. Moreover, the expression at both the transcript and protein level of kindlin-3 and of β1 integrin was inversely regulated by EMMPRIN. EMMPRIN did not regulate either talin expression or its interaction with β1 integrin. These results are consistent with our in vivo demonstration that EMMPRIN inhibition increased β1 integrin activation and its interaction with kindlin-3. To conclude, these findings reveal a new role of EMMPRIN in tumor cell migration through ß1 integrin/kindlin-3-mediated adhesion pathway. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Haertel, Beate; Straßenburg, Susanne; Wende, Kristian; von Woedtke, Thomas
2013-01-01
Adequate chronic wound healing is a major problem in medicine. A new solution might be non-thermal atmospheric-pressure plasma effectively inactivating microorganisms and influencing cells in wound healing. Plasma components as, for example, radicals can affect cells differently. HaCaT keratinocytes were treated with Dielectric Barrier Discharge plasma (DBD/air, DBD/argon), ozone or hydrogen peroxide to find the components responsible for changes in integrin expression, intracellular ROS formation or apoptosis induction. Dependent on plasma treatment time reduction of recovered cells was observed with no increase of apoptotic cells, but breakdown of mitochondrial membrane potential. DBD/air plasma increased integrins and intracellular ROS. DBD/argon caused minor changes. About 100 ppm ozone did not influence integrins. Hydrogen peroxide caused similar effects compared to DBD/air plasma. In conclusion, effects depended on working gas and exposure time to plasma. Short treatment cycles did neither change integrins nor induce apoptosis or ROS. Longer treatments changed integrins as important for influencing wound healing. Plasma effects on integrins are rather attributed to induction of other ROS than to generation of ozone. Changes of integrins by plasma may provide new solutions of improving wound healing, however, conditions are needed which allow initiating the relevant influence on integrins without being cytotoxic to cells. PMID:23936843
Method and system for measurement of mechanical properties of molecules and cells
NASA Technical Reports Server (NTRS)
Fredberg, Jeffrey J. (Inventor); Butler, James P. (Inventor); Ingber, Donald E. (Inventor); Wang, Ning (Inventor)
1996-01-01
Mechanical stresses and deformations are applied directly to cell surface receptors or molecules and measured using a system including a magnetic twisting device in combination with ferromagnetic microbeads coated with ligands for integrins or any other surface receptors. The system can be used diagnostically to characterize cells and molecules and to determine the effect of transformation and compounds, including drugs, on the cells and molecules. The system can also be used to induce cells to grow or alter production of molecules by the cells.
McFarlane, Suzanne; McFarlane, Cheryl; Montgomery, Nicola; Hill, Ashleigh; Waugh, David J.J.
2015-01-01
CD44 expression is elevated in basal-like breast cancer (BLBC) tissue, and correlates with increased efficiency of distant metastasis in patients and experimental models. We sought to characterize mechanisms underpinning CD44-promoted adhesion of BLBC cells to vascular endothelial monolayers and extracellular matrix (ECM) substrates. Stimulation with hyaluronan (HA), the native ligand for CD44, increased expression and activation of β1-integrin receptors, and increased α5-integrin subunit expression. Adhesion assays confirmed that CD44-signalling potentiated BLBC cell adhesion to endothelium and Fibronectin in an α5B1-integrin-dependent mechanism. Co-immunoprecipitation experiments confirmed HA-promoted association of CD44 with talin and the β1-integrin chain in BLBC cells. Knockdown of talin inhibited CD44 complexing with β1-integrin and repressed HA-induced, CD44-mediated activation of β1-integrin receptors. Immunoblotting confirmed that HA induced rapid phosphorylation of cortactin and paxillin, through a CD44-dependent and β1-integrin-dependent mechanism. Knockdown of CD44, cortactin or paxillin independently attenuated the adhesion of BL-BCa cells to endothelial monolayers and Fibronectin. Accordingly, we conclude that CD44 induced, integrin-mediated signaling not only underpins efficient adhesion of BLBC cells to BMECs to facilitate extravasation but initiates their adhesion to Fibronectin, enabling penetrant cancer cells to adhere more efficiently to underlying Fibronectin-enriched matrix present within the metastatic niche. PMID:26447611
Physical and functional interaction between integrins and hERG potassium channels.
Arcangeli, A; Becchetti, A; Cherubini, A; Crociani, O; Defilippi, P; Guasti, L; Hofmann, G; Pillozzi, S; Olivotto, M; Wanke, E
2004-11-01
Integrins are adhesion receptors capable of transmitting intracellular signals that regulate many different cellular functions. Among integrin-mediated signals, the activation of ion channels can be included. We demonstrated that a long-lasting activation of hERG (human ether-a-go-go-related gene) potassium channels occurs in both human neuroblastoma and leukaemia cells after the activation of the beta1 integrin subunit. This activation is apparently a determining factor inducing neurite extension and osteoclastic differentiation in both the cell types. More recently, we provided evidences that beta1 integrins and hERG channels co-precipitate in both the cell types. Preliminary results suggest that a macromolecular signalling complex indeed occurs between integrins and the hERG1 protein and that hERG channel activity can modulate integrin downstream signalling.
Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion
Li, Zhenhai; Lee, Hyunjung; Zhu, Cheng
2016-01-01
Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation. PMID:27720950
Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.
Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C
1997-01-01
Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P < .001) before but not after delivery. Expression of the integrin counter receptors on leukocytes was similarly increased in preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i. The effect on cultured endothelial cells and the rapid decrease after delivery suggests the presence of a circulating serum factor which increases endothelial cell [Ca2+]i and enhances adhesion molecule expression.
An Overview of the Mechanism of Action of the Monoclonal Antibody Vedolizumab.
Wyant, Tim; Fedyk, Eric; Abhyankar, Brihad
2016-12-01
Vedolizumab is a novel therapeutic monoclonal antibody recently approved for the treatment of moderately to severely active ulcerative colitis and Crohn's disease in adults who have failed at least one conventional therapy. An integrin antagonist, vedolizumab binds to the α 4 β 7 integrin which is expressed specifically by a subset of gastrointestinal-homing T lymphocytes. The binding of α 4 β 7 integrin to mucosal addressin cell adhesion molecule-1 expressed on the surface of mucosal endothelial cells is a crucial component of the gut-selective homing mechanism for lymphocytes.In contrast, other monoclonal antibodies approved for the treatment of inflammatory bowel diseases, such as tumour necrosis factor α antagonists and the integrin antagonist natalizumab, act systemically or on multiple targets to reduce inflammation.The unique gut selectivity of vedolizumab may contribute to the favourable benefit-risk profile observed in vedolizumab clinical trials. In this review, we summarise data from the preclinical development of vedolizumab and describe the current understanding of the mechanism of action as it relates to other biological therapies for inflammatory bowel disease. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Protein expression and purification of integrin I domains and IgSF ligands for crystallography.
Zhang, Hongmin; Wang, Jia-Huai
2012-01-01
Cell adhesion depends on combinational expression and interactions of a large number of adhesion molecules at cell-to-cell or cell-to-matrix contact sites. Integrins and their immunoglobulin superfamily (IgSF) ligands represent foremost classes of cell adhesion molecules in immune system. Structural study is critical for a better understanding of the interactions between integrins and their IgSF ligands. Here we describe protocols for protein expression of integrin αL I domain and its IgSF ligand ICAM-5 D1D2 fragment for crystallography.
Redox-Relevant Aspects of the Extracellular Matrix and Its Cellular Contacts via Integrins
de Rezende, Flávia Figueiredo
2014-01-01
Abstract Significance: The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. Recent Advances: ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. Critical Issues: In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. Future Directions: Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders. Antioxid. Redox Signal. 20, 1977–1993. PMID:24040997
Belkin, A M; Zhidkova, N I; Balzac, F; Altruda, F; Tomatis, D; Maier, A; Tarone, G; Koteliansky, V E; Burridge, K
1996-01-01
The cytoplasmic domains of integrins provide attachment of these extracellular matrix receptors to the cytoskeleton and play a critical role in integrin-mediated signal transduction. In this report we describe the identification, expression, localization, and initial functional characterization of a novel form of beta 1 integrin, termed beta 1D. This isoform contains a unique alternatively spliced cytoplasmic domain of 50 amino acids, with the last 24 amino acids encoded by an additional exon. Of these 24 amino acids, 11 are conserved when compared to the beta 1A isoform, but 13 are unique (Zhidkova, N. I., A. M. Belkin, and R. Mayne. 1995. Biochem. Biophys. Res. Commun. 214:279-285; van der Flier, A., I. Kuikman, C. Baudoin, R, van der Neuf, and A. Sonnenberg. 1995. FEBS Lett. 369:340-344). Using an anti-peptide antibody against the beta 1D integrin subunit, we demonstrated that the beta 1D isoform is synthesized only in skeletal and cardiac muscles, while very low amounts of beta 1A were detected by immunoblot in striated muscles. Whereas beta 1A could not be detected in adult skeletal muscle fibers and cardiomyocytes by immunofluorescence, beta 1D was localized to the sarcolemma of both cell types. In skeletal muscle, beta 1D was concentrated in costameres, myotendinous, and neuromuscular junctions. In cardiac muscle this beta 1 isoform was found in costamers and intercalated discs. beta 1D was associated with alpha 7A and alpha 7B in adult skeletal muscle. In cardiomyocytes of adult heart, alpha 7B was the major partner for the beta 1D isoform. beta 1D could not be detected in proliferating C2C12 myoblasts, but it appeared immediately after myoblast fusion and its amount continued to rise during myotube growth and maturation. In contrast, expression of the beta 1A isoform was downregulated during myodifferentiation in culture and it was completely displaced by beta 1D in mature differentiated myotubes. We also analyzed some functional properties of the beta 1D integrin subunit. Expression of human beta 1D in CHO cells led to its localization at focal adhesions. Clustering of this integrin isoform on the cell surface stimulated tyrosine phosphorylation of pp125FAK (focal adhesion kinase) and caused transient activation of mitogen-activated protein (MAP) kinases. These data indicate that beta 1D and beta 1A integrin isoforms are functionally similar with regard to integrin-mediated signaling.
Hoffman, Laura M.; Jensen, Christopher C.; Kloeker, Susanne; Wang, C.-L. Albert; Yoshigi, Masaaki; Beckerle, Mary C.
2006-01-01
Focal adhesions are specialized regions of the cell surface where integrin receptors and associated proteins link the extracellular matrix to the actin cytoskeleton. To define the cellular role of the focal adhesion protein zyxin, we characterized the phenotype of fibroblasts in which the zyxin gene was deleted by homologous recombination. Zyxin-null fibroblasts display enhanced integrin-dependent adhesion and are more migratory than wild-type fibroblasts, displaying reduced dependence on extracellular matrix cues. We identified differences in the profiles of 75- and 80-kD tyrosine-phosphorylated proteins in the zyxin-null cells. Tandem array mass spectrometry identified both modified proteins as isoforms of the actomyosin regulator caldesmon, a protein known to influence contractility, stress fiber formation, and motility. Zyxin-null fibroblasts also show deficits in actin stress fiber remodeling and exhibit changes in the molecular composition of focal adhesions, most notably by severely reduced accumulation of Ena/VASP proteins. We postulate that zyxin cooperates with Ena/VASP proteins and caldesmon to influence integrin-dependent cell motility and actin stress fiber remodeling. PMID:16505170
NASA Astrophysics Data System (ADS)
Ou, Zhongmin; Wu, Baoyan; Xing, Da
2009-08-01
The pursuit of efficient and highly targeting-selective transporters is an active topic in cancer-targeting therapy. In this study, a novel cancer-targeting transporter with integrin αvβ3 monoclonal antibody functionalized single-walled carbon nanotubes (SWCNTs) was developed to investigate cancer cell targeting in vitro. SWCNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). PL-PEG functionalized SWCNTs were then conjugated with fluorescein isothiocyanate (FITC) labeled integrin αvβ3 monoclonal antibody to construct SWCNT-integrin αvβ3 monoclonal antibody system (denoted as SWCNT-PEG-mAb). In vitro study revealed that the system had a high efficiency in cancer cell targeting in integrin αvβ3 positive U87MG cells. Moreover, the SWCNT-PEG-mAb is stable in physiological media, and can be readily transported into U87MG cells via integrin αvβ3-mediated endocytosis in cell. In summary, the integrin αvβ3 monoclonal antibody labeled SWCNT is a potential carrier-candidate for cancer-imaging and drug-delivering in cancer-targeting therapy.
Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning
2014-10-08
The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.
Complement C3 participation in monocyte adhesion to different surfaces.
McNally, A K; Anderson, J M
1994-01-01
As part of an ongoing investigation into the role of the monocyte/macrophage in biocompatibility, a major goal is to identify the adhesion mechanisms that initiate and promote the observed in vivo morphologic progression of monocyte-to-macrophage-to-foreign body giant cell on biomaterials. We have exploited differently modified polystyrenes, specific component-depleted sera, and monoclonal antibodies (mAbs) to leukocyte integrins to ask what adhesion mechanisms mediate human blood monocyte adhesion to different surfaces in vitro. Preliminary findings are that monocyte interactions with fluorinated, siliconized, nitrogenated, and oxygenated surfaces are reduced by 50-100% when complement component C3-depleted serum is used for adsorption; reductions vary with material surface properties. Adhesion is restored on all surfaces when C3-depleted serum is replenished with purified C3. Monocyte adhesion to serum-adsorbed surfaces is inhibited by mAbs to the leukocyte integrin beta subunit, CD18 (mAbs 60.3 and MHM23), and partially inhibited by a mAb to the alpha subunit, CD11b (mAb 60.1), suggesting adhesive interactions between adsorbed C3bi (the hemolytically inactive form of the C3b fragment) and the leukocyte integrin CD11b/CD18. However, adsorbed fibrinogen reduces the effectiveness of these mAbs, indicating that alternative adhesion mechanisms may operate depending on the propensities of critical adhesion-mediating components to be adsorbed onto different surfaces. Images PMID:7937848
Thapa, Narendra; Sun, Yue; Schramp, Mark; Choi, Suyoung; Ling, Kun; Anderson, Richard A
2011-01-01
Summary Polarized delivery of signaling and adhesion molecules to the leading edge is required for directional migration of cells. Here, we describe a role for the PIP2 synthesizing enzyme, PIPKIγi2, in regulation of exocyst complex control of cell polarity and polarized integrin trafficking during migration. Loss of PIPKIγi2 impaired directional migration, formation of cell polarity, and integrin trafficking to the leading edge. Upon initiation of directional migration PIPKIγi2 via PIP2 generation controls the integration of the exocyst complex into an integrin-containing trafficking compartment(s) that requires the talin-binding ability of PIPKIγi2, and talin for integrin recruitment to the leading edge. A PIP2 requirement is further emphasized by inhibition of PIPKIγi2-regulated directional migration by an Exo70 mutant deficient in PIP2 binding. These results reveal how phosphoinositide generation orchestrates polarized trafficking of integrin in coordination with talin that links integrins to the actin cytoskeleton, processes that are required for directional migration. PMID:22264730
Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions
Swaminathan, Vinay; Kalappurakkal, Joseph Mathew; Moore, Travis I.; Koga, Nobuyasu; Baker, David A.; Oldenbourg, Rudolf; Tani, Tomomi; Springer, Timothy A.; Waterman, Clare M.
2017-01-01
Integrins are transmembrane receptors that, upon activation, bind extracellular ligands and link them to the actin filament (F-actin) cytoskeleton to mediate cell adhesion and migration. Cytoskeletal forces in migrating cells generated by polymerization- or contractility-driven “retrograde flow” of F-actin from the cell leading edge have been hypothesized to mediate integrin activation for ligand binding. This predicts that these forces should align and orient activated, ligand-bound integrins at the leading edge. Here, polarization-sensitive fluorescence microscopy of GFP-αVβ3 integrins in fibroblasts shows that integrins are coaligned in a specific orientation within focal adhesions (FAs) in a manner dependent on binding immobilized ligand and a talin-mediated linkage to the F-actin cytoskeleton. These findings, together with Rosetta modeling, suggest that integrins in FA are coaligned and may be highly tilted by cytoskeletal forces. Thus, the F-actin cytoskeleton sculpts an anisotropic molecular scaffold in FAs, and this feature may underlie the ability of migrating cells to sense directional extracellular cues. PMID:29073038
Kindlin-2 directly binds actin and regulates integrin outside-in signaling
Bledzka, Kamila; Bialkowska, Katarzyna; Sossey-Alaoui, Khalid; Vaynberg, Julia; Pluskota, Elzbieta
2016-01-01
Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2+/− mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK47/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK47/AA mutation were equivalent in their ability to coactivate integrin αIIbβ3 in a CHO cell system when coexpressed with talin. However, K2-LK47/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses. PMID:27044892
Lopez-Escobar, Beatriz; De Felipe, Beatriz; Sanchez-Alcazar, Jose Antonio; Sasaki, Takako; Copp, Andrew J; Ybot-Gonzalez, Patricia
2012-11-01
The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear. We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, β, and γ laminin chains and their mRNAs in the early tail bud. We identified an apparently novel laminin variant, comprising α5, β3 and γ2 chains, as a major component of the VER basement membrane at E9.5. Strikingly, only the mRNAs for these chains were co-expressed in VER cells, suggesting that lamin532 may be the sole basement membrane laminin at this stage. Since α6 integrin was also expressed in VER cells, this raises the possibility of cell-matrix interactions regulating BMP signalling at this site of caudal morphogenesis. Laminin532 could interact with α6-containing integrin to direct differentiation of the specialised VER cells from surface ectoderm. Copyright © 2012 Wiley Periodicals, Inc.
Lopez-Escobar, Beatriz; de Felipe, Beatriz; Sanchez-Alcazar, Jose Antonio; Sasaki, Takako; Copp, Andrew J.; Ybot-Gonzalez, Patricia
2013-01-01
Background The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear. Results We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, β and γ laminin chains and their mRNAs in the early tail bud. We identified an apparently novel laminin variant, comprising α5, β3 and γ2 chains, as a major component of the VER basement membrane at E9.5. Strikingly, only the mRNAs for these chains were co-expressed in VER cells, suggesting that lamin532 may be the sole basement membrane laminin at this stage. Since α6 integrin was also expressed in VER cells, this raises the possibility of cell-matrix interactions regulating BMP signalling at this site of caudal morphogenesis. Conclusions Laminin532 could interact with α6-containing integrin to direct differentiation of the specialised VER cells from surface ectoderm. PMID:22911573
Shen, Di; Podolnikova, Nataly P; Yakubenko, Valentin P; Ardell, Christopher L; Balabiyev, Arnat; Ugarova, Tatiana P; Wang, Xu
2017-11-17
Pleiotrophin (PTN) is a multifunctional, cationic, glycosaminoglycan-binding cytokine and growth factor involved in numerous physiological and pathological processes, including tissue repair and inflammation-related diseases. PTN has been shown to promote leukocyte responses by inducing their migration and expression of inflammatory cytokines. However, the mechanisms through which PTN mediates these responses remain unclear. Here, we identified the integrin Mac-1 (αMβ2, CD11b/CD18) as the receptor mediating macrophage adhesion and migration to PTN. We also found that expression of Mac-1 on the surface of human embryonic kidney (HEK) 293 cells induced their adhesion and migration to PTN. Accordingly, PTN promoted Mac-1-dependent cell spreading and initiated intracellular signaling manifested in phosphorylation of Erk1/2. While binding to PTN, Mac-1 on Mac-1-expressing HEK293 cells appears to cooperate with cell-surface proteoglycans because both anti-Mac-1 function-blocking mAb and heparin were required to block adhesion. Moreover, biolayer interferometry and NMR indicated a direct interaction between the α M I domain, the major ligand-binding region of Mac-1, and PTN. Using peptide libraries, we found that in PTN the α M I domain bound sequences enriched in basic and hydrophobic residues, indicating that PTN conforms to the general principle of ligand-recognition specificity of the α M I domain toward cationic proteins/peptides. Finally, using recombinant PTN-derived fragments, we show that PTN contains two distinct Mac-1-binding sites in each of its constitutive domains. Collectively, these results identify PTN as a ligand for the integrin Mac-1 on the surface of leukocytes and suggest that this interaction may play a role in inflammatory responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Shield, Kristy; Riley, Clyde; Quinn, Michael A; Rice, Gregory E; Ackland, Margaret L; Ahmed, Nuzhat
2007-01-01
Background Ovarian cancer is characterized by a wide-spread intra-abdominal metastases which represents a major clinical hurdle in the prognosis and management of the disease. A significant proportion of ovarian cancer cells in peritoneal ascites exist as multicellular aggregates or spheroids. We hypothesize that these cellular aggregates or spheroids are invasive with the capacity to survive and implant on the peritoneal surface. This study was designed to elucidate early inherent mechanism(s) of spheroid survival, growth and disaggregation required for peritoneal metastases Methods In this study, we determined the growth pattern and adhesive capacity of ovarian cancer cell lines (HEY and OVHS1) grown as spheroids, using the well established liquid overlay technique, and compared them to a normal ovarian cell line (IOSE29) and cancer cells grown as a monolayer. The proteolytic capacity of these spheroids was compared with cells grown as a monolayer using a gelatin zymography assay to analyze secreted MMP-2/9 in conditioned serum-free medium. The disaggregation of cancer cell line spheroids was determined on extracellular matrices (ECM) such as laminin (LM), fibronectin (FN) and collagen (CI) and the expression of α2, α3, αv, α6 and β1 interin was determined by flow cytometric analysis. Neutralizing antibodies against α2, β1 subunits and α2β1 integrin was used to inhibit disaggregation as well as activation of MMPs in spheroids. Results We demonstrate that ovarian cancer cell lines grown as spheroids can sustain growth for 10 days while the normal ovarian cell line failed to grow beyond 2 days. Compared to cells grown as a monolayer, cancer cells grown as spheroids demonstrated no change in adhesion for up to 4 days, while IOSE29 cells had a 2–4-fold loss of adhesion within 2 days. Cancer cell spheroids disaggregated on extracellular matrices (ECM) and demonstrated enhanced expression of secreted pro-MMP2 as well as activated MMP2/MMP9 with no such activation of MMP's observed in monolayer cells. Flow cytometric analysis demonstrated enhanced expression of α2 and diminution of α6 integrin subunits in spheroids versus monolayer cells. No change in the expression of α3, αv and β1 subunits was evident. Conversely, except for αv integrin, a 1.5–7.5-fold decrease in α2, α3, α6 and β1 integrin subunit expression was observed in IOSE29 cells within 2 days. Neutralizing antibodies against α2, β1 subunits and α2β1 integrin inhibited disaggregation as well as activation of MMPs in spheroids. Conclusion Our results suggest that enhanced expression of α2β1 integrin may influence spheroid disaggregation and proteolysis responsible for the peritoneal dissemination of ovarian carcinoma. This may indicate a new therapeutic target for the suppression of the peritoneal metastasis associated with advanced ovarian carcinomas. PMID:17567918
Cooperative integrin/ITAM signaling in platelets enhances thrombus formation in vitro and in vivo
Zhi, Huiying; Rauova, Lubica; Hayes, Vincent; Gao, Cunji; Boylan, Brian; Newman, Debra K.; McKenzie, Steven E.; Cooley, Brian C.; Poncz, Mortimer; Newman, Peter J.
2013-01-01
The integrin family is composed of a series of 24 αβ heterodimer transmembrane adhesion receptors that mediate cell-cell and cell-extracellular matrix interactions. Adaptor molecules bearing immunoreceptor tyrosine-based activation motifs (ITAMs) have recently been shown to cooperate with specific integrins to increase the efficiency of transmitting ligand-binding–induced signals into cells. In human platelets, Fc receptor γ-chain IIa (FcγRIIa) has been identified as an ITAM-bearing transmembrane receptor responsible for mediating “outside-in” signaling through αIIbβ3, the major adhesion receptor on the platelet surface. To explore the importance of FcγRIIa in thrombosis and hemostasis, we subjected FcγRIIa-negative and FcγRIIa-positive murine platelets to a number of well-accepted models of platelet function. Compared with their FcγRIIa-negative counterparts, FcγRIIa-positive platelets exhibited increased tyrosine phosphorylation of Syk and phospholipase Cγ2 and increased spreading upon interaction with immobilized fibrinogen, retracted a fibrin clot faster, and showed markedly enhanced thrombus formation when perfused over a collagen-coated flow chamber under conditions of arterial and venous shear. They also displayed increased thrombus formation and fibrin deposition in in vivo models of vascular injury. Taken together, these data establish FcγRIIa as a physiologically important functional conduit for αIIbβ3-mediated outside-in signaling, and suggest that modulating the activity of this novel integrin/ITAM pair might be effective in controlling thrombosis. PMID:23264598
Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids.
Khalifeh-Soltani, Amin; McKleroy, William; Sakuma, Stephen; Cheung, Yuk Yin; Tharp, Kevin; Qiu, Yifu; Turner, Scott M; Chawla, Ajay; Stahl, Andreas; Atabai, Kamran
2014-02-01
Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8(-/-)) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin- and αvβ5 integrin-dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications.
Integrin activation controls metastasis in human breast cancer
NASA Astrophysics Data System (ADS)
Felding-Habermann, Brunhilde; O'Toole, Timothy E.; Smith, Jeffrey W.; Fransvea, Emilia; Ruggeri, Zaverio M.; Ginsberg, Mark H.; Hughes, Paul E.; Pampori, Nisar; Shattil, Sanford J.; Saven, Alan; Mueller, Barbara M.
2001-02-01
Metastasis is the primary cause of death in human breast cancer. Metastasis to bone, lungs, liver, and brain involves dissemination of breast cancer cells via the bloodstream and requires adhesion within the vasculature. Blood cell adhesion within the vasculature depends on integrins, a family of transmembrane adhesion receptors, and is regulated by integrin activation. Here we show that integrin v3 supports breast cancer cell attachment under blood flow conditions in an activation-dependent manner. Integrin v3 was found in two distinct functional states in human breast cancer cells. The activated, but not the nonactivated, state supported tumor cell arrest during blood flow through interaction with platelets. Importantly, activated αvβ3 was expressed by freshly isolated metastatic human breast cancer cells and variants of the MDA-MB 435 human breast cancer cell line, derived from mammary fat pad tumors or distant metastases in severe combined immunodeficient mice. Expression of constitutively activated mutant αvβ3D723R, but not αvβ3WT, in MDA-MB 435 cells strongly promoted metastasis in the mouse model. Thus breast cancer cells can exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3. Consequently, alterations within tumors that lead to the aberrant control of integrin activation are expected to adversely affect the course of human breast cancer.
Kwon, Koo Chul; Ko, Ho Kyung; Lee, Jiyun; Lee, Eun Jung; Kim, Kwangmeyung; Lee, Jeewon
2016-08-01
Human ferritin heavy-chain nanoparticle (hFTH) is genetically engineered to present tumor receptor-binding peptides (affibody and/or RGD-derived cyclic peptides, named 4CRGD here) on its surface. The affibody and 4CRGD specifically and strongly binds to human epidermal growth factor receptor I (EGFR) and human integrin αvβ3, respectively, which are overexpressed on various tumor cells. Through in vitro culture of EGFR-overexpressing adenocarcinoma (MDA-MB-468) and integrin-overexpressing glioblastoma cells (U87MG), it is clarified that specific interactions between receptors on tumor cells and receptor-binding peptides on engineered hFTH is critical in active tumor cell targeting. After labeling with the near-infrared fluorescence dye (Cy5.5) and intravenouse injection into MDA-MB-468 or U87MG tumor-bearing mice, the recombinant hFTHs presenting either peptide or both of affibody and 4CRGD are successfully delivered to and retained in the tumor for a prolonged period of time. In particular, the recombinant hFTH presenting both affibody and 4CRGD notably enhances in vivo detection of U87MG tumors that express heterogeneous receptors, integrin and EGFR, compared to the other recombinant hFTHs presenting either affibody or 4CRGD only. Like affibody and 4CRGD used in this study, other multiple tumor receptor-binding peptides can be also genetically introduced to the hFTH surface for actively targeting of in vivo tumors with heterogenous receptors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vespa, Alisa; Darmon, Alison J; Turner, Christopher E; D'Souza, Sudhir J A; Dagnino, Lina
2003-03-28
Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.
Genetic ablation of the alpha 6-integrin subunit in Tie1Cre mice enhances tumour angiogenesis.
Germain, Mitchel; De Arcangelis, Adèle; Robinson, Stephen D; Baker, Marianne; Tavora, Bernardo; D'Amico, Gabriela; Silva, Rita; Kostourou, Vassiliki; Reynolds, Louise E; Watson, Alan; Jones, J Louise; Georges-Labouesse, Elisabeth; Hodivala-Dilke, Kairbaan
2010-02-01
Laminins are expressed highly in blood vessel basement membranes and have been implicated in angiogenesis. alpha6beta1- and alpha6beta4-integrins are major receptors for laminins in endothelial cells, but the precise role of endothelial alpha6-integrin in tumour angiogenesis is not clear. We show that blood vessels in human invasive ductal carcinoma of the breast have decreased expression of the alpha6-integrin-subunit when compared with normal breast tissue. These data suggest that a decrease in alpha6-integrin-subunit expression in endothelial cells is associated with tumour angiogenesis. To test whether the loss of the endothelial alpha6-integrin subunit affects tumour growth and angiogenesis, we generated alpha6fl/fl-Tie1Cre+ mice and showed that endothelial deletion of alpha6-integrin is sufficient to enhance tumour size and tumour angiogenesis in both murine B16F0 melanoma and Lewis cell lung carcinoma. Mechanistically, endothelial alpha6-integrin deficiency elevated significantly VEGF-mediated angiogenesis both in vivo and ex vivo. In particular, alpha6-integrin-deficient endothelial cells displayed increased levels of VEGF-receptor 2 (VEGFR2) and VEGF-mediated downstream ERK1/2 activation. By developing the first endothelial-specific alpha6-knockout mice, we show that the expression of the alpha6-integrin subunit in endothelial cells acts as a negative regulator of angiogenesis both in vivo and ex vivo. Copyright 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Bolduc, Gilles R; Madoff, Lawrence C
2007-12-01
Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.
Itou, Junji; Tanaka, Sunao; Li, Wenzhao; Iida, Atsuo; Sehara-Fujisawa, Atsuko; Sato, Fumiaki; Toi, Masakazu
2017-01-01
During metastasis, cancer cell migration is enhanced. However, the mechanisms underlying this process remain elusive. Here, we addressed this issue by functionally analyzing the transcription factor Sal-like 4 (SALL4) in basal-like breast cancer cells. Loss-of-function studies of SALL4 showed that this transcription factor is required for the spindle-shaped morphology and the enhanced migration of cancer cells. SALL4 also up-regulated integrin gene expression. The impaired cell migration observed in SALL4 knockdown cells was restored by overexpression of integrin α6 and β1. In addition, we clarified that integrin α6 and β1 formed a heterodimer. At the molecular level, loss of the SALL4 - integrin α6β1 network lost focal adhesion dynamics, which impairs cell migration. Over-activation of Rho is known to inhibit focal adhesion dynamics. We observed that SALL4 knockdown cells exhibited over-activation of Rho. Aberrant Rho activation was suppressed by integrin α6β1 expression, and pharmacological inhibition of Rho activity restored cell migration in SALL4 knockdown cells. These results indicated that the SALL4 - integrin α6β1 network promotes cell migration via modulation of Rho activity. Moreover, our zebrafish metastasis assays demonstrated that this gene network enhances cell migration in vivo. Our findings identify a potential new therapeutic target for the prevention of metastasis, and provide an improved understanding of cancer cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.
β4-Integrin/PI3K Signaling Promotes Tumor Progression through the Galectin-3-N-Glycan Complex.
Kariya, Yukiko; Oyama, Midori; Hashimoto, Yasuhiro; Gu, Jianguo; Kariya, Yoshinobu
2018-06-01
Malignant transformation is associated with aberrant N -glycosylation, but the role of protein N -glycosylation in cancer progression remains poorly defined. β4-integrin is a major carrier of N -glycans and is associated with poor prognosis, tumorigenesis, and metastasis. Here, N -glycosylation of β4-integrin contributes to the activation of signaling pathways that promote β4-dependent tumor development and progression. Increased expression of β1,6GlcNAc-branched N -glycans was found to be colocalized with β4-integrin in human cutaneous squamous cell carcinoma tissues, and that the β1,6GlcNAc residue was abundant on β4-integrin in transformed keratinocytes. Interruption of β1,6GlcNAc-branching formation on β4-integrin with the introduction of bisecting GlcNAc by N -acetylglucosaminyltransferase III overexpression was correlated with suppression of cancer cell migration and tumorigenesis. N -Glycan deletion on β4-integrin impaired β4-dependent cancer cell migration, invasion, and growth in vitro and diminished tumorigenesis and proliferation in vivo The reduced abilities of β4-integrin were accompanied with decreased phosphoinositol-3 kinase (PI3K)/Akt signals and were restored by the overexpression of the constitutively active p110 PI3K subunit. Binding of galectin-3 to β4-integrin via β1,6GlcNAc-branched N -glycans promoted β4-integrin-mediated cancer cell adhesion and migration. In contrast, a neutralizing antibody against galectin-3 attenuated β4-integrin N -glycan-mediated PI3K activation and inhibited the ability of β4-integrin to promote cell motility. Furthermore, galectin-3 knockdown by shRNA suppressed β4-integrin N -glycan-mediated tumorigenesis. These findings provide a novel role for N -glycosylation of β4-integrin in tumor development and progression, and the regulatory mechanism for β4-integrin/PI3K signaling via the galectin-3- N -glycan complex. Implications: N -Glycosylation of β4-integrin plays a functional role in promoting tumor development and progression through PI3K activation via the galectin-3- N -glycan complex. Mol Cancer Res; 16(6); 1024-34. ©2018 AACR . ©2018 American Association for Cancer Research.
Kikkawa, Yamato; Ogawa, Takaho; Sudo, Ryo; Yamada, Yuji; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi; Miner, Jeffrey H
2013-10-25
Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.
Takahashi, Yuji; Bigler, Dora; Ito, Yasuhiko; White, Judith M.
2001-01-01
ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-α6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-α6 mAb, or by mAbs against either the αv or β3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other β1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg β1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface “tetraspan web” facilitates fertilization and that it may do so by fostering ADAM–integrin interactions. PMID:11294888
Takahashi, Y; Bigler, D; Ito, Y; White, J M
2001-04-01
ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-alpha6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-alpha6 mAb, or by mAbs against either the alphav or beta3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other beta1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg beta1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface "tetraspan web" facilitates fertilization and that it may do so by fostering ADAM-integrin interactions.
He, Kai; Gao, Jian-Li
2014-01-01
A Chinese herb Corydalis yanhusuo W.T. Wang that showed anticancer and anti-angiogenesis effects in our previous studies was presented for further studies. In the present study, we studied the anticancer proliferation and adhesion effects of five alkaloids which were isolated from Corydalis yanhusuo. MTT dose response curves, cell migration assay, cell invasion assay, as well as three types of cell adhesive assay were performed on MDA-MB-231 human breast cancer cells. The mechanism of the compounds on inhibiting heterotypic cell adhesion were further explored by determining the expression of epidermal growth factor receptor (EGFR), Intercellular adhesion molecule 1 (ICAM-1), αv-integrin, β1-integrin and β5-integrin by western blotting assay. In five tested alkaloids, only protopine exhibited anti-adhesive and anti-invasion effects in MDA-MB-231 cells, which contributed to the anti-metastasis effect of Corydalis yanhusuo. The results showed that after treatment with protopine for 90 min, the expression of EGFR, ICAM-1, αv-integrin, β1-integrin and β5-integrin were remarkably reduced. The present results suggest that protopine seems to inhibit the heterotypic cell adhesion between MDA-MB-231 cells, and human umbilical vein endothelial cells by changing the expression of adhesive factors.
Högnäs, G; Tuomi, S; Veltel, S; Mattila, E; Murumägi, A; Edgren, H; Kallioniemi, O; Ivaska, J
2012-01-01
Aneuploidy is frequently detected in solid tumors but the mechanisms regulating the generation of aneuploidy and their relevance in cancer initiation remain under debate and are incompletely characterized. Spatial and temporal regulation of integrin traffic is critical for cell migration and cytokinesis. Impaired integrin endocytosis, because of the loss of Rab21 small GTPase or mutations in the integrin β-subunit cytoplasmic tail, induces failure of cytokinesis in vitro. Here, we describe that repeatedly failed cytokinesis, because of impaired traffic, is sufficient to trigger the generation of aneuploid cells, which display characteristics of oncogenic transformation in vitro and are tumorigenic in vivo. Furthermore, in an in vivo mouse xenograft model, non-transformed cells with impaired integrin traffic formed tumors with a long latency. More detailed investigation of these tumors revealed that the tumor cells were aneuploid. Therefore, abnormal integrin traffic was linked with generation of aneuploidy and cell transformation also in vivo. In human prostate and ovarian cancer samples, downregulation of Rab21 correlates with increased malignancy. Loss-of-function experiments demonstrate that long-term depletion of Rab21 is sufficient to induce chromosome number aberrations in normal human epithelial cells. These data are the first to demonstrate that impaired integrin traffic is sufficient to induce conversion of non-transformed cells to tumorigenic cells in vitro and in vivo. PMID:22120710
Adhesion to the extracellular matrix is positively regulated by retinoic acid in HepG2 cells.
Massimi, Mara; Devirgiliis, Laura Conti
2007-02-01
In this work, we aimed to investigate the possible modulation of cell-matrix interactions by retinoic acid (RA), in view of the well-known role of the extracellular matrix (ECM) and integrins in hepatocyte differentiation and proliferation. For this purpose, we analysed the adhesion ability of HepG2 cells on different substrates in the presence and absence of RA evaluating both the expression and cellular localisation of major proteins involved in focal contacts, using Western blot and confocal microscopy. A positive and substrate-dependent effect of RA on cell-matrix adhesion was observed after long-term culture. The increased adhesiveness in the treated cells was accompanied by an enhanced expression of beta1 and alpha3 integrin subunits, together with a redistribution of beta1 receptors clustered at the basal surface. In contrast, the levels of focal adhesion kinase (FAK), paxillin and alpha-actinin were unchanged, as was the phosphorylation state of FAK. Nonetheless, a stronger association between beta1 integrin and intracytoplasmatic proteins of focal contacts was observed in coimmunoprecipitation experiments after RA treatment, suggesting improved connection with the actin cytoskeleton. These results are consistent with previously described antiproliferative and differentiative effects of RA on transformed hepatocytes, and confirm the hypothesis of a direct influence of RA on specific adhesion molecules.
Zhou, Zijing; Qu, Jing; He, Li; Peng, Hong; Chen, Ping; Zhou, Yong
2018-05-02
α6-Integrin subunit (also known as CD49f) is a stemness signature that has been found on the plasma membrane of more than 30 stem cell populations. A growing body of studies have focused on the critical role of α6-containing integrins (α6β1 and α6β4) in the regulation of stem cell properties, lineage-specific differentiation, and niche interaction. α6-Integrin subunit can be alternatively spliced at the post-transcriptional level, giving rise to divergent isoforms which differ in the cytoplasmic and/or extracellular domains. The cytoplasmic domain of integrins is an important functional part of integrin-mediated signals. Structural changes in the cytoplasmic domain of α6 provide an efficient means for the regulation of stem cell responses to biochemical stimuli and/or biophysical cues in the stem cell niche, thus impacting stem cell fate determination. In this review, we summarize the current knowledge on the structural variants of the α6-integrin subunit and spatiotemporal expression of α6 cytoplasmic variants in embryonic and adult stem/progenitor cells. We highlight the roles of α6 cytoplasmic variants in stem cell fate decision and niche interaction, and discuss the potential mechanisms involved. Understanding of the distinct functions of α6 splicing variants in stem cell biology may inform the rational design of novel stem cell-based therapies for a range of human diseases.
Taylor, Robert M; Severns, Virginia; Brown, David C; Bisoffi, Marco; Sillerud, Laurel O
2012-04-01
Membrane receptors are frequent targets of cancer therapeutic and imaging agents. However, promising in vitro results often do not translate to in vivo clinical applications. To better understand this obstacle, we measured the expression differences in receptor signatures among several human prostate cancer cell lines and xenografts as a function of tumorigenicity. Messenger RNA and protein expression levels for integrin α(ν) β(3), neurotensin receptor 1 (NTSR1), prostate specific membrane antigen (PSMA), and prostate stem cell antigen (PSCA) were measured in LNCaP, C4-2, and PC-3 human prostate cancer cell lines and in murine xenografts using quantitative reverse transcriptase polymerase chain reaction, flow cytometry, and immunohistochemistry. Stable expression patterns were observed for integrin α(ν) and PSMA in all cells and corresponding xenografts. Integrin β(3) mRNA expression was greatly reduced in C4-2 xenografts and greatly elevated in PC-3 xenografts compared with the corresponding cultured cells. NTSR1 mRNA expression was greatly elevated in LNCaP and PC-3 xenografts. PSCA mRNA expression was elevated in C4-2 xenografts when compared with C4-2 cells cultured in vitro. Furthermore, at the protein level, PSCA was re-expressed in all xenografts compared with cells in culture. The regulation of mRNA and protein expression of the cell-surface target proteins α(ν) β(3), NTSR1, PSMA, and PSCA, in prostate cancer cells with different tumorigenic potential, was influenced by factors of the microenvironment, differing between cell cultures and murine xenotransplants. Integrin α(ν) β(3), NTRS1 and PSCA mRNA expression increased with tumorigenic potential, but mRNA expression levels for these proteins do not translate directly to equivalent expression levels of membrane bound protein. Copyright © 2011 Wiley Periodicals, Inc.
Integrin αv in the mechanical response of osteoblast lineage cells.
Kaneko, Keiko; Ito, Masako; Naoe, Yoshinori; Lacy-Hulbert, Adam; Ikeda, Kyoji
2014-05-02
Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src-JNK-YAP/TAZ pathway in response to mechanical stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkawa, Yuki; Miyazaki, Sayaka; Miyata, Maiko
2008-08-15
We reported that ganglioside GD3 enhances cell proliferation and invasion of melanomas causing stronger tyrosine-phosphorylation of p130Cas and paxillin after stimulation with fetal calf serum. Besides signals via growth factor/receptor, adhesion signals via integrin might be also enhanced by GD3. Here, roles of integrin-mediated signaling in the cell proliferation and invasion, and in the activation of adaptor molecules were examined, showing that integrin was also important for the cell growth and invasion. p130Cas and paxillin underwent stronger tyrosine-phosphorylation in GD3+ cells than in GD3- cells during the adhesion in the absence of serum. On the other hand, no proteins underwentmore » tyrosine phosphorylation in GD3+ and GD3- cells in a suspension state when stimulated with fetal calf serum. These results suggested that integrin-mediated signaling is essential in the effects of GD3 on the malignant properties of melanomas. Co-localization of GD3 and integrin at the focal adhesion supported these results.« less
NASA Astrophysics Data System (ADS)
Hu, He; Arena, Francesca; Gianolio, Eliana; Boffa, Cinzia; di Gregorio, Enza; Stefania, Rachele; Orio, Laura; Baroni, Simona; Aime, Silvio
2016-03-01
A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors.A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors. Electronic supplementary information (ESI) available: Absorption and emission spectra, energy dispersive X-ray analysis (EDXA) and XPS spectra, TGA, zeta-potential and the molecular structures of the Gd-complexes. See DOI: 10.1039/c5nr08878j
Davidenko, Natalia; Hamaia, Samir; Bax, Daniel V; Malcor, Jean-Daniel; Schuster, Carlos F; Gullberg, Donald; Farndale, Richard W; Best, Serena M; Cameron, Ruth E
2018-01-01
Accurate evaluation of the biological performance of biomaterials requires the correct assessment of their native-like cell ligation properties. However, cell attachment studies often overlook the details of the substrate-cell binding mechanisms, be they integrin-mediated or non-specific, and ignore the class- and species-specificities of the cell adhesion receptor involved. In this work we have used different collagen (Col) substrates (fibrillar collagens I, II and III and network-forming Col IV), containing different affinity cell-recognition motifs, to establish the influence of the receptor identity and species-specificity on collagen-cell interactive properties. Receptor expression was varied by using cells of different origin, or transfecting collagen-binding integrins into integrin-null cells. These include mouse C2C12 myoblasts transfected with human α1, α2, α10 or α11; human fibrosarcoma HT1080 cells which constitutively express only human α2β1, and rat glioma Rugli cells, with only rat α1β1. Using these lines, the nature of integrin binding sites was studied in order to delineate the bioactivity of different collagen substrates. Integrin ligation was studied on collagen coatings alongside synthetic (GFOGER/GLOGEN) and Toolkit (Col II-28/Col III-7) triple-helical peptides to evaluate (1) their affinity towards different integrins and (2) to confirm the activity of the inserted integrin in the transfected cells. Thin films of dermal and tendon Col I were used to evaluate the influence of the carbodiimide (EDC)-based treatment on the cellular response on Col of different origin. The results showed that the binding properties of transfected C2C12 cells to collagens depend on the identity of inserted integrin. Similar ligation characteristics were observed using α1+ and α10+ cells, but these were distinct from the similar binding features of α2+ and α11+ cells. Recombinant human and rat-α1 I domain binding to collagens and peptides correlated with the cell adhesion results, showing receptor class- and species-specificities. The understanding of the physiologically relevant cell anchorage characteristics of bio-constructs may assist in the selection of (1) the optimum collagen source for cellular supports and (2) the correct cellular model for their biological assessment. This, in turn, may allow reliable prediction of the biological performance of bio-scaffolds in vivo for specific TE applications. Integrins play a vital role in cellular responses to environmental cues during early-stage cell-substrate interaction. We describe physiologically relevant cell anchorage to collagen substrates that present different affinity cell-recognition motifs, to provide experimental tools to assist in understanding integrin binding. Using different cell types and recombinant integrin α1-I-domains, we found that cellular response was highly dependent on collagen type, origin and EDC-crosslinking status, as well as on the integrin class and species of origin. This comprehensive study establishes selectivity amongst the four collagen-binding integrins and species-specific properties that together may influence choice of cell type and receptor in different experimental settings. This work offers key guidance in selecting of the correct cellular model for the biological testing of collagen-based biomaterials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bondu, Virginie; Wu, Chenyu; Cao, Wenpeng; Simons, Peter C.; Gillette, Jennifer; Zhu, Jieqing; Erb, Laurie; Zhang, X. Frank; Buranda, Tione
2017-01-01
Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation. PMID:28835374
Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.
Saher, G; Hildt, E
1999-09-24
Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.
Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation
Wei, Xiaofan; Wang, Xiang; Zhan, Jun; Chen, Yuhan; Fang, Weigang; Zhang, Lingqiang
2017-01-01
Integrin activation is an indispensable step for various integrin-mediated biological functions. Kindlin-2 is known to coactivate integrins with Talin; however, molecules that restrict integrin activation are elusive. Here, we demonstrate that the E3 ubiquitin ligase Smurf1 controls the amount of Kindlin-2 protein in cells and hinders integrin activation. Smurf1 interacts with and promotes Kindlin-2 ubiquitination and degradation. Smurf1 selectively mediates degradation of Kindlin-2 but not Talin, leading to inhibition of αIIbβ3 integrin activation in Chinese hamster ovary cells and β1 integrin activation in fibroblasts. Enhanced activation of β1 integrin was found in Smurf1-knockout mouse embryonic fibroblasts, which correlates with an increase in Kindlin-2 protein levels. Similarly, a reciprocal relationship between Smurf1 and Kindlin-2 protein levels is found in tissues from colon cancer patients, suggesting that Smurf1 mediates Kindlin-2 degradation in vivo. Collectively, we demonstrate that Smurf1 acts as a brake for integrin activation by controlling Kindlin-2 protein levels, a new mechanism that permits precise modulation of integrin-mediated cellular functions. PMID:28408404
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villegas-Pineda, Julio César, E-mail: jcvillegas@cinvestav.mx; Toledo-Leyva, Alfredo, E-mail: toledo_leyva@hotmail.com; Osorio-Trujillo, Juan Carlos, E-mail: clostrujillo2@yahoo.com.mx
Epithelial ovarian cancer is the most lethal gynecologic malignancy. Integrins, overexpressed in cancer, are involved in various processes that favor the development of the disease. This study focused on determining the degree of involvement of α5, α6 and β3 integrin subunits in the establishment/development of epithelial ovarian cancer (EOC), such as proliferation, migration, invasion, and response to carboplatin. The translation of the α5, α6 and β3 integrins was blocked using morpholines, generating morphant cells for these proteins, which were corroborated by immunofluorescence assays. WST-1 proliferation assay showed that silencing of α5, α6, and β3 integrins does not affect the survivalmore » of morphants. Wound healing and transwell chamber assays showed that blocking α5 and α6 integrins decrease, in lesser and greater level respectively, the migratory and the invasive capacity of SKOV-3 cells. Finally, blocking α5 and α6 integrins partially sensitized the cells response to carboplatin, while blocking integrin β3 generated resistance to this drug. Statistical analyses were performed with the GraphPad Prism 5.0 software employing one way and two-way ANOVA tests; data are shown as average±SD. Results suggest that α5 and α6 integrins could become good candidates for chemotherapy targets in EOC.« less
Integrin αvβ3 promotes infection by Japanese encephalitis virus.
Fan, Wenchun; Qian, Ping; Wang, Dandan; Zhi, Xianwei; Wei, Yanming; Chen, Huanchun; Li, Xiangmin
2017-04-01
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is one of the major causes of viral encephalitis diseases worldwide. The JEV envelope protein facilitates viral entry, and its domain III contains an Arg-Gly-Asp (RGD) motif, that may modulate JEV entry through the RGD-binding integrin. In this study, the roles of integrin αv and β3 on the infection of JEV were evaluated. Reduced expression of integrin αv/β3 by special shRNA confers 2 to 4-fold inhibition of JEV replication in BHK-21 cells. Meanwhile, antibodies specific for integrin αv/β3 displayed ~58% and ~33% inhibition of JEV infectivity and RGD-specific peptides produced ~36% of inhibition. Expression of E protein and JEV RNA loads were clearly increased in CHO cells transfected with cDNA encoding human integrin β3. Moreover, integrin αv mediates JEV infection in viral binding stage of life cycle. Therefore, our study suggested that integrin αv and β3 serve as a host factor associated with JEV entry into the target cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Colorectal Cancer Metastases Settle in the Hepatic Microenvironment Through α5β1 Integrin.
Pelillo, Chiara; Bergamo, Alberta; Mollica, Hilaria; Bestagno, Marco; Sava, Gianni
2015-10-01
Colorectal cancer (CRC) metastasis dissemination to secondary sites represents the critical point for the patient's survival. The microenvironment is crucial to cancer progression, influencing tumour cell behaviour by modulating the expression and activation of molecules such as integrins, the cell-extracellular matrix interacting proteins participating in different steps of the tumour metastatic process. In this work, we investigated the role of α5β1 integrin and how the microenvironment influences this adhesion molecule, in a model of colon cancer progression to the liver. The culture medium conditioned by the IHH hepatic cell line, and the extracellular matrix (ECM) proteins, modulate the activation of α5β1 integrin in the colon cancer cell line HCT-116, and drives FAK phosphorylation during the process of cell adhesion to fibronectin, one of the main components of liver ECM. In these conditions, α5β1 modulates the expression/activity of another integrin, α2β1, involved in the cell adhesion to collagen I. These results suggest that α5β1 integrin holds a leading role in HCT-116 colorectal cancer cells adhesion to the ECM through the modulation of the intracellular focal adhesion kinase FAK and the α2β1 integrin activity. The driving role of the tumour microenvironment on CRC dissemination, here detected, and described, strengthens and adds new value to the concept that α5β1 integrin can be an appropriate and relevant therapeutic target for the control of CRC metastases. © 2015 Wiley Periodicals, Inc.
Salter, D M; Godolphin, J L; Gourlay, M S
1995-04-01
During development and at maturity different forms of cartilage vary in morphology and macromolecular content. This reflects heterogeneity of chondrocyte activity, in part involving differential interactions with the adjacent extracellular matrix via specialized cell surface receptors such as integrins. We undertook an immunohistological study on a series of human fetal knee joints to assess variation in the expression of integrins by chondrocytes and potential matrix ligands in articular, epiphyseal, growth plate, and meniscal cartilage. The results show that articular chondrocytes (beta 1+, beta 5 alpha V+, alpha 1+, alpha 2+/-, alpha 5+, weakly alpha 6+, alpha V+) differed from epiphyseal (beta 1+, beta 5 alpha V+, alpha 1+/-, alpha 2+/-, alpha 5+, alpha 6+, alpha V+) growth plate (beta 1+, beta 5 alpha V+, alpha 1-, alpha 2-, alpha 5+, alpha 6+, alpha V+), and meniscal cells (beta 1+, beta 5 alpha V+, alpha 1+, strongly alpha 2+, alpha 5+, alpha 6+, alpha V+ in expression of integrin subunits. There was no expression of beta 3, beta 4, beta 6, or alpha 3 by chondrocytes. These results differ from previous reports on the expression of integrins by adult articular cartilage, where alpha 2 and alpha 6 are not seen. Variation in distribution of matrix ligands was also seen. Fibronectin, laminin and Type VI collagen were expressed in all cartilages but there was restricted expression of tenascin, ED-A and ED-B fibronectin isoforms (articular cartilage and meniscus), and vitronectin (absent from growth plate cartilage). Regulated expression of integrins by chondrocytes, associated with changes in the pericellular matrix composition, is of potential importance in control of cartilage differentiation and function in health and disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso-García, Noelia; García-Rubio, Inés; Academia General Militar, Carretera de Huesca s/n, 50090 Zaragoza
The structure of the FnIII-3, 4 region of integrin β4 was solved using a hybrid approach that combines crystallographic structures, SAXS, DEER and molecular modelling. The structure helps in understanding how integrin β4 might bind to other hemidesmosomal proteins and mediate signalling. Integrin α6β4 is a major component of hemidesmosomes that mediate the stable anchorage of epithelial cells to the underlying basement membrane. Integrin α6β4 has also been implicated in cell proliferation and migration and in carcinoma progression. The third and fourth fibronectin type III domains (FnIII-3, 4) of integrin β4 mediate binding to the hemidesmosomal proteins BPAG1e and BPAG2,more » and participate in signalling. Here, it is demonstrated that X-ray crystallography, small-angle X-ray scattering and double electron–electron resonance (DEER) complement each other to solve the structure of the FnIII-3, 4 region. The crystal structures of the individual FnIII-3 and FnIII-4 domains were solved and the relative arrangement of the FnIII domains was elucidated by combining DEER with site-directed spin labelling. Multiple structures of the interdomain linker were modelled by Monte Carlo methods complying with DEER constraints, and the final structures were selected against experimental scattering data. FnIII-3, 4 has a compact and cambered flat structure with an evolutionary conserved surface that is likely to correspond to a protein-interaction site. Finally, this hybrid method is of general application for the study of other macromolecules and complexes.« less
NASA Technical Reports Server (NTRS)
Globus, R. K.; Amblard, D.; Nishimura, Y.; Iwaniec, U. T.; Kim, J-B; Almeida, E. A. C.; Damsky, C. D.; Wronski, T. J.; van der Meulen, M. C. H.
2005-01-01
Skeletal modeling entails the deposition of large amounts of extracellular matrix (ECM) to form structures tailored to withstand increasing mechanical loads during rapid growth. Specific ECM molecules bind to integrin receptors on the cell surface, thereby triggering a cascade of signaling events that affect critical cell functions. To evaluate the role of integrins during skeletal growth, transgenic mice were engineered to express a function-perturbing fragment of beta1 integrin consisting of the transmembrane domain and cytoplasmic tail under the control of the osteocalcin promoter (TG mice). Thus, transgene expression was targeted to mature cells of the osteoblast lineage, and herein we show that cultured cells resembling osteocytes from 90-day-old TG mice display impaired adhesion to collagen I, a ligand for beta1 integrin. To determine the influence of beta1 integrin on bones that are responsible for providing structural support during periods of rapid growth, we examined the phenotype of the appendicular skeleton in TG mice compared to wild type (WT) mice. According to radiographs, bones from mice of both genotypes between 14 and 90 days of age appeared similar in gross structure and density, although proximal tibiae from 35-90 days old TG mice were less curved than those of WT mice (72-92% TG/WT). Although there were only mild and transient differences in absolute bone mass and strength, once normalized to body mass, the tibial dry mass (79.1% TG/WT females), ash mass (78.5% TG/WT females), and femoral strength in torsion (71.6% TG/WT females) were reduced in TG mice compared to WT mice at 90 days of age. Similar effects of genotype on bone mass and curvature were observed in 1-year-old retired breeders, indicating that these phenotypic differences between TG and WT mice were stable well into adulthood. Effects of genotype on histomorphometric indices of cancellous bone turnover were minimal and evident only transiently during growth, but when present they demonstrated differences in osteoblast rather than osteoclast parameters. Together, these results suggest that integrin signals generated during growth enhance the acquisition of a skeletal mass, structure, and strength to withstand the mechanical loads generated by weight-bearing.
2010-01-01
Background Cell scattering is a physiological process executed by stem and progenitor cells during embryonic liver development and postnatal organ regeneration. Here, we investigated the genomic events occurring during this process induced by functional blockade of α5β1 integrin in liver progenitor cells. Results Cells treated with a specific antibody against α5β1 integrin exhibited cell spreading and scattering, over-expression of liver stem/progenitor cell markers and activation of the ERK1/2 and p38 MAPKs signaling cascades, in a similar manner to the process triggered by HGF/SF1 stimulation. Gene expression profiling revealed marked transcriptional changes of genes involved in cell adhesion and migration, as well as genes encoding chromatin remodeling factors. These responses were accompanied by conspicuous spatial reorganization of centromeres, while integrin genes conserved their spatial positioning in the interphase nucleus. Conclusion Collectively, our results demonstrate that α5β1 integrin functional blockade induces cell migration of hepatic progenitor cells, and that this involves a dramatic remodeling of the nuclear landscape. PMID:20958983
Oroxylin A reverses CAM-DR of HepG2 cells by suppressing Integrinβ1 and its related pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Binbin; Zhao, Li; Zhu, Litao
Oroxylin A, a naturally occurring monoflavonoid extracted from Scutellariae radix, shows effective anticancer activities and low toxicities both in vivo and in vitro in previous studies. In this study, we investigated whether the CAM-DR model of HepG2 cells showed resistance to cytotoxic agents compared with normally cultured HepG2 cells. Furthermore, after the treatment of Paclitaxel, less inhibitory effects and decreased apoptosis rate were detected in the model. Data also revealed increased expression of Integrinβ1 might be responsible for the resistance ability. Moreover, Integrinβ1-siRNA-transfected CAM-DR HepG2 cells exhibited more inhibitory effects and higher levels of apoptosis than the non-transfected CAM-DR cells.more » The data corroborated that Integrinβ1 played a significant role in CAM-DR. After the treatment of weakly-toxic concentrations of Oroxylin A, the apoptosis induced by Paclitaxel in the CAM-DR model increased dramatically. Western blot assay revealed Oroxylin A markedly down-regulated the expression of Integrinβ1 and the activity of related pathway. As a conclusion, Oroxylin A can reverse the resistance of CAM-DR via inhibition of Integrinβ1 and its related pathway. Oroxylin A may be a potential candidate of a CAM-DR reversal agent. Highlights: ► Adhesion of HepG2 cells to fibronectin exhibited resistance to Paclitaxel. ► The resistance was associated with the increased expression of Integrinβ1. ► Knocking down Integrinβ1 can increase the toxicity of Paclitaxel on CAM-DR model. ► Oroxylin A reversed the resistance by suppressing Integrinβ1 and related pathway.« less
Kimura, Richard H; Cheng, Zhen; Gambhir, Sanjiv Sam; Cochran, Jennifer R
2009-01-01
There is a critical need for molecular imaging agents to detect cell surface integrin receptors that are present in human cancers. Previously, we used directed evolution to engineer knottin peptides that bind with low nM affinity to integrin receptors that are overexpressed on the surface of tumor cells and the tumor neovasculature. To evaluate these peptides as molecular imaging agents, we site-specifically conjugated Cy5.5 or 64Cu-DOTA to their N-termini, and used optical and positron emission tomography (PET) imaging to measure their uptake and biodistribution in U87MG glioblastoma murine xenograft models. Near-infrared fluorescence and microPET imaging both demonstrated that integrin binding affinity plays a strong role in the tumor uptake of knottin peptides. Tumor uptake at 1 h post injection for two high affinity (IC50 ∼20 nM) 64Cu-DOTA-conjugated knottin peptides was 4.47 ± 1.21 and 4.56 ± 0.64 % injected dose/gram (%ID/g), compared to a low affinity knottin peptide (IC50 ∼0.4 μM; 1.48 ± 0.53 %ID/g) and c(RGDyK) (IC50 ∼1 μM; 2.32 ± 0.55 %ID/g), a low affinity cyclic pentapeptide under clinical development. Furthermore, 64Cu-DOTA-conjugated knottin peptides generated lower levels of non-specific liver uptake (∼2 %ID/g) compared to c(RGDyK) (∼4 %ID/g) 1 h post injection. MicroPET imaging results were confirmed by in vivo biodistribution studies. 64Cu-DOTA-conjugated knottin peptides were stable in mouse serum, and in vivo metabolite analysis showed minimal degradation in the blood or tumor upon injection. Thus, engineered integrin-binding knottin peptides show great potential as clinical diagnostics for a variety of cancers. PMID:19276378
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2013-01-01
The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3high or αvβ3low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3high cells showed a threefold increased cell invasion compared to αvβ3low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3high cells but not in αvβ3low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3high cells, whereas the invasiveness of β3 specific knock-down cells and αvβ3low cells was not altered. In summary, these results suggest that the αvβ3 integrin enhances cancer cell invasion through increased cellular stiffness and enhanced cytoskeletal remodeling dynamics, which enables the cells to generate and transmit contractile forces to overcome the steric hindrance of 3D ECMs.
Li, Xinlei; Liu, Yongqing; Haas, Thomas A
2014-12-01
We previously found that peptides derived from the full length of integrin αIIb and αV cytoplasmic tails inhibited their parent integrin activation, respectively. Here we showed that the cell-permeable peptides corresponding to the conserved central turn motif within αIIb and αV cytoplasmic tails, myr-KRNRPPLEED (αIIb peptide) and myr-KRVRPPQEEQ (αV peptide), similarly inhibited both αIIb and αV integrin activation. Pre-treatment with αIIb or αV peptides inhibited Mn(2+)-activated αIIbβ3 binding to soluble fibrinogen as well as the binding of αIIbβ3-expressing Chinese Hamster Ovary cells to immobilized fibrinogen. Our turn peptides also inhibited adhesion of two breast cancer cell lines (MDA-MB-435 and MCF7) to αV ligand vitronectin. These results suggest that αIIb and αV peptides share a same mechanism in regulating integrin function. Using αIIb peptide as a model, we found that replacement of RPP with AAA significantly attenuated the inhibitory activity of αIIb peptide. Furthermore, we found that αIIb peptide specifically bound to β-tubulin in cells. Our work suggests that the central motif of α tails is an anchoring point for cytoskeletons during integrin activation and integrin-mediated cell adhesion, and its function depends on the turn structure at RPP. However, post-treatment of peptides derived from the full-length tail or from the turn motif did not reverse αIIb and αV integrin activation. Copyright © 2014 Elsevier Inc. All rights reserved.
Pi, Liya; Robinson, Paulette M; Jorgensen, Marda; Oh, Seh-Hoon; Brown, Alicia R; Weinreb, Paul H; Trinh, Thu Le; Yianni, Protopapadakis; Liu, Chen; Leask, Andrew; Violette, Shelia M; Scott, Edward W; Schultz, Gregory S; Petersen, Bryon E
2015-02-01
Connective tissue growth factor (CTGF) is a matricellular protein that mediates cell-matrix interaction through various subtypes of integrin receptors. This study investigated the role of CTGF and integrin αvβ6 in hepatic progenitor/oval cell activation, which often occurs in the form of ductular reactions (DRs) when hepatocyte proliferation is inhibited during severe liver injury. CTGF and integrin αvβ6 proteins were highly expressed in DRs of human cirrhotic livers and cholangiocarcinoma. Confocal microscopy analysis of livers from Ctgf promoter-driven green fluorescent protein reporter mice suggested that oval cells and cholangiocytes were the main sources of CTGF and integrin αvβ6 during liver injury induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Deletion of exon 4 of the Ctgf gene using tamoxifen-inducible Cre-loxP system down-regulated integrin αvβ6 in DDC-damaged livers of knockout mice. Ctgf deficiency or inhibition of integrin αvβ6, by administrating the neutralizing antibody, 6.3G9 (10 mg/kg body weight), caused low levels of epithelial cell adhesion molecule and cytokeratin 19 gene messenger RNAs. Also, there were smaller oval cell areas, fewer proliferating ductular epithelial cells, and lower cholestasis serum markers within 2 weeks after DDC treatment. Associated fibrosis was attenuated, as indicated by reduced expression of fibrosis-related genes, smaller areas of alpha-smooth muscle actin staining, and low collagen production based on hydroxyproline content and Sirius Red staining. Finally, integrin αvβ6 could bind to CTGF mediating oval cell adhesion to CTGF and fibronection substrata and promoting transforming growth factor (TGF)-β1 activation in vitro. CTGF and integrin αvβ6 regulate oval cell activation and fibrosis, probably through interacting with their common matrix and signal partners, fibronectin and TGF-β1. CTGF and integrin αvβ6 are potential therapeutic targets to control DRs and fibrosis in related liver disease. © 2014 by the American Association for the Study of Liver Diseases.
Graham, Kate L.; Halasz, Peter; Tan, Yan; Hewish, Marilyn J.; Takada, Yoshikazu; Mackow, Erich R.; Robinson, Martyn K.; Coulson, Barbara S.
2003-01-01
Integrins α2β1, αXβ2, and αVβ3 have been implicated in rotavirus cell attachment and entry. The virus spike protein VP4 contains the α2β1 ligand sequence DGE at amino acid positions 308 to 310, and the outer capsid protein VP7 contains the αXβ2 ligand sequence GPR. To determine the viral proteins and sequences involved and to define the roles of α2β1, αXβ2, and αVβ3, we analyzed the ability of rotaviruses and their reassortants to use these integrins for cell binding and infection and the effect of peptides DGEA and GPRP on these events. Many laboratory-adapted human, monkey, and bovine viruses used integrins, whereas all porcine viruses were integrin independent. The integrin-using rotavirus strains each interacted with all three integrins. Integrin usage related to VP4 serotype independently of sialic acid usage. Analysis of rotavirus reassortants and assays of virus binding and infectivity in integrin-transfected cells showed that VP4 bound α2β1, and VP7 interacted with αXβ2 and αVβ3 at a postbinding stage. DGEA inhibited rotavirus binding to α2β1 and infectivity, whereas GPRP binding to αXβ2 inhibited infectivity but not binding. The truncated VP5* subunit of VP4, expressed as a glutathione S-transferase fusion protein, bound the expressed α2 I domain. Alanine mutagenesis of D308 and G309 in VP5* eliminated VP5* binding to the α2 I domain. In a novel process, integrin-using viruses bind the α2 I domain of α2β1 via DGE in VP4 and interact with αXβ2 (via GPR) and αVβ3 by using VP7 to facilitate cell entry and infection. PMID:12941907
Design of RGD-ATWLPPR peptide conjugates for the dual targeting of αVβ3 integrin and neuropilin-1.
Thoreau, Fabien; Vanwonterghem, Laetitia; Henry, Maxime; Coll, Jean-Luc; Boturyn, Didier
2018-05-18
Targeting the tumour microenvironment is a promising strategy to detect and/or treat cancer. The design of selective compounds that co-target several receptors frequently overexpressed in solid tumours may allow a reliable and selective detection of tumours. Here we report the modular synthesis of compounds encompassing ligands of αVβ3 integrin and neuropilin-1 that are overexpressed in the tumour microenvironment. These compounds were then evaluated through cellular experiments and imaging of tumours in mice. We observed that the peptide that displays both ligands is more specifically accumulating in the tumours than in controls. Simultaneous interaction with αVβ3 integrin and NRP1 induces NRP1 stabilization at the cell membrane surface which is not observed with the co-injection of the controls.
NASA Astrophysics Data System (ADS)
Roskamp, M.; Coulter, T.; Ding, Y.; Perrins, R.; Espinosa Garcia, C.; Pace, A.; Hale, S.; Robinson, A.; Williams, P.; Aguilera Peral, U.; Patel, K.; Palmer, D.
2017-04-01
Ultra-small glycan-passivated gold nanoparticles of <2nm diameter were funtionalised with a short HS-EG(8)-COOH ligand. The nanoparticles were subsequently labelled, in a stoichiometrically controllable manner, with integrin-binding peptide SIKVAV and the maytansinoid cytotoxin DM4. In vitro assays showed significantly increased integrin-mediated uptake of SIKVAV labelled nanoparticles in HepG2 cells. SIKVAV targeted nanoparticle binding was shown to be outcompeted with free SIKVAV peptide, indicating target specific uptake. DM4 was passively attached to nanoparticles via sulfhydryl ligand exchange at the gold nanoparticle surface, which rendered them highly cytotoxic (IC50 ˜1 × 10-9M). In a rat model, pharmacokinetic studies showed that nanoparticle biodistribution was strongly altered by labelling with either peptide and DM4 moieties.
Cancer Cell Glycocalyx Mediates Mechanostransduction and Flow-Regulated Invasion
Qazi, Henry; Palomino, Rocio; Shi, Zhong-Dong; Munn, Lance L.; Tarbell, John M.
2014-01-01
Mammalian cells are covered by a surface proteoglycan (glycocalyx) layer, and it is known that blood vessel-lining endothelial cells use the glycocalyx to sense and transduce the shearing forces of blood flow into intracellular signals. Tumor cells in vivo are exposed to forces from interstitial fluid flow that may affect metastatic potential but are not reproduced by most in vitro cell motility assays. We hypothesized that glycocalyx-mediated mechanotransduction of interstitial flow shear stress is an un-recognized factor that can significantly enhance metastatic cell motility and play a role in augmentation of invasion. Involvement of MMP levels, cell adhesion molecules (CD44, α3 integrin), and glycocalyx components (heparan sulfate and hyaluronan) were investigated in a cell/collagen gel suspension model designed to mimic the interstitial flow microenvironment. Physiologic levels of flow upregulated MMP levels and enhanced the motility of metastatic cells. Blocking the flow-enhanced expression of MMP actvity or adhesion molecules (CD44 and integrins) resulted in blocking the flow-enhanced migratory activity. The presence of a glycocalyx-like layer was verified around tumor cells, and the degradation of this layer by hyaluronidase and heparinase blocked the flow-regulated invasion. This study shows for the first time that interstitial flow enhancement of metastatic cell motility can be mediated by the cell surface glycocalyx – a potential target for therapeutics. PMID:24077103
Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma
Januskevicius, Andrius; Gosens, Reinoud; Sakalauskas, Raimundas; Vaitkiene, Simona; Janulaityte, Ieva; Halayko, Andrew J.; Hoppenot, Deimante; Malakauskas, Kestutis
2017-01-01
Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact through integrin–ligand interactions. Eosinophils express several types of outer membrane integrin, which are responsible for cell–cell and cell–extracellular matrix interactions. In our previous study we demonstrated that asthmatic eosinophils show increased adhesion to ASM cells and it may be important factor contributing to ASM remodeling in asthma. According to these findings, in the present study we investigated the effects of suppression of eosinophil integrin on eosinophil-induced ASM remodeling in asthma. Materials and Methods: Individual combined cell cultures of immortalized human ASM cells and eosinophils from peripheral blood of 22 asthmatic patients and 17 healthy controls were prepared. Eosinophil adhesion was evaluated using eosinophil peroxidase activity assay. Genes expression levels in ASM cells and eosinophils were measured using quantitative real-time PCR. ASM cell proliferation was measured using alamarBlue® solution. Eosinophil integrins were blocked by incubating with Arg-Gly-Asp-Ser peptide. Results: Eosinophils from the asthma group showed increased outer membrane α4β1 and αMβ2 integrin expression, increased adhesion to ASM cells, and overexpression of TGF-β1 compared with eosinophils from the healthy control group. Blockade of eosinophil RGD-binding integrins by Arg-Gly-Asp-Ser peptide significantly reduced adhesion of eosinophils to ASM cells in both groups. Integrin-blocking decreased the effects of eosinophils on TGF-β1, WNT-5a, and extracellular matrix protein gene expression in ASM cells and ASM cell proliferation in both groups. These effects were more pronounced in the asthma group compared with the control group. Conclusion: Suppression of eosinophil-ASM interaction via RGD-binding integrins attenuates eosinophil-induced ASM remodeling in asthma. Trial Registration: ClinicalTrials.gov Identifier: NCT02648074. PMID:28119625
Li, X; Ye, J-X; Xu, M-H; Zhao, M-D; Yuan, F-L
2017-07-01
Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca 2+ -dependent integrin/Pyk2/Src signaling pathway. Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.
Elucidating the role of select cytoplasmic proteins in altering diffusion of integrin receptors.
Sander, Suzanne; Arora, Neha; Smith, Emily A
2012-06-01
Cytoplasmic proteins that affect integrin diffusion in the cell membrane are identified using a combination of fluorescence recovery after photobleaching (FRAP) and RNA interference. Integrin receptors are essential for many cellular events, and alterations in lateral diffusion are one mechanism for modulating their function. In cells expressing native cytoplasmic protein concentrations and spread on a slide containing integrin extracellular ligand, 45 ± 2% of the integrin is mobile with a time-dependent 5.2 ± 0.9 × 10(-9) cm(2)/s diffusion coefficient at 1 s. The time exponent is 0.90 ± 0.07, indicating integrin diffusion moderately slows at longer times. The role of a specific cytoplasmic protein in altering integrin diffusion is revealed through changes in the FRAP curve after reducing the cytoplasmic protein's expression. Decreased expression of cytoplasmic proteins rhea, focal adhesion kinase (FAK), or steamer duck decreases the integrin mobile fraction. For rhea and FAK, there is a concomitant shift to Brownian (i.e., time-independent) diffusion at reduced concentrations of these proteins. In contrast, when the expression of actin 42A, dreadlocks, paxillin, integrin-linked kinase (ILK), or vinculin is reduced, integrin diffusion generally becomes more constrained with an increase in the integrin mobile fraction. This same change in integrin diffusion is measured in the absence of integrin extracellular ligand. The results indicate breaking the extracellular ligand-integrin-cytoskeletal linkage alters integrin diffusion properties, and, in most cases, there is no correlation between integrin and lipid diffusion properties.
Selectively Targeting T- and B-Cell Lymphomas: A Benzothiazole Antagonist of α4β1 Integrin
Carpenter, Richard D.; Andrei, Mirela; Aina, Olulanu H.; Lau, Edmond Y.; Lightstone, Felice C.; Liu, Ruiwu; Lam, Kit S.; Kurth, Mark J.
2011-01-01
Current cancer chemotherapeutic agents clinically deployed today are designed to be indiscriminately cytotoxic, however achieving selective targeting of cancer malignancies would allow for improved diagnostic and chemotherapeutic tools. Integrin α4β1, a heterodimeric cell surface receptor, is believed to have a relaxed conformation in normal cells and an active conformation in cancerous cells, specifically T- and B-cell lymphomas. This highly attractive yet poorly understood receptor has been selectively targeted with the bisaryl urea peptidomimetic antagonist 1. However, concerns regarding its preliminary pharmacokinetic (PK) profile provided an impetus to change the pharmacophore from a bisaryl urea to a 2-arylaminobenzothiazole moiety, resulting in an analog with improved physicochemical properties, solubility and kidney:tumor ratio while maintaining potency (6; IC50 = 53 pM). The results presented herein utilized heterocyclic and solid-phase chemistry, cell adhesion assay, and in vivo optical imaging using the cyanine dye Cy5.5 conjugate. PMID:19072684
NASA Astrophysics Data System (ADS)
Ou, Zhongmin; Wu, Baoyan; Xing, Da; Zhou, Feifan; Wang, Huiying; Tang, Yonghong
2009-03-01
The application of single-walled carbon nanotubes (SWNTs) in the field of biomedicine is becoming an entirely new and exciting topic. In this study, a novel functional SWNT based on an integrin αvβ3 monoclonal antibody was developed and was used for cancer cell targeting in vitro. SWNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). The PL-PEG functionalized SWNTs were then conjugated with protein A. A SWNT-integrin αvβ3 monoclonal antibody system (SWNT-PEG-mAb) was thus constructed by conjugating protein A with the fluorescein labeled integrin αvβ3 monoclonal antibody. In vitro study revealed that SWNT-PEG-mAb presented a high targeting efficiency on integrin αvβ3-positive U87MG cells with low cellular toxicity, while for integrin αvβ3-negative MCF-7 cells, the system had a low targeting efficiency, indicating that the high targeting to U87MG cells was due to the specific integrin targeting of the monoclonal antibody. In conclusion, SWNT-PEG-mAb developed in this research is a potential candidate for cancer imaging and drug delivery in cancer targeting therapy.
β1 integrin is a crucial regulator of pancreatic β-cell expansion
Diaferia, Giuseppe R.; Jimenez-Caliani, Antonio J.; Ranjitkar, Prerana; Yang, Wendy; Hardiman, Gary; Rhodes, Christopher J.; Crisa, Laura; Cirulli, Vincenzo
2013-01-01
Development of the endocrine compartment of the pancreas, as represented by the islets of Langerhans, occurs through a series of highly regulated events encompassing branching of the pancreatic epithelium, delamination and differentiation of islet progenitors from ductal domains, followed by expansion and three-dimensional organization into islet clusters. Cellular interactions with the extracellular matrix (ECM) mediated by receptors of the integrin family are postulated to regulate key functions in these processes. Yet, specific events regulated by these receptors in the developing pancreas remain unknown. Here, we show that ablation of the β1 integrin gene in developing pancreatic β-cells reduces their ability to expand during embryonic life, during the first week of postnatal life, and thereafter. Mice lacking β1 integrin in insulin-producing cells exhibit a dramatic reduction of the number of β-cells to only ∼18% of wild-type levels. Despite the significant reduction in β-cell mass, these mutant mice are not diabetic. A thorough phenotypic analysis of β-cells lacking β1 integrin revealed a normal expression repertoire of β-cell markers, normal architectural organization within islet clusters, and a normal ultrastructure. Global gene expression analysis revealed that ablation of this ECM receptor in β-cells inhibits the expression of genes regulating cell cycle progression. Collectively, our results demonstrate that β1 integrin receptors function as crucial positive regulators of β-cell expansion. PMID:23863477
Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells
NASA Technical Reports Server (NTRS)
Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)
2001-01-01
A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.
The α5β1 Integrin Mediates Elimination of Amyloid-β Peptide and Protects Against Apoptosis
Matter, Michelle L.; Zhang, Zhuohua; Nordstedt, Christer; Ruoslahti, Erkki
1998-01-01
The amyloid-β peptide (Aβ) can mediate cell attachment by binding to β1 integrins through an arg-his-asp sequence. We show here that the α5β1 integrin, a fibronectin receptor, is an efficient binder of Aβ, and mediates cell attachment to nonfibrillar Aβ. Cells engineered to express α5β1 internalized and degraded more added Aβ1-40 than did α5β1-negative control cells. Deposition of an insoluble Aβ1-40 matrix around the α5β1-expressing cells was reduced, and the cells showed less apoptosis than the control cells. Thus, the α5β1 integrin may protect against Aβ deposition and toxicity, which is a course of Alzheimer's disease lesions. PMID:9585419
Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction.
Ginés, Silvia; Mariño, Marta; Mallol, Josefa; Canela, Enric I; Morimoto, Chikao; Callebaut, Christian; Hovanessian, Ara; Casadó, Vicent; Lluis, Carmen; Franco, Rafael
2002-01-01
The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA-CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50-70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA-CD26 interaction in the lymphocyte-epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA-CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA-CD26 interaction on the cell surface has a role in lymphocyte-epithelial cell adhesion. PMID:11772392
Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrion, Bita; Kong, Yen P.; Kaigler, Darnell
Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes theirmore » failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. Highlights: • BMSCs stimulate angiogenesis, but the mechanisms remain unclear. • We silenced the expression of the α6 integrin subunit in BMSCs. • Silencing this receptor subunit significantly inhibited angiogenic sprouting. • Knocking down α6 integrin affected laminin and αSMA expression. • Silencing α6 integrin expression also reduced BMSC proliferation.« less
The N terminus of SKAP55 enables T cell adhesion to TCR and integrin ligands via distinct mechanisms
Ophir, Michael J.; Liu, Beiyun C.
2013-01-01
The T cell receptor (TCR) triggers the assembly of “SLP-76 microclusters,” which mediate signals required for T cell activation. In addition to regulating integrin activation, we show that Src kinase–associated phosphoprotein of 55 kD (SKAP55) is required for microcluster persistence and movement, junctional stabilization, and integrin-independent adhesion via the TCR. These functions require the dimerization of SKAP55 and its interaction with the adaptor adhesion and degranulation-promoting adaptor protein (ADAP). A “tandem dimer” containing two ADAP-binding SKAP55 Src homology 3 (SH3) domains stabilized SLP-76 microclusters and promoted T cell adhesion via the TCR, but could not support adhesion to integrin ligands. Finally, the SKAP55 dimerization motif (DM) enabled the coimmunoprecipitation of the Rap1-dependent integrin regulator Rap1-GTP–interacting adaptor molecule (RIAM), the recruitment of talin into TCR-induced adhesive junctions, and “inside-out” signaling to β1 integrins. Our data indicate that SKAP55 dimers stabilize SLP-76 microclusters, couple SLP-76 to the force-generating systems responsible for microcluster movement, and enable adhesion via the TCR by mechanisms independent of RIAM, talin, and β1 integrins. PMID:24368808
Zhang, Kai; Ding, Wei; Sun, Wei; Sun, Xiao-jiang; Xie, You-zhuan; Zhao, Chang-qing; Zhao, Jie
2016-01-01
Low back pain is associated with intervertebral disc degeneration (IVDD) due to cellular loss through apoptosis. Mechanical factors play an important role in maintaining the survival of the annulus fibrosus (AF) cells and the deposition of extracellular matrix. However, the mechanisms that excessive mechanical forces lead to AF cell apoptosis are not clear. The present study was to look for how AF cells sense mechanical changes. In vivo experiments, the involvement of mechanoreceptors in apoptosis was examined by RT-PCR and/or immunoblotting in the lumbar spine of rats subjected to unbalanced dynamic and static forces. In vitro experiments, we investigated apoptotic signaling pathways in untransfected and transfected AF cells with the lentivirus vector for rat β1 integrin overexpression after cyclic stretch. Apoptosis in AF cells was assessed using flow cytometry, Hoechst 33258 nuclear staining. Western blotting was used to analyze expression of β1 integrin and caspase-3 and ERK1/2 MAPK signaling molecules. In the rat IVDD model, unbalanced dynamic and static forces induced apoptosis of disc cells, which corresponded to decreased expression of β1 integrin. Cyclic stretch-induced apoptosis in rat AF cells correlated with the activation of caspase-3 and with decreased levels of β1 integrin and the phosphorylation levels of ERK1/2 activation level. However, the overexpression of β1 integrin in AF cells ameliorated cyclic stretch-induced apoptosis and decreased caspase-3 activation. Furthermore, ERK1/2-specific inhibitor promotes apoptosis in vector β1-infected AF cells. These results suggest that the disruption of β1 integrin signaling may underlie disc cell apoptosis induced by mechanical stress. Further work is necessary to fully elucidate the pathophysiological mechanisms that underlie IVDD caused by unbalanced dynamic and static forces.
Method of increasing radiation sensitivity by inhibition of beta one integrin
Park, Catherine [San Francisco, CA; Bissell, Mina J [Berkeley, CA
2009-11-17
A method for increasing or monitoring apoptosis in tumor cells by the co-administration of ionizing radiation and an anti-integrin antibody. Increasing apoptosis reduces tumor growth in vivo and in a cell culture model. The antibody is directed against the beta-1 integrin subunit and is inhibitory of beta-1 integrin signaling. Other molecules having an inhibitory effect on beta-1 integrin, either in signaling or in binding to its cognate extracellular receptors may also be used. The present method is particularly of interest in treatment of tumor cells associated with breast cancer, wherein radiation is currently used alone. The present method further contemplates a monoclonal antibody suitable for human administration that may further comprise a radioisotope attached thereto.
Constant Applied Force Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways
NASA Technical Reports Server (NTRS)
Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E. A. C.
2003-01-01
Reduced weight-bearing caused by immobilization, bed-rest or microgravity leads to atrophy in mechanosensitive tissue such as muscle and bone. We hypothesize that bone tissue requires earth s gravity (1-g) for the maintenance of extracellular matrix, integrin, and kinase-mediated cell growth and survival pathways. We investigate the role of matrix-integrin signaling in bone cells using cell culture centrifugation to provide different levels of hypergravity mechanostimulation. The 10-50-g range we use also mimics physiological intermedullary pressure (1.2 - 5 kPa). 24 hours at 50-g increased primary rat osteoblast proliferation on collagen Type I and fibronectin, but not laminin or uncoated plastic. BrdU incorporation in primary osteoblasts over 24 h showed hypergravity increased the number of cells actively synthesizing DNA from about 60% at 1-g to over 90% at 25-g. Primary rat fibroblasts grown at 50-g (24 h) showed no proliferation increase, suggesting this is a tissue-specific phenomenon. These results suggest that the betal and alpha4 integrins may be involved. To further test this, we used osteocytic-like MLO-Y4 cells that showed increased proliferation at 1-g with stable expression of a betal integrin cytoplasmic tail and transmembrane domain construct. At 50-g, MLO-Y4/betal cells showed greater MAPK activation than MLO-Y4 vector controls, suggesting that betal integrin is involved in transducing mitogenic signals in response to hypergravity. Preliminary results also show that interfering with the alpha4 integrin in primary osteoblasts grown on fibronectin blocked the proliferation response. These results indicate that cells from mechanosensitive bone tissue can respond to gravity-generated forces, and this response involves specific matrix and integrin-dependent signaling pathways.
Cigarette smoke induces β2-integrin-dependent neutrophil migration across human endothelium
2011-01-01
Background Cigarette smoking induces peripheral inflammatory responses in all smokers and is the major risk factor for neutrophilic lung disease such as chronic obstructive pulmonary disease. The aim of this study was to investigate the effect of cigarette smoke on neutrophil migration and on β2-integrin activation and function in neutrophilic transmigration through endothelium. Methods and results Utilizing freshly isolated human PMNs, the effect of cigarette smoke on migration and β2-integrin activation and function in neutrophilic transmigration was studied. In this report, we demonstrated that cigarette smoke extract (CSE) dose dependently induced migration of neutrophils in vitro. Moreover, CSE promoted neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that Mac-1 (CD11b/CD18) is responsible for the cigarette smoke-induced firm adhesion of neutrophils to fibrinogen. Furthermore, neutrophils transmigrated through endothelium by cigarette smoke due to the activation of β2-integrins, since pre-incubation of neutrophils with functional blocking antibodies against CD11b and CD18 attenuated this transmigration. Conclusion This is the first study to describe that cigarette smoke extract induces a direct migratory effect on neutrophils and that CSE is an activator of β2-integrins on the cell surface. Blocking this activation of β2-integrins might be an important target in cigarette smoke induced neutrophilic diseases. PMID:21651795
Mor-Cohen, Ronit; Rosenberg, Nurit; Averbukh, Yulia; Seligsohn, Uri; Lahav, Judith
2014-05-01
Integrin αIIbβ3 mediates platelet adhesion, aggregation and fibrin clot retraction. These processes require activation of αIIbβ3 and post-ligation signaling. Disulfide bond exchanges are involved in αIIbβ3 and αvβ3 activation. In order to investigate the role of integrin activation and disulfide bond exchange during αIIbβ3- and αvβ3-mediated clot retraction, we co-expressed in baby hamster kidney cells wild-type (WT) human αIIb and WT or mutated human β3 that contain single or double cysteine substitutions disrupting C523-C544 or C560-C583 bonds. Flow cytometry was used to measure surface expression and activation state of the integrins. Time-course of fibrin clot retraction was examined. Cells expressed WT or mutated human αIIbβ3 as well as chimeric hamster/human αvβ3. The αIIbβ3 mutants were constitutively active and the thiol blocker dithiobisnitrobenzoic acid (DTNB) did not affect their activation state. WT cells retracted the clot and addition of αvβ3 inhibitors decreased the retraction rate. The active mutants and WT cells activated by anti-LIBS6 antibody retracted the clot faster than untreated WT cells, particularly in the presence of αvβ3 inhibitor. DTNB substantially inhibited clot retraction by WT or double C523S/C544S mutant expressing cells, but minimally affected single C523S, C544S or C560S mutants. Anti-LIBS6-enhanced clot retraction was significantly inhibited by DTNB when added prior to anti-LIBS6. Both αIIbβ3 and αvβ3 contribute to clot retraction without prior activation of the integrins. Activation of αIIbβ3, but not of αvβ3 enhances clot retraction. Both αIIbβ3 activation and post-ligation signaling during clot retraction require disulfide bond exchange. Copyright © 2014 Elsevier Ltd. All rights reserved.
Immunolocalization of integrin-like proteins in Arabidopsis and Chara
NASA Technical Reports Server (NTRS)
Katembe, W. J.; Swatzell, L. J.; Makaroff, C. A.; Kiss, J. Z.
1997-01-01
Integrins are a large family of integral plasma membrane proteins that link the extracellular matrix to the cytoskeleton in animal cells. As a first step in determining if integrin-like proteins are involved in gravitropic signal transduction pathways, we have used a polyclonal antibody against the chicken beta1 integrin subunit in western blot analyses and immunofluorescence microscopy to gain information on the size and location of these proteins in plants. Several different polypeptides are recognized by the anti-integrin antibody in roots and shoots of Arabidopsis and in the internodal cells and rhizoids of Chara. These cross-reactive polypeptides are associated with cellular membranes, a feature which is consistent with the known location of integrins in animal systems. In immunofluorescence studies of Arabidopsis roots, a strong signal was obtained from labeling integrin-like proteins in root cap cells, and there was little or no immunolabel in other regions of the root tip. While the antibody stained throughout Chara rhizoids, the highest density of immunolabel was at the tip. Thus, in both Arabidopsis roots and Chara rhizoids, the sites of gravity perception/transduction appear to be enriched in integrin-like molecules.
LaPointe, Vanessa L. S.; Verpoorte, Amanda; Stevens, Molly M.
2013-01-01
Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs) into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin β8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin β8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype. PMID:24312400
Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik
2014-04-01
Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kariya, Yoshinobu; Sato, Hiroki; Katou, Naoko; Kariya, Yukiko; Miyazaki, Kaoru
2012-01-01
Laminin-332 (α3ß3γ2) (Lm332) supports the stable anchoring of basal keratinocytes to the epidermal basement membrane, while it functions as a motility factor for wound healing and cancer invasion. To understand these contrasting activities of Lm332, we investigated Lm332 matrices deposited by normal human keratinocytes and other Lm332-expressing cell lines. All types of the cells efficiently deposited Lm332 on the culture plates in specific patterns. On the contrary, laminins containing laminin ß1 and/or γ1 chains, such as Lm511 and Lm311, were not deposited on the culture plates even if secreted into culture medium. The Lm332 deposition was not inhibited by function-blocking antibodies to the α3 and α6 integrins but was inhibited by sodium selenate, suggesting that sulfated glycosaminoglycans on cell surface, e.g. heparan sulfate proteoglycans, might be involved in the process. HEK293 cells overexpressing exogenous Lm332 (Lm332-HEK) almost exclusively deposited Lm332 on the plates. The deposited Lm332 matrix showed a mesh-like network structure as analyzed by electron microscopy, suggesting that Lm332 was highly polymerized. When biological activity was analyzed, the Lm332 matrix rather suppressed the migration of keratinocytes as compared with purified Lm332, which highly promoted the cell migration. The Lm332 matrix supported adhesion of keratinocytes much more strongly and stably than purified Lm332. Integrin α3ß1 bound to the Lm332 matrix at a three times higher level than purified Lm332. Normal keratinocytes prominently showed integrin α6ß4-containing, hemidesmosome-like structures on the Lm332 matrix but not on the purified one. These results indicate that the polymerized Lm332 matrix supports stable cell adhesion by interacting with both integrin α6ß4 and α3ß1, whereas unassembled soluble Lm332 supports cell migration.
Streptococcal modulation of cellular invasion via TGF-beta1 signaling.
Wang, Beinan; Li, Shaoying; Southern, Peter J; Cleary, Patrick P
2006-02-14
Group A Streptococcus (GAS) and other bacterial pathogens are known to interact with integrins as an initial step in a complex pathway of bacterial ingestion by host cells. Efficient GAS invasion depends on the interaction of bound fibronectin (Fn) with integrins and activation of integrin signaling. TGF-beta1 regulates expression of integrins, Fn, and other extracellular matrix proteins, and positively controls the integrin signaling pathway. Therefore, we postulated that TGF-beta1 levels could influence streptococcal invasion of mammalian cells. Pretreatment of HEp-2 cells with TGF-beta1 increased their capacity to ingest GAS when the bacteria expressed fibronectin-binding proteins (M1 or PrtF1). Western blots revealed significant induction of alpha5 integrin and Fn expression by HEp-2 cells in response to TGF-beta1. Increased ingestion of streptococci by these cells was blocked by a specific inhibitor of the TGF-beta1 receptor I and antibodies directed against alpha5 integrin and Fn, indicating that increased invasion depends on TGF-beta1 up-regulation of both the alpha5 integrin and Fn. The capacity of TGF-beta1 to up-regulate integrin expression and intracellular invasion by GAS was reproduced in primary human tonsil fibroblasts, which could be a source of TGF-beta1 in chronically infected tonsils. The relationship between TGF-beta1 and GAS invasion was strengthened by the observation that TGF-beta1 production was stimulated in GAS-infected primary human tonsil fibroblasts. These findings suggest a mechanism by which GAS induce a cascade of changes in mammalian tissue leading to elevated expression of the alpha5beta1 receptor, enhanced invasion, and increased opportunity for survival and persistence in their human host.
Yamodo, Innocent H; Blystone, Scott D
2004-01-01
Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.
Focal Adhesion Induction at the Tip of a Functionalized Nanoelectrode
Fuentes, Daniela E.; Bae, Chilman; Butler, Peter J.
2012-01-01
Cells dynamically interact with their physical micro-environment through the assembly of nascent focal contacts and focal adhesions. The dynamics and mechanics of these contact points are controlled by transmembrane integrins and an array of intracellular adaptor proteins. In order to study the mechanics and dynamics of focal adhesion assembly, we have developed a technique for the timed induction of a nascent focal adhesion. Bovine aortic endothelial cells were approached at the apical surface by a nanoelectrode whose position was controlled with a resolution of 10s of nanometers using changes in electrode current to monitor distance from the cell surface. Since this probe was functionalized with fibronectin, a focal contact formed at the contact location. Nascent focal adhesion assembly was confirmed using time-lapse confocal fluorescent images of red fluorescent protein (RFP) – tagged talin, an adapter protein that binds to activated integrins. Binding to the cell was verified by noting a lack of change of electrode current upon retraction of the electrode. This study demonstrates that functionalized nanoelectrodes can enable precisely-timed induction and 3-D mechanical manipulation of focal adhesions and the assay of the detailed molecular kinetics of their assembly. PMID:22247742
Integrins: masters and slaves of endocytic transport.
Caswell, Patrick T; Vadrevu, Suryakiran; Norman, Jim C
2009-12-01
Since it has become clear that adhesion receptors are trafficked through the endosomal pathway and that this can influence their function, much effort has been invested in obtaining detailed descriptions of the molecular machinery responsible for internalizing and recycling integrins. New findings indicate that integrin trafficking dictates the nature of Rho GTPase signalling during cytokinesis and cell migration. Furthermore, integrins can exert control over the trafficking of other receptors in a way that drives cancer cell invasion and tumour angiogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, J; Sarkar, A; Hoffmann, P
Purpose: Discoidin domain receptors (DDR) have recently been recognized as important players in cancer progression. DDRs are cell receptors that interact with collagen, an extracellular matrix (ECM) protein. However the detailed mechanism of their interaction is unclear. Here we attempted to examine their interaction in terms of structural (surface topography), mechanical (rupture force), and kinetic (binding probability) information on the single molecular scale with the use of atomic force microscopy (AFM). Methods: The Quantitative Nano-mechanical property Mapping (QNM) mode of AFM allowed to assess the cells in liquid growth media at their optimal physiological while being viable. Human benign prostatemore » hyperplasia (BPH-1) cell line was genetically regulated to suppress DDR expression (DDR- cells) and was compared with naturally DDR expressing cells (DDR+). Results: Binding force measurements (n = 1000) were obtained before and after the two groups were treated with fibronectin (FN), an integrin-inhibiting antibody to block the binding of integrin. The quantification indicates that cells containing DDR bind with collagen at a most probable force of 80.3–83.0 ±7.6 pN. The probability of them binding is 0.167 when other interactions (mainly due to integrin-collagen binding) are minimized. Conclusion: Together with further force measurements at different pulling speeds will determine dissociation rate, binding distance and activation barrier. These parameters in benign cells provides some groundwork in understanding DDR’s behavior in various cell microenvironments such as in malignant tumor cells. Funding supported by Richard Barber Interdisciplinary Research Program of Wayne State University.« less
Nakrieko, Kerry-Ann; Rudkouskaya, Alena; Irvine, Timothy S; D'Souza, Sudhir J A; Dagnino, Lina
2011-07-15
Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.
Nakrieko, Kerry-Ann; Rudkouskaya, Alena; Irvine, Timothy S.; D'souza, Sudhir J. A.; Dagnino, Lina
2011-01-01
Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15–expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury. PMID:21593206
Seebeck, Florian; März, Martin; Meyer, Anna-Wiebke; Reuter, Hanna; Vogg, Matthias C.; Stehling, Martin; Mildner, Karina; Zeuschner, Dagmar; Rabert, Franziska
2017-01-01
Tissue regeneration depends on proliferative cells and on cues that regulate cell division, differentiation, patterning and the restriction of these processes once regeneration is complete. In planarians, flatworms with high regenerative potential, muscle cells express some of these instructive cues. Here, we show that members of the integrin family of adhesion molecules are required for the integrity of regenerating tissues, including the musculature. Remarkably, in regenerating β1-integrin RNAi planarians, we detected increased numbers of mitotic cells and progenitor cell types, as well as a reduced ability of stem cells and lineage-restricted progenitor cells to accumulate at wound sites. These animals also formed ectopic spheroid structures of neural identity in regenerating heads. Interestingly, those polarized assemblies comprised a variety of neural cells and underwent continuous growth. Our study indicates that integrin-mediated cell adhesion is required for the regenerative formation of organized tissues and for restricting neurogenesis during planarian regeneration. PMID:28137894
Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*
Simpson, Mark A.; Bradley, William D.; Harburger, David; Parsons, Maddy; Calderwood, David A.; Koleske, Anthony J.
2015-01-01
Integrins are heterodimeric α/β extracellular matrix adhesion receptors that couple physically to the actin cytoskeleton and regulate kinase signaling pathways to control cytoskeletal remodeling and adhesion complex formation and disassembly. β1 integrins signal through the Abl2/Arg (Abl-related gene) nonreceptor tyrosine kinase to control fibroblast cell motility, neuronal dendrite morphogenesis and stability, and cancer cell invasiveness, but the molecular mechanisms by which integrin β1 activates Arg are unknown. We report here that the Arg kinase domain interacts directly with a lysine-rich membrane-proximal segment in the integrin β1 cytoplasmic tail, that Arg phosphorylates the membrane-proximal Tyr-783 in the β1 tail, and that the Arg Src homology domain then engages this phosphorylated region in the tail. We show that these interactions mediate direct binding between integrin β1 and Arg in vitro and in cells and activate Arg kinase activity. These findings provide a model for understanding how β1-containing integrins interact with and activate Abl family kinases. PMID:25694433
Tan, Mingqian; Lu, Zheng-Rong
2011-01-01
Magnetic resonance imaging (MRI) is a powerful medical diagnostic imaging modality for integrin targeted imaging, which uses the magnetic resonance of tissue water protons to display tissue anatomic structures with high spatial resolution. Contrast agents are often used in MRI to highlight specific regions of the body and make them easier to visualize. There are four main classes of MRI contrast agents based on their different contrast mechanisms, including T1, T2, chemical exchange saturation transfer (CEST) agents, and heteronuclear contrast agents. Integrins are an important family of heterodimeric transmembrane glycoproteins that function as mediators of cell-cell and cell-extracellular matrix interactions. The overexpressed integrins can be used as the molecular targets for designing suitable integrin targeted contrast agents for MR molecular imaging. Integrin targeted contrast agent includes a targeting agent specific to a target integrin, a paramagnetic agent and a linker connecting the targeting agent with the paramagnetic agent. Proper selection of targeting agents is critical for targeted MRI contrast agents to effectively bind to integrins for in vivo imaging. An ideal integrin targeted MR contrast agent should be non-toxic, provide strong contrast enhancement at the target sites and can be completely excreted from the body after MR imaging. An overview of integrin targeted MR contrast agents based on small molecular and macromolecular Gd(III) complexes, lipid nanoparticles and superparamagnetic nanoparticles is provided for MR molecular imaging. By using proper delivery systems for loading sufficient Gd(III) chelates or superparamagnetic nanoparticles, effective molecular imaging of integrins with MRI has been demonstrated in animal models. PMID:21547154
Relating conformation to function in integrin α5β1.
Su, Yang; Xia, Wei; Li, Jing; Walz, Thomas; Humphries, Martin J; Vestweber, Dietmar; Cabañas, Carlos; Lu, Chafen; Springer, Timothy A
2016-07-05
Whether β1 integrin ectodomains visit conformational states similarly to β2 and β3 integrins has not been characterized. Furthermore, despite a wealth of activating and inhibitory antibodies to β1 integrins, the conformational states that these antibodies stabilize, and the relation of these conformations to function, remain incompletely characterized. Using negative-stain electron microscopy, we show that the integrin α5β1 ectodomain adopts extended-closed and extended-open conformations as well as a bent conformation. Antibodies SNAKA51, 8E3, N29, and 9EG7 bind to different domains in the α5 or β1 legs, activate, and stabilize extended ectodomain conformations. Antibodies 12G10 and HUTS-4 bind to the β1 βI domain and hybrid domains, respectively, activate, and stabilize the open headpiece conformation. Antibody TS2/16 binds a similar epitope as 12G10, activates, and appears to stabilize an open βI domain conformation without requiring extension or hybrid domain swing-out. mAb13 and SG/19 bind to the βI domain and βI-hybrid domain interface, respectively, inhibit, and stabilize the closed conformation of the headpiece. The effects of the antibodies on cell adhesion to fibronectin substrates suggest that the extended-open conformation of α5β1 is adhesive and that the extended-closed and bent-closed conformations are nonadhesive. The functional effects and binding sites of antibodies and fibronectin were consistent with their ability in binding to α5β1 on cell surfaces to cross-enhance or inhibit one another by competitive or noncompetitive (allosteric) mechanisms.
CLIC4 regulates cell adhesion and β1 integrin trafficking.
Argenzio, Elisabetta; Margadant, Coert; Leyton-Puig, Daniela; Janssen, Hans; Jalink, Kees; Sonnenberg, Arnoud; Moolenaar, Wouter H
2014-12-15
Chloride intracellular channel protein 4 (CLIC4) exists in both soluble and membrane-associated forms, and is implicated in diverse cellular processes, ranging from ion channel formation to intracellular membrane remodeling. CLIC4 is rapidly recruited to the plasma membrane by lysophosphatidic acid (LPA) and serum, suggesting a possible role for CLIC4 in exocytic-endocytic trafficking. However, the function and subcellular target(s) of CLIC4 remain elusive. Here, we show that in HeLa and MDA-MB-231 cells, CLIC4 knockdown decreases cell-matrix adhesion, cell spreading and integrin signaling, whereas it increases cell motility. LPA stimulates the recruitment of CLIC4 to β1 integrin at the plasma membrane and in Rab35-positive endosomes. CLIC4 is required for both the internalization and the serum- or LPA-induced recycling of β1 integrin, but not for EGF receptor trafficking. Furthermore, we show that CLIC4 suppresses Rab35 activity and antagonizes Rab35-dependent regulation of β1 integrin trafficking. Our results define CLIC4 as a regulator of Rab35 activity and serum- and LPA-dependent integrin trafficking. © 2014. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.
2008-06-01
Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.
Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion
Eppler, Felix J.
2017-01-01
Leukocyte trafficking is crucial to facilitate efficient immune responses. Here, we report that the large GTPase dynamin2, which is generally considered to have a key role in endocytosis and membrane remodeling, is an essential regulator of integrin-dependent human T lymphocyte adhesion and migration. Chemical inhibition or knockdown of dynamin2 expression significantly reduced integrin-dependent T cell adhesion in vitro. This phenotype was not observed when T cells were treated with various chemical inhibitors which abrogate endocytosis or actin polymerization. We furthermore detected dynamin2 in signaling complexes and propose that it controls T cell adhesion via FAK/Pyk2- and RapGEF1-mediated Rap1 activation. In addition, the dynamin2 inhibitor-induced reduction of lymphocyte adhesion can be rescued by Rap1a overexpression. We demonstrate that the dynamin2 effect on T cell adhesion does not involve integrin affinity regulation but instead relies on its ability to modulate integrin valency. Taken together, we suggest a previously unidentified role of dynamin2 in the regulation of integrin-mediated lymphocyte adhesion via a Rap1 signaling pathway. PMID:28273099
Bit-1 Mediates Integrin-dependent Cell Survival through Activation of the NFκB Pathway*
Griffiths, Genevieve S.; Grundl, Melanie; Leychenko, Anna; Reiter, Silke; Young-Robbins, Shirley S.; Sulzmaier, Florian J.; Caliva, Maisel J.; Ramos, Joe W.; Matter, Michelle L.
2011-01-01
Loss of properly regulated cell death and cell survival pathways can contribute to the development of cancer and cancer metastasis. Cell survival signals are modulated by many different receptors, including integrins. Bit-1 is an effector of anoikis (cell death due to loss of attachment) in suspended cells. The anoikis function of Bit-1 can be counteracted by integrin-mediated cell attachment. Here, we explored integrin regulation of Bit-1 in adherent cells. We show that knockdown of endogenous Bit-1 in adherent cells decreased cell survival and re-expression of Bit-1 abrogated this effect. Furthermore, reduction of Bit-1 promoted both staurosporine and serum-deprivation induced apoptosis. Indeed knockdown of Bit-1 in these cells led to increased apoptosis as determined by caspase-3 activation and positive TUNEL staining. Bit-1 expression protected cells from apoptosis by increasing phospho-IκB levels and subsequently bcl-2 gene transcription. Protection from apoptosis under serum-free conditions correlated with bcl-2 transcription and Bcl-2 protein expression. Finally, Bit-1-mediated regulation of bcl-2 was dependent on focal adhesion kinase, PI3K, and AKT. Thus, we have elucidated an integrin-controlled pathway in which Bit-1 is, in part, responsible for the survival effects of cell-ECM interactions. PMID:21383007
Zhang, Minggang; March, Michael E.; Lane, William S.; Long, Eric O.
2014-01-01
Cytotoxic lymphocyte skill target cells by polarized release of the content of perforin-containing granules. In natural killer cells, the binding of β2 integrin to its ligand ICAM-1 is sufficient to promote not only adhesion but also lytic granule polarization. This provided a unique opportunity to study polarization in the absence of degranulation, and β2 integrin signaling independently of inside-out signals from other receptors. Using an unbiased proteomics approach we identified a signaling network centered on an integrin-linked kinase (ILK)–Pyk2–Paxillin core that was required for granule polarization. Downstream of ILK, the highly conserved Cdc42–Par6 signaling pathway that controls cell polarity was activated and required for granule polarization. These results delineate two connected signaling networks induced upon β2 integrin engagement alone, which are integrated to control polarization of the microtubule organizing center and associated lytic granules toward the site of contact with target cells during cellular cytotoxicity. PMID:25292215
Navarro-Sanchez, Erika; Altmeyer, Ralf; Amara, Ali; Schwartz, Olivier; Fieschi, Franck; Virelizier, Jean-Louis; Arenzana-Seisdedos, Fernando; Desprès, Philippe
2003-01-01
Dengue virus (DV) is a mosquito-borne flavivirus that causes haemorrhagic fever in humans. DV primarily targets immature dendritic cells (DCs) after a bite by an infected mosquito vector. Here, we analysed the interactions between DV and human-monocyte-derived DCs at the level of virus entry. We show that the DC-specific ICAM3-grabbing non-integrin (DC-SIGN) molecule, a cell-surface, mannose-specific, C-type lectin, binds mosquito-cell-derived DVs and allows viral replication. Conclusive evidence for the involvement of DC-SIGN in DV infection was obtained by the inhibition of viral infection by anti-DC-SIGN antibodies and by the soluble tetrameric ectodomain of DC-SIGN. Our data show that DC-SIGN functions as a DV-binding lectin by interacting with the DV envelope glycoprotein. Mosquito-cell-derived DVs may have differential infectivity for DC-SIGN-expressing cells. We suggest that the differential use of DC-SIGN by viral envelope glycoproteins may account for the immunopathogenesis of DVs. PMID:12783086
Murakami, Jodi L; Xu, Baohui; Franco, Christopher B; Hu, Xingbin; Galli, Stephen J; Weissman, Irving L; Chen, Ching-Cheng
2016-01-01
α4β7 integrin is a cell adhesion receptor that is crucial for the migration of hematopoietic progenitors and mature effector cells in the periphery, but its role in adult hematopoiesis is controversial. We identified a subset of hematopoietic stem cells (HSCs) in the bone marrow (BM) that expressed β7 integrin. These β7(+) HSCs were capable of multilineage, long-term reconstitution and had an inherent competitive advantage over β7(-) HSCs. On the other hand, HSCs that lacked β7 integrin (β7KO) had reduced engraftment potential. Interestingly, quantitative RT-PCR and flow cytometry revealed that β7KO HSCs expressed lower levels of the chemokine receptor CXCR4. Accordingly, β7KO HSCs exhibited impaired migration abilities in vitro and BM homing capabilities in vivo. Lethal irradiation induced expression of the α4β7 integrin ligand-mucosal addressin cell adhesion molecule-1 (MAdCAM-1) on BM endothelial cells. Moreover, blocking MAdCAM-1 reduced the homing of HSCs and impaired the survival of recipient mice. Altogether, these data indicate that β7 integrin, when expressed by HSCs, interacted with its endothelial ligand MAdCAM-1 in the BM microenvironment, thereby promoting HSC homing and engraftment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, J.-P.; Stehle, T.; Zhang, R.
The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. Themore » tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.« less
Human Adenovirus Type 37 Uses αVβ1 and α3β1 Integrins for Infection of Human Corneal Cells
Storm, Rickard J.; Persson, B. David; Skalman, Lars Nygård; Frängsmyr, Lars; Lindström, Mona; Rankin, Greg; Lundmark, Richard; Domellöf, Fatima Pedrosa
2016-01-01
ABSTRACT Epidemic keratoconjunctivitis (EKC) is a severe, contagious ocular disease that affects 20 to 40 million individuals worldwide every year. EKC is mainly caused by six types of human adenovirus (HAdV): HAdV-8, -19, -37, -53, -54, and -56. Of these, HAdV-8, -19, and -37 use sialic acid-containing glycans as cellular receptors. αVβ3, αVβ5, and a few additional integrins facilitate entry and endosomal release of other HAdVs. With the exception of a few biochemical analyses indicating that HAdV-37 can interact physically with αVβ5, little is known about the integrins used by EKC-causing HAdVs. Here, we investigated the overall integrin expression on human corneal cells and found expression of α2, α3, α6, αV, β1, and β4 subunits in human corneal in situ epithelium and/or in a human corneal epithelial (HCE) cell line but no or less accessible expression of α4, α5, β3, or β5. We also identified the integrins used by HAdV-37 through a series of binding and infection competition experiments and different biochemical approaches. Together, our data suggest that HAdV-37 uses αVβ1 and α3β1 integrins for infection of human corneal epithelial cells. Furthermore, to confirm the relevance of these integrins in the HAdV-37 life cycle, we developed a corneal multilayer tissue system and found that HAdV-37 infection correlated well with the patterns of αV, α3, and β1 integrin expression. These results provide further insight into the tropism and pathogenesis of EKC-causing HAdVs and may be of importance for future development of new antiviral drugs. IMPORTANCE Keratitis is a hallmark of EKC, which is caused by six HAdV types (HAdV-8, -19, -37, -53, -54, and -56). HAdV-37 and some other HAdV types interact with integrin αVβ5 in order to enter nonocular human cells. In this study, we found that αVβ5 is not expressed on human corneal epithelial cells, thus proposing other host factors mediate corneal infection. Here, we first characterized integrin expression patterns on corneal tissue and corneal cells. Among the integrins identified, competition binding and infection experiments and biochemical assays pointed out αVβ1 and α3β1 to be of importance for HAdV-37 infection of corneal tissue. In the absence of a good animal model for EKC-causing HAdVs, we also developed an in vitro system with multilayer HCE cells and confirmed the relevance of the suggested integrins during HAdV-37 infection. PMID:27974569
Physical confinement alters tumor cell adhesion and migration phenotypes
Balzer, Eric M.; Tong, Ziqiu; Paul, Colin D.; Hung, Wei-Chien; Stroka, Kimberly M.; Boggs, Amanda E.; Martin, Stuart S.; Konstantopoulos, Konstantinos
2012-01-01
Cell migration on planar surfaces is driven by cycles of actin protrusion, integrin-mediated adhesion, and myosin-mediated contraction; however, this mechanism may not accurately describe movement in 3-dimensional (3D) space. By subjecting cells to restrictive 3D environments, we demonstrate that physical confinement constitutes a biophysical stimulus that alters cell morphology and suppresses mesenchymal motility in human breast carcinoma (MDA-MB-231). Dorsoventral polarity, stress fibers, and focal adhesions are markedly attenuated by confinement. Inhibitors of myosin, Rho/ROCK, or β1-integrins do not impair migration through 3-μm-wide channels (confinement), even though these treatments repress motility in 50-μm-wide channels (unconfined migration) by ≥50%. Strikingly, confined migration persists even when F-actin is disrupted, but depends largely on microtubule (MT) dynamics. Interfering with MT polymerization/depolymerization causes confined cells to undergo frequent directional changes, thereby reducing the average net displacement by ≥80% relative to vehicle controls. Live-cell EB1-GFP imaging reveals that confinement redirects MT polymerization toward the leading edge, where MTs continuously impact during advancement of the cell front. These results demonstrate that physical confinement can induce cytoskeletal alterations that reduce the dependence of migrating cells on adhesion-contraction force coupling. This mechanism may explain why integrins can exhibit reduced or altered function during migration in 3D environments.—Balzer, E. M., Tong, Z., Paul, C. D., Hung, W.-C., Stroka, K. M., Boggs, A. E., Martin, S. S., Konstantopoulos, K. Physical confinement alters tumor cell adhesion and migration phenotypes. PMID:22707566
Bilgrami, Sameeta; Yadav, Savita; Kaur, Punit; Sharma, Sujata; Perbandt, Markus; Betzel, Christian; Singh, Tej P
2005-08-23
Disintegrins constitute a family of potent polypeptide inhibitors of integrins. Integrins are transmembrane heterodimeric molecules involved in cell-cell and cell-extracellular matrix interactions. They are involved in many diseases such as cancer and thrombosis. Thus, disintegrins have a great potential as anticancer and antithrombotic agents. A novel heterodimeric disintegrin was isolated from the venom of saw-scaled viper (Echis carinatus) and was crystallized. The crystals diffracted to 1.9 A resolution and belonged to space group P4(3)2(1)2. The data indicated the presence of a pseudosymmetry. The structure was solved by applying origin shifts to the disintegrin homodimer schistatin solved in space group I4(1)22 with similar cell dimensions. The structure refined to the final R(cryst)/R(free) factors of 0.213/0.253. The notable differences are observed between the loops, (Gln39-Asp48) containing the important Arg42-Gly43-Asp44, of the present heterodimer and schistatin. These differences are presumably due to the presence of two glycines at positions 43 and 46 that allow the molecule to adopt variable conformations. A comparative analysis of the surface-charge distributions of various disintegrins showed that the charge distribution on monomeric disintegrins occurred uniformly over the whole surface of the molecule, while in the dimeric disintegrins, the charge is distributed only on one face. Such a feature may be important in the binding of two integrins to a single dimeric disintegrin. The phylogenetic analysis developed on the basis of amino acid sequence and three-dimensional structures indicates that the protein diversification and evolution presumably took place from the medium disintegrins and both the dimeric and short disintegrins evolved from them.
Acerbi, Irene; Luque, Tomás; Giménez, Alícia; Puig, Marta; Reguart, Noemi; Farré, Ramon; Navajas, Daniel; Alcaraz, Jordi
2012-01-01
Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM) tips with ~1 µm(2) cross-section area. Tips were uncoated or coated with either integrin-specific (RGD) or non-specific (RGE/BSA) molecules, brought into contact with lung epithelial cells or fibroblasts for 30 s to form focal adhesion precursors, and used to probe cell resistance to deformation in compression and extension. We found that cell resistance to compression was globally higher than to extension regardless of the tip coating. In contrast, both tip-cell adhesion strength and resistance to compression and extension were the highest when probed at integrin-specific adhesions. These integrin-specific mechanoresponses required an intact actin cytoskeleton, and were dependent on tyrosine phosphatases and Ca(2+) signaling. Cell asymmetric mechanoresponse to compression and extension remained after 5 minutes of tip-cell adhesion, revealing that asymmetric resistance to force directionality is an intrinsic property of lung cells, as in most soft tissues. Our findings provide new insights on how lung cells probe the mechanochemical properties of the microenvironment, an important process for migration, repair and tissue homeostasis.
Kryczka, Jakub; Stasiak, Marta; Dziki, Lukasz; Mik, Michał; Dziki, Adam; Cierniewski, Czesław S.
2012-01-01
Cancer cell invasion is a key element in metastasis that requires integrins for adhesion/de-adhesion, as well as matrix metalloproteinases (MMPs) for focalized proteolysis. Herein we show that MMP-2 is up-regulated in resected colorectal tumors and degrades β1 integrins with the release of fragments containing the β1 I-domain. The β1 cleavage pattern is similar to that produced by digestion of α5β1 and α2β1 with MMP-2. Two such fragments, at 25 and 75 kDa, were identified after immunoprecipitation, with monoclonal antibody BD610468 reacting with the NH2-terminal I-like ectodomain followed by SDS-PAGE and microsequencing using electrospray (ISI-Q-TOF-Micromass) spectrometry. Cleavage of the β1 integrin can be abolished by inhibition of MMP-2 activity; it can be induced by up-regulation of MMP-2 expression, as exemplified by HT29 colon cancer cells transfected with pCMV6-XL5-MMP-2. Co-immunoprecipitation studies of colon cancer cells showed that the β1 integrin subunit is associated with MMP-2. The MMP-2-mediated shedding of the I-like domain from β1 integrins resulted in decreased adhesion of colon cancer cells to collagen and fibronectin, thus abolishing their receptivity. Furthermore, such cells showed enhanced motility as evaluated by a “wound healing-like” assay and time-lapse microscopy, indicating their increased invasiveness. Altogether, our data demonstrate that MMP-2 amplifies the motility of colon cancer cells, not only by digesting the extracellular matrix components in the vicinity of cancer cells but also by inactivating their major β1 integrin receptors. PMID:22898815
NASA Technical Reports Server (NTRS)
Parra, M.; Vercoutere, W.; Roden, C.; Banerjee, I.; Krauser, W.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.
2003-01-01
We set out to determine the molecular mechanisms involved in the proliferative response of primary rat osteoblasts to mechanical stimulation using cell culture centrifugation as a model for hypergravity. We hypothesized that this proliferative response is mediated by specific integrin/Extracellular Matrix (ECM) interactions. To investigate this question we developed a cell culture centrifuge and an automated system that performs cell fixation during hypergravity loading. We generated expression vectors for various focal adhesion and cytoskeletal proteins fused to GFP or dsRed and visualized these structures in transfected (or infected) osteoblasts. The actin cytoskeleton was also visualized using rhodamine-phalloidin staining and Focal Adhesion Kinase (FAK) levels were assessed biochemically. We observed that a 24 hour exposure to 50-g stimulated proliferation compared to the 1-g control when cells were plated on fibronectin, collagen Type I , and collagen Type IV, but not on uncoated tissue culture plastic surfaces. This proliferative response was greatest for osteoblasts grown on fibronectin (2-fold increase over 1-g control) and collagen Type I (1.4 fold increase over 1-g control), suggesting that specific matrices and integrins are involved in the signaling pathways required for proliferation. Exposing osteoblasts grown on different matrices to 10-g or 25-g showed that effects on proliferation depended on both matrix type and loading level. We found that osteoblasts exposed to a short pulse of hypergravity during adhesion spread further and had more GFP-FAK containing focal adhesions compared to their 1-g controls. While overall levels of FAK did not change, more FAK was in the active (phosphorylated) form under hypergravity than in the 1-g controls. Cytoskeletal F-actin organization into filaments was also more prominent after brief exposures to hypergravity during the first five minutes of adhesion. These results suggest that specific integrins sense hypergravity and activate distinct matrix-dependent FAK signaling pathways that can enhance proliferation. Our results also imply that brief exposures to hypergravity accelerate cell adhesion and spreading processes via the focal adhesion-signaling axis. These results support the role of the ECM/integrin-signaling axis in osteoblast response to hypergravity loading.
Epigenetic Regulation of Galectin-3 Expression by β1 Integrins Promotes Cell Adhesion and Migration*
Margadant, Coert; van den Bout, Iman; van Boxtel, Antonius L.; Thijssen, Victor L.; Sonnenberg, Arnoud
2012-01-01
Introduction of the integrin β1- but not the β3-subunit in GE11 cells induces an epithelial-to-mesenchymal-transition (EMT)-like phenomenon that is characterized by the loss of cell-cell contacts, cell scattering, increased cell migration and RhoA activity, and fibronectin fibrillogenesis. Because galactose-binding lectins (galectins) have been implicated in these phenomena, we investigated whether galectins are involved in the β1-induced phenotype. We examined 9 galectins and, intriguingly, found that the expression of galectin-3 (Gal-3) is specifically induced by β1 but not by β3. Using β1-β3 chimeric integrins, we show that the induction of Gal-3 expression requires the hypervariable region in the extracellular domain of β1, but not its cytoplasmic tail. Furthermore, Gal-3 expression does not depend on RhoA signaling, serum factors, or any of the major signal transduction pathways involving protein kinase C (PKC), p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase-1/-2 (ERK-1/2), phosphatidylinositol-3-OH kinase (PI3-K), or Src kinases. Instead, Gal-3 expression is controlled in an epigenetic manner. Whereas DNA methylation of the Lgals3 promoter maintains Gal-3 silencing in GE11 cells, expression of β1 causes its demethylation, leading to transcriptional activation of the Lgals3 gene. In turn, Gal-3 expression enhances β1 integrin-mediated cell adhesion to fibronectin (FN) and laminin (LN), as well as cell migration. Gal-3 also promotes β1-mediated cell adhesion to LN and Collagen-1 (Col)-1 in cells that endogenously express Gal-3 and β1 integrins. In conclusion, we identify a functional feedback-loop between β1 integrins and Gal-3 that involves the epigenetic induction of Gal-3 expression during integrin-induced EMT and cell scattering. PMID:23118221
Integrins and small GTPases as modulators of phagocytosis.
Sayedyahossein, Samar; Dagnino, Lina
2013-01-01
Phagocytosis is the mechanism whereby cells engulf large particles. This process has long been recognized as a critical component of the innate immune response, which constitutes the organism's defense against microorganisms. In addition, phagocytic internalization of apoptotic cells or cell fragments plays important roles in tissue homeostasis and remodeling. Phagocytosis requires target interactions with receptors on the plasma membrane of the phagocytic cell. Integrins have been identified as important mediators of particle clearance, in addition to their well-established roles in cell adhesion, migration and mechanotransduction. Indeed, these ubiquitously expressed proteins impart phagocytic capacity to epithelial, endothelial and mesenchymal cell types. The importance of integrins in particle internalization is emphasized by the ability of microbial and viral pathogens to exploit their signaling pathways to invade host cells, and by the wide variety of disorders that arise from abnormalities in integrin-dependent phagocytic uptake. Copyright © 2013 Elsevier Inc. All rights reserved.
Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces.
Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; Song, Hwangjun
2010-11-01
This study investigated the surface characteristics and in vitro osteoconductivity of a titanium (Ti) surface incorporated with the magnesium ions (Mg) produced by hydrothermal treatment for future application as an endosseous implant surface. Mg-incorporated Ti oxide surfaces were produced by hydrothermal treatment using Mg-containing solution on two different microstructured surfaces--abraded minimally rough (Ma) or grit-blasted moderately rough (RBM) samples. The surface characteristics were evaluated using scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). MC3T3-E1 pre-osteoblast cell attachment, proliferation, alkaline phosphatase (ALP) activity, and quantitative analysis of osteoblastic gene expression on Ma, RBM, Mg-incorporated Ma (Mg), and Mg-incorporated grit-blasted (RBM/Mg) Ti surfaces were evaluated. Hydrothermal treatment produced an Mg-incorporated Ti oxide layer with nanoporous surface structures. Mg-incorporated surfaces showed surface morphologies and surface roughness values almost identical to those of untreated smooth or micro-rough surfaces at the micron scale. ICP-AES analysis showed Mg ions released from treated surfaces into the solution. Mg incorporation significantly increased cellular attachment (P=0 at 0.5 h, P=0.01 at 1 h) on smooth surfaces, but no differences were found on micro-rough surfaces. Mg incorporation further increased ALP activity in cells grown on both smooth and micro-rough surfaces at 7 and 14 days of culture (P=0). Real-time polymerase chain reaction analysis showed higher mRNA expressions of the osteoblast transcription factor gene (Dlx5), various integrins, and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on micro-rough (RBM) and Mg-incorporated (Mg and RBM/Mg) surfaces than those on Ma surfaces. Mg incorporation further increased the mRNA expressions of key osteoblast genes and integrins (α1, α2, α5, and β1) in cells grown on both the smooth and the micro-rough surfaces. These results indicate that an Mg-incorporated nanoporous Ti oxide surface produced by hydrothermal treatment may improve implant bone healing by enhancing the attachment and differentiation of osteoblastic cells. © 2010 John Wiley & Sons A/S.
Sarcospan: a small protein with large potential for Duchenne muscular dystrophy
2013-01-01
Purification of the proteins associated with dystrophin, the gene product responsible for Duchenne muscular dystrophy, led to the discovery of the dystrophin-glycoprotein complex. Sarcospan, a 25-kDa transmembrane protein, was the last component to be identified and its function in skeletal muscle has been elusive. This review will focus on progress over the last decade revealing that sarcospan is an important regulator of muscle cell adhesion, strength, and regeneration. Investigations using several transgenic mouse models demonstrate that overexpression of sarcospan in the mouse model for Duchenne muscular dystrophy ameliorates pathology and restores muscle cell binding to laminin. Sarcospan improves cell surface expression of the dystrophin- and utrophin-glycoprotein complexes as well as α7β1 integrin, which are the three major laminin-binding complexes in muscle. Utrophin and α7β1 integrin compensate for the loss of dystrophin and the finding that sarcospan increases their abundance at the extra-synaptic sarcolemma supports the use of sarcospan as a therapeutic target. Newly discovered phenotypes in sarcospan-deficient mice, including a reduction in specific force output and increased drop in force in the diaphragm muscle, result from decreased utrophin and dystrophin expression and further reveal sarcospan’s role in determining abundance of these complexes. Dystrophin protein levels and the specific force output of the diaphragm muscle are further reduced upon genetic removal of α7 integrin (Itga7) in SSPN-deficient mice, demonstrating that interactions between integrin and sarcospan are critical for maintenance of the dystrophin-glycoprotein complex and force production of the diaphragm muscle. Sarcospan is a major regulator of Akt signaling pathways and sarcospan-deficiency significantly impairs muscle regeneration, a process that is dependent on Akt activation. Intriguingly, sarcospan regulates glycosylation of a specific subpopulation of α-dystroglycan, the laminin-binding receptor associated with dystrophin and utrophin, localized to the neuromuscular junction. Understanding the basic mechanisms responsible for assembly and trafficking of the dystrophin- and utrophin-glycoprotein complexes to the cell surface is lacking and recent studies suggest that sarcospan plays a role in these essential processes. PMID:23282144
Tensegrity: the architectural basis of cellular mechanotransduction
NASA Technical Reports Server (NTRS)
Ingber, D. E.
1997-01-01
Physical forces of gravity, hemodynamic stresses, and movement play a critical role in tissue development. Yet, little is known about how cells convert these mechanical signals into a chemical response. This review attempts to place the potential molecular mediators of mechanotransduction (e.g. stretch-sensitive ion channels, signaling molecules, cytoskeleton, integrins) within the context of the structural complexity of living cells. The model presented relies on recent experimental findings, which suggests that cells use tensegrity architecture for their organization. Tensegrity predicts that cells are hard-wired to respond immediately to mechanical stresses transmitted over cell surface receptors that physically couple the cytoskeleton to extracellular matrix (e.g. integrins) or to other cells (cadherins, selectins, CAMs). Many signal transducing molecules that are activated by cell binding to growth factors and extracellular matrix associate with cytoskeletal scaffolds within focal adhesion complexes. Mechanical signals, therefore, may be integrated with other environmental signals and transduced into a biochemical response through force-dependent changes in scaffold geometry or molecular mechanics. Tensegrity also provides a mechanism to focus mechanical energy on molecular transducers and to orchestrate and tune the cellular response.
Gutjahr, Alice; Terrat, Céline; Exposito, Jean-Yves; Verrier, Bernard; Lethias, Claire
2016-01-01
Biodegradable polymeric nanoparticles are vehicles of choice for drug delivery and have the ability to encapsulate and present at their surface different molecules of interest. Among these bio-nanocarriers, poly(lactic acid) (PLA) nanoparticles have been used as adjuvant and vehicle for enhanced vaccine efficacy. In order to develop an approach to efficient vaccine delivery, we developed nanoparticles to target α5β1 positive cells. We first overproduced, in bacteria, human fibronectin FNIII9/10 recombinant proteins possessing an integrin α5β1 binding site, the RGDS sequence, or a mutated form of this site. After having confirmed the integrin binding properties of these recombinant proteins in cell culture assays, we were able to formulate PLA nanoparticles with these FNIII9/10 proteins at their surface. We then confirmed, by fluorescence and confocal microscopy, an enhanced cellular uptake by α5β1+ cells of RGDS-FNIII9/10 coated PLA nanoparticles, in comparison to KGES-FNIII9/10 coated or non-coated controls. As a first vaccination approach, we prepared PLA nanoparticles co-coated with p24 (an HIV antigen), and RGDS- or KGES-FNIII9/10 proteins, followed by subcutaneous vaccine administration, in mice. Although we did not detect improvements in the apparent humoral response to p24 antigen in the serum of RGDS/p24 nanoparticle-treated mice, the presence of the FNIII proteins increased significantly the avidity index of anti-p24 antibodies compared to p24-nanoparticle-injected control mice. Future developments of this innovative targeted vaccine are discussed. PMID:27973577
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yoon Pyo; Kim, Baek Gil; Department of Pathology, Yonsei University College of Medicine, Seoul
Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expressionmore » of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.« less
Anderson, Hannah J; Galileo, Deni S
2016-06-01
The cell adhesion/recognition protein L1CAM (L1; CD171) has previously been shown to act through integrin, focal adhesion kinase (FAK) and fibroblast growth factor receptor (FGFR) signaling pathways to increase the motility and proliferation of glioblastoma cells in an autocrine/paracrine manner. Here, we investigated the effects of clinically relevant small-molecule inhibitors of the integrin, FAK and FGFR signaling pathways on glioblastoma-derived cells to determine their effectiveness and selectivity for diminishing L1-mediated stimulation. The effects of the FGFR inhibitor PD173074, the FAK inhibitors PF431396 and Y15 and the αvβ3/αvβ5 integrin inhibitor cilengitide were assessed in L1-positive and L1-negative variants of the human glioblastoma-derived cell lines T98G and U-118 MG. Their motility and proliferation were quantified using time-lapse microscopy and DNA content/cell cycle analyses, respectively. The application of all four inhibitors resulted in reductions in L1-mediated motility and proliferation rates of L1-positive glioblastoma-derived cells, down to the level of L1-negative cells when used at nanomolar concentrations, whereas no or much smaller reductions in these rates were obtained in L1-negative cells. In addition, we found that single inhibitor treatment resulted in maximum effects (i.e., combinations of FAK or integrin inhibitors with the FGFR inhibitor were rarely more effective). These results suggest that FAK may act as a point of convergence between the integrin and FGFR signaling pathways stimulated by L1 in these cells. We here show for the first time that small-molecule inhibitors of FGFR, integrins and FAK effectively and selectively abolish L1-stimulated migration and proliferation of glioblastoma-derived cells. Our results suggest that these inhibitors have the potential to reduce the aggressiveness of high-grade gliomas expressing L1.
Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-β
Alcaraz, Lindsay B.; Exposito, Jean-Yves; Chuvin, Nicolas; Pommier, Roxane M.; Cluzel, Caroline; Martel, Sylvie; Sentis, Stéphanie; Bartholin, Laurent; Lethias, Claire
2014-01-01
Transforming growth factor β (TGF-β) isoforms are secreted as inactive complexes formed through noncovalent interactions between the bioactive TGF-β entity and its N-terminal latency-associated peptide prodomain. Extracellular activation of the latent TGF-β complex is a crucial step in the regulation of TGF-β function for tissue homeostasis. We show that the fibrinogen-like (FBG) domain of the matrix glycoprotein tenascin-X (TNX) interacts physically with the small latent TGF-β complex in vitro and in vivo, thus regulating the bioavailability of mature TGF-β to cells by activating the latent cytokine into an active molecule. Activation by the FBG domain most likely occurs through a conformational change in the latent complex and involves a novel cell adhesion–dependent mechanism. We identify α11β1 integrin as a cell surface receptor for TNX and show that this integrin is crucial to elicit FBG-mediated activation of latent TGF-β and subsequent epithelial-to-mesenchymal transition in mammary epithelial cells. PMID:24821840
Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.
Iwabuchi, Kazuhisa
2015-01-01
Glycosphingolipids (GSLs) are membrane components consisting of hydrophobic ceramide and hydrophilic sugar moieties. GSLs cluster with cholesterol in cell membranes to form GSL-enriched lipid rafts. Biochemical analyses have demonstrated that GSL-enriched lipid rafts contain several kinds of transducer molecules, including Src family kinases. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms, is highly expressed on the plasma membranes of human phagocytes, and forms lipid rafts containing the Src family tyrosine kinase Lyn. LacCer-enriched lipid rafts mediate immunological and inflammatory reactions, including superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. LacCer also serves as a signal transduction molecule for functions mediated by CD11b/CD18-integrin (αM/β2-integrin, CR3, Mac-1), as well as being associated with several key cellular processes. LacCer recruits PCKα/ε and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and their adhesion to endothelial cells, as well as regulating β1-integrin clustering and endocytosis on cell surfaces. This review describes the organizational and inflammation-related functions of LacCer-enriched lipid rafts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, B.; Laouar, A.; Huberman, E.
1998-05-08
Induction of the 92-kDa gelatinase (MMP-9) gene expression is associated with macrophage differentiation. In this study, we explored the regulatory mechanisms underlying this differentiation-associated MMP-9 gene expression in human HL-60 myeloid leukemia cells and human peripheral blood monocytes. Phorbol 12-myristate 13-acetate (PMA) markedly induced MMP-9 gene expression in HL-60 cells; the induction closely paralleled the timing and extent of PMA-induced cell adhesion and spreading, a hallmark of macrophage differentiation. Similarly, treatment with PMA or macrophage-colony stimulating factor stimulated adherence and spreading of blood monocytes with a concurrent 7- or 5-fold increase in MMP-9 production, respectively. In protein kinase C (PKC)-betamore » -deficient HL-60 variant cells (HL-525), PMA failed to induce cell adhesion and MMP-9 gene expression. Transfecting HL-525 cells with a PKC-beta expression plasmid restored PKC-beta levels and PMA inducibility of cell adhesion and spreading as well as MMP-9 gene expression. Induction of cell adhesion and MMP-9 gene expression in HL-60 cells and blood monocytes was strongly inhibited by neutralizing monoclonal antibodies to fibronectin (FN) and its receptor {alpha}5{beta}1 integrin. HL-525 cells, which constitutively display high levels of surface {alpha}5{beta}1 integrin, adhered and spread on immobilized FN with concomitant induction of MMP-9 gene expression. Cytochalasins B and D were each a potent inhibitor of MMP-9 production. Our results suggest that {alpha}5{beta}1 integrin-mediated interaction of immature hematopoietic cells with FN plays a critical role in modulating matrix-degrading activities during macrophage differentiation.« less
Chen, Yue; Zhang, Hui; Han, Fang; Yue, Lei; Qiao, Chunxiao; Zhang, Yao; Dou, Peng; Liu, Weizhe; Li, Yu
2018-03-01
The placenta is a remarkable organ, it serves as the interface between the mother and the fetus. Proper invasion of trophoblast cells is required for a successful pregnancy. Previous studies have found that the adhesion molecule integrin β4 plays important roles during trophoblast cell invasion. Here, we found that the overall birth rate of the MARVELD1 knockout mouse is much lower than that of the wild-type mouse (p < 0.001). In E18.5 MARVELD1 knockout mice, we observed an over-invasion of trophoblast cells, and indeed, the pregnant mice had a partial placenta accreta phenotype. The HTR8/SVneo cell line was used as an in vitro model to elucidate the underlying mechanisms of MARVELD1-mediated trophoblast invasion. We detected a diminished expression of integrin β4 upon the downregulation of MARVELD1 and enhanced migrate and invasive abilities of trophoblast cells both in vivo and in vitro. The integrin β4 rescue assay also supported the results. In conclusion, this study found that MARVELD1 mediated the invasion of trophoblast cells via regulating the expression of integrin β4 during placenta development. © 2017 Wiley Periodicals, Inc.
Tome, Yasunori; Kimura, Hiroaki; Maehara, Hiroki; Sugimoto, Naotoshi; Bouvet, Michael; Tsuchiya, Hiroyuki; Kanaya, Fuminori; Hoffman, Robert M
2013-09-01
Altered expression of αvβ3 integrin is associated with tumor progression and metastasis in several types of cancer, including metastatic osteosarcoma. In this study, we demonstrate that in vivo passaging of lung metastasis in nude mice can generate an aggressive variant of human osteosarcoma cells. Experimental metastases were established by injecting 143B human osteosarcoma cells, expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm, in the tail vein of nude mice. Lung metastases were harvested under fluorescence microscopy from nude mice to establish cell lines which were then injected via the tail vein of additional nude mice. This procedure was repeated for four passages in order to isolate highly metastatic variant sublines. When the parental and metastatic variants were transplanted orthotopically into the tibia of nude mice, the 143B-LM4 variant had the highest metastatic rate, approximately 18-fold higher than the parent (p<0.01). αvβ3 integrin expression was increased approximately 5.6-fold in 143B-LM4 compared to parental cells (p<0.05). Thus, serial passage of lung metastases created a highly metastatic variant of human osteosarcoma cells which had increased expression of αvβ3 integrin, suggesting that αvβ3 integrin plays an essential role in osteosarcoma metastasis. With this highly metastatic variant overexpressing αvβ3 integrin, it will now be possible to further investigate the mechanism by which αvβ3 integrin facilitates metastasis.
Regulation of COX-2–mediated signaling by α3 type IV noncollagenous domain in tumor angiogenesis
Boosani, Chandra Shekhar; Mannam, Arjuna P.; Cosgrove, Dominic; Silva, Rita; Hodivala-Dilke, Kairbaan M.; Keshamouni, Venkateshwar G.
2007-01-01
Human α3 chain, a noncollagenous domain of type IV collagen [α3(IV)NC1], inhibits angiogenesis and tumor growth. These biologic functions are partly attributed to the binding of α3(IV)NC1 to αVβ3 and α3β1 integrins. α3(IV)NC1 binds αVβ3 integrin, leading to translation inhibition by inhibiting focal adhesion kinase/phosphatidylinositol 3-kinase/Akt/mTOR/4E-BP1 pathways. In the present study, we evaluated the role of α3β1 and αVβ3 integrins in tube formation and regulation of cyclooxygenase-2 (COX-2) on α3(IV)NC1 stimulation. We found that although both integrins were required for the inhibition of tube formation by α3(IV)NC1 in endothelial cells, only α3β1 integrin was sufficient to regulate COX-2 in hypoxic endothelial cells. We show that binding of α3(IV)NC1 to α3β1 integrin leads to inhibition of COX-2–mediated pro-angiogenic factors, vascular endothelial growth factor, and basic fibroblast growth factor by regulating IκBα/NFκB axis, and is independent of αVβ3 integrin. Furthermore, β3 integrin–null endothelial cells, when treated with α3(IV)NC1, inhibited hypoxia-mediated COX-2 expression, whereas COX-2 inhibition was not observed in α3 integrin–null endothelial cells, indicating that regulation of COX-2 by α3(IV)NC1 is mediated by integrin α3β1. Our in vitro and in vivo findings demonstrate that α3β1 integrin is critical for α3(IV)NC1-mediated inhibition of COX-2–dependent angiogenic signaling and inhibition of tumor progression. PMID:17426256
Wu, Bo; Zhou, Yang; Wang, Yu; Yang, Xiang-Min; Liu, Zhen-Yu; Li, Jiang-Hua; Feng, Fei; Chen, Zhi-Nan; Jiang, Jian-Li
2016-01-01
Hepatocellular carcinoma (HCC) is currently the third most common cause of cancer-related death in the Asia-Pacific region. Our previous work showed that knockdown of CD98 significantly inhibits malignant HCC cell phenotypes in vitro and in vivo. The level of CD98 in the membrane is tightly regulated to mediate complex processes associated with cell–cell communication and intracellular signaling. In addition, the intracellular domain of CD98 (CD98-ICD) seems to be of vital importance for recycling CD98 to the membrane after it is endocytosed. The intracellular and transmembrane domains of CD98 associate with β-integrins (primarily β1 but also β3), and this association is essential for CD98 mediation of integrin-like signaling and complements dominant suppression of β1-integrin. We speculated that isolated CD98-ICD would similarly suppress β1-integrin activation and inhibit the malignant behaviors of cancer cells. In particular, the exact role of CD98-ICD has not been studied independently in HCC. In this study, we found that ectopic expression of CD98-ICD inhibited the malignant phenotypes of HCC cells, and the mechanism possibly involves β1-integrin suppression. Moreover, the expression levels of CD98, β1-integrin-A (the activated form of β1-integrin) and Ki-67 were significantly increased in HCC tissues relative to those of normal liver tissues. Therefore, our preliminary study indicates that ectopic CD98-ICD has an inhibitory role in the malignant development of HCC, and shows that CD98-ICD acts as a dominant negative mutant of CD98 that attenuates β1-integrin activation. CD98-ICD may emerge as a promising candidate for antitumor treatment. PMID:27834933
Meyer, Stefanie; Orsó, Evelyn; Schmitz, Gerd; Landthaler, Michael; Vogt, Thomas
2007-07-01
Ephrins control cell motility and matrix adhesion. These functions play a pivotal role in cancer progression, for example, in malignant melanomas. We have previously shown that the ephrin-B2-tumor-promoting action is partly mediated by integrin-beta1 interaction. However, the subcellular prerequisites for molecular interaction like molecular proximity and co-compartmentalization have not been elucidated yet. Specific cholesterol-rich microdomains, termed lipid rafts (RAFTs), are known to be essential for functional ephrin-B2 signalling and integrin-mediated effects. Therefore, we addressed the question whether RAFT co-compartmentalization of both molecules could provide the molecular platform for their tumor-promoting interaction. In this study, we show that overexpressed ephrin-B2 is not only compartmentalized to classical Triton X-100 RAFTs in B16 melanoma cells, but also to the recently defined Lubrol-RAFTs. Interestingly, in the melanoma cells investigated, integrin-beta1 is also preferentially detected in such Lubrol-RAFTs. Accordingly, the presence of ephrin-B2 and integrin-beta1 in RAFTs and their function in cell migration and matrix attachment are highly sensitive to RAFT disruption by cholesterol depletion. Confocal fluorescence microscopy analyses also support the concept of a close molecular proximity and functional interplay of ephrin-B2 and integrin-beta1 in the plasma membrane. We conclude that Lubrol-RAFTs probably represent the platform for tumor-promoting ephrin-B2-integrin-beta1 interaction, which could become an interesting target for future antitumoral therapies.
Simpson, D G; Terracio, L; Terracio, M; Price, R L; Turner, D C; Borg, T K
1994-10-01
Cellular phenotype is the result of a dynamic interaction between a cell's intrinsic genetic program and the morphogenetic signals that serve to modulate the extent to which that program is expressed. In the present study we have examined how morphogenetic information might be stored in the extracellular matrix (ECM) and communicated to the neonatal heart cell (NHC) by the cardiac alpha 1 beta 1 integrin molecule. A thin film of type I collagen (T1C) was prepared with a defined orientation. This was achieved by applying T1C to the peripheral edge of a 100 mm culture dish. The T1C was then drawn across the surface of the dish in a continuous stroke with a sterile cell scraper and allowed to polymerize. When NHCs were cultured on this substrate, they spread, as a population, along a common axis in parallel with the gel lattice and expressed an in vivo-like phenotype. Individual NHCs displayed an elongated, rod-like shape and disclosed parallel arrays of myofibrils. These phenotypic characteristics were maintained for at least 4 weeks in primary culture. The evolution of this tissue-like organizational pattern was dependent upon specific interactions between the NHCs and the collagen-based matrix that were mediated by the cardiac alpha 1 beta 1 integrin complex. This conclusion was supported by a variety of experimental results. Altering the tertiary structure of the matrix or blocking the extracellular domains of either the cardiac alpha 1 or beta 1 integrin chain inhibited the expression of the tissue-like pattern of organization. Neither cell-to-cell contact or contractile function were necessary to induce the formation of the rod-like cell shape. However, beating activity was necessary for the assembly of a well-differentiated myofibrillar apparatus. These data suggest that the cardiac alpha 1 beta 1 integrin complex serves to detect and transduce phenotypic information stored within the tertiary structure of the surrounding matrix.
Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration.
Bonar, Nicolle A; Petersen, Christian P
2017-03-01
Animals capable of adult regeneration require specific signaling to control injury-induced cell proliferation, specification and patterning, but comparatively little is known about how the regeneration blastema assembles differentiating cells into well-structured functional tissues. Using the planarian Schmidtea mediterranea as a model, we identify β1-integrin as a crucial regulator of blastema architecture. β1-integrin(RNAi) animals formed small head blastemas with severe tissue disorganization, including ectopic neural spheroids containing differentiated neurons normally found in distinct organs. By mimicking aspects of normal brain architecture but without normal cell-type regionalization, these spheroids bore a resemblance to mammalian tissue organoids synthesized in vitro We identified one of four planarian integrin-alpha subunits inhibition of which phenocopied these effects, suggesting that a specific receptor controls brain organization through regeneration. Neoblast stem cells and progenitor cells were mislocalized in β1-integrin(RNAi) animals without significantly altered body-wide patterning. Furthermore, tissue disorganization phenotypes were most pronounced in animals undergoing brain regeneration and not homeostatic maintenance or regeneration-induced remodeling of the brain. These results suggest that integrin signaling ensures proper progenitor recruitment after injury, enabling the generation of large-scale tissue organization within the regeneration blastema. © 2017. Published by The Company of Biologists Ltd.
Schwab, Elisabeth H.; Halbig, Maria; Glenske, Kristina; Wagner, Alena-Svenja; Wenisch, Sabine; Cavalcanti-Adam, Elisabetta A.
2013-01-01
The detailed interactions of mesenchymal stem cells (MSCs) with their extracellular matrix (ECM) and the resulting effects on MSC differentiation are still largely unknown. Integrins are the main mediators of cell-ECM interaction. In this study, we investigated the adhesion of human MSCs to fibronectin, vitronectin and osteopontin, three ECM glycoproteins which contain an integrin-binding sequence, the RGD motif. We then assayed MSCs for their osteogenic commitment in the presence of the different ECM proteins. As early as 2 hours after seeding, human MSCs displayed increased adhesion when plated on fibronectin, whereas no significant difference was observed when adhering either to vitronectin or osteopontin. Over a 10-day observation period, cell proliferation was increased when cells were cultured on fibronectin and osteopontin, albeit after 5 days in culture. The adhesive role of fibronectin was further confirmed by measurements of cell area, which was significantly increased on this type of substrate. However, integrin-mediated clusters, namely focal adhesions, were larger and more mature in MSCs adhering to vitronectin and osteopontin. Adhesion to fibronectin induced elevated expression of α5-integrin, which was further upregulated under osteogenic conditions also for vitronectin and osteopontin. In contrast, during osteogenic differentiation the expression level of β3-integrin was decreased in MSCs adhering to the different ECM proteins. When MSCs were cultured under osteogenic conditions, their commitment to the osteoblast lineage and their ability to form a mineralized matrix in vitro was increased in presence of fibronectin and osteopontin. Taken together these results indicate a distinct role of ECM proteins in regulating cell adhesion, lineage commitment and phenotype of MSCs, which is due to the modulation of the expression of specific integrin subunits during growth or osteogenic differentiation. PMID:24324361
Schwab, Elisabeth H; Halbig, Maria; Glenske, Kristina; Wagner, Alena-Svenja; Wenisch, Sabine; Cavalcanti-Adam, Elisabetta A
2013-01-01
The detailed interactions of mesenchymal stem cells (MSCs) with their extracellular matrix (ECM) and the resulting effects on MSC differentiation are still largely unknown. Integrins are the main mediators of cell-ECM interaction. In this study, we investigated the adhesion of human MSCs to fibronectin, vitronectin and osteopontin, three ECM glycoproteins which contain an integrin-binding sequence, the RGD motif. We then assayed MSCs for their osteogenic commitment in the presence of the different ECM proteins. As early as 2 hours after seeding, human MSCs displayed increased adhesion when plated on fibronectin, whereas no significant difference was observed when adhering either to vitronectin or osteopontin. Over a 10-day observation period, cell proliferation was increased when cells were cultured on fibronectin and osteopontin, albeit after 5 days in culture. The adhesive role of fibronectin was further confirmed by measurements of cell area, which was significantly increased on this type of substrate. However, integrin-mediated clusters, namely focal adhesions, were larger and more mature in MSCs adhering to vitronectin and osteopontin. Adhesion to fibronectin induced elevated expression of α₅-integrin, which was further upregulated under osteogenic conditions also for vitronectin and osteopontin. In contrast, during osteogenic differentiation the expression level of β₃-integrin was decreased in MSCs adhering to the different ECM proteins. When MSCs were cultured under osteogenic conditions, their commitment to the osteoblast lineage and their ability to form a mineralized matrix in vitro was increased in presence of fibronectin and osteopontin. Taken together these results indicate a distinct role of ECM proteins in regulating cell adhesion, lineage commitment and phenotype of MSCs, which is due to the modulation of the expression of specific integrin subunits during growth or osteogenic differentiation.
Peuhu, Emilia; Salomaa, Siiri I; De Franceschi, Nicola; Potter, Christopher S; Sundberg, John P; Pouwels, Jeroen
2017-01-01
SHARPIN (Shank-Associated RH Domain-Interacting Protein) is a component of the linear ubiquitin chain assembly complex (LUBAC), which enhances TNF-induced NF-κB activity. SHARPIN-deficient (Sharpincpdm/cpdm) mice display multi-organ inflammation and chronic proliferative dermatitis (cpdm) due to TNF-induced keratinocyte apoptosis. In cells, SHARPIN also inhibits integrins independently of LUBAC, but it has remained enigmatic whether elevated integrin activity levels in the dermis of Sharpincpdm/cpdm mice is due to increased integrin activity or is secondary to inflammation. In addition, the functional contribution of increased integrin activation to the Sharpincpdm/cpdm phenotype has not been investigated. Here, we find increased integrin activity in keratinocytes from Tnfr1-/- Sharpincpdm/cpdm double knockout mice, which do not display chronic inflammation or proliferative dermatitis, thus suggesting that SHARPIN indeed acts as an integrin inhibitor in vivo. In addition, we present evidence for a functional contribution of integrin activity to the Sharpincpdm/cpdm skin phenotype. Treatment with an integrin beta 1 function blocking antibody reduced epidermal hyperproliferation and epidermal thickness in Sharpincpdm/cpdm mice. Our data indicate that, while TNF-induced cell death triggers the chronic inflammation and proliferative dermatitis, absence of SHARPIN-dependent integrin inhibition exacerbates the epidermal hyperproliferation in Sharpincpdm/cpdm mice.
Weber, Martin R; Zuka, Masahiko; Lorger, Mihaela; Tschan, Mario; Torbett, Bruce E; Zijlstra, Andries; Quigley, James P; Staflin, Karin; Eliceiri, Brian P; Krueger, Joseph S; Marchese, Patrizia; Ruggeri, Zaverio M; Felding, Brunhilde H
2016-04-01
Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvβ3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvβ3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvβ3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvβ3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease. © 2016 Elsevier Ltd. All rights reserved.
Weber, Martin R.; Zuka, Masahiko; Lorger, Mihaela; Tschan, Mario; Torbett, Bruce E.; Zijlstra, Andries; Quigley, James P.; Staflin, Karin; Eliceiri, Brian P.; Krueger, Joseph S.; Marchese, Patricia; Ruggeri, Zaverio M.; Felding, Brunhilde H.
2016-01-01
Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvβ3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvβ3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvβ3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvβ3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease. PMID:27067975
O'Hara, Samantha D; Garcea, Robert L
2016-11-01
Virus binding to the cell surface triggers an array of host responses, including activation of specific signaling pathways that facilitate steps in virus entry. Using mouse polyomavirus (MuPyV), we identified host signaling pathways activated upon virus binding to mouse embryonic fibroblasts (MEFs). Pathways activated by MuPyV included the phosphatidylinositol 3-kinase (PI3K), FAK/SRC, and mitogen-activated protein kinase (MAPK) pathways. Gangliosides and α4-integrin are required receptors for MuPyV infection. MuPyV binding to both gangliosides and the α4-integrin receptors was required for activation of the PI3K pathway; however, either receptor interaction alone was sufficient for activation of the MAPK pathway. Using small-molecule inhibitors, we confirmed that the PI3K and FAK/SRC pathways were required for MuPyV infection, while the MAPK pathway was dispensable. Mechanistically, the PI3K pathway was required for MuPyV endocytosis, while the FAK/SRC pathway enabled trafficking of MuPyV along microtubules. Thus, MuPyV interactions with specific cell surface receptors facilitate activation of signaling pathways required for virus entry and trafficking. Understanding how different viruses manipulate cell signaling pathways through interactions with host receptors could lead to the identification of new therapeutic targets for viral infection. Virus binding to cell surface receptors initiates outside-in signaling that leads to virus endocytosis and subsequent virus trafficking. How different viruses manipulate cell signaling through interactions with host receptors remains unclear, and elucidation of the specific receptors and signaling pathways required for virus infection may lead to new therapeutic targets. In this study, we determined that gangliosides and α4-integrin mediate mouse polyomavirus (MuPyV) activation of host signaling pathways. Of these pathways, the PI3K and FAK/SRC pathways were required for MuPyV infection. Both the PI3K and FAK/SRC pathways have been implicated in human diseases, such as heart disease and cancer, and inhibitors directed against these pathways are currently being investigated as therapies. It is possible that these pathways play a role in human PyV infections and could be targeted to inhibit PyV infection in immunosuppressed patients. Copyright © 2016 O’Hara and Garcea.
Patsoukis, Nikolaos; Bardhan, Kankana; Weaver, Jessica D; Sari, Duygu; Torres-Gomez, Alvaro; Li, Lequn; Strauss, Laura; Lafuente, Esther M; Boussiotis, Vassiliki A
2017-08-22
Lymphocyte activation requires adhesion to antigen-presenting cells. This is a critical event linking innate and adaptive immunity. Lymphocyte adhesion is accomplished through LFA-1, which must be activated by a process referred to as inside-out integrin signaling. Among the few signaling molecules that have been implicated in inside-out integrin activation in hematopoietic cells are the small guanosine triphosphatase (GTPase) Rap1 and its downstream effector Rap1-interacting molecule (RIAM), a multidomain protein that defined the Mig10-RIAM-lamellipodin (MRL) class of adaptor molecules. Through its various domains, RIAM is a critical node of signal integration for activation of T cells, recruits monomeric and polymerized actin to drive actin remodeling and cytoskeletal reorganization, and promotes inside-out integrin signaling in T cells. As a regulator of inside-out integrin activation, RIAM affects multiple functions of innate and adaptive immunity. The effects of RIAM on cytoskeletal reorganization and integrin activation have implications in cell migration and trafficking of cancer cells. We provide an overview of the structure and interactions of RIAM, and we discuss the implications of RIAM functions in innate and adaptive immunity and cancer. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
García, Andrés J.; Vega, María D.; Boettiger, David
1999-01-01
Integrin-mediated cell adhesion to extracellular matrices provides signals essential for cell cycle progression and differentiation. We demonstrate that substrate-dependent changes in the conformation of adsorbed fibronectin (Fn) modulated integrin binding and controlled switching between proliferation and differentiation. Adsorption of Fn onto bacterial polystyrene (B), tissue culture polystyrene (T), and collagen (C) resulted in differences in Fn conformation as indicated by antibody binding. Using a biochemical method to quantify bound integrins in cultured cells, we found that differences in Fn conformation altered the quantity of bound α5 and β1 integrin subunits but not αv or β3. C2C12 myoblasts grown on these Fn-coated substrates proliferated to different levels (B > T > C). Immunostaining for muscle-specific myosin revealed minimal differentiation on B, significant levels on T, and extensive differentiation on C. Differentiation required binding to the RGD cell binding site in Fn and was blocked by antibodies specific for this site. Switching between proliferation and differentiation was controlled by the levels of α5β1 integrin bound to Fn, and differentiation was inhibited by anti-α5, but not anti-αv, antibodies, suggesting distinct integrin-mediated signaling pathways. Control of cell proliferation and differentiation through conformational changes in extracellular matrix proteins represents a versatile mechanism to elicit specific cellular responses for biological and biotechnological applications. PMID:10069818
Gvozdenovic, Ana; Boro, Aleksandar; Meier, Daniela; Bode-Lesniewska, Beata; Born, Walter; Muff, Roman; Fuchs, Bruno
2016-01-01
Osteosarcoma is an aggressive bone cancer that has a high propensity for metastasis to the lungs. Patients with metastatic disease face a very poor prognosis. Therefore, novel therapeutics, efficiently suppressing the metastatic process, are urgently needed. Integrins play a pivotal role in tumor cell adhesion, motility and metastasis. Here, we evaluated αvβ3 and αvβ5 integrin inhibition with cilengitide as a novel metastasis-suppressive therapeutic approach in osteosarcoma. Immunohistochemical analysis of αvβ3 and αvβ5 integrins expression in a tissue microarray of tumor specimens collected from osteosarcoma patients revealed that αvβ5 integrin is mainly found on tumor cells, whereas αvβ3 is predominantly expressed by stromal cells. In vitro functional assays demonstrated that cilengitide dose-dependently inhibited de novo adhesion, provoked detachment and inhibited migration of osteosarcoma cell lines. Cilengitide induced a decline in cell viability, blocked the cell cycle in the G1 phase and caused anoikis by activation of the Hippo pathway. In a xenograft orthotopic mouse model cilengitide minimally affected intratibial primary tumor growth but, importantly, suppressed pulmonary metastasis. The data demonstrate that targeting αvβ3 and αvβ5 integrins in osteosarcoma should be considered as a novel therapeutic option for patients with metastatic disease. PMID:27409827
Epithelial cell integrin β1 is required for developmental angiogenesis in the pituitary gland
Scully, Kathleen M.; Skowronska-Krawczyk, Dorota; Krawczyk, Michal; Merkurjev, Daria; Taylor, Havilah; Livolsi, Antonia; Tollkuhn, Jessica; Stan, Radu V.; Rosenfeld, Michael G.
2016-01-01
As a key component of the vertebrate neuroendocrine system, the pituitary gland relies on the progressive and coordinated development of distinct hormone-producing cell types and an invading vascular network. The molecular mechanisms that drive formation of the pituitary vasculature, which is necessary for regulated synthesis and secretion of hormones that maintain homeostasis, metabolism, and endocrine function, remain poorly understood. Here, we report that expression of integrin β1 in embryonic pituitary epithelial cells is required for angiogenesis in the developing mouse pituitary gland. Deletion of pituitary epithelial integrin β1 before the onset of angiogenesis resulted in failure of invading endothelial cells to recruit pericytes efficiently, whereas deletion later in embryogenesis led to decreased vascular density and lumen formation. In both cases, lack of epithelial integrin β1 was associated with a complete absence of vasculature in the pituitary gland at birth. Within pituitary epithelial cells, integrin β1 directs a large transcriptional program that includes components of the extracellular matrix and associated signaling factors that are linked to the observed non–cell-autonomous effects on angiogenesis. We conclude that epithelial integrin β1 functions as a critical and canonical regulator of developmental angiogenesis in the pituitary gland, thus providing insight into the long-standing systems biology conundrum of how vascular invasion is coordinated with tissue development. PMID:27810956
Antonow, Michelli B.; Franco, Camila; Prado, Willian; Beckenkamp, Aline; Silveira, Gustavo P.; Buffon, Andréia; Guterres, Sílvia S.
2017-01-01
Doxorubicin (Dox) clinical use is limited by dose-related cardiomyopathy, becoming more prevalent with increasing cumulative doses. Previously, we developed Dox-loaded lipid-core nanocapsules (Dox-LNC) and, in this study, we hypothesized that self-assembling and interfacial reactions could be used to obtain arginylglycylaspartic acid (RGD)-surface-functionalized-Dox-LNC, which could target tumoral cells overexpressing αvβ3 integrin. Human breast adenocarcinoma cell line (MCF-7) and human glioblastoma astrocytoma (U87MG) expressing different levels of αvβ3 integrin were studied. RGD-functionalized Dox-LNC were prepared with Dox at 100 and 500 mg·mL−1 (RGD-MCMN (Dox100) and RGD-MCMN (Dox500)). Blank formulation (RGD-MCMN) had z-average diameter of 162 ± 6 nm, polydispersity index of 0.11 ± 0.04, zeta potential of +13.2 ± 1.9 mV and (6.2 ± 1.1) × 1011 particles mL−1, while RGD-MCMN (Dox100) and RGD-MCMN (Dox500) showed respectively 146 ± 20 and 215 ± 25 nm, 0.10 ± 0.01 and 0.09 ± 0.03, +13.8 ± 2.3 and +16.4 ± 1.5 mV and (6.9 ± 0.6) × 1011 and (6.1 ± 1.0) × 1011 particles mL−1. RGD complexation was 7.73 × 104 molecules per nanocapsule and Dox loading were 1.51 × 104 and 7.64 × 104 molecules per nanocapsule, respectively. RGD-functionalized nanocapsules had an improved uptake capacity by U87MG cells. Pareto chart showed that the cell viability was mainly affected by the Dox concentration and the period of treatment in both MCF-7 and U87MG. The influence of RGD-functionalization on cell viability was a determinant factor exclusively to U87MG. PMID:29271920
Wiencierz, Anne Maria; Kernbach, Manuel; Ecklebe, Josephine; Monnerat, Gustavo; Tomiuk, Stefan; Raulf, Alexandra; Christalla, Peter; Malan, Daniela; Hesse, Michael; Bosio, Andreas; Fleischmann, Bernd K; Eckardt, Dominik
2015-01-01
Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or ventricular cardiomyocytes due to the lack of subtype specific cell surface markers. In order to develop cell surface marker-based isolation procedures for cardiomyocyte subtypes, we performed an antibody-based screening on embryonic mouse hearts. Our data indicate that atrial and ventricular cardiomyocytes are characterized by differential expression of integrin α6 (ITGA6) throughout development and in the adult heart. We discovered that the expression level of this surface marker correlates with the intracellular subtype-specific expression of MLC-2a and MLC-2v on the single cell level and thereby enables the discrimination of cardiomyocyte subtypes by flow cytometry. Based on the differential expression of ITGA6 in atria and ventricles during cardiogenesis, we developed purification protocols for atrial and ventricular cardiomyocytes from mouse hearts. Atrial and ventricular identities of sorted cells were confirmed by expression profiling and patch clamp analysis. Here, we introduce a non-genetic, antibody-based approach to specifically isolate highly pure and viable atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This will facilitate in-depth characterization of the individual cellular subsets and support translational research applications.
Wiencierz, Anne Maria; Kernbach, Manuel; Ecklebe, Josephine; Monnerat, Gustavo; Tomiuk, Stefan; Raulf, Alexandra; Christalla, Peter; Malan, Daniela; Hesse, Michael; Bosio, Andreas; Fleischmann, Bernd K.; Eckardt, Dominik
2015-01-01
Rationale Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or ventricular cardiomyocytes due to the lack of subtype specific cell surface markers. Methods and Results In order to develop cell surface marker-based isolation procedures for cardiomyocyte subtypes, we performed an antibody-based screening on embryonic mouse hearts. Our data indicate that atrial and ventricular cardiomyocytes are characterized by differential expression of integrin α6 (ITGA6) throughout development and in the adult heart. We discovered that the expression level of this surface marker correlates with the intracellular subtype-specific expression of MLC-2a and MLC-2v on the single cell level and thereby enables the discrimination of cardiomyocyte subtypes by flow cytometry. Based on the differential expression of ITGA6 in atria and ventricles during cardiogenesis, we developed purification protocols for atrial and ventricular cardiomyocytes from mouse hearts. Atrial and ventricular identities of sorted cells were confirmed by expression profiling and patch clamp analysis. Conclusion Here, we introduce a non-genetic, antibody-based approach to specifically isolate highly pure and viable atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This will facilitate in-depth characterization of the individual cellular subsets and support translational research applications. PMID:26618511
PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions.
Woods, Alison J; White, Dominic P; Caswell, Patrick T; Norman, Jim C
2004-07-07
To identify kinases that regulate integrin recycling, we have immunoprecipitated alphavbeta3 integrin from NIH 3T3 fibroblasts in the presence and absence of primaquine (a drug that inhibits receptor recycling and leads to accumulation of integrins in endosomes) and screened for co-precipitating kinases. Primaquine strongly promoted association of alphavbeta3 integrin with PKD1, and fluorescence microscopy indicated that integrin and PKD1 associate at a vesicular compartment that is downstream of a Rab4-dependent transport step. PKD1 association was mediated by the C-terminal region of the beta3 integrin cytodomain, and mutants of beta3 that were unable to recruit PKD1 did not recycle in a PDGF-dependent fashion. Furthermore, suppression of endogenous PKD1 levels by RNAi, or overexpression of catalytically inactive PKD1 inhibited PDGF-dependent recycling of alphavbeta3 from early endosomes to the plasma membrane and blocked recruitment of alphavbeta3 to newly formed focal adhesions during cell spreading. These data indicate that PKD1 influences cell migration by directing vesicular transport of the alphavbeta3 integrin heterodimer.
Origin and Properties of Prostatic Stem Cells
2007-02-01
Brinster RL. beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 1999;96(10):5504-9. 14. Tsujimura ...G. R., Donjacour, A. A., Cooke, P. S., Mee, S., Bigsby, R. M., Higgins, S. J. & Sugimura, Y. (1987) Endocr. Rev. 8, 338–362. 9. Tsujimura , A...90. 4 Tsujimura A, Koikawa Y, Salm S et al. Proximal location of mouse prostate epithelial stem cells: A model of prostatic homeostasis. J Cell Biol
Liu, Jianming; Burkin, Dean J.; Kaufman, Stephen J.
2008-01-01
The dystrophin-glycoprotein complex maintains the integrity of skeletal muscle by associating laminin in the extracellular matrix with the actin cytoskeleton. Several human muscular dystrophies arise from defects in the components of this complex. The α7β1-integrin also binds laminin and links the extracellular matrix with the cytoskeleton. Enhancement of α7-integrin levels alleviates pathology in mdx/utrn−/− mice, a model of Duchenne muscular dystrophy, and thus the integrin may functionally compensate for the absence of dystrophin. To test whether increasing α7-integrin levels affects transcription and cellular functions, we generated α7-integrin-inducible C2C12 cells and transgenic mice that overexpress the integrin in skeletal muscle. C2C12 myoblasts with elevated levels of integrin exhibited increased adhesion to laminin, faster proliferation when serum was limited, resistance to staurosporine-induced apoptosis, and normal differentiation. Transgenic expression of eightfold more integrin in skeletal muscle did not result in notable toxic effects in vivo. Moreover, high levels of α7-integrin in both myoblasts and in skeletal muscle did not disrupt global gene expression profiles. Thus increasing integrin levels can compensate for defects in the extracellular matrix and cytoskeleton linkage caused by compromises in the dystrophin-glycoprotein complex without triggering apparent overt negative side effects. These results support the use of integrin enhancement as a therapy for muscular dystrophy. PMID:18045857
Combating resistance to anti-IGFR antibody by targeting the integrin β3-Src pathway.
Shin, Dong Hoon; Lee, Hyo-Jong; Min, Hye-Young; Choi, Sun Phil; Lee, Mi-Sook; Lee, Jung Weon; Johnson, Faye M; Mehta, Kapil; Lippman, Scott M; Glisson, Bonnie S; Lee, Ho-Young
2013-10-16
Several phase II/III trials of anti-insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies (mAbs) have shown limited efficacy. The mechanisms of resistance to IGF-1R mAb-based therapies and clinically applicable strategies for overcoming drug resistance are still undefined. IGF-1R mAb cixutumumab efficacy, alone or in combination with Src inhibitors, was evaluated in 10 human head and neck squamous cell carcinoma (HNSCC) and six non-small cell lung cancer (NSCLC) cell lines in vitro in two- or three-dimensional culture systems and in vivo in cell line- or patient-derived xenograft tumors in athymic nude mice (n = 6-9 per group). Cixutumumab-induced changes in cell signaling and IGF-1 binding to integrin β3 were determined by Western or ligand blotting, immunoprecipitation, immunofluorescence, and cell adhesion analyses and enzyme-linked immunosorbent assay. Data were analyzed by the two-sided Student t test or one-way analysis of variance. Integrin β3-Src signaling cascade was activated by IGF-1 in HNSCC and NSCLC cells, when IGF-1 binding to IGF-1R was hampered by cixutumumab, resulting in Akt activation and cixutumumab resistance. Targeting integrin β3 or Src enhanced antitumor activity of cixutumumab in multiple cixutumumab-resistant cell lines and patient-derived tumors in vitro and in vivo. Mean tumor volume of mice cotreated with cixutumumab and integrin β3 siRNA was 133.7 mm(3) (95% confidence interval [CI] = 57.6 to 209.8 mm(3)) compared with those treated with cixutumumab (1472.5 mm(3); 95% CI = 1150.7 to 1794.3 mm(3); P < .001) or integrin β3 siRNA (903.2 mm(3); 95% CI = 636.1 to 1170.3 mm(3); P < .001) alone. Increased Src activation through integrin ανβ3 confers considerable resistance against anti-IGF-1R mAb-based therapies in HNSCC and NSCLC cells. Dual targeting of the IGF-1R pathway and collateral integrin β3-Src signaling module may override this resistance.
Combating Resistance to Anti-IGFR Antibody by Targeting the Integrin β3-Src Pathway
2013-01-01
Background Several phase II/III trials of anti–insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies (mAbs) have shown limited efficacy. The mechanisms of resistance to IGF-1R mAb-based therapies and clinically applicable strategies for overcoming drug resistance are still undefined. Methods IGF-1R mAb cixutumumab efficacy, alone or in combination with Src inhibitors, was evaluated in 10 human head and neck squamous cell carcinoma (HNSCC) and six non–small cell lung cancer (NSCLC) cell lines in vitro in two- or three-dimensional culture systems and in vivo in cell line– or patient-derived xenograft tumors in athymic nude mice (n = 6–9 per group). Cixutumumab-induced changes in cell signaling and IGF-1 binding to integrin β3 were determined by Western or ligand blotting, immunoprecipitation, immunofluorescence, and cell adhesion analyses and enzyme-linked immunosorbent assay. Data were analyzed by the two-sided Student t test or one-way analysis of variance. Results Integrin β3–Src signaling cascade was activated by IGF-1 in HNSCC and NSCLC cells, when IGF-1 binding to IGF-1R was hampered by cixutumumab, resulting in Akt activation and cixutumumab resistance. Targeting integrin β3 or Src enhanced antitumor activity of cixutumumab in multiple cixutumumab-resistant cell lines and patient-derived tumors in vitro and in vivo. Mean tumor volume of mice cotreated with cixutumumab and integrin β3 siRNA was 133.7mm3 (95% confidence interval [CI] = 57.6 to 209.8mm3) compared with those treated with cixutumumab (1472.5mm3; 95% CI = 1150.7 to 1794.3mm3; P < .001) or integrin β3 siRNA (903.2mm3; 95% CI = 636.1 to 1170.3mm3; P < .001) alone. Conclusions Increased Src activation through integrin ανβ3 confers considerable resistance against anti–IGF-1R mAb-based therapies in HNSCC and NSCLC cells. Dual targeting of the IGF-1R pathway and collateral integrin β3–Src signaling module may override this resistance. PMID:24092920
Biomagnetics and Cell-Based Biochips
NASA Astrophysics Data System (ADS)
Ingber, Donald
2005-03-01
This presentation will review various micro- and nanotechnologies that we have developed over the past decade in our efforts to manipulate and probe living cells. In early studies, we used magnetic micro-particles to apply controlled mechanical forces to surface membrane receptors. We did this to probe cellular mechanical properties, and to investigate the molecular basis of mechanotransduction -- how mechanical forces are transduced into changes in intracellular biochemistry. The magnetic beads were coated with ligands for adhesion receptors, such as synthetic RGD (arginine-glycine-aspartate) peptides or antibodies that bind to membrane integrin receptors. Controlled twisting (torque) or pulling (tension) forces were exerted on the integrin-bound beads using magnetic twisting or pulling cytometry. To investigate the cellular response to dynamic forces, and to increase the level of stress applied, an electromagnetic needle was developed to apply a temporally varying magnetic field controlled by a user-defined solenoidal current; the end of the needle also was electropolished to produce a nanoscale pole tip. Magnetic forces applied to integrin receptors, but not other cell-surface receptors, induced force-dependent recruitment of cytoskeletal linker (focal adhesion) proteins to the site of bead binding, resulting in assembly and mechanical strengthening of the adhesions. Stress application to integrins also resulted in force-dependent increases in cAMP signaling and induction of gene transcription. These experiments revealed that integrins and the cytoskeleton play a central role in cellular mechanotransduction.studies in collaboration with George Whitesides (Harvard U.), we used microcontact printing techniques with self- assembled monolayers of alkanethiols to microfabricate extracellular matrix-coated adhesive islands of defined size, shape, and position on the micrometer scale. When cells were plated on these islands, the spread to take on the form of the island. These studies revealed that cells can be switched between growth, differentiation, and death (apoptosis) by varying the degree to which a cell physically can distend. When cells grown on islands with corners (e.g., squares, triangles) were stimulated with motility factors, the cells preferentially extended new motile processes from the corner regions, whereas cells on circular islands showed no bias. These findings demonstrated that much of cell behavior is controlled through physical interactions between cells and their adhesive substrate, and that microfabrication methods may be useful for tissue engineering, as well as creation of ``laboratories on a chip'' or biosensor devices that incorporate living mammalian cells. addition, in experiments with Bob Westervelt and Donhee Ham (Harvard U.), we have demonstrated the feasilibility of using microelectromagnetic circuits and CMOS technology to physically pull cells out from medium magnetically, and to move them in a directed manner. This approach may have great value for cell separation applications. Finally, with Whitesides group, we also demonstrated that microfluidics technologies may be used to deliver chemicals or probes to different regions of the same living cell under flow conditions. This provides a novel way to create chemical gradients at the subcellular scale and thereby probe the relation between cell structure and function. We also are currently exploring novel uses of microfluidics technologies, including their application for clinical cell separation applications. Taken together, this body of his work clearly demonstrates the great value of microsystem and microfluidic approaches for the analysis and manipulation of living cells. These approaches may have great value, both for fundamental scientific research and for clinical applications.
NASA Technical Reports Server (NTRS)
Globus, R. K.; Moursi, A.; Zimmerman, D.; Lull, J.; Damsky, C.
1995-01-01
The differentiaton of bone cells is a complex multistep process. Bone is somewhat unusual in that it is very actively and continually remodeled in the adult and that maintenance of its mass in the mature organism is exquisitely sensitive to mechanical as well as chemical signals. Bone is also unique because it consists of a very large amount of extracellular matrix (ECM) that is mineralized. The integrin family of ECM receptors has been shown to play an important role in tissue morphogenesis in several systems. Our studies on the regulation of matrix remodeling enzymes by integrins in rabbit synovial fibroblasts show that two b1 integrin fibronectin (FN) receptor complexes (alpha 5 beta 1 and alpha 4 beta 1) cooperate in detecting subtle changes in the composition of the ECM. As a result of signal transduction by these integrins, the levels of mRNA and protein for several members of the metalloproteinase family are regulated in these cells. We have also used antibody and RGD peptide perturbation studies to determine the significance of cell/ECM interactions to normal osteogenesis. We found that interactions between the cell binding domain of FN and integrins are required for both normal morphogenesis and gene expression in cultured osteoblasts that differentiate to form bone-like tissue in culture. These data lead us to propose that beta 1 integrins play an important role in osteoblast differentiation as well as in bone remodeling.
Rough titanium alloys regulate osteoblast production of angiogenic factors.
Olivares-Navarrete, Rene; Hyzy, Sharon L; Gittens, Rolando A; Schneider, Jennifer M; Haithcock, David A; Ullrich, Peter F; Slosar, Paul J; Schwartz, Zvi; Boyan, Barbara D
2013-11-01
Polyether-ether-ketone (PEEK) and titanium-aluminum-vanadium (titanium alloy) are used frequently in lumbar spine interbody fusion. Osteoblasts cultured on microstructured titanium generate an environment characterized by increased angiogenic factors and factors that inhibit osteoclast activity mediated by integrin α2β1 signaling. It is not known if this is also true of osteoblasts on titanium alloy or PEEK. The purpose of this study was to determine if osteoblasts generate an environment that supports angiogenesis and reduces osteoclastic activity when grown on smooth titanium alloy, rough titanium alloy, or PEEK. This in vitro study compared angiogenic factor production and integrin gene expression of human osteoblast-like MG63 cells cultured on PEEK or titanium-aluminum-vanadium (titanium alloy). MG63 cells were grown on PEEK, smooth titanium alloy, or rough titanium alloy. Osteogenic microenvironment was characterized by secretion of osteoprotegerin and transforming growth factor beta-1 (TGF-β1), which inhibit osteoclast activity and angiogenic factors including vascular endothelial growth factor A (VEGF-A), fibroblast growth factor 2 (FGF-2), and angiopoietin-1 (ANG-1). Expression of integrins, transmembrane extracellular matrix recognition proteins, was measured by real-time polymerase chain reaction. Culture on titanium alloy stimulated osteoprotegerin, TGF-β1, VEGF-A, FGF-2, and angiopoietin-1 production, and levels were greater on rough titanium alloy than on smooth titanium alloy. All factors measured were significantly lower on PEEK than on smooth or rough titanium alloy. Culture on titanium alloy stimulated expression of messenger RNA for integrins that recognize Type I collagen in comparison with PEEK. Rough titanium alloy stimulated cells to create an osteogenic-angiogenic microenvironment. The osteogenic-angiogenic responses to titanium alloy were greater than PEEK and greater on rough titanium alloy than on smooth titanium alloy. Surface features regulated expression of integrins important in collagen recognition. These factors may increase bone formation, enhance integration, and improve implant stability in interbody spinal fusions. Copyright © 2013 Elsevier Inc. All rights reserved.
CD36 Recruits α5β1 Integrin to Promote Cytoadherence of P. falciparum-Infected Erythrocytes
Davis, Shevaun P.; Lee, Kristine; Gillrie, Mark R.; Roa, Lina; Amrein, Matthias; Ho, May
2013-01-01
The adhesion of Plasmodium falciparum-infected erythrocytes (IRBC) to receptors on different host cells plays a divergent yet critical role in determining the progression and outcome of the infection. Based on our ex vivo studies with clinical parasite isolates from adult Thai patients, we have previously proposed a paradigm for IRBC cytoadherence under physiological shear stress that consists of a recruitment cascade mediated largely by P-selectin, ICAM-1 and CD36 on primary human dermal microvascular endothelium (HDMEC). In addition, we detected post-adhesion signaling events involving Src family kinases and the adaptor protein p130CAS in endothelial cells that lead to CD36 clustering and cytoskeletal rearrangement which enhance the magnitude of the adhesive strength, allowing adherent IRBC to withstand shear stress of up to 20 dynes/cm2. In this study, we addressed whether CD36 supports IRBC adhesion as part of an assembly of membrane receptors. Using a combination of flow chamber assay, atomic force and confocal microscopy, we showed for the first time by loss- and gain-of function assays that in the resting state, the integrin α5β1 does not support adhesive interactions between IRBC and HDMEC. Upon IRBC adhesion to CD36, the integrin is recruited either passively as part of a molecular complex with CD36, or actively to the site of IRBC attachment through phosphorylation of Src family kinases, a process that is Ca2+-dependent. Clustering of β1 integrin is associated with an increase in IRBC recruitment as well as in adhesive strength after attachment (∼40% in both cases). The adhesion of IRBC to a multimolecular complex on the surface of endothelial cells could be of critical importance in enabling adherent IRBC to withstand the high shear stress in the microcirculations. Targeting integrins may provide a novel approach to decrease IRBC cytoadherence to microvascular endothelium. PMID:24009511
Direct integrin alphavbeta6-ERK binding: implications for tumour growth.
Ahmed, Nuzhat; Niu, Jun; Dorahy, Douglas J; Gu, Xinhua; Andrews, Sarah; Meldrum, Cliff J; Scott, Rodney J; Baker, Mark S; Macreadie, Ian G; Agrez, Michael V
2002-02-21
Blockade of the mitogen-activated protein (MAP) kinase pathway suppresses growth of colon cancer in vivo. Here we demonstrate a direct link between the extracellular signal-regulated kinase ERK2 and the growth-promoting cell adhesion molecule, integrin alphavbeta6, in colon cancer cells. Down-regulation of beta6 integrin subunit expression inhibits tumour growth in vivo and MAP kinase activity in response to serum stimulation. In alphavbeta6-expressing cells ERK2 is bound only to the beta6 subunit. The increase in cytosolic MAP kinase activity upon epidermal growth factor stimulation is all accounted for by beta6-bound ERK. Deletion of the ERK2 binding site on the beta6 cytoplasmic domain inhibits tumour growth and leads to an association between ERK and the beta5 subunit. The physical interaction between integrin alphavbeta6 and ERK2 defines a novel paradigm of integrin-mediated signalling and provides a therapeutic target for cancer treatment.
Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.
Mercapide, Javier; Lorico, Aurelio
2014-11-01
An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.
Siqueira, Adriane S; Pinto, Monique P; Cruz, Mário C; Smuczek, Basilio; Cruz, Karen S P; Barbuto, José Alexandre M; Hoshino, Daisuke; Weaver, Alissa M; Freitas, Vanessa M; Jaeger, Ruy G
2016-07-26
Laminin peptides influence tumor behavior. In this study, we addressed whether laminin peptide C16 (KAFDITYVRLKF, γ1 chain) would increase invadopodia activity of cells from squamous cell carcinoma (CAL27) and fibrosarcoma (HT1080). We found that C16 stimulates invadopodia activity over time in both cell lines. Rhodamine-conjugated C16 decorates the edge of cells, suggesting a possible binding to membrane receptors. Flow cytometry showed that C16 increases activated β1 integrin, and β1 integrin miRNA-mediated depletion diminishes C16-induced invadopodia activity in both cell lines. C16 stimulates Src and ERK 1/2 phosphorylation, and ERK 1/2 inhibition decreases peptide-induced invadopodia activity. C16 also increases cortactin phosphorylation in both cells lines. Based on our findings, we propose that C16 regulates invadopodia activity over time of squamous carcinoma and fibrosarcoma cells, probably through β1 integrin, Src and ERK 1/2 signaling pathways.
Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing
2016-01-01
Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis. PMID:26848618
Lin, Liang; Yan, Fan; Zhao, Dandan; Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing
2016-03-01
Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis.
Li, Yuk Yin; Choy, Tze Hang; Ho, Fu Chak; Chan, Pui Barbara
2015-06-01
The stem cell niche, or microenvironment, consists of soluble, matrix, cell and mechanical factors that together determine the cellular fates and/or differentiation patterns of stem cells. Collagen and glycosaminoglycans (GAGs) are important scaffolding materials that can mimic the natural matrix niche. Here, we hypothesize that imposing changes in the scaffold composition or, more specifically, incorporating GAGs into the collagen meshwork, will affect the morphology, cytoskeletal organization and integrin expression profiles, and hence the fate of human mesenchymal stem cells (MSCs) upon the induction of differentiation. Using chondrogenesis as an example, we microencapsulated MSCs in three scaffold systems that had varying matrix compositions: collagen alone (C), aminated collagen (AC) and aminated collagen with GAGs (ACG). We then induced the MSCs to differentiate toward a chondrogenic lineage, after which, we characterized the cell viability and morphology, as well as the level of cytoskeletal organization and the integrin expression profile. We also studied the fate of the MSCs by evaluating the major chondrogenic markers at both the gene and protein level. In C, MSC chondrogenesis was successfully induced and MSCs that spread in the scaffolds had a clear actin cytoskeleton; they expressed integrin α2β1, α5 and αv; promoted sox9 nuclear localization transcription activation; and upregulated the expression of chondrogenic matrix markers. In AC, MSC chondrogenesis was completely inhibited but the scaffold still supported cell survival. The MSCs did not spread and they had no actin cytoskeleton; did not express integrin α2 or αv; they failed to differentiate into chondrogenic lineage cells even on chemical induction; and there was little colocalization or functional interaction between integrin α5 and fibronectin. In ACG, although the MSCs did not express integrin α2, they did express integrin αv and there was strong co-localization and hence functional binding between αv and fibronectin. In addition, vimentin was the dominant cytoskeletal protein in these cells, and the chondrogenic marker genes were expressed but at a much lower level than in the MSCs encapsulated in C alone. This work suggests the importance of controlling the matrix composition as a strategy to manipulate cell-matrix interactions (through changes in the integrin expression profile and cytoskeleton organization), and hence stem cell fates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cellular Mechanisms Underlying Bone-Forming Cell Proliferative Response to Hypergravity
NASA Technical Reports Server (NTRS)
Vercoutere, W.; Parra, M.; DaCosta, M.; Wing, A.; Roden, C.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.
2004-01-01
Life on Earth has evolved under the continuous influence of gravity (1-g). As humans explore and develop space, however, we must learn to adapt to an environment with little or no gravity. Studies indicate that lack of weightbearing for vertebrates occurring with immobilization, paralysis, or in a microgravity environment may cause muscle and bone atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) (consisting of molecules such as collagen, fibronectin, and laminin) in mechanosensitive tissues. We test for the presence of gravity-sensitive pathways in bone-forming cells (osteoblasts) using hypergravity applied by a cell culture centrifuge. Stimulation of 50 times gravity (50-g) increased proliferation in primary rat osteoblasts for cells grown on collagen Type I and fibronectin, but not on laminin or uncoated surfaces. Survival was also enhanced during hypergravity stimulation by the presence of ECM. Bromodeoxyuridine incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. Reverse transcription-polymerase chain reaction was used to test for all possible integrins. Our combined results indicate that beta1 and/or beta3 integrin subunits may be involved. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signalling pathways which are sensitive to g-level. Further research to define the mechanisms involved will provide direction so that we may better adapt and counteract bone atrophy caused by the lack of weightbearing.
Kashimata, M; Gresik, E W
1997-02-01
Epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) regulate branching morphogenesis of fetal mouse submandibular gland (SMG) rudiments in vitro. The EGF system (EGF, TGF-alpha, and their shared receptor, EGFR) also regulates expression of integrins and their ligands in the extracellular matrix. We show here that inhibition of EGFR tyrosine-kinase activity by a tyrphostin retards in vitro development of SMGs. Using total RNA isolated from pooled SMGs taken from intact mouse fetuses, mRNA transcripts for EGF, TGF-alpha, and EGFR were detected by reverse transcription-polymerase chain reaction (RT-PCR), and age-dependent variations in the levels of these mRNA were quantitatively determined by nuclease protection assays. These findings suggest that the EGF system is operative in the in vivo development of this gland. alpha6-Integrin subunit was localized by immunofluorescence at the basal surface of epithelial cells. Branching morphogenesis of cultured SMG rudiments was inhibited by anti-alpha6 antibodies. Synthesis of alpha6-subunit in cultured SMGs, detected by metabolic labeling and immunoprecipitation, was increased by EGF and drastically reduced by tyrphostin. RT-PCR revealed that mRNAs for alpha6- and beta1- and beta4-integrin subunits are expressed at all ages between embryonic day 13 and postnatal day 7. These findings suggest that 1) the EGF system is a physiologic regulator of development of fetal mouse SMG, and 2) one mechanism by which it acts may be by regulating expression of integrins, which in turn control interaction of epithelial cells with the extracellular matrix.
NASA Astrophysics Data System (ADS)
Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco
2004-07-01
The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.
Krebs, Kristi; Ruusmann, Anu; Simonlatser, Grethel; Velling, Teet
2015-12-01
FLNa is a ubiquitous cytoskeletal protein that links transmembrane receptors, including integrins, to F-actin and functions as a signalling intermediate. We investigated FLNa's role in the function of integrin-type collagen receptors, EGF-EGFR signalling and regulation of PKB/Akt and ERK1/2. Using FLNa-deficient M2 human melanoma cells, and same cells expressing EGFP-FLNa (M2F) or its Ig-like repeats 1-8+24, 8-15+24 and 16-24, we found that in M2F and M2 8-15+24 cells, EGF induced the increased phosphorylation of PKB/Akt and ERK1/2. In M2F cells EGF induced the localisation of these kinases to cell nucleus and lamellipodia, respectively, and the ERK1/2 phosphorylation-dependent co-immunoprecipitation of FLNa with ERK1/2. Only M2F and M2 8-15+24 cells adhered to and spread on type I collagen whereas on fibronectin all cells behaved similarly. α1β1 and α2β1 were the integrin-type collagen receptors expressed on these cells with primarily α1β1 localising to focal contacts and affecting cell adhesion and migration in a manner dependent on FLNa or its Ig-like repeats 8-15. Our results suggest a role for FLNa repeats 8-15 in the α1-subunit-dependent regulation of integrin α1β1 function, EGF-EGFR signalling to PKB/Akt and ERK1/2, identify ERK1/2 in EGF-induced FLNa-associated protein complexes, and show that the function of different integrins is subjected to differential regulation by FLNa. Copyright © 2015. Published by Elsevier GmbH.
Zhu, Bangfu; Nicholls, Matthew; Gu, Yu; Zhang, Gaofeng; Zhao, Chao; Franklin, Robin J M; Song, Bing
2016-11-22
The guided migration of neural cells is essential for repair in the central nervous system (CNS). Oligodendrocyte progenitor cells (OPCs) will normally migrate towards an injury site to re-sheath demyelinated axons; however the mechanisms underlying this process are not well understood. Endogenous electric fields (EFs) are known to influence cell migration in vivo, and have been utilised in this study to direct the migration of OPCs isolated from neonatal Sprague-Dawley rats. The OPCs were exposed to physiological levels of electrical stimulation, and displayed a marked electrotactic response that was dependent on β1 integrin, one of the key subunits of integrin receptors. We also observed that F-actin, an important component of the cytoskeleton, was re-distributed towards the leading edge of the migrating cells, and that this asymmetric rearrangement was associated with β1 integrin function.
Melchior, Aurélie; Denys, Agnès; Deligny, Audrey; Mazurier, Joël; Allain, Fabrice
2008-02-01
Initially identified as a cyclosporin-A binding protein, cyclophilin B (CyPB) is an inflammatory mediator that induces adhesion of T lymphocytes to fibronectin, by a mechanism dependent on CD147 and alpha 4 beta 1 integrins. Recent findings have suggested that another cell membrane protein, CD98, may cooperate with CD147 to regulate beta1 integrin functions. Based on these functional relationships, we examined the contribution of CD98 in the pro-adhesive activity of CyPB, by utilizing the responsive promonocyte cell line THP-1. We demonstrated that cross-linking CD98 with CD98-AHN-18 antibody mimicked the responses induced by CyPB, i.e. homotypic aggregation, integrin-mediated adhesion to fibronectin and activation of p44/42 MAPK. Consistent with previous data, immunoprecipitation confirmed the existence of a heterocomplex wherein CD147, CD98 and beta1 integrins were associated. We then demonstrated that CyPB-induced cell adhesion and p44/42 MAPK activation were dependent on the participation of phosphoinositide 3-kinase and subsequent activation of protein kinase C-delta. Finally, silencing the expression of CD98 by RNA interference potently reduced CyPB-induced cell responses, thus confirming the role of CD98 in the pro-adhesive activity of CyPB. Altogether, our results support a model whereby CyPB induces integrin-mediated adhesion via interaction with a multimolecular unit formed by the association between CD147, CD98 and beta1 integrins.
Chigaev, Alexandre; Smagley, Yelena; Sklar, Larry A
2011-05-17
Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling, generated by a non-desensitizing receptor mutant. This suggests a fundamental role of this pathway in de-activation of integrin-dependent cell adhesion.
Neeson, Paul; Boyer, Jean; Kumar, Sanjeev; Lewis, Mark G.; Veazey, Lennox MattiasRon; Weiner, David; Paterson, Yvonne
2006-01-01
In this study in Rhesus macaques, we tested whether IL-12 or IL-15 in a DNA prime-oral Listeria boost amplifies the SIV-Gag specific CD8 mucosal response. SIV-specific CD8 T cells were demonstrated in the peripheral blood (PB) in all test vaccine groups, but not the control group. SIV Gag-specific CD8 T cells in the PB expressed α4β7 integrin, the gut-homing receptor; a minor subset co-express αEβ7 integrin. SIV Gag-specific CD8 T cells were also detected in the gut tissue, intraepithelial (IEL) and lamina propria lymphocytes (LPL) of the duodenum and ileum. These cells were characterized by high levels of β7 integrin expression and a predominance of the effector memory phenotype. Neither Il-12 nor IL-15 amplified the frequency of SIV-specific CD8 T cells in the gut. Thus, the DNA prime oral Listeria boost strategy induced a mucosal SIV-Gag specific CD8 T cell response characterized by expression of the α4β7 integrin gut-homing receptor. PMID:16904153
Civra, Andrea; Giuffrida, Maria Gabriella; Donalisio, Manuela; Napolitano, Lorenzo; Takada, Yoshikazu; Coulson, Barbara S; Conti, Amedeo; Lembo, David
2015-05-08
Human rotavirus is the leading cause of severe gastroenteritis in infants and children under the age of 5 years in both developed and developing countries. Human lactadherin, a milk fat globule membrane glycoprotein, inhibits human rotavirus infection in vitro, whereas bovine lactadherin is not active. Moreover, it protects breastfed infants against symptomatic rotavirus infections. To explore the potential antiviral activity of lactadherin sourced by equines, we undertook a proteomic analysis of milk fat globule membrane proteins from donkey milk and elucidated its amino acid sequence. Alignment of the human, bovine, and donkey lactadherin sequences revealed the presence of an Asp-Gly-Glu (DGE) α2β1 integrin-binding motif in the N-terminal domain of donkey sequence only. Because integrin α2β1 plays a critical role during early steps of rotavirus host cell adhesion, we tested a minilibrary of donkey lactadherin-derived peptides containing DGE sequence for anti-rotavirus activity. A 20-amino acid peptide containing both DGE and RGD motifs (named pDGE-RGD) showed the greatest activity, and its mechanism of antiviral action was characterized; pDGE-RGD binds to integrin α2β1 by means of the DGE motif and inhibits rotavirus attachment to the cell surface. These findings suggest the potential anti-rotavirus activity of equine lactadherin and support the feasibility of developing an anti-rotavirus peptide that acts by hindering virus-receptor binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Epitope topography controls bioactivity in supramolecular nanofibers
Sur, Shantanu; Tantakitti, Faifan; Matson, John B.; Stupp, Samuel I.
2015-01-01
Incorporating bioactivity into artificial scaffolds using peptide epitopes present in the extracellular matrix (ECM) is a well-known approach. A common strategy has involved epitopes that provide cells with attachment points and external cues through interaction with integrin receptors. Although a variety of bioactive sequences have been identified so far, less is known about their optimal display in a scaffold. We report here on the use of self-assembled peptide amphiphile (PA) nanofiber matrices to investigate the impact of spatial presentation of the fibronectin derived epitope RGDS on cell response. Using one, three, or five glycine residues, RGDS epitopes were systematically spaced out from the surface of the rigid nanofibers. We found that cell morphology was strongly affected by the separation of the epitope from the nanofiber surface, with the longest distance yielding the most cell-spreading, bundling of actin filaments, and a round-to-polygonal transformation of cell shape. Cell response to this type of epitope display was also accompanied with activated integrin-mediated signaling and formation of stronger adhesions between cells and substrate. Interestingly, unlike length, changing the molecular flexibility of the linker had minimal influence on cell behavior on the substrate for reasons that remain poorly understood. The use in this study of high persistence length nanofibers rather than common flexible polymers allows us to conclude that epitope topography at the nanoscale structure of a scaffold influences its bioactive properties independent of epitope density and mechanical properties. PMID:25745558
Goodman, Simon L.; Grote, Hans Juergen; Wilm, Claudia
2012-01-01
Summary The relationship between integrin expression and function in pathologies is often contentious as comparisons between human pathological expression and expression in cell lines is difficult. In addition, the expression of even integrins αvβ6 and αvβ8 in tumor cell lines is not comprehensively documented. Here, we describe rabbit monoclonal antibodies (RabMabs) against the extracellular domains of αv integrins that react with both native integrins and formalin fixed, paraffin embedded (FFPE) human tissues. These RabMabs, against αvβ3 (EM22703), αvβ5 (EM09902), αvβ6 (EM05201), αvβ8 (EM13309), and pan-αv (EM01309), recognize individual integrin chains in Western blots and in flow cytometry. EM22703 detected a ligand-induced binding site (LIBS), reporting an epitope enhanced by the binding of an RGD-peptide to αvβ3. αvβ8 was rarely expressed in human tumor specimens, and weakly expressed in non-small-cell lung carcinoma (NSCLC). However, ovarian carcinoma cell lines expressed αvβ8, as did some melanoma cells, whereas U87MG glioma lacked αvβ8 expression. We observed an unexpected strong expression of αvβ6 in tumor samples of invasive ductal breast adenoma, colorectal carcinoma (CRC), and NSCLC. αvβ3 was strongly expressed in some invasive NSCLC cohorts. Interestingly, PC3 prostate cell and human prostate tumors did not express αvβ3. The RabMabs stained plasma membranes in FFPE-immunohistochemistry (IHC) samples of tumor cell lines from lung, ovary, colon, prostate, squamous cell carcinoma of head and neck (SCCHN), breast, and pancreas carcinomas. The RabMabs are unique tools for probing αv integrin biology, and suggest that especially αvβ6 and αvβ8 biologies still have much to reveal. PMID:23213423
Mekhdjian, Armen H.; Kai, FuiBoon; Rubashkin, Matthew G.; Prahl, Louis S.; Przybyla, Laralynne M.; McGregor, Alexandra L.; Bell, Emily S.; Barnes, J. Matthew; DuFort, Christopher C.; Ou, Guanqing; Chang, Alice C.; Cassereau, Luke; Tan, Steven J.; Pickup, Michael W.; Lakins, Jonathan N.; Ye, Xin; Davidson, Michael W.; Lammerding, Jan; Odde, David J.; Dunn, Alexander R.; Weaver, Valerie M.
2017-01-01
Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome. PMID:28381423
Shekaran, Asha; Shoemaker, James T.; Kavanaugh, Taylor E.; Lin, Angela S.; LaPlaca, Michelle C.; Fan, Yuhong; Guldberg, Robert E.; García, Andrés J.
2014-01-01
Skeletal development and growth are complex processes regulated by multiple microenvironmental cues, including integrin-ECM interactions. The β1 sub-family of integrins is the largest integrin sub-family and constitutes the main integrin binding partners of collagen I, the major ECM component of bone. As complete β1 integrin integrin knockout results in embryonic lethality, studies of β1 integrin function in vivo rely on tissue-specific gene deletions. While multiple in vitro studies indicate that β1 integrins are crucial regulators of osteogenesis and mineralization, in vivo osteoblast-specific perturbations of β1 integrins have resulted in mild and sometimes contradictory skeletal phenotypes. To further investigate the role of β1 integrins on skeletal phenotype, we used the Twist2-Cre, Osterix-Cre and Osteocalcin-Cre lines to generate conditional β1 integrin deletions, where cre is expressed primarily in mesenchymal condensation, pre-osteoblast, and mature osteoblast lineage cells respectively within these lines. Mice with Twist2-specific β1 integrin disruption were smaller, had impaired skeletal development, especially in the craniofacial and vertebral tissues at E19.5, and did not survive beyond birth. Osterix-specific β1 integrin deficiency resulted in viable mice which were normal at birth but displayed early defects in calvarial ossification, incisor eruption and growth as well as femoral bone mineral density, structure, and mechanical properties. Although these defects persisted into adulthood, they became milder with age. Finally, a lack of β1 integrins in mature osteoblasts and osteocytes resulted in minor alterations to femur structure but had no effect on mineral density, biomechanics or fracture healing. Taken together, our data indicate that β1 integrin expression in early mesenchymal condensations play an important role in skeletal ossification, while β1 integrin-ECM interactions in pre-osteoblast, odontoblast- and hypertrophic chondryocyte- lineage cells regulate incisor eruption and perinatal bone formation in both intramembranously and endochondrally formed bones in young, rapidly growing mice. In contrast, the Osteocalcin-specific β1 integrin deletion had only minor effects on skeletal phenotype. PMID:25183373
Lonsdorf, Anke S.; Krämer, Björn F.; Fahrleitner, Manuela; Schönberger, Tanja; Gnerlich, Stephan; Ring, Sabine; Gehring, Sarah; Schneider, Stefan W.; Kruhlak, Michael J.; Meuth, Sven G.; Nieswandt, Bernhard; Gawaz, Meinrad; Enk, Alexander H.; Langer, Harald F.
2012-01-01
A mutual relationship exists between metastasizing tumor cells and components of the coagulation cascade. The exact mechanisms as to how platelets influence blood-borne metastasis, however, remain poorly understood. Here, we used murine B16 melanoma cells to observe functional aspects of how platelets contribute to the process of hematogenous metastasis. We found that platelets interfere with a distinct step of the metastasis cascade, as they promote adhesion of melanoma cells to the endothelium in vitro under shear conditions. Constitutively active platelet receptor GPIIb/IIIa (integrin αIIbβ3) expressed on Chinese hamster ovary cells promoted melanoma cell adhesion in the presence of fibrinogen, whereas blocking antibodies to aνβ3 integrin on melanoma cells or to GPIIb/IIIa significantly reduced melanoma cell adhesion to platelets. Furthermore, using intravital microscopy, we observed functional platelet-melanoma cell interactions, as platelet depletion resulted in significantly reduced melanoma cell adhesion to the injured vascular wall in vivo. Using a mouse model of hematogenous metastasis to the lung, we observed decreased metastasis of B16 melanoma cells to the lung by treatment with a mAb blocking the aν subunit of aνβ3 integrin. This effect was significantly reduced when platelets were depleted in vivo. Thus, the engagement of GPIIb/IIIa with aνβ3 integrin interaction mediates tumor cell-platelet interactions and highlights how this interaction is involved in hematogenous tumor metastasis. PMID:22102277
Case, Lindsay B.; Waterman, Clare M.
2011-01-01
At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in “ventral F-actin waves” that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These “adhesive F-actin waves” require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization. PMID:22069459
Martinko, Alexander J; Truillet, Charles; Julien, Olivier; Diaz, Juan E; Horlbeck, Max A; Whiteley, Gordon; Blonder, Josip; Weissman, Jonathan S; Bandyopadhyay, Sourav; Evans, Michael J; Wells, James A
2018-01-23
While there have been tremendous efforts to target oncogenic RAS signaling from inside the cell, little effort has focused on the cell-surface. Here, we used quantitative surface proteomics to reveal a signature of proteins that are upregulated on cells transformed with KRAS G12V , and driven by MAPK pathway signaling. We next generated a toolkit of recombinant antibodies to seven of these RAS-induced proteins. We found that five of these proteins are broadly distributed on cancer cell lines harboring RAS mutations. In parallel, a cell-surface CRISPRi screen identified integrin and Wnt signaling proteins as critical to RAS-transformed cells. We show that antibodies targeting CDCP1, a protein common to our proteomics and CRISPRi datasets, can be leveraged to deliver cytotoxic and immunotherapeutic payloads to RAS-transformed cancer cells and report for RAS signaling status in vivo. Taken together, this work presents a technological platform for attacking RAS from outside the cell. © 2018, Martinko et al.
Calcium-binding proteins and development
NASA Technical Reports Server (NTRS)
Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)
1998-01-01
The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, I-Hua; Shih, Hsin-Chu; Hsieh, Pei-Wen
Anoikis is defined as apoptosis, which is induced by inappropriate cell–matrix interactions. Cancer cells with anoikis resistance tend to undergo metastasis, and this phenomenon has been reported to be associated with integrin and FAK activity. HPW-RX40 is a derivative of 3,4-methylenedioxy-β-nitrostyrene, which is known to prevent platelet aggregation by inhibition of integrin. In the present study, we investigated the effect of HPW-RX40 on an anoikis-resistant human breast cancer cell line MDA-MB-231. HPW-RX40 inhibited cell aggregation and induced cell death in suspending MDA-MB-231 cells, but had only little effect on the monolayer growth of adherent cells. Analysis of caspase activation andmore » poly (ADP-ribose) polymerase (PARP) cleavage confirmed anoikis in HPW-RX40-treated suspending cancer cells. HPW-RX40 also affected the Bcl-2 family proteins in detached cancer cells. Furthermore, HPW-RX40 inhibited detachment-induced activation of FAK and the downstream phosphorylation of Src and paxillin, but did not affect this pathway in adherent cancer cells. We also found that the expression and activation of β1 integrin in MDA-MB-231 cells were reduced by HPW-RX40. The combination of HPW-RX40 with an EGFR inhibitor led to enhanced anoikis and inhibition of the FAK pathway in breast cancer cells. Taken together, our results suggest that HPW-RX40 restores the anoikis sensitivity in the metastatic breast cancer cells by inhibiting integrin and subsequent FAK activation, and reveal a potential strategy for prevention of tumor metastasis. - Highlights: • The β-nitrostyrene derivative, HPW-RX40, induces anoikis in human breast cancer cells. • HPW-RX40 inhibits the integrin/FAK signaling pathway. • The combination of HPW-RX40 with an EGFR inhibitor leads to enhanced anoikis. • HPW-RX40 may have a potential to prevent the spread of metastatic breast cancer.« less
Campbell, Shirley; Otis, Melissa; Côté, Mylène; Gallo-Payet, Nicole; Payet, Marcel Daniel
2003-04-01
Integrins are responsible for adhesion and activation of several intracellular cascades. The present study was aimed at determining whether the interaction between fibronectin and integrins could generate pathways involved in physiological functions of rat adrenal glomerulosa cells. Immunofluorescence studies and adhesion assays showed that fibronectin was the best matrix in promoting the formation of focal adhesion. Binding of glomerulosa cells to fibronectin, but not to collagen I or poly-L-lysine, involved the integrin-binding sequence Arg-Gly-Asp (RGD). Activation of glomerulosa cells with Arg-Gly-Asp-Ser (RGDS) induced an increase in [Ca(2+)](i), whereas fibronectin triggered a release of Ca(2+) from InsP(3)-sensitive Ca(2+) stores. Aldosterone secretion induced by ACTH, angiotensin II, and RGDS and proliferation were improved on fibronectin, compared with poly-L-lysine. The RGDS peptide induced a transient increase in the activity of the p42/p44(mapk), independent of phosphatidylinositol-3 kinase and protein kinase C. Integrins alpha(5) and alpha(V) as well as their fibronectin receptor partners beta(1) and beta(3), were identified. These results suggest that in rat adrenal glomerulosa cells, binding of the alpha(5)beta(1), alpha(v)beta(1), or alpha(v)beta(3) integrins to fibronectin is involved in the generation of two important signaling events, increase in intracellular calcium, and activation of the p42/p44(mapk) cascade, leading to cell proliferation and aldosterone secretion.
Stephens, P; Genever, P G; Wood, E J; Raxworthy, M J
1997-01-01
Actin cables have been reported to act in vivo as contractile 'purse strings' capable of closing embryonic wounds through generation of circumferential tension. Furthermore, their involvement in wounds within in vitro model systems suggests that actin cable contraction may be an important mechanism involved in the process of wound closure. The aim of this study therefore, was to investigate the appearance of actin cables in a contracting fibroblast populated collagen lattice, an in vitro model of events associated with wound contraction. Utilising this in vitro model, the time-course of actin cable production was investigated and the involvement of integrin receptors analysed using immunofluorescent labelling techniques. Over a period of hours distinct cellular cable-like structures developed at the edges of collagen lattices coinciding with the onset of contraction. Cellular organisation within the cable was evident as was polymerisation of actin microfilaments into elongated stress fibres forming a continuous cell-cell 'actin cable' around the circumference of the lattice. Immunolocalisation demonstrated that integrin receptor subunits beta 1 and alpha 2 but not alpha 5 were involved in apparent intimate cell-cell contact between juxtaposed fibroblasts within this actin cable. This study demonstrates the involvement of integrin receptors in actin cable formation within collagen lattice systems undergoing reorganisation. Such integrin involvement may enable participating cells to respond to the tensional status of their surrounding environment and via cell-cell communication, to permit a co-ordinated contraction of the cable. It is concluded that integrin receptor involvement in active actin cable contraction may be involved in the process of wound contraction.
Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions.
Spiess, Matthias; Hernandez-Varas, Pablo; Oddone, Anna; Olofsson, Helene; Blom, Hans; Waithe, Dominic; Lock, John G; Lakadamyali, Melike; Strömblad, Staffan
2018-06-04
Integrins are the core constituents of cell-matrix adhesion complexes such as focal adhesions (FAs) and play key roles in physiology and disease. Integrins fluctuate between active and inactive conformations, yet whether the activity state influences the spatial organization of integrins within FAs has remained unclear. In this study, we address this question and also ask whether integrin activity may be regulated either independently for each integrin molecule or through locally coordinated mechanisms. We used two distinct superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion microscopy (STED), to visualize active versus inactive β1 integrins. We first reveal a spatial hierarchy of integrin organization with integrin molecules arranged in nanoclusters, which align to form linear substructures that in turn build FAs. Remarkably, within FAs, active and inactive β1 integrins segregate into distinct nanoclusters, with active integrin nanoclusters being more organized. This unexpected segregation indicates synchronization of integrin activities within nanoclusters, implying the existence of a coordinate mechanism of integrin activity regulation. © 2018 Spiess et al.
Kadrmas, Julie L.; Smith, Mark A.; Clark, Kathleen A.; Pronovost, Stephen M.; Muster, Nemone; Yates, John R.; Beckerle, Mary C.
2004-01-01
Cell adhesion and migration are dynamic processes requiring the coordinated action of multiple signaling pathways, but the mechanisms underlying signal integration have remained elusive. Drosophila embryonic dorsal closure (DC) requires both integrin function and c-Jun amino-terminal kinase (JNK) signaling for opposed epithelial sheets to migrate, meet, and suture. Here, we show that PINCH, a protein required for integrin-dependent cell adhesion and actin–membrane anchorage, is present at the leading edge of these migrating epithelia and is required for DC. By analysis of native protein complexes, we identify RSU-1, a regulator of Ras signaling in mammalian cells, as a novel PINCH binding partner that contributes to PINCH stability. Mutation of the gene encoding RSU-1 results in wing blistering in Drosophila, demonstrating its role in integrin-dependent cell adhesion. Genetic interaction analyses reveal that both PINCH and RSU-1 antagonize JNK signaling during DC. Our results suggest that PINCH and RSU-1 contribute to the integration of JNK and integrin functions during Drosophila development. PMID:15596544
ADAM disintegrin-like domain recognition by the lymphocyte integrins α4β1 and α4β7
Bridges, Lance C.; Sheppard, Dean; Bowditch, Ron D.
2004-01-01
The ADAM (a disintegrin and metalloprotease) family of proteins possess both proteolytic and adhesive domains. We have established previously that the disintegrin domain of ADAM28, an ADAM expressed by human lymphocytes, is recognized by the integrin α4β1. The present study characterizes the integrin binding properties of the disintegrin-like domains of human ADAM7, ADAM28 and ADAM33 with the integrins α4β1, α4β7 and α9β1. Cell-adhesion assays demonstrated that, similar to ADAM28, the ADAM7 disintegrin domain supported α4β1-dependent Jurkat cell adhesion, whereas the ADAM33 disintegrin domain did not. The lymphocyte integrin α4β7 was also found to recognize both disintegrin domains of ADAM7 and ADAM28, but not of ADAM33. This is the first demonstration that mammalian disintegrins are capable of interacting with α4β7. All three disintegrin domains supported α9β1-dependent cell adhesion. Recognition by both α4β1 and α4β7 of ADAM7 and ADAM28 was activation-dependent, requiring either the presence of Mn2+ or an activating monoclonal antibody for cell attachment. Charge-to-alanine mutagenesis experiments revealed that the same residues within an individual ADAM disintegrin domain function in recognizing multiple integrins. However, the residues within a specific region of each ADAM disintegrin-like domain required for integrin binding were distinct. These results establish that ADAM7 and ADAM28 are recognized by the leucocyte integrins α4β1, α4β7 and α9β1. ADAM33 exclusively supported only α9β1-dependent adhesion. PMID:15504110
Quinn, Jeffrey A; Graeber, C Thomas; Frackelton, A Raymond; Kim, Minsoo; Schwarzbauer, Jean E; Filardo, Edward J
2009-07-01
Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.
EFFECT OF METHYL MERCURY CHLORIDE EXPOSURE ON PC12 CELL INTEGRIN EXPRESSION AND FUNCTION.
Integrins are heterodimeric transmembrane cell adhesion proteins composed of a and b protein subunits. They are important during brain development in a number of critical functions, including cell migration (Georges-Labouesse, et al., 1998), axonal elongation (Murase and Hayashi...
Sanjay, Archana; Houghton, Adam; Neff, Lynn; DiDomenico, Emilia; Bardelay, Chantal; Antoine, Evelyne; Levy, Joan; Gailit, James; Bowtell, David; Horne, William C.; Baron, Roland
2001-01-01
The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin αvβ3 induces the [Ca2+]i-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of αvβ3 integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src−/− mice. PMID:11149930
Laforest, Sullivan; Milanini, Julie; Parat, Fabrice; Thimonier, Jean; Lehmann, Maxime
2005-11-01
During neurite elongation, migrating growth cones encounter both permissive and inhibitory substrates, such as laminin and MAG (myelin-associated glycoprotein), respectively. Here, we demonstrated on two neuronal cell lines (PC12 and N1E-115), that laminin and collagen hampered, in a dose-dependent manner, MAG inhibitory activity on several integrin functions, i.e., neurite growth, cell adhesion and cell spreading. Using a function blocking antibody, in PC12 cells, we showed that alpha1beta1 integrin is required in these phenomena. In parallel, we observed that MAG perturbs actin dynamics and lamellipodia formation during early steps of cell spreading. This seemed to be independent of RhoA activation, but dependent of Rac-1 inhibition by MAG. Laminin overrode MAG activity on actin and prevented MAG inhibition NGF-induced Rac1 activation. In conclusion, we evidenced antagonistic signaling between MAG receptors and beta1 integrins, in which Rac-1 may have a central function.
Structural basis of substrate discrimination and integrin binding by autotaxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausmann, Jens; Kamtekar, Satwik; Christodoulou, Evangelos
2013-09-25
Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates.more » We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.« less
Majka, Susan M.; Kohrt, Wendy M.; Miller, Heidi L.; Sullivan, Timothy M.; Klemm, Dwight J.
2017-01-01
ABSTRACT Some bona fide adult adipocytes arise de novo from a bone marrow-derived myeloid lineage. These studies further demonstrate that adipose tissue stroma contains a resident population of myeloid cells capable of adipocyte and multilineage mesenchymal differentiation. These resident myeloid cells lack hematopoietic markers and express mesenchymal and progenitor cell markers. Because bone marrow mesenchymal progenitor cells have not been shown to enter the circulation, we hypothesized that myeloid cells acquire mesenchymal differentiation capacity in adipose tissue. We fabricated a 3-dimensional fibrin matrix culture system to define the adipose differentiation potential of adipose tissue-resident myeloid subpopulations, including macrophages, granulocytes and dendritic cells. Our data show that multilineage mesenchymal potential was limited to adipose tissue macrophages, characterized by the acquisition of adipocyte, osteoblast, chondrocyte and skeletal muscle myocyte phenotypes. Fibrin hydrogel matrices stimulated macrophage loss of hematopoietic cell lineage determinants and the expression of mesenchymal and progenitor cell markers, including integrin β1. Ablation of integrin β1 in macrophages inhibited adipocyte specification. Therefore, some bona fide adipocytes are specifically derived from adipose tissue-resident macrophages via an integrin β1-dependent hematopoietic-to-mesenchymal transition, whereby they become capable of multipotent mesenchymal differentiation. The requirement for integrin β1 highlights this molecule as a potential target for controlling the production of marrow-derived adipocytes and their contribution to adipose tissue development and function. PMID:28441086
Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G
2001-01-01
Nm23 gene family has been associated with metastasis suppression and differentiation. We studied DR-nm23 during neuroblastoma cells differentiation. DR-nm23 expression increased after retinoic acid induction of differentiation in human cell lines SK-N-SH and LAN-5. In several cell lines, overexpression of DR-nm23 was associated with more differentiated phenotypes. SK-N-SH cells increased vimentin expression, increased deposition of collagen type IV, modulated integrin expression, and underwent growth arrest; the murine neuroblastoma cell line N1E-115 showed neurite outgrowth and a striking enhancement of beta1 integrin expression. Up-regulation of beta1 integrin was specifically responsible for the increase in the adhesion to collagen type I-coated plates. Finally, cells overexpressing DR-nm23 were unable to growth in soft agar. In conclusion, DR-nm23 expression is directly involved in differentiation of neuroblastoma cells, and its ability to affects the adhesion to extracellular substrates and to inhibit growth in soft agar suggests an involvement in the metastatic potential of neuroblastoma.
Rotavirus RRV associates with lipid membrane microdomains during cell entry.
Isa, Pavel; Realpe, Mauricio; Romero, Pedro; López, Susana; Arias, Carlos F
2004-05-01
Rotavirus cell entry is a multistep process, not completely understood, which requires at least four interactions between the virus and cell surface molecules. In this work, we investigated the role of the sphingolipid- and cholesterol-enriched lipid microdomains (rafts) in the entry of rotavirus strain RRV to MA104 cells. We found that ganglioside GM1, integrin subunits alpha2 and beta3, and the heat shock cognate protein 70 (hsc70), all of which have been implicated as rotavirus receptors, are associated with TX-100 and Lubrol WX detergent-resistant membranes (DRMs). Integrin subunits alpha2 and beta3 were found to be particularly enriched in DRMs resistant to lysis by Lubrol WX. When purified RRV particles were incubated with cells at 4 degrees C, about 10% of the total infectious virus was found associated with DRMs, and the DRM-associated virus increased to 37% in Lubrol-resistant membrane domains after 60-min incubation at 37 degrees C. The virus was excluded from DRMs if the cells were treated with methyl-beta-cyclodextrin (MbetaCD). Immunoblot analysis of the viral proteins showed that the virus surface proteins became enriched in DRMs upon incubation at 37 degrees C, being almost exclusively localized in Lubrol-resistant DRMs after 60 min. These data suggest that detergent-resistant membrane domains play an important role in the cell entry of rotaviruses, which could provide a platform to facilitate the efficient interaction of the rotavirus receptors with the virus particle.
Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells.
Jia, Dongxuan; Entersz, Ildiko; Butler, Christine; Foty, Ramsey A
2012-03-20
Invasion is an important early step in the metastatic cascade and is the primary cause of death of prostate cancer patients. In order to invade, cells must detach from the primary tumor. Cell-cell and cell-ECM interactions are important regulators of cohesion--a property previously demonstrated to mediate cell detachment and invasion. The studies reported here propose a novel role for α5β1 integrin--the principle mediator of fibronectin matrix assembly (FNMA)--as an invasion suppressor of prostate cancer cells. Using a combination of biophysical and cell biological methods, and well-characterized prostate cancer cell lines of varying invasiveness, we explore the relationship between cohesion, invasiveness, and FNMA. We show that cohesion is inversely proportional to invasive capacity. We also show that more invasive cells express lower levels of α5β1 integrin and lack the capacity for FNMA. Cells were generated to over-express either wild-type α5 integrin or an integrin in which the cytoplasmic domain of α5 was replaced with that of α2. The α2 construct does not promote FNMA. We show that only wild-type α5 integrin promotes aggregate compaction, increases cohesion, and reduces invasion of the more aggressive cells, and that these effects can be blocked by the 70-kDa fibronectin fragment. We propose that restoring capacity for FNMA in deficient cells can increase tumor intercellular cohesion to a point that significantly reduces cell detachment and subsequent invasion. In prostate cancer, this could be of therapeutic benefit by blocking an early key step in the metastatic cascade.
Bone Marrow-Derived Mesenchymal Stem Cells Enhance Angiogenesis via their α6β1 Integrin Receptor
Carrion, Bita; Kong, Yen P.; Kaigler, Darnell; Putnam, Andrew J
2013-01-01
Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. PMID:24056178
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossier, Olivier; Giannone, Grégory; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux
Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements andmore » interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells.« less
Rossier, Olivier; Giannone, Grégory
2016-04-10
Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements and interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells. Copyright © 2015. Published by Elsevier Inc.
Bone sialoprotein does not interact with pro-gelatinase A (MMP-2) or mediate MMP-2 activation.
Hwang, Queena; Cheifetz, Sela; Overall, Christopher M; McCulloch, Christopher A; Sodek, Jaro
2009-04-22
A recent model for activation of the zymogen form of matrix metalloproteinase 2 (MMP-2, also known as gelatinase A) has suggested that interactions between the SIBLING protein bone sialoprotein (BSP) and MMP-2 leads to conformational change in MMP-2 that initiates the conversion of the pro-enzyme into a catalytically active form. This model is particularly relevant to cancer cell metastasis to bone since BSP, bound to the alphavbeta3 integrin through its arginine-glycine-aspartic acid motif, could recruit MMP-2 to the cell surface. We critically assessed the relationship between BSP and proMMP-2 and its activation using various forms of recombinant and purified BSP and MMP-2. Gelatinase and collagenase assays, fluorescence binding assays, real-time PCR, cell culture and pull-down assays were employed to test the model. Studies with a fluorogenic substrate for MMP-2 showed no activation of proMMP-2 by BSP. Binding and pull-down assays demonstrated no interaction between MMP-2 and BSP. While BSP-mediated invasiveness has been shown to depend on its integrin-binding RGD sequence, analysis of proMMP-2 activation and the level of membrane type 1 (MT1)-MMP in cells grown on a BSP substratum showed that the BSP-alphavbeta3 integrin interaction does not induce the expression of MT1-MMP. These studies do not support a role for BSP in promoting metastasis through interactions with pro-MMP-2.
Rich, R L; Deivanayagam, C C; Owens, R T; Carson, M; Höök, A; Moore, D; Symersky, J; Yang, V W; Narayana, S V; Höök, M
1999-08-27
Most mammalian cells and some pathogenic bacteria are capable of adhering to collagenous substrates in processes mediated by specific cell surface adherence molecules. Crystal structures of collagen-binding regions of the human integrin alpha(2)beta(1) and a Staphylococcus aureus adhesin reveal a "trench" on the surface of both of these proteins. This trench can accommodate a collagen triple-helical structure and presumably represents the ligand-binding site (Emsley, J., King, S. L., Bergelson, J. M., and Liddington, R. C. (1997) J. Biol. Chem. 272, 28512-28517; Symersky, J., Patti, J. M., Carson, M., House-Pompeo, K., Teale, M., Moore, D., Jin, L., Schneider, A., DeLucas, L. J., Höök, M., and Narayana, S. V. L. (1997) Nat. Struct. Biol. 4, 833-838). We report here the crystal structure of the alpha subunit I domain from the alpha(1)beta(1) integrin. This collagen-binding protein also contains a trench on one face in which the collagen triple helix may be docked. Furthermore, we compare the collagen-binding mechanisms of the human alpha(1) integrin I domain and the A domain from the S. aureus collagen adhesin, Cna. Although the S. aureus and human proteins have unrelated amino acid sequences, secondary structure composition, and cation requirements for effective ligand binding, both proteins bind at multiple sites within one collagen molecule, with the sites in collagen varying in their affinity for the adherence molecule. We propose that (i) these evolutionarily dissimilar adherence proteins recognize collagen via similar mechanisms, (ii) the multisite, multiclass protein/ligand interactions observed in these two systems result from a binding-site trench, and (iii) this unusual binding mechanism may be thematic for proteins binding extended, rigid ligands that contain repeating structural motifs.
Zhang, Lin; Sun, Yan
2014-04-29
Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases.
Hasegawa, Shunji; Ichiyama, Takashi; Kohno, Fumitaka; Korenaga, Yuno; Ohsaki, Ayami; Hirano, Reiji; Haneda, Yasuhiro; Fukano, Reiji; Furukawa, Susumu
2010-01-01
Beta1-integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of beta1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of beta1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of beta1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of beta1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Guerrero, PA; Tchaicha, JH; Chen, Z; Morales, JE; McCarty, N; Wang, Q; Sulman, EP; Fuller, G; Lang, FF; Rao, G; McCarty, JH
2018-01-01
Glioblastoma (GBM) is a primary brain cancer that contains populations of stem-like cancer cells (GSCs) that home to specialized perivascular niches. GSC interactions with their niche influence self-renewal, differentiation and drug resistance, although the pathways underlying these events remain largely unknown. Here, we report that the integrin αvβ8 and its latent transforming growth factor β1 (TGFβ1) protein ligand have central roles in promoting niche co-option and GBM initiation. αvβ8 integrin is highly expressed in GSCs and is essential for self-renewal and lineage commitment in vitro. Fractionation of β8high cells from freshly resected human GBM samples also reveals a requirement for this integrin in tumorigenesis in vivo. Whole-transcriptome sequencing reveals that αvβ8 integrin regulates tumor development, in part, by driving TGFβ1-induced DNA replication and mitotic checkpoint progression. Collectively, these data identify the αvβ8 integrin-TGFβ1 signaling axis as crucial for exploitation of the perivascular niche and identify potential therapeutic targets for inhibiting tumor growth and progression in patients with GBM. PMID:28783169
A novel role for integrin-linked kinase in epithelial sheet morphogenesis.
Vespa, Alisa; D'Souza, Sudhir J A; Dagnino, Lina
2005-09-01
Integrin-linked kinase (ILK) is a multidomain protein involved in cell motility and cell-extracellular matrix interactions. ILK is found in integrin-containing focal adhesions in undifferentiated primary epidermal keratinocytes. Induction of keratinocyte differentiation by treatment with Ca(2+) triggers formation of cell-cell junctions, loss of focal adhesions, and ILK distribution to cell borders. We now show that Ca(2+) treatment of keratinocytes induces rapid (
Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-01-01
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called “follower” cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration. PMID:25563751
Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-01-07
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called "follower" cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.
Li, Yingzhu; Clough, Nancy; Sun, Xiaolin; Yu, Weidong; Abbott, Brian L; Hogan, Christopher J; Dai, Zonghan
2007-04-15
Hematopoietic cells isolated from patients with Bcr-Abl-positive leukemia exhibit multiple abnormalities of cytoskeletal and integrin function. These abnormalities are thought to play a role in the pathogenesis of leukemia; however, the molecular events leading to these abnormalities are not fully understood. We show here that the Abi1 pathway is required for Bcr-Abl to stimulate actin cytoskeleton remodeling, integrin clustering and cell adhesion. Expression of Bcr-Abl induces tyrosine phosphorylation of Abi1. This is accompanied by a subcellular translocation of Abi1/WAVE2 to a site adjacent to membrane, where an F-actin-enriched structure containing the adhesion molecules such as beta1-integrin, paxillin and vinculin is assembled. Bcr-Abl-induced membrane translocation of Abi1/WAVE2 requires direct interaction between Abi1 and Bcr-Abl, but is independent of the phosphoinositide 3-kinase pathway. Formation of the F-actin-rich complex correlates with an increased cell adhesion to fibronectin. More importantly, disruption of the interaction between Bcr-Abl and Abi1 by mutations either in Bcr-Abl or Abi1 not only abolished tyrosine phosphorylation of Abi1 and membrane translocation of Abi1/WAVE2, but also inhibited Bcr-Abl-stimulated actin cytoskeleton remodeling, integrin clustering and cell adhesion to fibronectin. Together, these data define Abi1/WAVE2 as a downstream pathway that contributes to Bcr-Abl-induced abnormalities of cytoskeletal and integrin function.
Riemenschneider, Markus J; Mueller, Wolf; Betensky, Rebecca A; Mohapatra, Gayatry; Louis, David N
2005-11-01
Deregulated integrin signaling is common in cancers, including glioblastoma. Integrin binding and growth factor receptor signaling activate focal adhesion kinase (FAK) and subsequently up-regulate extracellular regulated kinases (ERK-1/2), leading to cell-cycle progression and cell migration. Most studies of this pathway have used in vitro systems or tumor lysate-based approaches. We examined these pathways primarily in situ using a panel of 30 glioblastomas and gene expression arrays, immunohistochemistry, and fluorescence in situ hybridization, emphasizing the histological distribution of molecular changes. Within individual tumors, increased expression of FAK, p-FAK, paxillin, ERK-1/2, and p-ERK-1/2 occurred in regions of elevated EGFR and/or PDGFRA expression. Moreover, FAK activation levels correlated with EGFR and PDGFRA expression, and p-FAK and EGFR expression co-localized at the single-cell level. In addition, integrin expression was enriched in EGFR/PDGFRA-overexpressing areas but was more regionally confined than FAK, p-FAK, and paxillin. Integrins beta8 and alpha5beta1 were most commonly expressed, often in a perinecrotic or perivascular pattern. Taken together, our data suggest that growth factor receptor overexpression facilitates alterations in the integrin signaling pathway. Thus, FAK may act in glioblastoma as a downstream target of growth factor signaling, with integrins enhancing the impact of such signaling in the tumor microenvironment.
Lee, Hye Shin; Cheerathodi, Mujeeburahiman; Chaki, Sankar P.; Reyes, Steve B.; Zheng, Yanhua; Lu, Zhimin; Paidassi, Helena; DerMardirossian, Celine; Lacy-Hulbert, Adam; Rivera, Gonzalo M.
2015-01-01
Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor β8 integrin that plays essential roles in directional cell motility. β8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell's leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells. PMID:25666508
The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif.
Rohrbeck, Astrid; Höltje, Markus; Adolf, Andrej; Oms, Elisabeth; Hagemann, Sandra; Ahnert-Hilger, Gudrun; Just, Ingo
2017-10-27
The Rho ADP-ribosylating C3 exoenzyme (C3bot) is a bacterial protein toxin devoid of a cell-binding or -translocation domain. Nevertheless, C3 can efficiently enter intact cells, including neurons, but the mechanism of C3 binding and uptake is not yet understood. Previously, we identified the intermediate filament vimentin as an extracellular membranous interaction partner of C3. However, uptake of C3 into cells still occurs (although reduced) in the absence of vimentin, indicating involvement of an additional host cell receptor. C3 harbors an Arg-Gly-Asp (RGD) motif, which is the major integrin-binding site, present in a variety of integrin ligands. To check whether the RGD motif of C3 is involved in binding to cells, we performed a competition assay with C3 and RGD peptide or with a monoclonal antibody binding to β1-integrin subunit and binding assays in different cell lines, primary neurons, and synaptosomes with C3-RGD mutants. Here, we report that preincubation of cells with the GRGDNP peptide strongly reduced C3 binding to cells. Moreover, mutation of the RGD motif reduced C3 binding to intact cells and also to recombinant vimentin. Anti-integrin antibodies also lowered the C3 binding to cells. Our results indicate that the RGD motif of C3 is at least one essential C3 motif for binding to host cells and that integrin is an additional receptor for C3 besides vimentin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Horiguchi, Kotaro; Fujiwara, Ken; Ilmiawati, Cimi; Kikuchi, Motoshi; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi
2011-07-01
Folliculostellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture exhibited marked proliferation in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In a process referred to as matricrine action, FS cells receive ECM as a signal through their receptors, which results in morphological and functional changes. In this study, we investigated matricrine signaling in FS cells and observed that the proliferation of FS cells is mediated by integrin β1, which is involved in various signaling pathways for cell migration and proliferation in response to ECM. Then, we analyzed downstream events of the integrin β1 signaling pathway in the proliferation of FS cells and identified caveolin 3 as a potential candidate molecule. Caveolin 3 is a membrane protein that binds cholesterol and a number of signaling molecules that interact with integrin β1. Using specific small interfering RNA of caveolin 3, the proliferation of FS cells was inhibited. Furthermore, caveolin 3 drove activation of the mitogen-activated protein kinase (MAPK) signaling cascades, which resulted in upregulation of cyclin D1 in FS cells. These findings suggest that matricrine signaling in the proliferation of FS cells was transduced by a caveolin 3-mediated integrin β1 signaling pathway and subsequent activation of the MAPK pathway. © 2011 Society for Endocrinology
Dearth, Christopher L; Goh, Qingnian; Marino, Joseph S; Cicinelli, Peter A; Torres-Palsa, Maria J; Pierre, Philippe; Worth, Randall G; Pizza, Francis X
2013-01-01
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.
Dearth, Christopher L.; Goh, Qingnian; Marino, Joseph S.; Cicinelli, Peter A.; Torres-Palsa, Maria J.; Pierre, Philippe; Worth, Randall G.; Pizza, Francis X.
2013-01-01
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells. PMID:23505517
Chorzalska, Anna; Salloum, Ibrahem; Shafqat, Hammad; Khan, Saad; Marjon, Philip; Treaba, Diana; Schorl, Christoph; Morgan, John; Bryke, Christine R.; Falanga, Vincent; Zhao, Thing C.; Reagan, John; Winer, Eric; Olszewski, Adam; Al-Homsi, Samer; Kouttab, Nicola; Dubielecka, Patrycja M.
2014-01-01
The basis for persistence of leukemic stem cells in the bone marrow microenvironment (BMME) remains poorly understood. We present evidence that signaling crosstalk between α4 integrin and Abelson interactor-1 (Abi-1) is involved in acquisition of an anchorage-dependent phenotype and drug resistance in Bcr-Abl positive leukemia cells. Comparison of Abi-1 (ABI-1) and α4 integrin (ITGA4) gene expression in relapsing Bcr-Abl positive CD34+ progenitor cells demonstrated a reduction in Abi-1 and an increase in α4 integrin mRNA in the absence of Bcr-Abl mutations. This inverse correlation between Abi-1 and α4 integrin expression, as well as linkage to elevated phospho-Akt and phospho-Erk signaling, was confirmed in imatinib mesylate (IM) resistant leukemic cells. These results indicate that the α4-Abi-1 signaling pathway may mediate acquisition of the drug resistant phenotype of leukemic cells. PMID:24699303
Balcioglu, Hayri E; van Hoorn, Hedde; Donato, Dominique M; Schmidt, Thomas; Danen, Erik H J
2015-04-01
Integrin adhesion receptors connect the extracellular matrix (ECM) to the cytoskeleton and serve as bidirectional mechanotransducers. During development, angiogenesis, wound healing and cancer progression, the relative abundance of fibronectin receptors, including integrins α5β1 and αvβ3, changes, thus altering the integrin composition of cell-matrix adhesions. Here, we show that enhanced αvβ3 expression can fully compensate for loss of α5β1 and other β1 integrins to support outside-in and inside-out force transmission. α5β1 and αvβ3 each mediate actin cytoskeletal remodeling in response to stiffening or cyclic stretching of the ECM. Likewise, α5β1 and αvβ3 support cellular traction forces of comparable magnitudes and similarly increase these forces in response to ECM stiffening. However, cells using αvβ3 respond to lower stiffness ranges, reorganize their actin cytoskeleton more substantially in response to stretch, and show more randomly oriented traction forces. Centripetal traction force orientation requires long stress fibers that are formed through the action of Rho kinase (ROCK) and myosin II, and that are supported by α5β1. Thus, altering the relative abundance of fibronectin-binding integrins in cell-matrix adhesions affects the spatiotemporal organization of force transmission. © 2015. Published by The Company of Biologists Ltd.
Chen, Chiung-Nien; Chang, Cheng-Chi; Lai, Hong-Shiee; Jeng, Yung-Ming; Chen, Chia-I; Chang, King-Jeng; Lee, Po-Huang; Lee, Hsinyu
2015-07-01
Connective tissue growth factor (CTGF) plays important roles in normal and pathological conditions. The aim of this study was to investigate the role of CTGF in peritoneal metastasis as well as the underlying mechanism in gastric cancer progression. CTGF expression levels for wild-type and stable overexpression clones were determined by Western blotting and quantitative polymerase chain reaction (Q-PCR). Univariate and multivariate analyses, immunohistochemistry, and survival probability analyses were performed on gastric cancer patients. The extracellular matrix components involved in CTGF-regulated adhesion were determined. Recombinant CTGF was added to cells or coinoculated with gastric cancer cells into mice to evaluate its therapeutic potential. CTGF overexpression and treatment with the recombinant protein significantly inhibited cell adhesion. In vivo peritoneal metastasis demonstrated that CTGF-stable transfectants markedly decreased the number and size of tumor nodules in the mesentery. Statistical analysis of gastric cancer patient data showed that patients expressing higher CTGF levels had earlier TNM staging and a higher survival probability after the surgery. Integrin α3β1 was the cell adhesion molecule mediating gastric cancer cell adhesion to laminin, and blocking of integrin α3β1 prevented gastric cancer cell adhesion to recombinant CTGF. Coimmunoprecipitation results indicated that CTGF binds to integrin α3. Coinoculation of recombinant CTGF and gastric cancer cell lines in mice showed effective inhibition of peritoneal dissemination. Our results suggested that gastric cancer peritoneal metastasis is mediated through integrin α3β1 binding to laminin, and CTGF effectively blocks the interaction by binding to integrin α3β1, thus demonstrating the therapeutic potential of recombinant CTGF in gastric cancer patients.
Upmanyu, Neha; Dietze, Raimund; Kirch, Ulrike; Scheiner-Bobis, Georgios
2016-11-01
In addition to the ubiquitous α1 isoform of the sodium pump, sperm cells also express a male-specific α4 isoform whose function has been associated with sperm motility, fertility, and capacitation. Here we investigate in the murine spermatogenic cell line GC-2 interactions of the α4 isoform with the cardiotonic steroid ouabain in signaling cascades involved in the non-classical action of steroid hormones. Exposure of GC-2 cells to low concentrations of ouabain stimulates the phosphorylation of Erk1/2 and of the transcription factors CREB and ATF-1. As a consequence of this signaling cascade, ouabain stimulates on the mRNA level the expression of integrins αv, β3 and α5, whose expression is also modulated by the cAMP response element. Increased expression of integrins αv and β3 is also seen in cultures of seminiferous tubules exposed to 10nM ouabain. At the protein level we observed a significant stimulation of β3 integrin expression by ouabain. Abrogation of α4 isoform expression by siRNA leads to the complete suppression of all ouabain-induced signaling mentioned above, including its stimulatory effect on the expression of β3 integrin. The results presented here demonstrate for the first time the induction of signaling cascades through the interaction of ouabain with the α4 isoform in a germ-cell derived cell line. The novel finding that these interactions lead to increased expression of integrins in GC-2 cells and the confirmation of these results in the ex vivo experiments indicate that hormone/receptor-like interactions of ouabain with the α4 isoform might be of significance for male physiology. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueda, Masashi; Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501; Fukushima, Takahiro
Highlights: • We developed a radioiodinated peptide probe targeting αvβ6 integrin ({sup 123}I-IFMDV2). • {sup 123}I-IFMDV2 had a high affinity and selectivity for αvβ6 integrin. • {sup 123}I-IFMDV2 showed a specific binding to αvβ6 integrin in vivo. • {sup 123}I-IFMDV2 enabled clear visualization of the αvβ6-integrin-positive tumor. - Abstract: Introduction: Pancreatic ductal adenocarcinoma (PDAC) remains a major cause of cancer-related death. Since significant upregulation of αvβ6 integrin has been reported in PDAC, this integrin is a promising target for PDAC detection. In this study, we aimed to develop a radioiodinated probe for the imaging of αvβ6 integrin-positive PDAC with single-photonmore » emission computed tomography (SPECT). Methods: Four peptide probes were synthesized and screened by competitive and saturation binding assays using 2 PDAC cell lines (AsPC-1, αvβ6 integrin-positive; MIA PaCa-2, αvβ6 integrin-negative). The probe showing the best affinity was used to study the biodistribution assay, an in vivo blocking study, and SPECT imaging using tumor bearing mice. Autoradiography and immunohistochemical analysis were also performed. Results: Among the 4 probes examined in this study, {sup 125}I-IFMDV2 showed the highest affinity for αvβ6 integrin expressed in AsPC-1 cells and no affinity for MIA PaCa-2 cells. The accumulation of {sup 125}I-IFMDV2 in the AsPC-1 xenograft was 3–5 times greater than that in the MIA PaCa-2 xenograft, consistent with the expression of αvβ6 integrin in each xenograft, and confirmed by immunohistochemistry. Pretreatment with excess amounts of A20FMDV2 significantly blocked the accumulation of {sup 125}I-IFMDV2 in the AsPC-1 xenograft, but not in the MIA PaCa-2 xenograft. Furthermore, {sup 123}I-IFMDV2 enabled clear visualization of the AsPC-1 xenograft. Conclusion: {sup 123}I-IFMDV2 is a potential SPECT probe for the imaging of αvβ6 integrin in PDAC.« less
Brun, Paola; Scorzeto, Michele; Vassanelli, Stefano; Castagliuolo, Ignazio; Palù, Giorgio; Ghezzo, Francesca; Messina, Grazia M L; Iucci, Giovanna; Battaglia, Valentina; Sivolella, Stefano; Bagno, Andrea; Polzonetti, Giovanni; Marletta, Giovanni; Dettin, Monica
2013-04-01
The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Role of β1-Integrin in Colorectal Cancer: Case-Control Study
Oh, Bo-Young; Kim, Kwang Ho; Chung, Soon Sup; Hong, Kyoung Sook
2014-01-01
Purpose In the metastatic process, interactions between circulating tumor cells (CTCs) and the extracellular matrix or surrounding cells are required. β1-Integrin may mediate these interactions. The aim of this study was to investigate whether β1-integrin is associated with the detection of CTCs in colorectal cancer. Methods We enrolled 30 patients with colorectal cancer (experimental group) and 30 patients with benign diseases (control group). Blood samples were obtained from each group, carcinoembryonic antigen (CEA) mRNA for CTCs marker and β1-integrin mRNA levels were estimated by using reverse transcription-polymerase chain reaction, and the results were compared between the two groups. In the experimental group, preoperative results were compared with postoperative results for each marker. In addition, we analyzed the correlation between the expressions of β1-integrin and CEA. Results CEA mRNA was detected more frequently in colorectal cancer patients than in control patients (P = 0.008). CEA mRNA was significantly reduced after surgery in the colorectal cancer patients (P = 0.032). β1-Integrin mRNA was detected more in colorectal cancer patients than in the patients with benign diseases (P < 0.001). In colorectal cancer patients, expression of β1-integrin mRNA was detected more for advanced-stage cancer than for early-stage cancer (P = 0.033) and was significantly decreased after surgery (P < 0.001). In addition, expression of β1-integrin mRNA was significantly associated with that of CEA mRNA in colorectal cancer patients (P = 0.001). Conclusion In conclusion, β1-integrin is a potential factor for forming a prognosis following surgical resection in colorectal cancer patients. β1-Integrin may be a candidate for use as a marker for early detection of micrometastatic tumor cells and for monitoring the therapeutic response in colorectal cancer patients. PMID:24851215
PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility
González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.
2016-01-01
ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725
A Better Fit. An improved anticoagulant drug called RUC-2 (ball and stick structure) fits snugly into its binding pocket on integrin (blue), a protein found on the surface of platelets. RUC-2 binds both subunits of integrin, inhibiting the excessive blood coagulation that can lead to strokes and heart attacks. Unlike similar drugs that alter integrin's structure when they bind
Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura
2015-12-10
Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.
Nardi, James B; Pilas, Barbara; Bee, Charles Mark; Zhuang, Shufei; Garsha, Karl; Kanost, Michael R
2006-01-01
Observations of hemocyte aggregation on abiotic surfaces suggested that certain plasmatocytes from larvae of Manduca sexta act as foci for hemocyte aggregation. To establish how these particular plasmatocytes form initial attachments to foreign surfaces, they were cultured separately from other selected populations of hemocytes. While all circulating plasmatocytes immunolabel with anti-beta-integrin monoclonal antibody (MAb), only these larger plasmatocytes immunolabel with a MAb to the adhesion protein neuroglian. Neuroglian-negative plasmatocytes and granular cells that have been magnetically segregated from the majority of granular cells adhere to each other but fail to adhere to foreign substrata; by contrast, neuroglian-positive plasmatocytes that segregate with most granular cells adhere firmly to a substratum. Hemocytes form stable aggregates around the large, neuroglian-positive plasmatocytes. However, if neuroglian-positive plasmatocytes are separated from most granular cells, attachment of these plasmatocytes to foreign surfaces is suppressed.
Osterreicher, Jan; Skopek, Jirí; Jahns, Juta; Hildebrandt, Guido; Psutka, Jan; Vilasová, Zdenka; Tanner, Judith Maria; Vogt, Jürgen; Butz, Tilman
2003-01-01
Bystander effects have been proposed as a third action pathway of ionising radiation besides direct and indirect effects. The purpose of the study was to investigate whether expression of interleukin-1alpha (IL-1alpha) and beta1-integrin is elevated in bystander cells as a marker for bystander effects in comparison with classical markers such as the clonogenic assay, apoptosis and the presence of micronuclei. The hybrid cell line E.A. hy.926 obtained by fusion of HUVEC cells with the epithelial cell line A 459 was irradiated with 0-5 Gy. Bystander effects were established via medium transfer at 45 min and 4 h after irradiation from irradiated to nonirradiated cell populations. In order to exclude effects of the irradiated medium itself, irradiated medium only was also used for transfer to nonirradiated cells. Then, cells were fixed at 1, 2, 6, and 24 h after irradiation or medium transport and IL-1alpha and beta1-integrin were detected and evaluated. A higher number of beta1-integrin-positive cells was observed in both irradiated and bystander cell populations than in the control group at 1 and 24 h after irradiation with 1 Gy or medium transfer. Significantly higher numbers of IL-1alpha-positive cells were found at 1, 2, and 6 h after irradiation with 1 Gy or medium transfer as well as at 2 and 6 h after irradiation with 5 Gy or medium transfer. Clonogenic survival decreased dependently on the dose in irradiated cells but did not show any significant difference between the bystander cell populations and sham-irradiated cells. The irradiated medium itself did not have any effect. It is concluded that beta1-integrin and IL-1alpha expression may serve as more sensitive markers of post-irradiation responses in bystander cell populations than the classical radiobiological markers. Moreover, overexpression of beta1-integrin and IL-1alpha may induce increased susceptibility to inflammation of bystander cells.
Identification of Cell Adhesive Sequences in the N-terminal Region of the Laminin α2 Chain*
Hozumi, Kentaro; Ishikawa, Masaya; Hayashi, Takemitsu; Yamada, Yuji; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi
2012-01-01
The laminin α2 chain is specifically expressed in the basement membrane surrounding muscle and nerve. We screened biologically active sequences in the mouse laminin N-terminal region of α2 chain using 216 soluble peptides and three recombinant proteins (rec-a2LN, rec-a2LN+, and rec-a2N) by both the peptide- or protein-coated plate and the peptide-conjugated Sepharose bead assays. Ten peptides showed cell attachment activity in the plate assay, and 8 peptides were active in the bead assay. Seven peptides were active in the both assays. Five peptides promoted neurite outgrowth with PC12 cells. To clarify the cellular receptors, we examined the effects of heparin and EDTA on cell attachment to 11 active peptides. Heparin inhibited cell attachment to 10 peptides, and EDTA significantly affected only A2-8 peptide (YHYVTITLDLQQ, mouse laminin α2 chain, 117–128)-mediated cell attachment. Cell attachment to A2-8 was also specifically inhibited by anti-integrin β1 and anti-integrin α2β1 antibodies. These results suggest that A2-8 promotes an integrin α2β1-mediated cell attachment. The rec-a2LN protein, containing the A2-8 sequence, bound to integrin α2β1 and cell attachment to rec-a2LN was inhibited by A2-8 peptide. Further, alanine substitution analysis of both the A2-8 peptide and the rec-a2LN+ protein revealed that the amino acids Ile-122, Leu-124, and Asp-125 were involved in integrin α2β1-mediated cell attachment, suggesting that the A2-8 site plays a functional role as an integrin α2β1 binding site in the LN module. These active peptides may provide new insights on the molecular mechanism of laminin-receptor interactions. PMID:22654118
Clausen, Thomas Mandel; Pereira, Marina Ayres; Al Nakouzi, Nader; Oo, Htoo Zarni; Agerbæk, Mette Ø; Lee, Sherry; Ørum-Madsen, Maj Sofie; Kristensen, Anders Riis; El-Naggar, Amal; Grandgenett, Paul M; Grem, Jean L; Hollingsworth, Michael A; Holst, Peter J; Theander, Thor; Sorensen, Poul H; Daugaard, Mads; Salanti, Ali
2016-12-01
Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion, and anchorage-independent growth of tumor cells in vitro Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. The cancer-specific expression of ofCS aids in metastatic phenotypes and is a candidate target for therapy. Mol Cancer Res; 14(12); 1288-99. ©2016 AACR. ©2016 American Association for Cancer Research.
A Novel Role for Integrin-linked Kinase in Epithelial Sheet Morphogenesis
Vespa, Alisa; D'Souza, Sudhir J.A.; Dagnino, Lina
2005-01-01
Integrin-linked kinase (ILK) is a multidomain protein involved in cell motility and cell-extracellular matrix interactions. ILK is found in integrin-containing focal adhesions in undifferentiated primary epidermal keratinocytes. Induction of keratinocyte differentiation by treatment with Ca2+ triggers formation of cell–cell junctions, loss of focal adhesions, and ILK distribution to cell borders. We now show that Ca2+ treatment of keratinocytes induces rapid (≤1 h) translocation to the cell membrane of the adherens junction (AJ) proteins E-cadherin and β-catenin. This is followed by slower (>6 h) localization of tight junction (TJ) proteins. The kinetics of ILK movement toward the cell periphery mimics that of AJ components, suggesting that ILK plays a role in the early formation of cell–cell contacts. Whereas the N terminus in ILK mediates localization to cell borders, expression of an ILK deletion mutant incapable of localizing to the cell membrane (ILK 191-452) interferes with translocation of E-cadherin/β-catenin to cell borders, precluding Ca2+-induced AJ formation. Cells expressing ILK 191-452 also fail to form TJ and sealed cell–cell borders and do not form epithelial sheets. Thus, we have uncovered a novel role for ILK in epithelial cell–cell adhesion, independent of its well-established role in integrin-mediated adhesion and migration. PMID:15975904
INTEGRIN-MEDIATED CELL ATTACHMENT SHOWS TIME-DEPENDENT UPREGULATION OF GAP JUNCTION COMMUNICATION.
Integrin-mediated Cell Attachment Shows Time-Dependent Upregulation of Gap Junction
Communication
Rachel Grindstaff and Carl Blackman, National Health & Environmental Effects Research
Laboratory, Office of Research and Development, US EPA, Research Triang...
The Calcium-Sensing Receptor and Integrins in Cellular Differentiation and Migration
Tharmalingam, Sujeenthar; Hampson, David R.
2016-01-01
The calcium-sensing receptor (CaSR) is a widely expressed homodimeric G-protein coupled receptor structurally related to the metabotropic glutamate receptors and GPRC6A. In addition to its well characterized role in maintaining calcium homeostasis and regulating parathyroid hormone release, evidence has accumulated linking the CaSR with cellular differentiation and migration, brain development, stem cell engraftment, wound healing, and tumor growth and metastasis. Elevated expression of the CaSR in aggressive metastatic tumors has been suggested as a potential novel prognostic marker for predicting metastasis, especially to bone tissue where extracellular calcium concentrations may be sufficiently high to activate the receptor. Recent evidence supports a model whereby CaSR-mediated activation of integrins promotes cellular migration. Integrins are single transmembrane spanning heterodimeric adhesion receptors that mediate cell migration by binding to extracellular matrix proteins. The CaSR has been shown to form signaling complexes with the integrins to facilitate both the movement and differentiation of cells, such as neurons during normal brain development and tumor cells under pathological circumstances. Thus, CaSR/integrin complexes may function as a universal cell migration or homing complex. Manipulation of this complex may be of potential interest for treating metastatic cancers, and for developmental disorders pertaining to aberrant neuronal migration. PMID:27303307
Cellular Interaction of Integrin α3β1 with Laminin 5 Promotes Gap Junctional Communication
Lampe, Paul D.; Nguyen, Beth P.; Gil, Susana; Usui, Marcia; Olerud, John; Takada, Yoshikazu; Carter, William G.
1998-01-01
Wounding of skin activates epidermal cell migration over exposed dermal collagen and fibronectin and over laminin 5 secreted into the provisional basement membrane. Gap junctional intercellular communication (GJIC) has been proposed to integrate the individual motile cells into a synchronized colony. We found that outgrowths of human keratinocytes in wounds or epibole cultures display parallel changes in the expression of laminin 5, integrin α3β1, E-cadherin, and the gap junctional protein connexin 43. Adhesion of keratinocytes on laminin 5, collagen, and fibronectin was found to differentially regulate GJIC. When keratinocytes were adhered on laminin 5, both structural (assembly of connexin 43 in gap junctions) and functional (dye transfer) assays showed a two- to threefold increase compared with collagen and five- to eightfold over fibronectin. Based on studies with immobilized integrin antibody and integrin-transfected Chinese hamster ovary cells, the interaction of integrin α3β1 with laminin 5 was sufficient to promote GJIC. Mapping of intermediate steps in the pathway linking α3β1–laminin 5 interactions to GJIC indicated that protein trafficking and Rho signaling were both required. We suggest that adhesion of epithelial cells to laminin 5 in the basement membrane via α3β1 promotes GJIC that integrates individual cells into synchronized epiboles. PMID:9852164
Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea
2017-01-01
Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.
Touihri-Barakati, Imen; Kallech-Ziri, Olfa; Ayadi, Wiem; Kovacic, Hervé; Hanchi, Belgacem; Hosni, Karim; Luis, José
2017-02-15
Integrins are essential protagonists in the complex multistep process of cancer progression and are thus attractive targets for the development of anticancer agents. Cucurbitacin B, a triterpenoid purified from the leaves of Tunisian Ecballium elaterium exhibited an anticancer effect and displayed anti-integrin activity on human glioblastoma U87 cells, without being cytotoxic at concentrations up to 500nM. Here we show that cucurbitacin B affected the adhesion and migration of U87 cells to fibronectin in a dose-dependent manner with IC50 values of 86.2nM and 84.6nM, respectively. Time-lapse videomicroscopy showed that cucurbitacin B significantly reduced U87 cells motility and affected directional persistence. Cucurbitacin B also inhibited proliferation with IC50 value of 70.1nM using Crystal Violet assay. Moreover, cucurbitacin B efficiently inhibited in vitro human microvascular endothelial cells (HMEC) angiogenesis with concentration up to 10nM. Interestingly, we demonstrate for the first time that this effect was specifically mediated by α5β1 integrins. These findings reveal a novel mechanism of action for cucurbitacin B, which displays a potential interest as a specific anti-integrin drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Vehlow, Anne; Klapproth, Erik; Storch, Katja; Dickreuter, Ellen; Seifert, Michael; Dietrich, Antje; Bütof, Rebecca; Temme, Achim; Cordes, Nils
2017-07-25
Resistance of cancer stem-like and cancer tumor bulk cells to radiochemotherapy and destructive infiltration of the brain fundamentally influence the treatment efficiency to cure of patients suffering from Glioblastoma (GBM). The interplay of adhesion and stress-related signaling and activation of bypass cascades that counteract therapeutic approaches remain to be identified in GBM cells. We here show that combined inhibition of the adhesion receptor β1 integrin and the stress-mediator c-Jun N-terminal kinase (JNK) induces radiosensitization and blocks invasion in stem-like and patient-derived GBM cultures as well as in GBM cell lines. In vivo, this treatment approach not only significantly delays tumor growth but also increases median survival of orthotopic, radiochemotherapy-treated GBM mice. Both, in vitro and in vivo, effects seen with β1 integrin/JNK co-inhibition are superior to the monotherapy. Mechanistically, the in vitro radiosensitization provoked by β1 integrin/JNK targeting is caused by defective DNA repair associated with chromatin changes, enhanced ATM phosphorylation and prolonged G2/M cell cycle arrest. Our findings identify a β1 integrin/JNK co-dependent bypass signaling for GBM therapy resistance, which might be therapeutically exploitable.
Benito-Jardón, Maria; Klapproth, Sarah; Gimeno-LLuch, Irene; Petzold, Tobias; Bharadwaj, Mitasha; Müller, Daniel J; Zuchtriegel, Gabriele; Reichel, Christoph A; Costell, Mercedes
2017-01-01
Fibronectin (FN), a major extracellular matrix component, enables integrin-mediated cell adhesion via binding of α5β1, αIIbβ3 and αv-class integrins to an RGD-motif. An additional linkage for α5 and αIIb is the synergy site located in close proximity to the RGD motif. We report that mice with a dysfunctional FN-synergy motif (Fn1syn/syn) suffer from surprisingly mild platelet adhesion and bleeding defects due to delayed thrombus formation after vessel injury. Additional loss of β3 integrins dramatically aggravates the bleedings and severely compromises smooth muscle cell coverage of the vasculature leading to embryonic lethality. Cell-based studies revealed that the synergy site is dispensable for the initial contact of α5β1 with the RGD, but essential to re-enforce the binding of α5β1/αIIbβ3 to FN. Our findings demonstrate a critical role for the FN synergy site when external forces exceed a certain threshold or when αvβ3 integrin levels decrease below a critical level. DOI: http://dx.doi.org/10.7554/eLife.22264.001 PMID:28092265
Vanderploeg, Jessica; Jacobs, J. Roger
2017-01-01
Congenital heart defects, clinically identified in both small and large animals, are multifactorial and complex. Although heritable factors are known to have a role in cardiovascular disease, the full genetic aetiology remains unclear. Model organism research has proven valuable in providing a deeper understanding of the essential factors in heart development. For example, mouse knock-out studies reveal a role for the Integrin adhesion receptor in cardiac tissue. Recent research in Drosophila melanogaster (the fruit fly), a powerful experimental model, has demonstrated that the link between the extracellular matrix and the cell, mediated by Integrins, is required for multiple aspects of cardiogenesis. Here we test the hypothesis that Integrins signal to the heart cells through Src42A kinase. Using the powerful genetics and cell biology analysis possible in Drosophila, we demonstrate that Src42A acts in early events of heart tube development. Careful examination of mutant heart tissue and genetic interaction data suggests that Src42A’s role is independent of Integrin and the Integrin-related Focal Adhesion Kinase. Rather, Src42A acts non-autonomously by promoting programmed cell death of the amnioserosa, a transient tissue that neighbors the developing heart. PMID:29056682
Petpiroon, Nareerat; Sritularak, Boonchoo; Chanvorachote, Pithi
2017-12-29
The conversion of the epithelial phenotype of cancer cells into cells with a mesenchymal phenotype-so-called epithelial-mesenchymal transition (EMT)-has been shown to enhance the capacity of the cells to disseminate throughout the body. EMT is therefore becoming a potential target for anti-cancer drug discovery. Here, we showed that phoyunnanin E, a compound isolated from Dendrobium venustum, possesses anti-migration activity and addressed its mechanism of action. The cytotoxic and proliferative effects of phoyunnanin E on human non-small cell lung cancer-derived H460, H292, and A549 cells and human keratinocyte HaCaT cells were investigated by MTT assay. The effect of phoyunnanin E on EMT was evaluated by determining the colony formation and EMT markers. The migration and invasion of H460, H292, A549 and HaCaT cells was evaluated by wound healing assay and transwell invasion assay, respectively. EMT markers, integrins and migration-associated proteins were examined by western blot analysis. Phoyunnanin E at the concentrations of 5 and 10 μM, which are non-toxic to H460, H292, A549 and HaCaT cells showed good potential to inhibit the migratory activity of three types of human lung cancer cells. The anti-migration effect of phoyunnanin E was shown to relate to the suppressed EMT phenotypes, including growth in anchorage-independent condition, cell motility, and EMT-specific protein markers (N-cadherin, vimentin, slug, and snail). In addition to EMT suppression, we found that phoyunnanin E treatment with 5 and 10 μM could decrease the cellular level of integrin αv and integrin β3, these integrins are frequently up-regulated in highly metastatic tumor cells. We further characterized the regulatory proteins in cell migration and found that the cells treated with phoyunnanin E exhibited a significantly lower level of phosphorylated focal adhesion kinase (p-FAK) and phosphorylated ATP-dependent tyrosine kinase (p-AKT), and their downstream effectors (including Ras-related C3 botulinum (Rac-GTP); Cell division cycle 42 (Cdc42); and Ras homolog gene family, member A (Rho-GTP)) in comparison to those of the non-treated control. We have determined for the first time that phoyunnanin E could inhibit the motility of lung cancer cells via the suppression of EMT and metastasis-related integrins. This new information could support further development of this compound for anti-metastasis approaches.
Song, Yuanhui; Ju, Yang; Song, Guanbin; Morita, Yasuyuki
2013-01-01
Cell adhesion, migration, and proliferation are significantly affected by the surface topography of the substrates on which the cells are cultured. Alumina is one of the most popular implant materials used in orthopedics, but few data are available concerning the cellular responses of mesenchymal stem cells (MSCs) grown on nanoporous structures. MSCs were cultured on smooth alumina substrates and nanoporous alumina substrates to investigate the interaction between surface topographies of nanoporous alumina and cellular behavior. Nanoporous alumina substrates with pore sizes of 20 nm and 100 nm were used to evaluate the effect of pore size on MSCs as measured by proliferation, morphology, expression of integrin β1, and osteogenic differentiation. An MTT assay was used to measure cell viability of MSCs on different substrates, and determined that cell viability decreased with increasing pore size. Scanning electron microscopy was used to investigate the effect of pore size on cell morphology. Extremely elongated cells and prominent cell membrane protrusions were observed in cells cultured on alumina with the larger pore size. The expression of integrin β1 was enhanced in MSCs cultured on porous alumina, revealing that porous alumina substrates were more favorable for cell growth than smooth alumina substrates. Higher levels of osteoblastic differentiation markers such as alkaline phosphatase, osteocalcin, and mineralization were detected in cells cultured on alumina with 100 nm pores compared with cells cultured on alumina with either 20 nm pores or smooth alumina. This work demonstrates that cellular behavior is affected by variation in pore size, providing new insight into the potential application of this novel biocompatible material for the developing field of tissue engineering. PMID:23935364
Murillo, Isabel; Virji, Mumtaz
2010-10-24
The Opc protein of Neisseria meningitidis (Nm, meningococcus) is a surface-expressed integral outer membrane protein, which can act as an adhesin and an effective invasin for human epithelial and endothelial cells. We have identified endothelial surface-located integrins as major receptors for Opc, a process which requires Opc to first bind to integrin ligands such as vitronectin and via these to the cell-expressed receptors(1). This process leads to bacterial invasion of endothelial cells(2). More recently, we observed an interaction of Opc with a 100 kDa protein found in whole cell lysates of human cells(3). We initially observed this interaction when host cell proteins separated by electrophoresis and blotted on to nitrocellulose were overlaid with Opc-expressing Nm. The interaction was direct and did not involve intermediate molecules. By mass spectrometry, we established the identity of the protein as α-actinin. As no surface expressed α-actinin was found on any of the eight cell lines examined, and as Opc interactions with endothelial cells in the presence of serum lead to bacterial entry into the target cells, we examined the possibility of the two proteins interacting intracellularly. For this, cultured human brain microvascular endothelial cells (HBMECs) were infected with Opc-expressing Nm for extended periods and the locations of internalised bacteria and α-actinin were examined by confocal microscopy. We observed time-dependent increase in colocalisation of Nm with the cytoskeletal protein, which was considerable after an eight hour period of bacterial internalisation. In addition, the use of quantitative imaging software enabled us to obtain a relative measure of the colocalisation of Nm with α-actinin and other cytoskeletal proteins. Here we present a protocol for visualisation and quantification of the colocalisation of the bacterium with intracellular proteins after bacterial entry into human endothelial cells, although the procedure is also applicable to human epithelial cells.
Epithelial Membrane Protein 2 and β1 integrin signaling regulate APC-mediated processes.
Lesko, Alyssa C; Prosperi, Jenifer R
2017-01-01
Adenomatous Polyposis Coli (APC) plays a critical role in cell motility, maintenance of apical-basal polarity, and epithelial morphogenesis. We previously demonstrated that APC loss in Madin Darby Canine Kidney (MDCK) cells increases cyst size and inverts polarity independent of Wnt signaling, and upregulates the tetraspan protein, Epithelial Membrane Protein 2 (EMP2). Herein, we show that APC loss increases β1 integrin expression and migration of MDCK cells. Through 3D in vitro model systems and 2D migration analysis, we have depicted the molecular mechanism(s) by which APC influences polarity and cell motility. EMP2 knockdown in APC shRNA cells revealed that APC regulates apical-basal polarity and cyst size through EMP2. Chemical inhibition of β1 integrin and its signaling components, FAK and Src, indicated that APC controls cyst size and migration, but not polarity, through β1 integrin and its downstream targets. Combined, the current studies have identified two distinct and novel mechanisms required for APC to regulate polarity, cyst size, and cell migration independent of Wnt signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Han, Wenchao; Zhao, Hui; Jiao, Bo; Liu, Fange
2014-04-01
Fish oil containing n-3 polyunsaturated fatty acids (n-3 PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to prevent the progression of nephropathy and retard the progression of kidney disease. This study sought to investigate the underlying mechanisms of EPA and DHA in terms of peroxisome proliferator-activated receptor γ (PPARγ), integrin-linked kinase (ILK), and integrin β1 expression in glomerular mesangial cells (GMCs) because of their critical roles in the development and progression of nephropathy. Lipopolysaccharide (LPS) significantly reduced the expression of PPARγand increased the expression of ILK at the mRNA level and at the protein level in GMCs as indicated by real-time PCR and Western blotting. In addition, LPS increased integrin β1 expression in GMCs at the mRNA level. Treatment with EPA and DHA significantly increased the expression of PPARγ and decreased the expression of ILK and integrin β1 in GMCs. These data suggest that the renoprotective effects of EPA and DHA may be related to their potential to increase the expression of PPARγ and decrease the expression of ILK and integrin β1.
Nolz, Jeffrey C; Nacusi, Lucas P; Segovis, Colin M; Medeiros, Ricardo B; Mitchell, Jason S; Shimizu, Yoji; Billadeau, Daniel D
2008-09-22
WAVE2 regulates T cell receptor (TCR)-stimulated actin cytoskeletal dynamics leading to both integrin clustering and affinity maturation. Although WAVE2 mediates integrin affinity maturation by recruiting vinculin and talin to the immunological synapse in an Arp2/3-dependent manner, the mechanism by which it regulates integrin clustering is unclear. We show that the Abl tyrosine kinase associates with the WAVE2 complex and TCR ligation induces WAVE2-dependent membrane recruitment of Abl. Furthermore, we show that WAVE2 regulates TCR-mediated activation of the integrin regulatory guanosine triphosphatase Rap1 via the recruitment and activation of the CrkL-C3G exchange complex. Moreover, we demonstrate that although Abl does not regulate the recruitment of CrkL-C3G into the membrane, it does affect the tyrosine phosphorylation of C3G, which is required for its guanine nucleotide exchange factor activity toward Rap1. This signaling node regulates not only TCR-stimulated integrin clustering but also affinity maturation. These findings identify a previously unknown mechanism by which the WAVE2 complex regulates TCR signaling to Rap1 and integrin activation.
Nolz, Jeffrey C.; Nacusi, Lucas P.; Segovis, Colin M.; Medeiros, Ricardo B.; Mitchell, Jason S.; Shimizu, Yoji; Billadeau, Daniel D.
2008-01-01
WAVE2 regulates T cell receptor (TCR)–stimulated actin cytoskeletal dynamics leading to both integrin clustering and affinity maturation. Although WAVE2 mediates integrin affinity maturation by recruiting vinculin and talin to the immunological synapse in an Arp2/3-dependent manner, the mechanism by which it regulates integrin clustering is unclear. We show that the Abl tyrosine kinase associates with the WAVE2 complex and TCR ligation induces WAVE2-dependent membrane recruitment of Abl. Furthermore, we show that WAVE2 regulates TCR-mediated activation of the integrin regulatory guanosine triphosphatase Rap1 via the recruitment and activation of the CrkL–C3G exchange complex. Moreover, we demonstrate that although Abl does not regulate the recruitment of CrkL–C3G into the membrane, it does affect the tyrosine phosphorylation of C3G, which is required for its guanine nucleotide exchange factor activity toward Rap1. This signaling node regulates not only TCR-stimulated integrin clustering but also affinity maturation. These findings identify a previously unknown mechanism by which the WAVE2 complex regulates TCR signaling to Rap1 and integrin activation. PMID:18809728
Zhang, Xiaoying; Xu, Yinhui; Liu, Hongbo; Zhao, Pan; Chen, Yafang; Yue, Zhijie; Zhang, Zhiqing; Wang, Xiaofang
2018-01-01
Mesenchymal stromal cells are proven to be likely induce the angiogenic response in multiple myeloma and thus represent an enticing target for antiangiogenesis therapies for multiple myeloma. Substantial evidence indicates that angiogenesis in multiple myeloma is complex and involves direct production of angiogenic cytokines by abnormal plasma cells and these B-cell neoplasia generated pathophysiology change within the microenvironment. In this study, we demonstrated that mesenchymal stromal cells cultured with U266/Lp-1 under hypoxic conditions resulted in an increased α-smooth muscle actin expression and high productive levels of both hypoxia-inducible factor-2α and integrin-linked kinase proteins. Moreover, inhibition of hypoxia-inducible factor-2α by Small interfering RNA (siRNA) in mesenchymal stromal cells decreased the protein levels of both α-smooth muscle actin and integrin-linked kinase after mesenchymal stromal cells cultured with U266 under hypoxic conditions. We further demonstrated that transfection of integrin-linked kinase-siRNA reduced the protein level of α-smooth muscle actin and attenuated angiogenesis in vitro by decreasing the attachment of Q-dot labeled cells and secretion of angiogenic factors. In conclusion, our research showed that mesenchymal stromal cells cultured with myeloma cells under hypoxia participated in the angiogenesis of multiple myeloma, which is regulated by the hypoxia-inducible factor-2α-integrin-linked kinase pathway. Thus, targeting integrin-linked kinase may represent an effective strategy to block hypoxia-inducible factor-2α-induced angiogenesis in the treatment of multiple myeloma. PMID:29656700
Johansson, M W; Gunderson, K A; Kelly, E A B; Denlinger, L C; Jarjour, N N; Mosher, D F
2013-03-01
IL-5 activates α(M) β(2) integrin on blood eosinophils in vitro. Eosinophils in bronchoalveolar lavage (BAL) following segmental antigen challenge have activated β(2) -integrins. To identify roles for IL-5 in regulating human eosinophil integrins in vivo. Blood and BAL eosinophils were analysed by flow cytometry in ten subjects with allergic asthma who underwent a segmental antigen challenge protocol before and after anti-IL-5 administration. Blood eosinophil reactivity with monoclonal antibody (mAb) KIM-127, which recognizes partially activated β(2) -integrins, was decreased after anti-IL-5. Before anti-IL-5, surface densities of blood eosinophil β(2) , α(M) and α(L) integrin subunits increased modestly post challenge. After anti-IL-5, such increases did not occur. Before or after anti-IL-5, surface densities of β(2) , α(M) , α(L) and α(D) and reactivity with KIM-127 and mAb CBRM1/5, which recognizes high-activity α(M) β(2) , were similarly high on BAL eosinophils 48 h post-challenge. Density and activation state of β(1) -integrins on blood and BAL eosinophils were not impacted by anti-IL-5, even though anti-IL-5 ablated a modest post-challenge increase on blood or BAL eosinophils of P-selectin glycoprotein ligand-1 (PSGL-1), a receptor for P-selectin that causes activation of β(1) -integrins. Forward scatter of blood eosinophils post-challenge was less heterogeneous and on the average decreased after anti-IL-5; however, anti-IL-5 had no effect on the decreased forward scatter of eosinophils in post-challenge BAL compared with eosinophils in blood. Blood eosinophil KIM-127 reactivity at the time of challenge correlated with the percentage of eosinophils in BAL post-challenge. IL-5 supports a heterogeneous population of circulating eosinophils with partially activated β(2) -integrins and is responsible for up-regulation of β(2) -integrins and PSGL-1 on circulating eosinophils following segmental antigen challenge but has minimal effects on properties of eosinophils in BAL. Dampening of β(2) -integrin function of eosinophils in transit to inflamed airway may contribute to the decrease in lung inflammation caused by anti-IL-5. © 2012 Blackwell Publishing Ltd.
Johansson, Mats W.; Gunderson, Kristin A.; Kelly, Elizabeth A. B.; Denlinger, Loren C.; Jarjour, Nizar N.; Mosher, Deane F.
2013-01-01
Background IL-5 activates αMβ2 integrin on blood eosinophils in vitro. Eosinophils in bronchoalveolar lavage (BAL) following segmental antigen challenge have activated β2-integrins. Objective To identify roles for IL-5 in regulating human eosinophil integrins in vivo. Methods Blood and BAL eosinophils were analyzed by flow cytometry in ten subjects with allergic asthma who underwent a segmental antigen challenge protocol before and after anti-IL-5 administration. Results Blood eosinophil reactivity with monoclonal antibody (mAb) KIM-127, which recognizes partially activated β2-integrins, was decreased after anti-IL-5. Before anti-IL-5, surface densities of blood eosinophil β2, αM, and αL integrin subunits increased modestly post-challenge. After anti-IL-5, such increases did not occur. Before or after anti-IL-5, surface densities of β2,αM, αL, and αD and reactivity with KIM-127 and mAb CBRM1/5, which recognizes high-activity αMβ2, were similarly high on BAL eosinophils 48 h post-challenge. Density and activation state of β1-integrins on blood and BAL eosinophils were not impacted by anti-IL-5, even though anti-IL-5 ablated a modest post-challenge increase on blood or BAL eosinophils of P-selectin glycoprotein ligand-1 (PSGL-1), a receptor for P-selectin that causes activation of β1-integrins. Forward scatter of blood eosinophils post-challenge was less heterogeneous and on the average decreased after anti-IL-5; however, anti-IL-5 had no effect on the decreased forward scatter of eosinophils in post-challenge BAL compared to eosinophils in blood. Blood eosinophil KIM-127 reactivity at the time of challenge correlated with the percentage of eosinophils in BAL post-challenge. Conclusion and Clinical Relevance IL-5 supports a heterogeneous population of circulating eosinophils with partially activated β2-integrins and is responsible for upregulation of β2-integrins and PSGL-1 on circulating eosinophils following segmental antigen challenge but has minimal effects on properties of eosinophils in BAL. Dampening of β2-integrin function of eosinophils in transit to inflamed airway may contribute to the decrease in lung inflammation caused by anti-IL-5. PMID:23414537
Paradise, Ranjani K; Whitfield, Matthew J; Lauffenburger, Douglas A; Van Vliet, Krystyn J
2013-02-15
Extracellular pH (pH(e)) gradients are characteristic of tumor and wound environments. Cell migration in these environments is critical to tumor progression and wound healing. While it has been shown previously that cell migration can be modulated in conditions of spatially invariant acidic pH(e) due to acid-induced activation of cell surface integrin receptors, the effects of pH(e) gradients on cell migration remain unknown. Here, we investigate cell migration in an extracellular pH(e) gradient, using both model α(v)β(3) CHO-B2 cells and primary microvascular endothelial cells. For both cell types, we find that the mean cell position shifts toward the acidic end of the gradient over time, and that cells preferentially polarize toward the acidic end of the gradient during migration. We further demonstrate that cell membrane protrusion stability and actin-integrin adhesion complex formation are increased in acidic pH(e), which could contribute to the preferential polarization toward acidic pH(e) that we observed for cells in pH(e) gradients. These results provide the first demonstration of preferential cell migration toward acid in a pH(e) gradient, with intriguing implications for directed cell migration in the tumor and wound healing environments. Copyright © 2012 Elsevier Inc. All rights reserved.
Strategies that target leukocyte traffic in inflammatory bowel diseases: recent developments.
Rivera-Nieves, Jesús
2015-11-01
We review the most recent developments regarding the targeting of molecules involved in the traffic of leukocytes for the treatment of inflammatory bowel diseases (IBD). We discuss the most important findings of one published phase II trial that targeted the β7 integrin (etrolizumab), two phase II trials that targeted the α4β7 integrin ligand: mucosal addressin cell adhesion molecule 1 (MAdCAM-1, PF-00547659), a phase II trial targeting the chemokine IP-10 (CXCL10) in Crohn's, and a phase II trial that targeted the sphingosine-1-phosphate receptor-1: ozanimod in patients with ulcerative colitis. Targeting molecules involved in leukocyte traffic has recently become an effective and well tolerated strategy for the treatment of IBD. Novel approaches now not only target the integrins on the lymphocyte surface, but also its endothelial ligand: MAdCAM-1. As with vedolizumab, antibodies against MAdCAM-1 appear most effective in ulcerative colitis rather than in Crohn's. Targeting chemokines or their receptors does not appear to have the same efficacy as those that target the most stable integrin: immunoglobulin superfamily interactions between the lymphocyte and endothelium. Preliminary results also suggest that the sphingosine-1-phosphate pathway might also be targeted therapeutically in IBD, no longer with parenterally administered antibodies but with orally administered small molecules.
Shaw, Leslie M.
2001-01-01
Expression of the α6β4 integrin increases the invasive potential of carcinoma cells by a mechanism that involves activation of phosphoinositide 3-OH kinase (PI3K). In the present study, we investigated the signaling pathway by which the α6β4 integrin activates PI3K. Neither the α6 nor the β4 cytoplasmic domain contains the consensus binding motif for PI3K, pYMXM, indicating that additional proteins are likely to be involved in the activation of this lipid kinase by the α6β4 integrin. We identified insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the activation of PI3K by the α6β4 integrin. IRS-1 and IRS-2 are cytoplasmic adapter proteins that do not contain intrinsic kinase activity but rather function by recruiting proteins to surface receptors, where they organize signaling complexes. Ligation of the α6β4 receptor promotes tyrosine phosphorylation of IRS-1 and IRS-2 and increases their association with PI3K, as determined by coimmunoprecipitation. Moreover, we identified a tyrosine residue in the cytoplasmic domain of the β4 subunit, Y1494, that is required for α6β4-dependent phosphorylation of IRS-2 and activation of PI3K in response to receptor ligation. Most importantly, Y1494 is essential for the ability of the α6β4 integrin to promote carcinoma invasion. Taken together, these results imply a key role for the IRS proteins in the α6β4-dependent promotion of carcinoma invasion. PMID:11438664
Integrin Alpha-v and HER2 in Breast Cancer Brain Metastasis
2015-10-01
ZOOM live cell imaging machine (ESSEN Bioscience; Figure 2). c. Interactions of αv integrin and HER2 in breast cancer brain metastases. We found...HCC1954 breast cancer cells. C) Real time live cell imaging of MM2BH cells treated with cilengitide (0, .3, 1, 3, and 10 µg/mL) using IncuCyte ZOOM
Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT
Zhou, Yang; Chakraborty, Sudipta; Liu, Shuang
2011-01-01
The integrin family is a group of transmembrane glycoprotein comprised of 19 α- and 8 β-subunits that are expressed in 25 different α/β heterodimeric combinations on the cell surface. Integrins play critical roles in many physiological processes, including cell attachment, proliferation, bone remodeling, and wound healing. Integrins also contribute to pathological events such as thrombosis, atherosclerosis, tumor invasion, angiogenesis and metastasis, infection by pathogenic microorganisms, and immune dysfunction. Among 25 members of the integrin family, the αvβ3 is studied most extensively for its role of tumor growth, progression and angiogenesis. In contrast, the αIIbβ3 is expressed exclusively on platelets, facilitates the intercellular bidirectional signaling (“inside-out” and “outside-in”) and allows the aggregation of platelets during vascular injury. The αIIbβ3 plays an important role in thrombosis by its activation and binding to fibrinogen especially in arterial thrombosis due to the high blood flow rate. In the resting state, the αIIbβ3 on platelets does not bind to fibrinogen; on activation, the conformation of platelet is altered and the binding sites of αIIbβ3 are exposed for fibrinogen to crosslink platelets. Over the last two decades, integrins have been proposed as the molecular targets for diagnosis and therapy of cancer, thrombosis and other diseases. Several excellent review articles have appeared recently to cover a broad range of topics related to the integrin-targeted radiotracers and their nuclear medicine applications in tumor imaging by single photon emission computed tomography (SPECT) or a positron-emitting radionuclide for positron emission tomography (PET). This review will focus on recent developments of αvβ3-targeted radiotracers for imaging tumors and the use of αIIbβ3-targeted radiotracers for thrombosis imaging, and discuss different approaches to maximize the targeting capability of cyclic RGD peptides and improve the radiotracer excretion kinetics from non-cancerous organs. Improvement of target uptake and target-to-background ratios is critically important for target-specific radiotracers. PMID:21547153
Complement Regulator Factor H Mediates a Two-step Uptake of Streptococcus pneumoniae by Human Cells*
Agarwal, Vaibhav; Asmat, Tauseef M.; Luo, Shanshan; Jensch, Inga; Zipfel, Peter F.; Hammerschmidt, Sven
2010-01-01
Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8–11 and SCR19–20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19–20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase. PMID:20504767
Fibronectins containing extradomain A or B enhance osteoblast differentiation via distinct integrins
Sens, Carla; Huck, Katrin; Pettera, Stefan; Uebel, Stephan; Wabnitz, Guido; Moser, Markus; Nakchbandi, Inaam A.
2017-01-01
Fibronectin is a multidomain protein secreted by various cell types. It forms a network of fibers within the extracellular matrix and impacts intracellular processes by binding to various molecules, primarily integrin receptors on the cells. Both the presence of several isoforms and the ability of the various domains and isoforms to bind to a variety of integrins result in a wide range of effects. In vivo findings suggest that fibronectin isoforms produced by the osteoblasts enhance their differentiation. Here we report that the isoform characterized by the presence of extradomain A activates α4β1 integrin and augments osteoblast differentiation. In addition, the isoform containing extradomain B enhances the binding of fibronectin through the RGD sequence to β3-containing integrin, resulting in increased mineralization by and differentiation of osteoblasts. Our study thus reveals novel functions for two fibronectin isoforms and the mediating receptors in osteoblast differentiation. PMID:28325836
Merlino, Francesco; Daniele, Simona; La Pietra, Valeria; Di Maro, Salvatore; Di Leva, Francesco Saverio; Brancaccio, Diego; Tomassi, Stefano; Giuntini, Stefano; Cerofolini, Linda; Fragai, Marco; Luchinat, Claudio; Reichart, Florian; Cavallini, Chiara; Costa, Barbara; Piccarducci, Rebecca; Taliani, Sabrina; Da Settimo, Federico; Martini, Claudia; Kessler, Horst; Novellino, Ettore; Marinelli, Luciana
2018-05-18
In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5β1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein we present the discovery of compound 7, which inhibits both MDM2/4 and α5β1/αvβ3 integrins. A lead optimization campaign was carried out on 7 with aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4, and α5β1/αvβ3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5β1 integrin.
Nolz, Jeffrey C.; Medeiros, Ricardo B.; Mitchell, Jason S.; Zhu, Peimin; Freedman, Bruce D.; Shimizu, Yoji; Billadeau, Daniel D.
2007-01-01
T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin. PMID:17591693
Nolz, Jeffrey C; Medeiros, Ricardo B; Mitchell, Jason S; Zhu, Peimin; Freedman, Bruce D; Shimizu, Yoji; Billadeau, Daniel D
2007-09-01
T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin.
Self assembling bioactive materials for cell adhesion in tissue repair
NASA Astrophysics Data System (ADS)
Hwang, Julia J.
This work involved the study of biodegradable and biocompatible materials that have the potential to modify tissue engineering scaffolds through self assembly, generating multiple layers that deliver bioactivity. Diblock biomaterials containing cholesteryl moieties and oligomers of lactic acid units were found to form single crystals when precipitated from hot ethanol and smectic liquid crystalline phases when cast as a film. Cell culture experiments on these films with 3T3 and 3T6 fibroblasts indicated that these ordered materials form surfaces with specific chemistries that favored cell adhesion, spreading, and proliferation suggesting the potential of mediating human tissue repair. The author believes the cholesteryl moieties found on the surface play a key role in determining cell behavior. Cholesteryl-(L-lactic acid) diblock molecules were then functionalized with moieties including vitamin Bx, cholesterol, and the anti-inflammatory drug indomethacin. An unstable activated ester between indomethacin and the diblock molecule resulted in the release of indomethacin into the culture medium which inhibited the proliferation of 3T3 fibroblasts. Finally, a series of molecules were designed to incorporate dendrons based on amino acids at the termini of the diblock structures. It was determined that lysine, a basic amino acid, covalently coupled to cholesteryl-(L-lactic acid) can promote cell adhesion and spreading while negatively charged and zwitterionic 2nd generation dendrons based on aspartic acid do not. Incorporation of the well known arginine-glycine-aspartic acid (RGD) sequence, which is found in many adhesive proteins, to the dendrons imparted integrin-mediated cell adhesion as evidenced by the formation of stress fibers. We also explored the capacity of integrin receptors to bind to ligands that are not the linear form of RGD, but have R, G, and D spatially positioned to mimic the linear RGD environments. For this purpose, the arms of the 2 nd generation lysine dendrons were functionalized with R, G, and D to yield an 'R,G,D library' of molecules. These materials were found to promote adhesion of 3T3 fibroblasts through integrin receptors. A dendron is multifunctional and allows a large degree of functionality in chemical design.
Iwanabe, Yujiro; Masaki, Chihiro; Tamura, Akiko; Tsuka, Shintaro; Mukaibo, Taro; Kondo, Yusuke; Hosokawa, Ryuji
2016-10-01
Low-intensity pulsed ultrasound (LIPUS) is widely used in medical fields because it shortens the time required for biologic wound healing in fracture treatment. Also, in dental fields, LIPUS should be effectively employed for implant treatment. However, most of the relevant reports have been published on its effects on bone formation around implants, and the effects of LIPUS on soft tissue healing remain unclear. In the present study, we examined the effects of LIPUS on soft tissue healing using gingival epithelial cells. Gingival epithelial cells were cultured on a dish, followed by LIPUS exposure at a frequency of 3MHz for 15min. The cells were counted with a hemocytometer, and a scratch assay was conducted by measuring the closing area of the scratch wound using a microscope. Following LIPUS exposure, total RNA was collected for microarray analysis. In addition, real-time PCR was performed to examine the mRNA expression level of integrin α6β4. Furthermore, total protein was collected to examine the protein expression level of integrin α6β4 by western blotting. The cell count and scratch assay demonstrated that LIPUS exposure promoted cell proliferation and scratch-wound closure. Microarray analysis demonstrated the increased expression levels of adhesion-related genes, including integrin. Real-time PCR analysis demonstrated that LIPUS exposure significantly up-regulated the mRNA expression level of integrin α6β4. Western blotting showed intense staining of integrin α6β4. LIPUS exposure promotes wound closure in the scratch assay and up-regulates the expression level of integrin α6β4 as compared with the control. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Miyazaki, Tatsuya; Miyauchi, Satoshi; Anada, Takahisa; Tawada, Akira; Suzuki, Osamu
2015-10-01
Integrins and their ligands have been suggested to be associated with osteoclast-mediated bone resorption. The present study was designed to investigate whether chondroitin sulfate E (CS-E), which is one of the sulfated glycosaminoglycans (GAGs), is involved in osteoactivin (OA) activity, and osteoclast differentiation. The binding affinity of sulfated GAGs to integrin and its ligand was measured using biotin-labeled CS-E, and the osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining and a pit formation assay. CS-E as well as CS-B, synthetic chondroitin polysulfate, and heparin inhibited osteoclast differentiation of bone marrow-derived macrophages. Pre-coating of OA to synthetic calcium phosphate-coated plates enhanced the osteoclastic differentiation of RAW264 cells, and addition of a neutralizing antibody to OA inhibited its differentiation. CS-E bound not only to OA, fibronectin, and vitronectin, but also to its receptor integrin αVβ3, and inhibited the direct binding of OA to integrin αVβ3. Furthermore, CS-E blocked the binding of OA to cells and inhibited OA-induced osteoclastic differentiation. On the other hand, heparinase treatment of RAW264 cells inhibited osteoclastic differentiation. Since binding of OA to the cells was inhibited by the presence of heparan sulfate or heparinase treatment of cells, heparan sulfate proteoglycan (HSPG) was also considered to be an OA receptor. Taken together, the present results suggest that CS-E is capable of inhibiting OA-induced osteoclast differentiation by blocking the interaction of OA to integrin αVβ3 and HSPG. © 2015 Wiley Periodicals, Inc.
Interaction between Fibronectin and β1 Integrin Is Essential for Tooth Development
Yamada, Aya; Yuasa, Kenji; Yoshizaki, Keigo; Iwamoto, Tsutomu; Saito, Masahiro; Nakamura, Takashi; Fukumoto, Satoshi
2015-01-01
The dental epithelium and extracellular matrix interact to ensure that cell growth and differentiation lead to the formation of teeth of appropriate size and quality. To determine the role of fibronectin in differentiation of the dental epithelium and tooth formation, we analyzed its expression in developing incisors. Fibronectin mRNA was expressed during the presecretory stage in developing dental epithelium, decreased in the secretory and early maturation stages, and then reappeared during the late maturation stage. The binding of dental epithelial cells derived from postnatal day-1 molars to a fibronectin-coated dish was inhibited by the RGD but not RAD peptide, and by a β1 integrin-neutralizing antibody, suggesting that fibronectin-β1 integrin interactions contribute to dental epithelial-cell binding. Because fibronectin and β1 integrin are highly expressed in the dental mesenchyme, it is difficult to determine precisely how their interactions influence dental epithelial differentiation in vivo. Therefore, we analyzed β1 integrin conditional knockout mice (Intβ1lox-/lox-/K14-Cre) and found that they exhibited partial enamel hypoplasia, and delayed eruption of molars and differentiation of ameloblasts, but not of odontoblasts. Furthermore, a cyst-like structure was observed during late ameloblast maturation. Dental epithelial cells from knockout mice did not bind to fibronectin, and induction of ameloblastin expression in these cells by neurotrophic factor-4 was inhibited by treatment with RGD peptide or a fibronectin siRNA, suggesting that the epithelial interaction between fibronectin and β1 integrin is important for ameloblast differentiation and enamel formation. PMID:25830530
Chaudhari, Pratik Rajeev; Charles, Silvania Emlit; D'Souza, Zinia Charlotte; Vaidya, Milind Murlidhar
2017-11-15
BPAG1e and Plectin are hemidesmosomal linker proteins which anchor intermediate filament proteins to the cell surface through β4 integrin. Recent reports indicate that these proteins play a role in various cellular processes apart from their known anchoring function. However, the available literature is inconsistent. Further, the previous study from our laboratory suggested that Keratin8/18 pair promotes cell motility and tumor progression by deregulating β4 integrin signaling in oral squamous cell carcinoma (OSCC) derived cells. Based on these findings, we hypothesized that linker proteins may have a role in neoplastic progression of OSCC. Downregulation of hemidesmosomal linker proteins in OSCC derived cells resulted in reduced cell migration accompanied by alterations in actin organization. Further, decreased MMP9 activity led to reduced cell invasion in linker proteins knockdown cells. Moreover, loss of these proteins resulted in reduced tumorigenic potential. SWATH analysis demonstrated upregulation of N-Myc downstream regulated gene 1 (NDRG1) in linker proteins downregulated cells as compared to vector control cells. Further, the defects in phenotype upon linker proteins ablation were rescued upon loss of NDRG1 in linker proteins knockdown background. These data together indicate that hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity possibly through NDRG1 in OSCC derived cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Oxidative stress reduces trophoblast FOXO1 and integrin β3 expression that inhibits cell motility.
Chen, Chie-Pein; Chen, Cheng-Yi; Wu, Yi-Hsin; Chen, Chia-Yu
2018-06-08
Preeclampsia is a serious pregnancy complication associated with placental oxidative stress and impaired trophoblast migration. The mechanism of defective trophoblast migration remains unknown. Forkhead box O1 (FOXO1) is a transcription factor. Integrin β3 is involved in cell motility. We hypothesized that FOXO1 mediates expression of trophoblast integrin β3, which could be impaired by oxidative stress and have implications in preeclampsia. The expressions of FOXO1 and integrin β3 were significantly reduced in preeclamptic placentas (n = 15) compared to that of controls (n = 15; p < 0.01). HTR-8/SVneo and JEG-3 trophoblasts were transfected to express wild-type FOXO1-WT or constitutively-expressed nuclear mutant form, FOXO1-AAA. The FOXO1 in HTR-8/SVneo and 3A-Sub-E trophoblasts was silenced by small interfering RNA. AKT-mediated phosphorylation inactivated FOXO1, but FOXO1-AAA was not phosphorylated. The expression of trophoblast integrin β3 was significantly elevated by FOXO1 overexpression and inhibited by FOXO1 knockdown. FOXO1 regulates integrin β3 at the transcriptional level via binding to the putative FOXO1 response element site between position -1154 to -1139 (TGAGATGTTTTGAAAG) in HTR-8/SVneo trophoblasts. The level of phosphorylated FOXO1 was decreased, and the FOXO1 level was increased in trophoblasts treated with AKT inhibitor MK2206, leading to upregulation of integrin β3. The capabilities of trophoblast adhesion and migration were enhanced by FOXO1-overexpression or MK2206, and inhibited by silencing FOXO1 or oxidative stress with H 2 O 2 . These results suggest that FOXO1 enhances trophoblast integrin β3 expression, and mediates cell adhesion and migration. By affecting the expression of FOXO1 and cell motility in trophoblasts, oxidative stress plays a role in the development of preeclampsia. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansing, Hope A.; Sarkeshik, Ali; Yates, John R.
2011-03-11
Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomicsmore » screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.« less
Expression and Function of αvβ3 and αvβ5 Integrins in the Developing Pancreas
Cirulli, Vincenzo; Beattie, Gillian M.; Klier, George; Ellisman, Mark; Ricordi, Camillo; Quaranta, Vito; Frasier, Francine; Ishii, Jennifer K.; Hayek, Alberto; Salomon, Daniel R.
2000-01-01
Cell–cell and cell–matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that αvβ3 and αvβ5, two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of αvβ3 and αvβ5 integrins are developmentally regulated during pancreatic islet ontogeny, and mediate adhesion and migration of putative endocrine progenitor cells both in vitro and in vivo in a model of pancreatic islet development. Moreover, we demonstrate the expression of fibronectin and collagen IV in the basal membrane of pancreatic ducts and of cell clusters budding from the ductal epithelium. Conversely, expression of vitronectin marks a population of epithelial cells adjacent to, or emerging from, pancreatic ducts. Thus, these data provide the first evidence for the contribution of integrins αvβ3 and αvβ5 and their ligands to morphogenetic events in the human endocrine pancreas. PMID:10995448
Domínguez-Catzín, Victoria; Reveles-Espinoza, Alicia-María; Sánchez-Ramos, Janet; Cruz-Cadena, Raúl; Lemus-Hernández, Diana; Garrido, Efraín
2017-04-03
Cervical cancer is the fourth cause of death worldwide by cancer in women and is a disease associated to persistent infection with human papillomavirus (HPV), particularly from two high-risk types HPV16 and 18. The virus initiates its replicative cycle infecting cells located in the basal layer of the epithelium, where a small population of epithelial stem cells is located performing important functions of renewal and maintenance of the tissue. Viral E2 gene is one of the first expressed after infection and plays relevant roles in the replicative cycle of the virus, modifying fundamental processes in the infected cells. Thus, the aim of the present study was to demonstrate the presence of hierarchic subpopulations in HaCaT cell line and evaluate the effect of HPV16-E2 expression, on their biological processes. HaCaT-HPV16-E2 cells were generated by transduction of HaCaT cell line with a lentiviral vector. The α6-integrin-CD71 expression profile was established by immunostaining and flow cytometric analysis. After sorting, cell subpopulations were analyzed in biological assays for self-renewal, clonogenicity and expression of stemness factors (RT-qPCR). We identified in HaCaT cell line three different subpopulations that correspond to early differentiated cells (α6-integrin dim ), transitory amplifying cells (α6-integrin bri /CD71 bri ) and progenitor cells (α6-integrin bri /CD71 dim ). The last subpopulation showed stem cell characteristics, such as self-renewal ability, clonogenicity and expression of the well-known stem cell factors SOX2, OCT4 and NANOG, suggesting they are stem-like cells. Interestingly, the expression of HPV16-E2 in HaCaT cells changed its α6-integrin-CD71 immunophenotype modifying the relative abundance of the cell subpopulations, reducing significantly the percentage of α6-integrin bri /CD71 dim cells. Moreover, the expression of the stem cell markers was also modified, increasing the expression of SOX2 and NANOG, but decreasing notably the expression of OCT4. Our data demonstrated the presence of a small subpopulation with epithelial "progenitor cells" characteristics in the HaCaT cell line, and that HPV16-E2 expression on these cells induces early differentiation.
Fu, Xinping; Rivera, Armando; Tao, Lihua; Zhang, Xiaoliu
2013-11-15
Converting T cells into tumor cell killers by grafting them with a chimeric antigen receptor (CAR) has shown promise as a cancer immunotherapeutic. However, the inability of these cells to actively migrate and extravasate into tumor parenchyma has limited their effectiveness in vivo. Here we report the construction of a CAR containing an echistatin as its targeting moiety (eCAR). As echistatin has high binding affinity to αvβ3 integrin that is highly expressed on the surface of endothelial cells of tumor neovasculature, T cells engrafted with eCAR (T-eCAR) can efficiently lyse human umbilical vein endothelial cells and tumor cells that express αvβ3 integrin when tested in vitro. Systemic administration of T-eCAR led to extensive bleeding in tumor tissues with no evidence of damage to blood vessels in normal tissues. Destruction of tumor blood vessels by T-eCAR significantly inhibited the growth of established bulky tumors. Moreover, when T-eCAR was codelivered with nanoparticles in a strategically designed temporal order, it dramatically increased nanoparticle deposition in tumor tissues, pointing to the possibility that it may be used together with nanocarriers to increase their capability to selectively deliver antineoplastic drugs to tumor tissues. Copyright © 2013 UICC.
Muñoz, P; Rosemblatt, M; Testar, X; Palacín, M; Zorzano, A
1995-04-01
1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dystrophin, and SM1 was enriched in beta 1-integrin but lacked dystrophin. 5. The caveolae-associated molecule caveolin was very abundant in SM1, SM2 and T-tubules, suggesting the presence of caveolae or caveolin-rich domains in these cell-surface membrane domains. In contrast, clathrin heavy chain was abundant in SM1 and T-tubules, but only trace levels were detected in SM2. 6. Immunoadsorption of T-tubule vesicles with antibodies against protein tt28 and against GLUT4 revealed the presence of GLUT4 in T-tubules under basal conditions and it also allowed the identification of two distinct pools of T-tubules showing different contents of tt28 and dihydropyridine receptors. 7. Our data on distribution of clathrin and dystrophin reveal the existence of subcompartments in sarcolemma from muscle fibre, featuring selective mutually exclusive components. T-tubules contain caveolin and clathrin suggesting that they contain caveolin- and clathrin-rich domains. Furthermore, evidence for the heterogeneous distribution of membrane proteins in T-tubules is also presented.
Phorbol esters alter alpha4 and alphad integrin usage during eosinophil adhesion to VCAM-1.
Kikuchi, Matsuo; Tachimoto, Hiroshi; Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S
2003-01-01
We examined the effect of the protein kinase C activator phorbol-12-myristate-13-acetate (PMA) on the human eosinophil adhesion molecule phenotype and attachment to VCAM-1 via alpha4 and alphad integrins under static and flow conditions. PMA increased surface expression of alphad integrins and decreased alpha4 integrin expression. Under static conditions, eosinophils bound well to VCAM-1, primarily via alpha4beta1 integrins, with a minor alphadbeta2 integrin component. Unexpectedly, PMA-stimulated eosinophils bound equally well to VCAM-1 and albumin in a temperature- and divalent cation-dependent manner, yet adhesion was independent of beta1 and beta2 integrins. Under flow conditions, eosinophils readily attached to VCAM-1, and adhesion was inhibited by both alpha4 and alphad mAbs (95 and 50% inhibition, respectively). Many fewer PMA-stimulated eosinophils bound to VCAM-1 under flow conditions, but both alpha4 and alphad mAbs inhibited adhesion equally. Thus, PMA alters eosinophil integrin expression and the relative contributions of alpha4 and alphad integrins during attachment to VCAM-1.