Yang, Kisuk; Lee, Jung Seung; Kim, Jin; Lee, Yu Bin; Shin, Heungsoo; Um, Soong Ho; Kim, Jeong Beom; Park, Kook In; Lee, Haeshin; Cho, Seung-Woo
2012-10-01
Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Takayama, Yukiya; Kusamori, Kosuke; Hayashi, Mika; Tanabe, Noriko; Matsuura, Satoru; Tsujimura, Mari; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira
2017-12-05
Mesenchymal stem cells (MSCs) have various functions, making a significant contribution to tissue repair. On the other hand, the viability and function of MSCs are not lasting after an in vivo transplant, and the therapeutic effects of MSCs are limited. Although various chemical modification methods have been applied to MSCs to improve their viability and function, most of conventional drug modification methods are short-term and unstable and cause cytotoxicity. In this study, we developed a method for long-term drug modification to C3H10T1/2 cells, murine mesenchymal stem cells, without any damage, using the avidin-biotin complex method (ABC method). The modification of NanoLuc luciferase (Nluc), a reporter protein, to C3H10T1/2 cells by the ABC method lasted for at least 14 days in vitro without major effects on the cellular characteristics (cell viability, cell proliferation, migration ability, and differentiation ability). Moreover, in vivo, the surface Nluc modification to C3H10T1/2 cells by the ABC method lasted for at least 7 days. Therefore, these results indicate that the ABC method may be useful for long-term surface modification of drugs and for effective MSC-based therapy.
Rudolph, Andreas; Teske, Michael; Illner, Sabine; Kiefel, Volker; Sternberg, Katrin; Grabow, Niels; Wree, Andreas; Hovakimyan, Marina
2015-01-01
Purpose Drug-eluting stents (DES) based on permanent polymeric coating matrices have been introduced to overcome the in stent restenosis associated with bare metal stents (BMS). A further step was the development of DES with biodegradable polymeric coatings to address the risk of thrombosis associated with first-generation DES. In this study we evaluate the biocompatibility of biodegradable polymer materials for their potential use as coating matrices for DES or as materials for fully bioabsorbable vascular stents. Materials and Methods Five different polymers, poly(L-lactide) PLLA, poly(D,L-lactide) PDLLA, poly(L-lactide-co-glycolide) P(LLA-co-GA), poly(D,L-lactide-co-glycolide) P(DLLA-co-GA) and poly(L-lactide-co-ε-caprolactone), P(LLA-co-CL) were examined in vitro without and with surface modification. The surface modification of polymers was performed by means of wet-chemical (NaOH and ethylenediamine (EDA)) and plasma-chemical (O2 and NH3) processes. The biocompatibility studies were performed on three different cell types: immortalized mouse fibroblasts (cell line L929), human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC). The biocompatibility was examined quantitatively using in vitro cytotoxicity assay. Cells were investigated immunocytochemically for expression of specific markers, and morphology was visualized using confocal laser scanning (CLSM) and scanning electron (SEM) microscopy. Additionally, polymer surfaces were examined for their thrombogenicity using an established hemocompatibility test. Results Both endothelial cell types exhibited poor viability and adhesion on all five unmodified polymer surfaces. The biocompatibility of the polymers could be influenced positively by surface modifications. In particular, a reproducible effect was observed for NH3-plasma treatment, which enhanced the cell viability, adhesion and morphology on all five polymeric surfaces. Conclusion Surface modification of polymers can provide a useful approach to enhance their biocompatibility. For clinical application, attempts should be made to stabilize the plasma modification and use it for coupling of biomolecules to accelerate the re-endothelialization of stent surfaces in vivo. PMID:26641662
Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric
2011-10-15
Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for modification is easy to control and can be optimized and implemented for many carbon materials currently used in microbial fuel cells and other bioelectrochemical systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong
2015-08-07
Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.
Research on dental implant and its industrialization stage
NASA Astrophysics Data System (ADS)
Dongjoon, Yang; Sukyoung, Kim
2017-02-01
Bone cell attachment to Ti implant surfaces is the most concerned issue in the clinical implant dentistry. Many attempts to achieve the fast and strong integration between bone and implant have been tried in many ways, such as selection of materials (for example, Ti, ZrO2), shape design of implant (for example, soft tissue level, bone level, taped or conical, etc), and surface modification of implants (for example, roughed. coated, hybrid), etc. Among them, a major consideration is the surface design of dental implants. The surface with proper structural characteristics promotes or induces the desirable responses of cells and tissues. To obtain such surface which has desirable cell and tissue response, a variety of surface modification techniques has been developed and employed for many years. In this review, the method and trend of surface modification will be introduced and explained in terms of the surface topography and chemistry of dental implants.
Santander, Sonia; Alcaine, Clara; Lyahyai, Jaber; Pérez, Maria Angeles; Rodellar, Clementina; Doblaré, Manuel; Ochoa, Ignacio
2012-01-01
Interaction between cells and implant surface is crucial for clinical success. This interaction and the associated surface treatment are essential for achieving a fast osseointegration process. Several studies of different topographical or chemical surface modifications have been proposed previously in literature. The Biomimetic Advanced Surface (BAS) topography is a combination of a shot blasting and anodizing procedure. Macroroughness, microporosity of titanium oxide and Calcium/Phosphate ion deposition is obtained. Human mesenchymal stem cells (hMCSs) response in vitro to this treatment has been evaluated. The results obtained show an improved adhesion capacity and a higher proliferation rate when hMSCs are cultured on treated surfaces. This biomimetic modification of the titanium surface induces the expression of osteblastic differentiation markers (RUNX2 and Osteopontin) in the absence of any externally provided differentiation factor. As a main conclusion, our biomimetic surface modification could lead to a substantial improvement in osteoinduction in titanium alloy implants.
Pacholak, A; Simlat, J; Zgoła-Grześkowiak, A; Kaczorek, E
2018-06-20
Azole fungicides constitute an extensive group of potential emerging pollutants which can be found in natural environment. This study focuses on the biodegradation of clotrimazole and the characterization of cell surface properties of microorganisms capable of degradation of this compound. The influence of long-term contact of bacteria with clotrimazole and the impact of the addition of Saponaria officinalis extract on cell surface modification was also checked. The biodegradation of clotrimazole did not exceed 70%. The presence of plant extract increased biodegradation of fungicide. The cells metabolic activity after one-month exposure to clotrimazole was the highest for each tested strain. Moreover, metabolic stress led to a strong modification of cell surface properties. The results are promising for determining the impact of clotrimazole on environmental microorganisms. Copyright © 2018 Elsevier Inc. All rights reserved.
Wu, Ming; He, Jia; Ren, Xiao; Cai, Wen-Sheng; Fang, Yong-Chun; Feng, Xi-Zeng
2014-04-01
The effect of physicochemical surface properties and chemical structure on the attachment and viability of bacteria and mammalian cells has been extensively studied for the development of biologically relevant applications. In this study, we report a new approach that uses chlorogenic acid (CA) to modify the surface wettability, anti-bacterial activity and cell adhesion properties of polydimethylsiloxane (PDMS). The chemical structure of the surface was obtained by X-ray photoelectron spectroscopy (XPS), the roughness was measured by atomic force microscopy (AFM), and the water contact angle was evaluated for PDMS substrates both before and after CA modification. Molecular modelling showed that the modification was predominately driven by van der Waals and electrostatic interactions. The exposed quinic-acid moiety improved the hydrophilicity of CA-modified PDMS substrates. The adhesion and viability of E. coli and HeLa cells were investigated using fluorescence and phase contrast microscopy. Few viable bacterial cells were found on CA-coated PDMS surfaces compared with unmodified PDMS surfaces. Moreover, HeLa cells exhibited enhanced adhesion and increased spreading on the modified PDMS surface. Thus, CA-coated PDMS surfaces reduced the ratio of viable bacterial cells and increased the adhesion of HeLa cells. These results contribute to the purposeful design of anti-bacterial surfaces for medical device use. Copyright © 2013 Elsevier B.V. All rights reserved.
Rezaei, Masoud; Tamjid, Elnaz; Dinari, Ali
2017-10-11
Besides the wide applications of titanium and its alloys for orthopedic and biomedical implants, the biocompatible nature of titanium has emerged various surface modification techniques to enhance its bioactivity and osteointegration with living tissues. In this work, we present a new procedure for nanoscale surface modification of titanium implants by integration of magnesium-rich islands combined with controlled formation of pores and refinement of the surface grain structure. Through severe plastic deformation of the titanium surface with fine magnesium hydride powder, Mg-rich islands with varying sizes ranging from 100 nm to 1000 nm can be integrated inside a thin surface layer (100-500 µm) of the implant. Selective etching of the surface forms a fine structure of surface pores which their average size varies in the range of 200-500 nm depending on the processing condition. In vitro biocompatibility and hemocompatibility assays show that the Mg-rich islands and the induced surface pores significantly enhance cell attachment and biocompatibility without an adverse effect on the cell viability. Therefore, severe plastic integration of Mg-rich islands on titanium surface accompanying with porosification is a new and promising procedure with high potential for nanoscale modification of biomedical implants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju
2013-08-21
Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion andmore » maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.« less
Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting
Rattan, Rahul; Bhattacharjee, Somnath; Zong, Hong; Swain, Corban; Siddiqui, Muneeb A.; Visovatti, Scott H.; Kanthi, Yogendra; Desai, Sajani; Pinsky, David J.; Goonewardena, Sascha N.
2017-01-01
The surface properties of nanoparticles (NPs) are a major factor that influences how these nanomaterials interact with biological systems. Interactions between NPs and macrophages of the reticuloendothelial system (RES) can reduce the efficacy of NP diagnostics and therapeutics. Traditionally, to limit NP clearance by the RES system, the NP surface is neutralized with molecules like poly(ethylene glycol) (PEG) which are known to resist protein adsorption and RES clearance. Unfortunately, PEG modification is not without drawbacks including difficulties with the synthesis and associations with immune reactions. To overcome some of these obstacles, we neutralized the NP surface by acetylation and compared this modification to PEGylation for RES clearance and tumor-specific targeting. We found that acetylation was comparable to PEGylation in reducing RES clearance. Additionally, we found that dendrimer acetylation did not impact folic acid (FA)-mediated targeting of tumor cells whereas PEG surface modification reduced the targeting ability of the NP. These results clarify the impact of different NP surface modifications on RES clearance and cell-specific targeting and provide insights into the design of more effective NPs. PMID:28705434
Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces.
Tian, Yu Shun; Kim, Hyun Jung; Kim, Hyun-Man
2009-08-28
Hydrophobic polymers do not offer an adequate scaffold surface for cells to attach, migrate, proliferate, and differentiate. Thus, hydrophobic scaffolds for tissue engineering have traditionally been physicochemically modified to enhance cellular activity. However, modifying the surface by chemical or physical treatment requires supplementary engineering procedures. In the present study, regulation of a cell signal transduction pathway reversed the low cellular activity on a hydrophobic surface without surface modification. Inhibition of Rho-associated kinase (ROCK) by Y-27632 markedly enhanced adhesion, migration, and proliferation of osteoblastic cells cultured on a hydrophobic polystyrene surface. ROCK inhibition regulated cell-cycle-related molecules on the hydrophobic surface. This inhibition also decreased expression of the inhibitors of cyclin-dependent kinases such as p21(cip1) and p27(kip1) and increased expression of cyclin A and D. These results indicate that defective cellular activity on the hydrophobic surface can be reversed by the control of a cell signal transduction pathway without physicochemical surface modification.
Steinbach, Jill M; Seo, Young-Eun; Saltzman, W Mark
2016-01-01
The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2h, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE compared to Avidin NPs, both formulations resulted in similar internalization levels (48 and 64-fold, respectively) after 24h. Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Surface modification for interaction study with bacteria and preosteoblast cells
NASA Astrophysics Data System (ADS)
Song, Qing
Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted on the polyelectrolyte modified HA scaffolds. The mineralized scaffolds stimulated osteogenesis of preosteoblast cells compared with the control HA scaffolds. Therefore, the surface modification through vapor deposition of polyelectrolytes and polymer-controlled mineralization can improve osteoinduction of bone materials. In summary, the iCVD-mediated surface modification is a simple and promising approach to biofunctionalizing various structured substrates and generating antimicrobial and biocompatible biomaterials.
Luo, Jianmei; Chi, Meiling; Wang, Hongyu; He, Huanhuan; Zhou, Minghua
2013-12-01
A convenient and promising alternative to surface modification of carbon mesh anode was fulfilled by electrochemical oxidation in the electrolyte of nitric acid or ammonium nitrate at ambient temperature. It was confirmed that such an anode modification method was low cost and effective not only in improving the efficiency of power generation in microbial fuel cells (MFCs) for synthetic wastewater treatment, but also helping to reduce the period for MFCs start-up. The MFCs with anode modification in electrolyte of nitric acid performed the best, achieving a Coulombic efficiency enhancement of 71 %. As characterized, the electrochemical modification resulted in the decrease of the anode potential and internal resistance but the increase of current response and nitrogen-containing and oxygen-containing functional groups on the carbon surface, which might contribute to the enhancement on the performances of MFCs.
NASA Astrophysics Data System (ADS)
Yasun, Emir; Li, Chunmei; Barut, Inci; Janvier, Denisse; Qiu, Liping; Cui, Cheng; Tan, Weihong
2015-05-01
Aptamer-conjugated gold nanorods (AuNRs) are excellent candidates for targeted hyperthermia therapy of cancer cells. However, in high concentrations of AuNRs, aptamer conjugation alone fails to result in highly cell-specific AuNRs due to the presence of positively charged cetyltrimethylammonium bromide (CTAB) as a templating surfactant. Besides causing nonspecific electrostatic interactions with the cell surfaces, CTAB can also be cytotoxic, leading to uncontrolled cell death. To avoid the nonspecific interactions and cytotoxicity triggered by CTAB, we report the further biologically inspired modification of aptamer-conjugated AuNRs with bovine serum albumin (BSA) protein. Following this modification, interaction between CTAB and the cell surface was efficiently blocked, thereby dramatically reducing the side effects of CTAB. This approach may provide a general and simple method to avoid one of the most serious issues in biomedical applications of nanomaterials: nonspecific binding of the nanomaterials with biological cells.Aptamer-conjugated gold nanorods (AuNRs) are excellent candidates for targeted hyperthermia therapy of cancer cells. However, in high concentrations of AuNRs, aptamer conjugation alone fails to result in highly cell-specific AuNRs due to the presence of positively charged cetyltrimethylammonium bromide (CTAB) as a templating surfactant. Besides causing nonspecific electrostatic interactions with the cell surfaces, CTAB can also be cytotoxic, leading to uncontrolled cell death. To avoid the nonspecific interactions and cytotoxicity triggered by CTAB, we report the further biologically inspired modification of aptamer-conjugated AuNRs with bovine serum albumin (BSA) protein. Following this modification, interaction between CTAB and the cell surface was efficiently blocked, thereby dramatically reducing the side effects of CTAB. This approach may provide a general and simple method to avoid one of the most serious issues in biomedical applications of nanomaterials: nonspecific binding of the nanomaterials with biological cells. Electronic supplementary information (ESI) available: Fig. S-1 to S-6 are included. See DOI: 10.1039/c5nr01704a
NASA Technical Reports Server (NTRS)
Fossum, J. G.; Lindholm, F. A.; Shibib, M. A.
1979-01-01
Experimental data demonstrating the sensitivity of open-circuit voltage to front-surface conditions are presented for a variety of p-n-junction silicon solar cells. Analytical models accounting for the data are defined and supported by additional experiments. The models and the data imply that a) surface recombination significantly limits the open-circuit voltage (and the short-circuit current) of typical silicon cells, and b) energy-bandgap narrowing is important in the manifestation of these limitations. The models suggest modifications in both the structural design and the fabrication processing of the cells that would result in substantial improvements in cell performance. The benefits of one such modification - the addition of a thin thermal silicon-dioxide layer on the front surface - are indicated experimentally.
Augmented liver targeting of exosomes by surface modification with cationized pullulan.
Tamura, Ryo; Uemoto, Shinji; Tabata, Yasuhiko
2017-07-15
Exosomes are membrane nanoparticles containing biological substances that are employed as therapeutics in experimental inflammatory models. Surface modification of exosomes for better tissue targetability and enhancement of their therapeutic ability was recently attempted mainly using gene transfection techniques. Here, we show for the first time that the surface modification of exosomes with cationized pullulan, which has the ability to target hepatocyte asialoglycoprotein receptors, can target injured liver and enhance the therapeutic effect of exosomes. Surface modification can be achieved by a simple mixing of original exosomes and cationized pullulan and through an electrostatic interaction of both substances. The exosomes modified with cationized pullulan were internalized into HepG2 cells in vitro to a significantly greater extent than unmodified ones and this internalization was induced through the asialoglycoprotein receptor that was specifically expressed on HepG2 cells and hepatocytes. When injected intravenously into mice with concanavalin A-induced liver injury, the modified exosomes accumulated in the liver tissue, resulting in an enhanced anti-inflammatory effect in vivo. It is concluded that the surface modification with cationized pullulan promoted accumulation of the exosomes in the liver and the subsequent biological function, resulting in a greater therapeutic effect on liver injury. Exosomes have shown potentials as therapeutics for various inflammatory disease models. This study is the first to show the specific accumulation of exosomes in the liver and enhanced anti-inflammatory effect via the surface modification of exosomes using pullulan, which is specifically recognized by the asialoglycoprotein receptor (AGPR) on HepG2 cells and hepatocytes. The pullulan was expressed on the surface of PKH-labeled exosomes, and it led increased accumulation of PKH into HepG2 cells, whereas the accumulation was canceled by AGPR inhibitor. In the mouse liver injury model, the modification of PKH-labeled exosomes with pullulan enabled increased accumulation of PKH specifically in the injured liver. Furthermore the greater therapeutic effects against the liver injury compared with unmodified original exosomes was observed. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Novotna, Katarina; Bacakova, Marketa; Kasalkova, Nikola Slepickova; Slepicka, Petr; Lisa, Vera; Svorcik, Vaclav; Bacakova, Lucie
2013-01-01
Cell colonization of synthetic polymers can be regulated by physical and chemical modifications of the polymer surface. High-density and low-density polyethylene (HDPE and LDPE) were therefore activated with Ar+ plasma and grafted with fibronectin (Fn) or bovine serum albumin (BSA). The water drop contact angle usually decreased on the plasma-treated samples, due to the formation of oxidized groups, and this decrease was inversely related to the plasma exposure time (50–300 s). The presence of nitrogen and sulfur on the polymer surface, revealed by X-ray photoelectron spectroscopy (XPS), and also by immunofluorescence staining, showed that Fn and BSA were bound to this surface, particularly to HDPE. Plasma modification and grafting with Fn and BSA increased the nanoscale surface roughness of the polymer. This was mainly manifested on HDPE. Plasma treatment and grafting with Fn or BSA improved the adhesion and growth of vascular smooth muscle cells in a serum-supplemented medium. The final cell population densities on day 6 after seeding were on an average higher on LDPE than on HDPE. In a serum-free medium, BSA grafted to the polymer surface hampered cell adhesion. Thus, the cell behavior on polyethylene can be modulated by its type, intensity of plasma modification, grafting with biomolecules, and composition of the culture medium. PMID:28809234
Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon; Kim, Yong Sik
2011-02-01
Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility, thus allowing a broad range of materials to be used for cementless implants.
Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K
2016-02-01
Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment.
Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W
2012-10-23
Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.
Kuroda, Kouichi; Ueda, Mitsuyoshi
2017-12-01
Microbial cell factories are subject to various stresses, leading to the reductions of metabolic activity and bioproduction efficiency. Therefore, the development of stress-tolerant microorganisms is important for improving bio-production efficiency. Recently, modifications of cell surface properties and master regulators have been shown to be effective approaches for enhancing stress tolerance. The cell surface is an attractive target owing to its interactions with the environment and its role in transmitting environmental information. Cell surface engineering in yeast has enabled the convenient modification of cell surface properties. Displaying random peptide libraries and subsequent screening can successfully improve stress tolerance. Furthermore, master regulators including transcription factors are also promising target to be engineered because stress tolerance is determined by many cooperative factors and modification of master regulators can simultaneously affect the expression of multiple downstream genes. The key single amino acid mutations in transcription factors have been identified by analyzing tolerant yeasts that were isolated by adaptive evolution under stress conditions. This enabled the reconstruction of stress-tolerant yeast without burdening cells by introducing the identified mutations. Therefore, for the construction of stress-tolerant yeast from any strains, these two approaches are promising alternatives to conventional overexpression and deletion of stress-related genes. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces
NASA Astrophysics Data System (ADS)
Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo
2016-02-01
Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.
Mahjoubi, Hesameddin; Kinsella, Joseph M; Murshed, Monzur; Cerruti, Marta
2014-07-09
Scaffolds made with synthetic polymers such as polyesters are commonly used in bone tissue engineering. However, their hydrophobicity and the lack of specific functionalities make their surface not ideal for cell adhesion and growth. Surface modification of these materials is thus crucial to enhance the scaffold's integration in the body. Different surface modification techniques have been developed to improve scaffold biocompatibility. Here we show that diazonium chemistry can be used to modify the outer and inner surfaces of three-dimensional poly(D,L-lactic acid) (PDLLA) scaffolds with phosphonate groups, using a simple two-step method. By changing reaction time and impregnation procedure, we were able to tune the concentration of phosphonate groups present on the scaffolds, without degrading the PDLLA matrix. To test the effectiveness of this modification, we immersed the scaffolds in simulated body fluid, and characterized them with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and infrared spectroscopy. Our results showed that a layer of hydroxyapatite particles was formed on all scaffolds after 2 and 4 weeks of immersion; however, the precipitation was faster and in larger amounts on the phosphonate-modified than on the bare PDLLA scaffolds. Both osteogenic MC3T3-E1 and chondrogenic ATDC5 cell lines showed increased cell viability/metabolic activity when grown on a phosphonated PDLLA surface in comparison to a control PDLLA surface. Also, more calcium-containing minerals were deposited by cultures grown on phosphonated PDLLA, thus showing the pro-mineralization properties of the proposed modification. This work introduces diazonium chemistry as a simple and biocompatible technique to modify scaffold surfaces, allowing to covalently and homogeneously bind a number of functional groups without degrading the scaffold's polymeric matrix.
Rebollar, Esther; Pérez, Susana; Hernández, Margarita; Domingo, Concepción; Martín, Margarita; Ezquerra, Tiberio A; García-Ruiz, Josefa P; Castillejo, Marta
2014-09-07
This work reports on the formation of different types of structures on the surface of polymer films upon UV laser irradiation. Poly(ethylene terephthalate) was irradiated with nanosecond UV pulses at 193 and 266 nm. The polarization of the laser beam and the irradiation angle of incidence were varied, giving rise to laser induced surface structures with different shapes and periodicities. The irradiated surfaces were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via micro-Raman and fluorescence spectroscopies. Contact angle measurements were performed with different liquids, and the results evaluated in terms of surface free energy components. Finally, in order to test the influence of surface properties for a potential application, the modified surfaces were used for mesenchymal stem cell culture assays and the effect of nanostructure and surface chemistry on cell adhesion was evaluated.
Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.
2016-01-01
The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791
NASA Astrophysics Data System (ADS)
Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.
2016-03-01
The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.
Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W
2016-03-09
The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.
Zhong, Xiaotian; He, Tao; Prashad, Amar S; Wang, Wenge; Cohen, Justin; Ferguson, Darren; Tam, Amy S; Sousa, Eric; Lin, Laura; Tchistiakova, Lioudmila; Gatto, Scott; D'Antona, Aaron; Luan, Yen-Tung; Ma, Weijun; Zollner, Richard; Zhou, Jing; Arve, Bo; Somers, Will; Kriz, Ronald
2017-04-20
Protein modifications by intricate cellular machineries often redesign the structure and function of existing proteins to impact biological networks. Disulfide bond formation between cysteine (Cys) pairs is one of the most common modifications found in extracellularly-destined proteins, key to maintaining protein structure. Unpaired surface cysteines on secreted mammalian proteins are also frequently found disulfide-bonded with free Cys or glutathione (GSH) in circulation or culture, the mechanism for which remains unknown. Here we report that these so-called Cys-capping modifications take place outside mammalian cells, not in the endoplasmic reticulum (ER) where oxidoreductase-mediated protein disulfide formation occurs. Unpaired surface cysteines of extracellularly-arrived proteins such as antibodies are uncapped upon secretion before undergoing disulfide exchange with cystine or oxidized GSH in culture medium. This observation has led to a feasible way to selectively modify the nucleophilic thiol side-chain of cell-surface or extracellular proteins in live mammalian cells, by applying electrophiles with a chemical handle directly into culture medium. These findings provide potentially an effective approach for improving therapeutic conjugates and probing biological systems. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
2017-03-08
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J
2017-01-01
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules. PMID:28382247
Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan
2016-05-01
Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016. © 2016 American Institute of Chemical Engineers.
Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.
Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg
2014-07-01
The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.
Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon
2010-01-01
Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility, thus allowing a broad range of materials to be used for cementless implants. PMID:20936386
NASA Astrophysics Data System (ADS)
Kalinowska, D.; Grabowska-Jadach, I.; Drozd, M.; Pietrzak, M.
2018-05-01
This paper presents a modification of the surface of CdS/ZnS and CdSe x S1-x /ZnS quantum dots (QDs) with 3-mercaptopropionic and 6-mercaptohexanoic acid. The obtained QDs were characterized using TEM, DLS, UV-Vis, and fluorescence spectroscopy. Flow cytometry was applied to evaluate the cytotoxicity of QDs and examine the type of death caused by the tested nanoparticles. In addition, the generation of reactive oxygen species after incubation of the tested cells with CdSe x S1-x /ZnS-MPA and CdSe x S1-x /ZnS-MHA QDs was evaluated. The study was conducted on three cell lines: adherent (A549 and MRC-5) and suspension ones (K562). The conducted research demonstrated that the tested nanoparticles exhibit concentration-dependent toxicity. It was observed that the surface modification influences the toxicity level of the examined QDs, and modification of their surface with the use of the ligand of longer carbon chain (MHA) reduces the toxicity in comparison with QDs-MPA. It was also found that all tested QDs caused the death of cells in the course of necrosis. Based on obtained results, it was concluded that the cytotoxicity of QDs is to a large extent related to reactive oxygen species (ROS) generation.
Surface Topographical Modification of Coronary Stent: A Review
NASA Astrophysics Data System (ADS)
Tan, C. H.; Muhamad, N.; Abdullah, M. M. A. B.
2017-06-01
Driven by the urge of mediating the inflammatory response from coronary stent implant to improve patency rates of the current coronary stent, concern has been focusing on reducing the risk of in-stent restenosis and thrombosis for long-term safety. Surface modification approach has been found to carry great potential due to the surface is the vital parts that act as a buffer layer between the biomaterial and the organic material like blood and vessel tissues. Nevertheless, manipulating cell response in situ using physical patterning is very complex as the exact mechanism were yet elucidated. Thus, the aim of this review is to summarise the recent efforts on modifying the surface topography of coronary stent at the micro- and nanometer scale with the purpose of inducing rapid in situ endothelialization to regenerate a healthy endothelium layer on biomaterial surface. In particular, a discussion on the surface patterns that have been investigated on cell selective behaviour together with the methods used to generate them are presented. Furthermore, the probable future work involving the surface modification of coronary stent were indicated.
Laser surface texturing of polymers for biomedical applications
NASA Astrophysics Data System (ADS)
Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan
2018-02-01
Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.
Pashkuleva, I; Marques, A P; Vaz, F; Reis, R L
2005-01-01
The surface modification of three starch based polymeric biomaterials, using a KMnO4/HNO3 oxidizing system, and the effect of that modification on the osteoblastic cell adhesion has been investigated. The rationale of this work is as follows--starch based polymers have been proposed for use as tissue engineering scaffolds in several publications. It is known that in biodegradable systems it is quite difficult to have both cell adhesion and proliferation. Starch based polymers have shown to perform better than poly-lactic acid based materials but there is still room for improvement. This particular work is aimed at enhancing cell adhesion and proliferation on the surface of several starch based polymer blends that are being proposed as tissue engineering scaffolds. The surface of the polymeric biomaterials was chemically modified using a KMnO4/HNO3 system. This treatment resulted in more hydrophilic surfaces, which was confirmed by contact angle measurements. The effect of the treatment on the bioactivity of the surface modified biomaterials was also studied. The bioactivity tests, performed in simulated body fluid after biomimetic coating, showed that a dense film of calcium phosphate was formed after 30 days. Finally, human osteoblast-like cells were cultured on unmodified (control) and modified materials in order to observe the effect of the presence of higher numbers of polar groups on the adhesion and proliferation of those cells. Two of the modified polymers presented changes in the adhesion behavior and a significant increase in the proliferation rate kinetics when compared to the unmodified controls.
Park, Su Kyung; Yun, Tae Kwan; Bae, Jae Young
2016-03-01
N/F-doping and CaCO3 surface modification was carried out in TiO2 photoelectrodes for dye-sensitized solar cells (DSSCs). The combined effect of the N/F doped TiO2 and the CaCO3 coating showed a great increase of the short-circuit current (J(sc)), and photoelectric conversion efficiency (η) of the prepared cells; the efficiency (η) was improved from 7.00% of a commercial TiO2 photoelectrode to 7.90% of an uncoated N/F-doped electrode, and to 9.09% of a N/F-doped and CaCO3 surface modified electrode. An enhanced photoresponse in N/F-doped TiO2 nanoparticles generate more photo-excited electrons, as supported by measured UV-Vis diffuse reflectance spectra. A successive CaCO3 surface modification then forms a barrier on the surface of the N/F-doped TiO2 particles; the higher basicity of the CaCO3 modified TiO2 facilitates the dye adsorption, as supported by the direct measurement of the amount of adsorbed dye.
NASA Astrophysics Data System (ADS)
Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun
2014-03-01
Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.
Nanoscale Surface Modification of Polycrystalline Tin Sulphide Films during Plasma Treatment
NASA Astrophysics Data System (ADS)
Zimin, S. P.; Gorlachev, E. S.; Dubov, G. A.; Amirov, I. I.; Naumov, V. V.; Gremenok, V. F.; Ivanov, V. A.; Seidi, H. G.
2013-05-01
In this paper, we present a comparative research of the nanoscale modification of the surface morphology of polycrystalline SnS films on glass substrates with two different preferred growth orientations processed in inductively coupled argon plasma. We report a new effect of polycrystalline SnS film surface smoothing during plasma treatment, which can be advantageous for the fabrication of multilayer solar cell devices with SnS absorption layers.
Hamlet, Stephen; Alfarsi, Mohammed; George, Roy; Ivanovski, Saso
2012-05-01
Chemical modification of microrough titanium dental implants to produce a hydrophilic surface with increased wettability and improved surface energy has been demonstrated clinically to achieve superior bone wound healing and osseointegration compared to that achieved with a microrough titanium surface alone. As the recruitment of the necessary osseoinductive precursors involved in bone wound healing and osseointegration to the wound site is facilitated by the action of cytokines, this study sought to determine the in vitro effect of hydrophilic surface modification on the expression of pro-inflammatory cytokines from adherent macrophages. The surface topography and composition of the titanium surfaces was characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. Macrophage attachment and proliferation was assessed using an MTT assay. The expression of 84 pro-inflammatory cytokines and chemokines by adherent RAW 264.7 cells, a murine leukaemic monocyte cell line, was assessed by PCR array after 24 h culture on either smooth polished, sand-blasted acid-etched (SLA) or hydrophilic-modified SLA (SLActive) titanium surfaces. Following 24 h culture on titanium, surface microroughness activated pro-inflammatory cytokine gene transcription in RAW 264.7 cells. Although there was no significant difference in the degree of cellular attachment or proliferation of RAW 264.7 cells to the different titanium surfaces, by 24 h the hydrophilic surface elicited a gene expression profile with significant down-regulation of the key pro-inflammatory cytokines Tnfα, IL-1α, IL-1β and the chemokine Ccl-2. Down-regulation of the expression of pro-inflammatory cytokine genes may thus modulate the inflammatory response and may facilitate the enhanced bone wound healing and osseointegration observed clinically using implants with a microrough hydrophilic surface. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.
2014-08-01
Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.
Richter, Lubna V; Franks, Ashley E; Weis, Robert M; Sandler, Steven J
2017-04-15
Geobacter sulfurreducens , an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c -type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces. IMPORTANCE Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in Geobacter sulfurreducens is still a subject of research. In this study, we identified a posttranslational modification of the major G. sulfurreducens type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring G. sulfurreducens cells. Copyright © 2017 American Society for Microbiology.
Franks, Ashley E.; Weis, Robert M.; Sandler, Steven J.
2017-01-01
ABSTRACT Geobacter sulfurreducens, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces. IMPORTANCE Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in Geobacter sulfurreducens is still a subject of research. In this study, we identified a posttranslational modification of the major G. sulfurreducens type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring G. sulfurreducens cells. PMID:28138101
Wang, Weiguang; Caetano, Guilherme; Ambler, William Stephen; Blaker, Jonny James; Frade, Marco Andrey; Mandal, Parthasarathi; Diver, Carl; Bártolo, Paulo
2016-01-01
Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements, i.e., certain standards in terms of mechanical properties, surface characteristics, porosity, degradability, and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes, as well as surface treatment. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion-based additive manufacturing system to produce poly(ε-caprolactone) (PCL)/pristine graphene scaffolds for bone tissue applications and the influence of chemical surface modification on their biological behaviour. Scaffolds with the same architecture but different concentrations of pristine graphene were evaluated from surface property and biological points of view. Results show that the addition of pristine graphene had a positive impact on cell viability and proliferation, and that surface modification leads to improved cell response. PMID:28774112
Wang, Weiguang; Caetano, Guilherme; Ambler, William Stephen; Blaker, Jonny James; Frade, Marco Andrey; Mandal, Parthasarathi; Diver, Carl; Bártolo, Paulo
2016-12-07
Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements, i.e., certain standards in terms of mechanical properties, surface characteristics, porosity, degradability, and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes, as well as surface treatment. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion-based additive manufacturing system to produce poly( ε -caprolactone) (PCL)/pristine graphene scaffolds for bone tissue applications and the influence of chemical surface modification on their biological behaviour. Scaffolds with the same architecture but different concentrations of pristine graphene were evaluated from surface property and biological points of view. Results show that the addition of pristine graphene had a positive impact on cell viability and proliferation, and that surface modification leads to improved cell response.
Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarova, Olga V.; Adams, Daniel L.; Divan, Ralu
There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and withoutmore » an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. Copyright 2016 The Authors. Published by Elsevier B.V. All rights reserved.« less
Root Surface Bio-modification with Erbium Lasers- A Myth or a Reality??
Lavu, Vamsi; Sundaram, Subramoniam; Sabarish, Ram; Rao, Suresh Ranga
2015-01-01
The objective of this literature review was to critically review the evidence available in the literature regarding the expediency of erbium family of lasers for root bio modification as a part of periodontal therapy. The literature search was performed on the Pubmed using MeSH words such as "lasers/therapeutic use, scaling, dental calculus, tooth root/anatomy and histology, ultrasonic therapy". The studies were screened and were grouped as follows: those evaluating a) efficacy for calculus removal with the Erbium family of laser b) root surface changes following Er YAG and Er Cr YSGG application c) comparative studies of the Er YAG, Er Cr YSGG lasers versus conventional methods of root surface modification d) Bio compatibility of root surface following Erbium laser treatment e) Studies on the combined efficacy of laser root modification with conventional methods towards root surface bio-modification f) Studies on effectiveness of root surface bio-modification prior to root coverage procedures. In conclusion, the erbium family has a proven anti-bacterial action, predictable calculus removal, minimal root substance removal, and appears to favor cell attachment. The Erbium family of lasers appears to be a useful adjunct for the management of periodontal disease. PMID:25713635
NASA Astrophysics Data System (ADS)
Monsees, Thomas
2016-08-01
With regard to biocompatibility, the cardinal requirement for dental implants and other medical devices that are in long-term contact with tissue is that the material does not cause any adverse effect to the patient. To warrant stability and function of the implant, proper osseointegration is a further prerequisite. Cells interact with the implant surface as the interface between bulk material and biological tissue. Whereas structuring, deposition of a thin film or other modifications of the surface are crucial parameters in determining favorable adhesion of cells, corrosion of metal surfaces and release of ions can affect cell viability. Both parameters are usually tested using in vitro cytotoxicity and adhesion assays with bone or fibroblasts cells. For bioactive surface modifications, further tests should be considered for biocompatibility evaluation. Depending on the type of modification, this may include analysis of specific cell functions or the determination of antimicrobial activities. The latter is of special importance as bacteria and yeast present in the oral cavity can be introduced during the implantation process and this may lead to chronic infections and implant failure. An antimicrobial coating of the implant is a way to avoid that. This review describes the essential biocompatibility assays for evaluation of new implant materials required by ISO 10993 and also gives an overview on recent test methods for specific coatings of dental implants.
Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement
Zhou, Xiaoyue; Park, Shin-Hye; Mao, Hongli; Isoshima, Takashi; Wang, Yi; Ito, Yoshihiro
2015-01-01
Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by 31P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface. PMID:26366080
Ritz, U; Nusselt, T; Sewing, A; Ziebart, T; Kaufmann, K; Baranowski, A; Rommens, P M; Hofmann, Alexander
2017-01-01
Targeted modifications of the bulk implant surfaces using bioactive agents provide a promising tool for improvement of the long-term bony and soft tissue integration of dental implants. In this study, we assessed the cellular responses of primary human gingival fibroblasts (HGF) to different surface modifications of titanium (Ti) and titanium nitride (TiN) alloys with type I collagen or cyclic-RGDfK-peptide in order to define a modification improving long-term implants in dental medicine. Employing Ti and TiN implants, we compared the performance of simple dip coating and anodic immobilization of type I collagen that provided collagen layers of two different thicknesses. HGF were seeded on the different coated implants, and adhesion, proliferation, and gene expression were analyzed. Although there were no strong differences in initial cell adhesion between the groups at 2 and 4 hours, we found that all surface modifications induced higher proliferation rates as compared to the unmodified controls. Consistently, gene expression levels of cell adhesion markers (focal adhesion kinase (FAK), integrin beta1, and vinculin), cell differentiation markers (FGFR1, TGFb-R1), extracellular protein markers (type I collagen, vimentin), and cytoskeletal protein marker aktinin-1 were consistently higher in all surface modification groups at two different time points of investigation as compared to the unmodified controls. Our results indicate that simple dip coating of Ti and TiN with collagen is sufficient to induce in vitro cellular responses that are comparable to those of more reliable coating methods like anodic adsorption, chemical cross-linking, or RGD coating. TiN alloys do not possess any positive or adverse effects on HGF. Our results demonstrate a simple, yet effective, method for collagen coating on titanium implants to improve the long term integration and stability of dental implants.
S180 cell growth on low ion energy plasma treated TiO 2 thin films
NASA Astrophysics Data System (ADS)
Dhayal, Marshal; Cho, Su-In; Moon, Jun Young; Cho, Su-Jin; Zykova, Anna
2008-03-01
X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO 2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO 2 in a two-stage hybrid system had increased the proportion of surface states of TiO 2 as Ti 3+. The proportion of carbon atoms as alcohol/ether (C sbnd OX) was decreased with increase the RF power and carbon atoms as carbonyl (C dbnd O) functionality had increased for low RF power treatment. The proportion of C( dbnd O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO 2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO 2 surfaces which may be due to decrease in C( dbnd O)OX, increase in C dbnd O and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO 2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO 2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.
Zhang, Jie; Zhang, Yinan; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan; Jia, Baohua
2017-07-05
Organic-inorganic hybrid solar cells based on n-type crystalline silicon and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) exhibited promising efficiency along with a low-cost fabrication process. In this work, ultrathin flexible silicon substrates, with a thickness as low as tens of micrometers, were employed to fabricate hybrid solar cells to reduce the use of silicon materials. To improve the light-trapping ability, nanostructures were built on the thin silicon substrates by a metal-assisted chemical etching method (MACE). However, nanostructured silicon resulted in a large amount of surface-defect states, causing detrimental charge recombination. Here, the surface was smoothed by solution-processed chemical treatment to reduce the surface/volume ratio of nanostructured silicon. Surface-charge recombination was dramatically suppressed after surface modification with a chemical, associated with improved minority charge-carrier lifetime. As a result, a power conversion efficiency of 9.1% was achieved in the flexible hybrid silicon solar cells, with a substrate thickness as low as ∼14 μm, indicating that interface engineering was essential to improve the hybrid junction quality and photovoltaic characteristics of the hybrid devices.
Yang, Jian; Shi, Guixin; Bei, Jianzhong; Wang, Shenguo; Cao, Yilin; Shang, Qingxin; Yang, Guanghui; Wang, Wenjing
2002-12-05
The fabrication and surface modification of a porous cell scaffold are very important in tissue engineering. Of most concern are high-density cell seeding, nutrient and oxygen supply, and cell affinity. In the present study, poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds with different pore structures were fabricated. An improved method based on Archimedes' Principle for measuring the porosity of scaffolds, using a density bottle, was developed. Anhydrous ammonia plasma treatment was used to modify surface properties to improve the cell affinity of the scaffolds. The results show that hydrophilicity and surface energy were improved. The polar N-containing groups and positive charged groups also were incorporated into the sample surface. A low-temperature treatment was used to maintain the plasma-modified surface properties effectively. It would do help to the further application of plasma treatment technique. Cell culture results showed that pores smaller than 160 microm are suitable for human skin fibroblast cell growth. Cell seeding efficiency was maintained at above 99%, which is better than the efficiency achieved with the common method of prewetting by ethanol. The plasma-treatment method also helped to resolve the problem of cell loss during cell seeding, and the negative effects of the ethanol trace on cell culture were avoided. The results suggest that anhydrous ammonia plasma treatment enhances the cell affinity of porous scaffolds. Mass transport issues also have been considered. Copyright 2002 Wiley Periodicals, Inc.
Impact of plasma chemistry versus titanium surface topography on osteoblast orientation.
Rebl, Henrike; Finke, Birgit; Lange, Regina; Weltmann, Klaus-Dieter; Nebe, J Barbara
2012-10-01
Topographical and chemical modifications of biomaterial surfaces both influence tissue physiology, but unfortunately little knowledge exists as to their combined effect. There are many indications that rough surfaces positively influence osteoblast behavior. Having determined previously that a positively charged, smooth titanium surface boosts osteoblast adhesion, we wanted to investigate the combined effects of topography and chemistry and elucidate which of these properties is dominant. Polished, machined and corundum-blasted titanium of increasing microroughness was additionally coated with plasma-polymerized allylamine (PPAAm). Collagen I was then immobilized using polyethylene glycol diacid and glutar dialdehyde. On all PPAAm-modified surfaces (i) adhesion of human MG-63 osteoblastic cells increased significantly in combination with roughness, (ii) cells resemble the underlying structure and melt with the surface, and (iii) cells overcome the restrictions of a grooved surface and spread out over a large area as indicated by actin staining. Interestingly, the cellular effects of the plasma-chemical surface modification are predominant over surface topography, especially in the initial phase. Collagen I, although it is the gold standard, does not improve surface adhesion features comparably. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Atalay, Belir; Aybar, Buket; Ergüven, Mine; Emes, Yusuf; Bultan, Özgür; Akça, Kivanç; Yalçin, Serhat; Baysal, Uğur; Işsever, Halim; Çehreli, Murat Cavit; Bilir, Ayhan
2013-11-01
Commercially pure Ti, together with Ti Ni, Ti-6Al-4V, and Ti-6Al-7Nb alloys, are among the materials currently being used for this purpose. Titanium-zirconium (TiZr) has been developed that allows SLActive surface modification and that has comparable or better mechanical strength and improved biocompatibility compared with existing Ti alloys. Furthermore, approaches have targeted making the implant surface more hydrophilic, as with the Straumann SLActive surface, a modification of the SLA surface. The aim of this study is to evaluate the effects of pulsed electromagnetic field (PEMF) to the behavior of neonatal rat calvarial osteoblast-like cells cultured on commercially pure titanium (cpTi) and titanium-zirconium alloy (TiZr) discs with hydrophilic surface properties. Osteoblast cells were cultured on titanium and TiZr discs, and PEMF was applied. Cell proliferation rates, cell numbers, cell viability rates, alkaline phosphatase, and midkine (MK) levels were measured at 24 and 72 hours. At 24 hours, the number of cells was significantly higher in the TiZr group. At 72 hours, TiZr had a significantly higher number of cells when compared to SLActive, SLActive + PEMF, and machine surface + PEMF groups. At 24 hours, cell proliferation was significantly higher in the TiZr group than SLActive and TiZr + PEMF group. At 72 hours, TiZr group had higher proliferation rate than machine surface and TiZr + PEMF. Cell proliferation in the machine surface group was lower than both SLActive + PEMF and machine surface + PEMF. MK levels of PEMF-treated groups were lower than untreated groups for 72 hours. Our findings conclude that TiZr surfaces are similar to cpTi surfaces in terms of biocompatibility. However, PEMF application has a higher stimulative effect on cells cultured on cpTi surfaces when compared to TiZr.
In vitro bioactivity investigations of Ti-15Mo alloy after electrochemical surface modification.
Kazek-Kęsik, Alicja; Kuna, Karolina; Dec, Weronika; Widziołek, Magdalena; Tylko, Grzegorz; Osyczka, Anna M; Simka, Wojciech
2016-07-01
Titanium and its aluminum and vanadium-free alloys have especially great potential for medical applications. Electrochemical surface modification improves their surface bioactivity and stimulates osseointegration process. In this work, the effect of plasma electrolytic oxidation of the β-type alloy Ti-15Mo surface on its bioactivity is presented. Bioactivity of the modified alloy was investigated by immersion in simulated body fluid (SBF). Biocompatibility of the modified alloys were tested using human bone marrow stromal cells (hBMSC) and wild intestinal strains (DV/A, DV/B, DV/I/1) of Desulfovibrio desulfuricans bacteria. The particles of apatite were formed on the anodized samples. Human BMSC cells adhered well on all the examined surfaces and expressed ALP, collagen, and produced mineralized matrix as determined after 10 and 21 days of culture. When the samples were inoculated with D. desulfuricans bacteria, only single bacteria were visible on selected samples. There were no obvious changes in surface morphology among samples. Colonization and bacterial biofilm formation was observed on as-ground sample. In conclusion, the surface modification improved the Ti-15Mo alloy bioactivity and biocompatibility and protected surface against colonization of the bacteria. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 903-913, 2016. © 2015 Wiley Periodicals, Inc.
In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V.
Chikarakara, Evans; Fitzpatrick, Patricia; Moore, Eric; Levingstone, Tanya; Grehan, Laura; Higginbotham, Clement; Vázquez, Mercedes; Bagga, Komal; Naher, Sumsun; Brabazon, Dermot
2014-12-29
The success of any implant, dental or orthopaedic, is driven by the interaction of implant material with the surrounding tissue. In this context, the nature of the implant surface plays a direct role in determining the long term stability as physico-chemical properties of the surface affect cellular attachment, expression of proteins, and finally osseointegration. Thus to enhance the degree of integration of the implant into the host tissue, various surface modification techniques are employed. In this work, laser surface melting of titanium alloy Ti-6Al-4V was carried out using a CO2 laser with an argon gas atmosphere. Investigations were carried out to study the influence of laser surface modification on the biocompatibility of Ti-6Al-4V alloy implant material. Surface roughness, microhardness, and phase development were recorded. Initial knowledge of these effects on biocompatibility was gained from examination of the response of fibroblast cell lines, which was followed by examination of the response of osteoblast cell lines which is relevant to the applications of this material in bone repair. Biocompatibility with these cell lines was analysed via Resazurin cell viability assay, DNA cell attachment assay, and alamarBlue metabolic activity assay. Laser treated surfaces were found to preferentially promote cell attachment, higher levels of proliferation, and enhanced bioactivity when compared to untreated control samples. These results demonstrate the tremendous potential of this laser surface melting treatment to significantly improve the biocompatibility of titanium implants in vivo.
NASA Astrophysics Data System (ADS)
Bolbasov, E. N.; Antonova, L. V.; Stankevich, K. S.; Ashrafov, A.; Matveeva, V. G.; Velikanova, E. A.; Khodyrevskaya, Yu. I.; Kudryavtseva, Yu. A.; Anissimov, Y. G.; Tverdokhlebov, S. I.; Barbarash, L. S.
2017-03-01
The deposition of thin titanium coatings using magnetron spattering on the surface of bioresorbable fibrous scaffolds produced by electrospinning was investigated. Parameters that allow the surface modification without damaging the "macro" structure of scaffolds were determined. Physicochemical properties of the modified scaffolds were described using SEM, EDS, DSC, optical goniometry, and mechanical testing. It was shown that plasma treatment has a significant influence on the scaffolds' fiber surface relief. The modification process leads to a slight decrease of the scaffold mechanical performance mainly caused by polymer crystallization. Increasing the deposition time increases the amount of titanium on the surface. The biocompatibility of the modified scaffolds was studied using hybridoma of the endothelial cells of human umbilical vein and human lung carcinoma (EA.hy 926 cell line). Cell adhesion, viability, and secretion of interleukin-6 (IL6), interleukin-8 (IL8), and vascular endothelial growth factor (VEGF) were investigated. It was demonstrated that the deposition of thin titanium coatings on the fibrous scaffolds' surface enhances cell adhesion. Additionally, it was determined that modified scaffolds have proangiogenic activity.
NASA Astrophysics Data System (ADS)
Cho, Suehyun K.; Su, Lih-Jen; Flaig, Thomas W.; Park, Wounjhang
2016-09-01
NaYF4:Yb3+,Er3+ upconverting nanophosphors (UCNPs) are robust and stable nanoparticles that absorb near-infrared (NIR) photons and emit green and red visible photons through energy transfer upconversion. This mechanism provides UCNPs several advantages as a bioimaging agent over traditional fluorescence imaging agent in that NIR excitation allows high-contrast imaging without autofluorescence and that they can be used for deep-tissue imaging. However, additional surface modification of UCNPs is necessary for them to be biocompatible. We use an amphiphilic polymer (poly(maleic anhydride-alt-octadecene) (PMAO) and a hetero-functional polyethylene glycol with amine and thiol ends (NH2-PEG-SH)) to make the UCNPs water-soluble. This reaction yields a carboxylic group that allows functionalization with anti-epidermal growth factor receptor (aEGFR), which provides specific binding of UCNPs to EGFR-expressing bladder cancer cells. Additionally, the thiol ends of the PEGylated UCNPs are able to bind with gold nanorods (AuNRs) to create UCNP-AuNR complexes. The localized surface plasmon of the AuNR then allow localized heating of HTB9 bladder cancer cells, enabling in situ cell killing upon detection by UCNP fluorescence. Here, we report a successful synthesis, surface modification and conjugation of aEGFR functionalized UCNP-AuNR complexes and in vitro imaging and thermal ablation studies using them. Synthesis and surface modification of UCNP-AuNR complexes are confirmed by electron microscopy. Then, a combination of brightfield, NIR confocal fluorescence, and darkfield microscopy on the UCNP-AuNR treated bladder cancer cells revealed successful cancer targeting and imaging capabilities of the complex. Finally, cell viability assay showed that NIR irradiation of UCNP-AuNR conjugated cells resulted highly selective cell killing.
Rousseau, Paul; Halvorson, Harlyn O.; Bulla, Lee A.; Julian, Grant St.
1972-01-01
Single spores of Saccharomyces cerevisiae were examined during germination and outgrowth by scanning electron and phase-contrast microscopy. Also determined were changes in cell weight and light absorbance, trehalose utilization, and synthesis of protein and KOH-soluble carbohydrates. These studies reveal that development of the vegetative cell from a spore follows a definite sequence of events involving dramatic physical and chemical modifications. These changes are: initial rapid loss in cellular absorbance followed later by an abrupt gain in absorbance; reduction in cell weight and a subsequent progressive increase; modification of the spore surface with concomitant diminution in refractility; elongation of the cell and augmentation of surface irregularities; rapid decline in trehalose content of the cell accompanied by extensive formation of KOH-soluble carbohydrates; and bud formation. Images PMID:4551750
Konrad, Zvia; Eichler, Jerry
2002-01-01
Once the newly synthesized surface (S)-layer glycoprotein of the halophilic archaeaon Haloferax volcanii has traversed the plasma membrane, the protein undergoes a membrane-related, Mg(2+)-dependent maturation event, revealed as an increase in the apparent molecular mass and hydrophobicity of the protein. To test whether lipid modification of the S-layer glycoprotein could explain these observations, H. volcanii cells were incubated with a radiolabelled precursor of isoprene, [(3)H]mevalonic acid. In Archaea, isoprenoids serve as the major hydrophobic component of archaeal membrane lipids and have been shown to modify other haloarchaeal S-layer glycoproteins, although little is known of the mechanism, site or purpose of such modification. In the present study we report that the H. volcanii S-layer glycoprotein is modified by a derivative of mevalonic acid and that maturation of the protein was prevented upon treatment with mevinolin (lovastatin), an inhibitor of mevalonic acid biosynthesis. These findings suggest that lipid modification of S-layer glycoproteins is a general property of halophilic archaea and, like S-layer glycoprotein glycosylation, lipid-modification of the S-layer glycoproteins takes place on the external cell surface, i.e. following protein translocation across the membrane. PMID:12069685
Cytocompatibility of Direct Laser Interference-patterned Titanium Surfaces for Implants.
Hartjen, Philip; Nada, Ola; Silva, Thiago Gundelwein; Precht, Clarissa; Henningsen, Anders; Holthaus, Marzellus GROßE; Gulow, Nikolai; Friedrich, Reinhard E; Hanken, Henning; Heiland, Max; Zwahr, Christoph; Smeets, Ralf; Jung, Ole
2017-01-01
In an effort to generate titanium surfaces for implants with improved osseointegration, we used direct laser interference patterning (DLIP) to modify the surface of pure titanium grade 4 of four different structures. We assessed in vitro cytoxicity and cell attachment, as well as the viability and proliferation of cells cultured directly on the surfaces. Attachment of the cells to the modified surfaces was comparably good compared to that of cells on grit-blasted and acid-etched reference titanium surfaces. In concordance with this, viability and proliferation of the cells directly cultured on the specimens were similar on all the titanium surfaces, regardless of the laser modification, indicating good cytocompatibility. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
The Vibrio cholerae VprA-VprB Two-Component System Controls Virulence Through Endotoxin Modification
2014-12-23
antimicrobial peptides of the innate immune system bind to the membrane of Gram-negative pathogens via conserved, surface-exposed lipopolysaccharide (LPS... antimicrobial peptide polymyxin. However, the regulatory mechanisms of lipid A modification in V. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE...12211 Research Triangle Park, NC 27709-2211 bacterial cell surface, host immune system, cationic antimicrobial peptides , lipid A, LPS REPORT
Fasoli, Marianna; Dell'Anna, Rossana; Dal Santo, Silvia; Balestrini, Raffaella; Sanson, Andrea; Pezzotti, Mario; Monti, Francesca; Zenoni, Sara
2016-06-01
Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a β-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Mozar, Fitya Syarifa; Chowdhury, Ezharul Hoque
2017-01-01
pH sensitive nanoparticles of carbonate apatite (CA) have been proven to be effective delivery vehicles for DNA, siRNAs and proteins. More recently, conventional anti-cancer drugs, such as doxorubicin, methotrexate and cyclophosphamide have been successfully incorporated into CA for intracellular delivery to breast cancer cells. However, physical and chemical properties of drug molecules appeared to affect their interactions with CA, with hydrophillic drug so far exhibiting better binding affinity and cellular uptakes compared to hydrophobic drugs. In this study, anastrozole, a non-steroidal aromatase inhibitor which is largely hydrophobic, and gemcitabine, a hydrophilic nucleoside inhibitor were used as solubility models of chemotherapy drug. Aggregation tendency of poorly soluble drugs resulting in larger particle-drug complex size might be the main factor hindering their delivery effectiveness. For the first time, surface modification of CA with poly(ethylene glycol) (PEG) has shown promising result to drastically reduce anastrozole- loaded CA particle size, from approximately 1000 to 500 nm based on zeta sizer analysis. Besides PEG, a cell specific ligand, in this case fibronectin, was attached to the particles in order to facilitate receptor mediated endocytosis based on fibronectin–integrin interaction. High-performance liquid chromatography (HPLC) was performed to measure uptake of the drugs by breast cancer cells, revealing that surface modification increased the drug uptake, especially for the hydrophobic drug, compared to the uncoated particles and the free drug. In vitro chemosensitivity assay and in vivo tumor regression study also showed that coated apatite/drug nanoparticle complexes presented higher cytotoxicity and tumor regression effects than uncoated apatite/drug nanoparticles and free drugs, indicating that surface modification successfully created optimum particles size with the consequence of more effective uptake along with favorable pharmacokinetics of the particles. PMID:28590445
Chemical characterization of solid polymer electrolyte membrane surfaces in LiFePO4 half-cells
NASA Astrophysics Data System (ADS)
Kyu, Thein; He, Ruixuan; Peng, Fang; Dunn, William E.; Kyu's Group Team, Dr.
High temperature (60 °C) capacity retention of succinonitrile plasticized solid polymer electrolyte membrane (PEM) in a LiFePO4 half-cell was investigated with or without lithium bis(oxalato)borate (LiBOB) modification. Various symmetric cells and half-cells were studied under different thermal and electrochemical conditions. At room temperature cycling, the unmodified PEM in the half-cell appeared stable up to 50 cycles tested. Upon cycling at 60 °C, the capacity decays rapidly and concurrently the cell resistance increased. The chemical compositions of the solid PEM surfaces on both cathode and anode sides were analyzed. New IR bands (including those belonged to amide) were discerned on the unmodified PEM surface of the Li electrode side at 60 °C suggestive of side reaction, but no new bands develop during room temperature cycling. To our astonishment, the side reaction was effectively suppressed upon LiBOB addition (0.4 wt%) into the PEM, contributing to increased high temperature capacity retention at 60°C. Plausible mechanisms of capacity fading and improved cycling performance due to LiBOB modification are discussed.
Moazzam, Parisa; Razmjou, Amir; Golabi, Mohsen; Shokri, Dariush; Landarani-Isfahani, Amir
2016-09-01
Bacterial adhesion and subsequent biofilm formation on metals such as aluminum (Al) alloys lead to serious issues in biomedical and industrial fields from both an economical and health perspective. Here, we showed that a careful manipulation of Al surface characteristics via a facile two-steps superhydrophobic modification can provide not only biocompatibility and an ability to control protein adsorption and bacterial adhesion, but also address the issue of apparent long-term toxicity of Al-alloys. To find out the roles of surface characteristics, surface modification and protein adsorption on microbial adhesion and biofilm formation, the surfaces were systematically characterized by SEM, EDX, XPS, AFM, FTIR, water contact angle (WCA) goniometry, surface free energy (SFE) measurement, MTT, Bradford, Lowry and microtiter plate assays and also flow-cytometry and potentiostat analyses. Results showed that WCA and SFE changed from 70° to 163° and 36.3 to 0.13 mN m(-1) , respectively. The stable and durable modification led to a substantial reduction in static/dynamic BSA adsorption. The effect of such a treatment on the biofilm formation was analyzed by using three different bacteria of Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. The microtiter plate assay and flow cytometry analysis showed that the modification not only could substantially reduce the bacterial adhesion but this biofouling resistance is independent of bacterium type. An excellent cell viability after exposure of HeLa cells to waters incubated with the modified samples was observed. Finally, the corrosion rate reduced sharply from 856.6 to 0.119 MPY after superhydrophobic modifications, which is an excellent stable corrosion inhibition property. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2220-2233, 2016. © 2016 Wiley Periodicals, Inc.
Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.
Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace
2015-01-01
Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.
Engineered Joint Lubrication for OA Prevention and Treatment
2015-09-01
Williams, C. G., Khan, M., Manson, P. & Elisseeff, J .H. In vivo chondrogenesis of mesenchymal stem cells in photopolymerized hydrogel. Plast...protecting cells from free-radical damage20–22. Coating surfaces with HA may also physically protect the surfaces from cytokines and degrading enzymes...modification provides a biomimetic mechanism to concentrate HA on the surface. Numerous endogenous enzymes and reactive oxygen species can degrade HA
Relationship between Surface Modifications of Nanoparticle and Invasion into Suspension Cells
NASA Astrophysics Data System (ADS)
Matsui, Y.; Sakai, N.; Tsuda, A.; Yoneda, M.
2011-07-01
Nanomaterials have a variety of properties for each material. There is little information available on which kinds of material properties have effects on toxicity and kinetics. This paper presents that a relationship between material properties and hazard data by undertaking a bibliographical survey at first. With respect to cytotoxicity, it probably depends mainly on the particle volume dose and to a certain degree on particle solubility. It can be concluded from these results that there is a relationship between material properties and hazard data. Many activities involving nano risk are occurring all over the world. Secondly, we assayed actually for cellular uptake of three kinds of Quantum dots (15 nm, 5.5×1012 particles/ml) to demonstrate our result of bibliographical survey. Three different surface modification quantum dots (non-modification, -COOH, -NH3) were mixed with floating Jurkat cells in each. After thirty minute, we washed these cells three times and detected fluorescence by flow cytometer. Almost all the carboxylate particles invaded a cell, about 60% aminated them also invaded and few non-modification particles were taken up. Nanomaterials are often very broadly categorized and named based upon their basic material composition or product shape. Our results confirm that we have to examine which physical-chemical properties affect some adverse effects for each nanomaterial.
Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang
2014-01-01
Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering. PMID:24447041
Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang; Zhou, Yongsheng
2014-10-01
Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering.
NASA Astrophysics Data System (ADS)
Saxena, Vibha; Aswal, D. K.
2015-06-01
In a quest to harvest solar power, dye-sensitized solar cells (DSSCs) have potential for low-cost eco-friendly photovoltaic devices. The major processes which govern the efficiency of a DSSC are photoelectron generation, injection of photo-generated electrons to the conduction band (CB) of the mesoporous nanocrystalline semiconductor (nc-SC); transport of CB electrons through nc-SC and subsequent collection of CB electrons at the counter electrode (CE) through the external circuit; and dye regeneration by redox couple or hole transport layer (HTL). Most of these processes occur at various interfaces of the photoanode. In addition, recombination losses of photo-generated electrons with either dye or redox molecules take place at the interfaces. Therefore, one of the key requirements for high efficiency is to improve light harvesting of the photoanode and to reduce the recombination losses at various interfaces. In this direction, surface modification of the photoanode is the simplest method among the various other approaches available in the literature. In this review, we present a comprehensive discussion on surface modification of the photoanode, which has been adopted in the literature for not only enhancing light harvesting but also reducing recombination. Various approaches towards surface modification of the photoanode discussed are (i) fluorine-doped tin oxide (FTO)/nc-SC interface modified via a compact layer of semiconductor material which blocks exposed sites of FTO to electrolyte (or HTL), (ii) nc-SC/dye interface modification either through acid treatment resulting in enhanced dye loading due to a positively charged surface or by depositing insulating/semiconducting blocking layer on the nc-SC surface, which acts as a tunneling barrier for recombination, (iii) nc-SC/dye interface modified by employing co-adsorbents which helps in reducing the dye aggregation and thereby recombination, and (iv) dye/electrolyte (or dye/HTL) interface modification using additives which provides surface passivation as well as positive movement of the nc-SC Fermi level owing to negative charge at the surface and hence improves light harvesting and reduced recombination. Finally, we discuss the advantages and disadvantages of various approaches towards high-efficiency DSSCs.
Choi, Hyosung; Kim, Hak-Beom; Ko, Seo-Jin; Kim, Jin Young; Heeger, Alan J
2015-02-04
Modification of an ITO electrode with small-molecule organic surface modifier, 4-chloro-benzoic acid (CBA), via a simple spin-coating method produces a high-work-function electrode with high transparency and a hydrophobic surface. As an alternative to PEDOT:PSS, CBA modification achieves efficiency enhancement up to 8.5%, which is attributed to enhanced light absorption within the active layer and smooth hole transport from the active layer to the anode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration
Griffin, MF; Szarko, M; Seifailan, A; Butler, PE
2016-01-01
Background: Natural cartilage regeneration is limited after trauma or degenerative processes. Due to the clinical challenge of reconstruction of articular cartilage, research into developing biomaterials to support cartilage regeneration have evolved. The structural architecture of composition of the cartilage extracellular matrix (ECM) is vital in guiding cell adhesion, migration and formation of cartilage. Current technologies have tried to mimic the cell’s nanoscale microenvironment to improve implants to improve cartilage tissue repair. Methods: This review evaluates nanoscale techniques used to modify the implant surface for cartilage regeneration. Results: The surface of biomaterial is a vital parameter to guide cell adhesion and consequently allow for the formation of ECM and allow for tissue repair. By providing nanosized cues on the surface in the form of a nanotopography or nanosized molecules, allows for better control of cell behaviour and regeneration of cartilage. Chemical, physical and lithography techniques have all been explored for modifying the nanoscale surface of implants to promote chondrocyte adhesion and ECM formation. Conclusion: Future studies are needed to further establish the optimal nanoscale modification of implants for cartilage tissue regeneration. PMID:28217208
NASA Astrophysics Data System (ADS)
Rood, Mark T. M.; Spa, Silvia J.; Welling, Mick M.; Ten Hove, Jan Bart; van Willigen, Danny M.; Buckle, Tessa; Velders, Aldrik H.; van Leeuwen, Fijs W. B.
2017-01-01
The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or “training” of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.
Effects of nanotopography on stem cell phenotypes.
Ravichandran, Rajeswari; Liao, Susan; Ng, Clarisse Ch; Chan, Casey K; Raghunath, Michael; Ramakrishna, Seeram
2009-12-31
Stem cells are unspecialized cells that can self renew indefinitely and differentiate into several somatic cells given the correct environmental cues. In the stem cell niche, stem cell-extracellular matrix (ECM) interactions are crucial for different cellular functions, such as adhesion, proliferation, and differentiation. Recently, in addition to chemical surface modifications, the importance of nanometric scale surface topography and roughness of biomaterials has increasingly becoming recognized as a crucial factor for cell survival and host tissue acceptance in synthetic ECMs. This review describes the influence of nanotopography on stem cell phenotypes.
Carbon nanowall scaffold to control culturing of cervical cancer cells
NASA Astrophysics Data System (ADS)
Watanabe, Hitoshi; Kondo, Hiroki; Okamoto, Yukihiro; Hiramatsu, Mineo; Sekine, Makoto; Baba, Yoshinobu; Hori, Masaru
2014-12-01
The effect of carbon nanowalls (CNWs) on the culturing rate and morphological control of cervical cancer cells (HeLa cells) was investigated. CNWs with different densities were grown using plasma-enhanced chemical vapor deposition and subjected to post-growth plasma treatment for modification of the surface terminations. Although the surface wettability of the CNWs was not significantly dependent on the CNW densities, the cell culturing rates were significantly dependent. Morphological changes of the cells were not significantly dependent on the density of CNWs. These results indicate that plasma-induced surface morphology and chemical terminations enable nanobio applications using carbon nanomaterials.
Studying Cancer Stem Cell Dynamics on PDMS Surfaces for Microfluidics Device Design
Zhang, Weijia; Choi, Dong Soon; Nguyen, Yen H.; Chang, Jenny; Qin, Lidong
2013-01-01
This systematic study clarified a few interfacial aspects of cancer cell phenotypes on polydimethylsiloxane (PDMS) substrates and indicated that the cell phenotypic equilibrium greatly responds to cell-to-surface interactions. We demonstrated that coatings of fibronectin, bovine serum albumin (BSA), or collagen with or without oxygen-plasma treatments of the PDMS surfaces dramatically impacted the phenotypic equilibrium of breast cancer stem cells, while the variations of the PDMS elastic stiffness had much less such effects. Our results showed that the surface coatings of collagen and fibronectin on PDMS maintained breast cancer cell phenotypes to be nearly identical to the cultures on commercial polystyrene Petri dishes. The surface coating of BSA provided a weak cell-substrate adhesion that stimulated the increase in stem-cell-like subpopulation. Our observations may potentially guide surface modification approaches to obtain specific cell phenotypes. PMID:23900274
Bioactive Surface Modification of Hydroxyapatite
Okazaki, Yohei; Hiasa, Kyou; Yasuda, Keisuke; Nogami, Keisuke; Mizumachi, Wataru; Hirata, Isao
2013-01-01
The purpose of this study was to establish an acid-etching procedure for altering the Ca/P ratio of the nanostructured surface of hydroxyapatite (HAP) by using surface chemical and morphological analyses (XPS, XRD, SEM, surface roughness, and wettability) and to evaluate the in vitro response of osteoblast-like cells (MC3T3-E1 cells) to the modified surfaces. This study utilized HAP and HAP treated with 10%, 20%, 30%, 40%, 50%, or 60% phosphoric acid solution for 10 minutes at 25°C, followed by rinsing 3 times with ultrapure water. The 30% phosphoric acid etching process that provided a Ca/P ratio of 1.50, without destruction of the grain boundary of HAP, was selected as a surface-modification procedure. Additionally, HAP treated by the 30% phosphoric acid etching process was stored under dry conditions at 25°C for 12 hours, and the Ca/P ratio approximated to 1.00 accidentally. The initial adhesion, proliferation, and differentiation (alkaline phosphatase (ALP) activity and relative mRNA level for ALP) of MC3T3-E1 cells on the modified surfaces were significantly promoted (P < 0.05 and 0.01). These findings show that the 30% phosphoric acid etching process for the nanostructured HAP surface can alter the Ca/P ratio effectively and may accelerate the initial adhesion, proliferation, and differentiation of MC3T3-E1 cells. PMID:23862150
Spatial and temporal control of the diazonium modification of sp2 carbon surfaces.
Kirkman, Paul M; Güell, Aleix G; Cuharuc, Anatolii S; Unwin, Patrick R
2014-01-08
Interest in the controlled chemical functionalization of sp(2) carbon materials using diazonium compounds has been recently reignited, particularly as a means to generate a band gap in graphene. We demonstrate local diazonium modification of pristine sp(2) carbon surfaces, with high control, at the micrometer scale through the use of scanning electrochemical cell microscopy (SECCM). Electrochemically driven diazonium patterning is investigated at a range of driving forces, coupled with surface analysis using atomic force microscopy (AFM) and Raman spectroscopy. We highlight how the film density, level of sp(2)/sp(3) rehybridization and the extent of multilayer formation can be controlled, paving the way for the use of localized electrochemistry as a route to controlled diazonium modification.
Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide
NASA Astrophysics Data System (ADS)
Bai, Liqiang; Zhu, Liangjun; Min, Sijia; Liu, Lin; Cai, Yurong; Yao, Juming
2008-03-01
The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B ( CB) antimicrobial peptide, (NH 2)-NGIVKAGPAIAVLGEAAL-CONH 2, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC·HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI).
Nanotubular topography enhances the bioactivity of titanium implants.
Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan
2017-08-01
Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Miksovsky, J.; Voss, A.; Kozarova, R.; Kocourek, T.; Pisarik, P.; Ceccone, G.; Kulisch, W.; Jelinek, M.; Apostolova, M. D.; Reithmaier, J. P.; Popov, C.
2014-04-01
Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O2 or NH3/N2 plasmas and UV/O3 treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.
NASA Astrophysics Data System (ADS)
Kim, Min-Uk; Kim, Do-Hyang; Han, Seung-hee; Fleury, Eric; Seok, Hyun-Kwang; Cha, Pil-Ryung; Kim, Yu-Chan
2011-04-01
Ni-based amorphous alloys with surface modification by carbon ion implantation are proposed as an alternative bipolar plate material for polymer electrolyte membrane fuel cells (PEMFCs). Both Ni60Nb20Ti10Zr10 alloys with and without carbon ion implantation have corrosion resistance as good as graphite as well as much lower contact resistance than 316L stainless steel in the PEMFC environment. The formation of conductive surface carbide due to carbon ion implantation results in a decrease in the contact resistance to a level comparable to that of graphite. This combination of excellent properties indicates that carbon ion implanted Ni-based amorphous alloys can be potential candidate materials for bipolar plates in PEMFCs.
Nano-patterned SU-8 surface using nanosphere-lithography for enhanced neuronal cell growth
NASA Astrophysics Data System (ADS)
Kim, Eunhee; Yoo, Seung-Jun; Kim, Eunjung; Kwon, Tae-Hwan; Zhang, Li; Moon, Cheil; Choi, Hongsoo
2016-04-01
Mimicking the nanoscale surface texture of the extracellular matrix can affect the regulation of cellular behavior, including adhesion, differentiation, and neurite outgrowth. In this study, SU-8-based polymer surfaces with well-ordered nanowell arrays were fabricated using nanosphere lithography with polystyrene nanoparticles. We show that the SU-8 surface with nanowells resulted in similar neuronal development of rat pheochromocytoma (PC12) cells compared with an unpatterned poly-L-lysine (PLL)-coated SU-8 surface. Additionally, even after soaking the substrate in cell culture medium for two weeks, cells on the nanowell SU-8 surface showed long-term neurite outgrowth compared to cells on the PLL-coated SU-8 surface. The topographical surface modification of the nanowell array demonstrates potential as a replacement for cell adhesive material coatings such as PLL, for applications requiring long-term use of polymer-based implantable devices.
Monniot, Céline; Boisramé, Anita; Da Costa, Grégory; Chauvel, Muriel; Sautour, Marc; Bougnoux, Marie-Elisabeth; Bellon-Fontaine, Marie-Noëlle; Dalle, Frédéric; d'Enfert, Christophe; Richard, Mathias L
2013-01-01
Cell wall proteins are central to the virulence of Candida albicans. Hwp1, Hwp2 and Rbt1 form a family of hypha-associated cell surface proteins. Hwp1 and Hwp2 have been involved in adhesion and other virulence traits but Rbt1 is still poorly characterized. To assess the role of Rbt1 in the interaction of C. albicans with biotic and abiotic surfaces independently of its morphological state, heterologous expression and promoter swap strategies were applied. The N-terminal domain with features typical of the Flo11 superfamily was found to be essential for adhesiveness to polystyrene through an increase in cell surface hydrophobicity. A 42 amino acid-long domain localized in the central part of the protein was shown to enhance the aggregation function. We demonstrated that a VTTGVVVVT motif within the 42 amino acid domain displayed a high β-aggregation potential and was responsible for cell-to-cell interactions by promoting the aggregation of hyphae. Finally, we showed through constitutive expression that while Rbt1 was directly accessible to antibodies in hyphae, it was not so in yeast. Similar results were obtained for another cell wall protein, namely Iff8, and suggested that modification of the cell wall structure between yeast and hyphae can regulate the extracellular accessibility of cell wall proteins independently of gene regulation.
Tsougeni, Katerina; Ellinas, Kosmas; Koukouvinos, George; Petrou, Panagiota S; Tserepi, Angeliki; Kakabakos, Sotirios E; Gogolides, Evangelos
2018-01-01
Plasma micro-nanotexturing is a generic technology for topographical and chemical modification of surfaces and their implementation in microfluidics and microarrays. Nanotextured surfaces with desirable chemical functionality (and wetting behavior) have shown excellent biomolecule immobilization and cell adhesion. Specifically, nanotextured hydrophilic areas show (a) strong binding of biomolecules and (b) strong adhesion of cells, while nanotextured superhydrophobic areas show null adsorption of (a) proteins and (b) cells. Here we describe the protocols for (a) biomolecule adsorption control on nanotextured surfaces for microarray fabrication and (b) cell adhesion on such surfaces. 3D plasma nanotextured® substrates are commercialized through Nanoplasmas private company, a spin-off of the National Centre for Scientific Research Demokritos.
NASA Astrophysics Data System (ADS)
Kim, Ka-Hyun; Johnson, Erik V.; Cabarrocas, Pere Roca i.
2016-07-01
Hydrogenated polymorphous silicon (pm-Si:H) is a material consisting of a small volume fraction of nanocrystals embedded in an amorphous matrix. pm-Si:H solar cells demonstrate interesting initial degradation behaviors such as rapid initial change in photovoltaic parameters and self-healing after degradation during light-soaking. The precise dynamics of the light-induced degradation was studied in a series of light-soaking experiments under various illumination conditions such as AM1.5G and filtered 570 nm yellow light. Hydrogen effusion experiment before and after light-soaking further revealed that the initial degradation of pm-Si:H solar cells originate from the modification of silicon-hydrogen bonding on the surface of silicon nanocrystals in pm-Si:H.
NASA Astrophysics Data System (ADS)
Hu, Xixue; Shen, Hong; Shuai, Kegang; Zhang, Enwei; Bai, Yanjie; Cheng, Yan; Xiong, Xiaoling; Wang, Shenguo; Fang, Jing; Wei, Shicheng
2011-01-01
Since metallic biomaterials used for orthopedic and dental implants possess a paucity of reactive functional groups, bioactivity modification of these materials is challenging. In the present work, the titanium discs and rods were treated with carbon dioxide plasma and then incubated in a modified simulated body fluid 1.5SBF to obtain a hydroxyapatite layer. Surface hydrophilicity of samples, changes of surface chemistry, surface morphologies of samples, and structural analysis of formed hydroxyapatite were investigated by contact angle to water, X-ray photoelectron spectrometer (XPS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). The results demonstrated that hydrophilicity of titanium surface was improved and hydroxyl groups increased after modification with carbon dioxide plasma treatment. The hydroxyl groups on the surface of titanium were the richest after carbon dioxide plasma treatment under the condition of 20 W for less than 30 s. The hydroxyapatite formability of titanium surface was enhanced by carbon dioxide plasma pretreatment, which was attributed to the surface chemistry. MC3T3-E1 cell as a model cell was cultured on the Ti, CPT-Ti and CPT/SBF-Ti discs in vitro, and the results of the morphology and differentiation of the cell showed that CPT/SBF-Ti was the highest bioactive. The relative parameters of the new bone around the Ti and CPT/SBF-Ti rods including bone mineral density (BMD), a ratio of bone volume to total volume (BV/TV), trabecular thickness (Tb.Th.) and trabecular number (Tb.N.) were analyzed by a micro-computed tomography (micro-CT) after 4-, 8- and 12-week implantation periods in vivo. The results indicated that the CPT/SBF-Ti was more advantageous for new bone formation.
Balyasnikova, Irina V; Franco-Gou, Rosa; Mathis, J Michael; Lesniak, Maciej S
2010-06-01
Human adult mesenchymal stem cells (hMSCs) are under active investigation as cellular carriers for gene therapy. hMSCs possess natural tropism toward tumours; however, the targeting of hMSCs to specific cell populations within tumours is unexplored. In the case of glioblastoma multiforme (GBM), at least half of the tumours express EGFRvIII on the cell surface, an ideal target for antibody-mediated gene/drug delivery. In this study, we investigated the feasibility of genetically modifying hMSCs to express a single-chain antibody (scFv) to EGFRvIII on their surfaces. Nucleofection was used to transfect hMSCs with cDNA encoding scFv EGFRvIII fused with PDGFR or human B7-1 transmembrane domains. The expression of scFv EGFRvIII on the cell surface was assessed by FACS. A stable population of scFv EGFRvIII-expressing hMSCs was selected, based on antibiotic resistance, and enriched using FACS. We found that nucleofection allows the efficient expression of scFv EGFRvIII on the cell surface of hMSCs. hMSCs transfected with the construct encoding scFv EGFRvIII as a fusion with PDGFRtm showed scFv EGFRvIII expression in up to 86% of cells. Most importantly, human MSCs expressing scFv against EGFRvIII demonstrated enhanced binding to U87-EGFRvIII cells in vitro and significantly increased retention in human U87-EGFRvIII-expressing tumours in vivo. In summary, we provide the first conclusive evidence of genetic modification of hMSCs with a single-chain antibody against an antigen expressed on the surface of tumour cells, thereby opening up a new venue for enhanced delivery of gene therapy applications in the context of malignant brain cancer. Copyright 2009 John Wiley & Sons, Ltd.
Berlowska, Joanna; Kregiel, Dorota; Ambroziak, Wojciech
2013-07-01
The adhesion of cells to solid supports is described as surface-dependent, being largely determined by the properties of the surface. In this study, ceramic surfaces modified using different organosilanes were tested for proadhesive properties using industrial brewery yeast strains in different physiological states. Eight brewing strains were tested: bottom-fermenting Saccharomyces pastorianus and top-fermenting Saccharomyces cerevisiae. To determine adhesion efficiency light microscopy, scanning electron microscopy and the fluorymetric method were used. Modification of chamotte carriers by 3-(3-anino-2-hydroxy-1-propoxy) propyldimethoxysilane and 3-(N, N-dimethyl-N-2-hydroxyethyl) ammonium propyldimethoxysilane groups increased their biomass load significantly.
Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium
Zhu, Wei; Teel, George; O’Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace
2015-01-01
Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing bio-mimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications. PMID:26677327
Zhao, Lingyun; Zheng, Yajing; Yan, Hao; Xie, WenSheng; Sun, Xiaodan; Li, Ning; Tang, Jintian
2016-03-01
Superparamagnetic iron oxide nanoparticles (SPIONs) with appropriate surface chemistry have attracted wild attention in medical and biological application because of their current and potential usefulness such as magnetic resonance imaging (MRI) contrast enhancement, magnetic mediated hyperthermia (MMH), immunoassay, and in drug delivery, etc. In this study, we investigated the MRI contrast agents and MMH mediators properties of the novel 2-deoxy-D-glucose (2-DG) modified SPIONs. As a non-metabolizable glucose analogue, 2-DG can block glycolysis and inhibits protein glycosylation. Moreover, SPIONs coated with 2-DG molecules can be particularly attractive to resource-hungry cancer cells, therefore to realize the targeting strategy for the SPIONs. SPIONs with amino silane as the capping agent for amino-group surface modification were synthesized by the chemical co-precipitation method with modification. Glutaraldehyde was further applied as an activation agent through which 2-DG was conjugated to the amino-coated SPIONs. Physicochemical characterizations of the 2-DG-SPIONs, such as surface morphology, surface charge and magnetic properties were investigated by Transmission Electron Microscopy (TEM), ζ-Potential and Vibrating Sample Magnetometer (VSM), etc. Magnetic inductive heating characteristics of the 2-DG-SPIONs were analyzed by exposing the SPIONs suspension (magnetic fluid) under alternative magnetic field (AMF). U-251 human glioma cells with expression of glucose transport proteins type 1 and 3 (GLUT1 and GLUT 3), and L929 murine fibroblast cell as negative control, were employed to study the effect of 2-DG modification on the cell uptake for SPIONs. TEM images for ultra-thin sections as well as ICP-MS were applied to evaluate the SPIONs internalization within the cells. In vitro MRI was performed after cells were co-incubated with SPIONs and the T2 relaxation time was measured and compared. The results demonstrate that 2-DG-SPIONs were supermagnetic and in spherical shape with -10 nm diameter. Possessing ideal magnetic inductive heating characteristics, which can generate very rapid and efficient heating while upon AMF exposure, 2-DG-SPIONs can be applied as novel candidature of magnetic nanothermotherapy for cancer treatment. Modification of 2-DG can greatly promote the cell uptake of SPIONs and such cellular uptake of 2-DG-SPIONs was time dependent. Surface coating by 2-DG can remarkably enhance the MR imaging ability for the SPIONs on the cells of U251 cancer cells. In summary, our investigation provides a novel glucose analogue modified SPIONs with potential application in the targeting cancer nanothermotherapy and MR imaging.
Affinity Electrophoresis Using Ligands Attached To Polymers
NASA Technical Reports Server (NTRS)
Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.
1990-01-01
In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.
An overview of biofunctionalization of metals in Japan
Hanawa, Takao
2009-01-01
Surface modification is an important and predominant technique for obtaining biofunction and biocompatibility in metals for biomedical use. The surface modification technique is a process that changes the surface composition, structure and morphology of a material, leaving the bulk mechanical properties intact. A tremendous number of surface modification techniques using dry and wet processes to improve the hard tissue compatibility of titanium have been developed. Some are now commercially available. Most of these processes have been developed by Japanese institutions since the 1990s. A second approach is the immobilization of biofunctional molecules to the metal surface to control the adsorption of proteins and adhesion of cells, platelets and bacteria. The immobilization of poly(ethylene glycol) to a metal surface with electrodeposition and its effect on biofunction are reviewed. The creation of a metal–polymer composite is another way to obtain metal-based biofunctional materials. The relationship between the shear bonding strength and the chemical structure at the bonding interface of a Ti-segmentated polyurethane composite through a silane coupling agent is explained. PMID:19158014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H. Y.; Peng, Y., E-mail: gdyuan@semi.ac.cn, E-mail: py@usst.edu.cn; Hong, M.
2014-05-12
We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production.
NASA Astrophysics Data System (ADS)
Liu, Fei; Li, Bin; Sun, Junying; Li, Hongwei; Wang, Bing; Zhang, Shailin
2012-03-01
We report here a new method of titanium surface modification through ammonia (NH3) plasma immersion ion implantation (PIII) technique and its effect on the cellular behaviors of MC3T3-E1 osteoblastic cells. The NH3 PIII-treated titanium substrates (NH3-Ti) were characterized by X-ray photoelectron (XPS), which showed that NH3-Ti had a nitrogen-rich surface. However, there was no significant difference between the surface morphology of NH3-Ti and unmodified Ti. When MC3T3-E1 cells were cultured on NH3-Ti substrates, it was found that cell proliferation was accelerated at 4 and 7 days of culture. Meanwhile, cell differentiation was evaluated using type I collagen (COL I), osteocalcin (OC) and bone sialoprotein (BSP) as differentiation markers. It was found that expression of COL I and OC genes was up-regulated on NH3-Ti substrates. However, no significant difference was found in BSP gene expression between NH3-Ti and unmodified Ti substrates. Therefore, findings from this study indicate that surface modification of titanium through NH3 PIII favors osteoblastic proliferation and differentiation and as a result, it may be used to improve the biocompatibility of Ti implants in vivo.
Chemical modification of M13 bacteriophage and its application in cancer cell imaging.
Li, Kai; Chen, Yi; Li, Siqi; Nguyen, Huong Giang; Niu, Zhongwei; You, Shaojin; Mello, Charlene M; Lu, Xiaobing; Wang, Qian
2010-07-21
The M13 bacteriophage has been demonstrated to be a robust scaffold for bionanomaterial development. In this paper, we report on the chemical modifications of three kinds of reactive groups, i.e., the amino groups of lysine residues or N-terminal, the carboxylic acid groups of aspartic acid or glutamic acid residues, and the phenol group of tyrosine residues, on M13 surface. The reactivity of each group was identified through conjugation with small fluorescent molecules. Furthermore, the regioselectivity of each reaction was investigated by HPLC-MS-MS. By optimizing the reaction condition, hundreds of fluorescent moieties could be attached to create a highly fluorescent M13 bacteriophage. In addition, cancer cell targeting motifs such as folic acid could also be conjugated onto the M13 surface. Therefore, dual-modified M13 particles with folic acid and fluorescent molecules were synthesized via the selective modification of two kinds of reactive groups. Such dual-modified M13 particles showed very good binding affinity to human KB cancer cells, which demonstrated the potential applications of M13 bacteriophage in bioimaging and drug delivery.
Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang
2018-05-08
The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.
Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf
2011-11-15
The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.
Park, Dayoung; Arabyan, Narine; Williams, Cynthia C.; Song, Ting; Mitra, Anupam; Weimer, Bart C.; Lebrilla, Carlito B.
2016-01-01
Although gut host-pathogen interactions are glycan-mediated processes, few details are known about the participating structures. Here we employ high-resolution mass spectrometric profiling to comprehensively identify and quantitatively measure the exact modifications of native intestinal epithelial cell surface N-glycans induced by S. typhimurium infection. Sixty minutes postinfection, select sialylated structures showed decreases in terms of total number and abundances. To assess the effect of cell surface mannosylation, we selectively rerouted glycan expression on the host using the alpha-mannosidase inhibitor, kifunensine, toward overexpression of high mannose. Under these conditions, internalization of S. typhimurium significantly increased, demonstrating that bacteria show preference for particular structures. Finally, we developed a novel assay to measure membrane glycoprotein turnover rates, which revealed that glycan modifications occur by bacterial enzyme activity rather than by host-derived restructuring strategies. This study is the first to provide precise structural information on how host N-glycans are altered to support S. typhimurium invasion. PMID:27754876
NASA Astrophysics Data System (ADS)
Daskalova, A.; Ostrowska, B.; Zhelyazkova, A.; Święszkowski, W.; Trifonov, A.; Declercq, H.; Nathala, C.; Szlazak, K.; Lojkowski, M.; Husinsky, W.; Buchvarov, I.
2018-06-01
Synthetic polymer biomaterials incorporating cells are a promising technique for treatment of orthopedic injuries. To enhance the integration of biomaterials into the human body, additional functionalization of the scaffold surface should be carried out that would assist one in mimicking the natural cellular environment. In this study, we examined poly-ɛ-caprolactone (PCL) fiber matrices in view of optimizing the porous properties of the constructs. Altering the porosity of a PCL scaffold is expected to improve the material's biocompatibility, thus influencing its osteoconductivity and osteointegration. We produced 3D poly-ɛ-caprolactone (PCL) matrices by a fused deposition modeling method for bone and cartilage tissue engineering and performed femtosecond (fs) laser modification experiments to improve the surface properties of the PCL construct. Femtosecond laser processing is one of the useful tools for creating a vast diversity of surface patterns with reproducibility and precision. The processed surface of the PCL matrix was examined to follow the effect of the laser parameters, namely the laser pulse energy and repetition rate and the number ( N) of applied pulses. The modified zones were characterized by scanning electron microscopy (SEM), confocal microscopy, X-ray computed tomography and contact angle measurements. The results obtained demonstrated changes in the morphology of the processed surface. A decrease in the water contact angle was also seen after fs laser processing of fiber meshes. Our work demonstrated that a precise control of material surface properties could be achieved by applying a different number of laser pulses at various laser fluence values. We concluded that the structural features of the matrix remain unaffected and can be successfully modified through laser postmodification. The cells tests indicated that the micro-modifications created induced MG63 and MC3T3 osteoblast cellular orientation. The analysis of the MG63 and MC3T3 osteoblast attachment suggested regulation of cells volume migration.
Biggs, Manus J P; Richards, R Geoff; Gadegaard, Nikolaj; McMurray, Rebecca J; Affrossman, Stanley; Wilkinson, Chris D W; Oreffo, Richard O C; Dalby, Mathew J
2009-10-01
Polymeric medical devices widely used in orthopedic surgery play key roles in fracture fixation and orthopedic implant design. Topographical modification and surface micro-roughness of these devices regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved the field of surface modification; in particular, nanotechnology has allowed the development of nanoscale substrates for the investigation into cell-nanofeature interactions. In this study human osteoblasts (HOBs) were cultured on ordered nanoscale pits and random nano "craters" and "islands". Adhesion subtypes were quantified by immunofluorescent microscopy and cell-substrate interactions investigated via immuno-scanning electron microscopy. To investigate the effects of these substrates on cellular function 1.7 k microarray analysis was used to establish gene profiles of enriched STRO-1+ progenitor cell populations cultured on these nanotopographies. Nanotopographies affected the formation of adhesions on experimental substrates. Adhesion formation was prominent on planar control substrates and reduced on nanocrater and nanoisland topographies; nanopits, however, were shown to inhibit directly the formation of large adhesions. STRO-1+ progenitor cells cultured on experimental substrates revealed significant changes in genetic expression. This study implicates nanotopographical modification as a significant modulator of osteoblast adhesion and cellular function in mesenchymal populations.
Osteoblastlike cell adhesion on titanium surfaces modified by plasma nitriding.
da Silva, Jose Sandro Pereira; Amico, Sandro Campos; Rodrigues, Almir Olegario Neves; Barboza, Carlos Augusto Galvao; Alves, Clodomiro; Croci, Alberto Tesconi
2011-01-01
The aim of this study was to evaluate the characteristics of various titanium surfaces modified by cold plasma nitriding in terms of adhesion and proliferation of rat osteoblastlike cells. Samples of grade 2 titanium were subjected to three different surface modification processes: polishing, nitriding by plasma direct current, and nitriding by cathodic cage discharge. To evaluate the effect of the surface treatment on the cellular response, the adhesion and proliferation of osteoblastlike cells (MC3T3) were quantified and the results were analyzed by Kruskal-Wallis and Friedman statistical tests. Cellular morphology was observed by scanning electron microscopy. There was more MC3T3 cell attachment on the rougher surfaces produced by cathodic cage discharge compared with polished samples (P < .05). Plasma nitriding improves titanium surface roughness and wettability, leading to osteoblastlike cell adhesion.
Kim, Sun-Jung; Lee, Jae Kyoo; Kim, Jin Won; Jung, Ji-Won; Seo, Kwangwon; Park, Sang-Bum; Roh, Kyung-Hwan; Lee, Sae-Rom; Hong, Yun Hwa; Kim, Sang Jeong; Lee, Yong-Soon; Kim, Sung June; Kang, Kyung-Sun
2008-08-01
Stem cell-based therapy has recently emerged for use in novel therapeutics for incurable diseases. For successful recovery from neurologic diseases, the most pivotal factor is differentiation and directed neuronal cell growth. In this study, we fabricated three different widths of a micro-pattern on polydimethylsiloxane (PDMS; 1, 2, and 4 microm). Surface modification of the PDMS was investigated for its capacity to manage proliferation and differentiation of neural-like cells from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). Among the micro-patterned PDMS fabrications, the 1 microm-patterned PDMS significantly increased cell proliferation and most of the cells differentiated into neuronal cells. In addition, the 1 microm-patterned PDMS induced an increase in cytosolic calcium, while the differentiated cells on the flat and 4 microm-patterned PDMS had no response. PDMS with a 1 microm pattern was also aligned to direct orientation within 10 degrees angles. Taken together, micro-patterned PDMS supported UCB-MSC proliferation and induced neural like-cell differentiation. Our data suggest that micro-patterned PDMS might be a guiding method for stem cell therapy that would improve its therapeutic action in neurological diseases.
Tunable coating of gold nanostars: tailoring robust SERS labels for cell imaging
NASA Astrophysics Data System (ADS)
Bassi, B.; Taglietti, A.; Galinetto, P.; Marchesi, N.; Pascale, A.; Cabrini, E.; Pallavicini, P.; Dacarro, G.
2016-07-01
Surface modification of noble metal nanoparticles with mixed molecular monolayers is one of the most powerful tools in nanotechnology, and is used to impart and tune new complex surface properties. In imaging techniques based on surface enhanced Raman spectroscopy (SERS), precise and controllable surface modifications are needed to carefully design reproducible, robust and adjustable SERS nanoprobes. We report here the attainment of SERS labels based on gold nanostars (GNSs) coated with a mixed monolayer composed of a poly ethylene glycol (PEG) thiol (neutral or negatively charged) that ensure stability in biological environments, and of a signalling unit 7-Mercapto-4-methylcoumarin as a Raman reporter molecule. The composition of the coating mixture is precisely controlled using an original method, allowing the modulation of the SERS intensity and ensuring overall nanoprobe stability. The further addition of a positively charged layer of poly (allylamine hydrocloride) on the surface of negatively charged SERS labels does not change the SERS response, but it promotes the penetration of GNSs in SH-SY5Y neuroblastoma cells. As an example of an application of such an approach, we demonstrate here the internalization of these new labels by means of visualization of cell morphology obtained with SERS mapping.
Kaur, Sukhbir; Kuznetsova, Svetlana A.; Pendrak, Michael L.; Sipes, John M.; Romeo, Martin J.; Li, Zhuqing; Zhang, Lijuan; Roberts, David D.
2011-01-01
Cell surface proteoglycans on T cells contribute to retroviral infection, binding of chemokines and other proteins, and are necessary for some T cell responses to the matricellular glycoprotein thrombospondin-1. The major cell surface proteoglycans expressed by primary T cells and Jurkat T cells have an apparent Mr > 200,000 and are modified with chondroitin sulfate and heparan sulfate chains. Thrombospondin-1 bound in a heparin-inhibitable manner to this proteoglycan and to a soluble form released into the medium. Based on mass spectrometry, knockdown, and immunochemical analyses, the proteoglycan contains two major core proteins as follows: amyloid precursor-like protein-2 (APLP2, apparent Mr 230,000) and CD47 (apparent Mr > 250,000). CD47 is a known thrombospondin-1 receptor but was not previously reported to be a proteoglycan. This proteoglycan isoform of CD47 is widely expressed on vascular cells. Mutagenesis identified glycosaminoglycan modification of CD47 at Ser64 and Ser79. Inhibition of T cell receptor signaling by thrombospondin-1 was lost in CD47-deficient T cells that express the proteoglycan isoform of APLP2, indicating that binding to APLP2 is not sufficient. Inhibition of CD69 induction was restored in CD47-deficient cells by re-expressing CD47 or an S79A mutant but not by the S64A mutant. Therefore, inhibition of T cell receptor signaling by thrombospondin-1 is mediated by CD47 and requires its modification at Ser64. PMID:21343308
In vitro biocompatibility of the surface ion modified NiTi alloy
NASA Astrophysics Data System (ADS)
Gudimova, Ekaterina Yu.; Meisner, Ludmila L.; Lotkov, Aleksander I.; Matveeva, Vera A.; Meisner, Stanislav N.; Matveev, Andrey L.; Shabalina, Olga I.
2016-11-01
This paper presents the results of the chemical, topographic and structural properties of the NiTi alloy surface and their changes after surface treatments by ion implantation techniques with use of ions Ta+ and Si+. The influence of physicochemical properties of the surface ion modified NiTi alloy was studied on in vitro cultured mesenchymal stem cells of the rats' bone marrow. It is shown that the ion surface modification improves histocompatibility of the NiTi alloy and leads to increase of proliferative activity of mesenchymal stem cells on its surface. It was experimentally found that a major contribution to viability improvement mesenchymal stem cells of rat marrow has the chemical composition and the microstructure of the surface area.
Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.
Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin
2018-05-01
Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrostatic Surface Modifications to Improve Gene Delivery
Shmueli, Ron B.; Anderson, Daniel G.
2010-01-01
Importance of the field Gene therapy has the potential to treat a wide variety of diseases including genetic diseases and cancer. Areas covered in this review This review introduces biomaterials used for gene delivery and then focuses on the use of electrostatic surface modifications to improve gene delivery materials. These modifications have been used to stabilize therapeutics in vivo, add cell-specific targeting ligands, and promote controlled release. Coatings of nanoparticles and microparticles as well as non-particulate surface coatings are covered in this review. Electrostatic principles are crucial for the development of multilayer delivery structures fabricated by the layer-by-layer method. What the reader will gain The reader will gain knowledge about the composition of biomaterials used for surface modifications and how these coatings and multilayers can be utilized to improve spatial control and efficiency of delivery. Examples are shown for the delivery of nucleic acids, including DNA and siRNA, to in vitro and in vivo systems. Take home message The versatile and powerful approach of electrostatic coatings and multilayers will lead to the development of enhanced gene therapies. PMID:20201712
Controlling the cell adhesion property of silk films by graft polymerization.
Dhyani, Vartika; Singh, Neetu
2014-04-09
We report here a graft polymerization method to improve the cell adhesion property of Bombyx mori silk fibroin films. B. mori silk has evolved as a promising material for tissue engineering because of its biocompatibility and biodegradability. However, silk's hydrophobic character makes cell adhesion and proliferation difficult. Also, the lack of sufficient reactive amino acid residues makes biofunctionalization via chemical modification challenging. Our study describes a simple method that provides increased chemical handles for tuning of the surface chemistry of regenerated silk films (SFs), thus allowing manipulation of their bioactivity. By grafting pAAc and pHEMA via plasma etching, we have increased carboxylic acid and hydroxyl groups on silk, respectively. These modifications allowed us to tune the hydrophilicity of SFs and provide functional groups for bioconjugation. Our strategy also allowed us to develop silk-based surface coatings, where spatial control over cell adhesion can be achieved. This control over cell adhesion in a particular region of the SFs is difficult to obtain via existing methods of modifying the silk fibroin instead of the SF surface. Thus, our strategy will be a valuable addition to the toolkit of biofunctionalization for enhancing SFs' tissue engineering applications.
Chen, Liang; Mccrate, Joseph M.; Lee, James C-M.; Li, Hao
2011-01-01
The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles surface charge was varied by the surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FTIR) confirmed the adsorption and binding of the carboxylic acids on HAP nanoparticle surface; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate cell membrane due to the larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of the HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles shows strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of HAP nanoparticles and the different uptake also influence the behavior of cells. These in-vitro results may also provide useful information for investigations of HAP nanoparticles applications in the gene delivery and intracellular drug delivery. PMID:21289408
Wen, Xingxing; Ding, Shan; Cai, Hui; Wang, Junyi; Wen, Lu; Yang, Fan; Chen, Gang
2016-01-01
Targeted drug delivery to outer hair cells (OHCs) in the cochlea by nanomedicine strategies forms an effective therapeutic approach for treating hearing loss. Surface chemistry plays a deciding role in nanoparticle (NP) biodistribution, but its influence on such distribution in the cochlea remains largely unknown. Herein, we report the first systematic comparison of poly(lactic/glycolic acid) nanoparticles (PLGA NPs) with or without surface modification of hydrophilic molecules for optimizing the delivery to OHCs both in vitro and in vivo. NPs that were surface modified with poloxamer 407 (P407), chitosan, or methoxy poly(ethylene glycol) and the unmodified NPs were highly biocompatible with L929 and House Ear Institute-organ of Corti 1 cells as well as cochlear tissues. Interestingly, among all the examined NPs, P407-PLGA NPs showed the greatest cellular uptake and prominent fluorescence in cochlear imaging. More importantly, we provide novel evidence that the surface-modified NPs reached the organ of Corti and were transported into the OHCs at a higher level. Together, these observations suggest that surface modification with hydrophilic molecules will allow future clinical applications of PLGA NPs, especially P407-PLGA NPs, in efficient hearing loss therapy. PMID:27877041
Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole
2018-01-01
Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup
2016-01-01
This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.
Surface modification of closed plastic bags for adherent cell cultivation
NASA Astrophysics Data System (ADS)
Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.
2011-07-01
In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.
NASA Astrophysics Data System (ADS)
Surucu, Seda; Masur, Kai; Turkoglu Sasmazel, Hilal; Von Woedtke, Thomas; Weltmann, Klaus Dieter
2016-11-01
This paper reports Ar gas, Ar + O2, Ar + O2 + N2 gas mixtures and dry air plasma modifications by atmospheric pressure argon driven kINPen and air driven Diener (PlasmaBeam) plasma jets to alter surface properties of three dimensional (3D), electrospun PCL/Chitosan/PCL layer by layer hybrid scaffolds to improve human fibroblast (MRC5) cell attachment and growth. The characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), X-Ray Photoelectron spectroscopy (XPS) analysis. The results showed that the plasma modification carried out under dry air and Ar + O2 + N2 gas mixtures were altered effectively the nanotopography and the functionality of the material surfaces. It was found that the samples treated with Ar + O2 + N2 gas mixtures for 1 min and dry air for 9 min have better hydrophilicity 78.9° ± 1.0 and 75.6° ± 0.1, respectively compared to the untreated samples (126.5°). Biocompatibility performance of the scaffolds was determined with alamarBlue (aB) assay and MTT assay methods, Giemsa staining, fluorescence microscope, confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) analyses. The results showed that plasma treated samples increased the hydrophilicity and oxygen functionality and topography of the surfaces significantly, thus affecting the cell viability and proliferation on/within scaffolds.
Laser surface modification of AZ31B Mg alloy for bio-wettability.
Ho, Yee-Hsien; Vora, Hitesh D; Dahotre, Narendra B
2015-02-01
Magnesium alloys are the potential degradable materials for load-bearing implant application due to their comparable mechanical properties to human bone, excellent bioactivity, and in vivo non-toxicity. However, for a successful load-bearing implant, the surface of bio-implant must allow protein absorption and layer formation under physiological environment that can assist the cell/osteoblast growth. In this regard, surface wettability of bio-implant plays a key role to dictate the quantity of protein absorption. In light of this, the main objective of the present study was to produce favorable bio-wettability condition of AZ31B Mg alloy bio-implant surface via laser surface modification technique under various laser processing conditions. In the present efforts, the influence of laser surface modification on AZ31B Mg alloy surface on resultant bio-wettability was investigated via contact-angle measurements and the co-relationships among microstructure (grain size), surface roughness, surface energy, and surface chemical composition were established. In addition, the laser surface modification technique was simulated by computational (thermal) model to facilitate the prediction of temperature and its resultant cooling/solidification rates under various laser processing conditions for correlating with their corresponding composition and phase evolution. These predicted thermal properties were later used to correlate with the corresponding microstructure, chemical composition, and phase evolution via experimental analyses (X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Plasma assisted surface treatments of biomaterials.
Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G
2017-10-01
The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.
Scislowska-Czarnecka, Anna; Szmigiel, Dariusz; Genet, Michel; Dupont-Gillain, Christine; Pamula, Elzbieta; Kolaczkowska, Elzbieta
2015-12-01
Here, we report on modification of one of the model biomedical polymers, poly L-lactide-co-glycolide (PLGA; 85:15), by reactive ion etching (RIE) oxygen plasma treatment. PLGA's major disadvantage is high hydrophobicity which restrains binding of cell-adhesive proteins and host cells. In the current approach, we aimed to answer two questions: (1) will only short (10 s) and moderate (20-200 mTorr, 45-90 W) RIE oxygen plasma treatment, leading to decrease of water contact angle by only up to 10°, sufficiently improve PLGA adherence to cells, and (2) how will this affect osteoblasts and activation of the immune system? All obtained modified PLGAs had improved hydrophilicity but unaltered roughness (as revealed by water contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy) resulting in significantly improved adhesion of osteoblasts (MG-63) and their low activation. Importantly, macrophages (RAW 264.7), one of the key cells initiating inflammation and bone resorption, responded significantly less vigorously to the modified polymers, expressing/releasing lower amounts of nitric oxide, matrix metalloproteinases (MMP-9), and pro-inflammatory cytokines (TNF-α, IL-6, IL-12p70, IFN-γ, IL-10). We conclude that already slight RIE oxygen plasma modification of PLGA is sufficient to improve its surface properties, and enhance cytocompatibility. Most importantly, this type of modification prevents excessive immune response. © 2015 Wiley Periodicals, Inc.
Pramatarova, L; Pecheva, E; Krastev, V; Riesz, F
2007-03-01
Material surfaces play critical role in biology and medicine since most biological reactions occur on surfaces and interfaces. There are many examples showing that the surface properties of the materials control and are directly involved in biological reactions and processes in-vitro like blood compatibility, protein absorption, cell development, etc. The rules that govern the diversity of biological surface phenomenon are fundamental physical laws. Stainless steel doped with Cr, Ni and Mo is widely used material in medicine and dentistry due to its excellent corrosion resistance and mechanical properties. The interest in this material has stimulated extensive studies on improving its bone-bonding properties. This paper describes the surface modification of Cr-Ni stainless steel (AISI 316) by a whole surface sequential implantation of Ca and P ions (the basic ions of hydroxyapatite). Three groups of stainless steel samples are prepared: (i) ion-implanted, (ii) ion-implanted and thermally treated at 600( composite function)C in air for 1 h and (iii) initials. The surface chemistry and topography before and after the surface modification are characterized by X-ray photoelectron spectroscopy, Auger electron spectroscopy, magic mirror method, atomic force microscopy and contact angle measurements.
Tan, Xuhua; Zhan, Jiezhao; Zhu, Yi; Cao, Ji; Wang, Lin; Liu, Sa; Wang, Yingjun; Liu, Zhenzhen; Qin, Yingyan; Wu, Mingxing; Liu, Yizhi; Ren, Li
2017-01-01
Biocompatibility of intraocular lens (IOL) is critical to vision reconstruction after cataract surgery. Foldable hydrophobic acrylic IOL is vulnerable to the adhesion of extracellular matrix proteins and cells, leading to increased incidence of postoperative inflammation and capsule opacification. To increase IOL biocompatibility, we synthesized a hydrophilic copolymer P(MPC-MAA) and grafted the copolymer onto the surface of IOL through air plasma treatment. X-ray photoelectron spectroscopy, atomic force microscopy and static water contact angle were used to characterize chemical changes, topography and hydrophilicity of the IOL surface, respectively. Quartz crystal microbalance with dissipation (QCM-D) showed that P(MPC-MAA) modified IOLs were resistant to protein adsorption. Moreover, P(MPC-MAA) modification inhibited adhesion and proliferation of lens epithelial cells (LECs) in vitro. To analyze uveal and capsular biocompatibility in vivo, we implanted the P(MPC-MAA) modified IOLs into rabbits after phacoemulsification. P(MPC-MAA) modification significantly reduced postoperative inflammation and anterior capsule opacification (ACO), and did not affect posterior capsule opacification (PCO). Collectively, our study suggests that surface modification by P(MPC-MAA) can significantly improve uveal and capsular biocompatibility of hydrophobic acrylic IOL, which could potentially benefit patients with blood-aqueous barrier damage. PMID:28084469
Wang, Gui-Xue; Shen, Yang; Zhang, He; Quan, Xue-Jun; Yu, Qing-Song
2008-06-15
Two different surface modification techniques were used to change the surface morphology and roughness of stents at the micrometer level, and eventually improve their surface adhesion properties with respect to endothelial cells. One was chemical erosion followed by sol-gel TiO(2) coating, and the other was low temperature gas plasma deposition. After surface modification, the biocompatibility including the anticoagulation properties, hydrophilicity, and corrosion resistance of these stents was evaluated. It was found that both techniques could change the surface morphology of the stents with microroughness. In comparison with the control, the treated NiTi alloy intravascular stents showed increased surface hydrophilicity and enhanced anticoagulation properties. However, the corrosion properties of the stents were not improved significantly.
NASA Astrophysics Data System (ADS)
Kudryavtseva, Valeriya; Stankevich, Ksenia; Kibler, Elina; Golovkin, Alexey; Mishanin, Alexander; Bolbasov, Evgeny; Choynzonov, Evgeny; Tverdokhlebov, Sergei
2018-04-01
Biodegradable polymer scaffolds for tissue engineering is a promising technology for therapies of patients suffering from the loss of tissue or its function including cardiac tissues. However, limitations such as hydrophobicity of polymers prevent cell attachment, cell conductivity, and endothelialization. Plasma modification of polymers allows producing materials for an impressive range of applications due to their unique properties. Here, we demonstrate the possibility of bioresorbable electrospun polycaprolacton (PCL) scaffold surface modification by reactive magnetron sputtering of the titanium target in a nitrogen atmosphere. The influence of the plasma treatment time on the structure and properties of electrospun PCL scaffolds was studied. We show that the plasma treatment does not change the physico-mechanical properties of electrospun PCL scaffolds, leads to an increase in PCL scaffold biocompatibility, and, simultaneously, increases their hydrophilicity. In conclusion, this modification method opens a route to producing scaffolds with enhanced biocompatibility for tissue engineered vascular grafts.
NASA Astrophysics Data System (ADS)
Zheng, C. Y.; Nie, F. L.; Zheng, Y. F.; Cheng, Y.; Wei, S. C.; Valiev, R. Z.
2011-08-01
Bulk ultrafine-grained Ni 50.8Ti 49.2 alloy (UFG-NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study, and to further improve its surface biocompatibility, surface modification techniques including sandblasting, acid etching and alkali treatment were employed to produce either irregularly roughened surface or microporous surface or hierarchical porous surface with bioactivity. The effect of the above surface treatments on the surface roughness, wettability, corrosion behavior, ion release, apatite forming ability and cytocompatibility of UFG-NiTi alloy were systematically investigated with the coarse-grained NiTi alloy as control. The pitting corrosion potential ( Epit) was increased from 393 mV (SCE) to 704 mV (SCE) with sandblasting and further increased to 1539 mV (SCE) with following acid etching in HF/HNO 3 solution. All the above surface treatment increased the apatite forming ability of UFG-NiTi in varying degrees when soaked them in simulated body fluid (SBF). Meanwhile, both sandblasting and acid etching could promote the cytocompatibility for osteoblasts: sandblasting enhanced cell attachment and acid etching increased cell proliferation. The different corrosion behavior, apatite forming ability and cellular response of UFG-NiTi after different surface modifications are attributed to the topography and wettability of the resulting surface oxide layer.
NASA Astrophysics Data System (ADS)
Lee, Jaehyun; Hwang, Sangyeon; Prasetyo, Fariza Dian; Nguyen, Vu Dat; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung
2014-11-01
Selective surface modification is considered as an alternative to conventional printing techniques in high resolution patterning. Here, we present fabrication of hydrophilic patterns on the super hydrophobic surface, which makes structure on the hydrophilic region. The super hydrophobic surface is able to be chemically changed to hydrophilic with alcohols. As a consecutive process, electrohydrodynamic (EHD) jet printing was utilized to fabricate local hydrophilic craters with 30-200 μm sizes. 3 kinds of target liquids were deposited well on hydrophilic region; PEDOT (poly 3,4 ethylenediocythiophene), polystyrene nano-particles, and salmonella bacteria medium. Additionally, qualitative analysis were presented for modification mechanism and surface properties on super hydrophobic/hydrophilic by analysis of surface energy with contact angle, SEM (scanning electron microscopy) image, and SIMS (secondary ion mass spectroscopy) analysis. This new simple modification method provides possibility to be utilizing in bio-patterning engineering such as cell culturing microchip and lab on a chip. This research was supported by the Basi Science Research Program through the National Research Foundation of Korea (NRF) (Grand Number: 2014-023284).
NASA Astrophysics Data System (ADS)
Chu, Weijing; Yang, Junyou; Jiang, Qinghui; Li, Xin; Xin, Jiwu
2018-05-01
The quality of interface between the electron transport layer (ETL) and perovskite is very crucial to the photovoltaic performance of a flexible perovskite solar cell fabricated under low-temperature process. This work demonstrates a room temperature ionic liquid modification strategy to the interface between ZnO layer and MAPbI3 film for high performance flexible perovskite solar cells based on a PET substrate. [BMIM]BF4 ionic liquid modification can significantly improve the surface quality and wettability of the ZnO ETL, thus greatly increase the charge mobility of ZnO ETL and improve the crystalline of perovskite film based on it. Moreover, the dipolar polarization layer among the ZnO ETL with perovskite, built by modification, can adjust the energy level between the ZnO ETL and perovskite and facilitates the charge extraction. Therefore, an overall power conversion efficiency (PCE) of 12.1% have been achieved under standard illumination, it increases by 1.4 times of the flexible perovskite solar cells on a pristine ZnO ETL.
Bioinspired Pollen-Like Hierarchical Surface for Efficient Recognition of Target Cancer Cells.
Wang, Wenshuo; Yang, Gao; Cui, Haijun; Meng, Jingxin; Wang, Shutao; Jiang, Lei
2017-08-01
The efficient recognition and isolation of rare cancer cells holds great promise for cancer diagnosis and prognosis. In nature, pollens exploit spiky structures to realize recognition and adhesion to stigma. Herein, a bioinspired pollen-like hierarchical surface is developed by replicating the assembly of pollen grains, and efficient and specific recognition to target cancer cells is achieved. The pollen-like surface is fabricated by combining filtering-assisted assembly and soft lithography-based replication of pollen grains of wild chrysanthemum. After modification with a capture agent specific to cancer cells, the pollen-like surface enables the capture of target cancer cells with high efficiency and specificity. In addition, the pollen-like surface not only assures high viability of captured cells but also performs well in cell mixture system and at low cell density. This study represents a good example of constructing cell recognition biointerfaces inspired by pollen-stigma adhesion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of silicon doping of titanium nickelide near-surface layers on alloy cytocompatibility
NASA Astrophysics Data System (ADS)
Lotkov, A. I.; Matveev, A. L.; Artemyeva, L. V.; Meysner, S. N.; Matveeva, V. A.; Kudryashov, A. N.
2017-12-01
The cytocompatibility of titanium nickelide (TiNi) with near-surface layers doped with silicon ions was studied on mesenchymal stem cells of rat bone marrow cultivated in vitro. The cytotoxic effect of eluted components of material on the mesenchymal stem cells was determined using a RTCA iCELLigence cellular analyzer. The proliferative activity of mesenchymal stem cells cultivated in the presence or on the surfaces of titanium nickelide samples was estimated from the cell mitochondrial respiration rate in MTT tests using [2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium] tetrazolium salt. It is shown that ion plasma modification of near-surface layers of titanium nickelide with silicon improves the cytocompatibility of the alloy.
Effect of sialic acid loss on dendritic cell maturation
Crespo, Hélio J; Guadalupe Cabral, M; Teixeira, Alexandra V; Lau, Joseph T Y; Trindade, Hélder; Videira, Paula A
2009-01-01
Sialic acids are key structural determinants and contribute to the functionality of a number of immune cell receptors. Previously, we demonstrated that differentiation of human dendritic cells (DCs) is accompanied by an increased expression of sialylated cell surface structures, putatively through the activity of the ST3Gal.I and ST6Gal.I sialyltransferases. Furthermore, DC endocytosis was reduced upon removal of the cell surface sialic acid residues by neuraminidase. In the present work, we evaluate the contribution of the sialic acid modifications in DC maturation. We demonstrate that neuraminidase-treated human DCs have increased expression of major histocompatibility complex (MHC) and costimulatory molecules, increased gene expression of specific cytokines and induce a higher proliferative response of T lymphocytes. Together, the data suggest that clearance of cell surface sialic acids contributes to the development of a T helper type 1 proinflammatory response. This postulate is supported by mouse models, where elevated MHC class II and increased maturation of specific DC subsets were observed in DCs harvested from ST3Gal.I−/− and ST6Gal.I−/− mice. Moreover, important qualitative differences, particularly in the extent of reduced endocytosis and in the peripheral distribution of DC subsets, existed between the ST3Gal.I−/− and ST6Gal.I−/− strains. Together, the data strongly suggest not only a role of cell surface sialic acid modifications in maturation and functionality of DCs, but also that the sialic acid linkages created by different sialyltransferases are functionally distinct. Consequently, with particular relevance to DC-based therapies, cell surface sialylation, mediated by individual sialyltransferases, can influence the immunogenicity of DCs upon antigen loading. PMID:19740323
Hamlet, Stephen; Ivanovski, Saso
2011-05-01
Nanoscale surface modification of titanium dental implants with calcium phosphate (CaP) has been shown to achieve superior bone wound healing and osseointegration compared with smooth or microrough titanium surfaces alone. As bone healing has been shown to be influenced by the action of cytokines, this study examined whether changes in cytokine gene expression from RAW 264.7 cells cultured on commercially pure and titanium alloy (Ti-6Al-4V) microrough or nanoscale crystalline CaP-modified surfaces, may influence downstream events in bone wound healing and osseointegration. Whilst no significant difference in the attachment or proliferation of RAW 264.7 cells was observed, the nanoscale CaP-modified surface elicited a gene expression profile with marked down-regulation of a number of pro-inflammatory cytokines and chemokines. Inflammatory cytokine gene expression was further influenced by chemical composition, with lower levels of pro-inflammatory markers noted following exposure of the macrophage-like cells to titanium alloy (Ti-6Al-4V) compared with the commercially pure titanium surface. Down-regulation of pro-inflammatory cytokine gene expression (confirmed at the protein level for TNFα and CCL5), may thus facilitate the enhanced bone wound healing and osseointegration observed clinically with nanoscale calcium phosphate-modified implant surfaces. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation
Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...
NASA Astrophysics Data System (ADS)
Shaigan, Nima; Qu, Wei; Ivey, Douglas G.; Chen, Weixing
Ferritic stainless steels have become the standard material for solid oxide fuel cell (SOFC) interconnect applications. The use of commercially available ferritic stainless steels, not specifically designed for interconnect application, however, presents serious issues leading to premature degradation of the fuel cell stack, particularly on the cathode side. These problems include rapidly increasing contact resistance and volatilization of Cr from the oxide scales, resulting in cathode chromium poisoning and cell malfunction. To overcome these issues, a variety of conductive/protective coatings, surface treatments and modifications as well as alloy development have been suggested and studied over the past several years. This paper critically reviews the attempts performed thus far to mitigate the issues associated with the use of ferritic stainless steels on the cathode side. Different approaches are categorized and summarized and examples for each case are provided. Finally, directions and recommendations for the future studies are presented.
Beauvais, Anne; Bozza, Silvia; Kniemeyer, Olaf; Formosa, Céline; Balloy, Viviane; Henry, Christine; Roberson, Robert W.; Dague, Etienne; Chignard, Michel; Brakhage, Axel A.; Romani, Luigina; Latgé, Jean-Paul
2013-01-01
α-(1,3)-Glucan is a major component of the cell wall of Aspergillus fumigatus, an opportunistic human fungal pathogen. There are three genes (AGS1, AGS2 and AGS3) controlling the biosynthesis of α-(1,3)-glucan in this fungal species. Deletion of all the three AGS genes resulted in a triple mutant that was devoid of α-(1,3)-glucan in its cell wall; however, its growth and germination was identical to that of the parental strain in vitro. In the experimental murine aspergillosis model, this mutant was less pathogenic than the parental strain. The AGS deletion resulted in an extensive structural modification of the conidial cell wall, especially conidial surface where the rodlet layer was covered by an amorphous glycoprotein matrix. This surface modification was responsible for viability reduction of conidia in vivo, which explains decrease in the virulence of triple agsΔ mutant. PMID:24244155
Lei, Ze-Yuan; Liu, Ting; Li, Wei-Juan; Shi, Xiao-Hua; Fan, Dong-Li
Silicone rubber implants have been widely used to repair soft tissue defects and deformities. However, poor biocompatibility can elicit capsule formation, usually resulting in prosthesis contracture and displacement in long-term usage. To overcome this problem, this study investigated the properties of silicone rubber materials with or without a microgroove-patterned surface and with or without carbon (C)-ion implantation. Atomic force microscopy, X-ray photoelectron spectroscopy, and a water contact angle test were used to characterize surface morphology and physicochemical properties. Cytocompatibility was investigated by a cell adhesion experiment, immunofluorescence staining, a Cell Counting Kit-8 assay, and scanning electron microscopy in vitro. Histocompatibility was evaluated by studying the inflammatory response and fiber capsule formation that developed after subcutaneous implantation in rats for 7 days, 15 days, and 30 days in vivo. Parallel microgrooves were found on the surfaces of patterned silicone rubber (P-SR) and patterned C-ion-implanted silicone rubber (PC-SR). Irregular larger peaks and deeper valleys were present on the surface of silicone rubber implanted with C ions (C-SR). The silicone rubber surfaces with microgroove patterns had stable physical and chemical properties and exhibited moderate hydrophobicity. PC-SR exhibited moderately increased dermal fibroblast cell adhesion and growth, and its surface microstructure promoted orderly cell growth. Histocompatibility experiments on animals showed that both the anti-inflammatory and antifibrosis properties of PC-SR were slightly better than those of the other materials, and there was also a lower capsular contracture rate and less collagen deposition around implants made from PC-SR. Although the surface chemical properties, dermal fibroblast cell growth, and cell adhesion were not changed by microgroove pattern modification, a more orderly cell arrangement was obtained, leading to enhanced biocompatibility and reduced capsule formation. Thus, this approach to the modification of silicone rubber, in combination with C-ion implantation, should be considered for further investigation and application.
André, Pascale; Spertini, Olivier; Guia, Sophie; Rihet, Pascal; Dignat-George, Françoise; Brailly, Hervé; Sampol, José; Anderson, Paul J.; Vivier, Eric
2000-01-01
Natural killer (NK) cells are components of the innate immune system that can recognize and kill virally infected cells, tumor cells, and allogeneic cells without prior sensitization. NK cells also elaborate cytokines (e.g., interferon-γ and tumor necrosis factor-α) and chemokines (e.g., macrophage inflammatory protein-1α) that promote the acquisition of antigen-specific immunity. NK cell differentiation is accompanied by the cell surface expression of a mucin-like glycoprotein bearing an NK cell-restricted keratan sulfate-related lactosamine carbohydrate, the PEN5 epitope. Here, we report that PEN5 is a post-translational modification of P-selectin glycoprotein ligand-1 (PSGL-1). The PEN5 epitope creates on PSGL-1 a unique binding site for L-selectin, which is independent of PSGL-1 tyrosine sulfation. On the surface of NK cells, the expression of PEN5 is coordinated with the disappearance of L-selectin and the up-regulation of Killer cell Ig-like Receptors (KIR). These results indicate that NK cell differentiation is accompanied by the acquisition of a unique carbohydrate, PEN5, that can serve as part of a combination code to deliver KIR+ NK cells to specific tissues. PMID:10725346
NASA Astrophysics Data System (ADS)
Gao, Nansha; Chen, Zhihong; Xiao, Xiaojun; Ruan, Changshun; Mei, Lin; Liu, Zhigang; Zeng, Xiaowei
2015-08-01
In order to enhance the therapeutic effect of chemotherapy on liver cancer, a biodegradable formulation of protamine-modified paclitaxel-loaded poly(lactide- co-glycolide)- b-poly(ethylene glycol)- b-poly(lactide- co-glycolide) (PLGA- b-PEG- b-PLGA) nanoparticles (PTX-loaded/protamine NPs) was prepared. Tri-block copolymer PLGA- b-PEG- b-PLGA was synthesized by ring-opening polymerization and characterized by 1H NMR spectroscopy and gel permeation chromatography. PTX-loaded and PTX-loaded/protamine NPs were characterized in terms of size, size distribution, zeta potential, surface morphology, drug encapsulation efficiency, and drug release. Confocal laser scanning microscopy showed that coumarin 6-loaded/protamine NPs were internalized by hepatocellular carcinoma cell line HepG2. The cellular uptake efficiency of NPs was obviously elevated after protamine modification. With commercial formulation Taxol® as the reference, HepG2 cells were also used to study the cytotoxicity of the NPs. PTX-loaded/protamine NPs exhibited significantly higher cytotoxicity than PTX-loaded NPs and Taxol® did. All the results suggested that surface modification of PTX-loaded PLGA- b-PEG- b-PLGA NPs with protamine boosted the therapeutic efficacy on liver cancer.
Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li
2016-01-01
It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials in future. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Shaikh, Shazia; Singh, Deepti; Subramanian, Mahesh; Kedia, Sunita; Singh, Anil Kumar; Singh, Kulwant; Gupta, Nidhi; Sinha, Sucharita
2018-02-01
Bacterial attachment and biofilm formation on implant surface has been a major concern in hospital and industrial environment. Prevention of bacterial infections of implant surface through surface treatment could be a potential solution and hence this has become a key area of research. In the present study, the antibacterial and biocompatible properties of femtosecond laser surface treated 45S5 bioactive glass (BG) have been investigated. Adhesion and sustainability of both gram positive S. aureus and gram negative P.aeruginosa and E. coli nosocomial bacteria on untreated and laser treated BG samples has been explored. An imprint method has been used to visualize the growth of bacteria on the sample surface. We observed complete bacterial rejection potentially reducing risk of biofilm formation on laser treated surface. This was correlated with surface roughness, wettability and change in surface chemical composition of the samples before and after laser treatment. Biocompatibility of the laser treated BG was demonstrated by studying the anchoring and growth of human cervix cell line INT407. Our results demonstrate that, laser surface modification of BG enables enhanced bacterial rejection without affecting its biocompatibility towards growth of human cells on it. These results open a significantly potential approach towards use of laser in successfully imparting desirable characteristics to BG based bio-implants and devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yijie; Xing, Huaizhong, E-mail: xinghz@dhu.edu.cn; Lu, Aijiang
2015-08-07
Semiconductor nanowires (NWs) can be applied in gas sensing and cell detection, but the sensing mechanism is not clearly understood. In this study, surface modification effect on the electronic properties of CdS NWs for different diameters with several species (H, F, Cl, Br, and NO{sub 2}) is investigated by first principles calculations. The surface dangling bonds and halogen elements are chosen to represent the environment of the surface. Halogen passivation drastically changes the band gaps due to the strong electronegativity and the energy level of halogen atoms. Density of states analysis indicates that valence band maximum (VBM) of halogen-passivated NWsmore » is formed by the p states of halogen atoms, while VBM of H-passivated NWs is originated from Cd 4d and S 3p orbitals. To illustrate that surface modification can be applied in gas sensing, NO{sub 2}-absorbed NWs with different coverage are calculated. Low coverage of NO{sub 2} introduces a deep p-type dopant-like level, while high coverage introduces a shallow n-type dopant-like level into the band structure. The transformation is due to that at low coverage the adsorption is chemical while at high coverage is physical. These findings might promote the understanding of surface modification effect and the sensing mechanism of NWs as gas sensors.« less
NASA Astrophysics Data System (ADS)
Jiao, Jiajia; Sun, Lili; Guo, Zaiyu; Hou, Sen; Holyst, Robert; Lu, Yun; Feng, Xizeng
2016-12-01
Polydimethylsiloxane (PDMS) is widely used as a cell culture platform to produce micro- and nano-technology based microdevices. However, the native PDMS surface is not suitable for cell adhesion and is always subject to bacterial pollution and cancer cell invasion. Coating the PDMS surface with antibacterial or anticancer materials often causes considerable harm to the non-cancer mammalian cells on it. We have developed a method to fabricate a biocompatible PDMS surface which not only promotes non-cancer mammalian cell growth but also has antibacterial and anticancer activities, by coating the PDMS surface with a Chinese herb extract, paeonol. Coating changes the wettability and the elemental composition of the PDMS surface. Molecular dynamic simulation indicates that the absorption of paeonol onto the PDMS surface is an energy favourable process. The paeonol-coated PDMS surface exhibits good antibacterial activity against both Gram-positive and Gram-negative bacteria. Moreover considerable antibacterial activity is maintained after the coated surface is rinsed or incubated in water. The coated PDMS surface inhibits bacterial growth on the contact surface and promotes non-cancer mammalian cell growth with low cell toxicity; meanwhile the growth of cancer cells is significantly inhibited. Our study will potentially guide PDMS surface modification approaches to produce biomedical devices.
Lukas, Karin; Thomas, Ulrich; Gessner, André; Wehner, Daniel; Schmid, Thomas; Schmid, Christof; Lehle, Karla
2016-04-01
Medical devices made of polycarbonaturethane (PCU) combine excellent mechanical properties and little biological degradation, but restricted hemocompatibility. Modifications of PCU might reduce platelet adhesion and promote stable endothelialization. PCU was modified using gas plasma treatment, binding of hydrogels, and coupling of cell-active molecules (modified heparin, anti-thrombin III (ATIII), argatroban, fibronectin, laminin-nonapeptide, peptides with integrin-binding arginine-glycine-aspartic acid (RGD) motif). Biocompatibility was verified with static and dynamic cell culture techniques. Blinded analysis focused on improvement in endothelial cell (EC) adhesion/proliferation, anti-thrombogenicity, reproducible manufacturing process, and shear stress tolerance of ECs. EC adhesion and antithrombogenicity were achieved with 9/35 modifications. Additionally, 6/9 stimulated EC proliferation and 3/6 modification processes were highly reproducible for endothelialization. The latter modifications comprised immobilization of ATIII (A), polyethyleneglycole-diamine-hydrogel (E) and polyethylenimine-hydrogel connected with modified heparin (IH). Under sheer stress, only the IH modification improved EC adhesion within the graft. However, ECs did not arrange in flow direction and cell anchorage was restricted. Despite large variation in surface modification chemistry and improved EC adhesion under static culture conditions, additional introduction of shear stress foiled promising preliminary data. Therefore, biocompatibility testing required not only static tests but also usage of physiological conditions such as shear stress in the case of vascular grafts. © The Author(s) 2016.
Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli
2011-04-01
Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.
Fu, Jiayin; Chuah, Yon Jin; Ang, Wee Tong; Zheng, Nan; Wang, Dong-An
2017-05-30
Myocardiocyte derived from pluripotent stem cells, such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), is a promising cell source for cardiac tissue engineering. Combined with microfluidic technologies, a heart-on-a-chip is very likely to be developed and function as a platform for high throughput drug screening. Polydimethylsiloxane (PDMS) silicone elastomer is a widely-used biomaterial for the investigation of cell-substrate interactions and biochip fabrication. However, the intrinsic PDMS surface hydrophobicity inhibits cell adhesion on the PDMS surface, and PDMS surface modification is required for effective cell adhesion. Meanwhile, the formulation of PDMS also affects the behaviors of the cells. To fabricate PDMS-based biochips for ESC pluripotency maintenance and cardiac differentiation, PDMS surface modification and formulation were optimized in this study. We found that a polydopamine (PD) with gelatin coating greatly improved the ESC adhesion, proliferation and cardiac differentiation on its surface. In addition, different PDMS substrates varied in their surface properties, which had different impacts on ESCs, with the 40 : 1 PDMS substrate being more favorable for ESC adhesion and proliferation as well as embryoid body (EB) attachment than the other PDMS substrates. Moreover, the ESC pluripotency was best maintained on the 5 : 1 PDMS substrate, while the cardiac differentiation of the ESCs was optimal on the 40 : 1 PDMS substrate. Based on the optimized coating method and PDMS formulation, biochips with two different designs were fabricated and evaluated. Compared to the single channels, the multiple channels on the biochips could provide larger areas and accommodate more nutrients to support improved ESC pluripotency maintenance and cardiac differentiation. These results may contribute to the development of a real heart-on-a-chip for high-throughput drug screening in the future.
Zangi, Sepideh; Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Khonakdar, Hossein Ali; Davachi, Seyed Mohammad
2016-06-01
Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Da Som; Lee, Ho Won; Lee, Jong Hyun; Kwon, Hyuck Gi; Lee, Sang Wook; Han, Seung Jin; Jeong, Ok Chan
2018-06-18
Spontaneous wrinkling of a polydimethylsiloxane (PDMS) surface was induced by repeated thermal shrinkage of liquid PDMS coated onto a cured PDMS layer. We investigated and evaluated the potential of the resulting surface as a cell culture substrate by monitoring the viability, spreading area, and proliferation rate of MG-63 cells cultured on native, wrinkled, and poly-L-lysine (PLL)-coated PDMS surfaces. Cells seeded on the wrinkled and PLL-coated PDMS surfaces spread and adhered better than those on native surfaces. The numbers of attached cells growing on wrinkled and PLL-coated PDMS surfaces were higher than those of cells on a native PDMS surface. The spreading area of cells on the wrinkled surface was similar to that of cells on the PLL-coated surface, and was much larger than that on native PDMS. The proliferation rate of cells on the wrinkled surface was more than double that of cells on native PDMS. Reverse-transcription polymerase chain reaction (RT-PCR) analysis of integrin mRNA expression showed that cells on the wrinkled surface were more tightly attached due to higher expression of the protein than exhibited in cells on native PDMS. Thus, the novel findings of this study are that the induction of a wrinkled PDMS surface through a simple curing process produces a suitable cell culture substrate without need of surface modification, and that its effectiveness is comparable to that of a PLL-coated PDMS surface. Copyright © 2018 Elsevier B.V. All rights reserved.
Wu, Meiye; Singh, Anup K
2014-12-01
Cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation of a kinase cascade that culminates in induction of messenger RNA (mRNA) and noncoding microRNA (miRNA) production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient posttranslational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR for nucleic acids, and flow cytometry for posttranslational modifications. Since we know that cells in populations behave heterogeneously,(1) especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell's physiological state. In this Technology Brief, we describe our automated microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and posttranslational modifications in single intact cells with >95% reduction in reagent requirement in under 8 h. © 2014 Society for Laboratory Automation and Screening.
Genetic modification of lymphocytes by retrovirus-based vectors.
Suerth, Julia D; Schambach, Axel; Baum, Christopher
2012-10-01
The genetic modification of lymphocytes is an important topic in the emerging field of gene therapy. Many clinical trials targeting immunodeficiency syndromes or cancer have shown therapeutic benefit; further applications address inflammatory and infectious disorders. Retroviral vector development requires a detailed understanding of the interactions with the host. Most researchers have used simple gammaretroviral vectors to modify lymphocytes, either directly or via hematopoietic stem and progenitor cells. Lentiviral, spumaviral (foamyviral) and alpharetroviral vectors were designed to reduce the necessity for cell stimulation and to utilize potentially safer integration properties. Novel surface modifications (pseudotyping) and transgenes, built using synthetic components, expand the retroviral toolbox, altogether promising increased specificity and potency. Product consistency will be an important criterion for routine clinical use. Copyright © 2012. Published by Elsevier Ltd.
Yamamoto, Y; Sefton, M V
1998-01-01
Poly(ethylene glycol) (PEG) was grafted onto poly(acrylamide-co-vinyl amine) (poly(AM-co-VA)) film using tresylated PEG (TPEG) at 37 degrees C in aqueous buffers (pH 7.4) with a view to surface-modifying microencapsulated mammalian cells. Poly(AM-co-VA) film was synthesized by Hofmann degradation of a cross-linked poly(acrylamide) film. Conversion to vinyl amine on the surface of the film was approximately 50%, but bulk conversion was not observed; surface specificity was thought to be the result of cleavage of aminated polymer chains at the surface due to chain scission. Reaction between primary amine and TPEG gave a graft yield of 2 mol% (based on XPS) with respect to available surface amine groups, equivalent to 54 mol% ethylene oxide based on monomer units. Physical adsorption of non-activated polymer was done under identical conditions as a control and the difference in oxygen content was significant compared to TPEG. The type of buffer agent and buffer concentration did not influence graft yields. This graft reaction, which was completed in as little as 2 h was considered to be mild enough to be used for a surface modification of microcapsules containing cells without affecting their viability. Such a surface modification technique may prove to be a useful means of enhancing the biocompatibility of microcapsules (or any tissue engineering construct) even after cell encapsulation or seeding.
Self-assembling triblock proteins for biofunctional surface modification
NASA Astrophysics Data System (ADS)
Fischer, Stephen E.
Despite the tremendous promise of cell/tissue engineering, significant challenges remain in engineering functional scaffolds to precisely regulate the complex processes of tissue growth and development. As the point of contact between the cells and the scaffold, the scaffold surface plays a major role in mediating cellular behaviors. In this dissertation, the development and utility of self-assembling, artificial protein hydrogels as biofunctional surface modifiers is described. The design of these recombinant proteins is based on a telechelic triblock motif, in which a disordered polyelectrolyte central domain containing embedded bioactive ligands is flanked by two leucine zipper domains. Under moderate conditions of temperature and pH, the leucine zipper end domains form amphiphilic alpha-helices that reversibly associate into homo-trimeric aggregates, driving hydrogel formation. Moreover, the amphiphilic nature of these helical domains enables surface adsorption to a variety of scaffold materials to form biofunctional protein coatings. The nature and stability of these coatings in various solution conditions, and their interaction with mammalian cells is the primary focus of this dissertation. In particular, triblock protein coatings functionalized with cell recognition sequences are shown to produce well-defined surfaces with precise control over ligand density. The impact of this is demonstrated in multiple cell types through ligand density-dependent cell-substrate interactions. To improve the stability of these physically self-assembled coatings, two covalent crosslinking strategies are described---one in which a zero-length chemical crosslinker (EDC) is utilized and a second in which disulfide bonds are engineered into the recombinant proteins. These targeted crosslinking approaches are shown to increase the stability of surface adsorbed protein layers with minimal effect on the presentation of many bioactive ligands. Finally, to demonstrate the versatility of the triblock protein hydrogels, and the ease of introducing multiple functionalities to a substrate surface, a surface coating is tailored for neural stem cell culture in order to improve proliferation on the scaffold, while maintaining the stem cell phenotype. These studies demonstrate the unique advantages of genetic engineering over traditional techniques for surface modification. In addition to their unmatched sequence fidelity, recombinant proteins can easily be modified with bioactive ligands and their organization into coherent, supramolecular structures mimics natural self-assembly processes.
Computational insights into charge transfer across functionalized semiconductor surfaces
NASA Astrophysics Data System (ADS)
Kearney, Kara; Rockett, Angus; Ertekin, Elif
2017-12-01
Photoelectrochemical water-splitting is a promising carbon-free fuel production method for producing H2 and O2 gas from liquid water. These cells are typically composed of at least one semiconductor photoelectrode which is prone to degradation and/or oxidation. Various surface modifications are known for stabilizing semiconductor photoelectrodes, yet stabilization techniques are often accompanied by a decrease in photoelectrode performance. However, the impact of surface modification on charge transport and its consequence on performance is still lacking, creating a roadblock for further improvements. In this review, we discuss how density functional theory and finite-element device simulations are reliable tools for providing insight into charge transport across modified photoelectrodes.
NASA Astrophysics Data System (ADS)
Liang, Yuan; Qin, Haifeng; Hou, Xiaoning; Doll, Gary L.; Ye, Chang; Dong, Yalin
2018-07-01
Mechanical force can crucially affect form and function of cells, and play critical roles in many diseases. While techniques to conveniently apply mechanical force to cells are limited, we fabricate a surface actuator prototype for cellular mechanotransduction by imparting severe plastic deformation into the surface of shape memory alloy (SMA). Using ultrasonic nanocrystal surface modification (UNSM), a deformation-based surface engineering technique with high controllability, micro surface patterns can be generated on the surface of SMA so that the micro-size cell can conform to the pattern; meanwhile, phase transformation can be induced in the subsurface by severe plastic deformation. By controlling plastic deformation and phase transformation, it is possible to establish a quantitative relation between deformation and temperature. When cells are cultured on the UNSM-treated surface, such surface can dynamically deform in response to external temperature change, and therefore apply controllable mechanical force to cells. Through this study, we demonstrate a novel way to fabricate a low-cost surface actuator that has the potential to be used for high-throughput cellular mechanotransduction.
NASA Astrophysics Data System (ADS)
Chang, Shih-Hang; Liou, Jyun-Sian; Liu, Jung-Liang; Chiu, Yi-Fan; Xu, Chang-Han; Chen, Bor-Yann; Chen, Jian-Zhang
2016-12-01
This study investigated the surface and electrochemical properties of carbon cloth electrodes surface-modified by using atmospheric pressure plasma jets (APPJs) for applications involving microbial fuel cells (MFCs). APPJ treatment made the carbon cloth highly hydrophilic and did not introduce any observable cracks or flaws. MFCs configured with APPJ-treated carbon cloth electrodes exhibited electrochemical performance (maximum power density of 7.56 mW m-2) superior to that of MFCs configured with untreated carbon cloth electrodes (maximum power density of 2.38 mW m-2). This boost in performance can be attributed to the formation of abundant carboxyl and ammonium functional groups on the surface of APPJ-treated carbon cloth, which promoted the formation of anodic biofilms and the adhesion of bacteria, while facilitating the transfer of electrons from the bacteria to the electrodes. APPJ surface modification is non-toxic and environmentally friendly (no exogenous chemicals are required), which is particularly beneficial as the introduction of toxins might otherwise inhibit bacterial growth and metabolism. The APPJ surface modification process is rapid, cost-effective, and applicable to substrates covering a large area, making it ideal for the fabrication of large-scale MFCs and bioelectrochemical bioenergy devices.
Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.
Shi, Hui; Liu, Zhuo; Li, Ang; Yin, Jing; Chong, Alvin G L; Tan, Kevin S W; Zhang, Yong; Lim, Chwee Teck
2013-01-01
Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.
Ferritin-Polymer Conjugates: Grafting Chemistry and Self-Assembly
2009-10-26
a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...Chemoselective modification of M13 bacteriophage and cell imaging We systematically investigated the chemical modification of three kinds of reactive...tyrosine residues, on M13 surface. The reactivity for each group was identified by conjugation with small fluorescent molecules. Furthermore, the
NASA Astrophysics Data System (ADS)
Chen, W. X.; Yu, J. S.; Hu, W.; Chen, G. L.
2016-11-01
In this paper, the partial modification of the biaxially oriented polypropylene (BOPP) film for potential biological and packaging applications was achieved via hydrophilic modification using atmospheric pressure plasma jet (APPJ). In the APPJ system, the allylamine (ALA) monomer was polymerized on the BOPP surface by either the Ar/O2 or the He/O2 plasma. The results showed that plasmatic modification created many micro/nano sized holes on the BOPP film, which increased the surface roughness dramatically and the increased roughness enhanced the combining intensity between the BOPP film and the ALA polymer. However, such a plasmatic modification increased the water vapor permeability. The FTIR and XPS characterizations showed that the amine groups were grafted onto the BOPP film, and the contact angle of the BOPP film decreases from 98.5° to 8°. Compared with the BOPP films treated by the Ar or He plasma, the barrier property of the modified BOPP film increased significantly when the ALA polymer was incorporated. The bio-affinity/toxicity of ALA polymer was illustrated by the attachment of the cultured SMMC-7721 hepatoma cells on the modified BOPP film. The significant enhancement in the cell density indicated that modified BOPP film was highly bio-compatible and non-toxic, especially treated with the Ar/O2/ALA plasma.
Ruiz, Amaliris; Rathnam, Kashmila R.; Masters, Kristyn S.
2014-01-01
The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk vs. surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies. PMID:24276670
Soft tissue adhesion of polished versus glazed lithium disilicate ceramic for dental applications.
Brunot-Gohin, C; Duval, J-L; Azogui, E-E; Jannetta, R; Pezron, I; Laurent-Maquin, D; Gangloff, S C; Egles, C
2013-09-01
Ceramics are widely used materials for prosthesis, especially in dental fields. Despite multiple biomedical applications, little is known about ceramic surface modifications and the resulting cell behavior at its contact. The aim of this study is to evaluate the biological response of polished versus glazed surface treatments on lithium disilicate dental ceramic. We studied a lithium disilicate ceramic (IPS e.max(®) Press, Ivoclar Vivadent) with 3 different surface treatments: raw surface treatment, hand polished surface treatment, and glazed surface treatment (control samples are Thermanox(®), Nunc). In order to evaluate the possible modulation of cell response at the surface of ceramic, we compared polished versus glazed ceramics using an organotypic culture model of chicken epithelium. Our results show that the surface roughness is not modified as demonstrated by equivalent Ra measurements. On the contrary, the contact angle θ in water is very different between polished (84°) and glazed (33°) samples. The culture of epithelial tissues allowed a very precise assessment of histocompatibility of these interfaces and showed that polished samples increased cell adhesion and proliferation as compared to glazed samples. Lithium disilicate polished ceramic provided better adhesion and proliferation than lithium disilicate glazed ceramic. Taken together, our results demonstrate for the first time, how it is possible to use simple surface modifications to finely modulate the adhesion of tissues. Our results will help dental surgeons to choose the most appropriate surface treatment for a specific clinical application, in particular for the ceramic implant collar. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Engineered porous silicon counter electrodes for high efficiency dye-sensitized solar cells.
Erwin, William R; Oakes, Landon; Chatterjee, Shahana; Zarick, Holly F; Pint, Cary L; Bardhan, Rizia
2014-06-25
In this work, we demonstrate for the first time, the use of porous silicon (P-Si) as counter electrodes in dye-sensitized solar cells (DSSCs) with efficiencies (5.38%) comparable to that achieved with platinum counter electrodes (5.80%). To activate the P-Si for triiodide reduction, few layer carbon passivation is utilized to enable electrochemical stability of the silicon surface. Our results suggest porous silicon as a promising sustainable and manufacturable alternative to rare metals for electrochemical solar cells, following appropriate surface modification.
Deppert, W; Hanke, K; Henning, R
1980-01-01
Simian virus 40 (SV40)-transformed monolayer cells were analyzed in situ by indirect immunofluorescence microscopy for the postulated cell surface location of SV40 T-antigen-related molecules. With antisera prepared against purified, sodium dodecyl sulfate-denatured SV40 T-antigen, positive surface staining was obtained when the cells had been treated with formaldehyde before immunofluorescence analysis. In contrast, living SV40-transformed cells analyzed in monolayer were surface fluorescence negative. The fixation procedure developed in this study combined with a double staining immunofluorescence technique allowed the simultaneous analysis of the same cells for the expression of both SV40 T-antigen-related surface antigen and nuclear T-antigen. The localization of SV40 T-antigen-related surface antigen on the outer surface of the plasma membrane of formaldehyde-fixed SV40-transformed cells was demonstrated directly by the protein A-mediated binding of Staphylococcus aureus bacteria on formaldehyde-fixed SV40-transformed cells precoated with antiserum against sodium dodecyl sulfate-denatured T-antigen. Both cell surface staining and S. aureus binding were found to be highly specific for SV40 T-antigen-related binding sites. These results indicate that T-antigen-related molecules in a cryptic form are located on the surface of SV40-transformed monolayer cells and can be detected in situ after modification of the cell surface architecture. Images PMID:6255189
Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches
Bellin, Robert M.; Kubicek, James D.; Frigault, Matthew J.; Kamien, Andrew J.; Steward, Robert L.; Barnes, Hillary M.; DiGiacomo, Michael B.; Duncan, Luke J.; Edgerly, Christina K.; Morse, Elizabeth M.; Park, Chan Young; Fredberg, Jeffrey J.; Cheng, Chao-Min; LeDuc, Philip R.
2009-01-01
The ability of cells to respond to external mechanical stimulation is a complex and robust process involving a diversity of molecular interactions. Although mechanotransduction has been heavily studied, many questions remain regarding the link between physical stimulation and biochemical response. Of significant interest has been the contribution of the transmembrane proteins involved, and integrins in particular, because of their connectivity to both the extracellular matrix and the cytoskeleton. Here, we demonstrate the existence of a mechanically based initiation molecule, syndecan-4. We first demonstrate the ability of syndecan-4 molecules to support cell attachment and spreading without the direct extracellular binding of integrins. We also examine the distribution of focal adhesion-associated proteins through controlling surface interactions of beads with molecular specificity in binding to living cells. Furthermore, after adhering cells to elastomeric membranes via syndecan-4-specific attachments we mechanically strained the cells via our mechanical stimulation and polymer surface chemical modification approach. We found ERK phosphorylation similar to that shown for mechanotransductive response for integrin-based cell attachments through our elastomeric membrane-based approach and optical magnetic twisting cytometry for syndecan-4. Finally, through the use of cytoskeletal disruption agents, this mechanical signaling was shown to be actin cytoskeleton dependent. We believe that these results will be of interest to a wide range of fields, including mechanotransduction, syndecan biology, and cell–material interactions. PMID:20080785
Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisti, Karin E., E-mail: karinellensisti@gmail.com; Biomaterials Group, Institute of Chemistry, São Paulo State University; Federal University of Mato Grosso do Sul
Purpose: To evaluate the osteo-regenerative potential of Titanium (Ti) modified by Light Amplification by Stimulated Emission of Radiation (LASER) beam (Yb-YAG) upon culture with human Skeletal Stem Cells (hSSCs{sup 1}). Methods: Human skeletal cell populations were isolated from the bone marrow of haematologically normal patients undergoing primary total hip replacement following appropriate consent. STRO-1{sup +} hSSC{sup 1} function was examined for 10 days across four groups using Ti discs: i) machined Ti surface group in basal media (Mb{sup 2}), ii) machined Ti surface group in osteogenic media (Mo{sup 3}), iii) LASER-modified Ti group in basal media (Lb{sup 4}) and, iv)more » LASER-modified Ti group in osteogenic media (Lo{sup 5}). Molecular analysis and qRT-PCR as well as functional analysis including biochemistry (DNA, Alkaline Phosphatase (ALP{sup 6}) specific activity), live/dead immunostaining (Cell Tracker Green (CTG{sup 7})/Ethidium Homodimer-1 (EH-1{sup 8})), and fluorescence staining (for vinculin and phalloidin) were undertaken. Inverted, confocal and Scanning Electron Microscopy (SEM) approaches were used to characterise cell adherence, proliferation, and phenotype. Results: Enhanced cell spreading and morphological rearrangement, including focal adhesions were observed following culture of hSSCs{sup 1} on LASER surfaces in both basal and osteogenic conditions. Biochemical analysis demonstrated enhanced ALP{sup 6} specific activity on the hSSCs{sup 1}-seeded on LASER-modified surface in basal culture media. Molecular analysis demonstrated enhanced ALP{sup 6} and osteopontin expression on titanium LASER treated surfaces in basal conditions. SEM, inverted microscopy and confocal laser scanning microscopy confirmed extensive proliferation and migration of human bone marrow stromal cells on all surfaces evaluated. Conclusions: LASER-modified Ti surfaces modify the behaviour of hSSCs.{sup 1} In particular, SSC{sup 1} adhesion, osteogenic gene expression, cell morphology and cytoskeleton structure were affected. The current studies show Ti LASER modification can enhance the osseointegration between Ti and skeletal cells, with important implications for orthopaedic application. - Highlights: • Bone stem cells on LASER Ti surface display enhanced cell growth and viability. • Bone stem cells on LASER Ti surface exhibit marked biocompatibility. • Human bone stem cells on LASER Ti surface exhibit altered morphology. • LASER Ti enhance osteogenic differentiation of human bone skeletal stem cells. • LASER Ti provides a unique approach to enhance osseointegration with the material.« less
Stinemetz, Emily K; Gao, Peng; Pinkston, Kenneth L; Montealegre, Maria Camila; Murray, Barbara E; Harvey, Barrett R
2017-01-01
AtlA is the major peptidoglycan hydrolase of Enterococcus faecalis involved in cell division and cellular autolysis. The secreted zinc metalloprotease, gelatinase (GelE), has been identified as an important regulator of cellular function through post-translational modification of protein substrates. AtlA is a known target of GelE, and their interplay has been proposed to regulate AtlA function. To study the protease-mediated post-translational modification of AtlA, monoclonal antibodies were developed as research tools. Flow cytometry and Western blot analysis suggests that in the presence of GelE, surface-bound AtlA exists primarily as a N-terminally truncated form whereas in the absence of GelE, the N-terminal domain of AtlA is retained. We identified the primary GelE cleavage site occurring near the transition between the T/E rich Domain I and catalytic region, Domain II via N-terminal sequencing. Truncation of AtlA had no effect on the peptidoglycan hydrolysis activity of AtlA. However, we observed that N-terminal cleavage was required for efficient AtlA-mediated cell division while unprocessed AtlA was unable to resolve dividing cells into individual units. Furthermore, we observed that the processed AtlA has the propensity to localize to the cell septum on wild-type cells whereas unprocessed AtlA in the ΔgelE strain were dispersed over the cell surface. Combined, these results suggest that AtlA septum localization and subsequent cell separation can be modulated by a single GelE-mediated N-terminal cleavage event, providing new insights into the post-translation modification of AtlA and the mechanisms governing chaining and cell separation.
Pinkston, Kenneth L.; Montealegre, Maria Camila; Murray, Barbara E.
2017-01-01
AtlA is the major peptidoglycan hydrolase of Enterococcus faecalis involved in cell division and cellular autolysis. The secreted zinc metalloprotease, gelatinase (GelE), has been identified as an important regulator of cellular function through post-translational modification of protein substrates. AtlA is a known target of GelE, and their interplay has been proposed to regulate AtlA function. To study the protease-mediated post-translational modification of AtlA, monoclonal antibodies were developed as research tools. Flow cytometry and Western blot analysis suggests that in the presence of GelE, surface-bound AtlA exists primarily as a N-terminally truncated form whereas in the absence of GelE, the N-terminal domain of AtlA is retained. We identified the primary GelE cleavage site occurring near the transition between the T/E rich Domain I and catalytic region, Domain II via N-terminal sequencing. Truncation of AtlA had no effect on the peptidoglycan hydrolysis activity of AtlA. However, we observed that N-terminal cleavage was required for efficient AtlA-mediated cell division while unprocessed AtlA was unable to resolve dividing cells into individual units. Furthermore, we observed that the processed AtlA has the propensity to localize to the cell septum on wild-type cells whereas unprocessed AtlA in the ΔgelE strain were dispersed over the cell surface. Combined, these results suggest that AtlA septum localization and subsequent cell separation can be modulated by a single GelE-mediated N-terminal cleavage event, providing new insights into the post-translation modification of AtlA and the mechanisms governing chaining and cell separation. PMID:29049345
Tulsani, Srikanth Reddy; Rath, Arup Kumar
2018-07-15
The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%. Copyright © 2018 Elsevier Inc. All rights reserved.
Wu, Meiye; Singh, Anup K.
2014-07-15
In this study, cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation kinase cascade that culminates in induction of mRNA and non-coding miRNA production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient post-translational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR formore » nucleic acids, and flow cytometry for post-translational modifications. Since we know that cells in populations behave heterogeneously1, especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell’s physiological state. In this technical brief, we describe our microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and post-translational modifications in single intact cells with >95% reduction in reagent requirement in under 8 hours.« less
Ye, Chang; Zhou, Xianfeng; Telang, Abhishek; Gao, Hongyu; Ren, Zhencheng; Qin, Haifeng; Suslov, Sergey; Gill, Amrinder S; Mannava, S R; Qian, Dong; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Vasudevan, Vijay K
2016-01-01
We report herein the effects of Ultrasonic Nano-crystal Surface Modification (UNSM), a severe surface plastic deformation process, on the microstructure, mechanical (hardness, wear), wettability and biocompatibility properties of NiTi shape memory alloy. Complete surface amorphization of NiTi was achieved by this process, which was confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The wear resistance of the samples after UNSM processing was significantly improved compared with the non-processed samples due to increased surface hardness of the alloy by this process. In addition, cell culture study demonstrated that the biocompatibility of the samples after UNSM processing has not been compromised compared to the non-processed sample. The combination of high wear resistance and good biocompatibility makes UNSM an appealing process for treating alloy-based biomedical devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kc, Biplab; Paudel, Siddhi Nath; Rayamajhi, Sagar; Karna, Deepak; Adhikari, Sandeep; Shrestha, Bhupal G; Bisht, Gunjan
2016-01-01
Nanoparticles (NPs) are receiving increasing interest in biomedical research owing to their comparable size with biomolecules, novel properties and easy surface engineering for targeted therapy, drug delivery and selective treatment making them a better substituent against traditional therapeutic agents. ZnO NPs, despite other applications, also show selective anticancer property which makes it good option over other metal oxide NPs. ZnO NPs were synthesized by chemical precipitation technique, and then surface modified using Triton X-100. Comparative study of cytotoxicity of these modified and unmodified NPs on breast cancer cell line (MDA-MB-231) and normal cell line (NIH 3T3) were carried out. ZnO NPsof average size 18.67 ± 2.2 nm and Triton-X modified ZnO NPs of size 13.45 ± 1.42 nm were synthesized and successful characterization of synthesized NPs was done by Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), transmission electron microscopy (TEM) analysis. Surface modification of NPs was proved by FT-IR analysis whereas structure and size by XRD analysis. Morphological analysis was done by TEM. Cell viability assay showed concentration dependent cytotoxicity of ZnO NPs in breast cancer cell line (MDA-MB-231) whereas no positive correlation was found between cytotoxicity and increasing concentration of stress in normal cell line (NIH 3T3) within given concentration range. Half maximum effective concentration (EC50) value for ZnO NPs was found to be 38.44 µg/ml and that of modified ZnO NPs to be 55.24 µg/ml for MDA-MB-231. Crystal violet (CV) staining image showed reduction in number of viable cells in NPs treated cell lines further supporting this result. DNA fragmentation assay showed fragmented bands indicating that the mechanism of cytotoxicity is through apoptosis. Although use of surfactant decreases particle size, toxicity of modified ZnO NPs were still less than unmodified NPs on MDA-MB-231 contributed by biocompatible surface coating. Both samples show significantly less toxicity towards NIH 3T3 in concentration independent manner. But use of Triton-X, a biocompatible polymer, enhances this preferentiality effect. Since therapeutic significance should be analyzed through its comparative effect on both normal and cancer cells, possible application of biocompatible polymer modified nanoparticles as therapeutic agent holds better promise.Graphical abstractSurface coating, characterization and comparative in vitro cytotoxicity study on MDA-MB 231 and NIH 3T3 of ZnO NPs showing enhanced preferentiality by biocompatible surface modification.
Development of an electro-responsive platform for the controlled transfection of mammalian cells
NASA Astrophysics Data System (ADS)
Hook, Andrew L.; Thissen, Helmut W.; Hayes, Jason P.; Voelcker, Nicolas H.
2005-02-01
The recent development of living microarrays as novel tools for the analysis of gene expression in an in-situ environment promises to unravel gene function within living organisms. In order to significantly enhance microarray performance, we are working towards electro-responsive DNA transfection chips. This study focuses on the control of DNA adsorption and desorption by appropriate surface modification of highly doped p++ silicon. Silicon was modified by plasma polymerisation of allylamine (ALAPP), a non-toxic surface that sustains cell growth. Subsequent high surface density grafting of poly(ethylene oxide) formed a layer resistant to biomolecule adsorption and cell attachment. Spatially controlled excimer laser ablation of the surface produced micron resolution patterns of re-exposed plasma polymer whilst the rest of the surface remained non-fouling. We observed electro-stimulated preferential adsorption of DNA to the ALAPP surface and subsequent desorption by the application of a negative bias. Cell culture experiments with HEK 293 cells demonstrated efficient and controlled transfection of cells using the expression of green fluorescent protein as a reporter. Thus, these chemically patterned surfaces are promising platforms for use as living microarrays.
Ghobeira, Rouba; Philips, Charlot; Declercq, Heidi; Cools, Pieter; De Geyter, Nathalie; Cornelissen, Ria; Morent, Rino
2017-01-24
For most tissue engineering applications, surface modification and sterilization of polymers are critical aspects determining the implant success. The first part of this study is thus dedicated to modifying polycaprolactone (PCL) surfaces via plasma treatment using a medium pressure dielectric barrier discharge, while the second part focuses on the sterilization of plasma-modified PCL. Chemical and physical surface changes are examined making use of water contact angle goniometry (WCA), x-ray photoelectron spectroscopy and atomic force microscopy. Bioresponsive properties are evaluated by performing cell culture tests. The results show that air and argon plasmas decrease the WCA significantly due to the incorporation of oxygen-containing functionalities onto the PCL surface, without modifying its morphology. Extended treatment times lead to PCL degradation, especially in the case of air plasma. In addition to surface modification, the plasma potential to sterilize PCL is studied with appropriate treatment times, but sterility has not been achieved so far. Therefore, plasma-modified films are subjected to UV, H 2 O 2 plasma (HP) and ethylene oxide (EtO) sterilizations. UV exposure of 3 h does not alter the PCL physico-chemical properties. A decreased wettability is observed after EtO sterilization, attributable to the modification of PCL chain ends reacting with EtO molecules. HP sterilization increases the WCA of the plasma-treated samples, presumably due to the scission of the hydrophilic bonds generated during the prior plasma treatments. Moreover, HP modifies the PCL surface morphology. For all the sterilizations, an improved cell adhesion and proliferation is observed on plasma-treated films compared to untreated ones. EtO shows the lowest proliferation rate compared to HP and UV. Overall, of the three sterilizations, UV is the most effective, since the physical alterations provoked by HP might interfere with the structural integrity when it comes to 3D scaffolds, and the chemical modifications caused by EtO, in addition to its toxicity, interfere with PCL bioactivity.
2013-01-01
Background Poly lactic-co-glycolic acid (PLGA) based nanoparticles are considered to be a promising drug carrier in tumor targeting but suffer from the high level of opsonization by reticuloendothelial system due to their hydrophobic structure. As a result surface modification of these nanoparticles has been widely studied as an essential step in their development. Among various surface modifications, human serum albumin (HSA) possesses advantages including small size, hydrophilic surface and accumulation in leaky vasculature of tumors through passive targeting and a probable active transport into tumor tissues. Methods PLGA nanoparticles of docetaxel were prepared by emulsification evaporation method and were surface conjugated with human serum albumin. Fourier transform infrared spectrum was used to confirm the conjugation reaction where nuclear magnetic resonance was utilized for conjugation ratio determination. In addition, transmission electron microscopy showed two different contrast media in conjugated nanoparticles. Furthermore, cytotoxicity of free docetaxel, unconjugated and conjugated PLGA nanoparticles was studied in HepG2 cells. Results Size, zeta potential and drug loading of PLGA nanoparticles were about 199 nm, −11.07 mV, and 4%, respectively where size, zeta potential and drug loading of conjugated nanoparticles were found to be 204 nm, −5.6 mV and 3.6% respectively. Conjugated nanoparticles represented a three-phasic release pattern with a 20% burst effect for docetaxel on the first day. Cytotoxicity experiment showed that the IC50 of HSA conjugated PLGA nanoparticles (5.4 μg) was significantly lower than both free docetaxel (20.2 μg) and unconjugated PLGA nanoparticles (6.2 μg). Conclusion In conclusion surface modification of PLGA nanoparticles through HSA conjugation results in more cytotoxicity against tumor cell lines compared with free docetaxel and unconjugated PLGA nanoparticles. Albumin conjugated PLGA nanoparticles may represent a promising drug delivery system in cancer therapy. PMID:23866721
Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering.
Agheb, Maria; Dinari, Mohammad; Rafienia, Mohammad; Salehi, Hossein
2017-02-01
In natural cartilage tissues, chondrocytes are linked to extracellular matrix (ECM) through cell-surface binding proteins. Surface modification of gelatin can provide a new generation of biopolymers and fibrous scaffolds with chemical, mechanical, and biological properties. In this study tyrosine protein and 1,2,3-triazole ring were utilized to functionalize gelatin without Cu catalyst. Their molecular structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ( 1 HNMR). Chemical cross-linkers such as glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysulfosuccinimide (NHS) were used to electrospin the modified gelatin. The modification of gelatin and cross-linking effects were confirmed by scanning electron microscopy (SEM), contact angle measurement, and mechanical tests. MTT assay using chondrocyte cells showed cell viability of electrospun modified gelatin scaffolds. In vitro cell culture studies showed that electrospun engineered protein scaffolds would support the attachment and growth of cells. The results also showed that cross-linked nanofibers with EDC/NHS could be considered excellent matrices in cell adhesion and proliferation before electrospinning process and their potential substrate in tissue engineering applications, especially in the field of cartilage engineering. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sergeeva, Natalia N.; Chaika, Alexander N.; Walls, Brian; Murphy, Barry E.; Walshe, Killian; Martin, David P.; Richards, Billy D. O.; Jose, Gin; Fleischer, Karsten; Aristov, Victor Yu; Molodtsova, Olga V.; Shvets, Igor V.; Krasnikov, Sergey A.
2018-07-01
Herein, we report a simple method for a covalent modification of surface supported graphene with photoactive dyes. Graphene was fabricated on cubic-SiC/Si(001) wafers due to their low cost and suitability for mass-production of continuous graphene fit for electronic applications on millimetre scale. Functionalisation of the graphene surface was carried out in solution via white light induced photochemical generation of phenazine radicals from phenazine diazonium salt. The resulting covalently bonded phenazine-graphene hybrid structure was characterised by scanning tunnelling microscopy (STM) and spectroscopy (STS), Raman spectroscopy and density functional theory (DFT) calculations. It was found that phenazine molecules form an overlayer, which exhibit a short range order with a rectangular unit cell on the graphene surface. DFT calculations based on STM results reveal that molecules are standing up in the overlayer with the maximum coverage of 0.25 molecules per graphene unit cell. Raman spectroscopy and STM results show that the growth is limited to one monolayer of standing molecules. STS reveals that the phenazine-graphene hybrid structure has a band gap of 0.8 eV.
NASA Astrophysics Data System (ADS)
Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu
2013-11-01
The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.
Kim, Haeri; Park, Se Jin; Kim, Byungwoo; Hwang, Yun Jeong; Min, Byoung Koun
2018-02-05
CuIn 1-x Ga x S 2-y Se y (CIGSSe) thin films have attracted a great deal of attention as promising absorbing materials for solar cell applications, owing to their favorable optical properties (e.g. a direct band gap and high absorption coefficients) and stable structure. Many studies have sought to improve the efficiency of solar cells using these films, and it has been found that surface modification through post-heat treatment can lead to surface passivation of surface defects and a subsequent increase in efficiency. The surface properties of solution-processed CIGSSe films are considered to be particularly important in this respect, owing to the fact that they are more prone to defects. In this work, CIGSSe thin films with differing S/Se ratios at their surface were synthesized by using a precursor solution and post-sulfurization heat treatment. These CIGSSe thin films were investigated with current-voltage and Kelvin probe force microscope (KPFM) analyses. Surface photovoltage (SPV), which is the difference in the work function in the dark and under illumination, was measured by using KPFM, which can examine the screening and the modification of surface charge through carrier trapping. As the concentration of S increases on the CIGSSe film surface, higher work functions and more positive SPV values were observed. Based on these measurements, we inferred the band-bending behavior of CIGSSe absorber films and proposed reasons for the improvement in solar cell performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liao, Chien Huang; Wang, Ya-Hui; Chang, Wei-Wei; Yang, Bei-Chia; Wu, Tsai-Jung; Liu, Wei-Li; Yu, Alice L; Yu, John
2018-06-11
Stem cell surface markers may facilitate a better understanding of stem cell biology through molecular function studies or serve as tools to monitor the differentiation status and behavior of stem cells in culture or tissue. Thus, it is important to identify additional, novel stem cell markers. We used glycoproteomics to discover surface glycoproteins on human embryonic stem cells (hESCs) that may be useful stem cell markers. We found that a surface glycoprotein, leucine-rich repeat neuronal protein 1 (LRRN1), is expressed abundantly on the surface of hESCs prior to differentiation into embryoid bodies (EBs). Silencing of LRRN1 with short hairpin RNA (shLRRN1) in hESCs resulted in decreased capacity of self-renewal, and skewed differentiation toward endoderm/mesoderm lineages in vitro and in vivo. Meanwhile, the protein expression levels of the pluripotency factors OCT4, NANOG and SOX2 were reduced. Interestingly, the mRNA levels of these pluripotency factors were not affected in LRRN1 silenced cells, but protein half-lives were substantially shortened. Furthermore, we found LRRN1 silencing led to nuclear export and proteasomal degradation of all three pluripotency factors. In addition, the effects on nuclear export were mediated by AKT phosphorylation. These results suggest that LRRN1 plays an important role in maintaining the protein stability of pluripotency factors through AKT phosphorylation, thus maintaining hESC self-renewal capacity and pluripotency. Overall, we found that LRRN1 contributes to pluripotency of hESC by preventing translocation of OCT4, NANOG and SOX2 from nucleus to cytoplasm, thereby lessening their post-translational modification and degradation. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.
Li, H; Yuan, B; Gao, Y; Chung, C Y; Zhu, M
2011-12-15
An in-situ nitriding method has been developed to modify the outer surface and the pore walls of both open and closed pores of porous NiTi shape memory alloys (SMAs) as part of their sintering process. XRD and XPS examinations revealed that the modified layer is mainly TiN. The biocompatibility of the in-situ nitrided sample has been characterized by its corrosion resistance, cell adherence, and implant surgery. The in-situ nitrided porous NiTi SMAs exhibit much better corrosion resistance, cell adherence, and bone tissue induced capability than the porous NiTi alloys without surface modification. Furthermore, the released Ni ion content in the blood of rabbit is reduced greatly by the in-situ nitriding. The excellent biocompatibility of in-situ nitrided sample is attributed to the formation of the TiN layer on all the pore walls including both open and closed pores. Copyright © 2011 Wiley Periodicals, Inc.
Brueckner, Mandy; Jankuhn, Steffen; Jülke, Eva-Maria; Reibetanz, Uta
2018-01-01
Drug delivery systems (DDS) and their interaction with cells are a controversial topic in the development of therapeutic concepts and approaches. On one hand, DDS are very useful for protected and targeted transport of defined dosages of active agents. On the other hand, their physicochemical properties such as material, size, shape, charge, or stiffness have a huge impact on cellular uptake and intracellular processing. Additionally, even identical DDS can undergo a completely diverse interaction with different cell types. However, quite often in in vitro DDS/cell interaction experiments, those aspects are not considered and DDS and cells are randomly chosen. Hence, our investigations provide an insight into layer-by-layer designed microcarriers with modifications of only some of the most important parameters (surface charge, stiffness, and applied microcarrier/cell ratio) and their influence on cellular uptake and viability. We also considered the interaction of these differently equipped DDS with several cell types and investigated professional phagocytes (neutrophil granulocytes; macrophages) as well as non-professional phagocytes (epithelial cells) under comparable conditions. We found that even small modifications such as layer-by-layer (LbL)-microcarriers with positive or negative surface charge, or LbL-microcarriers with solid core or as hollow capsules but equipped with the same surface properties, show significant differences in interaction and viability, and several cell types react very differently to the offered DDS. As a consequence, the properties of the DDS have to be carefully chosen with respect to the addressed cell type with the aim to efficiently transport a desired agent.
Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery.
Sajeesh, S; Bouchemal, K; Sharma, C P; Vauthier, C
2010-02-01
Aim of the present work was to develop novel thiol-functionalized hydrogel microparticles based on poly(methacrylic acid)-chitosan-poly(ethylene glycol) (PCP) for oral drug delivery applications. PCP microparticles were prepared by a modified ionic gelation process in aqueous medium. Thiol modification of surface carboxylic acid groups of PCP micro particles was carried out by coupling l-cysteine with a water-soluble carbodiimide. Ellman's method was adopted to quantify the sulfhydryl groups, and dynamic light-scattering technique was used to measure the average particle size. Cytotoxicity of the modified particles was evaluated on Caco 2 cells by MTT assay. Effect of thiol modification on permeability of paracellular marker fluorescence dextran (FD4) was evaluated on Caco 2 cell monolayers and freshly excised rat intestinal tissue with an Ussing chamber set-up. Mucoadhesion experiments were carried out by an ex vivo bioadhesion method with excised rat intestinal tissue. The average size of the PCP microparticles was increased after thiol modification. Thiolated microparticles significantly improved the paracellular permeability of FD4 across Caco 2 cell monolayers, with no sign of toxicity. However, the efficacy of thiolated system remained low when permeation experiments were carried out across excised intestinal membrane. This was attributed to the high adhesion of the thiolated particles on the gut mucosa. Nevertheless, it can be concluded that surface thiolation is an interesting strategy to improve paracellular permeability of hydrophilic macromolecules. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Patra, Partha; Natarajan, K A
2006-06-15
Selective separation of pyrite and galena from mixture of the two minerals was achieved through interaction with cells and metabolic products from a culture of Paenibacillus polymyxa. Adsorption of cells and metabolic products onto minerals and electrokinetic studies of minerals after interaction with cells and metabolic products were carried out to examine the resulting surface modification on the mineral surfaces. Flocculation and flotation techniques were successfully applied in the selective separation of minerals after bacterial interaction. The effect of varying conditions for production of extracellular polysaccharides and protein provided an insight into the possible mechanism involved in microbially induced flocculation and flotation of pyrite and galena.
Yang, Seung Yun; Kim, Eung-Sam; Jeon, Gumhye; Choi, Kwan Yong; Kim, Jin Kon
2013-04-01
We independently controlled surface topography and wettability of polystyrene (PS) films by CF4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ~11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Xiuwen; Ma, Chunqing; Cheng, Yuanhang; Xie, Yue-Min; Yi, Xueping; Gautam, Bhoj; Chen, Shengmei; Li, Ho-Wa; Lee, Chun-Sing; So, Franky; Tsang, Sai-Wing
2017-08-01
Non-wetting hole transport materials (HTMs) have great potential in facilitating large-sized perovskite crystal growth and enhancing device stability by opposing moisture ingress, However, the severe non-wetting issue limits the wide application of these materials in low-temperature solution-processed inverted planar perovskite solar cells (PVSCs), and corresponding devices are rarely reported. Here, a facile ultraviolet-ozone (UVO) modification method is demonstrated to overcome this issue. By carefully controlling the UVO modification time, the surface wettability of poly-TPD can be tuned without affecting the bulk properties of the film, hence perovskite films with desired grain size and excellent coverage can be deposited via a one-step spin-coating method. Benefiting from the high-quality perovskite, well-matched energy level alignment and hydrophobic property of poly-TPD, the resulting PVSCs show a champion power conversion efficiency of 18.19% with significantly enhanced stability as compared to the PEDOT:PSS counterparts. Moreover, the UVO modification approach also demonstrates its validity when being extended to other hydrophobic HTMs. This work not only provides a general strategy to broaden the selection pool of HTMs for solution-processed inverted planar PVSCs, but also may triggers the exploration of more advanced strategies to make non-wetting HTMs applicable in solution-processed inverted planar PVSCs.
NASA Astrophysics Data System (ADS)
Stylianou, A.; Yova, D.; Alexandratou, E.; Petri, A.
2013-02-01
Collagen is the major fibrous protein in the extracellular matrix and consists a significant component of skin, bone, cartilage and tendon. Due to its unique properties, it has been widely used as scaffold or culture substrate for tissue regeneration or/and cell-substrate interaction studies. The ultraviolet light-collagen interaction investigations are crucial for the improvement of many applications such as that of the UV irradiation in the field of biomaterials, as sterilizing and photo-cross-linking method. The aim of this paper was to investigate the mechanisms of UV-collagen interactions by developing a collagen-based, well characterized, surface with controlled topography of collagen thin films in the nanoscale range. The methodology was to quantify the collagen surface modification induced on ultraviolet radiation and correlate it with changes induced in cells. Surface nanoscale characterization was performed by Atomic Force Microscopy (AFM) which is a powerful tool and offers quantitative and qualitative information with a non-destructive manner. In order to investigate cells behavior, the irradiated films were used for in vitro cultivation of human skin fibroblasts and the cells morphology, migration and alignment were assessed with fluorescence microscopy imaging and image processing methods. The clarification of the effects of UV light on collagen thin films and the way of cells behavior to the different modifications that UV induced to the collagen-based surfaces will contribute to the better understanding of cell-matrix interactions in the nanoscale and will assist the appropriate use of UV light for developing biomaterials.
Stankevich, Ksenia S; Gudima, Alexandru; Filimonov, Victor D; Klüter, Harald; Mamontova, Evgeniya M; Tverdokhlebov, Sergei I; Kzhyshkowska, Julia
2015-06-01
Polylactic acid (PLA) based implants can cause inflammatory complications. Macrophages are key innate immune cells that control inflammation. To provide higher biocompatibility of PLA-based implants with local innate immune cells their surface properties have to be improved. In our study surface modification technique for high-molecular PLA (MW=1,646,600g/mol) based biomaterials was originally developed and successfully applied. Optimal modification conditions were determined. Treatment of PLA films with toluene/ethanol=3/7 mixture for 10min with subsequent exposure in 0.001M brilliant green dye (BGD) solution allows to entrap approximately 10(-9)mol/cm(2) model biomolecules. The modified PLA film surface was characterized by optical microscopy, SERS, FT-IR, UV and TG/DTA/DSC analysis. Tensile strain of modified films was determined as well. The effect of PLA films modified with BGD on the inflammatory reactions of primary human monocyte-derived macrophages was investigated. We developed in vitro test-system by differentiating primary monocyte-derived macrophages on a coating material. Type 1 and type 2 inflammatory cytokines (TNFα, CCL18) secretion and histological biomarkers (CD206, stabilin-1) expression were analyzed by ELISA and confocal microscopy respectively. BGD-modified materials have improved thermal stability and good mechanical properties. However, BGD modifications induced additional donor-specific inflammatory reactions and suppressed tolerogenic phenotype of macrophages. Therefore, our test-system successfully demonstrated specific immunomodulatory effects of original and modified PLA-based biomaterials, and can be further applied for the examination of improved coatings for implants and identification of patient-specific reactions to implants. Copyright © 2015. Published by Elsevier B.V.
Marzaioli, Viviana; Aguilar-Pimentel, Juan Antonio; Weichenmeier, Ingrid; Luxenhofer, Georg; Wiemann, Martin; Landsiedel, Robert; Wohlleben, Wendel; Eiden, Stefanie; Mempel, Martin; Behrendt, Heidrun; Schmidt-Weber, Carsten; Gutermuth, Jan; Alessandrini, Francesca
2014-01-01
Background Silica (SiO2) nanoparticles (NPs) are widely used in diverse industrial and biomedical applications. Their applicability depends on surface modifications, which can limit potential health problems. Objective To assess the potential impact of SiO2 NP exposure and NPs chemical modifications in allergic airway inflammation. Methods Mice were sensitized by five repetitive intraperitoneal injections of ovalbumin/aluminum hydroxide (1 μg) over 42 days, then intratracheally instilled with plain or modified SiO2 NPs (50 μg/mouse), and subsequently aerosol challenged for 20 minutes with ovalbumin. One or 5 days later, allergic inflammation was evaluated by cell differentiation of bronchoalveolar lavage fluid, lung function and gene expression and histopathology, as well as electron and confocal microscopy of pulmonary tissue. Results Plain SiO2 NPs induced proinflammatory and immunomodulatory effects in vivo, highlighted by enhanced infiltration of inflammatory cells in the bronchoalveolar lavage fluid, induction of a pulmonary T helper type 2 (Th2) cytokine pattern, differentiation of type 2 macrophages, and by morphological changes in the lung of sensitized mice. These effects were dramatically attenuated using surface-functionalized NPs with amino and phosphate groups, but not with polyethylene glycol. The role of macrophages in taking up SiO2 NPs was confirmed by flow cytometry, confocal microscopy, and gene expression analysis. Conclusion Our data suggest that amino and phosphate surface modifications, but not polyethylene glycol (PEG), mitigate the proinflammatory and immunomodulatory effect of SiO2 NPs in allergic airway inflammation, paving the way for new strategies in the production of nanomaterials with lower health impact for humans. PMID:24940059
Xiang, Jun; Sun, Jianguo; Hong, Jiaxu; Wang, Wentao; Wei, Anji; Le, Qihua; Xu, Jianjiang
2015-05-01
Corneal disease is a common cause of blindness, and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents a novel T-style design of a keratoprosthesis and its preparation methods, in which a mechanically and structurally effective artificial cornea is made based on a poly(2-hydroxyethyl methacrylate) hydrogel. The porous skirt was modified with hyaluronic acid and cationized gelatin, and the bottom of the optical column was coated with poly(ethylene glycol). The physical properties of the T-style Kpro were analyzed using ultraviolet and visible spectrophotometry and electron scanning microscopy. The surface chemical properties were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface modification in the spongy skirt promoted cell adhesion and produced a firm bond between the corneal tissue and the implant device, while the surface modification in the optic column resisted cell adhesion and prevented retroprosthetic membrane formation. Through improved surgical techniques, the novel T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with the host environment. In vivo implantation experiments showed that the T-style keratoprosthesis is a promising cornea alternative for patients with severe limbal stem cell deficiency and corneal opacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Strauß, Sarah; Neumeister, Anne; Barcikowski, Stephan; Kracht, Dietmar; Kuhbier, Jörn W.; Radtke, Christine; Reimers, Kerstin; Vogt, Peter M.
2013-01-01
Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs) offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells. PMID:23308190
Wang, Xuefeng; Ohlin, C André; Lu, Qinghua; Hu, Jun
2006-09-15
Biomaterial surface modification is an efficient way of improving cell-material interactions. In this study, sub-micrometer laser-induced periodic surface structures (LIPSS) were produced on polystyrene by laser irradiation. FT-IR analysis confirmed that this treatment also led to surface oxidation and anisotropic orientation of the produced carbonyl groups. As a consequence, the surface energy of the laser-treated polystyrene was 1.45 times that of the untreated polystyrene, as measured by contact-angle goniometry. Protein adsorption and rat C6 glioma cell behavior on the two substrates were investigated, showing that the changed physicochemical properties of laser-modified polystyrene surface led to an increase in the quantity of adsorbed bovine serum albumin and significantly affected the behavior of rat C6 glioma cells. In the early stages of cell spreading, cells explored their microenvironment using filopodium as the main sensor. Moreover, cells actively aligned themselves along the direction of LIPSS gradually and cell attachment and proliferation were significantly enhanced. 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006.
Wang, Rex C.-C.; Liu, Cheng; Yang, Chyun-Yu
2017-01-01
The sand-blasting and acid etching (SLA) method can fabricate a rough topography for mechanical fixation and long-term stability of titanium implant, but can not achieve early bone healing. This study used two kinds of plasma treatments (Direct-Current and Radio-Frequency plasma) to modify the SLA-treated surface. The modification of plasma treatments creates respective power range and different content functional OH groups. The results show that the plasma treatments do not change the micron scale topography, and plasma-treated specimens presented super hydrophilicity. The X-ray photoelectron spectroscopy (XPS)-examined result showed that the functional OH content of the RF plasma-treated group was higher than the control (SLA) and DC treatment groups. The biological responses (protein adsorption, cell attachment, cell proliferation, and differentiation) promoted after plasma treatments, and the cell responses, have correlated to the total content of amphoteric OH groups. The experimental results indicated that plasma treatments can create functional OH groups on SLA-treated specimens, and the RF plasma-treated SLA implant thus has potential for achievement of bone healing in early stage of implantation. PMID:29068417
Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging.
Wang, Xiaolei; Cui, Yi; Irudayaraj, Joseph
2015-12-22
Epigenetic modifications on DNA, especially on cytosine, play a critical role in regulating gene expression and genome stability. It is known that the levels of different cytosine derivatives are highly dynamic and are regulated by a variety of factors that act on the chromatin. Here we report an optical methodology based on hyperspectral dark-field imaging (HSDFI) using plasmonic nanoprobes to quantify the recently identified cytosine modifications on DNA in single cells. Gold (Au) and silver (Ag) nanoparticles (NPs) functionalized with specific antibodies were used as contrast-generating agents due to their strong local surface plasmon resonance (LSPR) properties. With this powerful platform we have revealed the spatial distribution and quantity of 5-carboxylcytosine (5caC) at the different stages in cell cycle and demonstrated that 5caC was a stably inherited epigenetic mark. We have also shown that the regional density of 5caC on a single chromosome can be mapped due to the spectral sensitivity of the nanoprobes in relation to the interparticle distance. Notably, HSDFI enables an efficient removal of the scattering noises from nonspecifically aggregated nanoprobes, to improve accuracy in the quantification of different cytosine modifications in single cells. Further, by separating the LSPR fingerprints of AuNPs and AgNPs, multiplex detection of two cytosine modifications was also performed. Our results demonstrate HSDFI as a versatile platform for spatial and spectroscopic characterization of plasmonic nanoprobe-labeled nuclear targets at the single-cell level for quantitative epigenetic screening.
Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long
2018-02-28
Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.
NASA Astrophysics Data System (ADS)
Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Li, Na; Guo, Kun; Zhou, Yuyang; Xu, Jing; Chen, Wei; Jia, Yufeng; Huang, Bin
2017-02-01
In this paper, we first systematically investigate the current output performance of stainless steel electrodes (SS) modified by carbon coating (CC), polyaniline coating (PANI), neutral red grafting (NR), surface hydrophilization (SDBS), and heat treatment (HEAT). The maximum current density of 13.0 A m-2 is obtained on CC electrode (3.0 A m-2 of the untreated anode). Such high performance should be attributed to its large effective surface area, which is 2.3 times that of the unmodified electrode. Compared with SS electrode, about 3-fold increase in current output is achieved with PANI. Functionalization with hydrophilic group and electron medium result in the current output rising to 1.5-2 fold, through enhancing bioadhesive and electron transport rate, respectively. CC modification is the best choice of single modification for SS electrode in this study. However, this modification is not perfect because of its poor hydrophilicity. So CC electrode is modified by SDBS for further enhancing the current output to 16 A m-2. These results could provide guidance for the choice of suitable single modification on SS electrodes and a new method for the perfection of electrode performance through composite modification.
Arvidsson, Anna; Malmberg, Per; Kjellin, Per; Currie, Fredrik; Arvidsson, Martin; Franke Stenport, Victoria
2011-05-01
The aim of the present study was to compare the early interactions between leukocytes and three different surface modifications, suggested as bioactive. Blasted titanium discs were modified by alkali and heat treatment, sodium fluoride treatment, or hydroxyapatite coating. A number of these discs were also immersed in simulated body fluid (SBF) for a week, a treatment which yielded high levels of calcium and phosphate on each surface type. The specimens were exposed for human venous blood for 32 minutes and the respiratory burst response was measured in terms of reactive oxygen species with a luminometer, and coverage of viable cells with a fluorescence microscope after staining steps. The topography, morphology, and chemistry of the surfaces were evaluated with optical interferometry and scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX). A high respiratory burst response was found for HA coated titanium in comparison with the other surface groups (p < 0.0005). The SBF immersion resulted in an increased respiratory burst response (p < 0.0005) and removed statistically significant differences between the surface groups. Thus, the results in the present study indicate that different titanium surface modifications influence the early inflammatory response differently, and that calcium phosphate compounds increase the inflammatory response. Copyright © 2011 Wiley Periodicals, Inc.
Williams, Jason G; Tomer, Kenneth B; Hioe, Catarina E; Zolla-Pazner, Susan; Norris, Philip J
2006-11-01
In the last decade, mass spectrometry has been employed by more and more researchers for identifying the proteins in a macromolecular complex as well as for defining the surfaces of their binding interfaces. This characterization of protein-protein interfaces usually involves at least one of several different methodologies in addition to the actual mass spectrometry. For example, limited proteolysis is often used as a first step in defining regions of a protein that are protected from proteolysis when the protein of interest is part of a macromolecular complex. Other techniques used in conjunction with mass spectrometry for determining regions of a protein involved in protein-protein interactions include chemical modification, such as covalent cross-linking, acetylation of lysines, hydrogen-deuterium exchange, or other forms of modification. In this report, both limited proteolysis and chemical modification were combined with several mass spectrometric techniques in efforts to define the protein surface on the HIV core protein, p24, recognized by two different monoclonal human antibodies that were isolated from HIV+ patients. One of these antibodies, 1571, strongly inhibits the CD4+ T cell proliferative response to a known epitope (PEVIPMFSALSEGATP), while the other antibody, 241-D, does not inhibit as strongly. The epitopes for both of these antibodies were determined to be discontinuous and localized to the N-terminus of p24. Interestingly, the epitope recognized by the strongly inhibiting antibody, 1571, completely overlaps the T cell epitope PEVIPMFSALSEGATP, while the antibody 241-D binds to a region adjacent to the region of p24 recognized by the antibody 1571. These results suggest that, possibly due to epitope competition, antibodies produced during HIV infection can negatively affect CD4+ T cell-mediated immunity against the virus.
Facile modification of electrospun fibrous structures with antifouling zwitterionic hydrogels.
Xu, Tong; Yang, Jing; Zhang, Jiamin; Zhu, Yingnan; Li, Qingsi; Pan, Chao; Zhang, Lei
2017-12-28
Electrospinning technology can easily produce different shaped fibrous structures, making them highly valuable to various biomedical applications. However, surface contamination of biomolecules, cells, or blood has emerged as a significant challenge to the success of electrospun devices, especially artificial blood vessels, catheters and wound dressings etc. Many efforts have been made to resist the surface non-specific biomolecules or cells adsorption, but most of them require complex pre-treatment processes, hard-to-remove metal catalysts or rigorous reaction conditions. In addition, the stability of antifouling coatings, especially in complex conditions, is still a major concern. In this work, inspired by the interpenetrating polymer network and reinforced concrete structure, an efficient and facile strategy for modifying hydrophobic electrospun meshes and tubes with antifouling zwitterionic hydrogels has been introduced. The resulting products could efficiently resist the adhesion of proteins, cells, or even fresh whole blood. Meanwhile, they could maintain the shapes and mechanical strength of the original electrospun structures. Furthermore, the hydrogel structures could retain stable in a physiological condition for at least 3 months. This paper provided a general antifouling and hydrophilicity surface modification strategy for various fibrous structures, and could be of great value for many biomedical applications where antifouling properties are critical.
In vitro modifications of the scala tympani environment and the cochlear implant array surface.
Kontorinis, Georgios; Scheper, Verena; Wissel, Kirsten; Stöver, Timo; Lenarz, Thomas; Paasche, Gerrit
2012-09-01
To investigate the influence of alterations of the scala tympani environment and modifications of the surface of cochlear implant electrode arrays on insertion forces in vitro. Research experimental study. Fibroblasts producing neurotrophic factors were cultivated on the surface of Nucleus 24 Contour Advance electrodes. Forces were recorded by an Instron 5542 Force Measurement System as three modified arrays were inserted into an artificial scala tympani model filled with phosphate-buffered saline (PBS). The recorded forces were compared to control groups including three unmodified electrodes inserted into a model filled with PBS (unmodified environment) or Healon (current practice). Fluorescence microscopy was used before and after the insertions to identify any remaining fibroblasts. Additionally, three Contour Advance electrodes were inserted into an artificial model, filled with alginate/barium chloride solution at different concentrations, while insertion forces were recorded. Modification of the scala tympani environment with 50% to 75% alginate gel resulted in a significant decrease in the insertion forces. The fibroblast-coated arrays also led to decreased forces comparable to those recorded with Healon. Fluorescence microscopy revealed fully cell-covered arrays before and partially covered arrays after the insertion; the fibroblasts on the arrays' modiolar surface remained intact. Modifications of the scala tympani's environment with 50% to 75% alginate/barium chloride and of the cochlear implant electrode surface with neurotrophic factor-producing fibroblasts drastically reduce the insertion forces. As both modifications may serve future intracochlear therapies, it is expected that these might additionally reduce possible insertion trauma. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mobasseri, Rezvan; Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576; Tian, Lingling
Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on differentmore » substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.« less
Improved efficiency of nanoneedle insertion by modification with a cell-puncturing protein
NASA Astrophysics Data System (ADS)
Ryu, Seunghwan; Matsumoto, Yuta; Matsumoto, Takahiro; Ueno, Takafumi; Silberberg, Yaron R.; Nakamura, Chikashi
2018-03-01
An atomic force microscope (AFM) probe etched into an ultra-sharp cylindrical shape (a nanoneedle) can be inserted into a living cell and mechanical responses of the insertion process are represented as force-distance curves using AFM. A probe-molecule-functionalized nanoneedle can be used to detect intracellular molecules of interest in situ. The insertion efficiencies of nanoneedles vary among cell types due to the cortex structures of cells, and some cell types, such as mouse fibroblast Balb/3T3 cells, show extremely low efficacy of insertion. We addressed this issue by using a cell membrane puncturing protein from bacteriophage T4 (gp5), a needle-like protein that spontaneously penetrates through the cell membrane. Gp5 was immobilized onto a nanoneedle surface. The insertion efficiency of the functionalized nanoneedle increased by over 15% compared to the non-functionalized control. Gp5-modification is a versatile approach in cell manipulation techniques for the insertion of other types of nanostructures into cells.
Li, Ze; Xiong, Fangfang; He, Jintian; Dai, Xiaojing; Wang, Gaizhen
2016-12-01
In the present study, surface-functionalized, pH-responsive poly(lactic-co-glycolic acid) (PLGA) microparticles were investigated for nasal delivery of hepatitis B surface Antigen (HBsAg). pH-responsive PLGA, chitosan modified PLGA (CS-PLGA), mannan modified PLGA (MN-PLGA), mannan and chitosan co-modified PLGA (MN-CS-PLGA) microparticles were prepared utilizing a double-emulsion method. Antigen was released rapidly from four types of microparticles at pH5.0 and pH 6.0, but slowly released at pH 7.4. Mannan and chitosan surface modification enhanced intracellular microparticle uptake by macrophages. Following intracellular macrophage antigen uptake, antigen release occurred in three different patterns: fast release from PLGA and MN-PLGA microparticles in endosomes/lysosomes, slow release from CS-PLGA microparticles in cytoplasm and a combination of fast release and slow release patterns from MN-CS-PLGA microparticles. Furthermore, chitosan coating modification increased the residence time of CS-PLGA and MN-CS-PLGA microparticles in the nasal cavity. In vivo immunogenicity studies indicated that MN-CS-PLGA microparticles induced stronger humoral and cell-mediated immune responses compared with PLGA, MN-PLGA and CS-PLGA microparticles. These results suggest that surface modification of pH-responsive PLGA microparticles with mannan and chitosan is a promising tool for nasal delivery of HBsAg. Copyright © 2016. Published by Elsevier B.V.
Enomoto, Junko; Kageyama, Tatsuto; Myasnikova, Dina; Onishi, Kisaki; Kobayashi, Yuka; Taruno, Yoko; Kanai, Takahiro; Fukuda, Junji
2018-05-01
Self-assembled monolayers (SAMs) have been used to elucidate interactions between cells and material surface chemistry. Gold surfaces modified with oligopeptide SAMs exhibit several unique characteristics, such as cell-repulsive surfaces, micropatterns of cell adhesion and non-adhesion regions for control over cell microenvironments, and dynamic release of cells upon external stimuli under culture conditions. However, basic procedures for the preparation of oligopeptide SAMs, including appropriate cleaning methods of the gold surface before modification, have not been fully established. Because gold surfaces are readily contaminated with organic compounds in the air, cleaning methods may be critical for SAM formation. In this study, we examined the effects of four gold cleaning methods: dilute aqua regia, an ozone water, atmospheric plasma, and UV irradiation. Among the methods, UV irradiation most significantly improved the formation of oligopeptide SAMs in terms of repulsion of cells on the surfaces. We fabricated an apparatus with a UV light source, a rotation table, and HEPA filter, to treat a number of gold substrates simultaneously. Furthermore, UV-cleaned gold substrates were capable of detaching cell sheets without serious cell injury. This may potentially provide a stable and robust approach to oligopeptide SAM-based experiments for biomedical studies. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Espino, Jessica A; Mali, Vishaal S; Jones, Lisa M
2015-08-04
Protein footprinting coupled with mass spectrometry has become a widely used tool for the study of protein-protein and protein-ligand interactions and protein conformational change. These methods provide residue-level analysis on protein interaction sites and have been successful in studying proteins in vitro. The extension of these methods for in cell footprinting would open an avenue to study proteins that are not amenable for in vitro studies and would probe proteins in their native environment. Here we describe the application of an oxidative-based footprinting approach inside cells in which hydroxyl radicals are used to oxidatively modify proteins. Mass spectrometry is used to detect modification sites and to calculate modification levels. The method is probing biologically relevant proteins in live cells, and proteins in various cellular compartments can be oxdiatively modified. Several different amino acid residues are modified making the method a general labeling strategy for the study of a variety of proteins. Further, comparison of the extent of oxidative modification with solvent accessible surface area reveals the method successfully probes solvent accessibility. This marks the first time protein footprinting has been performed in live cells.
Yao, Chang; Webster, Thomas J
2006-01-01
Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.
Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel
2016-02-01
Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. Copyright © 2013 John Wiley & Sons, Ltd.
Jeong, Hee-Jin; Abhiraman, Gita C.; Story, Craig M.
2017-01-01
Sortase A, a calcium-dependent transpeptidase derived from Staphylococcus aureus, is used in a broad range of applications, such as the conjugation of fluorescent dyes and other moieties to proteins or to the surface of eukaryotic cells. In vivo and cell-based applications of sortase have been somewhat limited by the large range of calcium concentrations, as well as by the often transient nature of protein-protein interactions in living systems. In order to use sortase A for cell labeling applications, we generated a new sortase A variant by combining multiple mutations to yield an enzyme that was both calcium-independent and highly active. This variant has enhanced activity for both N- and C-terminal labeling, as well as for cell surface modification under physiological conditions. PMID:29200433
Goldberg-Bockhorn, Eva; Schwarz, Silke; Subedi, Rachana; Elsässer, Alexander; Riepl, Ricarda; Walther, Paul; Körber, Ludwig; Breiter, Roman; Stock, Karl; Rotter, Nicole
2018-02-01
The implantation of autologous cartilage as the gold standard operative procedure for the reconstruction of cartilage defects in the head and neck region unfortunately implicates a variety of negative effects at the donor site. Tissue-engineered cartilage appears to be a promising alternative. However, due to the complex requirements, the optimal material is yet to be determined. As demonstrated previously, decellularized porcine cartilage (DECM) might be a good option to engineer vital cartilage. As the dense structure of DECM limits cellular infiltration, we investigated surface modifications of the scaffolds by carbon dioxide (CO 2 ) and Er:YAG laser application to facilitate the migration of chondrocytes inside the scaffold. After laser treatment, the scaffolds were seeded with human nasal septal chondrocytes and analyzed with respect to cell migration and formation of new extracellular matrix proteins. Histology, immunohistochemistry, SEM, and TEM examination revealed an increase of the scaffolds' surface area with proliferation of cell numbers on the scaffolds for both laser types. The lack of cytotoxic effects was demonstrated by standard cytotoxicity testing. However, a thermal denaturation area seemed to hinder the migration of the chondrocytes inside the scaffolds, even more so after CO 2 laser treatment. Therefore, the Er:YAG laser seemed to be better suitable. Further modifications of the laser adjustments or the use of alternative laser systems might be advantageous for surface enlargement and to facilitate migration of chondrocytes into the scaffold in one step.
NASA Astrophysics Data System (ADS)
Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.
2014-11-01
Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.
Adiguzel, Yekbun; Kulah, Haluk
2014-04-15
Glass microfibers are commonly used as biomolecule adsorption media, as structural or disposable components of the optical biosensors. While any improvement in these components are appreciated, utilizing basic tools of traditional approaches may lead to original sensor opportunities as simple, functional designs that can be easily disseminated. Following this pursuit, surface modification of glass microfiber paper surface was performed by 3-aminopropyltriethoxysilane (APTES) and resulting improvement in the cell entrapment capacity could be observed visually, only after Gram staining. Gram staining offered rapid validation of enhanced binding on the glass surface. The same APTES-modified samples were also tested for binding of complementary DNA sequences and the results were less straightforward due to the necessity of DNA visualization by using a fluorescent stain, YOYO-1. Accordingly, when there were no surface modification, DNA and YOYO-1 adsorbed readily on the glass microfiber filter paper, and prolonged the interaction between DNA and YOYO-1. YOYO-1 adsorption on glass could be recognized from the color profile of YOYO-1 emission. This phenomenon can be used to examine suitability of APTES coverage on glass surfaces since YOYO-1 emission can be distinguished by its glass adsorbed versus DNA-bound forms. Aptness of surface coverage is vital to biosensor studies in the sense that it is preceding the forthcoming surface modifications and its precision is imperative for attaining the anticipated interaction kinetics of the surface-immobilized species. The proposed testing scheme offered in this study secures the work, which is aimed to be carried out utilizing such sensing systems and device components. © 2013 Published by Elsevier B.V.
Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme
2015-01-01
The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting. PMID:26068810
NASA Astrophysics Data System (ADS)
Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme
2015-06-01
The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting.
Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme
2015-06-12
The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting.
Antimicrobial design of titanium surface that kill sessile bacteria but support stem cells adhesion
NASA Astrophysics Data System (ADS)
Zhu, Chen; Bao, Ni-Rong; Chen, Shuo; Zhao, Jian-Ning
2016-12-01
Implant-related bacterial infection is one of the most severe postoperative complications in orthopedic or dental surgery. In this context, from the perspective of surface modification, increasing efforts have been made to enhance the antibacterial capability of titanium surface. In this work, a hierarchical hybrid surface architecture was firstly constructed on titanium surface by two-step strategy of acid etching and H2O2 aging. Then silver nanoparticles were firmly immobilized on the hierarchical surface by ion implantation, showing no detectable release of silver ions from surface. The designed titanium surface showed good bioactivity. More importantly, this elaborately designed titanium surface can effectively inactivate the adherent S. aureus on surface by virtue of a contact-killing mode. Meanwhile, the designed titanium surface can significantly facilitate the initial adhesion and spreading behaviors of bone marrow mesenchymal stem cells (MSCs) on titanium. The results suggested that, the elaborately designed titanium surface might own a cell-favoring ability that can help mammalian cells win the initial adhesion race against bacteria. We hope the present study can provide a new insight for the better understanding and designing of antimicrobial titanium surface, and pave the way to satisfying clinical requirements.
Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos
Katow, Hideki
2015-01-01
Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069
Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.
Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena
2014-06-01
The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Brueckner, Mandy; Jankuhn, Steffen; Jülke, Eva-Maria; Reibetanz, Uta
2018-01-01
Background Drug delivery systems (DDS) and their interaction with cells are a controversial topic in the development of therapeutic concepts and approaches. On one hand, DDS are very useful for protected and targeted transport of defined dosages of active agents. On the other hand, their physicochemical properties such as material, size, shape, charge, or stiffness have a huge impact on cellular uptake and intracellular processing. Additionally, even identical DDS can undergo a completely diverse interaction with different cell types. However, quite often in in vitro DDS/cell interaction experiments, those aspects are not considered and DDS and cells are randomly chosen. Methods and results Hence, our investigations provide an insight into layer-by-layer designed microcarriers with modifications of only some of the most important parameters (surface charge, stiffness, and applied microcarrier/cell ratio) and their influence on cellular uptake and viability. We also considered the interaction of these differently equipped DDS with several cell types and investigated professional phagocytes (neutrophil granulocytes; macrophages) as well as non-professional phagocytes (epithelial cells) under comparable conditions. We found that even small modifications such as layer-by-layer (LbL)-microcarriers with positive or negative surface charge, or LbL-microcarriers with solid core or as hollow capsules but equipped with the same surface properties, show significant differences in interaction and viability, and several cell types react very differently to the offered DDS. Conclusion As a consequence, the properties of the DDS have to be carefully chosen with respect to the addressed cell type with the aim to efficiently transport a desired agent. PMID:29670351
NASA Astrophysics Data System (ADS)
Inagaki, S.; Sueoka, S.; Harafuji, K.
2017-06-01
Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress.
NASA Astrophysics Data System (ADS)
Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young
2014-10-01
Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.
NASA Astrophysics Data System (ADS)
Rezaei, Fatemeh; Shokri, Babak; Sharifian, M.
2016-01-01
This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid-base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was observed that plasma-treated samples exhibited significantly better biocompatibility, comparing to the pristine one.
Multifunctional MgO Layer in Perovskite Solar Cells.
Guo, Xudong; Dong, Haopeng; Li, Wenzhe; Li, Nan; Wang, Liduo
2015-06-08
A multifunctional magnesium oxide (MgO) layer was successfully introduced into perovskite solar cells (PSCs) to enhance their performance. MgO was coated onto the surface of mesoporous TiO(2) by the decomposition of magnesium acetate and, therefore, could block contact between the perovskite and TiO(2). X-ray photoelectron spectroscopy and infrared spectroscopy showed that the amount of H(2)O/hydroxyl absorbed on the TiO(2) decreased after MgO modification. The UV/Vis absorption spectra of the perovskite with MgO modification revealed an enhanced photoelectric performance compared with that of unmodified perovskite after UV illumination. In addition to the photocurrent, the photovoltage and fill factor also showed an enhancement after modification, which resulted in an increase in the overall efficiency of the cell from 9.6 to 13.9 %. Electrochemical impedance spectroscopy (EIS) confirmed that MgO acts as an insulating layer to reduce charge recombination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface engineering approaches to micropattern surfaces for cell-based assays.
Falconnet, Didier; Csucs, Gabor; Grandin, H Michelle; Textor, Marcus
2006-06-01
The ability to produce patterns of single or multiple cells through precise surface engineering of cell culture substrates has promoted the development of cellular bioassays that provide entirely new insights into the factors that control cell adhesion to material surfaces, cell proliferation, differentiation and molecular signaling pathways. The ability to control shape and spreading of attached cells and cell-cell contacts through the form and dimension of the cell-adhesive patches with high precision is important. Commitment of stem cells to different specific lineages depends strongly on cell shape, implying that controlled microenvironments through engineered surfaces may not only be a valuable approach towards fundamental cell-biological studies, but also of great importance for the design of cell culture substrates for tissue engineering. Furthermore, cell patterning is an important tool for organizing cells on transducers for cell-based sensing and cell-based drug discovery concepts. From a material engineering standpoint, patterning approaches have greatly profited by combining microfabrication technologies, such as photolithography, with biochemical functionalization to present to the cells biological cues in spatially controlled regions where the background is rendered non-adhesive ("non-fouling") by suitable chemical modification. The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional (flat) surfaces with the aim to provide an introductory overview and critical assessment of the many techniques described in the literature. In particular, the importance of non-fouling surface chemistries, the combination of hard and soft lithography with molecular assembly techniques as well as a number of less well known, but useful patterning approaches, including direct cell writing, are discussed.
Novel materials to enhance corneal epithelial cell migration on keratoprosthesis.
Karkhaneh, Akbar; Mirzadeh, Hamid; Ghaffariyeh, Alireza; Ebrahimi, Abdolali; Honarpisheh, Nazafarin; Hosseinzadeh, Masud; Heidari, Mohammad Hossein
2011-03-01
To introduce a new modification for silicone optical core Keratoprosthesis. Using mixtures of 2-hydroxyethyl methacrylate and acrylic acid polydimethylsiloxane (PDMS) films were modified with two-step oxygen plasma treatment, and then type I collagen was immobilised onto this modified surfaces. Both the biocompatibility of the modified films and cell behaviour on the surface of these films were investigated by in vitro tests, and formation of epithelial cell layer was evaluated by implantation of the modified films in the corneas of 10 rabbits. In vitro studies indicated that the number of attached and proliferated cells onto modified PDMS in comparison with the unmodified PDMS significantly increased. Histological studies showed that corneal epithelial cells migrated on the anterior surface of the modified films after 1week. The corneal epithelial cell formed an incomplete monolayer cellular sheet after 10days. A complete epithelialisation on the modified surface was formed after 21days. The epithelial layer persisted on the anterior surface of implant after 1-month and 3-month follow-up. This method may have potential use in silicone optical core Keratoprosthesis.
Hiebl, Bernhard; Lützow, Karola; Lange, Maik; Jung, Friedrich; Seifert, Barbara; Klein, Frank; Weigel, Thomas; Kratz, Karl; Lendlein, Andreas
2010-07-01
Most polymers used in clinical applications today are materials that have been developed originally for application areas other than biomedicine. Testing the cell- and tissue-compatibility of novel materials in vitro and in vivo is of key importance for the approval of medical devices and is regulated according to the Council Directive 93/42/EEC of the European communities concerning medical devices. In the standardized testing methods the testing sample is placed in commercially available cell culture plates, which are often made from polystyrene. Thus not only the testing sample itself influences cell behavior but also the culture vessel material. In order to exclude this influence, a new system for cell testing will be presented allowing a more precise and systematic investigation by preparing tailored inserts which are made of the testing material. Inserts prepared from polystyrene, polycarbonate and poly(ether imide) were tested for their cytotoxity and cell adherence. Furthermore a proof of principle concerning the preparation of inserts with a membrane-like surface structure and its surface modification was established. Physicochemical investigations revealed a similar morphology and showed to be very similar to the findings to analogous preparations and modifications of flat-sheet membranes. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Surface-modified gold nanorods for specific cell targeting
NASA Astrophysics Data System (ADS)
Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun
2012-05-01
Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.
Zhang, Kun; Bai, Yuxin; Wang, Xiaofeng; Li, Qian; Guan, Fangxia; Li, Jingan
2017-08-01
Esophageal cancer is difficult to cure globally and possesses high mortality rate, and it is generally accepted that palliative care such as stent implantation is the main therapy method for esophageal cancer in later period. However, the restenosis caused by tumor cells and inflammatory cells seriously interferes the stent clinical application and limits its long-term services. To solve this problem, series of drug delivery stents were developed and proven rather effective in the early stage of implantation, but more serious restenosis occurred after the drug delivery was over, which endangered the patients' life. Therefore, endowing the esophageal stent continuous anti-cancer function become an ideal strategy for inhibiting the restenosis. In this contribution, the functional layer composed of polydopamine (PDA) and Poly-ethylenimine (PEI) with series of molecular weights (MW, 1.8 × 10 3 , 1 × 10 4 , 2.5 × 10 4 and 7 × 10 4 Da) were fabricated onto the esophageal stent material 317L stainless steel (317L SS) surface. The surface characterization including amine quantitative, atomic force microscopy (AFM) and water contact angle measurement indicated successful preparation of the PDA/PEI layer. The Eca109 cells culture results proved that the PDA/PEI layers significantly improve Eca109 cells apoptosis and necrosis, suggesting excellent anti-cancer function. In addition, we also found that the anti-cancer function of the PDA/PEI layers was positively correlated to the immobilized PEIs' MW. All the results demonstrated the potential application of the PDA/PEI layers on the surface modification of esophageal stent for continuous anti-cancer function. It is generally accepted that the restenosis caused by tumor cells seriously interferes the esophageal stent clinical application. Thus, endowing the esophageal stent continuous anti-cancer function is the ideal strategy for inhibiting the restenosis. In this work, we fabricated functional layers composed of polydopamine (PDA) and Poly-ethylenimine (PEI) with series of molecular weights (MW, 1.8 × 10 3 , 1 × 10 4 , 2.5 × 10 4 and 7 × 10 4 Da) onto the esophageal stent material 317L stainless steel (317L SS) surface to inhibit the tumor cells growth, and this function was related to the PEIs' molecular weights. The functional PDA/PEI layers were expected potentially applied for surface modification of esophageal stent materials.
Micropatterned arrays of porous silicon: toward sensory biointerfaces.
Flavel, Benjamin S; Sweetman, Martin J; Shearer, Cameron J; Shapter, Joseph G; Voelcker, Nicolas H
2011-07-01
We describe the fabrication of arrays of porous silicon spots by means of photolithography where a positive photoresist serves as a mask during the anodization process. In particular, photoluminescent arrays and porous silicon spots suitable for further chemical modification and the attachment of human cells were created. The produced arrays of porous silicon were chemically modified by means of a thermal hydrosilylation reaction that facilitated immobilization of the fluorescent dye lissamine, and alternatively, the cell adhesion peptide arginine-glycine-aspartic acid-serine. The latter modification enabled the selective attachment of human lens epithelial cells on the peptide functionalized regions of the patterns. This type of surface patterning, using etched porous silicon arrays functionalized with biological recognition elements, presents a new format of interfacing porous silicon with mammalian cells. Porous silicon arrays with photoluminescent properties produced by this patterning strategy also have potential applications as platforms for in situ monitoring of cell behavior.
NASA Astrophysics Data System (ADS)
Zainudin, Nor Syuhada; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad
2017-04-01
Surface functionalization has emerged as a powerful tool for mapping limitless surface-cell membrane interaction in diverse biomolecular applications. Inhibition of non-specific biomolecular and cellular adhesion to solid surfaces is critical in improving the performance of some biomedical devices, particularly for in vitro bioassays. Some factors have to be paid particular attention in determining the right surface modification which are the types of surface, the methods and chemical solution that being used during the experimentation and also tools for analyzing the results. Improved surface functionalization technologies that provide better non-fouling performance in conjunction with specific attachment chemistries are sought for these applications. Hence, this paper serves as a review for multiple surface treatment methods including PEG grafting, adsorptive chemistries, self-assembled monolayers (SAMs) and plasma treatments.
The RhoA-ROCK-PTEN pathway as a molecular switch for anchorage dependent cell behavior.
Yang, Seungwon; Kim, Hyun-Man
2012-04-01
The proliferation of anchorage-dependent cells of mesenchymal origin requires the attachment of the cells to substrates. Thus, cells that are poorly attached to substrates exhibit retarded cell cycle progression or apoptotic death. A major disadvantage of most polymers used in tissue engineering is their hydrophobicity; hydrophobic surfaces do not allow cells to attach firmly and, therefore, do not allow normal proliferation rates. In this study, we investigated the molecular mechanism underlying the reduced proliferation rate of cells that are poorly attached to substrates. There was an inverse relationship between the activity of the small GTPase RhoA (RhoA) and the cell proliferation rate. RhoA activity correlated inversely with the strength of cell adhesion to the substrates. The high RhoA activity in the cells poorly attached to substrates caused an increase in the activity of Rho-associated kinase (ROCK), a well-known effector of RhoA that upregulated the activity of phosphatase and tensin homolog (PTEN). The resulting activated PTEN downregulated Akt activity, which is essential for cell proliferation. Thus, the cells that were poorly attached to substrates showed low levels of cell proliferation because the RhoA-ROCK-PTEN pathway was hyperactive. In addition, RhoA activity seemed to be related to focal adhesion kinase (FAK) activity. Weak FAK activity in these poorly attached cells failed to downregulate the high RhoA activity that restrained cell proliferation. Interestingly, reducing the expression of any component of the RhoA-ROCK-PTEN pathway rescued the proliferation rate without physico-chemical surface modifications. Based on these results, we suggest that the RhoA-ROCK-PTEN pathway acts as a molecular switch to control cell proliferation and determine anchorage dependence. In cells that are poorly attached to substrates, its inhibition is sufficient to restore cell proliferation without the need for physico-chemical modification of the material surface. Copyright © 2012 Elsevier Ltd. All rights reserved.
Beane, Joal D; Lee, Gary; Zheng, Zhili; Mendel, Matthew; Abate-Daga, Daniel; Bharathan, Mini; Black, Mary; Gandhi, Nimisha; Yu, Zhiya; Chandran, Smita; Giedlin, Martin; Ando, Dale; Miller, Jeff; Paschon, David; Guschin, Dmitry; Rebar, Edward J; Reik, Andreas; Holmes, Michael C; Gregory, Philip D; Restifo, Nicholas P; Rosenberg, Steven A; Morgan, Richard A; Feldman, Steven A
2015-01-01
Programmed cell death-1 (PD-1) is expressed on activated T cells and represents an attractive target for gene-editing of tumor targeted T cells prior to adoptive cell transfer (ACT). We used zinc finger nucleases (ZFNs) directed against the gene encoding human PD-1 (PDCD-1) to gene-edit melanoma tumor infiltrating lymphocytes (TIL). We show that our clinical scale TIL production process yielded efficient modification of the PD-1 gene locus, with an average modification frequency of 74.8% (n = 3, range 69.9–84.1%) of the alleles in a bulk TIL population, which resulted in a 76% reduction in PD-1 surface-expression. Forty to 48% of PD-1 gene-edited cells had biallelic PD-1 modification. Importantly, the PD-1 gene-edited TIL product showed improved in vitro effector function and a significantly increased polyfunctional cytokine profile (TNFα, GM-CSF, and IFNγ) compared to unmodified TIL in two of the three donors tested. In addition, all donor cells displayed an effector memory phenotype and expanded approximately 500–2,000-fold in vitro. Thus, further study to determine the efficiency and safety of adoptive cell transfer using PD-1 gene-edited TIL for the treatment of metastatic melanoma is warranted. PMID:25939491
Sami, Haider; Maparu, Auhin K; Kumar, Ashok; Sivakumar, Sri
2012-01-01
Towards the goal of development of a generic nanomaterial delivery system and delivery of the 'as prepared' nanoparticles without 'further surface modification' in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb(3+) was observed after internalization of LaF(3):Tb(3+)(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification.
Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena
2013-07-02
Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.
Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells
Mura, Simona; Hillaireau, Herve; Nicolas, Julien; Le Droumaguet, Benjamin; Gueutin, Claire; Zanna, Sandrine; Tsapis, Nicolas; Fattal, Elias
2011-01-01
Background Because of the described hazards related to inhalation of manufactured nanoparticles, we investigated the lung toxicity of biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles displaying various surface properties on human bronchial Calu-3 cells. Methods Positively and negatively charged as well as neutral nanoparticles were tailored by coating their surface with chitosan, Poloxamer, or poly (vinyl alcohol), respectively. Nanoparticles were characterized in terms of size, zeta potential, and surface chemical composition, confirming modifications provided by hydrophilic polymers. Results Although nanoparticle internalization by lung cells was clearly demonstrated, the cytotoxicity of the nanoparticles was very limited, with an absence of inflammatory response, regardless of the surface properties of the PLGA nanoparticles. Conclusion These in vitro results highlight the safety of biodegradable PLGA nanoparticles in the bronchial epithelium and provide initial data on their potential effects and the risks associated with their use as nanomedicines. PMID:22114491
Cellular interaction influenced by surface modification strategies of gelatin-based nanoparticles.
Tse, Wai Hei; Gyenis, Laszlo; Litchfield, David W; Zhang, Jin
2017-02-01
Theranostic applications of gelatin nanospheres require two major components, a method of detection and good biocompatibility. We characterized the response of UTA-6 human osteosarcoma cells to the introduction of functionalized 90 bloom-based gelatin nanospheres (158 ± 49 nm) modified with three elements in different order: (a) hybridization with cadmium-based quantum dots for optical detection, (b) bioconjugation with anti-human IgG FAB (anti-IgG) for cell targeting, with/without (c) capping with polyethylene glycol on the surface for enhanced biocompatibility. A one-pot process is developed for incorporating quantum dots and antibody with gelatin nanospheres. Path A of modifying gelatin nanospheres with quantum dots first followed by anti-IgG resulted in a significantly greater cellular viability than Path B with anti-IgG first followed by quantum dots. Capping with polyethylene glycol as the final step in modification yielded significantly opposing results with decreases in Path A and increases in Path B. Three-dimensional z-stacking fluorescent images of hybrid gelatin nanospheres with anti-IgG is observed to have an increase in cellular association. The observed results suggest the modification order for building hybrid nanospheres may have an impact on cellular response.
Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property.
Liu, Peiming; Huang, Tao; Liu, Pingsheng; Shi, Shufeng; Chen, Qiang; Li, Li; Shen, Jian
2016-10-15
Polyurethane (PU) is a biopolymer that has been commonly used for biomedical applications. However, the biofouling phenomenon on the hydrophobic PU surface is one of the crucial issues that embarrassing its applications. Here, we report a facile & efficient approach to improve the anti-biofouling ability of the PU substrates. Active residues were firstly generated on the PU surface by using the low temperature air-plasma treatment, promoting the immobilization of the atom transfer radical polymerization (ATRP) initiators on the surface. Then, three types of zwitterionic polymer brushes, as well as PEG brushes, have been fabricated on the PU substrates through surface-initiated ATRP (SI-ATRP). Robust surface characterizations that capable of revealing the surface chemistry (including X-ray photoelectron spectroscopy (XPS) and wettability tests), and antifouling evaluations of the PU substrates (protein adsorption, platelet adhesion, and cell adhesion measurements) were performed. Results showed that three types of zwitterionic brushes have been successful grafted on the PU surface, respectively. And the three types of zwitterionic brushes, in general, significantly inhibited the protein adsorption, the platelet adhesion, and the cell adhesion on the PU surface, endowing a significantly improved anti-fouling ability to the PU substrates. Furthermore, we found that this facial zwitterionic surface modification did not compromise the mechanical property of the PU substrates. This strategy could be easily exploited to PU-based biomaterials to improve their performance in many applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Adhesion modification of neural stem cells induced by nanoscale ripple patterns
NASA Astrophysics Data System (ADS)
Pedraz, P.; Casado, S.; Rodriguez, V.; Giordano, M. C.; Buatier de Mongeot, F.; Ayuso-Sacido, A.; Gnecco, E.
2016-03-01
We have studied the influence of anisotropic nanopatterns (ripples) on the adhesion and morphology of mouse neural stem cells (C17.2) on glass substrates using cell viability assay, optical microscopy and atomic force microscopy. The ripples were produced by defocused ion beam sputtering with inert Ar ions, which physically remove atoms from the surface at the energy of 800 eV. The ripple periodicity (∼200 nm) is comparable to the thickness of the cytoplasmatic microspikes (filopodia) which link the stem cells to the substrate. All methods show that the cell adhesion is significantly lowered compared to the same type of cells on flat glass surfaces. Furthermore, the AFM analysis reveals that the filopodia tend to be trapped parallel or perpendicular to the ripples, which limits the spreading of the stem cell on the rippled substrate. This opens the perspective of controlling the micro-adhesion of stem cells and the orientation of their filopodia by tuning the anisotropic substrate morphology without chemical reactions occurring at the surface.
Effect of surface modification on protein retention and cell proliferation under strain.
Dunkers, J P; Lee, H-J; Matos, M A; Pakstis, L M; Taboas, J M; Hudson, S D; Cicerone, M T
2011-07-01
When culturing cells on flexible surfaces, it is important to consider extracellular matrix treatments that will remain on the surface under mechanical strain. Here we investigate differences in laminin deposited on oxidized polydimethylsiloxane (PDMS) with plasma treatment (plasma-only) vs. plasma and aminopropyltrimethoxysilane treatment (silane-linked). We use specular X-ray reflectivity (SXR), transmission electron microscopy (TEM), and immunofluorescence to probe the quantity and uniformity of laminin. The surface coverage of laminin is approximately 45% for the plasma-only and 50% for the silane-linked treatment as determined by SXR. TEM and immunofluorescence reveal additional islands of laminin aggregates on the plasma-only PDMS compared with the relatively smooth and uniform silane-linked laminin surface. We also examine laminin retention under strain and vascular smooth muscle cell viability and proliferation under static and strain conditions. Equibiaxial stretching of the PDMS surfaces shows greatly improved retention of the silane-linked laminin over plasma-only. There are significantly more cells on the silane-linked surface after 4 days of equibiaxial strain. Published by Elsevier Ltd.
Surface Modification of Intraocular Lenses
Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin
2016-01-01
Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993
Parizek, Martin; Slepickova Kasalkova, Nikola; Bacakova, Lucie; Bacakova, Marketa; Lisa, Vera; Svorcik, Vaclav
2013-01-01
The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C), or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs), the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted. PMID:23586032
Parizek, Martin; Slepickova Kasalkova, Nikola; Bacakova, Lucie; Svindrych, Zdenek; Slepicka, Petr; Bacakova, Marketa; Lisa, Vera; Svorcik, Vaclav
2013-01-01
The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar(+) plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C), or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs), the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.
Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.
Çalışkan, Nazlı; Bayram, Cem; Erdal, Ebru; Karahaliloğlu, Zeynep; Denkbaş, Emir Baki
2014-02-01
This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue-implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required. Copyright © 2013 Elsevier B.V. All rights reserved.
Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces.
Briand, Elisabeth; Humblot, Vincent; Landoulsi, Jessem; Petronis, Sarunas; Pradier, Claire-Marie; Kasemo, Bengt; Svedhem, Sofia
2011-01-18
The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described protocol is advantageous in particular for micropatterned substrates for cell-surface interactions.
2018-01-01
Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972
Surface modification of poly(dimethylsiloxane) for microfluidic assay applications
NASA Astrophysics Data System (ADS)
Séguin, Christine; McLachlan, Jessica M.; Norton, Peter R.; Lagugné-Labarthet, François
2010-02-01
The surface of a poly(dimethylsiloxane) (PDMS) film was imparted with patterned functionalities at the micron-scale level. Arrays of circles with diameters of 180 and 230 μm were functionalized using plasma oxidation coupled with aluminum deposition, followed by silanization with solutions of 3-aminopropyltrimethoxy silane (3-APTMS) and 3-mercaptopropyltrimethoxy silane (3-MPTMS), to obtain patterned amine and thiol functionalities, respectively. The modification of the samples was confirmed using X-ray photoelectron spectroscopy (XPS), gold nanoparticle adhesion coupled with optical microscopy, as well as by derivatization with fluorescent dyes. To further exploit the novel surface chemistry of the modified PDMS, samples with surface amine functionalities were used to develop a protein assay as well as an array capable of cellular capture and patterning. The modified substrate was shown to successfully selectively immobilize fluorescently labeled immunoglobulin G (IgG) by tethering Protein A to the surface, and, for the cellular arrays, C2C12 rat endothelial cells were captured. Finally, this novel method of patterning chemical functionalities onto PDMS has been incorporated into microfluidic channels. Finally, we demonstrate the in situ chemical modification of the protected PDMS oxidized surface within a microfluidic device. This emphasizes the potential of our method for applications involving micron-scale assays since the aluminum protective layer permits to functionalize the oxidized PDMS surface several weeks after plasma treatment simply after etching away the metallic thin film.
NASA Astrophysics Data System (ADS)
Khlusov, I. A.; Khlusova, M. Yu.; Pichugin, V. F.; Sharkeev, Yu. P.; Legostaeva, E. V.
2014-02-01
A relationship between the topography of rough calcium phosphate surfaces having osteogenic niche-reliefs and the electrostatic potential of these surfaces as a possible instrument to control stromal stem cells has been investigated. The in vitro culture of human lung prenatal stromal cells on nanostructured/ultrafine-grained VT1.0 titanium alloy plates with bilateral rough calcium phosphate (CaP) microarc coating was used. It was established that the amplitude of the electret CaP surface potential linearly increased with increasing area of valleys (sockets), and the negative charge is formed on the socket surface. The area of alkaline phosphatase staining (the marker of osteoblast maturation and differentiation) of adherent CD34- CD44+ cells increases linearly with increasing area of artificial microterritory (socket) of the CaP surface occupied with each cell. The negative electret potential in valleys (sockets) of microarc CaP coatings can be the physical mechanism mediating the influence of the surface topography on osteogenic maturation and differentiation of cells in vitro. This mechanism can be called "niche-potential" and can be used as an instrument for biomimetic modification of smooth CaP surfaces to strengthen their integration with the bone tissue.
Hao, L; Lawrence, J; Phua, Y F; Chian, K S; Lim, G C; Zheng, H Y
2005-04-01
An effective and novel technique for improving the biocompatibility of a biograde 316 LS stainless steel through the application of CO(2) laser treatment to modify the surface properties of the material is described herein. Different surface properties, such as surface roughness, surface oxygen content, and surface energy for CO(2) laser-treated 316 LS stainless steel, untreated, and mechanically roughened samples were analyzed, and their effects on the wettability characteristics of the material were studied. It was found that modification of the wettability characteristics of the 316 LS stainless steel following CO(2) laser treatment was achieved. This improvement was identified as being mainly due to the change in the polar component of the surface energy. One-day cell adhesion tests showed that cells not only adhered and spread better, but also grew faster on the CO(2) laser-treated sample than on either the untreated or mechanically roughened sample. Further, compared with the untreated sample, MTT cell proliferation analysis revealed that the mechanically roughed surface resulted in a slight enhancement, and CO(2) laser treatment brought about a significant increase in cell proliferation. An increase in the wettability of the 316 LS stainless steel was observed to positively correlate with the cell proliferation. (c) 2004 Wiley Periodicals, Inc.
Method of generating a surface mesh
Shepherd, Jason F [Albuquerque, NM; Benzley, Steven [Provo, UT; Grover, Benjamin T [Tracy, CA
2008-03-04
A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.
Xu, Baojian; Ye, WeiWei; Zhang, Yu; Shi, JingYu; Chan, ChunYu; Yao, XiaoQiang; Yang, Mo
2014-03-15
This paper presents a microfluidic planar patch clamp system based on a hydrophilic polymer poly(ethylene glycol) diacrylate (PEGDA) for whole cell current recording. The whole chip is fabricated by UV-assisted molding method for both microfluidic channel structure and planar electrode partition. This hydrophilic patch clamp chip has demonstrated a relatively high gigaseal success rate of 44% without surface modification compared with PDMS based patch clamp devices. This chip also shows a capability of rapid intracellular and extracellular solution exchange with high stability of gigaseals. The capillary flow kinetic experiments demonstrate that the flow rates of PEGDA microfluidic channels are around two orders of magnitude greater than those for PDMS-glass channels with the same channel dimensions. This hydrophilic polymer based patch clamp chips have significant advantages over current PDMS elastomer based systems such as no need for surface modification, much higher success rate of cell gigaseals and rapid solution exchange with stable cell gigaseals. Our results indicate the potential of these devices to serve as useful tools for pharmaceutical screening and biosensing tasks. © 2013 Elsevier B.V. All rights reserved.
Amornsudthiwat, Phakdee; Nitschke, Mirko; Zimmermann, Ralf; Friedrichs, Jens; Grundke, Karina; Pöschel, Kathrin; Damrongsakkul, Siriporn; Werner, Carsten
2015-06-21
The study aims at a comprehensive surface characterization of untreated and oxygen plasma-treated silk fibroin with a particular focus on phenomena relevant to biointeraction and cell adhesion. For that purpose, a range of advanced surface diagnostic techniques is employed to thoroughly investigate well-defined and especially clean silk fibroin samples in a comparable setting. This includes surface chemistry and surface charges as factors, which control protein adsorption, but also hydration and swelling of the material as important parameters, which govern the mechanical stiffness at the interface with aqueous media. Oxygen plasma exposure of silk fibroin surfaces reveals that material ablation strongly predominates over the introduction of functional groups even for mild plasma conditions. A substantial increase in mechanical stiffness is identified as the most prominent effect upon this kind of plasma treatment. Regarding the experimental approach and the choice of techniques, the work goes beyond previous studies in this field and paves the way for well-founded investigations of other surface-selective modification procedures that enhance the applicability of silk fibroin in biomedical applications.
Engineered Aptamers to Probe Molecular Interactions on the Cell Surface
Batool, Sana; Bhandari, Sanam; George, Shanell; Okeoma, Precious; Van, Nabeela; Zümrüt, Hazan E.; Mallikaratchy, Prabodhika
2017-01-01
Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in vitro evolution method enabling the design and development of aptamer-based functional molecular scaffolds against wide range of cell surface molecules. This article reviews the application of aptamers as monitors and modulators of molecular interactions on the mammalian cell surface with the aim of increasing our understanding of cell-surface receptor response to external stimuli. The information gained from these types of studies could eventually prove useful in engineering improved medical diagnostics and therapeutics. PMID:28850067
Nanopatterned polystyrene-b-poly(acrylic acid) surfaces to modulate cell-material interaction.
Lizundia, Erlantz; Sáenz-Pérez, Míriam; Patrocinio, David; Aurrekoetxea, Iskander; dM Vivanco, Maria; Vilas, José Luis
2017-06-01
In this work we explore the effect of surface nanoarchitecture of polystyrene (PS) and polystyrene-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer films on cell viability. PS and PS-b-PAA have been nanopatterned at temperatures of 110, 120 and 140°C using nanoporous aluminium oxide membranes (AAO) as a template. Surface architecture strongly depends on the infiltration temperature and the nature of the infiltrated polymer. High patterning temperatures yield hollow fibre shape architecture at the nanoscale level, which substantially modifies the surface hydrophobicity of the resulting materials. Up to date very scarce reports could be found in the literature dealing with the interaction of microstructured/nanostructured polymeric surfaces with cancer cells. Therefore, MCF-7 breast cancer cells have been selected as a model to conduct cell viability assays. The findings reveal that the fine-tuning of the surface nanoarchitecture contributes to the modification of its biocompatibility. Overall, this study highlights the potential of AAO membranes to obtain well-defined tailored morphologies at nanoscale level and its importance to develop novel soft functional surfaces to be used in the biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of Fundamental Technologies for Micro Bioreactors
NASA Astrophysics Data System (ADS)
Sato, Kiichi; Kitamori, Takehiko
This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.
Screen printing technology applied to silicon solar cell fabrication
NASA Technical Reports Server (NTRS)
Thornhill, J. W.; Sipperly, W. E.
1980-01-01
The process for producing space qualified solar cells in both the conventional and wraparound configuration using screen printing techniques was investigated. Process modifications were chosen that could be easily automated or mechanized. Work was accomplished to optimize the tradeoffs associated with gridline spacing, gridline definition and junction depth. An extensive search for possible front contact metallization was completed. The back surface field structures along with the screen printed back contacts were optimized to produce open circuit voltages of at least an average of 600 millivolts. After all intended modifications on the process sequence were accomplished, the cells were exhaustively tested. Electrical tests at AMO and 28 C were made before and after boiling water immersion, thermal shock, and storage under conditions of high temperature and high humidity.
NASA Astrophysics Data System (ADS)
Roh, Hee-Sang; Jung, Sang-Chul; Kook, Min-Suk; Kim, Byung-Hoon
2016-12-01
Three-dimensional (3D) scaffolds have many advantageous properties for bone tissue engineering application, due to its controllable properties such as pore size, structural shape and interconnectivity. In this study, effects on oxygen plasma surface modification and adding of nano-hydroxyapatite (n-HAp) and β-tricalcium phosphate (β-TCP) on the 3D PLGA/n-HAp/β-TCP scaffolds for improving preosteoblast cell (MC3T3-E1) adhesion, proliferation and differentiation were investigated. The 3D PLGA/n-HAp/β-TCP scaffolds were fabricated by 3D Bio-Extruder equipment. The 3D scaffolds were prepared with 0°/90° architecture and pore size of approximately 300 μm. In addition 3D scaffolds surface were etched by oxygen plasma to enhance the hydrophilic property and surface roughness. After oxygen plasma treatment, the surface chemistry and morphology were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. And also hydrophilic property was measured by contact angle. The MC3T3-E1 cell proliferation and differentiation were investigated by MTT assay and ALP activity. In present work, the 3D PLGA/HAp/beta-TCP composite scaffold with suitable structure for the growth of osteoblast cells was successfully fabricated by 3D rapid prototyping technique. The surface hydrophilicity and roughness of 3D scaffold increased by oxygen plasma treatment had a positive effect on cell adhesion, proliferation, and differentiation. Furthermore, the differentiation of MC3T3-E1 cell was significantly enhanced by adding of n-HAp and β-TCP on 3D PLGA scaffold. As a result, combination of bioceramics and oxygen plasma treatment showed a synergistic effect on biocompatibility of 3D scaffolds. This result confirms that this technique was useful tool for improving the biocompatibility in bone tissue engineering application.
NASA Astrophysics Data System (ADS)
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-04-01
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e
Moliva, J I; Hossfeld, A P; Canan, C H; Dwivedi, V; Wewers, M D; Beamer, G; Turner, J; Torrelles, J B
2018-05-01
Current tuberculosis (TB) treatments include chemotherapy and preventative vaccination with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In humans, however, BCG vaccination fails to fully protect against pulmonary TB. Few studies have considered the impact of the human lung mucosa (alveolar lining fluid (ALF)), which modifies the Mycobacterium tuberculosis (M.tb) cell wall, revealing alternate antigenic epitopes on the bacterium surface that alter its pathogenicity. We hypothesized that ALF-induced modification of BCG would induce better protection against aerosol infection with M.tb. Here we vaccinated mice with ALF-exposed BCG, mimicking the mycobacterial cell surface properties that would be present in the lung during M.tb infection. ALF-exposed BCG-vaccinated mice were more effective at reducing M.tb bacterial burden in the lung and spleen, and had reduced lung inflammation at late stages of M.tb infection. Improved BCG efficacy was associated with increased numbers of memory CD8 + T cells, and CD8 + T cells with the potential to produce interferon-γ in the lung in response to M.tb challenge. Depletion studies confirmed an essential role for CD8 + T cells in controlling M.tb bacterial burden. We conclude that ALF modifications to the M.tb cell wall in vivo are relevant in the context of vaccine design.
Surface modifications on InAs decrease indium and arsenic leaching under physiological conditions
NASA Astrophysics Data System (ADS)
Jewett, Scott A.; Yoder, Jeffrey A.; Ivanisevic, Albena
2012-11-01
Devices containing III-V semiconductors such as InAs are increasingly being used in the electronic industry for a variety of optoelectronic applications. Furthermore, the attractive chemical, material, electronic properties make such materials appealing for use in devices designed for biological applications, such as biosensors. However, in biological applications the leaching of toxic materials from these devices could cause harm to cells or tissue. Additionally, after disposal, toxic inorganic materials can leach from devices and buildup in the environment, causing long-term ecological harm. Therefore, the toxicity of these materials along with their stability in physiological conditions are important factors to consider. Surface modifications are one common method of stabilizing semiconductor materials in order to chemically and electronically passivate them. Such surface modifications could also prevent the leaching of toxic materials by preventing the regrowth of the unstable surface oxide layer and by creating an effective barrier between the semiconductor surface and the surrounding environment. In this study, various surface modifications on InAs are developed with the goal of decreasing the leaching of indium and arsenic. The leaching of indium and arsenic from modified substrates was assessed in physiological conditions using inductively coupled plasma mass spectrometry (ICP-MS). Substrates modified with 11-mercapto-1-undecanol (MU) and graft polymerized with poly(ethylene) glycol (PEG) were most effective at preventing indium and arsenic leaching. These surfaces were characterized using contact angle analysis, ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Substrates modified with collagen and synthetic polyelectrolytes were least effective, due to the destructive nature of acidic environments on InAs. The toxicity of modified and unmodified InAs, along with raw indium, arsenic, and PEG components was assessed using zebrafish embryos.
NASA Astrophysics Data System (ADS)
Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung
2011-08-01
The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.
NASA Technical Reports Server (NTRS)
1976-01-01
Ground-based electrokinetic data on the electrophoresis flight experiment to be flown on the Apollo-Soyuz Test Project experiment MA-011 are stipulated. Aldehyde-fixed red blood cells, embryonic kidney cells and lymphocytes were evaluated by analytical particle electrophoresis. The results which aided in the interpretation of the final analysis of the MA-011 experiment are documented. The electrophoresis chamber surface modifications, the buffer, and the material used in the column system are also discussed.
Simple route for nano-hydroxyapatite properties expansion.
Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L
2015-10-20
Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Meiye; Singh, Anup K.
In this study, cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation kinase cascade that culminates in induction of mRNA and non-coding miRNA production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient post-translational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR formore » nucleic acids, and flow cytometry for post-translational modifications. Since we know that cells in populations behave heterogeneously1, especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell’s physiological state. In this technical brief, we describe our microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and post-translational modifications in single intact cells with >95% reduction in reagent requirement in under 8 hours.« less
Abdul Halim, Mohd Farid; Karch, Kelly R; Zhou, Yitian; Haft, Daniel H; Garcia, Benjamin A; Pohlschroder, Mechthild
2015-12-28
For years, the S-layer glycoprotein (SLG), the sole component of many archaeal cell walls, was thought to be anchored to the cell surface by a C-terminal transmembrane segment. Recently, however, we demonstrated that the Haloferax volcanii SLG C terminus is removed by an archaeosortase (ArtA), a novel peptidase. SLG, which was previously shown to be lipid modified, contains a C-terminal tripartite structure, including a highly conserved proline-glycine-phenylalanine (PGF) motif. Here, we demonstrate that ArtA does not process an SLG variant where the PGF motif is replaced with a PFG motif (slg(G796F,F797G)). Furthermore, using radiolabeling, we show that SLG lipid modification requires the PGF motif and is ArtA dependent, lending confirmation to the use of a novel C-terminal lipid-mediated protein-anchoring mechanism by prokaryotes. Similar to the case for the ΔartA strain, the growth, cellular morphology, and cell wall of the slg(G796F,F797G) strain, in which modifications of additional H. volcanii ArtA substrates should not be altered, are adversely affected, demonstrating the importance of these posttranslational SLG modifications. Our data suggest that ArtA is either directly or indirectly involved in a novel proteolysis-coupled, covalent lipid-mediated anchoring mechanism. Given that archaeosortase homologs are encoded by a broad range of prokaryotes, it is likely that this anchoring mechanism is widely conserved. Prokaryotic proteins bound to cell surfaces through intercalation, covalent attachment, or protein-protein interactions play critical roles in essential cellular processes. Unfortunately, the molecular mechanisms that anchor proteins to archaeal cell surfaces remain poorly characterized. Here, using the archaeon H. volcanii as a model system, we report the first in vivo studies of a novel protein-anchoring pathway involving lipid modification of a peptidase-processed C terminus. Our findings not only yield important insights into poorly understood aspects of archaeal biology but also have important implications for key bacterial species, including those of the human microbiome. Additionally, insights may facilitate industrial applications, given that photosynthetic cyanobacteria encode uncharacterized homologs of this evolutionarily conserved enzyme, or may spur development of unique drug delivery systems. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Vabbilisetty, Pratima
For decades, lipid vesicular bodies such as liposomes have been widely used and explored as biomimetic models of cell membranes and as drug/gene delivery carrier systems. Similarly, micellar iron oxide nanoparticles have also been investigated as potential MRI agents as well as drug delivery carrier systems. Cell surface carbohydrate-protein interactions allow them to serve as markers for recognition of many molecular and cellular activities thereby, are exploited as attractive molecules for surface modification of nanocarrier systems with purpose for tissues specific targeting and biocompatibility. In addition, the cell lipid membrane serves as an important platform for occurrence of many biological processes that are governed and guided by cell surface receptors. Introduction of chemoselective functional groups, via bio-orthogonal conjugation strategies, at the cell surface facilitates many cellular modifications and paves path for novel and potential biomedical applications. Anchoring lipids are needed for liposome surface functionalization with ligands of interest and play important roles in ligand grafting density, liposomes stability and biological activity. On the other hand, anchoring lipids are also needed for cell surface re-engineering by lipid fusion approach and have high impact for ligand insertion efficiency and biological activity. Overall, in this dissertation study, functional anchoring lipids for glyco-functionalized carrier systems and for efficient cell surface re-engineering applications were systematically investigated, respectively. Firstly, investigation of the synthesis of glyco-functionalized liposome systems based on phosphatidylethonalamine (PE) and cholesterol (Chol) anchoring lipids, prepared by post chemically selective functionalization via Staudinger ligation were carried out. The effect of anchor lipids on the stability, encapsulation and releasing capacity of the glycosylated liposomes were investigated by dynamic light scattering (DLS) technique and by entrapping 5, 6-carboxyfluorescein (CF) dye and monitoring the fluorescence leakage, respectively. Overall, the Chol-anchored liposomes showed faster releasing rate than DSPE-anchored liposomes. This could be due to the increase in rigidity of the lipid membrane upon inclusion of Chol, thereby, leading to fast leakage of liposomes. Second, the potential effects of phospholipid (PE) and cholesterol (Chol)-based anchor lipids on cell surface re-engineering via copper free click chemistry were assessed with RAW 264.7 cells as model. The confocal microscopy and flow cytometry results indicated the successful incorporation of biotinylated Chol-based anchor lipids after specific streptavidin-FITC binding onto the cell surface. Higher fluorescence intensities from the cell membrane were observed for Chol-based anchor lipids when compared to DSPE as anchoring lipid. Furthermore, cytotoxicity of the synthesized biotinylated anchor lipids on the RAW 264.7 cells was assessed by MTT assay. The MTT assay results further confirmed that cell surface re-engineering via lipid anchoring approach strategy has very little or negligible amount of cytotoxicity on the cell viability. Thus, this study suggests the possible use of these lipids for potential cell surface re-engineering applications. In addition, synthesis of lipid coated iron oxide nanoparticles via dual solvent exchange approach and their glyco-functionalization via Staudinger ligation were investigated and characterized by FT-IR and TEM techniques. The stability of iron oxide nanoparticles with varying compositions of lipid anchors was evaluated by dynamic light scattering technique.
Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy
2015-06-14
It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC havemore » low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.« less
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-05-07
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.
Kwon, Ho Joon; Lee, Yunki; Phuong, Le Thi; Seon, Gyeung Mi; Kim, Eunsuk; Park, Jong Chul; Yoon, Hyunjin; Park, Ki Dong
2017-10-01
Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on biomaterial surfaces. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Extracellular Matrix and Redox Signaling in Cellular Responses to Stress.
Roberts, David D
2017-10-20
Cells in multicellular organisms communicate extensively with neighboring cells and distant organs using a variety of secreted proteins and small molecules. Cells also reside in a structural extracellular matrix (ECM), and changes in its composition, mechanical properties, and post-translational modifications provide additional layers of communication. This Forum addresses emerging mechanisms by which redox signaling controls and is controlled by changes in the ECM, focusing on the roles of matricellular proteins. These proteins engage specific cell surface signaling receptors, integrins, and proteoglycans to regulate the biosynthesis and catabolism of redox signaling molecules and the activation of their signal transducers. These signaling pathways, in turn, regulate the composition of ECM and its function. Covalent post-translational modifications of ECM by redox molecules further regulate its structure and function. Recent studies of acute injuries and chronic disease have identified important pathophysiological roles for this cross-talk and new therapeutic opportunities. Antioxid. Redox Signal. 27, 771-773.
Surface modification effects of fluorine-doped tin dioxide by oxygen plasma ion implantation
NASA Astrophysics Data System (ADS)
Tang, Peng; Liu, Cai; Zhang, Jingquan; Wu, Lili; Li, Wei; Feng, Lianghuan; Zeng, Guanggen; Wang, Wenwu
2018-04-01
SnO2:F (FTO), as a kind of transparent conductive oxide (TCO), exhibits excellent transmittance and conductivity and is widely used as transparency electrodes in solar cells. It's very important to modifying the surface of FTO for it plays a critical role in CdTe solar cells. In this study, modifying effects of oxygen plasma on FTO was investigated systematically. Oxygen plasma treatment on FTO surface with ion accelerating voltage ranged from 0.4 kV to 1.6 kV has been processed. The O proportion of surface was increased after ion implantation. The Fermi level of surface measurement by XPS valance band spectra was lowered as the ion accelerating voltage increased to 1.2 kV and then raised as accelerating voltage was elevated to 1.6 kV. The work function measured by Kelvin probe force microscopy increased after ion implanting, and it was consistent with the variation of Fermi level. The change of energy band structure of FTO surface mainly originated from the surface composition variation. As FTO conduction was primarily due to oxyanion hole, the carrier was electron and its concentration was reduced while O proportion was elevated at the surface of FTO, as a result, the Fermi level lowered and the work function was enlarged. It was proved that oxygen plasma treatment is an effective method to modulate the energy band structure of the surface as well as other properties of FTO, which provides much more space for interface and surface modification and then photoelectric device performance promotion.
A novel intranuclear RNA vector system for long-term stem cell modification
Ikeda, Yasuhiro; Makino, Akiko; Matchett, William E.; Holditch, Sara J.; Lu, Brian; Dietz, Allan B.; Tomonaga, Keizo
2015-01-01
Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, Borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression, or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs), while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction. PMID:26632671
Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation
Boyan, B.D.; Cheng, A.; Olivares-Navarrete, R.; Schwartz, Z.
2016-01-01
Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration. PMID:26927483
NASA Technical Reports Server (NTRS)
Johnson, T. C.; Enebo, D. J.; Moos, P. J.; Fattaey, H. K.; Spooner, B. S. (Principal Investigator)
1992-01-01
Serum stimulation of quiescent human fibroblast cultures resulted in a hyperphosphorylation of the nuclear retinoblastoma gene susceptibility product (RB). However, serum stimulation in the presence of 9 x 10(-8) M of a purified bovine sialoglycopeptide (SGP) cell surface inhibitor abrogated the hyperphosphorylation of the RB protein and the subsequent progression of cells through the mitotic cycle. The experimental results suggest that the SGP mediated its cell cycle arrest at a site in the cell cycle that was at the time of RB phosphorylation or somewhat upstream of the modification of this regulatory protein of cell division. Both cells serum-deprived and serum stimulated in the presence of the SGP displayed only a hypophosphorylated RB protein, consistent with the SGP-mediated cell cycle arrest point being near the G1/S interface.
Zheng, Zhenhuan; Zhang, Ling; Kong, Lijun; Wang, Aijun; Gong, Yandao; Zhang, Xiufang
2009-05-01
In the present work, a series of composite films were produced from chitosan/poly-L-lysine blend solutions. The surface topography, chemistry, and wettability of composite films were characterized by atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle assay, respectively. For all composite films, blending with poly-L-lysine induced changes in surface chemistry and wettability. Interestingly, it was also found that increasing poly-L-lysine weight fraction in blend solutions could result in different nanoscaled surface topographic features, which displayed particle-, granule-, or fiber-dominant morphologies. MC3T3-E1 osteoblast-like cells were cultured on all composite films to evaluate the effects of surface nanotopography, chemistry, and wettability on cell behavior. The observations indicated that MC3T3-E1 cell behavior was affected by surface topography, chemistry, and wettability simultaneously and that cells showed strong responses to surface topography. On fiber-dominant surface, cells fully spread with obvious cytoskeleton organization and exhibited significantly higher level of adhesion and proliferation compared with particle- or granule-dominant surfaces. Furthermore, fiber-dominant surface also induced greater expression of mature osteogenic marker osteocalcin and higher mineralization based on RT-PCR and von Kossa staining. The results suggest that topographic modification of chitosan substratum at the nanoscale may be exploited in regulating cell behavior for its applications in tissue engineering.
Use of radiation in biomaterials science
NASA Astrophysics Data System (ADS)
Benson, Roberto S.
2002-05-01
Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue.
Chen, Shu; Hu, Sheng; Smith, Elizabeth F.; Ruenraroengsak, Pakatip; Thorley, Andrew J.; Menzel, Robert; Goode, Angela E.; Ryan, Mary P.; Tetley, Teresa D.; Porter, Alexandra E.; Shaffer, Milo S. P.
2014-01-01
The use of a thermochemical grafting approach provides a versatile means to functionalise as-synthesised, bulk multi-walled carbon nanotubes (MWNTs) without altering their inherent structure. The associated retention of properties is desirable for a wide range of commercial applications, including for drug delivery and medical purposes; it is also pertinent to studies of intrinsic toxicology. A systematic series of water-compatible MWNTs, with diameter around 12 nm have been prepared, to provide structurally-equivalent samples predominantly stabilised by anionic, cationic, or non-ionic groups. The surface charge of MWNTs was controlled by varying the grafting reagents and subsequent post-functionalisation modifications. The degree of grafting was established by thermal analysis (TGA). High resolution transmission electron microscope (HRTEM) and Raman measurements confirmed that the structural framework of the MWNTs was unaffected by the thermochemical treatment, in contrast to a conventional acid-oxidised control which was severely damaged. The effectiveness of the surface modification was demonstrated by significantly improved solubility and stability in both water and cell culture medium, and further quantified by zeta-potential analysis. The grafted MWNTs exhibited relatively low bioreactivity on human immortal alveolar epithelial type 1-like cells (TT1) following 24h exposure as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and lactate dehydrogenase release (LDH) assays. The exposure of TT1 cells to MWNTs suppressed the release of the inflammatory mediators, interleukin 6 (IL-6) and interleukin 8 (IL-8). TEM cell uptake studies indicated efficient cellular entry of MWNTs into TT1 cells, via a range of mechanisms. Cationic MWNTs showed a more substantial interaction with TT1 cell membranes than anionic MWNTs, demonstrating a surface charge effect on cell uptake. PMID:24631251
Koch, Kerstin; Bennemann, Michael; Bohn, Holger F; Albach, Dirk C; Barthlott, Wilhelm
2013-09-01
The surface microstructures on ray florets of 62 species were characterized and compared with modern phylogenetic data of species affiliation in Asteraceae to determine sculptural patterns and their occurrence in the tribes of Asteraceae. Their wettability was studied to identify structural-induced droplet adhesion, which can be used for the development of artificial surfaces for water harvesting and passive surface water transport. The wettability was characterized by contact angle (CA) and tilt angle measurements, performed on fresh ray florets and their epoxy resin replica. The CAs on ray florets varied between 104° and 156°, but water droplets did not roll off when surface was tilted at 90°. Elongated cell structures and cuticle folding orientated in the same direction as the cell elongation caused capillary forces, leading to anisotropic wetting, with extension of water droplets along the length axis of epidermis cells. The strongest elongation of the droplets was also supported by a parallel, cell-overlapping cuticle striation. In artificial surfaces made of epoxy replica of ray florets, this effect was enhanced. The distribution of the identified four structural types exhibits a strong phylogenetic signal and allows the inference of an evolutionary trend in the modification of floret epidermal cells.
Targeted Identification of Metastasis-associated Cell-surface Sialoglycoproteins in Prostate Cancer*
Yang, Lifang; Nyalwidhe, Julius O.; Guo, Siqi; Drake, Richard R.; Semmes, O. John
2011-01-01
Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC4ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins via click chemistry was followed by SDS-PAGE separation and liquid chromatography-tandem MS analysis. We identified 324 proteins from N2 and 372 proteins of ML2. Using conservative annotation, 64 proteins (26%) from N2 and 72 proteins (29%) from ML2 were classified as extracellular or membrane-associated glycoproteins. A selective enrichment of sialoglycoproteins was confirmed. When compared with global proteomic analysis of the same cells, the proportion of identified glycoprotein and cell-surface proteins were on average threefold higher using the selective capture approach. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the vast majority of glycoproteins overexpressed in the metastatic ML2 subline were involved in cell motility, migration, and invasion. Our approach effectively targeted surface sialoglycoproteins and efficiently identified proteins that underlie the metastatic potential of the ML2 cells. PMID:21447706
Targeted identification of metastasis-associated cell-surface sialoglycoproteins in prostate cancer.
Yang, Lifang; Nyalwidhe, Julius O; Guo, Siqi; Drake, Richard R; Semmes, O John
2011-06-01
Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC(4)ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins via click chemistry was followed by SDS-PAGE separation and liquid chromatography-tandem MS analysis. We identified 324 proteins from N2 and 372 proteins of ML2. Using conservative annotation, 64 proteins (26%) from N2 and 72 proteins (29%) from ML2 were classified as extracellular or membrane-associated glycoproteins. A selective enrichment of sialoglycoproteins was confirmed. When compared with global proteomic analysis of the same cells, the proportion of identified glycoprotein and cell-surface proteins were on average threefold higher using the selective capture approach. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the vast majority of glycoproteins overexpressed in the metastatic ML2 subline were involved in cell motility, migration, and invasion. Our approach effectively targeted surface sialoglycoproteins and efficiently identified proteins that underlie the metastatic potential of the ML2 cells.
NASA Astrophysics Data System (ADS)
Reznickova, Alena; Kvitek, Ondrej; Kolarova, Katerina; Smejkalova, Zuzana; Svorcik, Vaclav
2017-06-01
The aim of this article is to investigate the effect of the interface between plasma activated, gold and carbon coated poly(tetrafluoroethylene) (PTFE) on in vitro adhesion and spreading of mouse fibroblasts (L929). Surface properties of pristine and modified PTFE were studied by several experimental techniques. The thickness of a deposited gold film is an increasing function of the sputtering time, conversely thickness of carbon layer decreases with increasing distance between carbon source and the substrate. Because all the used surface modification techniques take place in inert Ar plasma, oxidized degradation products are formed on the PTFE surface, which affects wettability of the polymer surface. Cytocompatibility tests indicate that on samples with Au/C interface, the cells accumulate on the part of sample with evaporated carbon. Number of L929 cells proliferated on the studied samples is comparable to tissue culture polystyrene standard.
Kregiel, Dorota; Berlowska, Joanna; Mizerska, Urszula; Fortuniak, Witold; Chojnowski, Julian; Ambroziak, Wojciech
2013-07-01
Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native and modified surfaces were tested using the bacterial strain Aeromonas hydrophila, which was isolated from the Polish water distribution system. The surface tension of both the native and modified surfaces was measured. To determine cell viability and bacterial adhesion two methods were used, namely plate count and luminometry. Results were expressed in colony-forming units (c.f.u.) and in relative light units (RLU) per cm(2). Almost all the chemically modified surfaces exhibited higher anti-adhesive and anti-microbial properties in comparison to the native surfaces. Among the modifying agents examined, poly[dimethylsiloxane-co-(N,N-dimethyl-N-n-octylammoniopropyl chloride) methylsiloxane)] terminated with hydroxydimethylsilyl groups (20 %) in silicone elastomer gave the most desirable results. The surface tension of this modifier, was comparable to the non-polar native surface. However, almost half of this value was due to the result of polar forces. In this case, in an adhesion analysis, only 1 RLU cm(-2) and less than 1 c.f.u. cm(-2) were noted. For the native gumosil, the results were 9,375 RLU cm(-2) and 2.5 × 10(8) c.f.u. cm(-2), respectively. The antibacterial activity of active organo-silanes was associated only with the carrier surface because no antibacterial compounds were detected in liquid culture media, in concentrations that were able to inhibit cell growth.
Ferreira, Rafael; de Toledo Barros, Renato Taddei; Karam, Paula Stephania Brandão Hage; Sant'Ana, Adriana Campos Passanezi; Greghi, Sebastião Luiz Aguiar; de Rezende, Maria Lucia Rubo; Zangrando, Mariana Schutzer Ragghianti; de Oliveira, Rodrigo Cardoso; Damante, Carla Andreotti
2018-04-01
Root demineralization is used in Periodontics as an adjuvant for mechanical treatment. The aim of this study was to evaluate the effects of root surface modification with mechanic, chemical, and photodynamic treatments on adhesion and proliferation of human gingival fibroblasts and osteoblasts. Root fragments were treated by scaling and root planing (C-control group), EDTA (pH 7), citric acid plus tetracycline (CA-pH 1), and antimicrobial photodynamic therapy (aPDT) with toluidine blue O and red laser (pH 4). Cells were seeded (104 cells/well, 6th passage) on root fragments of each experimental group and cultured for 24, 48, and 72 h. Cells were counted in scanning electron microscopy images by a calibrated examiner. For fibroblasts, the highest number of cells were present at 72-h period (p < 0.05). EDTA group showed a very low number of cells in relation to CA group (p < 0.05). CA and aPDT group presented higher number of cells in all periods, but without differences between other treatment groups (p > 0.05). For osteoblasts, there was a significant increase in cell numbers for aPDT group at 72 h (p < 0.05). In conclusion, aPDT treatment provided a positive stimulus to osteoblast growth, while for fibroblasts, aPDT and CA had a tendency for higher cell growth.
Biophysical Effects of a Polymeric Biosurfactant in Candida krusei and Candida albicans Cells.
Ferreira, Gabriella Freitas; Dos Santos Pinto, Bruna Lorrana; Souza, Eliene Batista; Viana, José Lima; Zagmignan, Adrielle; Dos Santos, Julliana Ribeiro Alves; Santos, Áquila Rodrigues Costa; Tavares, Priscila Batista; Denadai, Ângelo Márcio Leite; Monteiro, Andrea Souza
2016-12-01
This study evaluated the effects of a polymeric biosurfactant produced by Trichosporon montevideense CLOA72 in the adhesion of Candida albicans and Candida krusei cells to human buccal epithelial cells and its interference in biofilm formation by these strains. The biofilm inhibition by biosurfactant (25 mg/mL) in C. krusei and C. albicans in polystyrene was reduced up to 79.5 and 85 %, respectively. In addition, the zeta potential and hydrodynamic diameter of the yeasts altered as a function of the biosurfactant concentration added to the cell suspension. The changes in the cell surface characteristics and the interface modification can contribute to the inhibition of the initial adherence of yeasts cells to the surface. In addition, the analyses of the biofilm matrix and planktonic cell surfaces demonstrated differences in carbohydrate and protein concentrations for the two studied strains, which may contribute to the modulation of cell adhesion or consolidation of biofilms, especially in C. krusei. This study suggests a possible application of the of CLOA72 biosurfactant in inhibiting the adhesion and formation of biofilms on biological surfaces by yeasts of the Candida genus.
The Role of Protein-Mineral Interactions for Protein Adsorption or Fragmentation
NASA Astrophysics Data System (ADS)
Chacon, S. S.; Reardon, P.; Washton, N.; Kleber, M.
2014-12-01
Soil exo-enzymes (EE) are proteins with the capability to catalyze the depolymerization of soil organic matter (SOM). SOM must be disassembled by EEs in order to be transported through the microbial cell wall and become metabolized. One factor determining an EE's functionality is their affinity to mineral surfaces found in the soil. Our goal was to establish the range of protein modifications, either chemical or structural, as the protein becomes associated with mineral surfaces. We hypothesized that pedogenic oxides would generate more extensive chemical alterations to the protein structure than phyllosilicates. A well-characterized protein proxy (Gb1, IEP 4.0, 6.2 kDA) was adsorbed onto functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnesite) at pH 5 and pH 7. We used 1H 15N Heteronuclear Single Quantum Coherence Nuclear Magnetic Resonance Spectroscopy (HSQC NMR) to observe structural modifications in the unadsorbed Gb1 that was allowed to equilibrate during the adsorption process for kaolinite, goethite and birnessite. Solid state NMR was used to observe the structural modifications of Gb1 while adsorbed onto kaolinite and montmorillonite. Preliminary results in the HSQC NMR spectra observed no changes in the native conformation of Gb1 when allowed to interact with goethite and kaolinite while birnessite induced strong structural modification of Gb1 at an acidic pH. Our results suggest that not all mineral surfaces in soil act as sorbents for EEs and changes in their catalytic activity upon adsorption to minerals surfaces may not just be an indication of conformational changes but of fragmentation of the protein itself.
Kato, Akihito; Miyaji, Hirofumi; Ishizuka, Ryosuke; Tokunaga, Keisuke; Inoue, Kana; Kosen, Yuta; Yokoyama, Hiroyuki; Sugaya, Tsutomu; Tanaka, Saori; Sakagami, Ryuji; Kawanami, Masamitsu
2015-01-01
Objective : Biomodification of the root surface plays a major role in periodontal wound healing. Root surface modification with bone morphogenetic protein (BMP) stimulates bone and cementum-like tissue formation; however, severe ankylosis is simultaneously observed. Bio-safe collagen hydrogel scaffolds may therefore be useful for supplying periodontal ligament cells and preventing ankylosis. We examined the effects of BMP modification in conjunction with collagen hydrogel scaffold implantation on periodontal wound healing in dogs. Material and Methods: The collagen hydrogel scaffold was composed of type I collagen sponge and collagen hydrogel. One-wall infrabony defects (5 mm in depth, 3 mm in width) were surgically created in six beagle dogs. In the BMP/Col group, BMP-2 was applied to the root surface (loading dose; 1 µg/µl), and the defects were filled with collagen hydrogel scaffold. In the BMP or Col group, BMP-2 coating or scaffold implantation was performed. Histometric parameters were evaluated at 4 weeks after surgery. Results: Single use of BMP stimulated formation of alveolar bone and ankylosis. In contrast, the BMP/Col group frequently enhanced reconstruction of periodontal attachment including cementum-like tissue, periodontal ligament and alveolar bone. The amount of new periodontal ligament in the BMP/Col group was significantly greater when compared to all other groups. In addition, ankylosis was rarely observed in the BMP/Col group. Conclusion: The combination method using root surface modification with BMP and collagen hydrogel scaffold implantation facilitated the reestablishment of periodontal attachment. BMP-related ankylosis was suppressed by implantation of collagen hydrogel. PMID:25674172
To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.
Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E
2008-01-01
The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.
Surface-modified polymers for cardiac tissue engineering.
Moorthi, Ambigapathi; Tyan, Yu-Chang; Chung, Tze-Wen
2017-09-26
Cardiovascular disease (CVD), leading to myocardial infarction and heart failure, is one of the major causes of death worldwide. The physiological system cannot significantly regenerate the capabilities of a damaged heart. The current treatment involves pharmacological and surgical interventions; however, less invasive and more cost-effective approaches are sought. Such new approaches are developed to induce tissue regeneration following injury. Hence, regenerative medicine plays a key role in treating CVD. Recently, the extrinsic stimulation of cardiac regeneration has involved the use of potential polymers to stimulate stem cells toward the differentiation of cardiomyocytes as a new therapeutic intervention in cardiac tissue engineering (CTE). The therapeutic potentiality of natural or synthetic polymers and cell surface interactive factors/polymer surface modifications for cardiac repair has been demonstrated in vitro and in vivo. This review will discuss the recent advances in CTE using polymers and cell surface interactive factors that interact strongly with stem cells to trigger the molecular aspects of the differentiation or formulation of cardiomyocytes for the functional repair of heart injuries or cardiac defects.
Aliuos, Pooyan; Schulze, Jennifer; Schomaker, Markus; Reuter, Günter; Stolle, Stefan R. O.; Werner, Darja; Ripken, Tammo; Lenarz, Thomas; Warnecke, Athanasia
2016-01-01
Introduction Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI) electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB) onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated. Materials and Methods Murine NIH 3T3 fibroblasts—genetically modified to produce BDNF—were labelled with MB. Results Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release. Discussion Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest. PMID:26918945
NASA Technical Reports Server (NTRS)
Beger, Lauren; Roberts, Lily; deGroh, Kim; Banks, Bruce
2007-01-01
In the low Earth orbit (LEO) space environment, spacecraft surfaces can be altered during atomic oxygen exposure through oxidation and erosion. There can be terrestrial benefits of such interactions, such as the modification of hydrophobic or hydrophilic properties of polymers due to chemical modification and texturing. Such modification of the surface may be useful for biomedical applications. For example, atomic oxygen texturing may increase the hydrophilicity of polymers, such as chlorotrifluoroethylene (Aclar), thus allowing increased adhesion and spreading of cells on textured Petri dishes. The purpose of this study was to determine the effect of atomic oxygen exposure on the hydrophilicity of nine different polymers. To determine whether hydrophilicity remains static after atomic oxygen exposure or changes with exposure, the contact angles between the polymer and a water droplet placed on the polymer s surface were measured. The polymers were exposed to atomic oxygen in a radio frequency (RF) plasma asher. Atomic oxygen plasma treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Significant decreases in the water contact angle occurred with atomic oxygen exposure. Fluorinated polymers were found to be less sensitive to changes in hydrophilicity for equivalent atomic oxygen exposures, and two of the fluorinated polymers became more hydrophobic. The majority of change in water contact angle of the non-fluorinated polymers was found to occur with very low fluence exposures, indicating potential cell culturing benefit with short treatment time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Eun-Ju; Kim, Hong-Hee; Huh, Jung-Eun
2005-02-01
The hydrophobic (HPB) nature of most polymeric biomaterials has been a major obstacle in using those materials in vivo due to low compatibility with cells. However, there is little knowledge of the molecular detail to explain how surface hydrophobicity affects cell responses. In this study, we compared the proliferation and apoptosis of human osteoblastic MG63 cells adhered to hydrophilic (HPL) and hydrophobic surfaces. On the hydrophobic surface, less formation of focal contacts and actin stress fibers, a delay in cell cycle progression, and an increase in apoptosis were observed. By using fibroblast growth factor 1 (FGF1) as a model growthmore » factor, we also investigated intracellular signaling pathways on hydrophilic and hydrophobic surfaces. The activation of Ras, Akt, and ERK by FGF1 was impaired in MG63 cells on the hydrophobic surface. The overexpression of constitutively active form of Ras and Akt rescued those cells from apoptosis and recovered cell cycle progression. Furthermore, their overexpression also restored the actin cytoskeletal organization on the hydrophobic surface. Finally, the proliferative, antiapoptotic, and cytoskeletal effects of constitutively active Ras in MG63 cells on the hydrophobic surface were blocked by wortmannin and PD98059 that inhibit Akt and ERK activation, respectively. Therefore, our results suggest that the activation of Ras and its downstream molecules Akt and ERK to an appropriate level is one of crucial elements in the determination of osteoblast cell responses. The Ras pathway may represent a cell biological target that should be considered for successful surface modification of biomaterials to induce adequate cell responses in the bone tissue.« less
Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.
Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi
2018-05-03
We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il; Tomsk Polytechnic University, Tomsk, 634050
Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) andmore » in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.« less
Hou, Xiaoning; Qin, Haifeng; Gao, Hongyu; Mankoci, Steven; Zhang, Ruixia; Zhou, Xianfeng; Ren, Zhencheng; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Dong, Yalin; Ye, Chang
2017-09-01
Magnesium alloys have tremendous potential for biomedical applications due to their good biocompatibility, osteoconductivity, and degradability, but can be limited by their poor mechanical properties and fast corrosion in the physiological environment. In this study, ultrasonic nanocrystal surface modification (UNSM), a recently developed surface processing technique that utilizes ultrasonic impacts to induce plastic strain on metal surfaces, was applied to an AZ31B magnesium (Mg) alloy. The mechanical properties, corrosion resistance, and biocompatibility of the alloy after UNSM treatment were studied systematically. Significant improvement in hardness, yield stress and wear resistance was achieved after the UNSM treatment. In addition, the corrosion behavior of UNSM-treated AZ31B was not compromised compared with the untreated samples, as demonstrated by the weight loss and released element concentrations of Mg and Al after immersion in alpha-minimum essential medium (α-MEM) for 24h. The in vitro biocompatibility of the AZ31B Mg alloys toward adipose-derived stem cells (ADSCs) before and after UNSM processing was also evaluated using a cell culture study. Comparable cell attachments were achieved between the two groups. These studies showed that UNSM could significantly improve the mechanical properties of Mg alloys without compromising their corrosion rate and biocompatibility in vitro. These findings suggest that UNSM is a promising method to treat biodegradable Mg alloys for orthopaedic applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Iron oxide and gold nanoparticles in cancer therapy
NASA Astrophysics Data System (ADS)
Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.
2016-08-01
Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.
Characterization of Surface Modification of Polyethersulfone Membrane
USDA-ARS?s Scientific Manuscript database
Surface modification of polyethersulfone (PES) membrane surface using UV/ozone-treated grafting and interfacial polymerization on membrane surface was investigated in order to improve the resistance of membrane surface to protein adsorption. These methods of surface modification were compared in te...
Nanoniobia modification of CdS photoanode for an efficient and stable photoelectrochemical cell.
Pareek, Alka; Paik, Pradip; Borse, Pramod H
2014-12-30
Herein we report the surface modification of a CdS film by niobia nanoparticles via thioglycerol as an organic linker and thus fabricate an efficient and a stable photoanode for a photoelectrochemical (PEC) cell. We have synthesized three differenly sized (∼3, ∼6 ,and ∼9 nm) niobia nanoparticles by a hydrothermal synthesis approach and have further investigated the particle-size-dependent PEC performance of the nanoparticle-modified CdS photoanode. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirm the formation of Nb2O5 nanoparticles that are prepared via decomposition of the niobium peroxo complex during the hydrothermal reaction and reveal the presence of surface OH(-) groups over niobia nanoparticles that impart a high catalytic property to a material. The nano-Nb2O5-modified photoanode displayed a 23-fold higher power conversion efficiency compared to that of CdS. This modified structure increases the open circuit voltage (OCV) from 0.65 to 0.77 V, which is attributed to the nano-Nb2O5-induced surface passivation effect over bare CdS. Linking of nanoparticles on the CdS surface improves the photocorrosion stability of the CdS photoanode for even longer than 4 h in contrast to the tens of minutes for the base CdS surface. The uniform coverage of the CdS photoanode surface by niobia nanoparticles is thus found to be the controlling parameter for achieving a higher PEC performance and stability of the photoanode. This finding directed us to design an improved CdS photoanode for efficient and prolonged PEC hydrogen generation from a PEC cell.
Development of viral nanoparticles for efficient intracellular delivery
NASA Astrophysics Data System (ADS)
Wu, Zhuojun; Chen, Kevin; Yildiz, Ibrahim; Dirksen, Anouk; Fischer, Rainer; Dawson, Philip E.; Steinmetz, Nicole F.
2012-05-01
Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity to cells; however, cellular uptake is inefficient. Here we show that chemical modification of the CPMV surface with a highly reactive, specific and UV-traceable hydrazone linker allows bioconjugation of polyarginine (R5) cell penetrating peptides (CPPs), which can overcome these limitations. The resulting CPMV-R5 particles were taken up into a human cervical cancer cell line (HeLa) more efficiently than native particles. Uptake efficiency was dependent on the density of R5 peptides on the surface of the VNP; particles displaying 40 R5 peptides per CPMV (denoted as CPMV-R5H) interact strongly with the plasma membrane and are taken up into the cells via an energy-dependent mechanism whereas particles displaying 10 R5 peptides per CPMV (CPMV-R5L) are only slowly taken up. The fate of CPMV-R5 versus native CPMV particles within cells was evaluated in a co-localization time course study. It was indicated that the intracellular localization of CPMV-R5 and CPMV differs; CPMV remains trapped in Lamp-1 positive endolysosomes over long time frames; in contrast, 30-50% of the CPMV-R5 particles transitioned from the endosome into other cellular vesicles or compartments. Our data provide the groundwork for the development of efficient drug delivery formulations based on CPMV-R5.Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity to cells; however, cellular uptake is inefficient. Here we show that chemical modification of the CPMV surface with a highly reactive, specific and UV-traceable hydrazone linker allows bioconjugation of polyarginine (R5) cell penetrating peptides (CPPs), which can overcome these limitations. The resulting CPMV-R5 particles were taken up into a human cervical cancer cell line (HeLa) more efficiently than native particles. Uptake efficiency was dependent on the density of R5 peptides on the surface of the VNP; particles displaying 40 R5 peptides per CPMV (denoted as CPMV-R5H) interact strongly with the plasma membrane and are taken up into the cells via an energy-dependent mechanism whereas particles displaying 10 R5 peptides per CPMV (CPMV-R5L) are only slowly taken up. The fate of CPMV-R5 versus native CPMV particles within cells was evaluated in a co-localization time course study. It was indicated that the intracellular localization of CPMV-R5 and CPMV differs; CPMV remains trapped in Lamp-1 positive endolysosomes over long time frames; in contrast, 30-50% of the CPMV-R5 particles transitioned from the endosome into other cellular vesicles or compartments. Our data provide the groundwork for the development of efficient drug delivery formulations based on CPMV-R5. Electronic supplementary information (ESI) available: Experimental details and additional supporting data. See DOI: 10.1039/c2nr30366c
Gittens, Rolando A; Olivares-Navarrete, Rene; McLachlan, Taylor; Cai, Ye; Hyzy, Sharon L; Schneider, Jennifer M; Schwartz, Zvi; Sandhage, Kenneth H; Boyan, Barbara D
2012-12-01
Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gittens, Rolando A.; Olivares-Navarrete, Rene; McLachlan, Taylor; Cai, Ye; Hyzy, Sharon L.; Schneider, Jennifer M.; Schwartz, Zvi; Sandhage, Kenneth H.; Boyan, Barbara D.
2013-01-01
Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications. PMID:22989383
Wang, Dong-an; Ji, Jian; Sun, Yong-hong; Shen, Jia-cong; Feng, Lin-xian; Elisseeff, Jennifer H
2002-01-01
A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.
Korogiannaki, Myrto; Zhang, Jianfeng; Sheardown, Heather
2017-10-01
Discontinuation of contact lens wear as a result of ocular dryness and discomfort is extremely common; as many as 26% of contact lens wearers discontinue use within the first year. While patients are generally satisfied with conventional hydrogel lenses, improving on-eye comfort continues to remain a goal. Surface modification with a biomimetic, ocular friendly hydrophilic layer of a wetting agent is hypothesized to improve the interfacial interactions of the contact lens with the ocular surface. In this work, the synthesis and characterization of poly(2-hydroxyethyl methacrylate) surfaces grafted with a hydrophilic layer of hyaluronic acid are described. The immobilization reaction involved the covalent attachment of thiolated hyaluronic acid (20 kDa) on acrylated poly(2-hydroxyethyl methacrylate) via nucleophile-initiated Michael addition thiol-ene "click" chemistry. The surface chemistry of the modified surfaces was analyzed by Fourier transform infrared spectroscopy-attenuated total reflectance and X-ray photoelectron spectroscopy. The appearance of N (1s) and S (2p) peaks on the low resolution X-ray photoelectron spectroscopy spectra confirmed successful immobilization of hyaluronic acid. Grafting hyaluronic acid to the poly(2-hydroxyethyl methacrylate) surfaces decreased the contact angle, the dehydration rate, and the amount of nonspecific sorption of lysozyme and albumin in comparison to pristine hydrogel materials, suggesting the development of more wettable surfaces with improved water-retentive and antifouling properties, while maintaining optical transparency (>92%). In vitro testing also showed excellent viability of human corneal epithelial cells with the hyaluronic acid-grafted poly(2-hydroxyethyl methacrylate) surfaces. Hence, surface modification with hyaluronic acid via thiol-ene "click" chemistry could be useful in improving contact lens surface properties, potentially alleviating symptoms of contact lens related dryness and discomfort during wear.
Tolerance to MHC class II disparate allografts through genetic modification of bone marrow
Jindra, Peter T.; Tripathi, Sudipta; Tian, Chaorui; Iacomini, John; Bagley, Jessamyn
2012-01-01
Induction of molecular chimerism through genetic modification of bone marrow is a powerful tool for the induction of tolerance. Here we demonstrate for the first time that expression of an allogeneic MHC class II gene in autologous bone marrow cells, resulting in a state of molecular chimerism, induces tolerance to MHC class II mismatched skin grafts, a stringent test of transplant tolerance. Reconstitution of recipients with syngeneic bone marrow transduced with retrovirus encoding H-2I-Ab (I-Ab) resulted the long-term expression of the retroviral gene product on the surface of MHC class II-expressing bone marrow derived cell types. Mechanistically, tolerance was maintained by the presence of regulatory T cells, which prevented proliferation and cytokine production by alloreactive host T cells. Thus, the introduction of MHC class II genes into bone marrow derived cells through genetic engineering results in tolerance. These results have the potential to extend the clinical applicability of molecular chimerism for tolerance induction. PMID:22833118
Liu, Tao; Liu, Yang; Chen, Yuan; Liu, Shihui; Maitz, Manfred F; Wang, Xue; Zhang, Kun; Wang, Jian; Wang, Yuan; Chen, Junying; Huang, Nan
2014-05-01
Restenosis, thrombosis formation and delayed endothelium regeneration continue to be problematic for coronary artery stent therapy. To improve the hemocompatibility of the cardiovascular implants and selectively direct vascular cell behavior, a novel kind of heparin/poly-l-lysine (Hep/PLL) nanoparticle was developed and immobilized on a dopamine-coated surface. The stability and structural characteristics of the nanoparticles changed with the Hep:PLL concentration ratio. A Hep density gradient was created on a surface by immobilizing nanoparticles with various Hep:PLL ratios on a dopamine-coated surface. Antithrombin III binding quantity was significantly enhanced, and in plasma the APTT and TT times as coagulation tests were prolonged, depending on the Hep density. A low Hep density is sufficient to prevent platelet adhesion and activation. The sensitivity of vascular cells to the Hep density is very different: high Hep density inhibits the growth of all vascular cells, while low Hep density could selectively inhibit smooth muscle cell hyperplasia but promote endothelial progenitor cells and endothelial cell proliferation. These observations provide important guidance for modification of surface heparinization. We suggest that this method will provide a potential means to construct a suitable platform on a stent surface for selective direction of vascular cell behavior with low side effects. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
In vitro electromagnetically stimulated SAOS-2 osteoblasts inside porous hydroxyapatite
Fassina, Lorenzo; Saino, Enrica; Sbarra, Maria Sonia; Visai, Livia; De Angelis, Maria Gabriella Cusella; Magenes, Giovanni; Benazzo, Francesco
2009-01-01
One of the key challenges in reconstructive bone surgery is to provide living constructs that possess the ability to integrate in the surrounding tissue. Bone graft substitutes, such as autografts, allografts, xenografts, and biomaterials have been widely used to heal critical-size long bone defects due to trauma, tumor resection, congenital deformity, and tissue degeneration. In particular, porous hydroxyapatite is widely used in reconstructive bone surgery owing to its biocompatibility. In addition, the in vitro modification of hydroxyapatite with osteogenic signals enhances the tissue regeneration in vivo, suggesting that the biomaterial modification could play an important role in tissue engineering. In this study we have followed a biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built their extracellular matrix inside a porous hydroxyapatite scaffold. The electromagnetic stimulus had the following parameters: intensity of the magnetic field equal to 2 mT, amplitude of the induced electric tension equal to 5 mV, frequency of 75 Hz, and pulse duration of 1.3 ms. In comparison with control conditions, the electromagnetic stimulus increased the cell proliferation and the surface coating with bone proteins (decorin, osteocalcin, osteopontin, type-I collagen, and type-III collagen). The physical stimulus aimed at obtaining a better modification of the biomaterial internal surface in terms of cell colonization and coating with bone matrix. PMID:19827111
Murad, K L; Mahany, K L; Brugnara, C; Kuypers, F A; Eaton, J W; Scott, M D
1999-03-15
We previously showed that the covalent modification of the red blood cell (RBC) surface with methoxypoly(ethylene glycol) [mPEG; MW approximately 5 kD] could significantly attenuate the immunologic recognition of surface antigens. However, to make these antigenically silent RBC a clinically viable option, the mPEG-modified RBC must maintain normal cellular structure and functions. To this end, mPEG-derivatization was found to have no significant detrimental effects on RBC structure or function at concentrations that effectively blocked antigenic recognition of a variety of RBC antigens. Importantly, RBC lysis, morphology, and hemoglobin oxidation state were unaffected by mPEG-modification. Furthermore, as shown by functional studies of Band 3, a major site of modification, PEG-binding does not affect protein function, as evidenced by normal SO4- flux. Similarly, Na+ and K+ homeostasis were unaffected. The functional aspects of the mPEG-modified RBC were also maintained, as evidenced by normal oxygen binding and cellular deformability. Perhaps most importantly, mPEG-derivatized mouse RBC showed normal in vivo survival ( approximately 50 days) with no sensitization after repeated transfusions. These data further support the hypothesis that the covalent attachment of nonimmunogenic materials (eg, mPEG) to intact RBC may have significant application in transfusion medicine, especially for the chronically transfused and/or allosensitized patient.
NASA Astrophysics Data System (ADS)
Kim, Ki-Hwan; Cho, Jun-Sik; Choi, Doo-Jin; Koh, Seok-Keun
2001-04-01
Polystyrene (PS) Petri-dishes were modified by an ion-assisted reaction (IAR) to improve wettability and to supply a suitable surface for cell culturing. Low energy Ar + ions with 1000 eV were irradiated on the surface of PS in oxygen gas environment. Water contact angles of PS were not reduced much by ion irradiation without oxygen gas and had a value of 40°. In the case of ion irradiation with flowing oxygen gas, however, the water contact angles were dropped significantly from 73° to 19°. X-ray photoelectron spectroscopy analysis showed that the hydrophilic groups were formed on the surface of PS by a chemical reaction between unstable chains induced by ion irradiation and the oxygen gas. Newly formed hydrophilic groups were identified as -(C-O)-, -(CO)- and -(CO)-O- bonds. The influence of the surface modification on growth of the rat pheochromocytoma (PC12) cells was investigated. The IAR-treated PS surfaces showed enhanced attachment and growth in PC12 cell culture test.
Tailor-made functional surfaces: potential elastomeric biomaterials I.
Desai, Shrojal; Bodas, Dhananjay; Patil, K R; Patole, Milind; Singh, R P
2003-01-01
In the present investigation, different functional monomers, like hydroxyethyl methacrylate, acrylic acid, N-vinyl pyrrolidone and glycidyl methacrylate, have been grafted onto the surface of EPDM film (approx. 200 microm) using simultaneous photo-grafting (lambda > or = 290 nm) and cold plasma-grafting techniques, to alter the surface properties, such as hydrophilicity and, therefore, biocompatibility. Here, we have carried out simultaneous plasma-grafting, unlike the conventional post plasma-grafting. The effect of different surface grafting techniques on the degree of surface modification and resultant biocompatibility has been investigated. The chemical changes on the polymer backbone are followed from the results of attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS), which shows the peaks corresponding to the functional groups of the monomers grafted onto the film surface. The morphology of the modified surfaces was investigated using scanning electron microscopy (SEM) technique. The induced hydrophilicity and resultant cell compatibility were followed from the water contact angle measurements and in vitro human carcinoma cell adhesion/proliferation tests, respectively. All the grafted samples exhibited variable cell compatibilities depending upon the type of monomer and their degree of grafting; however, always better than the neat samples. Hydroxyethyl methacrylate and acrylic acid showed exceptionally high cell compatibility in terms of cell adhesion and proliferation.
2015-01-01
Bone remodeling relies on the coordinated functioning of osteoblasts, bone-forming cells, and osteoclasts, bone-resorbing cells. The effects of specific chemical and physical bone features on the osteoclast adhesive apparatus, the sealing zone ring, and their relation to resorption functionality are still not well-understood. We designed and implemented a correlative imaging method that enables monitoring of the same area of bone surface by time-lapse light microscopy, electron microscopy, and atomic force microscopy before, during, and after exposure to osteoclasts. We show that sealing zone rings preferentially develop around surface protrusions, with lateral dimensions of several micrometers, and ∼1 μm height. Direct overlay of sealing zone rings onto resorption pits on the bone surface shows that the rings adapt to pit morphology. The correlative procedure presented here is noninvasive and performed under ambient conditions, without the need for sample labeling. It can potentially be applied to study various aspects of cell-matrix interactions. PMID:26682493
Texturing of polypropylene (PP) with nanosecond lasers
NASA Astrophysics Data System (ADS)
Riveiro, A.; Soto, R.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.
2016-06-01
Polypropylene (PP) is a biocompatible and biostable polymer, showing good mechanical properties that has been recently introduced in the biomedical field for bone repairing applications; however, its poor surface properties due to its low surface energy limit their use in biomedical applications. In this work, we have studied the topographical modification of polypropylene (PP) laser textured with Nd:YVO4 nanosecond lasers emitting at λ = 1064 nm, 532 nm, and 355 nm. First, optical response of this material under these laser wavelengths was determined. The application of an absorbing coating was also studied. The influence of the laser processing parameters on the surface modification of PP was investigated by means of statistically designed experiments. Processing maps to tailor the roughness, and wettability, the main parameters affecting cell adhesion characteristics of implants, were also determined. Microhardness measurements were performed to discern the impact of laser treatment on the final mechanical properties of PP.
2015-01-01
Tumor extracellular matrix (ECM) represents a major obstacle to the diffusion of therapeutics and drug delivery systems in cancer parenchyma. This biological barrier limits the efficacy of promising therapeutic approaches including the delivery of siRNA or agents intended for thermoablation. After extravasation due to the enhanced penetration and retention effect of tumor vasculature, typical nanotherapeutics are unable to reach the nonvascularized and anoxic regions deep within cancer parenchyma. Here, we developed a simple method to provide mesoporous silica nanoparticles (MSN) with a proteolytic surface. To this extent, we chose to conjugate MSN to Bromelain (Br–MSN), a crude enzymatic complex, purified from pineapple stems, that belongs to the peptidase papain family. This surface modification increased particle uptake in endothelial, macrophage, and cancer cell lines with minimal impact on cellular viability. Most importantly Br–MSN showed an increased ability to digest and diffuse in tumor ECM in vitro and in vivo. PMID:25119793
Parodi, Alessandro; Haddix, Seth G; Taghipour, Nima; Scaria, Shilpa; Taraballi, Francesca; Cevenini, Armando; Yazdi, Iman K; Corbo, Claudia; Palomba, Roberto; Khaled, Sm Z; Martinez, Jonathan O; Brown, Brandon S; Isenhart, Lucas; Tasciotti, Ennio
2014-10-28
Tumor extracellular matrix (ECM) represents a major obstacle to the diffusion of therapeutics and drug delivery systems in cancer parenchyma. This biological barrier limits the efficacy of promising therapeutic approaches including the delivery of siRNA or agents intended for thermoablation. After extravasation due to the enhanced penetration and retention effect of tumor vasculature, typical nanotherapeutics are unable to reach the nonvascularized and anoxic regions deep within cancer parenchyma. Here, we developed a simple method to provide mesoporous silica nanoparticles (MSN) with a proteolytic surface. To this extent, we chose to conjugate MSN to Bromelain (Br-MSN), a crude enzymatic complex, purified from pineapple stems, that belongs to the peptidase papain family. This surface modification increased particle uptake in endothelial, macrophage, and cancer cell lines with minimal impact on cellular viability. Most importantly Br-MSN showed an increased ability to digest and diffuse in tumor ECM in vitro and in vivo.
Patiño, Tania; Nogués, Carme; Ibáñez, Elena; Barrios, Leonardo
2012-01-01
Development of micro- and nanotechnology for the study of living cells, especially in the field of drug delivery, has gained interest in recent years. Although several studies have reported successful results in the internalization of micro- and nanoparticles in phagocytic cells, when nonphagocytic cells are used, the low internalization efficiency represents a limitation that needs to be overcome. It has been reported that covalent surface modification of micro- and nanoparticles increases their internalization rate. However, this surface modification represents an obstacle for their use as drug-delivery carriers. For this reason, the aim of the present study was to increase the capability for microparticle internalization of HeLa cells through the use of noncovalently bound transfection reagents: polyethyleneimine (PEI) Lipofectamine™ 2000 and FuGENE 6®. Both confocal microscopy and flow cytometry techniques allowed us to precisely quantify the efficiency of microparticle internalization by HeLa cells, yielding similar results. In addition, intracellular location of microparticles was analyzed through transmission electron microscopy and confocal microscopy procedures. Our results showed that free PEI at a concentration of 0.05 mM significantly increased microparticle uptake by cells, with a low cytotoxic effect. As determined by transmission electron and confocal microscopy analyses, microparticles were engulfed by plasma-membrane projections during internalization, and 24 hours later they were trapped in a lysosomal compartment. These results show the potential use of noncovalently conjugated PEI in microparticle internalization assays. PMID:23152683
NASA Astrophysics Data System (ADS)
Zykova, A.; Safonov, V.; Goltsev, A.; Dubrava, T.; Rossokha, I.; Donkov, N.; Yakovin, S.; Kolesnikov, D.; Goncharov, I.; Georgieva, V.
2016-03-01
The effect was analyzed of surface treatment by argon ions on the surface properties of tantalum pentoxide coatings deposited by reactive magnetron sputtering. The structural parameters of the as-deposited coatings were investigated by means of transmission electron microscopy, atomic force microscopy and scanning electron microscopy. X-ray diffraction profiles and X-ray photoelectron spectra were also acquired. The total surface free energy (SFE), the polar, dispersion parts and fractional polarities, were estimated by the Owens-Wendt-Rabel-Kaeble method. The adhesive and proliferative potentials of bone marrow cells were evaluated for both Ta2O5 coatings and Ta2O5 coatings deposited by simultaneous bombardment by argon ions in in vitro tests.
Barabino, Stefano; De Servi, Barbara; Aragona, Salvatore; Manenti, Demetrio; Meloni, Marisa
2017-03-01
So far tear substitutes have demonstrated a limited role in restoring ocular surface damage in dry eye syndrome (DES). The aim of this study was to assess the efficacy of a new ocular surface modulator in an in vitro model of human corneal epithelium (HCE) damaged by severe osmotic stress mirroring the features of dry eye conditions. A reconstructed HCE model challenged by the introduction of sorbitol in the culture medium for 16 h was used to induce an inflammatory pathway and to impair the tight junctions integrity determining a severe modification of the superficial layer ultrastructure. At the end of the overnight stress period in the treated HCE series, 30 μl of the ocular surface modulator (T-LysYal, Sildeha, Switzerland) and of hyaluronic acid (HA) in the control HCE series were applied for 24 h. The following parameters were quantified: scanning electron microscopy (SEM), trans-epithelial electrical resistance (TEER), immunofluorescence analysis of integrin β1 (ITG-β1), mRNA expression of Cyclin D-1 (CCND1), and ITG-β1. In the positive control after the osmotic stress the HCE surface damage was visible at the ultrastructural level with loss of cell-cell interconnections, intercellular matrix destruction, and TEER reduction. After 24 h of treatment with T-LysYal, HCE showed a significant improvement of the ultrastructural morphological organization and increased expression of ITG-β1 at the tissue level when compared to positive and control series. A significant increase of mRNA expression for ITG-β1 and CCND1 was shown in the HA-treated cells compared to T-LysYal. TEER measurement showed a significant reduction in all groups after 16 h without modifications after the treatment period. This study has shown the possibility of a new class of agents denominated ocular surface modulators to restore corneal cells damaged by dry eye conditions. Further in vivo studies are certainly necessary to confirm these results.
Double layered tailorable advanced blanket insulation
NASA Technical Reports Server (NTRS)
Falstrup, D.
1983-01-01
An advanced flexible reusable surface insulation material for future space shuttle flights was investigated. A conventional fly shuttle loom with special modifications to weave an integral double layer triangular core fabric from quartz yarn was used. Two types of insulating material were inserted into the cells of the fabric, and a procedure to accomplish this was developed. The program is follow up of a program in which single layer rectangular cell core fabrics are woven and a single type of insulating material was inserted into the cells.
Wang, Pan; He, Jie; Sun, Yufei; Reynolds, Matthew; Zhang, Li; Han, Shuangyan; Liang, Shuli; Sui, Haixin; Lin, Ying
2016-01-01
To modify the Pichia pastoris cell surface, two classes of hydrophobins, SC3 from Schizophyllum commune and HFBI from Trichoderma reesei, were separately displayed on the cell wall. There was an observable increase in the hydrophobicity of recombinant strains. Candida antarctica lipase B (CALB) was then co-displayed on the modified cells, generating strains GS115/SC3-61/CALB-51 and GS115/HFBI-61/CALB-51. Interestingly, the hydrolytic and synthetic activities of strain GS115/HFBI-61/CALB-51 increased by 37% and 109%, respectively, but decreased by 26% and 43%, respectively, in strain GS115/SC3-61/CALB-51 compared with the hydrophobin-minus recombinant strain GS115/CALB-GCW51. The amount of glycerol by-product from the transesterification reaction adsorbed on the cell surface was significantly decreased following hydrophobin modification, removing the glycerol barrier and allowing substrates to access the active sites of lipases. Electron micrographs indicated that the cell wall structures of both recombinant strains appeared altered, including changes to the inner glucan layer and outer mannan layer. These results suggest that the display of hydrophobins can change the surface structure and hydrophobic properties of P. pastoris, and affect the catalytic activities of CALB displayed on the surface of P. pastoris cells. PMID:26969039
Impact of differently modified nanocrystalline diamond on the growth of neuroblastoma cells.
Vaitkuviene, Aida; McDonald, Matthew; Vahidpour, Farnoosh; Noben, Jean-Paul; Sanen, Kathleen; Ameloot, Marcel; Ratautaite, Vilma; Kaseta, Vytautas; Biziuleviciene, Gene; Ramanaviciene, Almira; Nesladek, Milos; Ramanavicius, Arunas
2015-01-25
The aim of this study was to assess the impact of nanocrystalline diamond (NCD) thin coatings on neural cell adhesion and proliferation. NCD was fabricated on fused silica substrates by microwave plasma chemical vapor deposition (MPCVD) method. Different surface terminations were performed through exposure to reactive hydrogen and by UV induced oxidation during ozone treatment. Boron doped NCD coatings were also prepared and investigated. NCD surface wettability was determined by contact angle measurement. To assess biocompatibility of the NCD coatings, the neuroblastoma SH-SY5Y cell line was used. Cells were plated directly onto diamond surfaces and cultured in medium with or without fetal bovine serum (FBS), in order to evaluate the ability of cells to adhere and to proliferate. The obtained results showed that these cells adhered and proliferated better on NCD surfaces than on the bare fused silica. The cell proliferation on NCD in medium with and without FBS after 48h from plating was on average, respectively, 20 and 58% higher than that on fused silica, irrespective of NCD surface modification. Our results showed that the hydrogenated, oxygenated and boron-doped NCD coatings can be used for biomedical purposes, especially where good optical transparency is required. Copyright © 2014 Elsevier B.V. All rights reserved.
Optical barcoding of PLGA for multispectral analysis of nanoparticle fate in vivo.
Medina, David X; Householder, Kyle T; Ceton, Ricki; Kovalik, Tina; Heffernan, John M; Shankar, Rohini V; Bowser, Robert P; Wechsler-Reya, Robert J; Sirianni, Rachael W
2017-05-10
Understanding of the mechanisms by which systemically administered nanoparticles achieve delivery across biological barriers remains incomplete, due in part to the challenge of tracking nanoparticle fate in the body. Here, we develop a new approach for "barcoding" nanoparticles composed of poly(lactic-co-glycolic acid) (PLGA) with bright, spectrally defined quantum dots (QDs) to enable direct, fluorescent detection of nanoparticle fate with subcellular resolution. We show that QD labeling does not affect major biophysical properties of nanoparticles or their interaction with cells and tissues. Live cell imaging enabled simultaneous visualization of the interaction of control and targeted nanoparticles with bEnd.3 cells in a flow chamber, providing direct evidence that surface modification of nanoparticles with the cell-penetrating peptide TAT increases their biophysical association with cell surfaces over very short time periods under convective current. We next developed this technique for quantitative biodistribution analysis in vivo. These studies demonstrate that nanoparticle surface modification with the cell penetrating peptide TAT facilitates brain-specific delivery that is restricted to brain vasculature. Although nanoparticle entry into the healthy brain parenchyma is minimal, with no evidence for movement of nanoparticles across the blood-brain barrier (BBB), we observed that nanoparticles are able to enter to the central nervous system (CNS) through regions of altered BBB permeability - for example, into circumventricular organs in the brain or leaky vasculature of late-stage intracranial tumors. In sum, these data demonstrate a new, multispectral approach for barcoding PLGA, which enables simultaneous, quantitative analysis of the fate of multiple nanoparticle formulations in vivo. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Nijhuis, Arnold W G; van den Beucken, Jeroen J J P; Jansen, John A; Leeuwenburgh, Sander C G
2014-04-01
Immobilization of biomolecules onto implant surfaces is one of the most straightforward strategies to control the interaction between an implant and its biological environment. Recently, it was shown that the enzyme alkaline phosphatase (ALP) could be efficiently immobilized onto titanium implants in a single step using polydopamine. We hypothesized that such polydopamine-ALP coatings can enhance the early attachment of cells and increase mineralization. Therefore, the current study aimed at immobilization of ALP onto titanium by means of either one- or two-step polydopamine-assisted immobilization or electrospray deposition, the comparative characterization of these experimental substrates and subsequent cell behavioral analysis using primary osteoblast-like cells. Uncoated titanium and ALP-free polydopamine coatings served as controls. Despite significant ALP surface activity and lower water contact for angles ALP-containing surface modifications, only marginal effects on early cell behavior (i.e., cell spreading) and osteogenic differentiation (i.e., proliferation, differentiation and mineralization) were observed in comparison to uncoated titanium. Copyright © 2013 Wiley Periodicals, Inc.
Non-Fouling Biodegradable Poly(ϵ-caprolactone) Nanofibers for Tissue Engineering.
Kostina, Nina Yu; Pop-Georgievski, Ognen; Bachmann, Michael; Neykova, Neda; Bruns, Michael; Michálek, Jiří; Bastmeyer, Martin; Rodriguez-Emmenegger, Cesar
2016-01-01
Poly(ϵ-caprolactone) (PCL) nanofibers are very attractive materials for tissue engineering (TE) due to their degradability and structural similarity to the extracellular matrix (ECM). However, upon exposure to biological media, their surface is rapidly fouled by proteins and cells, which may lead to inflammation and foreign body reaction. In this study, an approach for the modification of PCL nanofibers to prevent protein fouling from biological fluids and subsequent cell adhesion is introduced. A biomimetic polydopamine (PDA) layer was deposited on the surface of the PCL nanofibers and four types of antifouling polymer brushes were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) from initiator moieties covalently attached to the PDA layer. Cell adhesion was assessed with mouse embryonic fibroblasts (MEFs). MEFs rapidly adhered and formed cell-matrix adhesions (CMAs) with PCL and PCL-PDA nanofibers. Importantly, the nanofibers modified with antifouling polymer brushes were able to suppress non-specific protein adsorption and thereby cell adhesion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sonic hedgehog multimerization: a self-organizing event driven by post-translational modifications?
Koleva, Mirella V; Rothery, Stephen; Spitaler, Martin; Neil, Mark A A; Magee, Anthony I
2015-01-01
Sonic hedgehog (Shh) is a morphogen active during vertebrate development and tissue homeostasis in adulthood. Dysregulation of the Shh signalling pathway is known to incite carcinogenesis. Due to the highly lipophilic nature of this protein imparted by two post-translational modifications, Shh's method of transit through the aqueous extracellular milieu has been a long-standing conundrum, prompting the proposition of numerous hypotheses to explain the manner of its displacement from the surface of the producing cell. Detection of high molecular-weight complexes of Shh in the intercellular environment has indicated that the protein achieves this by accumulating into multimeric structures prior to release from producing cells. The mechanism of assembly of the multimers, however, has hitherto remained mysterious and contentious. Here, with the aid of high-resolution optical imaging and post-translational modification mutants of Shh, we show that the C-terminal cholesterol and the N-terminal palmitate adducts contribute to the assembly of large multimers and regulate their shape. Moreover, we show that small Shh multimers are produced in the absence of any lipid modifications. Based on an assessment of the distribution of various dimensional characteristics of individual Shh clusters, in parallel with deductions about the kinetics of release of the protein from the producing cells, we conclude that multimerization is driven by self-assembly underpinned by the law of mass action. We speculate that the lipid modifications augment the size of the multimolecular complexes through prolonging their association with the exoplasmic membrane.
NASA Astrophysics Data System (ADS)
Goryacheva, O. A.; Gao, H.; Sukhorukov, G. B.
2018-04-01
Polyelectrolyte microcapsules are one of the most successful developments in the direction of target drug delivery. Nevertheless, to encapsulate low molecular weight compounds and to deliver the targeted drugs it is necessary to modify the surface of the microcapsules. Silica nanostructures obtained as result of hydrolysis of (3-Aminopropyl)- triethoxysilane (APTES) were used for the modification of the microcapsules. This material shows no toxic effect on cells and is capable of biodegradation. Amino-groups in the structure of APTES make it possible for further direct bioconjugation.
Effect of nanodiamond modification of siloxane surfaces on stem cell behaviour
NASA Astrophysics Data System (ADS)
Keremidarska, M.; Hikov, T.; Radeva, E.; Pramatarova, L.; Krasteva, N.
2014-12-01
Mesenchymal stem cells (MSCs) hold a great promise for use in many cell therapies and tissue engineering due to their remarkable potential to replicate indefinitely and differentiate into various cell types. Many efforts have been put to study the factors controlling stem cell differentiation. However, still little knowledge has been gained to what extent biomaterials properties influence stem cell adhesion, growth and differentiation. Research utilizing bone marrow-derived MSCs has concentrated on development of specific materials which can enhance specific differentiation of stem cells e.g. osteogenic and chondrogenic. In the present work we have modified an organosilane, hexamethyldisiloxane (HMDS) with detonation nanodiamond (DND) particles aiming to improve adhesion, growth and osteodifferentiation of rat mesenchymal stem cells. HMDS/DND films were deposited on cover glass using two approaches: premixing of both compounds, followed by plasma polymerization (PP) and PP of HMDS followed by plasma deposition of DND particles. We did not observe however an increase in rMSCs adhesion and growth on DND-modified PPHMDS surfaces compared to unmodified PPHMDS. When we studied alkaline phosphatase (ALP) activity, which is a major sign for early osteodifferentiation, we found the highest ALP activity on the PPHMDS/DND material, prepared by consequent deposition while on the other composite material ALP activity was the lowest. These results suggested that DND-modified materials were able to control osteodifferention in MSCs depending on the deposition approach. Modification of HMDS with DND particles by consequent plasma deposition seems to be a promising approach to produce biomaterials capable to guide stem cell differentiation toward osteoblasts and thus to be used in bone tissue engineering.
Surface modifications of magnesium alloys for biomedical applications.
Yang, Jingxin; Cui, Fuzhai; Lee, In Seop
2011-07-01
In recent years, research on magnesium (Mg) alloys had increased significantly for hard tissue replacement and stent application due to their outstanding advantages. Firstly, Mg alloys have mechanical properties similar to bone which avoid stress shielding. Secondly, they are biocompatible essential to the human metabolism as a factor for many enzymes. In addition, main degradation product Mg is an essential trace element for human enzymes. The most important reason is they are perfectly biodegradable in the body fluid. However, extremely high degradation rate, resulting in too rapid loss of mechanical strength in chloride containing environments limits their applications. Engineered artificial biomaterials with appropriate mechanical properties, surface chemistry, and surface topography are in a great demand. As the interaction between the cells and tissues with biomaterials at the tissue--implant interface is a surface phenomenon; surface properties play a major role in determining both the biological response to implants and the material response to the physiological condition. Therefore, the ability to modify the surface properties while preserve the bulk properties is important, and surface modification to form a hard, biocompatible and corrosion resistant modified layer have always been an interesting topic in biomaterials field. In this article, attempts are made to give an overview of the current research and development status of surface modification technologies of Mg alloys for biomedical materials research. Further, the advantages/disadvantages of the different methods and with regard to the most promising method for Mg alloys are discussed. Finally, the scientific challenges are proposed based on own research and the work of other scientists.
Automated Array Assembly, Phase 2
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1979-01-01
The solar cell module process development activities in the areas of surface preparation are presented. The process step development was carried out on texture etching including the evolution of a conceptual process model for the texturing process; plasma etching; and diffusion studies that focused on doped polymer diffusion sources. Cell processing was carried out to test process steps and a simplified diode solar cell process was developed. Cell processing was also run to fabricate square cells to populate sample minimodules. Module fabrication featured the demonstration of a porcelainized steel glass structure that should exceed the 20 year life goal of the low cost silicon array program. High efficiency cell development was carried out in the development of the tandem junction cell and a modification of the TJC called the front surface field cell. Cell efficiencies in excess of 16 percent at AM1 have been attained with only modest fill factors. The transistor-like model was proposed that fits the cell performance and provides a guideline for future improvements in cell performance.
Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics.
Strug, Lisa J; Gonska, Tanja; He, Gengming; Keenan, Katherine; Ip, Wan; Boëlle, Pierre-Yves; Lin, Fan; Panjwani, Naim; Gong, Jiafen; Li, Weili; Soave, David; Xiao, Bowei; Tullis, Elizabeth; Rabin, Harvey; Parkins, Michael D; Price, April; Zuberbuhler, Peter C; Corvol, Harriet; Ratjen, Felix; Sun, Lei; Bear, Christine E; Rommens, Johanna M
2016-10-15
Cystic fibrosis is realizing the promise of personalized medicine. Recent advances in drug development that target the causal CFTR directly result in lung function improvement, but variability in response is demanding better prediction of outcomes to improve management decisions. The genetic modifier SLC26A9 contributes to disease severity in the CF pancreas and intestine at birth and here we assess its relationship with disease severity and therapeutic response in the airways. SLC26A9 association with lung disease was assessed in individuals from the Canadian and French CF Gene Modifier consortia with CFTR-gating mutations and in those homozygous for the common Phe508del mutation. Variability in response to a CFTR-directed therapy attributed to SLC26A9 genotype was assessed in Canadian patients with gating mutations. A primary airway model system determined if SLC26A9 shows modification of Phe508del CFTR function upon treatment with a CFTR corrector. In those with gating mutations that retain cell surface-localized CFTR we show that SLC26A9 modifies lung function while this is not the case in individuals homozygous for Phe508del where cell surface expression is lacking. Treatment response to ivacaftor, which aims to improve CFTR-channel opening probability in patients with gating mutations, shows substantial variability in response, 28% of which can be explained by rs7512462 in SLC26A9 (P = 0.0006). When homozygous Phe508del primary bronchial cells are treated to restore surface CFTR, SLC26A9 likewise modifies treatment response (P = 0.02). Our findings indicate that SLC26A9 airway modification requires CFTR at the cell surface, and that a common variant in SLC26A9 may predict response to CFTR-directed therapeutics.
Holden, Christopher A; Yuan, Quan; Yeudall, W Andrew; Lebman, Deborah A; Yang, Hu
2010-02-02
Tumors frequently contain hypoxic regions that result from a shortage of oxygen due to poorly organized tumor vasculature. Cancer cells in these areas are resistant to radiation- and chemotherapy, limiting the treatment efficacy. Macrophages have inherent hypoxia-targeting ability and hold great advantages for targeted delivery of anticancer therapeutics to cancer cells in hypoxic areas. However, most anticancer drugs cannot be directly loaded into macrophages because of their toxicity. In this work, we designed a novel drug delivery vehicle by hybridizing macrophages with nanoparticles through cell surface modification. Nanoparticles immobilized on the cell surface provide numerous new sites for anticancer drug loading, hence potentially minimizing the toxic effect of anticancer drugs on the viability and hypoxia-targeting ability of the macrophage vehicles. In particular, quantum dots and 5-(aminoacetamido) fluorescein-labeled polyamidoamine dendrimer G4.5, both of which were coated with amine-derivatized polyethylene glycol, were immobilized to the sodium periodate-treated surface of RAW264.7 macrophages through a transient Schiff base linkage. Further, a reducing agent, sodium cyanoborohydride, was applied to reduce Schiff bases to stable secondary amine linkages. The distribution of nanoparticles on the cell surface was confirmed by fluorescence imaging, and it was found to be dependent on the stability of the linkages coupling nanoparticles to the cell surface.
NASA Astrophysics Data System (ADS)
Kim, Young-Hee; Jyoti, Md. Anirban; Song, Ho-Yeon
2014-06-01
In bone tissue engineering surface modification is considered as one of the important ways of fabricating successful biocompatible material. Addition of biologically active functionality on the surfaces has been tried for improving the overall biocompatibility of the system. In this study poly-ɛ-caprolactone film surfaces have been modified through aminolysis and immobilization process. Collagen type I (COL-I) and osteopontin (OPN), which play an important role in osteogenesis, was immobilized onto PCL films followed by aminolysis treatment using 1,6-hexanediamine. Characterization of animolysed and immobilized surfaces were done by a number techniques using scanning electron microscopy (SEM), FT-IR, XPS, ninhydrin staining, SDS-PAGE and confocal microscopy and compared between the modified and un-modified surfaces. Results of the successive experiments showed that aminolysis treatment was homogeneously achieved which helped to entrap or immobilize Col-I-OPN proteins on surfaces of PCL film. In vitro studies with human adipogenic mesenchymal stem cells (hADMSC) also confirmed the attachment and proliferation of cells was better in modified PCL surfaces than the unmodified surfaces. SEM, confocal microscopy and MTT assay showed a significant increase in cell spreading, attachment and proliferations on the biofunctionalized surfaces compared to the unmodified PCL surfaces at all-time points indicating the success of surface biofunctionalization.
NASA Astrophysics Data System (ADS)
Cheng, Kuang-Yao; Chang, Chia-Hsing; Yang, Yi-Wei; Liao, Guo-Chun; Liu, Chih-Tung; Wu, Jong-Shinn
2017-02-01
In this paper, we compare the cell growth results of NIH-3T3 and Neuro-2A cells over 72 h on flat and honeycomb structured PLA films without and with a two-step atmospheric-pressure nitrogen-based plasma jet treatment. We developed a fabrication system used for forming of a uniform honeycomb structure on PLA surface, which can produce two different pore sizes, 3-4 μm and 7-8 μm, of honeycomb pattern. We applied a previously developed nitrogen-based atmospheric-pressure dielectric barrier discharge (DBD) jet system to treat the PLA film without and with honeycomb structure. NIH-3T3 and a much smaller Neuro-2A cells were cultivated on the films under various surface conditions. The results show that the two-step plasma treatment in combination with a honeycomb structure can enhance cell growth on PLA film, should the cell size be not too smaller than the pore size of honeycomb structure, e.g., NIH-3T3. Otherwise, cell growth would be better on flat PLA film, e.g., Neuro-2A.
Nanosilver's (nanoAg) use in medical applications and consumer products is increasing. Because of this, its "green" synthesis and surface modification with beneficial coatings are desirable. Given nanoAg's potential exposure routes (e.g., dermal, intestin...
Crouzet, Marc; Claverol, Stéphane; Lomenech, Anne-Marie; Le Sénéchal, Caroline; Costaglioli, Patricia; Barthe, Christophe; Garbay, Bertrand; Bonneu, Marc
2017-01-01
Biofilms are present in all environments and often result in negative effects due to properties of the biofilm lifestyle and especially antibiotics resistance. Biofilms are associated with chronic infections. Controlling bacterial attachment, the first step of biofilm formation, is crucial for fighting against biofilm and subsequently preventing the persistence of infection. Thus deciphering the underlying molecular mechanisms involved in attachment could allow discovering molecular targets from it would be possible to develop inhibitors against bacterial colonization and potentiate antibiotherapy. To identify the key components and pathways that aid the opportunistic pathogen Pseudomonas aeruginosa in attachment we performed for the first time a proteomic analysis as early as after 20 minutes of incubation using glass wool fibers as a surface. We compared the protein contents of the attached and unattached bacteria. Using mass spectrometry, 3043 proteins were identified. Our results showed that, as of 20 minutes of incubation, using stringent quantification criteria 616 proteins presented a modification of their abundance in the attached cells compared to their unattached counterparts. The attached cells presented an overall reduced gene expression and characteristics of slow-growing cells. The over-accumulation of outer membrane proteins, periplasmic folding proteins and O-antigen chain length regulators was also observed, indicating a profound modification of the cell envelope. Consistently the sigma factor AlgU required for cell envelope homeostasis was highly over-accumulated in attached cells. In addition our data suggested a role of alarmone (p)ppGpp and polyphosphate during the early attachment phase. Furthermore, almost 150 proteins of unknown function were differentially accumulated in the attached cells. Our proteomic analysis revealed the existence of distinctive biological features in attached cells as early as 20 minutes of incubation. Analysis of some mutants demonstrated the interest of this proteomic approach in identifying genes involved in the early phase of adhesion to a surface. PMID:28678862
Generation of knock-in primary human T cells using Cas9 ribonucleoproteins
Schumann, Kathrin; Lin, Steven; Boyer, Eric; ...
2015-07-27
T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4 + T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs).more » Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ~40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 ( PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ~20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.« less
Generation of knock-in primary human T cells using Cas9 ribonucleoproteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumann, Kathrin; Lin, Steven; Boyer, Eric
T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4 + T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs).more » Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ~40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 ( PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ~20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.« less
Immobilization of TiO 2 nanofibers on titanium plates for implant applications
NASA Astrophysics Data System (ADS)
Lim, Jin Ik; Yu, Bin; Woo, Kyung Mi; Lee, Yong-Keun
2008-12-01
Nanofibers have shown good biological performances such as improved cell adhesion and differentiation; therefore, nanofibrous modification of dental and bone implants might enhance osseo-integration. The purpose of this study was to investigate the nanofibrous modification of titanium implants. TiO 2 nanofibers were fabricated by the electrospinning method using a mixture of Ti(IV)isopropoxide and poly(vinyl pyrrolidone) (PVP) in acidic alcohol solution. Then the nanofibers were immobilized on the NaOH/HCl-treated titanium plates by inducing the alcohol condensation reaction of Ti(IV)isopropoxide with Ti-OH group on the titanium surface and subsequent calcination (500-1000 °C). The immobilized TiO 2 nanofibers were characterized by SEM, XRD and a simulated removal test. The diameter of the TiO 2 nanofibers could be controlled within the range of 20-350 nm by changing the amounts of Ti(IV)isopropoxide and PVP. Phase transformation from anatase to rutile was observed after calcination. After the simulated removal test, TiO 2 nanofibers remained on titanium surface. These TiO 2 nanofibers on titanium plates could be used for the surface modification of titanium implants to improve the osseo-integration.
Crowe, Jacob D; Zarger, Rachael A; Hodge, David B
2017-10-04
Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.
Chimeric antigen receptor T cells: a novel therapy for solid tumors.
Yu, Shengnan; Li, Anping; Liu, Qian; Li, Tengfei; Yuan, Xun; Han, Xinwei; Wu, Kongming
2017-03-29
The chimeric antigen receptor T (CAR-T) cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs) expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII) was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2), and mesothelin (MSLN), as well as the challenges for CAR-T cell therapy.
Biodegradable polyester-based microcarriers with modified surface tailored for tissue engineering.
Privalova, A; Markvicheva, E; Sevrin, Ch; Drozdova, M; Kottgen, C; Gilbert, B; Ortiz, M; Grandfils, Ch
2015-03-01
Microcarriers have been proposed in tissue engineering, namely for bone, cartilage, skin, vascular, and central nervous system. Although polyester-based microcarriers have been already used for this purpose, their surface properties should be improved to provide better cell growth. The goal of this study was to prepare microbeads based on poly(D,L-lactide) acid, poly(L-lactide) acid, and to study cell behavior (adhesion, spreading, growth, and proliferation) in function of microbead topography and surface chemistry. To improve L-929 fibroblasts adhesion, microbead surface has been modified with three polycations: chitosan, poly(2-dimethylamino ethylmethacrylate) (PDMAEMA), or chitosan-g-oligolactide copolymer (chit-g-OLA). Although modification of the microbead surface with chitosan and PDMAEMA was performed through physical adsorption on the previously prepared microbeads, chit-g-OLA copolymer was introduced directly during microbead processing. This simple approach (1) bypass the use of an emulsifier (polyvinyl alcohol, PVA); (2) avoid surface "contamination" with PVA molecules limiting a control of the surface characteristics. In vitro study of the growth of mouse fibroblasts on the microbeads showed that both surface topography and chemistry affected cell attachment, spreading, and proliferation. Cultivation of L-929 fibroblasts for 7 days resulted in the formation of a 3D cell-scaffold network. © 2014 Wiley Periodicals, Inc.
Integration of micro nano and bio technologies with layer-by-layer self-assembly
NASA Astrophysics Data System (ADS)
Kommireddy, Dinesh Shankar
In the past decade, layer-by-layer (LbL) nanoassembly has been used as a tool for immobilization and surface modification of materials with applications in biology and physical sciences. Often, in such applications, LbL assembly is integrated with various techniques to form functional surface coatings and immobilized matrices. In this work, integration of LbL with microfabrication and microfluidics, and tissue engineering are explored. In an effort to integrate microfabrication with LbL nanoassembly, microchannels were fabricated using soft-lithography and the surface of these channels was used for the immobilization of materials using LbL and laminar flow patterning. Synthesis of poly(dimethyldiallyl ammonium chloride)/poly(styrene sulfonate) and poly(dimethyldiallyl ammonium chloride)/bovine serum albumin microstrips is demonstrated with the laminar flow microfluidic reactor. Resulting micropatterns are 8-10 mum wide, separated with few micron gaps. The width of these microstrips as well as their position in the microchannel is controlled by varying the flow rate, time of interaction and concentration of the individual components, which is verified by numerical simulation. Spatially resolved pH sensitivity was observed by modifying the surface of the channel with a pH sensitive dye. In order to investigate the integration of LbL assembly with tissue engineering, glass substrates were coated with nanoparticle/polyelectrolyte layers, and two different cell types were used to test the applicability of these coatings for the surface modification of medical implants. Titanium dioxide (TiO 2), silicon dioxide, halloysite and montmorillonite nanoparticles were assembled with oppositely charged polyelectrolytes. In-vitro cytotoxicity tests of the nanoparticle substrates on human dermal firbroblasts (HDFs) showed that the nanoparticle surfaces do not have toxic effects on the cells. HDFs retained their phenotype on the nanoparticle coatings, by synthesizing type-I collagen. These cells also showed active proliferation on the nanoparticle substrates. Cells attached on TiO2 substrates showed faster rate of spreading compared with the other types of nanoparticle coatings. Mesenchymal stem cells (MSCs) were used as a second cell type to support and elaborate on the results obtained with the HDFs. Increasing surface roughness was observed with increasing number of layers of TiO2. Tests with a higher number of layers of TiO2, showed an increased attachment, proliferation and faster spreading of the MSCs on a larger number of layers of TiO2.
[Comperative study of implant surface characteristics].
Katona, Bernadett; Daróczi, Lajos; Jenei, Attila; Bakó, József; Hegedus, Csaba
2013-12-01
The osseointegration between the implant and its' bone environment is very important. The implants shall meet the following requirements: biocompatibility, rigidity, resistance against corrosion and technical producibility. In our present study surface morphology and material characteristics of different implants (Denti Bone Level, Denti Zirconium C, Bionika CorticaL, Straumann SLA, Straumann SLA Active, Dentsply Ankylos and Biotech Kontact implant) were investigated with scanning electron microscopy and energy-dispersive X-ray spectroscopy. The possible surface alterations caused by the manufacturing technology were also investigated. During grit-blasting the implants' surface is blasted with hard ceramic particles (titanium oxide, alumina, calcium phosphate). Properties of blasting material are critical because the osseointegration of dental implants should not be hampered. The physical and chemical features of blasting particles could importantly affect the produced surfaces of implants. Titanium surfaces with micro pits are created after immersion in mixtures of strong acids. On surfaces after dual acid-etching procedures the crosslinking between fibrin and osteogenetic cells could be enhanced therefore bone formation could be directly facilitated on the surface of the implant. Nowadays there are a number of surface modification techniques available. These can be used as a single method or in combination with each other. The effect of the two most commonly used surface modifications (acid-etching and grit-blasting) on different implants are demonstrated in our investigation.
Controlling Androgen receptor nuclear localization by dendrimer conjugates
NASA Astrophysics Data System (ADS)
Wang, Haoyu
Androgen Receptor (AR) antagonists, such as bicalutamide and flutamide have been used widely in the treatment of prostate cancer. Although initial treatment is effective, prostate cancer cells often acquire antiandrogen resistance with prolonged treatment. AR over-expression and AR mutations contribute to the development of antiandrogen resistant cancer. Second generation antiandrogens such as enzalutamide are more effective and show reduced AR nuclear localization. In this study, derivatives of PAN52, a small molecule antiandrogen previously developed in our lab, were conjugated to the surface of generation 4 and generation 6 PAMAM dendrimers to obtain antiandrogen PAMAM dendrimer conjugates (APDC). APDCs readily enter cells and associate with AR in the cytoplasm. Due to their large size and positive charge, they can not enter the nucleus, thus retaining AR in the cytoplasm. In addition, APDCs are effective in decreasing AR mediated transcription and cell proliferation. APDC is the first AR antagonists that inhibit DHT-induced nuclear localization of AR. By inhibiting AR nuclear localization, APDC represents a new class of antiandrogens that offer an alternative approach to addressing antiandrogen-resistant prostate cancer. Lysine post-translational modification of AR Nuclear Localization Sequence (NLS) has great impact on AR cellular localization. It is of interest to understand which modifications modulate AR translocation into the nucleus. In this study, we prepared dendrimer-based acetyltransferase mimetic (DATM), DATM is able to catalytically acetylate AR in CWR22Rv1 cells, which will be a useful tool for studying AR modification effect on AR cellular localization. Derivatives of DATM, which transfer other chemical groups to AR, can be prepared similarly, and with more dendrimer based AR modification tools prepared in future, we will be able to understand and control AR cellular localization through AR modification.
Li, Guicai; Yang, Ping; Liao, Yuzhen; Huang, Nan
2011-04-11
To improve the blood compatibility and endothelialization simultaneously and to ensure the long-term effectiveness of the cardiovascular implants, we developed a surface modification method, enabling the coimmobilization of biomolecules to metal surfaces. In the present study, a heparin and fibronectin mixture (Hep/Fn) covalently immobilized on a titanium (Ti) substrate for biocompatibility was investigated. Different systems [N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide, electrostatic] were used for the formation of Hep/Fn layers. Atomic force microscopy (AFM) showed that the roughness of the silanized Ti surface decreased after the immobilization of Hep/Fn. Fourier transform infrared spectroscopy (FTIR), Toluidine Blue O (TBO) test, and immunochemistry assay showed that Hep/Fn mixture was successfully immobilized on Ti surface. Blood compatibility tests (hemolysis rate, APTT, platelet adhesion, fibrinogen conformational change) showed that the coimmobilized films of Hep/Fn mixture reduced blood hemolysis rate, prolonged blood coagulation time, reduced platelets activation and aggregation, and induced less fibrinogen conformational change compared with a bare Ti surface. Endothelial cell (EC) seeding showed more EC with better morphology on pH 4 samples than on pH 7 and EDC/NHS samples, which showed rounded and aggregated cells. Systematic evaluation showed that the pH 4 samples also had much better blood compatibility. All results suggest that the coimmobilized films of Hep/Fn can confer excellent antithrombotic properties and with good endothelialization. We envisage that this method will provide a potential and effective solution for the surface modification of cardiovascular implant materials.
Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae
Tacchi, Jessica L.; Raymond, Benjamin B. A.; Haynes, Paul A.; Berry, Iain J.; Widjaja, Michael; Bogema, Daniel R.; Woolley, Lauren K.; Jenkins, Cheryl; Minion, F. Chris; Padula, Matthew P.; Djordjevic, Steven P.
2016-01-01
Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC–MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity. PMID:26865024
Thermal stratification hinders gyrotactic micro-organism rising in free-surface turbulence
NASA Astrophysics Data System (ADS)
Lovecchio, Salvatore; Zonta, Francesco; Marchioli, Cristian; Soldati, Alfredo
2017-05-01
Thermal stratification in water bodies influences the exchange of heat, momentum, and chemical species across the air-water interface by modifying the sub-surface turbulence characteristics. Turbulence modifications may in turn prevent small motile algae (phytoplankton, in particular) from reaching the heated surface. We examine how different regimes of stable thermal stratification affect the motion of these microscopic organisms (modelled as gyrotactic self-propelling cells) in a free-surface turbulent channel flow. This archetypal setup mimics an environmentally plausible situation that can be found in lakes and oceans. Results from direct numerical simulations of turbulence coupled with Lagrangian tracking reveal that rising of bottom-heavy self-propelling cells depends strongly on the strength of stratification, especially near the thermocline where high temperature and velocity gradients occur: Here hydrodynamic shear may disrupt directional cell motility and hamper near-surface accumulation. For all gyrotactic re-orientation times considered in this study (spanning two orders of magnitude), we observe a reduction of the cell rising speed and temporary confinement under the thermocline: If re-orientation is fast, cells eventually trespass the thermocline within the simulated time span; if re-orientation is slow, confinement lasts much longer because cells align in the streamwise direction and their vertical swimming is practically annihilated.
Surface Modification of Biomaterials: A Quest for Blood Compatibility
de Mel, Achala; Cousins, Brian G.; Seifalian, Alexander M.
2012-01-01
Cardiovascular implants must resist thrombosis and intimal hyperplasia to maintain patency. These implants when in contact with blood face a challenge to oppose the natural coagulation process that becomes activated. Surface protein adsorption and their relevant 3D confirmation greatly determine the degree of blood compatibility. A great deal of research efforts are attributed towards realising such a surface, which comprise of a range of methods on surface modification. Surface modification methods can be broadly categorized as physicochemical modifications and biological modifications. These modifications aim to modulate platelet responses directly through modulation of thrombogenic proteins or by inducing antithrombogenic biomolecules that can be biofunctionalised onto surfaces or through inducing an active endothelium. Nanotechnology is recognising a great role in such surface modification of cardiovascular implants through biofunctionalisation of polymers and peptides in nanocomposites and through nanofabrication of polymers which will pave the way for finding a closer blood match through haemostasis when developing cardiovascular implants with a greater degree of patency. PMID:22693509
Zhao, Xiaobin; Courtney, James M
2009-07-01
In this article, a novel approach for the surface modification of polymeric biomaterials by the utilization of supramolecules was studied. The supramolecules selected were cyclodextrin inclusion complexes (CICs). The biomaterial selected for surface modification was plasticized poly (vinyl chloride) (PVC-P). Results indicate that when the CICs were blended into PVC-P, they tend to migrate and "anchor" on the surface to achieve a remarkable protein-resistant surface, with improved blood compatibility. In comparison with a physical mixture of cyclodextrins and a "guest" molecule, such as poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO and PPO-PEO-PPO for PVC-P modification, CICs modified PVC-P are more consistent in processing and achieve reproducible surface characteristics. Based on this study, a novel "anchor modification" was proposed regarding CICs modified surface. This "anchor modification" is likely to reduce plasticizer extraction from PVC-P and also can be utilized for the modification of polymers other than PVC-P.
Chandraprabha, M N; Natarajan, K A; Somasundaran, P
2004-08-15
Effective methods for selective separation using flotation or flocculation of arsenopyrite from pyrite by biomodulation using Acidithiobacillus ferrooxidans are presented here. Adhesion of the bacterium to the surface of arsenopyrite was very slow compared to that to pyrite, resulting in a difference in surface modification of the minerals subsequent to interaction with cells. The cells were able to effectively depress pyrite flotation in presence of collectors like potassium isopropyl xanthate and potassium amyl xanthate. On the other hand the flotability of arsenopyrite after conditioning with the cells was not significantly affected. The activation of pyrite by copper sulfate was reduced when the minerals were conditioned together, resulting in better selectivity. Selective separation could also be achieved by flocculation of biomodulated samples.
Yeast cell surface display for lipase whole cell catalyst and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yun; Zhang, Rui; Lian, Zhongshuai
The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chainmore » length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.« less
el-Ghannam, A; Ducheyne, P; Shapiro, I M
1997-02-01
The objective of the study was to examine the effect of alkali ion release, pH control and buffer capacity on the expression of the osteoblastic phenotype. In addition we determined the importance of modifications of the surface of porous bioactive glass (BG) on the activity of rat calvaria osteoblasts in vitro. We found that at a low tissue culture medium (TCM) volume to BG surface area (Vol/SA) ratio, the products of glass corrosion elevated the pH of the TCM to a value that adversely affected cellular activity; thus, the matrix synthesized by the cells was non-mineralized. On the other hand, when the Vol/SA was high and the buffer capacity of the medium was not exceeded, the cells generated a mineralized extracellular matrix. Addressing the second issue, we observed that modification of the composition of the BG surface markedly influenced osteoblast activity. BG that was coated with either a calcium phosphate-rich layer only or a serum protein layer changed the phenotypic characteristics of the osteoblasts. The presence of either of these surfaces lowered the alkaline phosphatase activity of the attached cells; this finding indicated that the osteoblast phenotype was not conserved. However, when the BG was coated with a bilayer of calcium phosphate and serum proteins, the alkaline phosphatase (AP) activity was elevated and the extracellular matrix contained characteristic bone markers. Our findings indicate that the calcium phosphate-rich layer promotes adsorption and concentration of proteins from the TCM, and it is utilized by the osteoblasts to form the mineralized extracellular matrix.
NASA Astrophysics Data System (ADS)
Vinnichenko, M.; Chevolleau, Th; Pham, M. T.; Poperenko, L.; Maitz, M. F.
2002-11-01
Surface modification of austenitic stainless steel (SS) 316L after incubation in growing cell cultures and cell-free media as control has been studied. The following treatments were applied: mouse fibrosarcoma cells L929 for 3 and 7 days, polymorphonuclear neutrophils for 3 and 7 days and human osteosarcoma cells SAOS-2 for 7 and 14 days. Cells were enzymatically removed in all cases. The modified surfaces were probed in comparison with untreated ones by means of spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS shows the appearance of the peak of bonded nitrogen at 400.5 eV characteristic for adsorbed proteins on the surface for each type of cells and for the cell-free medium. Migration of Ni in the adsorbed layer is observed in all cases for samples after the cell cultures. The protein layer thickness is ellipsometrically determined to be within 2.5-6.0 nm for all treated samples with parameterization of its optical constants in Cauchy approach. The study showed that for such biological treatments of the SS the protein layer adsorption is the dominating process in the first 2 weeks, which could play a role in the process of corrosion by complex forming properties with metal ions.
Application of nanostructured biochips for efficient cell transfection microarrays
NASA Astrophysics Data System (ADS)
Akkamsetty, Yamini; Hook, Andrew L.; Thissen, Helmut; Hayes, Jason P.; Voelcker, Nicolas H.
2007-01-01
Microarrays, high-throughput devices for genomic analysis, can be further improved by developing materials that are able to manipulate the interfacial behaviour of biomolecules. This is achieved both spatially and temporally by smart materials possessing both switchable and patterned surface properties. A system had been developed to spatially manipulate both DNA and cell growth based upon the surface modification of highly doped silicon by plasma polymerisation and polyethylene grafting followed by masked laser ablation for formation of a pattered surface with both bioactive and non-fouling regions. This platform has been successfully applied to transfected cell microarray applications with the parallel expression of genes by utilising its ability to direct and limit both DNA and cell attachment to specific sites. One of the greatest advantages of this system is its application to reverse transfection, whereupon by utilising the switchable adsorption and desorption of DNA using a voltage bias, the efficiency of cell transfection can be enhanced. However, it was shown that application of a voltage also reduces the viability of neuroblastoma cells grown on a plasma polymer surface, but not human embryonic kidney cells. This suggests that the application of a voltage may not only result in the desorption of bound DNA but may also affect attached cells. The characterisation of a DNA microarray by contact printing has also been investigated.
Leung, Shui-On; Gao, Kai; Wang, Guang Yu; Cheung, Benny Ka-Wa; Lee, Kwan-Yeung; Zhao, Qi; Cheung, Wing-Tai; Wang, Jun Zhi
2015-01-01
SM03, a chimeric antibody that targets the B-cell restricted antigen CD22, is currently being clinically evaluated for the treatment of lymphomas and other autoimmune diseases in China. SM03 binding to surface CD22 leads to rapid internalization, making the development of an appropriate cell-based bioassay for monitoring changes in SM03 bioactivities during production, purification, storage, and clinical trials difficult. We report herein the development of an anti-idiotype antibody against SM03. Apart from its being used as a surrogate antigen for monitoring SM03 binding affinities, the anti-idiotype antibody was engineered to express as fusion proteins on cell surfaces in a non-internalizing manner, and the engineered cells were used as novel "surrogate target cells" for SM03. SM03-induced complement-mediated cytotoxicity (CMC) against these "surrogate target cells" proved to be an effective bioassay for monitoring changes in Fc functions, including those resulting from minor structural modifications borne within the Fc-appended carbohydrates. The approach can be generally applied for antibodies that target rapidly internalizing or non-surface bound antigens. The combined use of the anti-idiotype antibody and the surrogate target cells could help evaluate clinical parameters associated with safety and efficacies, and possibly the mechanisms of action of SM03.
Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran
2012-10-01
Titanium implant osseointegration is dependent on the cellular response to surface modifications and coatings. Titania-enriched nanocomposite polymeric resin coatings were prepared through the application of advanced ultrafine powder coating technology. Their surfaces were readily modified to create nano-rough (<100 nm) surface nano-topographies that supported human embryonic palatal mesenchymal cell responses. Energy dispersive x-ray spectroscopy confirmed continuous and homogenous coatings with a similar composition and even distribution of titanium. Scanning electron microscopy (SEM) showed complex micro-topographies, and atomic force microscopy revealed intricate nanofeatures and surface roughness. Cell counts, mitochondrial enzyme activity reduction of yellow 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to dark purple, SEM, and inverted fluorescence microscopy showed a marked increase in cell attachment, spreading, proliferation, and metabolic activity on the nanostructured surfaces. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) analysis showed that type I collagen and Runx2 expression were induced, and Alizarin red staining showed that mineral deposits were abundant in the cell cultures grown on nanosurfaces. This enhancement in human mesenchymal cell attachment, growth, and osteogenesis were attributed to the nanosized surface topographies, roughness, and moderate wetting characteristics of the coatings. Their dimensional similarity to naturally occurring matrix proteins and crystals, coupled with their increased surface area for protein adsorption, may have facilitated the response. Therefore, this application of ultrafine powder coating technology affords highly biocompatible surfaces that can be readily modified to accentuate the cellular response. Copyright © 2012 Wiley Periodicals, Inc.
Zhang, Wenjie; Li, Zihui; Liu, Yan; Ye, Dongxia; Li, Jinhua; Xu, Lianyi; Wei, Bin; Zhang, Xiuli; Liu, Xuanyong; Jiang, Xinquan
2012-01-01
Background: The topography of an implant surface can serve as a powerful signaling cue for attached cells and can enhance the quality of osseointegration. A series of improved implant surfaces functionalized with nanoscale structures have been fabricated using various methods. Methods: In this study, using an H2O2 process, we fabricated two size-controllable sawtooth-like nanostructures with different dimensions on a titanium surface. The effects of the two nano-sawtooth structures on rat bone marrow mesenchymal stem cells (BMMSCs) were evaluated without the addition of osteoinductive chemical factors. Results: These new surface modifications did not adversely affect cell viability, and rat BMMSCs demonstrated a greater increase in proliferation ability on the surfaces of the nano-sawtooth structures than on a control plate. Furthermore, upregulated expression of osteogenic-related genes and proteins indicated that the nano-sawtooth structures promote osteoblastic differentiation of rat BMMSCs. Importantly, the large nano-sawtooth structure resulted in the greatest cell responses, including increased adhesion, proliferation, and differentiation. Conclusion: The enhanced adhesion, proliferation, and osteogenic differentiation abilities of rat BMMSCs on the nano-sawtooth structures suggest the potential to induce improvements in bone-titanium integration in vivo. Our study reveals the key role played by the nano-sawtooth structures on a titanium surface for the fate of rat BMMSCs and provides insights into the study of stem cell-nanostructure relationships and the related design of improved biomedical implant surfaces. PMID:22927760
Catalysts for electrochemical generation of oxygen
NASA Technical Reports Server (NTRS)
Hagans, P.; Yeager, E.
1978-01-01
Single crystal surfaces of platinum and gold and transition metal oxides of the spinel type were studied to find more effective catalysts for the electrolytic evolution of oxygen and to understand the mechanism and kinetics for the electrocatalysis in relation to the surface electronic and lattice properties of the catalyst. The single crystal studies involve the use of low energy electron diffraction (LEED) and Auger electron spectroscopy as complementary tools to the electrochemical measurements. Modifications to the transfer system and to the thin-layer electrochemical cell used to facilitate the transfer between the ultrahigh vacuum environment of the electron surface physics equipment and the electrochemical environment with a minimal possibility of changes in the surface structure, are described. The electrosorption underpotential deposition of Pb onto the Au(111), (100) and (110) single crystal surfaces with the thin-layer cell-LEED-Auger system is discussed as well as the synthesis of spinels for oxygen evolution studies.
USDA-ARS?s Scientific Manuscript database
Protein membrane separation is prone to fouling on the membrane surface resulting from protein adsorption onto the surface. Surface modification of synthetic membranes is one way to reduce fouling. We investigated surface modification of polyethersulfone (PES) as a way of improving hydrophilicity ...
Trombley, Michael P; Post, Deborah M B; Rinker, Sherri D; Reinders, Lorri M; Fortney, Kate R; Zwickl, Beth W; Janowicz, Diane M; Baye, Fitsum M; Katz, Barry P; Spinola, Stanley M; Bauer, Margaret E
2015-01-01
Haemophilus ducreyi resists the cytotoxic effects of human antimicrobial peptides (APs), including α-defensins, β-defensins, and the cathelicidin LL-37. Resistance to LL-37, mediated by the sensitive to antimicrobial peptide (Sap) transporter, is required for H. ducreyi virulence in humans. Cationic APs are attracted to the negatively charged bacterial cell surface. In other gram-negative bacteria, modification of lipopolysaccharide or lipooligosaccharide (LOS) by the addition of positively charged moieties, such as phosphoethanolamine (PEA), confers AP resistance by means of electrostatic repulsion. H. ducreyi LOS has PEA modifications at two sites, and we identified three genes (lptA, ptdA, and ptdB) in H. ducreyi with homology to a family of bacterial PEA transferases. We generated non-polar, unmarked mutants with deletions in one, two, or all three putative PEA transferase genes. The triple mutant was significantly more susceptible to both α- and β-defensins; complementation of all three genes restored parental levels of AP resistance. Deletion of all three PEA transferase genes also resulted in a significant increase in the negativity of the mutant cell surface. Mass spectrometric analysis revealed that LptA was required for PEA modification of lipid A; PtdA and PtdB did not affect PEA modification of LOS. In human inoculation experiments, the triple mutant was as virulent as its parent strain. While this is the first identified mechanism of resistance to α-defensins in H. ducreyi, our in vivo data suggest that resistance to cathelicidin LL-37 may be more important than defensin resistance to H. ducreyi pathogenesis.
Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein
Volkmann, Gerrit; Liu, Xiang-Qin
2009-01-01
Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230
Damanik, Febriyani F R; Rothuizen, Tonia C; van Blitterswijk, Clemens; Rotmans, Joris I; Moroni, Lorenzo
2014-09-19
Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiinflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.
NASA Astrophysics Data System (ADS)
Damanik, Febriyani F. R.; Rothuizen, Tonia C.; van Blitterswijk, Clemens; Rotmans, Joris I.; Moroni, Lorenzo
2014-09-01
Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.
NASA Astrophysics Data System (ADS)
Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.
2016-06-01
Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.
Zhuang, X-M; Zhou, B; Ouyang, J-L; Sun, H-P; Wu, Y-L; Liu, Q; Deng, F-L
2014-08-01
Micro/nanotopographical modifications on titanium surfaces constitute a new process to increase osteoblast response to enhance bone formation. In this study, we utilized alkali heat treatment at high (SB-AH1) and low temperatures (SB-AH2) to nano-modify sandblasted titanium with microtopographical surfaces. Then, we evaluated the surface properties, biocompatibility and osteogenic capability of SB-AH1 and SB-AH2 in vitro and in vivo, and compared these with conventional sandblast-acid etching (SLA) and Ti control surfaces. SB-AH1 and SB-AH2 surfaces exhibited micro/nanotopographical modifications of nano-needle structures and nano-porous network layers, respectively, compared with the sole microtopographical surface of macro and micro pits on the SLA surface and the relatively smooth surface on the Ti control. SB-AH1 and SB-AH2 showed different roughness and elemental components, but similar wettability. MC3T3-E1 preosteoblasts anchored closely on the nanostructures of SB-AH1 and SB-AH2 surfaces, and these two surfaces more significantly enhanced cell proliferation and alkaline phosphatase (ALP) activity than others, while the SB-AH2 surface exhibited better cell proliferation and higher ALP activity than SB-AH1. All four groups of titanium domes with self-tapping screws were implanted in rabbit calvarial bone models, and these indicated that SB-AH1 and SB-AH2 surfaces achieved better peri-implant bone formation and implant stability, while the SB-AH2 surface achieved the best percentage of bone-implant contact (BIC%). Our study demonstrated that the micro/nanotopographical surface generated by sandblasting and alkali heat treatment significantly enhanced preosteoblast proliferation, ALP activity and bone formation in vitro and in vivo, and nano-porous network topography may further induce better preosteoblast proliferation, ALP activity and BIC%.
Interaction of platelets, fibrinogen and endothelial cells with plasma deposited PEO-like films
NASA Astrophysics Data System (ADS)
Yang, Zhilu; Wang, Jin; Li, Xin; Tu, Qiufen; Sun, Hong; Huang, Nan
2012-02-01
For blood-contacting biomedical implants like retrievable vena cava filters, surface-based diagnostic devices or in vivo sensors, limiting thrombosis and cell adhesion is paramount, due to a decrease even failure in performance. Plasma deposited PEO-like films were investigated as surface modifications. In this work, mixed gas composed of tetraethylene glycol dimethyl ether (tetraglyme) vapor and oxygen was used as precursor. It was revealed that plasma polymerization under high ratio of oxygen/tetraglyme led to deposition of the films that had high content of ether groups. This kind of PEO-like films had good stability in phosphate buffer solution. In vitro hemocompatibility and endothelial cell (EC) adhesion revealed low platelet adhesion, platelet activation, fibrinogen adhesion, EC adhesion and proliferation on such plasma deposited PEO-like films. This made it a potential candidate for the applications in anti-fouling surfaces of blood-contacting biomedical devices.
Rapid and Facile Microwave-Assisted Surface Chemistry for Functionalized Microarray Slides
Lee, Jeong Heon; Hyun, Hoon; Cross, Conor J.; Henary, Maged; Nasr, Khaled A.; Oketokoun, Rafiou; Choi, Hak Soo; Frangioni, John V.
2011-01-01
We describe a rapid and facile method for surface functionalization and ligand patterning of glass slides based on microwave-assisted synthesis and a microarraying robot. Our optimized reaction enables surface modification 42-times faster than conventional techniques and includes a carboxylated self-assembled monolayer, polyethylene glycol linkers of varying length, and stable amide bonds to small molecule, peptide, or protein ligands to be screened for binding to living cells. We also describe customized slide racks that permit functionalization of 100 slides at a time to produce a cost-efficient, highly reproducible batch process. Ligand spots can be positioned on the glass slides precisely using a microarraying robot, and spot size adjusted for any desired application. Using this system, we demonstrate live cell binding to a variety of ligands and optimize PEG linker length. Taken together, the technology we describe should enable high-throughput screening of disease-specific ligands that bind to living cells. PMID:23467787
Jiménez, Natalia; Senchenkova, Sofya N; Knirel, Yuriy A; Pieretti, Giuseppina; Corsaro, Maria M; Aquilini, Eleonora; Regué, Miguel; Merino, Susana; Tomás, Juan M
2012-07-01
The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of in-frame nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on L-glycero-D-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS.
Jiménez, Natalia; Senchenkova, Sofya N.; Knirel, Yuriy A.; Pieretti, Giuseppina; Corsaro, Maria M.; Aquilini, Eleonora; Regué, Miguel; Merino, Susana
2012-01-01
The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of in-frame nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on l-glycero-d-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS. PMID:22522903
RTV silicone rubber surface modification for cell biocompatibility by negative-ion implantation
NASA Astrophysics Data System (ADS)
Zheng, Chenlong; Wang, Guangfu; Chu, Yingjie; Xu, Ya; Qiu, Menglin; Xu, Mi
2016-03-01
A negative cluster ion implantation system was built on the injector of a GIC4117 tandem accelerator. Next, the system was used to study the surface modification of room temperature vulcanization silicone rubber (RTV SR) for cell biocompatibility. The water contact angle was observed to decrease from 117.6° to 99.3° as the C1- implantation dose was increased to 1 × 1016 ions/cm2, and the effects of C1-, C2- and O1- implantation result in only small differences in the water contact angle at 3 × 1015 ions/cm2. These findings indicate that the hydrophilicity of RTV SR improves as the dose is increased and that the radiation effect has a greater influence than the doping effect on the hydrophilicity. There are two factors influence hydrophilicity of RTV: (1) based on the XPS and ATR-FTIR results, it can be inferred that ion implantation breaks the hydrophobic functional groups (Sisbnd CH3, Sisbnd Osbnd Si, Csbnd H) of RTV SR and generates hydrophilic functional groups (sbnd COOH, sbnd OH, Sisbnd (O)x (x = 3,4)). (2) SEM reveals that the implanted surface of RTV SR appears the micro roughness such as cracks and wrinkles. The hydrophilicity should be reduced due to the lotus effect (Zhou Rui et al., 2009). These two factors cancel each other out and make the C-implantation sample becomes more hydrophilic in general terms. Finally, cell culture demonstrates that negative ion-implantation is an effective method to improve the cell biocompatibility of RTV SR.
Fu, Weifei; Wang, Ling; Zhang, Yanfang; Ma, Ruisong; Zuo, Lijian; Mai, Jiangquan; Lau, Tsz-Ki; Du, Shixuan; Lu, Xinhui; Shi, Minmin; Li, Hanying; Chen, Hongzheng
2014-11-12
Achieving superior solar cell performance based on the colloidal nanocrystals remains challenging due to their complex surface composition. Much attention has been devoted to the development of effective surface modification strategies to enhance electronic coupling between the nanocrystals to promote charge carrier transport. Herein, we aim to attach benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry to minimize the nanocrystal-nanocrystal or polymer-nanocrystal distance. Furthermore, the "electroactive" π-orbitals of the benzenedithiol are expected to further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. The electron mobility of CdSe QD films was improved 20 times by tuning the ligand orientation, and high performance poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT):CdSe nanocrystal hybrid solar cells were also achieved, showing a highest power conversion efficiency of 4.18%. This research could open up a new pathway to improve further the performance of colloidal nanocrystal based solar cells.
Li, Xiaomeng; Luan, Shifang; Shi, Hengchong; Yang, Huawei; Song, Lingjie; Jin, Jing; Yin, Jinghua; Stagnaro, Paola
2013-02-01
Hyaluronic acid (HA) is an important component of extracellular matrix (ECM) in many tissues, providing a hemocompatible and supportive environment for cell growth. In this study, glycidyl methacrylate-hyaluronic acid (GMHA) was first synthesized and verified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. GMHA was then grafted to the surface of biomedical elastomer poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) via an UV-initiated polymerization, monitored by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The further improvement of biocompatibility of the GMHA-modified SEBS films was assessed by platelet adhesion experiments and in vitro response of murine osteoblastic cell line MC-3T3-E1 with the virgin SEBS surface as the reference. It showed that the surface modification with HA strongly resisted platelet adhesion whereas improved cell-substrate interactions. Copyright © 2012 Elsevier B.V. All rights reserved.
Wrinkling Non-Spherical Particles and Its Application in Cell Attachment Promotion
NASA Astrophysics Data System (ADS)
Li, Minggan; Joung, Dehi; Hughes, Bethany; Waldman, Stephen D.; Kozinski, Janusz A.; Hwang, Dae Kun
2016-07-01
Surface wrinkled particles are ubiquitous in nature and present in different sizes and shapes, such as plant pollens and peppercorn seeds. These natural wrinkles provide the particles with advanced functions to survive and thrive in nature. In this work, by combining flow lithography and plasma treatment, we have developed a simple method that can rapidly create wrinkled non-spherical particles, mimicking the surface textures in nature. Due to the oxygen inhibition in flow lithography, the non-spherical particles synthesized in a microfluidic channel are covered by a partially cured polymer (PCP) layer. When exposed to plasma treatment, this PCP layer rapidly buckles, forming surface-wrinkled particles. We designed and fabricated various particles with desired shapes and sizes. The surfaces of these shapes were tuned to created wrinkle morphologies by controlling UV exposure time and the washing process. We further demonstrated that wrinkles on the particles significantly promoted cell attachment without any chemical modification, potentially providing a new route for cell attachment for various biomedical applications.
NASA Astrophysics Data System (ADS)
Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui
2015-05-01
Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size.
Biocompatibility of modified ultra-high-molecular-weight polyethylene
NASA Astrophysics Data System (ADS)
Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.
2016-09-01
Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.
NASA Astrophysics Data System (ADS)
Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta
2016-07-01
Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation.
Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta
2016-01-01
Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation. PMID:27468811
[Study on the interface of human hepatocyte/micropore polypropylene ultrafiltration membrane].
Peng, Cheng-Hong; Han, Bao-San; Gao, Chang-You; Ma, Zu-Wei; Zhao, Zhi-Ming; Wang, Yong; Liu, Hong; Zhang, Gui-di; Yang, Mei-Juan
2004-09-02
To found a new interface of human hepatocyte/micropore polypropylene ultrafiltration membrane (MPP) with good cytocompatibility so as to construct bioartificial bioreactor with polypropylene hollow fibers in future. MPP ultrafiltration membrane underwent chemical grafting modification through ultraviolet irradiation and Fe(2+) reduction. The contact angles of MPP and the modified MPP membranes were measured. Human hepatic cells L-02 were cultured. MPP and modified MPP membranes were spread on the wells of culture plate and human hepatic cells and cytodex 3 were inoculated on them. Different kinds of microscopy were used to observe the morphology of these cells. The water contact angle of MPP and the modified MPP membranes decreased from 78 degrees +/- 5 degrees to 27 degrees +/- 4 degrees (P < 0.05), which indicated that the hydrophilicity of the membrane was improved obviously after the grafting modification. Human hepatocyte L-02 did not adhere to and spread on the modified MPP membrane surface, and only grew on the microcarrier cytodex 3 with higher density and higher proliferation ratio measured by MTT. Grafting modification of acrylamide on MPP membrane is a good method to improve the human hepatocyte cytocompatibility with MPP ultrafiltration membrane.
Ren, Xuequn; Ma, Wanli; Lu, Hong; Yuan, Lei; An, Lei; Wang, Xicai; Cheng, Guanchang; Zuo, Shuguang
2015-12-01
Epidermal growth factor receptor (EGFR, ErbB1, Her-1) is a cell surface molecule overexpressing in a variety of human malignancies and, thus, is an excellent target for immunotherapy. Immunotherapy targeting EGFR-overexpressing malignancies using genetically modified immune effector cells is a novel and promising approach. In the present study, we have developed an adoptive cellular immunotherapy strategy based on the chimeric antigen receptor (CAR)-modified cytokine-induced killer (CAR-CIK) cells specific for the tumor cells expressing EGFR. To generate CAR-CIK cells, a lentiviral vector coding the EGFR-specific CAR was constructed and transduced into the CIK cells. The CAR-CIK cells showed significantly enhanced cytotoxicity and increased production of cytokines IFN-γ and IL-2 when co-cultured with EGFR-positive cancer cells. In tumor xenografts, adoptive immunotherapy of CAR-CIK cells could inhibit tumor growth and prolong the survival of EGFR-overexpressing human tumor xenografts. Moreover, tumor growth inhibition and prolonged survival in mice with EGFR(+) human cancer were associated with the increased persistence of CAR-CIK cells in vivo. Our study indicates that modification with EGFR-specific CAR strongly enhances the antitumor activity of the CIK cells against EGFR-positive malignancies.
Controlling the surface photovoltage on WSe2 by surface chemical modification
NASA Astrophysics Data System (ADS)
Liu, Ro-Ya; Ozawa, Kenichi; Terashima, Naoya; Natsui, Yuto; Feng, Baojie; Ito, Suguru; Chen, Wei-Chuan; Cheng, Cheng-Maw; Yamamoto, Susumu; Kato, Hiroo; Chiang, Tai-Chang; Matsuda, Iwao
2018-05-01
The surface photovoltage (SPV) effect is key to the development of opto-electronic devices such as solar-cells and photo-detectors. For the prototypical transition metal dichalcogenide WSe2, core level and valence band photoemission measurements show that the surface band bending of pristine cleaved surfaces can be readily modified by adsorption with K (an electron donor) or C60 (an electron acceptor). Time-resolved pump-probe photoemission measurements reveal that the SPV for pristine cleaved surfaces is enhanced by K adsorption, but suppressed by C60 adsorption, and yet the SPV relaxation time is substantially shortened in both cases. Evidently, adsorbate-induced electronic states act as electron-hole recombination centers that shorten the carrier lifetime.
Pawelec, G; Brons, G
1978-01-01
The effects of the immunosuppressive sulphated polygalactan lambda carrageenan on in vitro models of allograft immunity were compared with the effects of removing macrophages (surface adherent and/or phagocytic cells) by established methods. Carrageenan depressed the primary mixed lymphocyte reactions, but not to the same extent as the removal of macrophages. 2-Mercaptoethanol restored the response. Secondary mixed lymphocyte reactions and responses to phytohaemaglutinin were depressed by carrageenan but not by the removal of macrophages, and in these systems 2-mercaptoethanol failed to restore the responses of carrageenan-treated cultures. In contrast, cell-mediated cytolysis by presensitized lymphocytes was not affected by carrageenan or by colloidal silica. Carrageenan depressed cell-mediated cytolysis only if it was present during the sensitization of the effector cells. We conclude that carrageenan can have two dose-related effects in vitro: one on the macrophage and one on the responding lymphocyte. PMID:207475
Characterization of surface modified polyester fabric.
Joseph, Roy; Shelma, R; Rajeev, A; Muraleedharan, C V
2009-12-01
Woven polyethylene terephthalate (PET) fabric has been used in the construction of vascular grafts and sewing ring of prosthetic heart valves. In an effort to improve haemocompatibility and tissue response to PET fabric, a fluoropolymer, polyvinylidine fluoride (PVDF), was coated on PET fabric by dip coating technique. The coating was found to be uniform and no significant changes occurred on physical properties such as water permeability and burst strength. Cell culture cytotoxicity studies showed that coated PET was non-cytotoxic to L929 fibroblast cell lines. In vitro studies revealed that coating improved haemocompatibility of PET fabric material. Coating reduced platelet consumption of PET fabric by 50%. Upon surface modification leukocyte consumption of PET was reduced by 24%. About 60% reduction in partial thromboplastin time (PTT) observed when PET was coated with PVDF. Results of endothelial cell proliferation studies showed that surface coating did not have any substantial impact on cell proliferation. Overall results indicate that coating has potential to improve haemocompatibility of PET fabric without affecting its mechanical performance.
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors
Naumenko, Vladimir S.
2018-01-01
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior. PMID:29849559
Tools for phospho- and glycoproteomics of plasma membranes.
Wiśniewski, Jacek R
2011-07-01
Analysis of plasma membrane proteins and their posttranslational modifications is considered as important for identification of disease markers and targets for drug treatment. Due to their insolubility in water, studying of plasma membrane proteins using mass spectrometry has been difficult for a long time. Recent technological developments in sample preparation together with important improvements in mass spectrometric analysis have facilitated analysis of these proteins and their posttranslational modifications. Now, large scale proteomic analyses allow identification of thousands of membrane proteins from minute amounts of sample. Optimized protocols for affinity enrichment of phosphorylated and glycosylated peptides have set new dimensions in the depth of characterization of these posttranslational modifications of plasma membrane proteins. Here, I summarize recent advances in proteomic technology for the characterization of the cell surface proteins and their modifications. In the focus are approaches allowing large scale mapping rather than analytical methods suitable for studying individual proteins or non-complex mixtures.
Aptamer modification improves the adenoviral transduction of malignant glioma cells.
Chen, Hao; Zheng, Xiaojing; Di, BingYan; Wang, Dongyang; Zhang, Yaling; Xia, Haibin; Mao, Qinwen
2013-12-01
Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Ruvoletto, M G; Tono, N; Carollo, D; Vilei, T; Trentin, L; Muraca, M; Marino, M; Gatta, A; Fassina, G; Pontisso, P
2004-03-01
A variant of the serpin squamous cell carcinoma antigen (SCCA) has been identified as a hepatitis B virus binding protein and high expression of SCCA has recently been found in hepatocarcinoma. Since HBV is involved in liver carcinogenesis, experiments were carried out to examine the effect of HBV preS1 envelope protein on SCCA expression. Surface and intracellular staining for SCCA was assessed by FACS analysis. Preincubation of HepG2 cells and primary human hepatocytes with preS1 protein or with preS1(21-47) tetrameric peptide significantly increased the surface expression of SCCA, without modification of its overall cellular burden, suggesting a surface redistribution of the serpin. An increase in HBV binding and internalization was observed after pre-incubation of the cells with preS1 preparations, compared to cells preincubated with medium alone. Pretreatment of cells with DMSO, while not influencing SCCA basal expression, was responsible for an increase in the efficiency of HBV internalization and this effect was additive to that obtained after incubation with preS1 preparations. In conclusion, the HBV preS1(21-47) sequence is able to induce overexpression of SCCA at the cell surface facilitating virus internalization, while the increased efficiency of HBV entry following DMSO addition is not mediated by SCCA.
Tanaka, Masayoshi; Arakaki, Atsushi; Staniland, Sarah S; Matsunaga, Tadashi
2010-08-01
Magnetotactic bacteria synthesize intracellular magnetosomes comprising membrane-enveloped magnetite crystals within the cell which can be manipulated by a magnetic field. Here, we report the first example of tellurium uptake and crystallization within a magnetotactic bacterial strain, Magnetospirillum magneticum AMB-1. These bacteria independently crystallize tellurium and magnetite within the cell. This is also highly significant as tellurite (TeO(3)(2-)), an oxyanion of tellurium, is harmful to both prokaryotes and eukaryotes. Additionally, due to its increasing use in high-technology products, tellurium is very precious and commercially desirable. The use of microorganisms to recover such molecules from polluted water has been considered as a promising bioremediation technique. However, cell recovery is a bottleneck in the development of this approach. Recently, using the magnetic property of magnetotactic bacteria and a cell surface modification technology, the magnetic recovery of Cd(2+) adsorbed onto the cell surface was reported. Crystallization within the cell enables approximately 70 times more bioaccumulation of the pollutant per cell than cell surface adsorption, while utilizing successful recovery with a magnetic field. This fascinating dual crystallization of magnetite and tellurium by magnetotactic bacteria presents an ideal system for both bioremediation and magnetic recovery of tellurite.
Tanaka, Masayoshi; Arakaki, Atsushi; Staniland, Sarah S.; Matsunaga, Tadashi
2010-01-01
Magnetotactic bacteria synthesize intracellular magnetosomes comprising membrane-enveloped magnetite crystals within the cell which can be manipulated by a magnetic field. Here, we report the first example of tellurium uptake and crystallization within a magnetotactic bacterial strain, Magnetospirillum magneticum AMB-1. These bacteria independently crystallize tellurium and magnetite within the cell. This is also highly significant as tellurite (TeO32−), an oxyanion of tellurium, is harmful to both prokaryotes and eukaryotes. Additionally, due to its increasing use in high-technology products, tellurium is very precious and commercially desirable. The use of microorganisms to recover such molecules from polluted water has been considered as a promising bioremediation technique. However, cell recovery is a bottleneck in the development of this approach. Recently, using the magnetic property of magnetotactic bacteria and a cell surface modification technology, the magnetic recovery of Cd2+ adsorbed onto the cell surface was reported. Crystallization within the cell enables approximately 70 times more bioaccumulation of the pollutant per cell than cell surface adsorption, while utilizing successful recovery with a magnetic field. This fascinating dual crystallization of magnetite and tellurium by magnetotactic bacteria presents an ideal system for both bioremediation and magnetic recovery of tellurite. PMID:20581185
1980-01-31
determine the percentage frequency of A’ occurroncr for any given limit of celling or vislb lty separately, or In omablastion of ceiling and vi- bility. The...January 1949 will be modif d to lit celling ’to 1,000 feet. Short periods of record prior to 1949 for these stations will be elsimiLtod from ’he stm.t...For Air Toroe Qtatio%%, the "no ceiling" cateaory Includes clear and scattered conditions, and cellings above 20,000 feet for period through June 194
Wang, Yi; Lee, Sui M; Dykes, Gary A
2013-01-01
Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.
Endothelialization of polyurethanes: Surface silanization and immobilization of REDV peptide.
Butruk-Raszeja, Beata A; Dresler, Magdalena S; Kuźmińska, Aleksandra; Ciach, Tomasz
2016-08-01
The paper presents method for chemical immobilization of arginine-glutamic acid-aspartic acid-valine (REDV) peptide on polyurethane surface. The peptide has been covalently bonded using silanes as a spacer molecules. The aim of this work was to investigate the proposed modification process and assess its biological effectiveness, especially in contact with blood and endothelial cells. Physicochemical properties were examined in terms of wettability, atomic composition and density of introduced functional groups and peptide molecules. Experiments with blood showed that material coating reduced number of surface-adhered platelets and fibrinogen molecules. In contrast to polyurethane (PU), there were no blood components deposited on REDV-modified materials (PU-REDV); fibrinogen adsorption on PU-REDV surface has been strongly reduced compared to PU. Analysis of cell adhesion after 1, 2, 3, 4, and 5 days of culture showed a significant increase of the cell-coated area on PU-REDV compared to PU. However, an intense cell growth appeared also on the control surface modified without the addition of REDV. Thus, the positive effect of REDV peptide on the adhesion of HUVEC could not be unequivocally confirmed. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Weihai; Xiong, Juan; Jiang, Li; Wang, Jianying; Mei, Tao; Wang, Xianbao; Gu, Haoshuang; Daoud, Walid A; Li, Jinhua
2017-11-08
As the electron transport layer (ETL) of perovskite solar cells, oxide semiconductor zinc oxide (ZnO) has been attracting great attention due to its relatively high mobility, optical transparency, low-temperature fabrication, and good environment stability. However, the nature of ZnO will react with the patron on methylamine, which would deteriorate the performance of cells. Although many methods, including high-temperature annealing, doping, and surface modification, have been studied to improve the efficiency and stability of perovskite solar cells with ZnO ETL, devices remain relatively low in efficiency and stability. Herein, we adopted a novel multistep annealing method to deposit a porous PbI 2 film and improved the quality and uniformity of perovskite films. The cells with ZnO ETL were fabricated at the temperature of <150 °C by solution processing. The power conversion efficiency (PCE) of the device fabricated by the novel annealing method increased from 15.5 to 17.5%. To enhance the thermal stability of CH 3 NH 3 PbI 3 (MAPbI 3 ) on the ZnO surface, a thin layer of small molecule [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) was inserted between the ZnO layer and perovskite film. Interestingly, the PCE of PCBM-passivated cells could reach nearly 19.1%. To our best knowledge, this is the highest PCE value of ZnO-based perovskite solar cells until now. More importantly, PCBM modification could effectively suppress the decomposition of MAPbI 3 and improve the thermal stability of cells. Therefore, the ZnO is a promising candidate of electron transport material for perovskite solar cells in future applications.
Li, Yong; Yang, Wei; Li, Xiaokang; Zhang, Xing; Wang, Cairu; Meng, Xiangfei; Pei, Yifeng; Fan, Xiangli; Lan, Pingheng; Wang, Chunhui; Li, Xiaojie; Guo, Zheng
2015-03-18
Titanium alloys with various porous structures can be fabricated by advanced additive manufacturing techniques, which are attractive for use as scaffolds for bone defect repair. However, modification of the scaffold surfaces, particularly inner surfaces, is critical to improve the osteointegration of these scaffolds. In this study, a biomimetic approach was employed to construct polydopamine-assisted hydroxyapatite coating (HA/pDA) onto porous Ti6Al4V scaffolds fabricated by the electron beam melting method. The surface modification was characterized with the field emission scanning electron microscopy, energy dispersive spectroscopy, water contact angle measurement, and confocal laser scanning microscopy. Attachment and proliferation of MC3T3-E1 cells on the scaffold surface were significantly enhanced by the HA/pDA coating compared to the unmodified surfaces. Additionally, MC3T3-E1 cells grown on the HA/pDA-coated Ti6Al4V scaffolds displayed significantly higher expression of runt-related transcription factor-2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 compared with bare Ti6Al4V scaffolds after culture for 14 days. Moreover, microcomputed tomography analysis and Van-Gieson staining of histological sections showed that HA/pDA coating on surfaces of porous Ti6Al4V scaffolds enhanced osteointegration and significantly promoted bone regeneration after implantation in rabbit femoral condylar defects for 4 and 12 weeks. Therefore, this study provides an alternative to biofunctionalized porous Ti6Al4V scaffolds with improved osteointegration and osteogenesis functions for orthopedic applications.
Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers.
Venkatesan, Swaminathan; Ngo, Evan; Khatiwada, Devendra; Zhang, Cheng; Qiao, Qiquan
2015-07-29
The role of electron selective interfaces on the performance and lifetime of polymer solar cells were compared and analyzed. Bilayer interfaces consisting of metal oxide films with cationic polymer modification namely poly ethylenimine ethoxylated (PEIE) were found to enhance device lifetime compared to bare metal oxide films when used as an electron selective cathode interface. Devices utilizing surface-modified metal oxide layers showed enhanced lifetimes, retaining up to 85% of their original efficiency when stored in ambient atmosphere for 180 days without any encapsulation. The work function and surface potential of zinc oxide (ZnO) and ZnO/PEIE interlayers were evaluated using Kelvin probe and Kelvin probe force microscopy (KPFM) respectively. Kelvin probe measurements showed a smaller reduction in work function of ZnO/PEIE films compared to bare ZnO films when aged in atmospheric conditions. KPFM measurements showed that the surface potential of the ZnO surface drastically reduces when stored in ambient air for 7 days because of surface oxidation. Surface oxidation of the interface led to a substantial decrease in the performance in aged devices. The enhancement in the lifetime of devices with a bilayer interface was correlated to the suppressed surface oxidation of the metal oxide layers. The PEIE passivated surface retained a lower Fermi level when aged, which led to lower trap-assisted recombination at the polymer-cathode interface. Further photocharge extraction by linearly increasing voltage (Photo-CELIV) measurements were performed on fresh and aged samples to evaluate the field required to extract maximum charges. Fresh devices with a bare ZnO cathode interlayer required a lower field than devices with ZnO/PEIE cathode interface. However, aged devices with ZnO required a much higher field to extract charges while aged devices with ZnO/PEIE showed a minor increase compared to the fresh devices. Results indicate that surface modification can act as a suitable passivation layer to suppress oxidation in metal oxide thin films for enhanced lifetime in inverted organic solar cells.
Zhang, Junji; Ma, Wenjing; He, Xiao-Peng; Tian, He
2017-03-15
Photoresponsive smart surfaces are promising candidates for a variety of applications in optoelectronics and sensing devices. The use of light as an order signal provides advantages of remote and noninvasive control with high temporal and spatial resolutions. Modification of the photoswitches with target biomacromolecules, such as peptides, DNA, and small molecules including folic acid derivatives and sugars, has recently become a popular strategy to empower the smart surfaces with an improved detection efficiency and specificity. Herein, we report the construction of photoswitchable self-assembled monolayers (SAMs) based on sugar (galactose/mannose)-decorated azobenzene derivatives and determine their photoswitchable, selective protein/cell adhesion performances via electrochemistry. Under alternate UV/vis irradiation, interconvertible high/low recognition and binding affinity toward selective lectins (proteins that recognize sugars) and cells that highly express sugar receptors are achieved. Furthermore, the cis-SAMs with a low binding affinity toward selective proteins and cells also exhibit minimal response toward unselective protein and cell samples, which offers the possibility in avoiding unwanted contamination and consumption of probes prior to functioning for practical applications. Besides, the electrochemical technique used facilitates the development of portable devices based on the smart surfaces for on-demand disease diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Ming-Hung; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; Haung, Chiung-Fang
In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples.more » The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.« less
Zhao, Nan; Zhu, Donghui
2014-01-01
Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials. PMID:25303459
Biocompatible, smooth, plasma-treated nickel-titanium surface--an adequate platform for cell growth.
Chrzanowski, W; Szade, J; Hart, A D; Knowles, J C; Dalby, M J
2012-02-01
High nickel content is believed to reduce the number of biomedical applications of nickel-titanium alloy due to the reported toxicity of nickel. The reduction in nickel release and minimized exposure of the cell to nickel can optimize the biocompatibility of the alloy and increase its use in the application where its shape memory effects and pseudoelasticity are particularly useful, e.g., spinal implants. Many treatments have been tried to improve the biocompatibility of Ni-Ti, and results suggest that a native, smooth surface could provide sufficient tolerance, biologically. We hypothesized that the native surface of nickel-titanium supports cell differentiation and insures good biocompatibility. Three types of surface modifications were investigated: thermal oxidation, alkali treatment, and plasma sputtering, and compared with smooth, ground surface. Thermal oxidation caused a drop in surface nickel content, while negligible chemistry changes were observed for plasma-modified samples when compared with control ground samples. In contrast, alkali treatment caused significant increase in surface nickel concentration and accelerated nickel release. Nickel release was also accelerated in thermally oxidized samples at 600 °C, while in other samples it remained at low level. Both thermal oxidation and alkali treatment increased the roughness of the surface, but mean roughness R(a) was significantly greater for the alkali-treated ones. Ground and plasma-modified samples had 'smooth' surfaces with R(a)=4 nm. Deformability tests showed that the adhesion of the surface layers on samples oxidized at 600 °C and alkali treatment samples was not sufficient; the layer delaminated upon deformation. It was observed that the cell cytoskeletons on the samples with a high nickel content or release were less developed, suggesting some negative effects of nickel on cell growth. These effects were observed primarily during initial cell contact with the surface. The most favorable cell responses were observed for ground and plasma-sputtered surfaces. These studies indicated that smooth, plasma-modified surfaces provide sufficient properties for cells to grow. © The Author(s), 2011.
NASA Technical Reports Server (NTRS)
Vanalstine, James M.
1993-01-01
Project NAS8-36955 D.O. #100 initially involved the following tasks: (1) evaluation of various coatings' ability to control wall wetting and surface zeta potential expression; (2) testing various methods to mix and control the demixing of phase systems; and (3) videomicroscopic investigation of cell partition. Three complementary areas were identified for modification and extension of the original contract. They were: (1) identification of new supports for column cell partition; (2) electrokinetic detection of protein adsorption; and (3) emulsion studies related to bioseparations.
NASA Astrophysics Data System (ADS)
Zhang, Huaizhi; Yan, Dong; Menike Korale Gedara, Sriyani; Dingiri Marakkalage, Sajith Sudeepa Fernando; Gamage Kasun Methlal, Jothirathna; Han, YingChao; Dai, HongLian
2017-03-01
The influences of crystallinity and surface modification of calcium phosphate nanoparticles (nCaP) on their drug loading capacity and drug release profile were studied in the present investigation. The CaP nanoparticles with different crystallinity were prepared by precipitation method under different temperatures. CaP nanoparticles with lower crystallinity exhibited higher drug loading capacity. The samples were characterized by XRD, FT-IR, SEM, TEM and BET surface area analyzer respectively. The drug loading capacity of nCaP was evaluated to tetracycline hydro-chloride (TCH). The internalization of TCH loaded nCaP in cancer cell was observed by florescence microscope. nCaP could be stabilized and dispersed in aqueous solution by poly(acrylic acid) surface modification agent, leading to enhanced drug loading capacity. The drug release was conducted in different pH environment and the experimental data proved that nCaP were pH sensitive drug carrier, suggesting that nCaP could achieve the controlled drug release in intracellular acidic environment. Furthermore, nCaP with higher crystallinity showed lower drug release rate than that of lower crystallinity, indicating that the drug release profile could be adjusted by crystallinity of nCaP. nCaP with adjustable drug loading and release properties are promising candidate as drug carrier for disease treatment.
Esparza-González, S C; Sánchez-Valdés, S; Ramírez-Barrón, S N; Loera-Arias, M J; Bernal, J; Meléndez-Ortiz, H Iván; Betancourt-Galindo, R
2016-12-01
Zinc oxide (ZnO) nanoparticles (NPs) have received considerable attention in the medical field because of their antibacterial properties, primarily for killing and reducing the activity of numerous microorganisms. The purpose of this study was to determine whether surface-modified ZnO NPs exhibit different properties compared with unmodified ZnO. The antimicrobial and cytotoxic properties of modified ZnO NPs as well as their effects on inflammatory cytokine production were evaluated. ZnO NPs were prepared using a wet chemical method. Then, the surfaces of these NPs were modified using 3-aminopropyltriethoxysilane (APTES) and dimethyl sulfoxide (DMSO) as modifying agents via a chemical hydrolysis method. According to infrared spectroscopy analysis (FTIR), the structure of the ZnO remained unchanged after modification. Antibacterial assays demonstrated that APTES modification is more effective at inducing an antimicrobial effect against Gram-negative bacteria than against Gram-positive bacteria. Cytotoxicity studies showed that cell viability was dose-dependent; moreover, pristine and APTES-modified ZnO exhibited low cytotoxicity, whereas DMSO-modified ZnO exhibited toxicity even at a low NP concentration. An investigation of inflammatory cytokine production demonstrated that the extent of stimulation was related to the ZnO NP concentration but not to the surface modification, except for IFN-γ and IL-10, which were not detected even at high NP concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of a high efficiency thin silicon solar cell
NASA Technical Reports Server (NTRS)
Storti, G.; Culik, J.; Wrigley, C.
1980-01-01
Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%.
Chen, Shu; Hu, Sheng; Smith, Elizabeth F; Ruenraroengsak, Pakatip; Thorley, Andrew J; Menzel, Robert; Goode, Angela E; Ryan, Mary P; Tetley, Teresa D; Porter, Alexandra E; Shaffer, Milo S P
2014-06-01
The use of a thermochemical grafting approach provides a versatile means to functionalise as-synthesised, bulk multi-walled carbon nanotubes (MWNTs) without altering their inherent structure. The associated retention of properties is desirable for a wide range of commercial applications, including for drug delivery and medical purposes; it is also pertinent to studies of intrinsic toxicology. A systematic series of water-compatible MWNTs, with diameter around 12 nm have been prepared, to provide structurally-equivalent samples predominantly stabilised by anionic, cationic, or non-ionic groups. The surface charge of MWNTs was controlled by varying the grafting reagents and subsequent post-functionalisation modifications. The degree of grafting was established by thermal analysis (TGA). High resolution transmission electron microscope (HRTEM) and Raman measurements confirmed that the structural framework of the MWNTs was unaffected by the thermochemical treatment, in contrast to a conventional acid-oxidised control which was severely damaged. The effectiveness of the surface modification was demonstrated by significantly improved solubility and stability in both water and cell culture medium, and further quantified by zeta-potential analysis. The grafted MWNTs exhibited relatively low bioreactivity on transformed human alveolar epithelial type 1-like cells (TT1) following 24 h exposure as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and lactate dehydrogenase release (LDH) assays. The exposure of TT1 cells to MWNTs suppressed the release of the inflammatory mediators, interleukin 6 (IL-6) and interleukin 8 (IL-8). TEM cell uptake studies indicated efficient cellular entry of MWNTs into TT1 cells, via a range of mechanisms. Cationic MWNTs showed a more substantial interaction with TT1 cell membranes than anionic MWNTs, demonstrating a surface charge effect on cell uptake. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Kai; Luo, Ying
2013-07-08
As one important category of biological molecules on the cell surface and in the extracellular matrix (ECM), glycosaminoglycans (GAGs) have been widely studied for biomedical applications. With the understanding that the biological functions of GAGs are driven by the complex dynamics of physiological and pathological processes, methodologies are desired to allow the elucidation of cell-GAG interactions with molecular level precision. In this study, a microtiter plate-based system was devised through a new surface modification strategy involving polydopamine (PDA) and GAG molecules functionalized with hydrazide chemical groups. A small library of GAGs including hyaluronic acid (with different molecular weights), heparin, and chondroitin sulfate was successfully immobilized via defined binding sites onto the microtiter plate surface under facile aqueous conditions. The methodology then allowed parallel studies of the GAG-modified surfaces in a high-throughput format. The results show that immobilized GAGs possess distinct properties to mediate protein adsorption, cell adhesion, and inflammatory responses, with each property showing dependence on the type and molecular weight of specific GAG molecules. The PDA-assisted immobilization of hydrazide-functionalized GAGs allows biomimetic attachment of GAG molecules and retains their bioactivity, providing a new methodology to systematically probe fundamental cell-GAG interactions to modulate the bioactivity and biocompatibility of biomaterials.
Modeling of ultra-small lipid nanoparticle surface charge for targeting glioblastoma.
Mendes, Maria; Miranda, Ana; Cova, Tânia; Gonçalves, Lídia; Almeida, António J; Sousa, João J; do Vale, Maria L C; Marques, Eduardo F; Pais, Alberto; Vitorino, Carla
2018-05-30
Surface modification of ultra-small nanostructured lipid carriers (usNLC) via introduction of a positive charge is hypothesized to prompt site-specific drug delivery for glioblastoma multiforme (GBM) treatment. A more effective interaction with negatively charged lipid bilayers, including the blood-brain barrier (BBB), will facilitate the nanoparticle access to the brain. For this purpose, usNLC with a particle size of 43.82 ± 0.03 nm and a polydispersity index of 0.224 were developed following a Quality by Design approach. Monomeric and gemini surfactants, either with conventional headgroups or serine-based ones, were tested for the surface modification, and the respective safety and efficacy to target GBM evaluated. A comprehensive in silico-in vitro approach is also provided based on molecular dynamics simulations and cytotoxicity studies. Overall, monomeric serine-derived surfactants displayed the best performance, considering altogether particle size, zeta potential, cytotoxic profile and cell uptake. Although conventional surfactants were able to produce usNLC with suitable physicochemical properties and cell uptake, their use is discouraged due to their high cytotoxicity. This study suggests that monomeric serine-derived surfactants are promising agents for developing nanosystems aiming at brain drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning
2014-10-08
The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.
Macke, Lars; Garritsen, Henk S P; Meyring, Wilhelm; Hannig, Horst; Pägelow, Ute; Wörmann, Bernhard; Piechaczek, Christoph; Geffers, Robert; Rohde, Manfred; Lindenmaier, Werner; Dittmar, Kurt E J
2010-04-01
Dendritic cells (DCs) are applied worldwide in several clinical studies of immune therapy of malignancies, autoimmune diseases, and transplantations. Most legislative bodies are demanding high standards for cultivation and transduction of cells. Closed-cell cultivating systems like cell culture bags would simplify and greatly improve the ability to reach these cultivation standards. We investigated if a new polyolefin cell culture bag enables maturation and adenoviral modification of human DCs in a closed system and compare the results with standard polystyrene flasks. Mononuclear cells were isolated from HLA-A*0201-positive blood donors by leukapheresis. A commercially available separation system (CliniMACS, Miltenyi Biotec) was used to isolate monocytes by positive selection using CD14-specific immunomagnetic beads. The essentially homogenous starting cell population was cultivated in the presence of granulocyte-macrophage-colony-stimulating factor and interleukin-4 in a closed-bag system in parallel to the standard flask cultivation system. Genetic modification was performed on Day 4. After induction of maturation on Day 5, mature DCs could be harvested and cryopreserved on Day 7. During the cultivation period comparative quality control was performed using flow cytometry, gene expression profiling, and functional assays. Both flasks and bags generated mature genetically modified DCs in similar yields. Surface membrane markers, expression profiles, and functional testing results were comparable. The use of a closed-bag system facilitated clinical applicability of genetically modified DCs. The polyolefin bag-based culture system yields DCs qualitatively and quantitatively comparable to the standard flask preparation. All steps including cryopreservation can be performed in a closed system facilitating standardized, safe, and reproducible preparation of therapeutic cells.
Gray, Cassie J; Engel, Annette S
2013-01-01
Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface. PMID:23151637
Gray, Cassie J; Engel, Annette S
2013-02-01
Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface.
Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen
2016-03-16
Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.
Pan, Chang-Jiang; Hou, Yu; Wang, Ya-Nan; Gao, Fei; Liu, Tao; Hou, Yan-Hua; Zhu, Yu-Fu; Ye, Wei; Wang, Ling-Ren
2016-10-01
Magnesium based alloys are attracting tremendous interests as the novel biodegradable metallic biomaterials. However, the rapid in vivo degradation and the limited surface biocompatibility restrict their clinical applications. Surface modification represents one of the important approaches to control the corrosion rate of Mg based alloys and to enhance the biocompatibility. In the present study, in order to improve the corrosion resistance and surface biocompatibility, magnesium alloy (AZ31B) was modified by the alkali heating treatment followed by the self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane (APTMS) and dopamine, respectively. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicated that the molecules were successfully immobilized on the magnesium alloy surface by the self-assembly. An excellent hydrophilic surface was obtained after the alkali heating treatment and the water contact angle increased to some degree after the self-assembly of dopamine, APTMS and 3-phosphonopropionic acid, however, the hydrophilicity of the modified samples was better than that of the pristine magnesium substrate. Due to the formation of the passivation layer after the alkali heating treatment, the corrosion resistance of the magnesium alloy was obviously improved. The corrosion rate further decreased to varying degrees after the self-assembly surface modification. The blood compatibility of the pristine magnesium was significantly improved after the surface modification. The hemolysis rate was reduced from 56% of the blank magnesium alloy to 18% of the alkali heating treated sample and the values were further reduced to about 10% of dopamine-modified sample and 7% of APTMS-modified sample. The hemolysis rate was below 5% for the 3-phosphonopropionic acid modified sample. As compared to the pristine magnesium alloy, fewer platelets were attached and activated on the modified surfaces and the activated partial thromboplastin times (APTT) were prolonged to some degree. Furthermore, the modified samples showed good cytocompatibility. Endothelial cells exhibited the improved proliferative profiles in terms of CCK-8 assay as compared to those on the pristine magnesium alloy. The modified samples showed better endothelial cell adhesion and spreading than the pristine magnesium alloy. Taking all these results into consideration, the method of this study can be used to modify the magnesium alloy surface to improve the corrosion resistance and biocompatibility simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa
2017-05-01
The toxicity of ZnO nanoparticles (NPs) is a growing concern due to its increasing use in several products including sunscreens, paints, pigments and ceramics for its antibacterial, antifungal, anti-corrosive and UV filtering properties. The toxicity of ZnO NPs is mostly attributed to the Zn2+ release causing an increase in the intracellular reactive oxygen species (ROS) level. The surface modification with a biocompatible ligand or a polymer can be a good strategy to reduce dissolution based toxicity. In two previous studies, the conflicting results with EDC/NHS coupling chemistry for ZnO NPs were reported. In this study, the same surface modification strategy with an emphasis on the stability of ZnO NPs is clarified. First, the density of -OH groups on the ZnO NPs is increased with hydrogen peroxide (H2O2) treatment, and then a silica coating on the ZnO NPs (Si-ZnO) surface is performed. Finally, a covalent attachment of bovine serum albumin (BSA) on three different concentrations of ZnO-Si is carried out by EDC/NHS coupling chemistry. ZnO NPs have a very high dissolution rate under acidic conditions of EDC/NHS coupling chemistry as determined from the ICP-MS analysis. In addition, the amount of ZnO NPs in coupling reaction has an important effect on the dissolution rate of Zn2+ and dependently BSA attached on the ZnO NP surfaces. Finally, the cytotoxicity of the BSA modified Si-ZnO NPs on human lung cancer (A549) and human skin fibroblast (HSF) is evaluated. Although an increased association of BSA modified ZnO NPs with cells was observed, the modification significantly decreased their cytotoxicity. This can be explained with the decreased active surface area of ZnO NPs with the surface modification. However, an increase in the mitochondrial depolarization and ROS production was observed depending on the amount of BSA coverage.
Ishio, Akira; Sasamura, Takeshi; Ayukawa, Tomonori; Kuroda, Junpei; Ishikawa, Hiroyuki O.; Aoyama, Naoki; Matsumoto, Kenjiroo; Gushiken, Takuma; Okajima, Tetsuya; Yamakawa, Tomoko; Matsuno, Kenji
2015-01-01
Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1R245A knock-in), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1R245A knock-in and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions. PMID:25378397
Butler, Georgina S; Dean, Richard A; Smith, Derek; Overall, Christopher M
2009-01-01
The modification of cell surface proteins by plasma membrane and soluble proteases is important for physiological and pathological processes. Methods to identify shed and soluble substrates are crucial to further define the substrate repertoire, termed the substrate degradome, of individual proteases. Identifying protease substrates is essential to elucidate protease function and involvement in different homeostatic and disease pathways. This characterisation is also crucial for drug target identification and validation, which would then allow the rational design of specific targeted inhibitors for therapeutic intervention. We describe two methods for identifying and quantifying shed cell surface protease targets in cultured cells utilising Isotope-Coded Affinity Tags (ICAT) and Isobaric Tags for Relative and Absolute Quantification (iTRAQ). As a model system to develop these techniques, we chose a cell-membrane expressed matrix metalloproteinase, MMP-14, but the concepts can be applied to proteases of other classes. By over-expression, or conversely inhibition, of a particular protease with careful selection of control conditions (e.g. vector or inactive protease) and differential labelling, shed proteins can be identified and quantified by mass spectrometry (MS), MS/MS fragmentation and database searching.
Smułek, Wojciech; Zdarta, Agata; Guzik, Urszula; Dudzińska-Bajorek, Beata; Kaczorek, Ewa
2015-07-01
The changes in cell surface properties of Rahnella sp. strain EK12 and modifications in genetic material after long-term contact with saponins and rhamnolipids, were investigated. Rhamnolipids caused a decrease of hydrophobicity in liquid cultures compared with saponins. On the other hand, in cultures with rhamnolipids, the addition of diesel oil results in a rapid rise of cell surface hydrophobicity. The similar effect was not so significant in the presence of saponins. For the bacteria grown in the presence of saponins or rhamnolipids, but without diesel oil, the ratio of unsaturated to saturated fatty acids decreased, in comparison to the control culture. The differences observed in hydrophobicity, zeta potential and fatty acids profiles, indicated various mechanisms of an interaction between a surfactant and a bacterial cells. The results have also shown an impact of the long-term contact on changes in genetic material of Rahnella sp. strain EK12 cells. Moreover, the presence of saponins led to significant increase of diesel oil biodegradation. Copyright © 2015 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yang; Shen, Xin; Zhou, Huan; Wang, Yingjun; Deng, Linhong
2016-05-01
We develop a novel chitosan-citric acid film (abbreviated as CS-CA) suitable for biomedical applications in this study. In this CS-CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS-CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS-CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS-CA film. This CS-CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.
Micro-masonry for 3D additive micromanufacturing.
Keum, Hohyun; Kim, Seok
2014-08-01
Transfer printing is a method to transfer solid micro/nanoscale materials (herein called 'inks') from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices.
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; ...
2017-05-16
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.
2017-01-01
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications. PMID:28508866
NASA Astrophysics Data System (ADS)
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.
2017-05-01
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.
Desmet, Tim; Billiet, T; Berneel, Elke; Cornelissen, Ria; Schaubroeck, David; Schacht, Etienne; Dubruel, Peter
2010-12-08
In the last decade, substantial research in the field of post-plasma grafting surface modification has focussed on the introduction of carboxylic acids on surfaces by grafting acrylic acid (AAc). In the present work, we report on an alternative approach for biomaterial surface functionalisation. Thin poly-ε-caprolactone (PCL) films were subjected to a dielectric barrier discharge Ar-plasma followed by the grafting of 2-aminoethyl methacrylate (AEMA) under UV-irradiation. X-ray photoelectron spectroscopy (XPS) confirmed the presence of nitrogen. The ninhydrin assay demonstrated, both quantitatively and qualitatively, the presence of free amines on the surface. Confocal fluorescence microscopy (CFM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to visualise the grafted surfaces, indicating the presence of pAEMA. Static contact angle (SCA) measurements indicated a permanent increase in hydrophilicity. Furthermore, the AEMA grafted surfaces were applied for comparing the physisorption and covalent immobilisation of gelatin. CFM demonstrated that only the covalent immobilisation lead to a complete coverage of the surface. Those gelatin-coated surfaces obtained were further coated using fibronectin. Osteosarcoma cells demonstrated better cell-adhesion and cell-viability on the modified surfaces, compared to the pure PCL films. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications.
Zangabad, Parham Sahandi; Mirkiani, Soroush; Shahsavari, Shayan; Masoudi, Behrad; Masroor, Maryam; Hamed, Hamid; Jafari, Zahra; Taghipour, Yasamin Davatgaran; Hashemi, Hura; Karimi, Mahdi; Hamblin, Michael R
2018-02-01
Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among different types of self-assembled NPs, liposomes stand out for their non-toxic nature, and their possession of dual hydrophilic-hydrophobic domains. Advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. Firstly, ligands for active targeting can be attached that are recognized by cognate receptors over-expressed on the target cells of tissues. Secondly, modification can be used to impart a stimulus-responsive or "smart" character to the liposomes, whereby the cargo is released on demand only when certain internal stimuli (pH, reducing agents, specific enzymes) or external stimuli (light, magnetic field or ultrasound) are present. Here, we review the field of smart liposomes for drug delivery applications.
Organic light emitting diode with surface modification layer
Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.
2017-09-12
An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).
Sánchez-Rodríguez, Sandra Paola; Morán-García, Areli del Carmen; Bolonduro, Olurotimi; Dordick, Jonathan S; Bustos-Jaimes, Ismael
2016-04-15
Virus-like particles (VLPs) are the product of the self-assembly, either in vivo or in vitro, of structural components of viral capsids. These particles are excellent scaffolds for surface display of biomolecules that can be used in vaccine development and tissue-specific drug delivery. Surface engineering of VLPs requires structural stability and chemical reactivity. Herein, we report the enhanced assembly, colloidal stabilization and fluorescent labeling of primate erythroparvovirus 1 (PE1V), generally referred to as parvovirus B19. In vitro assembly of the VP2 protein of PE1V produces VLPs, which are prone to flocculate and hence undergo limited chemical modification by thiol-specific reagents like the fluorogenic monobromobimane (mBBr). We determined that the addition of 0.2M l-arginine during the assembly process produced an increased yield of soluble VLPs with good dispersion stability. Fluorescent labeling of VLPs suspended in phosphate buffered saline (PBS) added with 0.2M l-Arg was achieved in significantly shorter times than the flocculated VLPs assembled in only PBS buffer. Finally, to demonstrate the potential application of this approach, mBBr-labeled VLPs were successfully used to tag human hepatoma HepG2 cells. This new method for assembly and labeling PE1V VLPs eases its applications and provides insights on the manipulation of this biomaterial for further developments. Application of virus-derived biomaterials sometimes requires surface modification for diverse purposes, including enhanced cell-specific interaction, the inclusion of luminescent probes for bioimaging, or the incorporation of catalytic properties for the production of enzyme nanocarriers. In this research, we reported for the first time the colloidal stabilization of the primate erythroparvovirus 1 (PE1V) virus-like particles (VLPs). Also, we report the chemical modification of the natural Cys residues located on the surface of these VLPs with a fluorescent probe, as well as its application for tagging hepatoma cells in vitro. Keeping in mind that PE1V is a human pathogen, virus-host interactions already exist in human cells, and they can be exploited for therapeutic and research aims. This study will impact on the speed in which the scientific community will be able to manipulate PE1V VLPs for diverse purposes. Additionally, this study may provide insights on the colloidal properties of these VLPs as well as in the effect of different protein additives used for protein stabilization. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kumari, Usha; Mittal, Swati; Mittal, Ajay Kumar
2012-04-01
Surface ultrastructures of gill filaments and secondary lamellae of Rita rita and Cirrhinus mrigala, inhabiting different ecological habitat, were investigated to unravel adaptive modifications. R. rita is a sluggish, bottom dwelling carnivorous catfish, which inhabits regions of river with accumulations of dirty water. It retains its viability for long time if taken out of water. C. mrigala is an active bottom dwelling Indian major carp, which lives in relatively clean water and dies shortly after taken out of water. In R. rita, gill septa between gill filaments are reduced. Microridges on epithelial cells covering gill filaments are often continuous and arranged concentrically. Secondary lamellae are extensive. The epithelium appears corrugated, show irregular elevations and shallow depressions, and microridges on epithelial cells appear fragmented. In C. mrigala, in contrast, the gill septa are extensive. Microridges on epithelial cells covering gill filaments are fragmented. Secondary lamellae are less extensive. The epithelium appears smooth and microridges on epithelial cells are relatively inconspicuous. These differences have been considered adaptive modification in relation to habit and ecological niches inhabited by two fish species. Presence of mucous goblet cells on gill filaments is discussed in relation to their functions including precipitation of the sediments and preventing clogging of gill filaments. Infrequent mucous goblet cells in the epithelium of secondary lamellae in two fish species are considered an adaptation, minimizing thickness of the epithelium to reduce barrier between blood and water for favoring gasses exchange with increased efficiency. Copyright © 2011 Wiley-Liss, Inc.
Influence of Surface Modifications on the Spatiotemporal Microdistribution of Quantum Dots In Vivo.
Nekolla, Katharina; Kick, Kerstin; Sellner, Sabine; Mildner, Karina; Zahler, Stefan; Zeuschner, Dagmar; Krombach, Fritz; Rehberg, Markus
2016-05-01
For biomedical applications of nanoconstructs, it is a general prerequisite to efficiently reach the desired target site. In this regard, it is crucial to determine the spatiotemporal distribution of nanomaterials at the microscopic tissue level. Therefore, the effect of different surface modifications on the distribution of microinjected quantum dots (QDs) in mouse skeletal muscle tissue has been investigated. In vivo real-time fluorescence microscopy and particle tracking reveal that carboxyl QDs preferentially attach to components of the extracellular matrix (ECM), whereas QDs coated with polyethylene glycol (PEG) show little interaction with tissue constituents. Transmission electron microscopy elucidates that carboxyl QDs adhere to collagen fibers as well as basement membranes, a type of ECM located on the basolateral side of blood vessel walls. Moreover, carboxyl QDs have been found in endothelial junctions as well as in caveolae of endothelial cells, enabling them to translocate into the vessel lumen. The in vivo QD distribution is confirmed by in vitro experiments. The data suggest that ECM components act as a selective barrier depending on QD surface modification. For future biomedical applications, such as targeting of blood vessel walls, the findings of this study offer design criteria for nanoconstructs that meet the requirements of the respective application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd; Sirelkhatim, Amna; Mohamad, Dasmawati; Hasan, Habsah; Seeni, Azman; Rahman, Rosliza Abdul
2014-02-01
The effects of surface modification of zinc oxide (ZnO) powder and UVA illumination on the powder towards Escherichia coli and Staphylococcus aureus were investigated. FESEM-EDS results showed that oxygen annealing increased the O:Zn ratio on the surface of ZnO-rod and ZnO-plate samples. Surface conductances of ZnO-rod and ZnO-plate pellets were reduced from 1.05 nS to 0.15 nS and 1.34 nS to 0.23 nS, respectively. Meanwhile, UVA illumination on the surface of the ZnO-rod and ZnO-plate samples was found to improve surface conductance to 7.08 nS and 6.51 nS, respectively, due to the release of charge carrier. Photoluminescence results revealed that oxygen annealing halved the UV emission intensity and green emission intensity, presumably caused by oxygen absorption in the ZnO lattice. The antibacterial results showed that oxygen-treated ZnO exhibited slightly higher growth inhibition on E. coli and S. aureus compared with unannealed ZnO. UVA illumination on ZnO causes the greatest inhibition toward E. coli and S. aureus. Under the UVA excitation, the inhibition of E. coli increased by 18% (ZnO-rod) and 13% (ZnO-plate) while the inhibition of S. aureus increased by 22% (ZnO-rod) and 21% (ZnO-plate). Release of reactive oxygen species were proposed in antibacterial mechanisms, which were aided by surface modification and UVA photoactivation. The reactive oxygen species disrupted the DNA and protein synthesis of the bacterial cell, causing bacteriostatic effects toward E. coli and S. aureus.
Chu, Yanjie; Oum, Yoon Hyeun; Carrico, Isaac S
2016-01-01
As a result of their ability to integrate into the genome of both dividing and non-dividing cells, lentiviruses have emerged as a promising vector for gene delivery. Targeted gene transduction of specific cells and tissues by lentiviral vectors has been a major goal, which has proven difficult to achieve. We report a novel targeting protocol that relies on the chemoselective attachment of cancer specific ligands to unnatural glycans on lentiviral surfaces. This strategy exhibits minimal perturbation on virus physiology and demonstrates remarkable flexibility. It allows for targeting but can be more broadly useful with applications such as vector purification and immunomodulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Biodesulfurization of Dibenzothiophene by Microbial Cells Coated with Magnetite Nanoparticles
Shan, GuoBin; Xing, JianMin; Zhang, HuaiYing; Liu, HuiZhou
2005-01-01
Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (δs) was 8.39 emu · g−1. The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability. PMID:16085841
Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E
2014-12-01
The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.
A little sugar goes a long way: The cell biology of O-GlcNAc
2015-01-01
Unlike the complex glycans decorating the cell surface, the O-linked β-N-acetyl glucosamine (O-GlcNAc) modification is a simple intracellular Ser/Thr-linked monosaccharide that is important for disease-relevant signaling and enzyme regulation. O-GlcNAcylation requires uridine diphosphate–GlcNAc, a precursor responsive to nutrient status and other environmental cues. Alternative splicing of the genes encoding the O-GlcNAc cycling enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) yields isoforms targeted to discrete sites in the nucleus, cytoplasm, and mitochondria. OGT and OGA also partner with cellular effectors and act in tandem with other posttranslational modifications. The enzymes of O-GlcNAc cycling act preferentially on intrinsically disordered domains of target proteins impacting transcription, metabolism, apoptosis, organelle biogenesis, and transport. PMID:25825515
Synaptic structure and function are altered by the neddylation inhibitor MLN4924
Scudder, Samantha L.; Patrick, Gentry N.
2015-01-01
The posttranslational modification of proteins by the ubiquitin-like small molecule NEDD8 has previously been shown to be vital in a number of cell signaling pathways. In particular, conjugation of NEDD8 (neddylation) serves to regulate protein ubiquitination through modifications to E3 ubiquitin ligases. Despite the prevalence of NEDD8 in neurons, very little work has been done to characterize the role of this modifier in these cells. Here, we use the recently developed NEDD8 Activating Enzyme (NAE) inhibitor MLN4924 and report evidence of a role for NEDD8 in regulating mammalian excitatory synapses. Application of this drug to dissociated rat hippocampal neurons caused reductions in synaptic strength, surface glutamate receptor levels, dendritic spine width, and spine density, suggesting that neddylation is involved in the maintenance of synapses. PMID:25701678
Improved bone marrow stromal cell adhesion on micropatterned titanium surfaces.
Iskandar, Maria E; Cipriano, Aaron F; Lock, Jaclyn; Gott, Shannon C; Rao, Masaru P; Liu, Huinan
2012-01-01
Implant longevity is desired for all bone replacements and fixatives. Titanium (Ti) implants fail due to lack of juxtaposed bone formation, resulting in implant loosening. Implant surface modifications have shown to affect the interactions between the implant and bone. In clinical applications, it is crucial to improve osseointegration and implant fixation at the implant and bone interface. Moreover, bone marrow derived cells play a significant role for implant and tissue integration. Therefore, the objective of this study is to investigate how surface micropatterning on Ti influences its interactions with bone marrow derived cells containing mesenchymal and hematopoietic stem cells. Bone marrow derived mesenchymal stem cells (BMSC) have the capability of differentiating into osteoblasts that contribute to bone growth, and therefore implant/bone integration. Hematopoietic stem cell derivatives are precursor cells that contribute to inflammatory response. By using all three cells naturally contained within bone marrow, we mimic the physiological environment to which an implant is exposed. Primary rat bone marrow derived cells were seeded onto Ti with surfaces composed of arrays of grooves of equal width and spacing ranging from 0.5 to 50 µm, fabricated using a novel plasma-based dry etching technique. Results demonstrated enhanced total cell adhesion on smaller micrometer-scale Ti patterns compared with larger micrometer-scale Ti patterns, after 24-hr culture. Further studies are needed to determine bone marrow derived cell proliferation and osteogenic differentiation potential on micropatterned Ti, and eventually nanopatterned Ti.
NASA Astrophysics Data System (ADS)
Dien To, Thien; Nguyen, Anh Tuan; Nhat Thanh Phan, Khoa; Thu Thi Truong, An; Doan, Tin Chanh Duc; Mau Dang, Chien
2015-12-01
Chemical modification of silicon nitride (SiN) surfaces by silanization has been widely studied especially with 3-(aminopropyl)triethoxysilane (APTES) and 3-(glycidyloxypropyl) dimethylethoxysilane (GOPES). However few reports performed the experimental and computational studies together. In this study, surface modification of SiN surfaces with GOPES and APTES covalently bound with glutaraldehyde (GTA) was investigated for antibody immobilization. The monoclonal anti-cytokeratin-FITC (MACF) antibody was immobilized on the modified SiN surfaces. The modified surfaces were characterized by water contact angle measurements, atomic force microscopy and fluorescence microscopy. The FITC-fluorescent label indicated the existence of MACF antibody on the SiN surfaces and the efficiency of the silanization reaction. Absorption of APTES and GOPES on the oxidized SiN surfaces was computationally modeled and calculated by Materials Studio software. The computational and experimental results showed that modification of the SiN surfaces with APTES and GTA was more effective than the modification with GOPES.
Neural Cell Chip Based Electrochemical Detection of Nanotoxicity
Kafi, Md. Abdul; Cho, Hyeon-Yeol; Choi, Jeong Woo
2015-01-01
Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD) or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C), C(RGD)4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot) or three dimensional (rod or pillar) like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD), graphene oxide (GO) and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies. PMID:28347059
Raju, S Vamsee; Lin, Vivian Y; Liu, Limbo; McNicholas, Carmel M; Karki, Suman; Sloane, Peter A; Tang, Liping; Jackson, Patricia L; Wang, Wei; Wilson, Landon; Macon, Kevin J; Mazur, Marina; Kappes, John C; DeLucas, Lawrence J; Barnes, Stephen; Kirk, Kevin; Tearney, Guillermo J; Rowe, Steven M
2017-01-01
Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction may contribute to chronic obstructive pulmonary disease pathogenesis and is a potential therapeutic target. We sought to determine the acute effects of cigarette smoke on ion transport and the mucociliary transport apparatus, their mechanistic basis, and whether deleterious effects could be reversed with the CFTR potentiator ivacaftor (VX-770). Primary human bronchial epithelial (HBE) cells and human bronchi were exposed to cigarette smoke extract (CSE) and/or ivacaftor. CFTR function and expression were measured in Ussing chambers and by surface biotinylation. CSE-derived acrolein modifications on CFTR were determined by mass spectroscopic analysis of purified protein, and the functional microanatomy of the airway epithelia was measured by 1-μm resolution optical coherence tomography. CSE reduced CFTR-dependent current in HBE cells (P < 0.05) and human bronchi (P < 0.05) within minutes of exposure. The mechanism involved CSE-induced reduction of CFTR gating, decreasing CFTR open-channel probability by approximately 75% immediately after exposure (P < 0.05), whereas surface CFTR expression was partially reduced with chronic exposure, but was stable acutely. CSE treatment of purified CFTR resulted in acrolein modifications on lysine and cysteine residues that likely disrupt CFTR gating. In primary HBE cells, CSE reduced airway surface liquid depth (P < 0.05) and ciliary beat frequency (P < 0.05) within 60 minutes that was restored by coadministration with ivacaftor (P < 0.005). Cigarette smoking transmits acute reductions in CFTR activity, adversely affecting the airway surface. These effects are reversible by a CFTR potentiator in vitro, representing a potential therapeutic strategy in patients with chronic obstructive pulmonary disease with chronic bronchitis.
Probing the ATP site of GRP78 with nucleotide triphosphate analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun
GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78 ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligandsmore » (ATP analogs) to a receptor (GRP78 ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78 ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg ++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg ++-dependent, as the removal of Mg ++ nearly abolished binding to GRP78 ATPase. The AMPPCP-Mg ++ structure showed evidence for the critical role of Mg ++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg ++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg ++. The 2'-deoxyATP structure showed the conformation of the bound nucleotide flipped out of the active site, explaining the low affinity binding to GRP78 and suggesting that the 2'-OH group is essential for the high affinity binding to GRP78. Altogether, our results demonstrate that GRP78 ATPase possesses nucleotide specificity more relaxed than previously anticipated and can tolerate certain modifications to the nucleobase 7-position and, to a lesser extent, the beta-gamma bridging atom, thereby providing a possible atomic mechanism underlying the transmembrane transport of the ATP analogs.« less
Probing the ATP site of GRP78 with nucleotide triphosphate analogs
Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun; ...
2016-05-04
GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78 ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligandsmore » (ATP analogs) to a receptor (GRP78 ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78 ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg ++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg ++-dependent, as the removal of Mg ++ nearly abolished binding to GRP78 ATPase. The AMPPCP-Mg ++ structure showed evidence for the critical role of Mg ++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg ++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg ++. The 2'-deoxyATP structure showed the conformation of the bound nucleotide flipped out of the active site, explaining the low affinity binding to GRP78 and suggesting that the 2'-OH group is essential for the high affinity binding to GRP78. Altogether, our results demonstrate that GRP78 ATPase possesses nucleotide specificity more relaxed than previously anticipated and can tolerate certain modifications to the nucleobase 7-position and, to a lesser extent, the beta-gamma bridging atom, thereby providing a possible atomic mechanism underlying the transmembrane transport of the ATP analogs.« less
Biodegradable composite scaffolds: a strategy to modulate stem cell behaviour.
Armentano, Ilaria; Fortunati, Elena; Mattioli, Samantha; Rescignano, Nicolatta; Kenny, José M
2013-04-01
The application of new biomaterial technologies offers the potential to direct the stem cell fate, targeting the delivery of cells and reducing immune rejection, thereby supporting the development of regenerative medicine. Cells respond to their surrounding structure and with nanostructures exhibit unique proliferative and differentiation properties. This review presents the relevance, the promising perspectives and challenges of current biodegradable composite scaffolds in terms of material properties, processing technology and surface modification, focusing on significant recent patents in these fields. It has been reported how biodegradable porous composite scaffolds can be engineered with initial properties that reproduce the anisotropy, viscoelasticity, tension-compression non-linearity of different tissues by introducing specific nanostructures. Moreover the modulation of electrical, morphological, surface and topographic scaffold properties enables specific stem cell response. Recent advances in nanotechnology have allowed to engineer novel biomaterials with these complexity levels. Understanding the specific biological response triggered by various aspects of the fibrous environment is important in guiding the design and engineering of novel substrates that mimic the native cell matrix interactions in vivo.
NASA Astrophysics Data System (ADS)
Kamiya, Hidehiro; Iijima, Motoyuki
2010-08-01
Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.
Surface modification to prevent oxide scale spallation
Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A
2013-07-16
A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.
NASA Astrophysics Data System (ADS)
Xie, Meng; Zhang, Feng; Liu, Lijiao; Zhang, Yanan; Li, Yeping; Li, Huaming; Xie, Jimin
2018-05-01
In order to improve the efficiency of anticancer drug delivery, a graphene oxide (GO) based drug delivery system modificated by natural peptide protamine sulfate (PRM) and sodium alginate (SA) was established via electrostatic attraction at each step of adsorption based on layer-by-layer self-assembly. The nanocomposites were then loaded with anticancer drug doxorubicin hydrochloride (DOX) to estimate the feasibility as drug carriers. The nanocomposites loaded with DOX revealed a remarkable pH-sensitive drug release property. The modification with protamine sulfate and sodium alginate could not only impart the nanocomposites an improved dispersibility and stability under physiological pH, but also suppress the protein adhesion. Due to the high water dispersibility and the small particle size, GO-PRM/SA nanocomposites were able to be uptaken by MCF-7 cells. It was found that GO-PRM/SA nanocomposites exhibited no obvious cytotoxicity towards MCF-7 cells, while GO-PRM/SA-DOX exhibited better cytotoxicity than GO-DOX. Therefore, the GO-PRM/SA nanocomposites were feasible as drug delivery vehicles.
Factors affecting microbial adhesion to stainless steel and other materials used in medical devices.
Verran, J; Whitehead, K
2005-11-01
The role of biofilm in medical device associated infections is well documented. Biofilms are more resistant to antibiotics than planktonic cells, these are extremely difficult to treat. Prevention strategies include efforts to insert implants under stringent aseptic conditions, and also encompass the development of novel materials which interfere with the initial attachment of microorganisms to the surface of the device. Microbial cells also attach onto hygienic surfaces in the hospital setting, and thereby pose a cross-infection problem. In this case, vigorous cleaning and sanitizing regimes may be employed in addition to any surface modifications. Many factors affect the initial attachment of organisms to inert substrata, and their subsequent retention or removal/detachment, including the physical and chemical nature and location of the substratum, the type of organic material and microorganisms potentially fouling the surface, and the nature of the interface (solid-liquid in the body; solid-air on environmental surfaces). Focusing on one factor, surface topography, it is apparent that many further variables need to be defined in order to fully understand the interactions occurring between the cell and surface. It is therefore important when modifying one substratum surface property in order to reduce adhesion, to also consider other potentially confounding factors.
NASA Astrophysics Data System (ADS)
Silva, Simone dos Santos
In the last decades, tissue engineering has emerged as a potential therapeutical tool aimed at developing substitutes that are able to restore proper function of the damaged organs/tissues. Nature-inspired routes involving natural origin polymer-based systems represent an attractive alternative to produce novel materials by mimicking the tissue environment required for tissue regeneration. Moreover, further modifications of these systems allow the adjustment of their properties in accordance with the requirements for successful biomedical applications. The main goal of the present thesis is to develop and modify natural origin polymer-based systems using simple methodologies such as sol-gel, surface modification by means of plasma treatment and blending of chitosan with proteins (soy protein isolate and silk fibroin). A sol-gel method was used to improve the bulk properties of chitosan by the incorporation of an inorganic component at the sub-nanometric level. Chitosan/siloxane hybrid materials were synthesised, where essentially urea bridges covalently bond the chitosan to the polysiloxane network. These bifunctional materials exhibit interesting photoluminescence features and a bioactive behaviour. In most situations in the biomedical field, the surface of a biomaterial is in direct contact with living tissues. Therefore, the surface characteristics play a fundamental role on the implant biocompatibility. In this thesis, nitrogen and argon plasma treatment was applied on chitosan membranes in order to improve their surface properties. The applied modifications promoted differences on surface chemistry, wettability and roughness, which reflected in a significant improvement of fibroblast adhesion and proliferation onto chitosan membranes. Besides the surface modification, blending of chitosan with proteins such as soy protein isolate and silk fibroin was also used to modify the bulk properties of chitosan. In situ cross-linking with glutaraldehyde solutions was used to enhance the interaction between the components of the blend. Hence, membranes with different morphologies, water absorption and degradability were obtained. The biological assays suggested that the cross-linking with lower glutaraldehyde concentration promotes better cell adhesion on the membranes. The morphological characterization showed that both surface roughness surface and surface energy were dependent on soy protein content. Structural investigations by FTIR and NMR indicated that the blends are not completely miscible due to a weak polysaccharide-protein interaction. In another related work, novel hydrogels were produced combining Bombyx mori silk fibroin and chitosan. In this case, these systems were cross-linked with genipin. These hydrogels were freeze dried to obtain cross-linked chitosan/silk sponges. Rheological and mechanical properties, structural aspects and morphological features of the porous structures were evaluated. The results revealed stable and ordered structures, similar porosities, and swelling capability that depended on the pH. The cytotoxicity assay indicated that cellular viability was about 100% in all sponges and for all time points studied (1, 3, 7 and 14 days), demonstrating the extremely low cytotoxicity levels of the materials. Cell studies using chondrocytes-like cells seeded onto sponges, including cell viability (MTS assay), proliferation (DNA test), morphology (SEM analysis) and matrix production (GAGs quantification), showed a significant high adhesion, proliferation and matrix production with the time of culture. The findings in this work suggested that the properties of the sponges can be manipulated by either change chitosan/silk fibroin ratio or through genipin cross-linking. Parallel to this study, the possibility of obtaining modified silk nanometric nets using electrospinning processing from regenerated silk fibroin/formic acid with addition of genipin was explored. Modified silk nanofibers with diameters ranging from 140 nm to 590 nm were developed. The changes on the secondary structure of nanofibers, induced by the reaction of silk fibroin with genipin, promoted a higher integrity of these modified nanofibers in water. In summary, the findings from these works demonstrated the potential and versatility of the proposed strategies in obtaining different structures (e.g. membranes, hydrogels) using mixtures of chitosan with proteins or with inorganic agents for improving the performance of natural origin polymer-based materials to be used in biomedical applications.
NASA Astrophysics Data System (ADS)
Zhou, Zhaoli
Cell-surface interaction is crucial in many cellular functions such as movement, growth, differentiation, proliferation and survival. In the present work, we have developed several strategies to design and prepare synthetic polymeric materials with selected cues to control cell attachment. To promote neuronal cell adhesion on the surfaces, biocompatible, non-adhesive PEG-based materials were modified with neurotransmitter acetylcholine functionalities to produce hydrogels with a range of porous structures, swollen states, and mechanical strengths. Mice hippocampal cells cultured on the hydrogels showed differences in number, length of processes and exhibited different survival rates, thereby highlighting the importance of chemical composition and structure in biomaterials. Similar strategies were used to prepare polymer brushes to assess how topographical cues influence neuronal cell behaviors. The brushes were prepared using the "grown from" method through surface-initiated atom transfer radical polymerization (SI-ATRP) reactions and further patterned via UV photolithography. Protein absorption tests and hippocampal neuronal cell culture of the brush patterns showed that both protein and neuronal cells can adhere to the patterns and therefore can be guided by the patterns at certain length scales. We also prepared functional polymers to discourage attachment of undesirable cells on the surfaces. For example, we synthesized PEG-perfluorinated alkyl amphiphilic surfactants to modify polystyrene-block-poly(ethylene-ran-butylene)- block-polyisoprene (SEBI or K3) triblock copolymers for marine antifouling/fouling release surface coatings. Initial results showed that the polymer coated surfaces can facilitate removal of Ulva sporelings on the surfaces. In addition, we prepared both bioactive and dual functional biopassive/bioactive antimicrobial coatings based on SEBI polymers. Incubating the polymer coated surfaces with gram-positive bacteria (S. aureus), gram-negative bacteria (E. coli) and marine bacteria (C. marina ) species demonstrated that, unlike biopassive surfaces, the dual functionality polymer coated surfaces can significantly reduce both live and dead cells, without killing the cells in the culture media. The knowledge gained from those studies offers opportunities for further modification and potential applications of those types of polymers in the future.
NASA Astrophysics Data System (ADS)
Toma, B. F.; Baciu, R. E.; Bejinariu, C.; Cimpoieşu, N.; Ciuntu, B. M.; Toma, S. L.; Burduhos-Nergis, D. P.; Timofte, D.
2018-06-01
In this paper, layers of TiO2 were deposited, by magnetron sputtering, on a glass support. The parameters of the deposition process were kept constant except for the O2/(Ar + O2) ratio that varied on three levels. The physical and mechanical properties of the layers obtained were investigated by SEM optical microscopy, electronics, AFM and X-ray diffraction. The bioactivity of TiO2 surfaces was investigated by growing M3C3-E1 osteoblast cells produced by RIKEN Cell Bank (Japan) for a period of 5 days. The modification of the working environment in the enclosure determines both the phasic modification in the TiO2 film, respectively the amount of the anatase or rutile phase and the decrease of the average roughness of the film from 112.3nm to 56.7nm. The research has demonstrated that the finer layers with a high content of anatase promote the growth of M3C3-E1 cells.
Polyethylenimine/silk fibroin multilayers deposited nanofibrics for cell culture.
Ye, Xinguo; Li, Sheng; Chen, Xuanxuan; Zhan, Yingfei; Li, Xiaonan
2017-01-01
Scaffold with good three-dimensional (3D) structure and appropriate surface modification is essential to tissue regeneration in the treatment of tissue or organ failure. Silk fibroin (SF) is a promising scaffolding material with high biocompatibility, cytocompatibility, biodegradability and flexibility. In this study, positively charged polyethylenimine (PEI) and negatively charged SF assembled alternately onto cellulose nanofibrous substrates hydrolyzed from electrospun cellulose acetate nanofibrous mats. The obtained nanofibrous membranes modified with multiple layers of PEI/SF were characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. L929 cells were applied to examine the cytocompatibility of PEI/SF coated membranes. The results demonstrated that the nanofibrous membranes after modification with multiple layers of PEI/SF maintained 3D nanofibrous structure, and cells cultured on them showed good adherence and spreading on them as well, which indicated that PEI/SF coated membranes had potential application in tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R
2015-07-06
The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.
Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R.
2015-01-01
The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed. PMID:26109634
García-García, José M; López, Laura; París, Rodrigo; Núñez-López, María Teresa; Quijada-Garrido, Isabel; de la Peña Zarzuelo, Enrique; Garrido, Leoncio
2012-01-01
Often bladder dysfunction and diseases lead to therapeutic interventions that require partial or complete replacement of damaged tissue. For this reason, the development of biomaterials to repair the bladder by promoting the adhesion and growth of urothelial cells is of interest. With this aim, a modified copolyester of biocompatible and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)] was used as scaffold for porcine urothelial cell culture. In addition to good biocompatibility, the surface of P(HB-co-HV) substrates was modified to provide both, higher hydrophilicity and a better interaction with urothelial cells. Chemical treatments with ethylenediamine (ED) and sodium hydroxide (NaOH) led to substrate surfaces with decreasing hydrophobicity and provided functional groups that enable the grafting of bioactive molecules, such as a laminin derived YIGSR sequence. Physico-chemical properties of modified substrates were studied and compared with those of the pristine P(HB-co-HV). Urothelial cell morphology on treated substrates was studied. The results showed that focal attachment and cell-related properties were improved for peptide grafted polymer compared with both, the unmodified and functionalized copolyester. Copyright © 2011 Wiley Periodicals, Inc.
Steinhaus, Stephanie; Stark, Yvonne; Bruns, Stephanie; Haile, Yohannes; Scheper, Thomas; Grothe, Claudia; Behrens, Peter
2010-04-01
The immobilization of polysialic acid (polySia) on glass substrates has been investigated with regard to the applicability of this polysaccharide as a novel, biocompatible and bioresorbable material for tissue engineering, especially with regard to its use in nerve regeneration. PolySia, a homopolymer of alpha-2,8-linked sialic acid, is involved in post-translational modification of the neural cell adhesion molecule (NCAM). The degradation of polySia can be controlled which makes it an interesting material for coating and for scaffold construction in tissue engineering. Here, we describe the immobilization of polySia on glass surfaces via an epoxysilane linker. Whereas glass surfaces will not actually be used in nerve regeneration scaffolds, they provide a simple and efficient means for testing various methods for the investigation of immobilized polySia. The modified surfaces were investigated with contact angle measurements and the quantity of immobilized polySia was examined by the thiobarbituric acid assay and a specific polySia-ELISA. The interactions between the polySia-modified surface and immortalized Schwann cells were evaluated via cell adhesion and cell viability assays. The results show that polySia can be immobilized on glass surfaces via the epoxysilane linker and that surface-bound polySia has no toxic effects on Schwann cells. Therefore, as a key substance in the development of vertebrates and as a favourable substrate for the cultivation of Schwann cells, it offers interesting features for the use in nerve guidance tubes for treatment of peripheral nerve injuries.
Chemotherapy changes cytotoxic activity of NK-cells in cancer patients
NASA Astrophysics Data System (ADS)
Stakheyeva, M.; Yunusova, N.; Patysheva, M.; Mitrofanova, I. V.; Faltin, V.; Tuzikov, S.; Slonimskaya, E.
2017-09-01
In recent years, it has been shown that under certain conditions cytostatic agents (chemotherapy and radiotherapy) can restore the functioning of the immune system impaired by malignancy burden. The modifications of biological properties by cytostatics acting make cancer cells visible for the immune system recognition and elimination. Eighteen patients diagnosed with primary local breast (8) and gastric (10) cancer between 2014 and 2016 were enrolled in the investigation. The phenotypic features of NK were assessed by flow cytometry using mAb (BD Pharmingen) against CD45 (common leukocyte antigen) and CD56 (NK-marker) for surface staining, CD107a (LAMP-1), Perforin (PF) and Gransime B (GB) for intracellular staining. We examined NK populations in the peripheral blood of cancer patients before treatment and in 5 days after second course of NACT. We found that NK populations produced PF in cancer patents, which were absent before treatment, increased after NACT. Their emergence can be associated with the immunoactivating effects of chemotherapy, realized by the modification of tumor cells or elimination of immunosuppressive cells.
NASA Technical Reports Server (NTRS)
Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert
2007-01-01
The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.
Using of Quantum Dots in Biology and Medicine.
Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina
2018-01-01
Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.
Okada, Masahiro; Yasuda, Shoji; Kimura, Tsuyoshi; Iwasaki, Mitsunobu; Ito, Seishiro; Kishida, Akio; Furuzono, Tsutomu
2006-01-01
A composite consisting of titanium dioxide (TiO2) particle, the surface of which was modified with amino groups, and a silicone substrate through covalent bonding at their interface was developed, and antibacterial and cell adhesion activities of the composite were evaluated. The density of the amino groups on the TiO2 particle surface was controlled by the reaction time of the modification reaction. The degradation rate of CH3CHO in the presence of the TiO2 particles under UV irradiation decreased with an increase in the amino group density on the TiO2 surface. On the other hand, the number of L929 cells adhering on the TiO2/silicone composite increased with an increase in the amino group density. From the above two results, the optimum density of amino groups for both photoreactivity and cell adhesiveness was estimated to be 2.0-4.0 molecules/nm2. The optimum amino group-modified TiO2/silicone composite sheet (amino group density, 3.0 molecules/nm2) showed an effective antibacterial activity for Escherichia coli bacteria under UV irradiation. (c) 2005 Wiley Periodicals, Inc
NASA Astrophysics Data System (ADS)
Li, Xudong; Cai, Shu; Zhang, Wenjuang; Xu, Guohua; Zhou, Wei
2009-08-01
The bioactive glass-ceramics in the CaO-P 2O 5-Na 2O-SrO-ZnO system were synthesized by the sol-gel technique, and then chemically treated at different pH values to study the solubility and surface modification. Samples sintered at 650 °C for 4 h consisted of the crystalline phase β-Ca 2P 2O 7 and the glass matrix. After soaking in the solution at pH 1.0, the residual glass matrix on the surface appeared entirely dissolved and no new phase could be detected. Whereas at pH 3.0, web-like layer exhibiting peaks corresponding to CaP 2O 6 was formed and covered the entire surface of the sample. When conducted at pH 10.0, only part of the glass matrix was dissolved and a new phase Ca 4P 6O 19 was precipitated, forming the petaline layer. The chemical treatment can easily change the surface morphologies and phase composition of this bioactive glass-ceramics. The higher level of surface roughness resulting from the new-formed layer would improve the interface bonding and benefit for cell adhesion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakudo, N.; Ikenaga, N.; Ikeda, F.
2011-01-07
Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will bemore » simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.« less
NASA Astrophysics Data System (ADS)
Reza, M. S.; Aqida, S. N.; Ismail, I.
2018-03-01
This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.
Targeted Drug Delivery Based on Gold Nanoparticle Derivatives.
Gholipourmalekabadi, Mazaher; Mobaraki, Mohammadmahdi; Ghaffari, Maryam; Zarebkohan, Amir; Omrani, Vahid Fallah; Urbanska, Aleksandra M; Seifalian, Alexander
2017-01-01
Drug delivery systems are effective and attractive methods which allow therapeutic substances to be introduced into the body more effectively and safe by having tunable delivery rate and release target site. Gold nanoparticles (AuNPs) have a myriad of favorable physical, chemical, optical, thermal and biological properties that make them highly suitable candidates as non-toxic carriers for drug and gene delivery. The surface modifications of AuNPs profoundly improve their circulation, minimize aggregation rates, enhance attachment to therapeutic molecules and target agents due to their nano range size which further increases their ability to cross cell membranes and reduce overall cytotoxicity. This comprehensive article reviews the applications of the AuNPs in drug delivery systems along with their corresponding surface modifications. The highlighting results obtained from the preclinical trial are promising and next five years have huge possibility move to the clinical setting. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Marxer, C Galli; Coen, M Collaud; Bissig, H; Greber, U F; Schlapbach, L
2003-10-01
Interpretation of adsorption kinetics measured with a quartz crystal microbalance (QCM) can be difficult for adlayers undergoing modification of their mechanical properties. We have studied the behavior of the oscillation amplitude, A(0), and the decay time constant, tau, of quartz during adsorption of proteins and cells, by use of a home-made QCM. We are able to measure simultaneously the frequency, f, the dissipation factor, D, the maximum amplitude, A(0), and the transient decay time constant, tau, every 300 ms in liquid, gaseous, or vacuum environments. This analysis enables adsorption and modification of liquid/mass properties to be distinguished. Moreover the surface coverage and the stiffness of the adlayer can be estimated. These improvements promise to increase the appeal of QCM methodology for any applications measuring intimate contact of a dynamic material with a solid surface.
NASA Technical Reports Server (NTRS)
Radin, Shula; Ducheyne, P.; Ayyaswamy, P. S.
2003-01-01
Biomimetically modified bioactive materials with bone-like surface properties are attractive candidates for use as microcarriers for 3-D bone-like tissue engineering under simulated microgravity conditions of NASA designed rotating wall vessel (RWV) bioreactors. The simulated microgravity environment is attainable under suitable parametric conditions of the RWV bioreactors. Ca-P containing bioactive glass (BG), whose stimulatory effect on bone cell function had been previously demonstrated, was used in the present study. BG surface modification via reactions in solution, resulting formation of bone-like minerals at the surface and adsorption of serum proteins is critical for obtaining the stimulatory effect. In this paper, we report on the major effects of simulated microgravity conditions of the RWV on the BG reactions surface reactions and protein adsorption in physiological solutions. Control tests at normal gravity were conducted at static and dynamic conditions. The study revealed that simulated microgravity remarkably enhanced reactions involved in the BG surface modification, including BG dissolution, formation of bone-like minerals at the surface and adsorption of serum proteins. Simultaneously, numerical models were developed to simulate the mass transport of chemical species to and from the BG surface under normal gravity and simulated microgravity conditions. The numerical results showed an excellent agreement with the experimental data at both testing conditions.
NASA Astrophysics Data System (ADS)
Baqué, Laura C.; Soldati, Analía L.; Teixeira-Neto, Erico; Troiani, Horacio E.; Schreiber, Anja; Serquis, Adriana C.
2017-01-01
The modification of surface composition after long-term operation is one of the most reported degradation mechanisms of (La,Sr)(Co,Fe)O3-δ (LSCFO) cathodes for Solid Oxide Fuel Cells (SOFCs). Nevertheless, its effect on the oxygen reduction reaction kinetics of porous LSCFO cathodes has not been yet reliably established. In this work, La- and Sr-enrichment at the LSCFO surface of porous cathodes has been induced after 50 h aging at 800 °C under air. Such cation redistribution can extend up to ∼400 nm depth under the LSCFO surface as detected by high resolution Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy maps acquired inside the cathode pores. The observed surface chemical changes hamper the oxygen surface exchange reaction at the LSCFO/gas interface. Accordingly, a suitable Electrochemical Impedance Spectroscopy analysis revealed that the oxygen ion conductivity remains practically unaltered during the aging treatment while the oxygen surface exchange resistance increases up to 1.8 times. As a result, the cathode impedance response deteriorates within the 10-0.1 Hz frequency range during the aging treatment, resulting in a total cathode area specific resistance increase of 150%. The methodology adopted has demonstrated to be very valuable for studying the degradation of SOFC cathodes produced by the modification of surface composition.
Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis.
Partridge, Emily A; Le Roy, Christine; Di Guglielmo, Gianni M; Pawling, Judy; Cheung, Pam; Granovsky, Maria; Nabi, Ivan R; Wrana, Jeffrey L; Dennis, James W
2004-10-01
The Golgi enzyme beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is up-regulated in carcinomas and promotes the substitution of N-glycan with poly N-acetyllactosamine, the preferred ligand for galectin-3 (Gal-3). Here, we report that expression of Mgat5 sensitized mouse cells to multiple cytokines. Gal-3 cross-linked Mgat5-modified N-glycans on epidermal growth factor and transforming growth factor-beta receptors at the cell surface and delayed their removal by constitutive endocytosis. Mgat5 expression in mammary carcinoma was rate limiting for cytokine signaling and consequently for epithelial-mesenchymal transition, cell motility, and tumor metastasis. Mgat5 also promoted cytokine-mediated leukocyte signaling, phagocytosis, and extravasation in vivo. Thus, conditional regulation of N-glycan processing drives synchronous modification of cytokine receptors, which balances their surface retention against loss via endocytosis.
Zeng, Wenjin; Liu, Xingming; Guo, Xiangru; Niu, Qiaoli; Yi, Jianpeng; Xia, Ruidong; Min, Yong
2017-03-24
This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK) solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.
Epithelial Microvilli Establish an Electrostatic Barrier to Microbial Adhesion
Bennett, Kaila M.; Walker, Sharon L.
2014-01-01
Microvilli are membrane extensions on the apical surface of polarized epithelia, such as intestinal enterocytes and tubule and duct epithelia. One notable exception in mucosal epithelia is M cells, which are specialized for capturing luminal microbial particles; M cells display a unique apical membrane lacking microvilli. Based on studies of M cell uptake under different ionic conditions, we hypothesized that microvilli may augment the mucosal barrier by providing an increased surface charge density from the increased membrane surface and associated glycoproteins. Thus, electrostatic charges may repel microbes from epithelial cells bearing microvilli, while M cells are more susceptible to microbial adhesion. To test the role of microvilli in bacterial adhesion and uptake, we developed polarized intestinal epithelial cells with reduced microvilli (“microvillus-minus,” or MVM) but retaining normal tight junctions. When tested for interactions with microbial particles in suspension, MVM cells showed greatly enhanced adhesion and uptake of particles compared to microvillus-positive cells. This preference showed a linear relationship to bacterial surface charge, suggesting that microvilli resist binding of microbes by using electrostatic repulsion. Moreover, this predicts that pathogen modification of electrostatic forces may contribute directly to virulence. Accordingly, the effacement effector protein Tir from enterohemorrhagic Escherichia coli O157:H7 expressed in epithelial cells induced a loss of microvilli with consequent enhanced microbial binding. These results provide a new context for microvillus function in the host-pathogen relationship, based on electrostatic interactions. PMID:24778113
Liao, Y; Williams, T J; Ye, J; Charlesworth, J; Burns, B P; Poljak, A; Raftery, M J; Cavicchioli, R
2016-11-22
Biofilms enhance rates of gene exchange, access to specific nutrients, and cell survivability. Haloarchaea in Deep Lake, Antarctica, are characterized by high rates of intergenera gene exchange, metabolic specialization that promotes niche adaptation, and are exposed to high levels of UV-irradiation in summer. Halorubrum lacusprofundi from Deep Lake has previously been reported to form biofilms. Here we defined growth conditions that promoted the formation of biofilms and used microscopy and enzymatic digestion of extracellular material to characterize biofilm structures. Extracellular DNA was found to be critical to biofilms, with cell surface proteins and quorum sensing also implicated in biofilm formation. Quantitative proteomics was used to define pathways and cellular processes involved in forming biofilms; these included enhanced purine synthesis and specific cell surface proteins involved in DNA metabolism; post-translational modification of cell surface proteins; specific pathways of carbon metabolism involving acetyl-CoA; and specific responses to oxidative stress. The study provides a new level of understanding about the molecular mechanisms involved in biofilm formation of this important member of the Deep Lake community.
Liao, Y.; Williams, T. J.; Ye, J.; Charlesworth, J.; Burns, B. P.; Poljak, A.; Raftery, M. J.; Cavicchioli, R.
2016-01-01
Biofilms enhance rates of gene exchange, access to specific nutrients, and cell survivability. Haloarchaea in Deep Lake, Antarctica, are characterized by high rates of intergenera gene exchange, metabolic specialization that promotes niche adaptation, and are exposed to high levels of UV-irradiation in summer. Halorubrum lacusprofundi from Deep Lake has previously been reported to form biofilms. Here we defined growth conditions that promoted the formation of biofilms and used microscopy and enzymatic digestion of extracellular material to characterize biofilm structures. Extracellular DNA was found to be critical to biofilms, with cell surface proteins and quorum sensing also implicated in biofilm formation. Quantitative proteomics was used to define pathways and cellular processes involved in forming biofilms; these included enhanced purine synthesis and specific cell surface proteins involved in DNA metabolism; post-translational modification of cell surface proteins; specific pathways of carbon metabolism involving acetyl-CoA; and specific responses to oxidative stress. The study provides a new level of understanding about the molecular mechanisms involved in biofilm formation of this important member of the Deep Lake community. PMID:27874045
Surface-modified bacterial nanofibrillar PHB scaffolds for bladder tissue repair.
Karahaliloğlu, Zeynep; Demirbilek, Murat; Şam, Mesut; Sağlam, Necdet; Mızrak, Alpay Koray; Denkbaş, Emir Baki
2016-01-01
The aim of the study is in vitro investigation of the feasibility of surface-modified bacterial nanofibrous poly [(R)-3-hydroxybutyrate] (PHB) graft for bladder reconstruction. In this study, the surface of electrospun bacterial PHB was modified with PEG- or EDA via radio frequency glow discharge method. After plasma modification, contact angle of EDA-modified PHB scaffolds decreased from 110 ± 1.50 to 23 ± 0.5 degree. Interestingly, less calcium oxalate stone deposition was observed on modified PHB scaffolds compared to that of non-modified group. Results of this study show that surface-modified scaffolds not only inhibited calcium oxalate growth but also enhanced the uroepithelial cell viability and proliferation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zonghai; Amine, Khalil; Belharouak, Ilias
An active material for an electrochemical device wherein a surface of the active material is modified by a surface modification agent, wherein the surface modification agent is an organometallic compound.
Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie
2015-08-01
In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.
Hydrogenated amorphous silicon coatings may modulate gingival cell response
NASA Astrophysics Data System (ADS)
Mussano, F.; Genova, T.; Laurenti, M.; Munaron, L.; Pirri, C. F.; Rivolo, P.; Carossa, S.; Mandracci, P.
2018-04-01
Silicon-based materials present a high potential for dental implant applications, since silicon has been proven necessary for the correct bone formation in animals and humans. Notably, the addition of silicon is effective to enhance the bioactivity of hydroxyapatite and other biomaterials. The present work aims to expand the knowledge of the role exerted by hydrogen in the biological interaction of silicon-based materials, comparing two hydrogenated amorphous silicon coatings, with different hydrogen content, as means to enhance soft tissue cell adhesion. To accomplish this task, the films were produced by plasma enhanced chemical vapor deposition (PECVD) on titanium substrates and their surface composition and hydrogen content were analyzed by means of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectrophotometry (FTIR) respectively. The surface energy and roughness were measured through optical contact angle analysis (OCA) and high-resolution mechanical profilometry respectively. Coated surfaces showed a slightly lower roughness, compared to bare titanium samples, regardless of the hydrogen content. The early cell responses of human keratinocytes and fibroblasts were tested on the above mentioned surface modifications, in terms of cell adhesion, viability and morphometrical assessment. Films with lower hydrogen content were endowed with a surface energy comparable to the titanium surfaces. Films with higher hydrogen incorporation displayed a lower surface oxidation and a considerably lower surface energy, compared to the less hydrogenated samples. As regards mean cell area and focal adhesion density, both a-Si coatings influenced fibroblasts, but had no significant effects on keratinocytes. On the contrary, hydrogen-rich films increased manifolds the adhesion and viability of keratinocytes, but not of fibroblasts, suggesting a selective biological effect on these cells.
NASA Astrophysics Data System (ADS)
Icriverzi, Madalina; Rusen, Laurentiu; Sima, Livia Elena; Moldovan, Antoniu; Brajnicov, Simona; Bonciu, Anca; Mihailescu, Natalia; Dinescu, Maria; Cimpean, Anisoara; Roseanu, Anca; Dinca, Valentina
2018-05-01
The use of smart coatings with tunable characteristics in bioengineering fields is directly correlated with the surface chemical and topographical properties, the method of preparation, and also with the type of cells implied for the specific application. In this work, a versatile surface modification technique based on the use of lasers (Matrix-Assisted Pulsed Laser Evaporation (MAPLE)) was used to yield poly(N-isopropylacrylamide) (pNIPAM) and its derivatives (amine, azide and amide terminated pNIPAM) functional and termoresponsive thin films. Surface properties of pNIPAM and its derivative films such as morphology, roughness and hydrophobic/hydrophilic character, as well as the thermoresponsive capacity were investigated by atomic force microscopy and contact angle measurements. The chemical characteristics of the pNIPAM based thin films were analysed by Fourier Transform Infrared Spectroscopy (FTIR). The chemical functionality was kept for all the samples obtained by MAPLE and the thermoresponse was demonstrated by the change in the contact angle and thickness values when the temperature was shifted from 37 °C to 24 °C for all the materials tested, with a smaller change for maleimide terminated pNIPAM. Biological assays performed in vitro (fluorescence microscopy and Scanning Electron Microscopy (SEM)) confirmed the conditioning of the early mesenchymal stem cell (MSC) growth by specific chemistry of the coatings. The cell imaging analysis revealed no cytotoxic effect of pNIPAM surfaces irrespective of type of functionalization. An increased proliferation rate of the cells grown on pNIPAM-azide surfaces and a lower cell density on pNIPAM-maleimide surfaces compared to the pNIPAM surfaces was observed, which can direct their use to potential surfaces in regenerative medicine approaches.
Surface modification of porous titanium with rice husk as space holder
NASA Astrophysics Data System (ADS)
Wang, Xinsheng; Hou, Junjian; Liu, Yanpei
2018-06-01
Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.
Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas
2014-07-21
We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.
Hathroubi, Skander; Beaudry, Francis; Provost, Chantale; Martelet, Léa; Segura, Mariela; Gagnon, Carl A; Jacques, Mario
2016-07-01
Actinobacillus pleuropneumoniae (APP), the etiologic agent of porcine pleuropneumonia, forms biofilms on biotic and abiotic surfaces. APP biofilms confers resistance to antibiotics. To our knowledge, no studies have examined the role of APP biofilm in immune evasion and infection persistence. This study was undertaken to (i) investigate biofilm-associated LPS modifications occurring during the switch to biofilm mode of growth; and (ii) characterize pro-inflammatory cytokines expression in porcine pulmonary alveolar macrophages (PAMs) and proliferation in porcine PBMCs challenged with planktonic or biofilm APP cells. Extracted lipid A samples from biofilm and planktonic cultures were analyzed by HPLC high-resolution, accurate mass spectrometry. Biofilm cells displayed significant changes in lipid A profiles when compared with their planktonic counterparts. Furthermore, in vitro experiments were conducted to examine the inflammatory response of PAMs exposed to UV-inactivated APP grown in biofilm or in suspension. Relative mRNA expression of pro-inflammatory genes IL1, IL6, IL8 and MCP1 decreased in PAMs when exposed to biofilm cells compared to planktonic cells. Additionally, the biofilm state reduced PBMCs proliferation. Taken together, APP biofilm cells show a weaker ability to stimulate innate immune cells, which could be due, in part, to lipid A structure modifications. © The Author(s) 2016.
2010-01-22
Davidson, Y.Y.; McWhorter, C.S.; Soper , S.A.; McCarley, R.L. Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical...J.; Hupert, M.L.; Patterson, D.; Gottert, J.; McCarley, R.L.; Nikitopoulos, D.; Murphy, M.C.; Soper , S.A. Highly efficient circulating tumor cell
Selective cell response on natural polymer bio-interfaces textured by femtosecond laser
NASA Astrophysics Data System (ADS)
Daskalova, A.; Trifonov, A.; Bliznakova, I.; Nathala, C.; Ajami, A.; Husinsky, W.; Declercq, H.; Buchvarov, I.
2018-02-01
This study reports on the evaluation of laser processed natural polymer-chitosan, which is under consideration as a biointerface used for temporary applications as skin and cartilage substitutes. It is employed for tissue engineering purposes, since it possesses a significant degree of biocompatibility and biodegradability. Chitosan-based thin films were processed by femtosecond laser radiation to enhance the surface properties of the material. Various geometry patterns were produced on polymer surfaces and employed to examine cellular adhesion and orientation. The topography of the modified zones was observed using scanning electron microscopy and confocal microscopy. Test of the material cytotoxicity was performed by evaluating the life/dead cell correlation. The obtained results showed that texturing with femtosecond laser pulses is appropriate method to initiate a predefined cellular response. Formation of surface modifications in the form of foams with an expansion of the material was created under laser irradiation with a number of applied laser pulses from N = 1-5. It is shown that irradiation with N > 5 results in disturbance of microfoam. Material characterization reveals a decrease in water contact angle values after laser irradiation of chitosan films. Consequently, changes in surface roughness of chitosan thin-film surface result in its functionalization. Cultivation of MC3T3 and ATMSC cells show cell orientational migration concerning different surface patterning. The influence of various pulse durations (varying from τ = 30-500 fs) over biofilms surface was examined regarding the evolution of surface morphology. The goal of this study was to define the optimal laser conditions (laser energy, number of applied pulses, and pulse duration) to alter surface wettability properties and porosity to improve material performance. The acquired set of results indicate the way to tune the surface properties to optimize cell-interface interaction.
Zemtsova, Elena G; Arbenin, Andrei Y; Yudintceva, Natalia M; Valiev, Ruslan Z; Orekhov, Evgeniy V; Smirnov, Vladimir M
2017-10-13
In this work, we analyze the efficiency of the modification of the implant surface. This modification was reached by the formation of a two-level relief hierarchy by means of a sol-gel approach that included dip coating with subsequent shock drying. Using this method, we fabricated a nanoporous layer with micron-sized defects on the nanotitanium surface. The present work continues an earlier study by our group, wherein the effect of osteoblast-like cell adhesion acceleration was found. In the present paper, we give the results of more detailed evaluation of coating efficiency. Specifically, cytological analysis was performed that included the study of the marker levels of osteoblast-like cell differentiation. We found a significant increase in the activity of alkaline phosphatase at the initial incubation stage. This is very important for implantation, since such an effect assists the decrease in the induction time of implant engraftment. Moreover, osteopontin expression remains high for long expositions. This indicates a prolonged osteogenic effect in the coating. The results suggest the acceleration of the pre-implant area mineralization and, correspondingly, the potential use of the developed coatings for bone implantation.
Synthesis of Core-shell Lanthanide-doped Upconversion Nanocrystals for Cellular Applications.
Ai, Xiangzhao; Lyu, Linna; Mu, Jing; Hu, Ming; Wang, Zhimin; Xing, Bengang
2017-11-10
Lanthanide-doped upconversion nanocrystals (UCNs) have attracted much attention in recent years based on their promising and controllable optical properties, which allow for the absorption of near-infrared (NIR) light and can subsequently convert it into multiplexed emissions that span over a broad range of regions from the UV to the visible to the NIR. This article presents detailed experimental procedures for high-temperature co-precipitation synthesis of core-shell UCNs that incorporate different lanthanide ions into nanocrystals for efficiently converting deep-tissue penetrable NIR excitation (808 nm) into a strong blue emission at 480 nm. By controlling the surface modification with biocompatible polymer (polyacrylic acid, PAA), the as-prepared UCNs acquires great solubility in buffer solutions. The hydrophilic nanocrystals are further functionalized with specific ligands (dibenzyl cyclooctyne, DBCO) for localization on the cell membrane. Upon NIR light (808 nm) irradiation, the upconverted blue emission can effectively activate the light-gated channel protein on the cell membrane and specifically regulate the cation (e.g., Ca 2+ ) influx in the cytoplasm. This protocol provides a feasible methodology for the synthesis of core-shell lanthanide-doped UCNs and subsequent biocompatible surface modification for further cellular applications.
Zemtsova, Elena G.; Arbenin, Andrei Y.; Valiev, Ruslan Z.; Orekhov, Evgeniy V.; Smirnov, Vladimir M.
2017-01-01
In this work, we analyze the efficiency of the modification of the implant surface. This modification was reached by the formation of a two-level relief hierarchy by means of a sol-gel approach that included dip coating with subsequent shock drying. Using this method, we fabricated a nanoporous layer with micron-sized defects on the nanotitanium surface. The present work continues an earlier study by our group, wherein the effect of osteoblast-like cell adhesion acceleration was found. In the present paper, we give the results of more detailed evaluation of coating efficiency. Specifically, cytological analysis was performed that included the study of the marker levels of osteoblast-like cell differentiation. We found a significant increase in the activity of alkaline phosphatase at the initial incubation stage. This is very important for implantation, since such an effect assists the decrease in the induction time of implant engraftment. Moreover, osteopontin expression remains high for long expositions. This indicates a prolonged osteogenic effect in the coating. The results suggest the acceleration of the pre-implant area mineralization and, correspondingly, the potential use of the developed coatings for bone implantation. PMID:29027930
NASA Astrophysics Data System (ADS)
Yoo, Young-Eun; Park, Jinwoo; Kim, Woong
2018-03-01
We present a novel method for enhancing the energy density of an electrical double layer capacitor (EDLC). Surface modification of single-walled carbon nanotube (SWNT) electrodes significantly affects the rest potential (E0) of EDLCs; acid treatment and polyethyleneimine (PEI) coating of SWNTs shift E0 toward more positive and more negative values, respectively. Adjusting E0 towards the center of the electrolyte stability window can increase the cell voltage and hence the energy density. PEI coating on SWNTs increases the cell voltage from 0.8 V to 1.7 V in tetrabutylammonium perchlorate (TBAP)/tetrahydrofuran (THF) electrolyte, and from 2.5 V to 3.1 V in tetraethylammonium tetrafluoroborate (TEABF4)/3-cyanopropionic acid methyl ester (CPAME), respectively. Moreover, PEI-SWNT EDLCs exhibit excellent cycling stability (92% of capacitance retention over 10000 cycles). We attribute the shift in E0 to a change in the Fermi level of SWNTs owing to the surface charge modification. Injection of electrical charge into PEI-SWNTs consistently yielded similar trends and thus validated our hypothesis. Our results may help to push various electrolytes that have been overlooked so far to new frontiers for obtaining high energy-density supercapacitors.
NASA Astrophysics Data System (ADS)
Urbaniak, Daniel J.
2004-11-01
In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens via a burst effect. Improved surface characterization methods were another aspect of this research. New nanomechanical testing techniques were developed and used to evaluate the viscoelastic surface mechanical properties of low modulus surface-modified specimens. Dynamic nanoindentation characterization techniques were designed to measure the storage modulus and loss modulus of compliant viscoelastic substrate surfaces. The results of these experiments were compared with modulus data obtained by conventional dynamic mechanical spectroscopy. Nanoscratch testing methods were also developed that qualitatively compared the abrasion resistance of surface-modified substrates. (Abstract shortened by UMI.)
Detection of squamous carcinoma cells using gold nanoparticles
NASA Astrophysics Data System (ADS)
Dai, Wei-Yun; Lee, Sze-tsen; Hsu, Yih-Chih
2015-03-01
The goal of this study is to use gold nanoparticle as a diagnostic agent to detect human squamous carcinoma cells. Gold nanoparticles were synthesized and the gold nanoparticle size was 34.3 ± 6.2 nm. Based on the over-expression of epidermal growth factor receptor (EGFR) biomarkers in squamous carcinoma cells, we hypothesized that EGFR could be a feasible biomarker with a target moiety for detection. We further modified polyclonal antibodies of EGFR on the surface of gold nanoparticles. We found selected squamous carcinoma cells can be selectively detected using EGFR antibody-modified gold nanoparticles via receptor-mediated endocytosis. Cell death was also examined to determine the survival status of squamous carcinoma cells with respect to gold nanoparticle treatment and EGFR polyclonal antibody modification.
Webster, Megan; Lee, Hae Yang; Pepa, Kristi; Winkler, Nathan; Kretzschmar, Ilona; Castaldi, Marco J
2018-03-01
With the world population expected to reach 8.5 billion by 2030, demand for access to electricity and clean water will grow at unprecedented rates. Municipal solid waste combusted at waste to energy (WtE) facilities decreases waste volume and recovers energy, but yields ash as a byproduct, the beneficial uses of which are actively being investigated. Ash is intrinsically hydrophobic, highly oxidized, and exhibits high melting points and low conductivities. The research presented here explores the potential of ash to be used as an electrode material for a microbial fuel cell (MFC). This application requires increased conductivity and hydrophilicity, and a lowered melting point. Three ash samples were investigated. By applying an electric potential in the range 50-125 V across the ash in the presence of water, several key property changes were observed: lower melting point, a color change within the ash, evidence of changes in surface morphologies of ash particles, and completely wetting water-ash contact angles. We analyzed this system using a variety of analytical techniques including sector field inductively coupled plasma mass spectrometry, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and tensiometry. Ability to make such surface modifications and significant property changes could allow ash to become useful in an application such as an electrode material for a MFC.
Treuel, Lennart; Brandholt, Stefan; Maffre, Pauline; Wiegele, Sarah; Shang, Li; Nienhaus, G Ulrich
2014-01-28
Recent studies have firmly established that cellular uptake of nanoparticles is strongly affected by the presence and the physicochemical properties of a protein adsorption layer around these nanoparticles. Here, we have modified human serum albumin (HSA), a serum protein often used in model studies of protein adsorption onto nanoparticles, to alter its surface charge distribution and investigated the consequences for protein corona formation around small (radius ∼5 nm), dihydrolipoic acid-coated quantum dots (DHLA-QDs) by using fluorescence correlation spectroscopy. HSA modified by succinic anhydride (HSAsuc) to generate additional carboxyl groups on the protein surface showed a 3-fold decreased binding affinity toward the nanoparticles. A 1000-fold enhanced affinity was observed for HSA modified by ethylenediamine (HSAam) to increase the number of amino functions on the protein surface. Remarkably, HSAsuc formed a much thicker protein adsorption layer (8.1 nm) than native HSA (3.3 nm), indicating that it binds in a distinctly different orientation on the nanoparticle, whereas the HSAam corona (4.6 nm) is only slightly thicker. Notably, protein binding to DHLA-QDs was found to be entirely reversible, independent of the modification. We have also measured the extent and kinetics of internalization of these nanoparticles without and with adsorbed native and modified HSA by HeLa cells. Pronounced variations were observed, indicating that even small physicochemical changes of the protein corona may affect biological responses.
Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.
Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal
2014-04-01
This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.
Advances in the surface modification techniques of bone-related implants for last 10 years
Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop
2014-01-01
At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626
NASA Astrophysics Data System (ADS)
Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J. T.
2011-02-01
Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.
Gao, Wenli; Feng, Bo; Lu, Xiong; Wang, Jianxin; Qu, Shuxin; Weng, Jie
2012-08-01
This study describes the fabrication of two types of multilayered films onto titanium by layer-by-layer (LBL) self-assembly, using poly-L-lysine (PLL) as the cationic polyelectrolyte and deoxyribonucleic acid (DNA) as the anionic polyelectrolyte. The assembling process of each component was studied using atomic force microscopy (AFM) and quartz crystal balance (QCM). Zeta potential of the LBL-coated microparticles was measured by dynamic light scattering. Titanium substrates with or without multilayered films were used in osteoblast cell culture experiments to study cell proliferation, viability, differentiation, and morphology. Results of AFM and QCM indicated the progressive build-up of the multilayered coatings. The surface morphology of three types of multilayered films showed elevations in the nanoscale range. The data of zeta potential showed that the surface terminated with PLL displayed positive charge while the surface terminated with DNA displayed negative charge. The proliferation of osteoblasts on modified titanium films was found to be greater than that on control (p < 0.05) after 3 and 7 days culture, respectively. Alamar blue measurement showed that the PLL/DNA-modified films have higher cell viability (p < 0.05) than the control. Still, the alkaline phosphatase activity assay revealed a better differentiated phenotype on three types of multilayered surfaces compared to noncoated controls. Collectively our results suggest that PLL/DNA were successfully used to surface engineer titanium via LBL technique, and enhanced its cell biocompatibility. Copyright © 2012 Wiley Periodicals, Inc.
Synaptic structure and function are altered by the neddylation inhibitor MLN4924.
Scudder, Samantha L; Patrick, Gentry N
2015-03-01
The posttranslational modification of proteins by the ubiquitin-like small molecule NEDD8 has previously been shown to be vital in a number of cell signaling pathways. In particular, conjugation of NEDD8 (neddylation) serves to regulate protein ubiquitination through modifications to E3 ubiquitin ligases. Despite the prevalence of NEDD8 in neurons, very little work has been done to characterize the role of this modifier in these cells. Here, we use the recently developed NEDD8 Activating Enzyme (NAE) inhibitor MLN4924 and report evidence of a role for NEDD8 in regulating mammalian excitatory synapses. Application of this drug to dissociated rat hippocampal neurons caused reductions in synaptic strength, surface glutamate receptor levels, dendritic spine width, and spine density, suggesting that neddylation is involved in the maintenance of synapses. Copyright © 2015 Elsevier Inc. All rights reserved.
Surface Modifications and Their Effects on Titanium Dental Implants
Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y.
2015-01-01
This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants. PMID:26436097
Surface modification of implants in long bone.
Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C; Worch, Hartmut; Rammelt, Stefan
2012-01-01
Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.
Surface modification of implants in long bone
Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C.; Worch, Hartmut; Rammelt, Stefan
2012-01-01
Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized. PMID:23507866
Andrews, Kirstie D; Hunt, John A; Black, Richard A
2007-02-01
Electrostatic spinning is a potentially significant technique for scaffold production within the field of tissue engineering; however, the effect of sterilisation upon these structures is not known. This research investigated the extent of any topographical alteration to electrostatically spun scaffolds post-production through sterilisation, and examined any subsequent effect on contacting cells. Scaffolds made from Tecoflex SG-80A polyurethane were sterilised using ethylene oxide and UV-ozone. Scaffold topography was characterized in terms of inter-fibre separation (ifs), fibre diameter (f.dia) and surface roughness. Cell culture was performed over 7 days with both mouse L929 and human embryonic lung fibroblasts, the results of which were assessed using SEM, image analysis and confocal microscopy. Sterilisation by UV-ozone and ethylene oxide decreased ifs and increased f.dia; surface roughness was decreased by UV-ozone but increased by ethylene oxide. Possible mechanisms to explain these observations are discussed, namely photo-oxidative degradation in the case of UV-ozone and process-induced changes in surface roughness. UV-ozone sterilised scaffolds showed greater cell coverage than those treated with ethylene oxide, but lower coverage than all the controls. Changes in cell attachment and morphology were thought to be due to the changes in topography brought about by the sterilisation process. We conclude that surface modification by sterilisation could prove to be a useful tool at the final stage of scaffold production to enhance cell contact, phenotype or function.
Respiratory tract immune response to microbial pathogens.
Wilkie, B N
1982-11-15
Effective resistance to respiratory tract infection depends principally on specific immunity on mucosal surfaces of the upper or lower respiratory tract. Respiratory tract immune response comprises antibody and cell-mediated systems and may be induced most readily by surface presentation of replicating agents but can result from parenteral or local presentation of highly immunogenic antigens. Upper and lower respiratory tract systems differ in immunologic competence, with the lungs having a greater inventory of protective mechanisms than the trachea or nose. Several effective vaccines have been developed for prevention or modification of respiratory tract diseases.
tRNA modification profiles of the fast-proliferating cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Chao; Niu, Leilei; Song, Wei
Despite the recent progress in RNA modification study, a comprehensive modification profile is still lacking for mammalian cells. Using a quantitative HPLC/MS/MS assay, we present here a study where RNA modifications are examined in term of the major RNA species. With paired slow- and fast-proliferating cell lines, distinct RNA modification profiles are first revealed for diverse RNA species. Compared to mRNAs, increased ribose and nucleobase modifications are shown for the highly-structured tRNAs and rRNAs, lending support to their contribution to the formation of high-order structures. This study also reveals a dynamic tRNA modification profile in the fast-proliferating cells. In additionmore » to cultured cells, this unique tRNA profile has been further confirmed with endometrial cancers and their adjacent normal tissues. Taken together, the results indicate that tRNA is a actively regulated RNA species in the fast-proliferating cancer cells, and suggest that they may play a more active role in biological process than expected. -- Highlights: •RNA modifications were first examined in term of the major RNA species. •A dynamic tRNA modifications was characterized for the fast-proliferating cells. •The unique tRNA profile was confirmed with endometrial cancers and their adjacent normal tissues. •tRNA was predicted as an actively regulated RNA species in the fast-proliferating cancer cells.« less
Scalable cultivation of human pluripotent stem cells on chemically-defined surfaces
NASA Astrophysics Data System (ADS)
Hsiung, Michael Chi-Wei
Human stem cells (SCs) are classified as self-renewing cells possessing great ability in therapeutic applications due of their ability to differentiate along any major cell lineage in the human body. Despite their restorative potential, widespread use of SCs is hampered by strenuous control issues. Along with the need for strict xeno-free environments to sustain growth in culture, current methods for growing human pluripotent stem cells (hPSCs) rely on platforms which impede large-scale cultivation and therapeutic delivery. Hence, any progress towards development of large-scale culture systems is severely hindered. In a concentrated effort to develop a scheme that can serve as a model precursor for large scale SC propagation in clinical use, we have explored methods for cultivating hPSCs on completely defined surfaces. We discuss novel approaches with the potential to go beyond the limitations presented by current methods. In particular, we studied the cultivation of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) on surface which underwent synthetic or chemical modification. Current methods for hPSCs rely on animal-based extracellular matrices (ECMs) such as mouse embryonic fibroblasts (MEFs) or feeders and murine sacoma cell-derived substrates to facilitate their growth. While these layers or coatings can be used to maximize the output of hPSC production, they cannot be considered for clinical use because they risk introducing foreign pathogens into culture. We have identified and developed conditions for a completely defined xeno-free substrate used for culturing hPSCs. By utilizing coupling chemistry, we can functionalize ester groups on a given surface and conjugate synthetic peptides containing the arginine-glycine-aspartic acid (RGD) motif, known for their role in cell adhesion. This method offers advantages over traditional hPSC culture by keeping the modified substrata free of xenogenic response and can be scaled up in adherent microcarrier culture. To treat a major organ such as the heart or kidney, producing large quantities of clinical-grade pluripotent cells is a necessity for cell-based therapy. Here we apply our approach to spherical beads or microcarriers for large-scale cultivation of hPSCs in a stirred-suspension bioreactor. Stem cells seeded on microcarriers and cultivated for multiple six day passages in a stirred-suspension bioreactors remained viable (≥90%) and increased by an average of 25.0+/-7.2-fold in concentration. The cells maintained their expression of pluripotency markers POU5F1 and NANOG as assessed by RT-PCR and quantitative PCR. These findings aim at the development of a flexible cost-effect method for the generation of pluripotent cells which can be repurposed and utilized for cell therapies. This work also aims to promote exploration into different methods of surface modification to develop new tactics for culturing hPSCs that can achieve higher fold growth while maintaining overall therapeutic potential.
Madoff, D H; Lenard, J
1982-04-01
The intracellular transport and certain posttranslational modifications of the large glycoprotein (G1) of LaCrosse virus (LAC) in BHK cells have been studied. G1 from released LAC virus was characterized by complex oligosaccharides (endo H-resistant) and covalently attached fatty acid. Only a small fraction of total cellular G1 was present on the baby hamster kidney cell surface. Cell-surface G1 contained complex oligosaccharides, while total G1 in infected cells contained largely unprocessed (endo H-sensitive) oligosaccharides. In addition, cell G1 contained significantly less fatty acid than virion-associated G1. Pulse-chase experiments showed that the oligosaccharides of G1 were processed to the complex from much more slowly than the oligosaccharides of the vesicular stomatitis virus (VSV) glycoprotein (G). In addition, transit of LAC G1 to the cell surface and into extracellular virions was two to three fold slower than the transit of VSV G. Thus LAC G1 accumulates intracellularly and is only slowly processed by intracellular processing enzymes. Treatment with monensin caused accumulation in the cell of a form of G1 with partial sensitivity toward endo H, suggesting that monensin may act to inhibit the glycosylation process directly.
Naisbitt, Dean J; Yang, Emma L; Alhaidari, Mohammad; Berry, Neil G; Lawrenson, Alexandre S; Farrell, John; Martin, Philip; Strebel, Klaus; Owen, Andrew; Pye, Matthew; French, Neil S; Clarke, Stephen E; O'Neill, Paul M; Park, B Kevin
2015-11-28
Exposure to abacavir is associated with T-cell-mediated hypersensitivity reactions in individuals carrying human leukocyte antigen (HLA)-B57 : 01. To activate T cells, abacavir interacts directly with endogenous HLA-B57 : 01 and HLA-B57 : 01 expressed on the surface of antigen presenting cells. We have investigated whether chemical modification of abacavir can produce a molecule with antiviral activity that does not bind to HLA-B57 : 01 and activate T cells. An interdisciplinary laboratory study using samples from human donors expressing HLA-B57 : 01. Researchers were blinded to the analogue structures and modelling data. Sixteen 6-amino substituted abacavir analogues were synthesized. Computational docking studies were completed to predict capacity for analogue binding within HLA-B57 : 01. Abacavir-responsive CD8 clones were generated to study the association between HLA-B57 : 01 analogue binding and T-cell activation. Antiviral activity and the direct inhibitory effect of analogues on proliferation were assessed. Major histocompatibility complex class I-restricted CD8 clones proliferated and secreted IFNγ following abacavir binding to surface and endogenous HLA-B57 : 01. Several analogues retained antiviral activity and showed no overt inhibitory effect on proliferation, but displayed highly divergent antigen-driven T-cell responses. For example, abacavir and N-propyl abacavir were equally potent at activating clones, whereas the closely related analogues N-isopropyl and N-methyl isopropyl abacavir were devoid of T-cell activity. Docking abacavir analogues to HLA-B57 : 01 revealed a quantitative relationship between drug-protein binding and the T-cell response. These studies demonstrate that the unwanted T-cell activity of abacavir can be eliminated whilst maintaining the favourable antiviral profile. The in-silico model provides a tool to aid the design of safer antiviral agents that may not require a personalized medicines approach to therapy.
Sami, Haider; Maparu, Auhin K.; Kumar, Ashok; Sivakumar, Sri
2012-01-01
Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification. PMID:22649489
Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems
NASA Astrophysics Data System (ADS)
Kovalenko, Andriy
2014-08-01
Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology enables rational design of CNC-based bionanocomposite materials and systems. Furthermore, the 3D-RISM-KH based multiscale modeling addresses the effect of hemicellulose and lignin composition on nanoscale forces that control cell wall strength towards overcoming plant biomass recalcitrance. It reveals molecular forces maintaining the cell wall structure and provides directions for genetic modulation of plants and pretreatment design to render biomass more amenable to processing. We envision integrated biomass valorization based on extracting and decomposing the non-cellulosic components to low molecular weight chemicals and utilizing the cellulose microfibrils to make CNC. This is an important alternative to approaches of full conversion of lignocellulose to biofuels that face challenges arising from the deleterious impact of cellulose crystallinity on enzymatic processing.
Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces.
Voss, Alexandra; Wei, HongYing; Zhang, Yi; Turner, Stuart; Ceccone, Giacomo; Reithmaier, Johann Peter; Stengl, Monika; Popov, Cyril
2016-07-01
Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. Copyright © 2016 Elsevier B.V. All rights reserved.