Wang, Rui; Wan, Qi; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya
2008-07-16
Regulatory T (T(reg)) cells control immune activation and maintain tolerance. How T(regs) mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in T(regs) activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (T(N)) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N) cells induced expression of T(reg) master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg) cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takabe, Piia, E-mail: piia.takabe@uef.fi; Bart, Geneviève; Ropponen, Antti
2015-09-10
Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanomamore » cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.« less
Altering textural properties of fermented milk by using surface-engineered Lactococcus lactis.
Tarazanova, Mariya; Huppertz, Thom; Kok, Jan; Bachmann, Herwig
2018-05-09
Lactic acid bacteria are widely used for the fermentation of dairy products. While bacterial acidification rates, proteolytic activity and the production of exopolysaccharides are known to influence textural properties of fermented milk products, little is known about the role of the microbial surface on microbe-matrix interactions in dairy products. To investigate how alterations of the bacterial cell surface affect fermented milk properties, 25 isogenic Lactococcus lactis strains that differed with respect to surface charge, hydrophobicity, cell chaining, cell-clumping, attachment to milk proteins, pili expression and EPS production were used to produce fermented milk. We show that overexpression of pili increases surface hydrophobicity of various strains from 3-19% to 94-99%. A profound effect of different cell surface properties was an altered spatial distribution of the cells in the fermented product. Aggregated cells tightly fill the cavities of the protein matrix, while chaining cells seem to be localized randomly. A positive correlation was found between pili overexpression and viscosity and gel hardness of fermented milk. Gel hardness also positively correlated with clumping of cells in the fermented milk. Viscosity of fermented milk was also higher when it was produced with cells with a chaining phenotype or with cells that overexpress exopolysaccharides. Our results show that alteration of cell surface morphology affects textural parameters of fermented milk and cell localization in the product. This is indicative of a cell surface-dependent potential of bacterial cells as structure elements in fermented foods. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Gene Overexpression/Suppression Analysis of Candidate Virulence Factors of Candida albicans▿
Fu, Yue; Luo, Guanpingsheng; Spellberg, Brad J.; Edwards, John E.; Ibrahim, Ashraf S.
2008-01-01
We developed a conditional overexpression/suppression genetic strategy in Candida albicans to enable simultaneous testing of gain or loss of function in order to identify new virulence factors. The strategy involved insertion of a strong, tetracycline-regulated promoter in front of the gene of interest. To validate the strategy, a library of genes encoding glycosylphosphatidylinositol (GPI)-anchored surface proteins was screened for virulence phenotypes in vitro. During the screening, overexpression of IFF4 was found to increase the adherence of C. albicans to plastic and to human epithelial cells, but not endothelial cells. Consistent with the in vitro results, IFF4 overexpression modestly increased the tissue fungal burden during murine vaginal candidiasis. In addition to the in vitro screening tests, IFF4 overexpression was found to increase C. albicans susceptibility to neutrophil-mediated killing. Furthermore, IFF4 overexpression decreased the severity of hematogenously disseminated candidiasis in normal mice, but not in neutropenic mice, again consistent with the in vitro phenotype. Overexpression of 12 other GPI proteins did not affect normal GPI protein cell surface accumulation, demonstrating that the overexpression strategy did not affect the cell capacity for making such proteins. These data indicate that the same gene can increase or decrease candidal virulence in distinct models of infection, emphasizing the importance of studying virulence genes in different anatomical contexts. Finally, these data validate the use of a conditional overexpression/suppression genetic strategy to identify candidal virulence factors. PMID:18178776
Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno
2015-11-01
Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vimentin Is Involved in Peptidylarginine Deiminase 2-Induced Apoptosis of Activated Jurkat Cells
Hsu, Pei-Chen; Liao, Ya-Fan; Lin, Chin-Li; Lin, Wen-Hao; Liu, Guang-Yaw; Hung, Hui-Chih
2014-01-01
Peptidylarginine deiminase type 2 (PADI2) deiminates (or citrullinates) arginine residues in protein to citrulline residues in a Ca2+-dependent manner, and is found in lymphocytes and macrophages. Vimentin is an intermediate filament protein and a well-known substrate of PADI2. Citrullinated vimentin is found in ionomycin-induced macrophage apoptosis. Citrullinated vimentin is the target of anti-Sa antibodies, which are specific to rheumatoid arthritis, and play a critical role in the pathogenesis of the disease. To investigate the role of PADI2 in apoptosis, we generated a Jurkat cell line that overexpressed the PADI2 transgene from a tetracycline-inducible promoter, and used a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin to activate Jurkat cells. We found that PADI2 overexpression reduced the cell viability of activated Jurkat cells in a dose- and time-dependent manner. The PADI2-overexpressed and -activated Jurkat cells presented typical manifestations of apoptosis, and exhibited greater levels of citrullinated proteins, including citrullinated vimentin. Vimentin overexpression rescued a portion of the cells from apoptosis. In conclusion, PADI2 overexpression induces apoptosis in activated Jurkat cells. Vimentin is involved in PADI2-induced apoptosis. Moreover, PADI2-overexpressed Jurkat cells secreted greater levels of vimentin after activation, and expressed more vimentin on their cell surfaces when undergoing apoptosis. Through artificially highlighting PADI2 and vimentin, we demonstrated that PADI2 and vimentin participate in the apoptotic mechanisms of activated T lymphocytes. The secretion and surface expression of vimentin are possible ways of autoantigen presentation to the immune system. PMID:24850148
Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei
2017-06-01
Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, H.; Grubb, J.H.; Sly, W.S.
1990-10-01
The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functionalmore » receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.« less
Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W
2005-07-01
Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.
Genomic similarity between gastroesophageal junction and esophageal Barrett's adenocarcinomas
Kuick, Rork; Thomas, Dafydd G.; Nadal, Ernest; Lin, Jules; Chang, Andrew C.; Reddy, Rishindra M.; Orringer, Mark B.; Taylor, Jeremy M. G.; Wang, Thomas D.; Beer, David G.
2016-01-01
The current high mortality rate of esophageal adenocarcinoma (EAC) reflects frequent presentation at an advanced stage. Recent efforts utilizing fluorescent peptides have identified overexpressed cell surface targets for endoscopic detection of early stage Barrett's-derived EAC. Unfortunately, 30% of EAC patients present with gastroesophageal junction adenocarcinomas (GEJAC) and lack premalignant Barrett's metaplasia, limiting this early detection strategy. We compared mRNA profiles from 52 EACs (tubular EAC; tEAC) collected above the gastroesophageal junction with 70 GEJACs, 8 normal esophageal and 5 normal gastric mucosa samples. We also analyzed our previously published whole-exome sequencing data in a large cohort of these tumors. Principal component analysis, hierarchical clustering and survival-based analyses demonstrated that GEJAC and tEAC were highly similar, with only modest differences in expression and mutation profiles. The combined expression cohort allowed identification of 49 genes coding cell surface targets overexpressed in both GEJAC and tEAC. We confirmed that three of these candidates (CDH11, ICAM1 and CLDN3) were overexpressed in tumors when compared to normal esophagus, normal gastric and non-dysplastic Barrett's, and localized to the surface of tumor cells. Molecular profiling of tEAC and GEJAC tumors indicated extensive similarity and related molecular processes. Identified genes that encode cell surface proteins overexpressed in both Barrett's-derived EAC and those that arise without Barrett's metaplasia will allow simultaneous detection strategies. PMID:27363029
Marches, Radu; Uhr, Jonathan W
2004-11-10
The oncogenic activity of the overexpressed HER2 tyrosine kinase receptor requires its localization in the plasma membrane. The antitumor effect of anti-HER2 antibodies (Abs) is mainly dependent on receptor downregulation and comprises p27Kip1-mediated G1 cell cycle arrest. However, one major limitation of anti-HER2 therapy is the reversibility of tumor growth inhibition after discontinuation of treatment caused by the mitogenic signaling associated with cell surface receptor re-expression. We found that the level of p27Kip1 upregulation, inhibition of Cdk2 activity and magnitude of G1 arrest induced by the humanized Ab trastuzumab (Herceptin, HCT) on BT474 and SKBr3 HER2-overexpressing breast cancer cells correlates with the level of cell surface receptor. Thus, continuous exposure of cells to HCT for 72 hr results in downregulation of the cell surface receptor and a concurrent increase in the level of p27Kip1 protein. Discontinuation of Ab exposure after the first 8 hr results in failure to upregulate p27Kip1 and arrest of cell cycle progression. We show that the lysosomotropic amine chloroquine (CQ) augments receptor internalization in HER2-overexpressing cells either pretreated or continuously treated with HCT and leads to an increased and sustained inhibitory effect. The enhanced CQ-dependent loss of functional HER2 from the cell surface resulted in sustained inactivation of the serine/threonine kinase Akt, upregulation of p27Kip1 protein and inhibition of cyclin E/Cdk2 activity. Potentiation of the inhibitory effect of HCT by CQ was directly related to loss of HER2 from the plasma membrane since prevention of Ab-mediated receptor endocytosis by engagement of the receptor with immobilized HCT abrogated the effect of CQ.
Price-Schiavi, Shari A; Jepson, Scott; Li, Peter; Arango, Maria; Rudland, Philip S; Yee, Lisa; Carraway, Kermit L
2002-06-20
Muc4 (also called sialomucin complex), the rat homolog of human MUC4, is a heterodimeric glycoprotein complex that consists of a peripheral O-glycosylated mucin subunit, ASGP-1, tightly but noncovalently linked to a N-glycosylated transmembrane subunit, ASGP-2. The complex is expressed in a number of normal, vulnerable epithelial tissues, including mammary gland, uterus, colon, cornea and trachea. Muc4/SMC is also overexpressed or aberrantly expressed on a number of human tumors including breast tumors. Overexpression of Muc4/SMC has been shown to block cell-cell and cell-matrix interactions, protect tumor cells from immune surveillance and promote metastasis. In addition, as a ligand for ErbB2, Muc4/SMC can potentiate phosphorylation of ErbB2 and potentially alter signals generated from this receptor. Using A375 human melanoma cells and MCF7 human breast adenocarcinoma cells stably transfected with tetracycline regulatable Muc4, we have investigated whether overexpression of Muc4/SMC can repress antibody binding to cell surface-expressed ErbB2. Overexpression of Muc4/SMC does not affect the level of ErbB2 expression in either cell line, but it does reduce binding of a number of anti-ErbB2 antibodies, including Herceptin. Interestingly, overexpression of ErbB2 does not block binding of other unrelated antibodies of the same isotype, suggesting that the reduction in ErbB2 antibody binding is due to complex formation of Muc4/SMC and ErbB2. Furthermore, capping of Muc4/SMC with anti-Muc4/SMC antibodies reduces antibody binding to ErbB2 instead of increasing binding, again suggesting that reduced antibody binding to ErbB2 is due to steric hindrance from complex formation of Muc4/SMC and ErbB2. Thus, overexpression of Muc4/SMC on tumor cells may have both prognostic and therapeutic relevance. Copyright 2002 Wiley-Liss, Inc.
Soluble ephrin a1 is necessary for the growth of HeLa and SK-BR3 cells
2010-01-01
Background Ephrin A1 (EFNA1) is a member of the A-type ephrin family of cell surface proteins that function as ligands for the A-type Eph receptor tyrosine kinase family. In malignancy, the precise role of EFNA1 and its preferred receptor, EPHA2, is controversial. Several studies have found that EFNA1 may suppress EPHA2-mediated oncogenesis, or enhance it, depending on cell type and context. However, little is known about the conditions that influence whether EFNA1 promotes or suppresses tumorigenicity. EFNA1 exists in a soluble form as well as a glycophosphatidylinositol (GPI) membrane attached form. We investigated whether the contradictory roles of EFNA1 in malignancy might in part be related to the existence of both soluble and membrane attached forms of EFNA1 and potential differences in the manner in which they interact with EPHA2. Results Using a RNAi strategy to reduce the expression of endogenous EFNA1 and EPHA2, we found that both EFNA1 and EPHA2 are required for growth of HeLa and SK-BR3 cells. The growth defects could be rescued by conditioned media from cells overexpressing soluble EFNA1. Interestingly, we found that overexpression of the membrane attached form of EFNA1 suppresses growth of HeLa cells in 3D but not 2D. Knockdown of endogenous EFNA1, or overexpression of full-length EFNA1, resulted in relocalization of EPHA2 from the cell surface to sites of cell-cell contact. Overexpression of soluble EFNA1 however resulted in more EPHA2 distributed on the cell surface, away from cell-cell contacts, and promoted the growth of HeLa cells. Conclusions We conclude that soluble EFNA1 is necessary for the transformation of HeLa and SK-BR3 cells and participates in the relocalization of EPHA2 away from sites of cell-cell contact during transformation. PMID:20979646
Anastasia, Luigi; Holguera, Javier; Bianchi, Anna; D'Avila, Francesca; Papini, Nadia; Tringali, Cristina; Monti, Eugenio; Villar, Enrique; Venerando, Bruno; Muñoz-Barroso, Isabel; Tettamanti, Guido
2008-03-01
The paramyxovirus Newcastle Disease Virus (NDV) binds to sialic acid-containing glycoconjugates, sialoglycoproteins and sialoglycolipids (gangliosides) of host cell plasma membrane through its hemagglutinin-neuraminidase (sialidase) HN glycoprotein. We hypothesized that the modifications of the cell surface ganglioside pattern determined by over-expression of the mammalian plasma-membrane associated, ganglioside specific, sialidase NEU3 would affect the virus-host cell interactions. Using COS7 cells as a model system, we observed that over-expression of the murine MmNEU3 did not affect NDV binding but caused a marked reduction in NDV infection and virus propagation through cell-cell fusion. Moreover, since GD1a was greatly reduced in COS7 cells following NEU3-over-expression, we added [(3)H]-labelled GD1a to COS7 cells under conditions that block intralysosomal metabolic processing, and we observed a marked increase of GD1a cleavage to GM1 during NDV infection, indicating a direct involvement of the virus sialidase and host cell GD1a in NDV infectivity. Therefore, the decrease of GD1a in COS7 cell membrane upon MmNEU3 over-expression is likely to be instrumental to NDV reduced infection. Evidence was also provided for the preferential association of NDV-HN at 4 degrees C to detergent resistant microdomains (DRMs) of COS7 cells plasma membranes.
Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke
2008-01-01
Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737
Rezania, S; Kammerer, S; Li, C; Steinecker-Frohnwieser, B; Gorischek, A; DeVaney, T T J; Verheyen, S; Passegger, C A; Tabrizi-Wizsy, N Ghaffari; Hackl, H; Platzer, D; Zarnani, A H; Malle, E; Jahn, S W; Bauernhofer, T; Schreibmayer, W
2016-08-12
Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K(+) channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235-402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer.
Selective in vivo metabolic cell-labeling-mediated cancer targeting
Wang, Hua; Wang, Ruibo; Cai, Kaimin; He, Hua; Liu, Yang; Yen, Jonathan; Wang, Zhiyu; Xu, Ming; Sun, Yiwen; Zhou, Xin; Yin, Qian; Tang, Li; Dobrucki, Iwona T; Dobrucki, Lawrence W; Chaney, Eric J; Boppart, Stephen A; Fan, Timothy M; Lezmi, Stéphane; Chen, Xuesi; Yin, Lichen; Cheng, Jianjun
2017-01-01
Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne–doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice. PMID:28192414
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Eun-Ju; Kim, Hong-Hee; Huh, Jung-Eun
2005-02-01
The hydrophobic (HPB) nature of most polymeric biomaterials has been a major obstacle in using those materials in vivo due to low compatibility with cells. However, there is little knowledge of the molecular detail to explain how surface hydrophobicity affects cell responses. In this study, we compared the proliferation and apoptosis of human osteoblastic MG63 cells adhered to hydrophilic (HPL) and hydrophobic surfaces. On the hydrophobic surface, less formation of focal contacts and actin stress fibers, a delay in cell cycle progression, and an increase in apoptosis were observed. By using fibroblast growth factor 1 (FGF1) as a model growthmore » factor, we also investigated intracellular signaling pathways on hydrophilic and hydrophobic surfaces. The activation of Ras, Akt, and ERK by FGF1 was impaired in MG63 cells on the hydrophobic surface. The overexpression of constitutively active form of Ras and Akt rescued those cells from apoptosis and recovered cell cycle progression. Furthermore, their overexpression also restored the actin cytoskeletal organization on the hydrophobic surface. Finally, the proliferative, antiapoptotic, and cytoskeletal effects of constitutively active Ras in MG63 cells on the hydrophobic surface were blocked by wortmannin and PD98059 that inhibit Akt and ERK activation, respectively. Therefore, our results suggest that the activation of Ras and its downstream molecules Akt and ERK to an appropriate level is one of crucial elements in the determination of osteoblast cell responses. The Ras pathway may represent a cell biological target that should be considered for successful surface modification of biomaterials to induce adequate cell responses in the bone tissue.« less
The Human Cell Surfaceome of Breast Tumors
da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José
2013-01-01
Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083
Dong, Zhaogang; Xu, Xiaofei; Du, Lutao; Yang, Yongmei; Cheng, Huanhuan; Zhang, Xin; Li, Zewu; Wang, Lili; Li, Juan; Liu, Hui; Qu, Xun; Wang, Chuanxin
2013-05-01
Leptin overexpression is closely correlated with gastric cancer (GC) invasion, but its exact effect and the underlying mechanism in tumorigenesis remain poorly understood. Membrane type 1-matrix metalloproteinase (MT1-MMP), a surface-anchored 'master switch' proteinase, is overexpressed and plays crucial roles in tumor invasion. Here, we characterized the influence of leptin on the generation and surface localization of MT1-MMP in GC and elucidated its molecular mechanisms. Our results revealed that leptin promoted GC cell invasion in vitro by upregulating MT1-MMP expression. Furthermore, cell surface biotinylation assay and flow cytometry demonstrated that the surface expression of MT1-MMP was also enhanced by leptin, and knockdown of kinesin family member 1B (KIF1B, a microtubule plus end-directed monomeric motor protein) by small interference RNA inhibited this process. Notably, coimmunoprecipitation analysis indicated that leptin enhanced the interaction of MT1-MMP with KIF1B in a time-dependent manner, which consequently contributed to GC cell invasion. Moreover, leptin increased MT1-MMP or KIF1B expression by the protein kinase B (AKT) pathway and extracellular signal-regulated kinase 1/2 partially participated in this process. However, only AKT was implicated in the leptin-mediated membrane localization of MT1-MMP. Immunohistochemistry analysis revealed that leptin, MT1-MMP and KIF1B are overexpressed in GC tissues, and they positively correlated with clinical stage and lymph node metastasis. These observations indicate that this regulatory network exists in vivo. Taken together, our findings suggest that leptin is an effective intracellular stimulator of MT1-MMP and that leptin-enhanced cell surface localization of MT1-MMP is dependent on KIF1B, which consequently plays a critical role in GC invasion.
The Effects of Nanotexturing Microfluidic Platforms to Isolate Brain Tumor Cells
NASA Astrophysics Data System (ADS)
Islam, Muhymin; Sajid, Adeel; Kim, Young-Tae; Iqbal, Samir M.
2015-03-01
Detection of tumor cells in the early stages of disease requires sensitive and selective approaches. Nanotextured polydimethylsiloxane (PDMS) substrates were implemented to detect metastatic human glioblastoma (hGBM) cells. RNA aptamers that were specific to epidermal growth factor receptors (EGFR) were used to functionalize the substrates. EGFR is known to be overexpressed on many cancer cells including hGBM. Nanotextured PDMS was prepared by micro reactive ion etching. PDMS surfaces became hydrophilic uponnanotexturing. Nanotextured substrates were incubated in tumor cell solution and density of captured cells was determined. Nanotextured PDMS provided >300% cell capture compared to plain PDMS due to increased effective surface area of roughened substrates at nanoscale as well as mire focal points for cell adhesion. Next, aptamer functionalized nanotextured PDMS was incorporated in microfluidic device to detect tumor cells at different flow velocities. The shear stress introduced by the flow pressure and heterogeneity of the EGFR overexpression on cell membranes of the tumor cells had significant impact on the cell capture efficiency of aptamer anchored nanotextured microfluidic devices. Eventually tumor cells were detected from the mixture of white blood cells at an efficiency of 73% using the microfluidic device. The interplay of binding energies and surface energies was major factor in this system. Support Acknowledged from NSF through ECCS-1407990.
Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V.; Baer, Maria R.
2013-01-01
Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC50s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC50 of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [125I]iodoarylazidoprazosin ([125I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. PMID:23261525
Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V; Baer, Maria R
2013-02-15
Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC(50)s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC(50) of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. Copyright © 2012 Elsevier Inc. All rights reserved.
Overexpression of the VSSC-associated CAM, β-2, enhances LNCaP cell metastasis associated behavior.
Jansson, Keith H; Lynch, Jill E; Lepori-Bui, Nadia; Czymmek, Kirk J; Duncan, Randall L; Sikes, Robert A
2012-07-01
Prostate cancer (PCa) is the second-leading cause of cancer death in American men. This is due largely to the "silent" nature of the disease until it has progressed to a highly metastatic and castrate resistant state. Voltage sensitive sodium channels (VSSCs) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two β subunits. The β-subunits modulate surface expression and gating kinetics of the channels but also have inherent cell adhesion molecule (CAM) functions. We hypothesize that PCa cells use VSSC β-subunits as CAMs during PCa progression and metastasis. We overexpressed the beta-2 isoform as a C-terminal fusion protein with enhanced cyan fluorescence protein (ECFP) in the weakly metastatic LNCaP cells. The effect of beta-2 overexpression on cell morphology was examined using confocal microscopy while metastasis-associated behavior was tested by performing several in vitro metastatic functional assays and in vivo subcutaneous tumor studies. We found that cells overexpressing beta-2 (2BECFP) converted to a bipolar fibroblastic morphology. 2BECFP cells were more adhesive than control (ECFP) to vitronectin (twofold) and Matrigel® (1.3-fold), more invasive through Matrigel® (3.6-fold in 72 hr), and had enhanced migration (2.1-fold in 96 hr) independent of proliferation in wound-healing assays. In contrast, 2BECFP cells have a reduced tumor-take and tumor volume in vivo even though the overexpression of beta-2 was maintained. Functional overexpression of VSSC β-subunits in PCa may be one mechanism leading to increased metastatic behavior while decreasing the ability to form localized tumor masses. Copyright © 2011 Wiley Periodicals, Inc.
Kidney protection against ischemia/reperfusion injury by myofibrillogenesis regulator-1.
Wang, Xiaoreng; Tao, Tianqi; Ding, Rui; Song, Dandan; Liu, Mi; Xie, Yuansheng; Liu, Xiuhua
2014-01-01
Ischemia/reperfusion (I/R) injury is characterized by cytoskeletal reorganization and loss of polarity in proximal tubule epithelial cells. Previously, we showed that myofibrillogenesis regulator (MR)-1 promoted actin organization in cardiomyocytes. MR-1 is also expressed in the kidney. In this study, we investigated MR-1 expression in acute renal failure induced by I/R in Sprague-Dawley rats. We determined the MR-1 expression and the ratio of fibrous actin (F-actin) to globular actin (G-actin). HK-2 cells were treated with or without hypoxia/reoxygenation (H/R), and MR-1 levels were increased by adenoviral overexpression or silenced by RNA interference. I/R and H/R resulted in cellular injury and decreases of MR-1, the F-/G-actin ratio, and myosin light chain (MLC)-2. MR-1 overexpression attenuated H/R-induced cell injury and loss of surface membrane polarity of actin. MR-1 overexpression also increased the expression and phosphorylation of MLC-2 and MLC kinase, which were decreased in MR-1-silenced and H/R-treated cells. Together, these data show that MR-1 promoted actin polarity on the membrane surface and protected HK-2 cells from H/R injury. The mechanism might involve the rapid organization of F-actin through the upregulation and phosphorylation of MLC-2.
NASA Astrophysics Data System (ADS)
Rood, Mark T. M.; Spa, Silvia J.; Welling, Mick M.; Ten Hove, Jan Bart; van Willigen, Danny M.; Buckle, Tessa; Velders, Aldrik H.; van Leeuwen, Fijs W. B.
2017-01-01
The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or “training” of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.
Biomarker-Based Metabolic Labeling for Redirected and Enhanced Immune Response.
Li, Shanshan; Yu, Bingchen; Wang, Jiajia; Zheng, Yueqin; Zhang, Huajie; Walker, Margaret J; Yuan, Zhengnan; Zhu, He; Zhang, Jun; Wang, Peng George; Wang, Binghe
2018-06-01
Installation of an antibody-recruiting moiety on the surface of disease-relevant cells can lead to the selective destruction of targets by the immune system. Such an approach can be an alternative strategy to traditional chemotherapeutics in cancer therapy and possibly other diseases. Herein we describe the development of a new strategy to selectively label targets with an antibody-recruiting moiety through its covalent and stable installation, complementing existing methods of employing reversible binding. This is achieved through selective delivery of 1,3,4- O-acetyl- N-azidoacetylmannosamine (Ac 3 ManNAz) to folate receptor-overexpressing cells using an Ac 3 ManNAz-folate conjugate via a cleavable linker. As such, Ac 3 ManNAz is converted to cell surface glycan bearing an azido group, which serves as an anchor to introduce l-rhamnose (Rha), a hapten, via a click reaction with aza-dibenzocyclooctyne (DBCO)-Rha. We tested this method in several cell lines including KB, HEK-293, and MCF7 and were able to demonstrate the following: 1) Rha can be selectively installed to the folate receptor overexpressing cell surface and 2) the Rha installed on the target surface can recruit anti-rhamnose (anti-Rha) antibodies, leading to the destruction of target cells via complement-dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP).
Wang, Jir‐You; Wu, Po‐Kuei; Chen, Paul Chih‐Hsueh; Lee, Chia‐Wen
2016-01-01
Abstract Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c‐Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c‐Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum‐free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS‐like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient‐derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c‐Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS‐like cells by Rb knockdown and c‐Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS. Stem Cells Translational Medicine 2017;6:512–526 PMID:28191765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheong, Chee Man; Chow, Annie W.S.; Department of Haematology, SA Pathology, Adelaide 5000, SA
Background: Increased expression of the tetraspanin TSPAN7 has been observed in a number of cancers; however, it is unclear how TSPAN7 plays a role in cancer progression. Methods: We investigated the expression of TSPAN7 in the haematological malignancy multiple myleoma (MM) and assessed the consequences of TSPAN7 expression in the adhesion, migration and growth of MM plasma cells (PC) in vitro and in bone marrow (BM) homing and tumour growth in vivo. Finally, we characterised the association of TSPAN7 with cell surface partner molecules in vitro. Results: TSPAN7 was found to be highly expressed at the RNA and protein levelmore » in CD138{sup +} MM PC from approximately 50% of MM patients. TSPAN7 overexpression in the murine myeloma cell line 5TGM1 significantly reduced tumour burden in 5TGM1/KaLwRij mice 4 weeks after intravenous adminstration of 5TGM1 cells. While TSPAN7 overexpression did not affect cell proliferation in vitro, TSPAN7 increased 5TGM1 cell adhesion to BM stromal cells and transendothelial migration. In addition, TSPAN7 was found to associate with the molecular chaperone calnexin on the cell surface. Conclusion: These results suggest that elevated TSPAN7 may be associated with better outcomes for up to 50% of MM patients. - Highlights: • TSPAN7 expression is upregulated in newly-diagnosed patients with active multiple myeloma. • Overexpression of TSPAN7 inhibits myeloma tumour development in vivo. • TSPAN7 interacts with calnexin at the plasma membrane in a myeloma cell line.« less
Park, Seung-Hwan; Zheng, Jin Hai; Nguyen, Vu Hong; Jiang, Sheng-Nan; Kim, Dong-Yeon; Szardenings, Michael; Min, Jung Hyun; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon
2016-01-01
Bacteria-based anticancer therapies aim to overcome the limitations of current cancer therapy by actively targeting and efficiently removing cancer. To achieve this goal, new approaches that target and maintain bacterial drugs at sufficient concentrations during the therapeutic window are essential. Here, we examined the tumor tropism of attenuated Salmonella typhimurium displaying the RGD peptide sequence (ACDCRGDCFCG) on the external loop of outer membrane protein A (OmpA). RGD-displaying Salmonella strongly bound to cancer cells overexpressing αvβ3, but weakly bound to αvβ3-negative cancer cells, suggesting the feasibility of displaying a preferential homing peptide on the bacterial surface. In vivo studies revealed that RGD-displaying Salmonellae showed strong targeting efficiency, resulting in the regression in αvβ3-overexpressing cancer xenografts, and prolonged survival of mouse models of human breast cancer (MDA-MB-231) and human melanoma (MDA-MB-435). Thus, surface engineering of Salmonellae to display RGD peptides increases both their targeting efficiency and therapeutic effect.
LHRH-Targeted Drug Delivery Systems for Cancer Therapy.
Li, Xiaoning; Taratula, Oleh; Taratula, Olena; Schumann, Canan; Minko, Tamara
2017-01-01
Targeted delivery of therapeutic and diagnostic agents to cancer sites has significant potential to improve the therapeutic outcome of treatment while minimizing severe side effects. It is widely accepted that decoration of the drug delivery systems with targeting ligands that bind specifically to the receptors on the cancer cells is a promising strategy that may substantially enhance accumulation of anticancer agents in the tumors. Due to the transformed cellular nature, cancer cells exhibit a variety of overexpressed cell surface receptors for peptides, hormones, and essential nutrients, providing a significant number of target candidates for selective drug delivery. Among others, luteinizing hormonereleasing hormone (LHRH) receptors are overexpressed in the majority of cancers, while their expression in healthy tissues, apart from pituitary cells, is limited. The recent studies indicate that LHRH peptides can be employed to efficiently guide anticancer and imaging agents directly to cancerous cells, thereby increasing the amount of these substances in tumor tissue and preventing normal cells from unnecessary exposure. This manuscript provides an overview of the targeted drug delivery platforms that take advantage of the LHRH receptors overexpression by cancer cells.
Komatsu, M; Yee, L; Carraway, K L
1999-05-01
Sialomucin complex (SMC) is a large heterodimeric glycoprotein complex composed of a mucin subunit ascites sialoglycoprotein-1 and a transmembrane subunit ascites sialoglycoprotein-2. It is a rat homologue of human mucin gene MUC4 and is abundantly expressed on the cell surface of highly metastatic ascites 13762 rat mammary adenocarcinoma cells. Because of their extended and rigid structures, mucin-type glycoproteins are suggested to have suppressing effects on cell-cell and cell-matrix interactions. During the metastatic process, these effects presumably cause tumor cell detachment from the primary tumor mass and facilitate escape of the tumor cells from immunosurveillance. Analyses of human breast cancer cells in solid tumors and tumor effusions showed that the more aggressive cells in effusions are stained with polyclonal antibodies against SMC more frequently than cells in solid tumors, suggesting a role for MUC4/SMC in tumor progression and metastasis. Previously, we generated recombinant cDNAs for SMC that vary in the number of mucin repeats to study the putative functions of SMC in tumor metastasis. These cDNAs were transfected into human cancer cell lines and tested for the effect of the expression of this gene. Here, using a tetracycline-responsive inducible expression system, we demonstrate that overexpression of SMC masks the surface antigens on target tumor cells and effectively suppresses tumor cell killing by cytotoxic lymphocytes. This effect results from the ability of SMC to block killer cell binding to the tumor cells and is dependent on both overexpression of the mucin and the number of mucin repeats in the expressed SMC. These results provide an explanation for the proposed role of SMC/MUC4 in tumor progression.
Zhou, Angela X; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya
2013-05-15
The role of surface-bound TGF-β on regulatory T cells (Tregs) and the mechanisms that mediate its functions are not well defined. We recently identified a cell-surface molecule called Glycoprotein A Repetitions Predominant (GARP), which is expressed specifically on activated Tregs and was found to bind latent TGF-β and mediate a portion of Treg suppressive activity in vitro. In this article, we address the role of GARP in regulating Treg and conventional T cell development and immune suppression in vivo using a transgenic mouse expressing GARP on all T cells. We found that, despite forced expression of GARP on all T cells, stimulation through the TCR was required for efficient localization of GARP to the cell surface. In addition, IL-2 signals enhanced GARP cell surface expression specifically on Tregs. GARP-transgenic CD4(+) T cells and Tregs, especially those expressing higher levels of GARP, were significantly reduced in the periphery. Mature Tregs, but not conventional CD4(+) T cells, were also reduced in the thymus. CD4(+) T cell reduction was more pronounced within the effector/memory subset, especially as the mouse aged. In addition, GARP-overexpressing CD4(+) T cells stimulated through the TCR displayed reduced proliferative capacity, which was restored by inhibiting TGF-β signaling. Furthermore, inhibiting TGF-β signals greatly enhanced surface expression of GARP on Tregs and blocked the induction of Foxp3 in activated CD4(+) T cells overexpressing GARP. These findings suggest a role for GARP in natural and induced Treg development through activation of bound latent TGF-β and signaling, which negatively regulates GARP expression on Tregs.
Piyush, Tushar; Chacko, Anisha R; Sindrewicz, Paulina; Hilkens, John; Rhodes, Jonathan M; Yu, Lu-Gang
2017-11-01
Epidermal growth factor receptor (EGFR) is an important regulator of epithelial cell growth and survival in normal and cancerous tissues and is a principal therapeutic target for cancer treatment. EGFR is associated in epithelial cells with the heavily glycosylated transmembrane mucin protein MUC1, a natural ligand of galectin-3 that is overexpressed in cancer. This study reveals that the expression of cell surface MUC1 is a critical enhancer of EGF-induced EGFR activation in human breast and colon cancer cells. Both the MUC1 extracellular and intracellular domains are involved in EGFR activation but the predominant influence comes from its extracellular domain. Binding of galectin-3 to the MUC1 extracellular domain induces MUC1 cell surface polarization and increases MUC1-EGFR association. This leads to a rapid increase of EGFR homo-/hetero-dimerization and subsequently increased, and also prolonged, EGFR activation and signalling. This effect requires both the galectin-3 C-terminal carbohydrate recognition domain and its N-terminal ligand multi-merization domain. Thus, interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in epithelial cancer cells. As MUC1 and galectin-3 are both commonly overexpressed in most types of epithelial cancers, their interaction and impact on EGFR activation likely makes important contribution to EGFR-associated tumorigenesis and cancer progression and may also influence the effectiveness of EGFR-targeted cancer therapy.
Cell-Matrix Interactions in Breast Carcinoma Invasion.
1998-01-01
concentrated in hemidesmosomes, adhesive junctions which connect the basement membrane to the intracellular keratin cytoskeleton. In virtually all...fibronectin receptor contribute to the adhesive abnormalities of transformed fibroblasts by overexpressing this integrin in Chinese hamster ovary (CHO) cells...normal breast epithelium , the integrins expressed in breast carcinoma cells are diffusely distributed over the cell surface (Zutter et al., 1990
Blom, B; Heemskerk, M H; Verschuren, M C; van Dongen, J J; Stegmann, A P; Bakker, A Q; Couwenberg, F; Res, P C; Spits, H
1999-01-01
Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint. PMID:10329625
Khan, Mahjabin; Huang, Tao; Lin, Cheng-Yuan; Wu, Jiang; Fan, Bao-Min; Bian, Zhao-Xiang
2017-01-01
Lung cancer, claiming millions of lives annually, has the highest mortality rate worldwide. This advocates the development of novel cancer therapies that are highly toxic for cancer cells but negligibly toxic for healthy cells. One of the effective treatments is targeting overexpressed surface receptors of cancer cells with receptor-specific drugs. The receptors-in-focus in the current review are the G-protein coupled receptors (GPCRs), which are often overexpressed in various types of tumors. The peptide subfamily of GPCRs is the pivot of the current article owing to the high affinity and specificity to and of their cognate peptide ligands, and the proven efficacy of peptide-based therapeutics. The article summarizes various ectopically expressed peptide GPCRs in lung cancer, namely, Cholecystokinin-B/Gastrin receptor, the Bombesin receptor family, Bradykinin B1 and B2 receptors, Arginine vasopressin receptors 1a, 1b and 2, and the Somatostatin receptor type 2. The autocrine growth and pro-proliferative pathways they mediate, and the distinct tumor-inhibitory effects of somatostatin receptors are then discussed. The next section covers how these pathways may be influenced or ‘corrected’ through therapeutics (involving agonists and antagonists) targeting the overexpressed peptide GPCRs. The review proceeds on to Nano-scaled delivery platforms, which enclose chemotherapeutic agents and are decorated with peptide ligands on their external surface, as an effective means of targeting cancer cells. We conclude that targeting these overexpressed peptide GPCRs is potentially evolving as a highly promising form of lung cancer therapy. PMID:29262666
Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion
Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma
2012-01-01
A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry. PMID:22328521
Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion.
Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma
2012-04-15
A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry.
Ladhani, Omar; Sánchez-Martinez, Cristina; Orgaz, Jose L; Jimenez, Benilde; Volpert, Olga V
2011-01-01
Metastatic melanoma cells are highly adaptable to their in vivo microenvironment and can switch between protease-dependent mesenchymal and protease-independent amoeboid invasion to facilitate metastasis. Such adaptability can be visualized in vitro, when cells are cultured in conditions that recapitulate three-dimensional microenvironments. Using thick collagen layers in cell culture and in vivo extravasation assays, we found that pigment epithelium-derived factor (PEDF) suppressed lung extravasation of aggressive melanoma by coordinated regulation of cell shape and proteolysis. In cells grown on a thick collagen bed, PEDF overexpression and exogenous PEDF blocked the rapidly invasive, rounded morphology, and promoted an elongated, mesenchymal-like phenotype associated with reduced invasion. These changes in cell shape depended on decreased RhoA and increased Rac1 activation and were mediated by the up-regulation of Rac1-GEF, DOCK3 and down-regulation of Rac1-GAP, ARHGAP22. Surprisingly, we found that PEDF overexpression also blocked the trafficking of membrane-tethered, MT1-MMP to the cell surface through RhoA inhibition and Rac1 activation. In vivo, knockdown of Rac1 and DOCK3 or overexpression of MT1-MMP was sufficient to reverse the inhibitory effect of PEDF on extravasation. Using functional studies, we demonstrated that PEDF suppressed the rounded morphology and MT1-MMP surface localization through its antiangiongenic, 34-mer epitope and the recently identified PEDF receptor candidate, PNPLA2. Our findings unveil the coordinated regulation of cell shape and proteolysis and identify an unknown mechanism for PEDF's antimetastatic activity. PMID:21750657
Ladhani, Omar; Sánchez-Martinez, Cristina; Orgaz, Jose L; Jimenez, Benilde; Volpert, Olga V
2011-07-01
Metastatic melanoma cells are highly adaptable to their in vivo microenvironment and can switch between protease-dependent mesenchymal and protease-independent amoeboid invasion to facilitate metastasis. Such adaptability can be visualized in vitro, when cells are cultured in conditions that recapitulate three-dimensional microenvironments. Using thick collagen layers in cell culture and in vivo extravasation assays, we found that pigment epithelium-derived factor (PEDF) suppressed lung extravasation of aggressive melanoma by coordinated regulation of cell shape and proteolysis. In cells grown on a thick collagen bed, PEDF overexpression and exogenous PEDF blocked the rapidly invasive, rounded morphology, and promoted an elongated, mesenchymal-like phenotype associated with reduced invasion. These changes in cell shape depended on decreased RhoA and increased Rac1 activation and were mediated by the up-regulation of Rac1-GEF, DOCK3 and down-regulation of Rac1-GAP, ARHGAP22. Surprisingly, we found that PEDF overexpression also blocked the trafficking of membrane-tethered, MT1-MMP to the cell surface through RhoA inhibition and Rac1 activation. In vivo, knockdown of Rac1 and DOCK3 or overexpression of MT1-MMP was sufficient to reverse the inhibitory effect of PEDF on extravasation. Using functional studies, we demonstrated that PEDF suppressed the rounded morphology and MT1-MMP surface localization through its antiangiongenic, 34-mer epitope and the recently identified PEDF receptor candidate, PNPLA2. Our findings unveil the coordinated regulation of cell shape and proteolysis and identify an unknown mechanism for PEDF's antimetastatic activity.
NASA Astrophysics Data System (ADS)
Hu, He; Arena, Francesca; Gianolio, Eliana; Boffa, Cinzia; di Gregorio, Enza; Stefania, Rachele; Orio, Laura; Baroni, Simona; Aime, Silvio
2016-03-01
A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors.A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors. Electronic supplementary information (ESI) available: Absorption and emission spectra, energy dispersive X-ray analysis (EDXA) and XPS spectra, TGA, zeta-potential and the molecular structures of the Gd-complexes. See DOI: 10.1039/c5nr08878j
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yu; Wong, Nicholas; Guan, Yinghui
2008-04-25
Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We definedmore » the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.« less
Ren, Xuequn; Ma, Wanli; Lu, Hong; Yuan, Lei; An, Lei; Wang, Xicai; Cheng, Guanchang; Zuo, Shuguang
2015-12-01
Epidermal growth factor receptor (EGFR, ErbB1, Her-1) is a cell surface molecule overexpressing in a variety of human malignancies and, thus, is an excellent target for immunotherapy. Immunotherapy targeting EGFR-overexpressing malignancies using genetically modified immune effector cells is a novel and promising approach. In the present study, we have developed an adoptive cellular immunotherapy strategy based on the chimeric antigen receptor (CAR)-modified cytokine-induced killer (CAR-CIK) cells specific for the tumor cells expressing EGFR. To generate CAR-CIK cells, a lentiviral vector coding the EGFR-specific CAR was constructed and transduced into the CIK cells. The CAR-CIK cells showed significantly enhanced cytotoxicity and increased production of cytokines IFN-γ and IL-2 when co-cultured with EGFR-positive cancer cells. In tumor xenografts, adoptive immunotherapy of CAR-CIK cells could inhibit tumor growth and prolong the survival of EGFR-overexpressing human tumor xenografts. Moreover, tumor growth inhibition and prolonged survival in mice with EGFR(+) human cancer were associated with the increased persistence of CAR-CIK cells in vivo. Our study indicates that modification with EGFR-specific CAR strongly enhances the antitumor activity of the CIK cells against EGFR-positive malignancies.
Lin, Sisi; Zhou, Chun; Neufeld, Edward; Wang, Yu-Hua; Xu, Suo-Wen; Lu, Liang; Wang, Ying; Liu, Zhi-Ping; Li, Dong; Li, Cuixian; Chen, Shaorui; Le, Kang; Huang, Heqing; Liu, Peiqing; Moss, Joel; Vaughan, Martha; Shen, Xiaoyan
2013-01-01
Objective Cell surface localization and intracellular trafficking of ATP-binding cassette transporter A-1 (ABCA1) are essential for its function. However, regulation of these activities is still largely unknown. Brefeldin A (BFA), a uncompetitive inhibitor of brefeldin A-inhibited guanine nucleotide-exchange proteins (BIGs), disturbs the intracellular distribution of ABCA1, and thus inhibits cholesterol efflux. This study aimed to define the possible roles of BIGs in regulating ABCA1 trafficking and cholesterol efflux, and further to explore the potential mechanism. Methods and Results By vesicle immunoprecipitation, we found that BIG1 was associated with ABCA1 in vesicles preparation from rat liver. BIG1 depletion reduced surface ABCA1 on HepG2 cells and inhibited by 60% cholesterol release. In contrast, BIG1 over-expression increased surface ABCA1 and cholesterol secretion. With partial restoration of BIG1 through over-expression in BIG1-depleted cells, surface ABCA1 was also restored. Biotinylation and glutathione cleavage revealed that BIG1 siRNA dramatically decreased the internalization and recycling of ABCA1. This novel function of BIG1 was dependent on the guanine nucleotide-exchange activity and achieved through activation of ADP-ribosylation factor 1 (ARF1). Conclusions BIG1, through its ability to activate ARF1, regulates cell surface levels and function of ABCA1, indicating a transcription-independent mechanism for controlling ABCA1 action. PMID:23220274
Fluorescent immunolabeling of cancer cells by quantum dots and antibody scFv fragment.
Zdobnova, Tatiana A; Dorofeev, Sergey G; Tananaev, Piter N; Vasiliev, Roman B; Balandin, Taras G; Edelweiss, Eveline F; Stremovskiy, Oleg A; Balalaeva, Irina V; Turchin, Ilya V; Lebedenko, Ekaterina N; Zlomanov, Vladimir P; Deyev, Sergey M
2009-01-01
Semiconductor quantum dots (QDs) coupled with cancer-specific targeting ligands are new promising agents for fluorescent visualization of cancer cells. Human epidermal growth factor receptor 2/neu (HER2/neu), overexpressed on the surface of many cancer cells, is an important target for cancer diagnostics. Antibody scFv fragments as a targeting agent for direct delivery of fluorophores offer significant advantages over full-size antibodies due to their small size, lower cross-reactivity, and immunogenicity. We have used quantum dots linked to anti-HER2/neu 4D5 scFv antibody to label HER2/neu-overexpressing live cells. Labeling of target cells was shown to have high brightness, photostability, and specificity. The results indicate that construction based on quantum dots and scFv antibody can be successfully used for cancer cell visualization.
Moradian, Hanieh; Keshvari, Hamid; Fasehee, Hamidreza; Dinarvand, Rassoul; Faghihi, Shahab
2017-07-01
Parkinson's disease (PD) is a progressive neurodegenerative disorder that characterized by destruction of substantia nigrostriatal pathway due to the loss of dopaminergic (DA) neurons. Regardless of substantial efforts for treatment of PD in recent years, an effective therapeutic strategy is still missing. In a multidisciplinary approach, bone marrow derived mesenchymal stem cells (BMSCs) are genetically engineered to overexpress neurotrophin-3 (nt-3 gene) that protect central nervous system tissues and stimulates neuronal-like differentiation of BMSCs. Poly(lactic-co-glycolic acid) (PLGA) microcarriers are designed as an injectable scaffold and synthesized via double emulsion method. The surface of PLGA microcarriers are functionalized by collagen as a bioadhesive agent for improved cell attachment. The results demonstrate effective overexpression of NT-3. The expression of tyrosine hydroxylase (TH) in transfected BMSCs reveal that NT-3 promotes the intracellular signaling pathway of DA neuron differentiation. It is also shown that transfected BMSCs are successfully attached to the surface of microcarriers. The presence of dopamine in peripheral media of cell/microcarrier complex reveals that BMSCs are successfully differentiated into dopaminergic neuron. Our approach that sustains presence of growth factor can be suggested as a novel complementary therapeutic strategy for treatment of Parkinson disease. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bragina, O.; Larkina, M.; Stasyuk, E.; Chernov, V.; Zelchan, R.; Medvedeva, A.; Sinilkin, I.; Yusubov, M.; Skuridin, V.; Deyev, S.; Buldakov, M.
2017-09-01
It is still necessary to search for new informative diagnostic methods to detect malignant tumors with overexpression of Her-2/neu, which are characterized by the aggressive course of the disease, rapid rate of tumor growth and low rates of relapse-free and overall survival. In recent years, the radioisotope techniques for detection of specific tumor targets have been developing actively. Purpose: to develop a chemically stable radiochemical compound for the targeted imaging of cells overexpressing Her-2/neu. Material and methods: The study was performed using 2 cell lines. The human breast adenocarcinoma HER2-overexpressing cell line BT-474 was chosen to detect specific binding. As a control, HER2-negative human breast adenocarcinoma MCF-7 was used. The human breast adenocarcinoma BT-474 and MCF-7 cell lines were seeded in chamber-slides at the density of 35,000 cells/ml in trypsin-EDTA (PanEco) medium and grown overnight at 37°C. After that both cell lines were washed with Phosphate buffered saline (PBS) and distributed into test tubes to 1 ml (5 millions cells in each). After adding 100 µl (70 MBq) studied complex of 99mTc-DPAH- DARPinG3 was incubated for 40 min at +4°C. Washing was performed three times with buffer PBS and 5% Bovine Serum Albumin (BSA). The characteristics of the binding specificity of the test set with the HER-2/neu receptor were determined by direct radiometric and planar scintigraphy. Nonparametric Mann-Whitney test was used to assess the differences in the quantitative characteristics between groups. Results: The output of the labeled complex was more than 91%, with a radiochemical purity of more than 94%. When carrying out a visual scintigraphic assessment much greater intensity accumulation of radiotracer was observed in the studied cell culture surface receptor overexpressing Her-2/neu. The results of direct radiometric also showed higher accumulation of the radiopharmaceutical in the adenocarcinoma cell line BT-474 human breast cancer overexpressing Her-2/neu compared to the control group. Conclusion: The preclinical studies demonstrated a high in vitro stability of the study compound, as well as its accumulation in the cell group overexpressing Her-2/neu.
Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Banerjee, Sanjeev; Ahmad, Aamir; Li, Yiwei; Azmi, Asfar S.; Miele, Lucio; Sarkar, Fazlul H.
2011-01-01
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of Epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein. PMID:21503965
Cell-surface markers for colon adenoma and adenocarcinoma
Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S.; Wojtkowiak, Jonathan W.; Stark, Valerie E.; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L.
2016-01-01
Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC. PMID:26894861
Cell-surface markers for colon adenoma and adenocarcinoma.
Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S; Wojtkowiak, Jonathan W; Stark, Valerie E; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L
2016-04-05
Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.
Yu, Chenchen; Hu, Yan; Duan, Jinhong; Yuan, Wei; Wang, Chen; Xu, Haiyan; Yang, Xian-Da
2011-01-01
MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+) cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.
Overexpression of IL-7R alpha provides a competitive advantage during early T-cell development.
Laouar, Yasmina; Crispe, I Nicholas; Flavell, Richard A
2004-03-15
Critical checkpoints controlling early thymic T-cell development and homeostasis are set by the proper signaling function of the interleukin 7 receptor (IL-7R) and the pre-T-cell antigen receptor. Although alpha beta T-cell development is observed in IL-7- and IL-7R alpha-deficient mice, the number of thymocytes is significantly reduced, implying a role for the IL-7R in controlling the size of the thymic T-cell compartment. Here, we report the overexpression of IL-7R alpha that occurs in the early T-cell compartment from AKR/J mice, animals that are highly susceptible to the spontaneous development of thymoma. Increased IL-7R alpha was revealed by surface staining, and increased IL-7R alpha mRNA was documented by using reverse transcriptase-polymerase chain reaction (RT-PCR). This resulted in increased survival of AKR/J early thymocytes, shown by the decreased frequency of TUNEL(+) (terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate [dUTP]-fluorescein nick end labeling) cells. In an in vivo thymocyte repopulation model, AKR/J thymocytes had a selective advantage over healthy thymocytes. This advantage occurred at early stages of T-cell development. Our findings support the model that overexpression of growth factor receptors can contribute to proliferation and malignancy.
Han, Yali; Liu, Chuanyong; Li, Guanhua; Li, Juan; Lv, Xingyan; Shi, Huan; Liu, Jie; Liu, Shuai; Yan, Peng; Wang, Shuyun; Sun, Yuping; Sun, Meili
2018-01-01
New immunotherapeutic approaches are urgently needed for gastric cancer due to its poor survival and unsatisfactory treatment. Here we applied the humanized chA21 scfv based chimeric antigen receptor (CAR) modified T cells approach to the HER2 overexpressing gastric cancer treatment. The chA21-4-1BBz CAR T cells specifically exerted Th1 skewed cytokine response and efficient cytolysis of HER2 overexpressing human gastric cancer cells in vitro. Both the cytokine production and cytotoxicity levels were correlated with the level of HER2 surface expression by tumor cells. In established subcutaneous xenograft and peritoneal metastasis models, chA21-4-1BBz CAR T cells dramatically facilitated regression of HER2 overexpressing tumor and prolonged survival of tumor-bearing mice, whereas spared the progression of HER2 low-expressing tumor. Additionally, the capability of these CAR T cells to persist in circulation, as well as specifically home to, and accumulate in tumor sites were identified. Taken together, these results provide the basis for the future clinical investigation of the humanized chA21 scFv based, 4-1BB costimulated CAR T cells for the treatment of gastric cancer, and other HER2-expressing solid tumors. PMID:29416924
Qiao, Jingbo; Kang, Junghee; Cree, Jeremy; Evers, B Mark; Chung, Dai H
2005-05-01
To evaluate whether aggressive, undifferentiated neuroblastomas express tumor suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome ten) and to examine the effects of gastrin-releasing peptide (GRP) on PTEN gene and protein expression. We have previously shown that neuroblastomas secrete GRP, which binds to its cell surface receptor (GRP-R) to stimulate cell growth in an autocrine fashion. However, the effects of GRP on expression of the tumor suppressor gene PTEN have not been elucidated in neuroblastomas. Paraffin-embedded sections from human neuroblastomas were analyzed for PTEN and phospho-Akt protein expression by immunohistochemistry. Human neuroblastoma cell lines (SK-N-SH and SH-SY5Y) were stably transfected with the plasmid pEGFP-GRP-R to establish GRP-R overexpression cell lines, and the effects of GRP on PTEN gene and protein expression were determined. A decrease in the ratio of PTEN to phospho-Akt protein expression was identified in poorly differentiated neuroblastomas. An increase in GRP binding capacity was confirmed in GRP-R overexpressing cells, which demonstrated an accelerated constitutive cell growth rate. PTEN gene and protein expression was significantly decreased in GRP-R overexpressing cells when compared with controls. Our findings demonstrate decreased expression of the tumor suppressor protein PTEN in more aggressive undifferentiated neuroblastomas. An increase in GRP binding capacity, as a result of GRP-R overexpression, down-regulates PTEN expression. These findings suggest that an inhibition of the tumor suppressor gene PTEN may be an important regulatory mechanism involved in GRP-induced cell proliferation in neuroblastomas.
NASA Astrophysics Data System (ADS)
Islam, Muhymin; Mahmood, Arif; Bellah, Md.; Kim, Young-Tae; Iqbal, Samir
2014-03-01
Detection of circulating tumor cells (CTCs) in the early stages of cancer is requires very sensitive approach. Nanotextured polydimethylsiloxane (PDMS) substrates were fabricated by micro reactive ion etching (Micro-RIE) to have better control on surface morphology and to improve the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers. The aptamers were specific to epidermal growth factor receptors (EGFR) present in cell membranes, and overexpressed in tumor cells. We also investigated the effect of nano-scale features on cell capturing by implementing various surfaces of different roughnesses. Three different recipes were used to prepare nanotextured PDMS by micro-RIE using oxygen (O2) and carbon tetrafluoride (CF4). The measured average roughness of three nanotextured PDMS surfaces were found to impact average densities of captured cells. In all cases, nanotextured PDMS facilitated cell capturing possibly due to increased effective surface area of roughened substrates at nanoscale. It was also observed that cell capture efficiency was higher for higher surface roughness. The nanotextured PDMS substrates are thus useful for cancer cytology devices.
Bissell, Mina J.; Muschler, John L.
2010-02-23
The present invention provides methods and compositions for the diagnosis and treatment of cells lacking normal growth arresting characteristic. The present invention demonstrates that many tumor cells lack normal cell surface .alpha.-dystroglycan and thereby lack dystroglycan function. Dystroglycan can be lost from the cell surface by proteolytic shedding of a fragment of .alpha.-dystroglycan into the surrounding medium. Upon restoration of dystroglycan function and over-expression of the dystroglycan gene, the once tumorigenic cells revert to non-tumorigenic cells which polarize and arrest cell growth in the presence of basement membrane proteins, demonstrating that dystroglycan functions as a tumor marker and suppressor.
Kwon, Koo Chul; Ko, Ho Kyung; Lee, Jiyun; Lee, Eun Jung; Kim, Kwangmeyung; Lee, Jeewon
2016-08-01
Human ferritin heavy-chain nanoparticle (hFTH) is genetically engineered to present tumor receptor-binding peptides (affibody and/or RGD-derived cyclic peptides, named 4CRGD here) on its surface. The affibody and 4CRGD specifically and strongly binds to human epidermal growth factor receptor I (EGFR) and human integrin αvβ3, respectively, which are overexpressed on various tumor cells. Through in vitro culture of EGFR-overexpressing adenocarcinoma (MDA-MB-468) and integrin-overexpressing glioblastoma cells (U87MG), it is clarified that specific interactions between receptors on tumor cells and receptor-binding peptides on engineered hFTH is critical in active tumor cell targeting. After labeling with the near-infrared fluorescence dye (Cy5.5) and intravenouse injection into MDA-MB-468 or U87MG tumor-bearing mice, the recombinant hFTHs presenting either peptide or both of affibody and 4CRGD are successfully delivered to and retained in the tumor for a prolonged period of time. In particular, the recombinant hFTH presenting both affibody and 4CRGD notably enhances in vivo detection of U87MG tumors that express heterogeneous receptors, integrin and EGFR, compared to the other recombinant hFTHs presenting either affibody or 4CRGD only. Like affibody and 4CRGD used in this study, other multiple tumor receptor-binding peptides can be also genetically introduced to the hFTH surface for actively targeting of in vivo tumors with heterogenous receptors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie
2015-08-01
In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.
Shigetani, Yasuyo; Howard, Sara; Guidato, Sonia; Furushima, Kenryo; Abe, Takaya; Itasaki, Nobue
2008-07-15
While most cranial ganglia contain neurons of either neural crest or placodal origin, neurons of the trigeminal ganglion derive from both populations. The Wnt signaling pathway is known to be required for the development of neural crest cells and for trigeminal ganglion formation, however, migrating neural crest cells do not express any known Wnt ligands. Here we demonstrate that Wise, a Wnt modulator expressed in the surface ectoderm overlying the trigeminal ganglion, play a role in promoting the assembly of placodal and neural crest cells. When overexpressed in chick, Wise causes delamination of ectodermal cells and attracts migrating neural crest cells. Overexpression of Wise is thus sufficient to ectopically induce ganglion-like structures consisting of both origins. The function of Wise is likely synergized with Wnt6, expressed in an overlapping manner with Wise in the surface ectoderm. Electroporation of morpholino antisense oligonucleotides against Wise and Wnt6 causes decrease in the contact of neural crest cells with the delaminated placode-derived cells. In addition, targeted deletion of Wise in mouse causes phenotypes that can be explained by a decrease in the contribution of neural crest cells to the ophthalmic lobe of the trigeminal ganglion. These data suggest that Wise is able to function cell non-autonomously on neural crest cells and promote trigeminal ganglion formation.
NASA Astrophysics Data System (ADS)
Yanes, Rolando Eduardo
Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed. This serves as a foundation to use MSNs as protein harvesting tools and investigate protein expression in cancer cells.
Leishmania cell surface prohibitin: role in host-parasite interaction.
Jain, Rohit; Ghoshal, Angana; Mandal, Chitra; Shaha, Chandrima
2010-04-01
Proteins selectively upregulated in infective parasitic forms could be critical for disease pathogenesis. A mammalian prohibitin orthologue is upregulated in infective metacyclic promastigotes of Leishmania donovani, a parasite that causes visceral leishmaniasis. Leishmania donovani prohibitin shares 41% similarity with mammalian prohibitin and 95-100% within the genus. Prohibitin is concentrated at the surface of the flagellar and the aflagellar pole, the aflagellar pole being a region through which host-parasite interactions occur. Prohibitin is attached to the membrane through a GPI anchor. Overexpression of wild-type prohibitin increases protein surface density resulting in parasites with higher infectivity. However, parasites overexpressing a mutant prohibitin with an amino acid substitution at the GPI anchor site to prevent surface expression through GPI-link show lesser surface expression and lower infective abilities. Furthermore, the presence of anti-prohibitin antibodies during macrophage-Leishmania interaction in vitro reduces infection. The cognate binding partner for Leishmania prohibitin on the host cell appears to be macrophage surface HSP70, siRNA mediated downregulation of which abrogates the capability of the macrophage to bind to parasites. Leishmania prohibitin is able to generate a strong humoral response in visceral leishmaniasis patients. The above observations suggest that prohibitin plays an important role in events leading to Leishmania-host interaction.
Development of Raman Spectroscopy as a Clinical Diagnostic Tool
NASA Astrophysics Data System (ADS)
Borel, Santa
Raman spectroscopy is the collection of inelastically scattered light in which the spectra contain biochemical information of the probed cells or tissue. This work presents both targeted and untargeted ways that the technique can be exploited in biological samples. First, surface enhanced Raman scattering (SERS) gold nanoparticles conjugated to targeting antibodies were shown to be successful for multiplexed detection of overexpressed surface antigens in lung cancer cell lines. Further work will need to optimize the conjugation technique to preserve the strong binding affinity of the antibodies. Second, untargeted Raman microspectroscopy combined with multivariate statistical analysis was able to successfully differentiate mouse ovarian surface epithelial (MOSE) cells and spontaneously transformed ovarian surface epithelial (STOSE) cells with high accuracy. The differences between the two groups were associated with increased nucleic acid content in the STOSE cells. This shows potential for single cell detection of ovarian cancer.
Tran, Tuan Hiep; Nguyen, Tuan Duc; Van Nguyen, Han; Nguyen, Hanh Thuy; Kim, Jong Oh; Yong, Chul Soon; Nguyen, Chien Ngoc
2016-05-01
Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with negative surface charge were reversed to positive by cationic surfactant-DDAB before being coated with an anionic polymer, hyaluronic acid, to improve their site-specific intracellular delivery against CD44 receptor overexpressing cancer cells. Incorporating artesunate (ART)-a promising anticancer drug into PLGA/HA nanoparticles, is expected not only to overcome its poor aqueous solubility and stability but also enhance the activities. The obtained particles were characterized by dynamic light scattering, zeta potential measurements, and transmission electron microscopy (TEM). Cancer cell internalization of the NPs was evaluated by flow cytometry and cytotoxicity of the NPs was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. PLGA/HA nanoparticles showed greater extent of cellular uptake to SCC-7 and MCF-7 cells, indicating their affinity with CD44 receptor-mediated endocytosis. Almost 60 % of ART was released into the outer media after 48 h. In vitro fluorescence sorting demonstrated that PLGA/HA had highly efficient targeting and accumulation into CD44 receptor overexpression cells. The significant reduction in cell viability as well as greater induction of apoptosis suggested a potential in anticancer therapy of ART loaded PLGA/HA.
TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zanhua; The Chest Hospital of Jiangxi Province Department of Respiration; Jiang, Xunsheng
2016-01-29
Recent studies suggest that the human trophoblast cell-surface antigen TROP2 is highly expressed in a number of tumours and is correlated with poor prognosis. However, its role in non-small cell lung carcinoma (NSCLC) remains largely unknown. Here we examined TROP2 expression by immunohistochemistry in a series of 68 patients with adenocarcinoma (ADC). We found significantly elevated TROP2 expression in ADC tissues compared with normal lung tissues (P < 0.05), and TROP2 overexpression was significantly associated with TNM (tumour, node, metastasis) stage (P = 0.012), lymph node metastasis (P = 0.038), and histologic grade (P = 0.013). Kaplan–Meier survival analysis revealed that high TROP2 expression correlated with poor prognosismore » (P = 0.046). Multivariate analysis revealed that TROP2 expression was an independent prognostic marker for overall survival of ADC patients. Moreover, TROP2 overexpression enhanced cell proliferation, migration, and invasion in the NSCLC cell line A549, whereas knockdown of TROP2 induced apoptosis and impaired proliferation, migration, and invasion in the PC-9 cells. Altogether, our data suggest that TROP2 plays an important role in promoting ADC and may represent a novel prognostic biomarker and therapeutic target for the disease.« less
[Over-expression of BDNF inhibits angiotensin II-induced apoptosis of cardiomyocytes in SD rats].
Cao, Jingli; Wu, Yingfeng; Liu, Geming; Li, Zhenlong
2018-03-01
Objective To investigate the role and molecular mechanism of brain-derived neurotrophic factor (BDNF) against the process of cardiomyocyte hypertrophy and apoptosis. Methods Cardiomyocyte hypertrophy were estabolished by angiotensin II (Ang II) in neonatal cardiomyocytes in vitro and incomplete ligature of abdominal aorta of SD rats in vivo. BDNF over-expressing recombinant vector pcDNA5-BDNF was transfected into cardiomyocytes by liposomes. Immunofluorescence staining was used to detect the effect of BDNF transfection on the surface area of myocardial cells. The effect of BDNF transfection on the apoptosis of cardiomyocytes was assayed by flow cytometry. Real-time fluorescent quantitative PCR was performed to detect the effect of over-expression of BDNF on the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs in cardiomyocytes. Western blot assay was used to observe the changes of BDNF, ANP and BNP, calmodulin kinase 2 (CaMK2) and phosphorylated calmodulin kinase 2 (p-CaMK2), calcineurin (CaN), p-CaN, nuclear factor of activated T cells 3 (NFATC3) and p-NFATC3 protein expressions in the myocardial tissues and cardiomyocytes. Results The expression of BDNF protein increased significantly in cardiac hypertrophy animal and cell models in a time-dependent manner. Compared with the untransfected control cardiomyocytes, the surface area of cardiomyocytes, the rate of apoptosis, the levels of ANP and BNP mRNA and protein expression, the levels of p-CaMK2 and CaN protein in the BDNF over-expressed cardiomyocytes were remarkably reduced, while the level of p-NFATC3 protein rose significantly. Conclusion BDNF inhibits the apoptosis of cardiomyocytes induced by Ang II, and it plays the role by inhibiting CaMK2 and CaN signaling pathways.
(Updated) Targeted T-Cell Therapy Shows Promise Against Triple-Negative Breast Cancer | Poster
(Updated May 8) A study led by the Baylor College of Medicine and supported by NCI’s Center for Cancer Research (CCR) has demonstrated that chimeric antigen receptor (CAR) T-cell therapy can be used to treat solid triple-negative breast cancer (TNBC) tumors. The investigation is the first work using CAR T-cell therapy against TEM8, a cell surface protein that is frequently overexpressed both in TNBC cells and cells lining the blood vessels that sustain TNBC tumors.
Gong, Baolan; Yue, Yan; Wang, Renxiao; Zhang, Yi; Jin, Quanfang; Zhou, Xi
2017-06-01
The epithelial-mesenchymal transition is the key process driving cancer metastasis. MicroRNA-194 inhibits epithelial-mesenchymal transition in several cancers and its downregulation indicates a poor prognosis in human endometrial carcinoma. Self-renewal factor Sox3 induces epithelial-mesenchymal transition at gastrulation and is also involved epithelial-mesenchymal transition in several cancers. We intended to determine the roles of Sox3 in inducing epithelial-mesenchymal transition in endometrial cancer stem cells and the possible role of microRNA-194 in controlling Sox3 expression. Firstly, we found that Sox3 and microRNA-194 expressions were associated with the status of endometrial cancer stem cells in a panel of endometrial carcinoma tissue, the CD133+ cell was higher in tumorsphere than in differentiated cells, and overexpression of microRNA-194 would decrease CD133+ cell expression. Silencing of Sox3 in endometrial cancer stem cell upregulated the epithelial marker E-cadherin, downregulated the mesenchymal marker vimentin, and significantly reduced cell invasion in vitro; overexpression of Sox3 reversed these phenotypes. Furthermore, we discovered that the expression of Sox3 was suppressed by microRNA-194 through direct binding to the Sox3 3'-untranslated region. Ectopic expression of microRNA-194 in endometrial cancer stem cells induced a mesenchymal-epithelial transition by restoring E-cadherin expression, decreasing vimentin expression, and inhibiting cell invasion in vitro. Moreover, overexpression of microRNA-194 inhibited endometrial cancer stem cell invasion or metastasis in vivo by injection of adenovirus microRNA-194. These findings demonstrate the novel mechanism by which Sox3 contributes to endometrial cancer stem cell invasion and suggest that repression of Sox3 by microRNA-194 may have therapeutic potential to suppress endometrial carcinoma metastasis. The cancer stem cell marker, CD133, might be the surface marker of endometrial cancer stem cell.
MUC1 extracellular domain confers resistance of epithelial cancer cells to anoikis
Zhao, Q; Piyush, T; Chen, C; Hollingsworth, M A; Hilkens, J; Rhodes, J M; Yu, L-G
2014-01-01
Anoikis, a special apoptotic process occurring in response to loss of cell adhesion to the extracellular matrix, is a fundamental surveillance process for maintaining tissue homeostasis. Resistance to anoikis characterises cancer cells and is a pre-requisite for metastasis. This study shows that overexpression of the transmembrane mucin protein MUC1 prevents initiation of anoikis in epithelial cancer cells in response to loss of adhesion. We show that this effect is largely attributed to the elongated and heavily glycosylated extracellular domain of MUC1 that protrudes high above the cell membrane and hence prevents activation of the cell surface anoikis-initiating molecules such as integrins and death receptors by providing them a mechanically ‘homing' microenvironment. As overexpression of MUC1 is a common feature of epithelial cancers and as resistance to anoikis is a hallmark of both oncogenic epithelial–mesenchymal transition and metastasis, MUC1-mediated cell resistance to anoikis may represent one of the fundamental regulatory mechanisms in tumourigenesis and metastasis. PMID:25275599
Xiong, Anqi; Kundu, Soumi; Forsberg, Maud; Xiong, Yuyuan; Bergström, Tobias; Paavilainen, Tanja; Kjellén, Lena; Li, Jin-Ping; Forsberg-Nilsson, Karin
2017-10-01
Heparan sulfate proteoglycans (HSPGs), ubiquitous components of mammalian cells, play important roles in development and homeostasis. These molecules are located primarily on the cell surface and in the pericellular matrix, where they interact with a multitude of macromolecules, including many growth factors. Manipulation of the enzymes involved in biosynthesis and modification of HSPG structures alters the properties of stem cells. Here, we focus on the involvement of heparanase (HPSE), the sole endo-glucuronidase capable of cleaving of HS, in differentiation of embryonic stem cells into the cells of the neural lineage. Embryonic stem (ES) cells overexpressing HPSE (Hpse-Tg) proliferated more rapidly than WT ES cells in culture and formed larger teratomas in vivo. In addition, differentiating Hpse-Tg ES cells also had a higher growth rate, and overexpression of HPSE in NSPCs enhanced Erk and Akt phosphorylation. Employing a two-step, monolayer differentiation, we observed an increase in HPSE as wild-type (WT) ES cells differentiated into neural stem and progenitor cells followed by down-regulation of HPSE as these NSPCs differentiated into mature cells of the neural lineage. Furthermore, NSPCs overexpressing HPSE gave rise to more oligodendrocytes than WT cultures, with a concomitant reduction in the number of neurons. Our present findings emphasize the importance of HS, in neural differentiation and suggest that by regulating the availability of growth factors and, or other macromolecules, HPSE promotes differentiation into oligodendrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.
2011-01-01
Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN) and measles hemagglutinin (MeH) in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A) and is closely associated with small heat shock proteins (sHsps) that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto) in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of these recombinant proteins induces the UPR's cytosolic counterpart, the UPR-Cyto, which represent a subset of proteins involved in the heat-shock response. The involvement of eEF1A may explain the mechanism by which only large chaperones, but not small Hsps are upregulated during this stress response. Our study highlights important differences between viral surface protein expression in yeast and mammalian cells at the first stage of secretory pathway. PMID:21595909
Busek, P; Stremenová, J; Krepela, E; Sedo, A
2008-01-01
Dipeptidyl peptidase-IV (DPP-IV, CD26) is a serine protease almost ubiquitously expressed on cell surface and present in body fluids. DPP-IV has been suggested to proteolytically modify a number of biologically active peptides including substance P (SP) and the chemokine stromal cell derived factor-1alpha (SDF-1alpha, CXCL12). SP and SDF-1alpha have been implicated in the regulation of multiple biological processes and also induce responses that may be relevant for glioma progression. Both SP and SDF-1alpha are signaling through cell surface receptors and use intracellular calcium as a second messenger. The effect of DPP-IV on intracellular calcium mobilization mediated by SP and SDF-1alpha was monitored in suspension of wild type U373 and DPP-IV transfected U373DPPIV glioma cells using indicator FURA-2. Nanomolar concentrations of SP triggered a transient dose dependent increase in intracellular calcium rendering the cells refractory to repeated stimulation, while SDF-1 had no measurable effect. SP signaling in DPP-IV overexpressing U373DPPIV cells was not substantially different from that in wild type cells. However, preincubation of SP with the DPP-IV overexpressing cells lead to the loss of its signaling potential, which could be prevented with DPP-IV inhibitors. Taken together, DPP-IV may proteolytically inactivate local mediators involved in gliomagenesis.
DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis
Yang, Xiaoqing; Zhang, Xinhua; Wu, Rongrong; Huang, Qicheng; Jiang, Yao; Qin, Jianbing; Yao, Feng; Jin, Guohua; Zhang, Yuquan
2017-01-01
Dipeptidyl peptidase IV (DPPIV), also known as CD26, is a 110-kDa cell surface glycoprotein expressed in various tissues. DPPIV reportedly plays a direct role in the progression of several human malignancies. DPPIV specific inhibitors are employed as antidiabetics and could potentially be repurposed to enhance anti-tumor immunotherapies. In the present study, we investigated the correlation between DPPIV expression and tumor progression in endometrial carcinoma (EC). DPPIV overexpression altered cell morphology and stimulated cell proliferation, invasion and tumorigenesis in vitro and in vivo. These effects were abrogated by DPPIV knockdown or pharmacological inhibition using sitagliptin. DPPIV overexpression increased hypoxia-inducible factor 1a (HIF-1a) and vascular endothelial growth factor A (VEGFA) expression to promote HIF-1a-VEGFA signaling. Our results indicated that DPPIV accelerated endometrial carcinoma progression and that sitagliptin may be an effective anti-EC therapeutic. PMID:28060721
DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis.
Yang, Xiaoqing; Zhang, Xinhua; Wu, Rongrong; Huang, Qicheng; Jiang, Yao; Qin, Jianbing; Yao, Feng; Jin, Guohua; Zhang, Yuquan
2017-01-31
Dipeptidyl peptidase IV (DPPIV), also known as CD26, is a 110-kDa cell surface glycoprotein expressed in various tissues. DPPIV reportedly plays a direct role in the progression of several human malignancies. DPPIV specific inhibitors are employed as antidiabetics and could potentially be repurposed to enhance anti-tumor immunotherapies. In the present study, we investigated the correlation between DPPIV expression and tumor progression in endometrial carcinoma (EC). DPPIV overexpression altered cell morphology and stimulated cell proliferation, invasion and tumorigenesis in vitro and in vivo. These effects were abrogated by DPPIV knockdown or pharmacological inhibition using sitagliptin. DPPIV overexpression increased hypoxia-inducible factor 1a (HIF-1a) and vascular endothelial growth factor A (VEGFA) expression to promote HIF-1a-VEGFA signaling. Our results indicated that DPPIV accelerated endometrial carcinoma progression and that sitagliptin may be an effective anti-EC therapeutic.
Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging
Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.
2010-01-01
Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480
Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining
2017-12-01
CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.
Costantini, Todd W; Dang, Xitong; Yurchyshyna, Maryana V; Coimbra, Raul; Eliceiri, Brian P; Baird, Andrew
2015-01-01
The human genome contains a variant form of the α7-nicotinic acetylcholine receptor (α7nAChR) gene that is uniquely human. This CHRFAM7A gene arose during human speciation and recent data suggests that its expression alters ligand tropism of the normally homopentameric human α7-AChR ligand-gated cell surface ion channel that is found on the surface of many different cell types. To understand its possible significance in regulating inflammation in humans, we investigated its expression in normal human leukocytes and leukocyte cell lines, compared CHRFAM7A expression to that of the CHRNA7 gene, mapped its promoter and characterized the effects of stable CHRFAM7A overexpression. We report here that CHRFAM7A is highly expressed in human leukocytes but that the levels of both CHRFAM7A and CHRNA7 mRNAs were independent and varied widely. To this end, mapping of the CHRFAM7A promoter in its 5′-untranslated region (UTR) identified a unique 1-kb sequence that independently regulates CHRFAM7A gene expression. Because overexpression of CHRFAM7A in THP1 cells altered the cell phenotype and modified the expression of genes associated with focal adhesion (for example, FAK, P13K, Akt, rho, GEF, Elk1, CycD), leukocyte transepithelial migration (Nox, ITG, MMPs, PKC) and cancer (kit, kitL, ras, cFos cyclinD1, Frizzled and GPCR), we conclude that CHRFAM7A is biologically active. Most surprisingly however, stable CHRFAM7A overexpression in THP1 cells upregulated CHRNA7, which, in turn, led to increased binding of the specific α7nAChR ligand, bungarotoxin, on the THP1 cell surface. Taken together, these data confirm the close association between CHRFAM7A and CHRNA7 expression, establish a biological consequence to CHRFAM7A expression in human leukocytes and support the possibility that this human-specific gene might contribute to, and/or gauge, a human-specific response to inflammation. PMID:25860877
Biotin conjugated organic molecules and proteins for cancer therapy: A review.
Maiti, Santanu; Paira, Priyankar
2018-02-10
The main transporter for biotin is sodium dependent multivitamin transporter (SMVT), which is overexpressed in various aggressive cancer cell lines such as ovarian (OV 2008, ID8), leukemia (L1210FR), mastocytoma (P815), colon (Colo-26), breast (4T1, JC, MMT06056), renal (RENCA, RD0995), and lung (M109) cancer cell lines. Furthermore, its overexpression was found higher to that of folate receptor. Therefore, biotin demand in the rapidly growing tumors is higher than normal tissues. Several biotin conjugated organic molecules has been reported here for selective delivery of the drug in cancer cell. Biotin conjugated molecules are showing higher fold of cytotoxicity in biotin positive cancer cell lines than the normal cell. Nanoparticles and polymer surface modified drugs and biotin mediated cancer theranostic strategy was highlighted in this review. The cytotoxicity and selectivity of the drug in cancer cells has enhanced after biotin conjugation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Xie, Linglin; Fu, Qiang; Ortega, Teresa M; Zhou, Lun; Rasmussen, Dane; O'Keefe, Jacy; Zhang, Ke K; Chapes, Stephen K
2014-01-01
Adipose tissue macrophages are a heterogeneous collection of classically activated (M1) and alternatively activated (M2) macrophages. Interleukin 10 (IL-10) is an anti-inflammatory cytokine, secreted by a variety of cell types including M2 macrophages. We generated a macrophage cell line stably overexpressing IL-10 (C2D-IL10) and analyzed the C2D-IL10 cells for several macrophage markers after exposure to adipocytes compared to C2D cells transfected with an empty vector (C2D-vector). C2D-IL10 macrophage cells expressed more CD206 when co-cultured with adipocytes than C2D-vector cells; while the co-cultured cell mixture also expressed higher levels of Il4, Il10, Il1β and Tnf. Since regular C2D cells traffic to adipose tissue after adoptive transfer, we explored the impact of constitutive IL-10 expression on C2D-IL10 macrophages in adipose tissue in vivo. Adipose tissue-isolated C2D-IL10 cells increased the percentage of CD206(+), CD301(+), CD11c(-)CD206(+) (M2) and CD11c(+)CD206(+) (M1b) on their cell surface, compared to isolated C2D-vector cells. These data suggest that the expression of IL-10 remains stable, alters the C2D-IL10 macrophage cell surface phenotype and may play a role in regulating macrophage interactions with the adipose tissue.
Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline
2017-06-01
Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM3 mediates cell-cell adhesion at adherens junctions and contributes to the control of vascular sprouting. © 2017 American Heart Association, Inc.
WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis
NASA Technical Reports Server (NTRS)
Yuen, Christen Y L.; Pearlman, Rebecca S.; Silo-Suh, Laura; Hilson, Pierre; Carroll, Kathleen L.; Masson, Patrick H.
2003-01-01
Wild-type Arabidopsis roots develop a wavy pattern of growth on tilted agar surfaces. For many Arabidopsis ecotypes, roots also grow askew on such surfaces, typically slanting to the right of the gravity vector. We identified a mutant, wvd2-1, that displays suppressed root waving and leftward root slanting under these conditions. These phenotypes arise from transcriptional activation of the novel WAVE-DAMPENED2 (WVD2) gene by the cauliflower mosaic virus 35S promoter in mutant plants. Seedlings overexpressing WVD2 exhibit constitutive right-handed helical growth in both roots and etiolated hypocotyls, whereas the petioles of WVD2-overexpressing rosette leaves exhibit left-handed twisting. Moreover, the anisotropic expansion of cells is impaired, resulting in the formation of shorter and stockier organs. In roots, the phenotype is accompanied by a change in the arrangement of cortical microtubules within peripheral cap cells and cells at the basal end of the elongation zone. WVD2 transcripts are detectable by reverse transcriptase-polymerase chain reaction in multiple organs of wild-type plants. Its predicted gene product contains a conserved region named "KLEEK," which is found only in plant proteins. The Arabidopsis genome possesses seven other genes predicted to encode KLEEK-containing products. Overexpression of one of these genes, WVD2-LIKE 1, which encodes a protein with regions of similarity to WVD2 extending beyond the KLEEK domain, results in phenotypes that are highly similar to wvd2-1. Silencing of WVD2 and its paralogs results in enhanced root skewing in the wild-type direction. Our observations suggest that at least two members of this gene family may modulate both rotational polarity and anisotropic cell expansion during organ growth.
NASA Astrophysics Data System (ADS)
Karamchand, Leshern; Kim, Gwangseong; Wang, Shouyan; Hah, Hoe Jin; Ray, Aniruddha; Jiddou, Ruba; Koo Lee, Yong-Eun; Philbert, Martin A.; Kopelman, Raoul
2013-10-01
Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers.Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers. Electronic supplementary information (ESI) available: Effect of Potassium depletion on F3 peptide subcellular localization, MTT cytotoxicity data for endocytic inhibitors, size and morphology characterizations of hydrogel PAA nanocarriers, and optimization data for nanocarrier surface functionalization with PEG molecules and F3 peptides. See DOI: 10.1039/c3nr00908d
Nanotextured polymer substrates show enhanced cancer cell isolation and cell culture
NASA Astrophysics Data System (ADS)
Islam, Muhymin; Sajid, Adeel; Arif Iftakher Mahmood, M.; Motasim Bellah, Mohammad; Allen, Peter B.; Kim, Young-Tae; Iqbal, Samir M.
2015-06-01
Detection of circulating tumor cells (CTCs) in the early stages of cancer is a great challenge because of their exceedingly small concentration. There are only a few approaches sensitive enough to differentiate tumor cells from the plethora of other cells in a sample like blood. In order to detect CTCs, several antibodies and aptamers have already shown high affinity. Nanotexture can be used to mimic basement membrane to further enhance this affinity. This article reports an approach to fabricate nanotextured polydimethylsiloxane (PDMS) substrates using micro reactive ion etching (micro-RIE). Three recipes were used to prepare nanotextured PDMS using oxygen and carbon tetrafluoride. Micro-RIE provided better control on surface properties. Nanotexturing improved the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers against cell membrane overexpressed with epidermal growth factor receptors. In all cases, nanotexture of PDMS increased the effective surface area by creating nanoscale roughness on the surface. Nanotexture also enhanced the growth rate of cultured cells compared to plain surfaces. A comparison among the three nanotextured surfaces demonstrated an almost linear relationship between the surface roughness and density of captured tumor cells. The nanotextured PDMS mimicked biophysical environments for cells to grow faster. This can have many implications in microfluidic platforms used for cell handling.
Lima, Luís; Azevedo, Rita; Soares, Janine; Cotton, Sofia; Parreira, Beatriz; Neves, Manuel; Amaro, Teresina; Tavares, Ana; Teixeira, Filipe; Palmeira, Carlos; Rangel, Maria; Silva, André M.N.; Reis, Celso A.; Santos, Lúcio Lara; Oliveira, Maria José; Ferreira, José Alexandre
2016-01-01
Invasive bladder tumours express the cell-surface Sialyl-Tn (STn) antigen, which stems from a premature stop in protein O-glycosylation. The STn antigen favours invasion, immune escape, and possibly chemotherapy resistance, making it attractive for target therapeutics. However, the events leading to such deregulation in protein glycosylation are mostly unknown. Since hypoxia is a salient feature of advanced stage tumours, we searched into how it influences bladder cancer cells glycophenotype, with emphasis on STn expression. Therefore, three bladder cancer cell lines with distinct genetic and molecular backgrounds (T24, 5637 and HT1376) were submitted to hypoxia. To disclose HIF-1α-mediated events, experiments were also conducted in the presence of Deferoxamine Mesilate (Dfx), an inhibitor of HIF-1α proteasomal degradation. In both conditions all cell lines overexpressed HIF-1α and its transcriptionally-regulated protein CA-IX. This was accompanied by increased lactate biosynthesis, denoting a shift toward anaerobic metabolism. Concomitantly, T24 and 5637 cells acquired a more motile phenotype, consistent with their more mesenchymal characteristics. Moreover, hypoxia promoted STn antigen overexpression in all cell lines and enhanced the migration and invasion of those presenting more mesenchymal characteristics, in an HIF-1α-dependent manner. These effects were reversed by reoxygenation, demonstrating that oxygen affects O-glycan extension. Glycoproteomics studies highlighted that STn was mainly present in integrins and cadherins, suggesting a possible role for this glycan in adhesion, cell motility and invasion. The association between HIF-1α and STn overexpressions and tumour invasion was further confirmed in bladder cancer patient samples. In conclusion, STn overexpression may, in part, result from a HIF-1α mediated cell-survival strategy to adapt to the hypoxic challenge, favouring cell invasion. In addition, targeting STn-expressing glycoproteins may offer potential to treat tumour hypoxic niches harbouring more malignant cells. PMID:27542232
Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe
2015-12-04
Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLXmore » increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.« less
Cadherin 99C regulates apical expansion and cell rearrangement during epithelial tube elongation
Chung, SeYeon; Andrew, Deborah J.
2014-01-01
Apical and basolateral determinants specify and maintain membrane domains in epithelia. Here, we identify new roles for two apical surface proteins – Cadherin 99C (Cad99C) and Stranded at Second (SAS) – in conferring apical character in Drosophila tubular epithelia. Cad99C, the Drosophila ortholog of human Usher protocadherin PCDH15, is expressed in several embryonic tubular epithelial structures. Through loss-of-function and overexpression studies, we show that Cad99C is required to regulate cell rearrangement during salivary tube elongation. We further show that overexpression of either Cad99C or SAS causes a dramatic increase in apical membrane at the expense of other membrane domains, and that both proteins can do this independently of each other and independently of mislocalization of the apical determinant Crumbs (Crb). Overexpression of Cad99C or SAS results in similar, but distinct effects, suggesting both shared and unique roles for these proteins in conferring apical identity. PMID:24718992
Hao, Yuwei; Li, Yingying; Zhang, Feilong; Cui, Haijun; Hu, Jinsong; Meng, Jingxin; Wang, Shutao
2018-03-23
Highly efficient cell capture and release with low background are urgently required for early diagnosis of diseases such as cancer. Herein, we report an electrochemical responsive superhydrophilic surface exhibiting specific cell capture and release with high yields and extremely low nonspecific adhesion. Through electrochemical deposition, 3-substituted thiophene derivatives are deposited onto indium tin oxide (ITO) nanowire arrays with 4-n-nonylbenzeneboronic acid (BA) as dopant, fabricating the electrochemical responsive superhydrophilic surfaces. The molecular recognition between sialic acids over-expressed on the cell membrane and doped BAs endows the electrochemical responsive surfaces with the ability to capture and release targeted cancer cells. By adjusting the substituent group of thiophene derivatives, the surface wettability can be readily regulated and further utilized for reducing nonspecific cell adhesion. Significantly, the released cells still maintain a high proliferation ability, which indicates that the applied potential does not significantly harm the cells. Therefore, these results may provide a new strategy to achieve advanced functions of biomedical materials, such as low nonspecific adhesion. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adoptive Transfer of Dying Cells Causes Bystander-Induced Apoptosis
Schwulst, Steven J.; Davis, Christopher G.; Coopersmith, Craig M.; Hotchkiss, Richard S.
2009-01-01
The anti-apoptotic Bcl-2 protein has the remarkable ability to prevent cell death from several noxious stimuli. Intriguingly, Bcl-2 overexpression in one cell type has been reported to protect against cell death in neighboring non-Bcl-2 overexpressing cell types. The mechanism of this “trans” protection has been speculated to be secondary to the release of a cytoprotective factor by Bcl-2 overexpressing cells. We employed a series of adoptive transfer experiments in which lymphocytes that overexpress Bcl-2 were administered to either wild type mice or mice lacking mature T and B cells (Rag-1-/-) to detect the presence or absence of the putative protective factor. We were unable to demonstrate “trans” protection. However, adoptive transfer of apoptotic or necrotic cells exacerbated the degree of apoptotic death in neighboring non-Bcl-2 overexpressing cells (p≤0.05). Therefore, this data suggests that dying cells emit signals triggering cell death in neighboring non-Bcl-2 overexpressing cells, i.e. a “trans” destructive effect. PMID:17194455
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezali, Lamia; Leger, David Yannick; Limami, Youness
2013-04-15
Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effectmore » on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.« less
Hua, Xin; Zhou, Zhenxian; Yuan, Liang; Liu, Songqin
2013-07-25
A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer-cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL(-1) by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Yadong; Zhang, Jinsong; Yang, Kai; Zhang, Fujun; Chen, Rui; Chen, Dan
2014-02-01
To detect the effects of ANO1 overexpression on the biological behaviors of human laryngeal squamous cell carcinoma Hep-2 cells. A Hep-2 cell line stably overexpressing ANO1 were examined with flow cytometry, soft agar assay, wound healing assay, siRNA experiments, and chloride channel block with DIDS to observe the effect of ANO1 overexpression on the growth, migration and invasion of the cells. Flow cytometry revealed a comparable cell percentage in G0/G1 phase between ANO1-overexpressing cells and the control cells (P>0.05). The two cells showed no significant difference in soft agar assay (P>0.05), but in wound healing experiments, ANO1-overexpressing cells showed significantly accelerated migration (P<0.05), whereas siRNA-mediated silencing of ANO1 significantly inhibited the cell migration (P<0.05). Treatment with DIDS resulted in an effective block of the ANO1 chloride channel activity and obviously decreased the migration speed of Hep-2 cells. ANO1 overexpression does not significantly affect the proliferation of cancer cells, but can enhance the migration ability of head and neck squamous cell carcinoma, suggesting the value of ANO1 as a new gene therapy target for head and neck squamous cell carcinoma.
Mao, D; Qiao, L; Lu, H; Feng, Y
2016-01-01
Increasing evidences have shown that B-cell translocation gene 3 (BTG3) inhibits metastasis of multiple cancer cells. However, the role of BTG3 in colorectal cancer (CRC) and its possible mechanism have not yet been reported. In our study, we evaluated BTG3 expression in several CRC cell lines. Then, pcDNA3.1-BTG3 was transfected into SW480 cells. We found that BTG3 was upregulated in SW480 cells after overexpression plasmid transfection. BTG3 overexpression significantly inhibited cell growth and decreased PCNA (proliferating cell nuclear antigen) and Ki67 levels. BTG3 overexpression markedly downregulated Cyclin D1 and Cyclin E1 levels, whereas elevated p27. Overexpression of BTG3 arrested the cell cycle at G1 phase, which was abrogated by p27 silencing. Furthermore, migration, invasion and EMT of SW480 cells were significantly suppressed by BTG3 overexpression. Further investigations showed the inhibition of Wnt/β-catenin signaling pathway. We then used GSK3β specific inhibitor SB-216763 to activate the Wnt/β-catenin signaling pathway. We found that Wnt/β-catenin signaling pathway activation reversed the effect of BTG3 overexpression on cell proliferation, cell cycle progression, invasion and EMT. In conclusion, BTG3 overexpression inhibited cell growth, induced cell cycle arrest and suppressed the metastasis of SW480 cells via the Wnt/β-catenin signaling pathway. BTG3 may be considered as a therapeutic target in CRC treatment.
Langut, Yael; Talhami, Alaa; Mamidi, Samarasimhareddy; Shir, Alexei; Zigler, Maya; Joubran, Salim; Sagalov, Anna; Flashner-Abramson, Efrat; Edinger, Nufar; Klein, Shoshana; Levitzki, Alexander
2017-12-26
There is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine-polyethyleneglycol (PEI-PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC. The purpose of PEI is to bind polyinosinic/polycytosinic acid (polyIC) and allow endosomal release, while DUPA targets PC cells. PolyIC activates multiple pathways that lead to tumor cell death and to the activation of bystander effects that harness the immune system against the tumor, attacking nontargeted neighboring tumor cells and reducing the probability of acquired resistance and disease recurrence. Targeting polyIC directly to tumor cells avoids the toxicity associated with systemic delivery. PPD selectively delivered polyIC into PSMA-overexpressing PC cells, inducing apoptosis, cytokine secretion, and the recruitment of human peripheral blood mononuclear cells (PBMCs). PSMA-overexpressing tumors in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with partially reconstituted immune systems were significantly shrunken following PPD/polyIC treatment, in all cases. Half of the tumors showed complete regression. PPD/polyIC invokes antitumor immunity, but unlike many immunotherapies does not need to be personalized for each patient. The potent antitumor effects of PPD/polyIC should spur its development for clinical use.
Langut, Yael; Talhami, Alaa; Mamidi, Samarasimhareddy; Shir, Alexei; Zigler, Maya; Joubran, Salim; Sagalov, Anna; Flashner-Abramson, Efrat; Edinger, Nufar; Klein, Shoshana; Levitzki, Alexander
2017-01-01
There is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine–polyethyleneglycol (PEI–PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC. The purpose of PEI is to bind polyinosinic/polycytosinic acid (polyIC) and allow endosomal release, while DUPA targets PC cells. PolyIC activates multiple pathways that lead to tumor cell death and to the activation of bystander effects that harness the immune system against the tumor, attacking nontargeted neighboring tumor cells and reducing the probability of acquired resistance and disease recurrence. Targeting polyIC directly to tumor cells avoids the toxicity associated with systemic delivery. PPD selectively delivered polyIC into PSMA-overexpressing PC cells, inducing apoptosis, cytokine secretion, and the recruitment of human peripheral blood mononuclear cells (PBMCs). PSMA-overexpressing tumors in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with partially reconstituted immune systems were significantly shrunken following PPD/polyIC treatment, in all cases. Half of the tumors showed complete regression. PPD/polyIC invokes antitumor immunity, but unlike many immunotherapies does not need to be personalized for each patient. The potent antitumor effects of PPD/polyIC should spur its development for clinical use. PMID:29229829
Caffrey, Sean M.; Park, Hyung Soo; Been, Jenny; Gordon, Paul; Sensen, Christoph W.; Voordouw, Gerrit
2008-01-01
The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of −1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion. PMID:18310429
Rab coupling protein mediated endosomal recycling of N-cadherin influences cell motility.
Lindsay, Andrew J; McCaffrey, Mary W
2017-12-01
Rab coupling protein (RCP) is a Rab GTPase effector that functions in endosomal recycling. The RCP gene is frequently amplified in breast cancer, leading to increased cancer aggressiveness. Furthermore, RCP enhances the motility of ovarian cancer cells by coordinating the recycling of α5β1 integrin and EGF receptor to the leading edge of migrating cells. Here we report that RCP also influences the motility of lung adenocarcinoma cells. Knockdown of RCP inhibits the motility of A549 cells in 2D and 3D migration assays, while its overexpression enhances migration in these assays. Depletion of RCP leads to a reduction in N-cadherin protein levels, which could be restored with lysosomal inhibitors. Trafficking assays revealed that RCP knockdown inhibits the return of endocytosed N-cadherin to the cell surface. We propose that RCP regulates the endosomal recycling of N-cadherin, and in its absence N-cadherin is diverted to the degradative pathway. The increased aggressiveness of tumour cells that overexpress RCP may be due to biased recycling of N-cadherin in metastatic cancer cells.
Giménez, Carlos Sebastián; Locatelli, Paola; Montini Ballarin, Florencia; Orlowski, Alejandro; Dewey, Ricardo A; Pena, Milagros; Abraham, Gustavo Abel; Aiello, Ernesto Alejandro; Bauzá, María Del Rosario; Cuniberti, Luis; Olea, Fernanda Daniela; Crottogini, Alberto
2018-04-01
Diaphragmatic myoblasts (DMs) are precursors of type-1 muscle cells displaying high exhaustion threshold on account that they contract and relax 20 times/min over a lifespan, making them potentially useful in cardiac regeneration strategies. Besides, it has been shown that biomaterials for stem cell delivery improve cell retention and viability in the target organ. In the present study, we aimed at developing a novel approach based on the use of poly (L-lactic acid) (PLLA) scaffolds seeded with DMs overexpressing connexin-43 (cx43), a gap junction protein that promotes inter-cell connectivity. DMs isolated from ovine diaphragm biopsies were characterized by immunohistochemistry and ability to differentiate into myotubes (MTs) and transduced with a lentiviral vector encoding cx43. After confirming cx43 expression (RT-qPCR and Western blot) and its effect on inter-cell connectivity (fluorescence recovery after photobleaching), DMs were grown on fiber-aligned or random PLLA scaffolds. DMs were successfully isolated and characterized. Cx43 mRNA and protein were overexpressed and favored inter-cell connectivity. Alignment of the scaffold fibers not only aligned but also elongated the cells, increasing the contact surface between them. This novel approach is feasible and combines the advantages of bioresorbable scaffolds as delivery method and a cell type that on account of its features may be suitable for cardiac regeneration. Future studies on animal models of myocardial infarction are needed to establish its usefulness on scar reduction and cardiac function.
Osanai, Takashi; Kuwahara, Ayuko; Iijima, Hiroko; Toyooka, Kiminori; Sato, Mayuko; Tanaka, Kan; Ikeuchi, Masahiko; Saito, Kazuki; Hirai, Masami Yokota
2013-11-01
Over-expression of sigE, a gene encoding an RNA polymerase sigma factor in the unicellular cyanobacterium Synechocystis sp. PCC 6803, is known to activate sugar catabolism and bioplastic production. In this study, we investigated the effects of sigE over-expression on cell morphology, photosynthesis and hydrogen production in this cyanobacterium. Transmission electron and scanning probe microscopic analyses revealed that sigE over-expression increased the cell size, possibly as a result of aberrant cell division. Over-expression of sigE reduced respiration and photosynthesis activities via changes in gene expression and chlorophyll fluorescence. Hydrogen production under micro-oxic conditions is enhanced in sigE over-expressing cells. Despite these pleiotropic phenotypes, the sigE over-expressing strain showed normal cell viability under both nitrogen-replete and nitrogen-depleted conditions. These results provide insights into the inter-relationship among metabolism, cell morphology, photosynthesis and hydrogen production in this unicellular cyanobacterium. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Lee, Jae Seong; Ha, Tae Kwang; Park, Jin Hyoung; Lee, Gyun Min
2013-08-01
Genetic engineering approaches to inhibit cell death in Chinese hamster ovary (CHO) cell cultures have been limited primarily to anti-apoptosis engineering. Recently, autophagy has received attention as a new anti-cell death engineering target in addition to apoptosis. In order to achieve a more efficient protection of cells from the stressful culture conditions, the simultaneous targeting of anti-apoptosis and pro-autophagy in CHO cells (DG44) was attempted by co-overexpressing an anti-apoptotic protein, Bcl-2, and a key regulator of autophagy pathway, Beclin-1, respectively. Co-overexpression of Bcl-2 and Beclin-1 exhibited a longer culture period as well as higher viability during serum-free suspension culture, compared with the control (without co-overexpression of Bcl-2 and Beclin-1) and Bcl-2 overexpression only. In addition to the efficient inhibition of apoptosis by Bcl-2 overexpression, Beclin-1 overexpression successfully induced the increase in the autophagic marker protein, LC3-II, and autophagosome formation with the decrease in mTOR activity. Co-immunoprecipitation and qRT-PCR experiments revealed that the enforced expression of Beclin-1 increased Ulk1 expression and level of free-Beclin-1 that did not bind to the Bcl-2 despite the Bcl-2 overexpression. Under other stressful culture conditions such as treatment with sodium butyrate and hyperosmolality, co-overexpression of Bcl-2 and Beclin-1 also protected the cells from cell death more efficiently than Bcl-2 overexpression only, implying the potential of autophagy induction. Taken together, the data obtained here provide the evidence that pro-autophagy engineering together with anti-apoptosis engineering yields a synergistic effect and successfully enhances the anti-cell death engineering of CHO cells. Copyright © 2013 Wiley Periodicals, Inc.
Protection against vascular leak in neprilysin transgenic mice with complex overexpression pattern.
Wick, Marilee J; Loomis, Zoe L; Harral, Julie W; Le, Mysan; Wehling, Carol A; Miller, York E; Dempsey, Edward C
2016-12-01
Neprilysin (NEP) is a cell surface metallopeptidase found in many tissues. Based mostly on pharmacological manipulations, NEP has been thought to protect blood vessels from plasma extravasation. We have suggested that NEP may protect against pulmonary vascular injury. However, these prior studies did not utilize mice which overexpress NEP. The aims of the present investigation were to develop and characterize doubly transgenic (DT) mice that overexpress NEP universally and conditionally, and to investigate the protective effect that overexpressed NEP may have against plasma extravasation in the vasculature. The duodenum, which is often used to assess vascular permeability, and in which the NEP protein was overexpressed in our DT mice two-fold, was selected as our experimental preparation. We found that substance P-induced plasma extravasation was decreased substantially (3.5-fold) in the duodenums of our doxycycline-treated DT mice, giving independent evidence of NEP's protective effects against plasma extravasation. Transgenic lung NEP protein was not stably expressed in the DT mice, so we were not able to test the effect of NEP overexpression in the lung. Although initially overexpressed nearly nine-fold at that site, pulmonary NEP protein overexpression eventually dissipated. Surprisingly, at a time when there was no lung transgenic NEP protein overexpression, lung NEP mRNA expression was still increased 23-fold, indicating that the expression defect probably is not transcriptional. These studies help to characterize our complex transgenic model of NEP overexpression and further demonstrate NEP's protective effects against plasma extravasation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.; Wong, S.; Zhao, X.
An efficient mechanism-based tumor-targeting drug delivery system, based on tumor-specific vitamin-receptor mediated endocytosis, has been developed. The tumor-targeting drug delivery system is a conjugate of a tumor-targeting molecule (biotin: vitamin H or vitamin B-7), a mechanism-based self-immolative linker and a second-generation taxoid (SB-T-1214) as the cytotoxic agent. This conjugate (1) is designed to be (i) specific to the vitamin receptors overexpressed on tumor cell surface and (ii) internalized efficiently through receptor-mediated endocytosis, followed by smooth drug release via glutathione-triggered self-immolation of the linker. In order to monitor and validate the sequence of events hypothesized, i.e., receptor-mediated endocytosis of the conjugate,more » drug release, and drug-binding to the target protein (microtubules), three fluorescent/fluorogenic molecular probes (2, 3, and 4) were designed and synthesized. The actual occurrence of these processes was unambiguously confirmed by means of confocal fluorescence microscopy (CFM) and flow cytometry using L1210FR leukemia cells, overexpressing biotin receptors. The molecular probe 4, bearing the taxoid linked to fluorescein, was also used to examine the cell specificity (i.e., efficacy of receptor-based cell targeting) for three cell lines, L1210FR (biotin receptors overexpressed), L1210 (biotin receptors not overexpressed), and WI38 (normal human lung fibroblast, biotin receptor negative). As anticipated, the molecular probe 4 exhibited high specificity only to L1210FR. To confirm the direct correlation between the cell-specific drug delivery and anticancer activity of the probe 4, its cytotoxicity against these three cell lines was also examined. The results clearly showed a good correlation between the two methods. In the same manner, excellent cell-specific cytotoxicity of the conjugate 1 (without fluorescein attachment to the taxoid) against the same three cell lines was confirmed. This mechanism-based tumor-targeting drug delivery system will find a range of applications.« less
Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung
2014-01-01
Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harboring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalyzed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens. PMID:25230351
Kouno, Tsutomu; Watanabe, Takashi; Umeda, Toru; Beppu, Yasuo; Kojima, Rie; Sungwon, Kim; Kobayashi, Yukio; Tobinai, Kensei; Hasegawa, Tadashi; Matsuno, Yoshihiro
2005-02-01
Monoclonal gammopathy of undetermined significance does not overexpress cluster of differentiation (CD) 56, but plasma cell myeloma frequently overexpressed it. However, plasma cell leukemia and extramedullary plasmacytoma usually down-regulate CD56 expression. Plasmacytoma, especially 'solitary plasmacytoma of bone', is difficult to diagnose as plasma cell neoplasm, because it occasionally appears similar to other bone tumors, both clinically and pathologically, and is rarely accompanied by monoclonal protein in the serum or urine. The present case was a patient with an osteolytic 'small round cell tumor' of the iliac bone, which also invaded the femora. An immunohistopathological finding of CD56 expression played a key role in making a diagnosis. The definitive diagnosis of plasmacytoma was made based on the electron microscopic findings. The plasma cells which infiltrated her sternum showed the same restriction to kappa light chain expression in their cytoplasms as that of the iliac bone tumor cells, but did not express CD56. Locally infiltrating osteolytic bone tumors should be examined for surface immunoglobulin light chains as well as CD56 expression when plasmacytoma is suspected.
Jiang, Yayun; Wang, Ting; Wang, Jinshu; Xia, Jing; Gou, Liyao; Liu, Mengyao; Zhang, Yan
2016-11-01
Objective To investigate the effect of overexpressed inhibitor of β-catenin and T cell factor (ICAT) on the proliferation and migration of human cervical cancer Caski cells. Methods Caski cells were transfected with ICAT recombinant adenovirus (AdICAT). The levels of ICAT mRNA and protein were detected by quantitative real-time PCR (qRT-PCR) and Western blotting, respectively. Effect of ICAT overexpression on proliferation, cell cycle and migration in Caski cells was respectively evaluated by MTT assay, flow cytometry and Transwell TM migration assays. Results The expression of ICAT remarkably increased in Caski cells after AdICAT infection. Overexpression of ICAT promoted Caski cells' proliferation, arrested the cell cycle in the S phase and enhanced cell migration. Conclusion Overexpression of ICAT can promote the proliferation and migration of Caski cervical cancer cells.
English, Diana P.; Santin, Alessandro D.
2013-01-01
Claudins are a family of tight junction proteins regulating paracellular permeability and cell polarity with different patterns of expression in benign and malignant human tissues. There are approximately 27 members of the claudin family identified to date with varying cell and tissue-specific expression. Claudins-3, -4 and -7 represent the most highly differentially expressed claudins in ovarian cancer. While their exact role in ovarian tumors is still being elucidated, these proteins are thought to be critical for ovarian cancer cell invasion/dissemination and resistance to chemotherapy. Claudin-3 and claudin-4 are the natural receptors for the Clostridium perfringens enterotoxin (CPE), a potent cytolytic toxin. These surface proteins may therefore represent attractive targets for the detection and treatment of chemotherapy-resistant ovarian cancer and other aggressive solid tumors overexpressing claudin-3 and -4 using CPE-based theranostic agents. PMID:23685873
Aittaleb, Mohamed; Chen, Po-Ju; Akaaboune, Mohammed
2015-01-01
ABSTRACT Rapsyn, a scaffold protein, is required for the clustering of acetylcholine receptors (AChRs) at contacts between motor neurons and differentiating muscle cells. Rapsyn is also expressed in cells that do not express AChRs. However, its function in these cells remains unknown. Here, we show that rapsyn plays an AChR-independent role in organizing the distribution and mobility of lysosomes. In cells devoid of AChRs, rapsyn selectively induces the clustering of lysosomes at high density in the juxtanuclear region without affecting the distribution of other intracellular organelles. However, when the same cells overexpress AChRs, rapsyn is recruited away from lysosomes to colocalize with AChR clusters on the cell surface. In rapsyn-deficient (Rapsn−/−) myoblasts or cells overexpressing rapsyn mutants, lysosomes are scattered within the cell and highly dynamic. The increased mobility of lysosomes in Rapsn−/− cells is associated with a significant increase in lysosomal exocytosis, as evidenced by increased release of lysosomal enzymes and plasma membrane damage when cells were challenged with the bacterial pore-forming toxin streptolysin-O. These findings uncover a new link between rapsyn, lysosome positioning, exocytosis and plasma membrane integrity. PMID:26330529
Zhang, Yu; Yang, Mo; Park, Ji-Ho; Singelyn, Jennifer; Ma, Huiqing; Sailor, Michael J; Ruoslahti, Erkki; Ozkan, Mihrimah; Ozkan, Cengiz
2009-09-01
Surface-charge measurements of mammalian cells in terms of Zeta potential are demonstrated as a useful biological characteristic in identifying cellular interactions with specific nanomaterials. A theoretical model of the changes in Zeta potential of cells after incubation with nanoparticles is established to predict the possible patterns of Zeta-potential change to reveal the binding and internalization effects. The experimental results show a distinct pattern of Zeta-potential change that allows the discrimination of human normal breast epithelial cells (MCF-10A) from human cancer breast epithelial cells (MCF-7) when the cells are incubated with dextran coated iron oxide nanoparticles that contain tumor-homing F3 peptides, where the tumor-homing F3 peptide specifically bound to nucleolin receptors that are overexpressed in cancer breast cells.
Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Li, Yiwei; Ahmad, Aamir; Banerjee, Sanjeev; Azmi, Asfar S.; Miele, Lucio; Sarkar, Fazlul H.
2011-01-01
Activation of Notch-1 is known to be associated with the development and progression of human malignancies including pancreatic cancer. Emerging evidence suggest that the acquisition of epithelial-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotype are interrelated and contributes to tumor recurrence and drug resistance. The molecular mechanism(s) by which Notch-1 contributes to the acquisition of EMT phenotype and CSC self-renewal capacity has not been fully elucidated. Here we show that forced over-expression of Notch-1 leads to increased cell growth, clonogenicity, migration and invasion of AsPC-1 cells. Moreover, over-expression of Notch-1 led to the induction of EMT phenotype by activation of mesenchymal cell markers such as ZEB1, CD44, EpCAM, and Hes 1. Here we also report, for the first time, that over-expression of Notch-1 leads to increased expression of miR-21, and decreased expression of miR-200b, miR-200c, let-7a, let-7b, and let-7c. Re-expression of miR-200b led to decreased expression of ZEB1, and vimentin, and increased expression of E-cadherin. Over-expression of Notch-1 also increased the formation of pancreatospheres consistent with expression of CSC surface markers CD44 and EpCAM. Finally, we found that genistein, a known natural anti-tumor agent inhibited cell growth, clonogenicity, migration, invasion, EMT phenotype, formation of pancreatospheres and expression of CD44 and EpCAM. These results suggest that the activation of Notch-1 signaling contributes to the acquisition of EMT phenotype, which is in part mediated through the regulation of miR-200b and CSC self-renewal capacity, and these processes could be attenuated by genistein treatment. PMID:21463919
N-CADHERIN PRODOMAIN CLEAVAGE REGULATES SYNAPSE FORMATION IN VIVO
Latefi, Nazlie S.; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S.
2009-01-01
Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it non-adhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814
Srinivasan, Supriya; Bhardwaj, Vinay; Nagasetti, Abhignyan; Fernandez-Fernandez, Alicia; McGoron, Anthony J
2016-12-01
This research paper reports the development of a multifunctional anti-cancer prodrug system based on silver nanoparticles. This prodrug system is composed of 70-nm sized nanoparticles and features photodynamic therapeutic properties and active, pH-triggered drug release. The silver nanoparticles are decorated with a folic acid (FA) targeting ligand via an amide bond, and also conjugated to the chemotherapeutic drug doxorubicin (DOX) via an acid-cleavable hydrazone bond. Both FA and DOX are attached to the silver nanoparticles through a polyethylene glycol (PEG) spacer. This prodrug system can preferentially enter cells that over-express folic acid receptors, with subsequent intracellular drug release triggered by reduced intracellular pH. Moreover, the silver nanoparticle carrier system exhibits photodynamic therapeutic (PDT) activity, so that the cell viability of cancer cells that overexpress folate receptors can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of this system. The multifunctional nanoparticles can be probed intracellularly through Surface-Enhanced Raman Spectroscopy (SERS) and fluorescence spectroscopy. The current report explores the applicability of this multifunctional silver nanoparticle-based system for cancer theranostics.
Overexpression of heat shock GroEL stress protein in leptospiral biofilm.
Vinod Kumar, K; Lall, Chandan; Vimal Raj, R; Vedhagiri, K; Kartick, C; Surya, P; Natarajaseenivasan, K; Vijayachari, P
2017-01-01
Leptospira is the causative agent of leptospirosis, which is an emerging zoonotic disease. Recent studies on Leptospira have demonstrated biofilm formation on abiotic surfaces. The protein expressed in the biofilm was investigated by using SDS-PAGE and immunoblotting in combination with MALDI-TOF mass spectrometry. The proteins expressed in Leptospira biofilm and planktonic cells was analyzed and compared. Among these proteins, one (60 kDa) was found to overexpress in biofilm as compared to the planktonic cells. MALDI-TOF analysis identified this protein as stress and heat shock chaperone GroEL. Our findings demonstrate that GroEL is associated with Leptospira biofilm. GroEL is conserved, highly immunogenic and a prominent stress response protein in pathogenic Leptospira spp., which may have clinical relevance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gomes Rocha, Graça Celeste; Nicolich, Rebecca; Romeiro, Alexandre; Margis-Pinheiro, Márcia; Attias, Márcia; Alves-Ferreira, Márcio
2003-09-12
The genus Phytomonas is responsible for many diseases in different crop plant species. The finding that chitin is an exposed cell surface polysaccharide in Phytomonas françai and the observation that chitinases can inhibit fungal growth raises expectations about the potential effect of plant chitinases on the P. françai cell membrane surface. The plant chitinases Urtica dioica agglutinin (UDA) and Arabidopsis thaliana Chia4 (ATCHIT4) proteins were over-expressed in bacteria and the interaction between these proteins and P. françai surface was analyzed by immunocytochemistry. We showed that UDA and ATCHIT4 proteins can interact with surface-exposed chitin from P. françai.
Kobayashi, Masato; Kuroki, Shiori; Kurita, Sena; Miyamoto, Ryo; Tani, Hiroyuki; Tamura, Kyoichi; Bonkobara, Makoto
2017-10-01
Overexpression of KIT is one of the mechanisms that contributes to imatinib resistance in KIT mutation-driven tumors. Here, the mechanism underlying this overexpression of KIT was investigated using an imatinib-sensitive canine mast cell tumor (MCT) line CoMS, which has an activating mutation in KIT exon 11. A KIT-overexpressing imatinib-resistant subline, rCoMS1, was generated from CoMS cells by their continuous exposure to increasing concentrations of imatinib. Neither a secondary mutation nor upregulated transcription of KIT was detected in rCoMS1 cells. A decrease in KIT ubiquitination, a prolonged KIT life-span, and KIT overexpression were found in rCoMS1 cells. These events were suppressed by withdrawal of imatinib and were re-induced by re‑treatment with imatinib. These findings suggest that imatinib elicited overexpression of KIT via suppression of its ubiquitination. These results also indicated that imatinib-induced overexpression of KIT in rCoMS1 cells was not a permanently acquired feature but was a reversible response of the cells. Moreover, the pan deubiquitinating enzyme inhibitor PR619 prevented imatinib induction of KIT overexpression, suggesting that the imatinib-induced decrease in KIT ubiquitination could be mediated by upregulation and/or activation of deubiquitinating enzyme(s). It may be possible that a similar mechanism of KIT overexpression underlies the acquisition of imatinib resistance in some human tumors that are driven by KIT mutation.
Uhlenbrock, Franziska; van Andel, Esther; Andresen, Lars; Skov, Søren
2015-08-01
Malignant cells expressing NKG2D ligands on their cell surface can be directly sensed and killed by NKG2D-bearing lymphocytes. To ensure this immune recognition, accumulating evidence suggests that NKG2D ligands are trafficed via alternative pathways to the cell surface. We have previously shown that the NKG2D ligand ULBP2 traffics over an invariant chain (Ii)-dependent pathway to the cell surface. This study set out to elucidate how Ii regulates ULBP2 cell-surface transport: We discovered conserved tryptophan (Trp) residues in the primary protein sequence of ULBP1-6 but not in the related MICA/B. Substitution of Trp to alanine resulted in cell-surface inhibition of ULBP2 in different cancer cell lines. Moreover, the mutated ULBP2 constructs were retained and not degraded inside the cell, indicating a crucial role of this conserved Trp-motif in trafficking. Finally, overexpression of Ii increased surface expression of wt ULBP2 while Trp-mutants could not be expressed, proposing that this Trp-motif is required for an Ii-dependent cell-surface transport of ULBP2. Aberrant soluble ULBP2 is immunosuppressive. Thus, targeting a distinct protein module on the ULBP2 sequence could counteract this abnormal expression of ULBP2. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus
2008-09-01
We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.
Li, Xiaofeng; Yu, Xiaozhou; Dai, Dong; Song, Xiuyu; Xu, Wengui
2016-01-01
Extracellular matrix metalloproteinase inducer, also knowns as cluster of differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein that is involved in numerous physiological and pathological functions, especially in tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane to preserve the intracellular pH and maintain cell homeostasis. As a chaperone to some MCT isoforms, CD147 overexpression significantly contributes to the metabolic transformation of tumor. This overexpression is characterized by accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor cells with a metabolic advantage and an invasive phenotype in the acidic tumor microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell metabolism and the associated molecular mechanisms. The regulation of CD147 and MCTs may prove to be with a therapeutic potential for tumors through the metabolic modification of the tumor microenvironment. PMID:27009812
Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek
2016-01-01
Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.
Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek
2016-01-01
Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235
Stemmer, Nina; Strekalova, Elena; Djogo, Nevena; Plöger, Frank; Loers, Gabriele; Lutz, David; Buck, Friedrich; Michalak, Marek; Schachner, Melitta; Kleene, Ralf
2013-01-01
Dysregulation of the proteolytic processing of amyloid precursor protein by γ-secretase and the ensuing generation of amyloid-β is associated with the pathogenesis of Alzheimer's disease. Thus, the identification of amyloid precursor protein binding proteins involved in regulating processing of amyloid precursor protein by the γ-secretase complex is essential for understanding the mechanisms underlying the molecular pathology of the disease. We identified calreticulin as novel amyloid precursor protein interaction partner that binds to the γ-secretase cleavage site within amyloid precursor protein and showed that this Ca(2+)- and N-glycan-independent interaction is mediated by amino acids 330-344 in the C-terminal C-domain of calreticulin. Co-immunoprecipitation confirmed that calreticulin is not only associated with amyloid precursor protein but also with the γ-secretase complex members presenilin and nicastrin. Calreticulin was detected at the cell surface by surface biotinylation of cells overexpressing amyloid precursor protein and was co-localized by immunostaining with amyloid precursor protein and presenilin at the cell surface of hippocampal neurons. The P-domain of calreticulin located between the N-terminal N-domain and the C-domain interacts with presenilin, the catalytic subunit of the γ-secretase complex. The P- and C-domains also interact with nicastrin, another functionally important subunit of this complex. Transfection of amyloid precursor protein overexpressing cells with full-length calreticulin leads to a decrease in amyloid-β42 levels in culture supernatants, while transfection with the P-domain increases amyloid-β40 levels. Similarly, application of the recombinant P- or C-domains and of a synthetic calreticulin peptide comprising amino acid 330-344 to amyloid precursor protein overexpressing cells result in elevated amyloid-β40 and amyloid-β42 levels, respectively. These findings indicate that the interaction of calreticulin with amyloid precursor protein and the γ-secretase complex regulates the proteolytic processing of amyloid precursor protein by the γ-secretase complex, pointing to calreticulin as a potential target for therapy in Alzheimer's disease.
Combination therapy of potential gene to enhance oral cancer therapeutic effect
NASA Astrophysics Data System (ADS)
Yeh, Chia-Hsien; Hsu, Yih-Chih
2015-03-01
The epidermal growth factor receptor (EGFR) over-regulation related to uncontrolled cell division and promotes progression in tumor. Over-expression of human epidermal growth factor receptor (EGFR) has been detected in oral cancer cells. EGFR-targeting agents are potential therapeutic modalities for treating oral cancer based on our in vitro study. Liposome nanotechnology is used to encapsulate siRNA and were modified with target ligand to receptors on the surface of tumor cells. We used EGFR siRNA to treat oral cancer in vitro.
A Pdx-1-Regulated Soluble Factor Activates Rat and Human Islet Cell Proliferation
Hayes, Heather L.; Zhang, Lu; Becker, Thomas C.; Haldeman, Jonathan M.; Stephens, Samuel B.; Arlotto, Michelle; Moss, Larry G.; Newgard, Christopher B.
2016-01-01
The homeodomain transcription factor Pdx-1 has important roles in pancreas and islet development as well as in β-cell function and survival. We previously reported that Pdx-1 overexpression stimulates islet cell proliferation, but the mechanism remains unclear. Here, we demonstrate that overexpression of Pdx-1 triggers proliferation largely by a non-cell-autonomous mechanism mediated by soluble factors. Consistent with this idea, overexpression of Pdx-1 under the control of a β-cell-specific promoter (rat insulin promoter [RIP]) stimulates proliferation of both α and β cells, and overexpression of Pdx-1 in islets separated by a Transwell membrane from islets lacking Pdx-1 overexpression activates proliferation in the untreated islets. Microarray and gene ontology (GO) analysis identified inhibin beta-B (Inhbb), an activin subunit and member of the transforming growth factor β (TGF-β) superfamily, as a Pdx-1-responsive gene. Overexpression of Inhbb or addition of activin B stimulates rat islet cell and β-cell proliferation, and the activin receptors RIIA and RIIB are required for the full proliferative effects of Pdx-1 in rat islets. In human islets, Inhbb overexpression stimulates total islet cell proliferation and potentiates Pdx-1-stimulated proliferation of total islet cells and β cells. In sum, this study identifies a mechanism by which Pdx-1 induces a soluble factor that is sufficient to stimulate both rat and human islet cell proliferation. PMID:27620967
Monitoring in real time the effect of TLX overexpression on proliferation and migration of C6 cells.
Li, G L; Fang, S H; Xu, B
2017-01-01
Orphan nuclear receptor TLX has been shown to play an essential role in regulating the self-renewal and proliferation of neural stem cells (NSCs). However, TLX overexpression in NSCs induces long-term NSC expansion and further leads to glioma initiation in mouse when combined with p53 mutations. Whether overexpression of TLX plays a role in glioma stem cell (GSC) proliferation and migration still remains largely unknown. In this study, we infected C6 cells, a special glioma cell line which is mainly composed of cancer stem cells(CSCs), with lentiviruses expressing GFP(LV-GFP) or GFP-T2A-TLX(LV-TLX) and then monitored cell proliferation and migration using the real-time analyzer system (RTCA, xCELLigence, Roche). We found that the cell index (CI) observed for the TLX overexpressing C6 cells showed a lower value than that of the LV-GFP transduced cells. And the MTT results correlated highly with the RTCA proliferation assessments. Furthermore, the expression of p21 was decreased while other downstream genes PTEN and p53 were not significantly changed in TLX overexpressing C6 cells . These findings strongly indicate that TLX overexpression has the ability to decrease the proliferating and migratory properties of C6 cells by targeting p21. Further, our results suggest that TLX overexpression may also have a similar inhibitory effect on GSC proliferation and migration.
Behesti, Hourinaz; Bhagat, Heeta; Dubuc, Adrian M.; Taylor, Michael D.; Marino, Silvia
2013-01-01
SUMMARY BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs) led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival. PMID:23065639
Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun
2014-01-01
Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function. © 2013.
Jiang, Jinghang; Yang, Peipei; Guo, Zhe; Yang, Rirong; Yang, Haojie; Yang, Fuquan; Li, Lequn; Xiang, Bangde
2016-10-28
Liver cancer stem cells (LCSCs) have been shown to express higher levels of microRNA-21 (miR-21). Here, we examine the possible contributions of miR-21 to the phenotype of LCSCs in culture and in xenograft tumors in nude mice. The hepatocellular carcinoma cell line MHCC-97H was stably transformed with a retroviral vector to establish cells overexpressing miR-21, while a cell line transformed with empty vector served as a negative control. RT-PCR and Western blotting were used to evaluate the effects of miR-21 overexpression on the expression of various LCSC markers, a Transwell assay was used to assess the effects on cell migration and invasion, and a spheroid formation assay was used to examine the effects on clonogenesis. The effects of miR-21 overexpression were also examined in tumors in nude mice. An MHCC-97H cell line was constructed that stably overexpresses miR-21 at 7.78 ± 1.51-fold higher levels than the negative control cell line. Expression of the LCSC markers CD13, Ep-CAM, CD90, and OCT4 was significantly higher in the miR-21-overexpressing cell line than in the negative control at both mRNA and protein levels. The overexpressing cell line formed larger, tighter, and more numerous spheroids. Overexpression of miR-21 was associated with greater cell migration and invasion. Tumors of overexpressing cells in nude mice had a significantly larger mean volume after 34 days of growth (773.62 ± 163.46 mm 3 ) than tumors of negative control cells (502.79 ± 33.94 mm 3 , p = 0.048), as well as greater mean weight (0.422 ± 0.019 vs. 0.346 ± 0.006 g, p = 0.003). Overexpression of miR-21 strengthens the phenotype of LCSCs, facilitating invasion, migration, and tumorigenesis in hepatocellular carcinoma.
Feng, Wei; Xie, Qianyi; Liu, Suo; Ji, Ying; Li, Chunyun; Wang, Chunle; Jin, Longyu
2018-06-01
Gefitinib has been widely used in the first-line treatment of advanced EGFR-mutated non-small-cell lung cancer (NSCLC). However, many NSCLC patients will acquire resistance to gefitinib after 9-14 months of treatment. This study revealed that Krüppel-like factor 4 (KLF4) contributes to the formation of gefitinib resistance in c-Met-overexpressing NSCLC cells. We observed that KLF4 was overexpressed in c-Met-overexpressing NSCLC cells and tissues. Knockdown of KLF4 increased tumorigenic properties in gefitinib-resistant NSCLC cell lines without c-Met overexpression, but it reduced tumorigenic properties and increased gefitinib sensitivity in gefitinib-resistant NSCLC cells with c-Met overexpression, whereas overexpression of KLF4 reduced gefitinib sensitivity in gefitinib-sensitive NSCLC cells. Furthermore, Western blot analysis revealed that KLF4 contributed to the formation of gefitinib resistance in c-Met-overexpressing NSCLC cells by inhibiting the expression of apoptosis-related proteins under gefitinib treatment and activating the c-Met/Akt signaling pathway by decreasing the inhibition of β-catenin on phosphorylation of c-Met to prevent blockade by gefitinib. In summary, this study's results suggest that KLF4 is a promising candidate molecular target for both prevention and therapy of NSCLC with c-Met overexpression. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Bhoopathi, Praveen; Gorantla, Bharathi; Sailaja, G. S.; Gondi, Christopher S.; Gujrati, Meena; Klopfenstein, Jeffrey D.; Rao, Jasti S.
2012-01-01
Secreted protein acidic and rich in cysteine (SPARC) is also known as BM-40 or Osteonectin, a multi-functional protein modulating cell–cell and cell–matrix interactions. In cancer, SPARC is not only linked with a highly aggressive phenotype, but it also acts as a tumor suppressor. In the present study, we sought to characterize the function of SPARC and its role in sensitizing neuroblastoma cells to radio-therapy. SPARC overexpression in neuroblastoma cells inhibited cell proliferation in vitro. Additionally, SPARC overexpression significantly suppressed the activity of AKT and this suppression was accompanied by an increase in the tumor suppressor protein PTEN both in vitro and in vivo. Restoration of neuroblastoma cell radio-sensitivity was achieved by overexpression of SPARC in neuroblastoma cells in vitro and in vivo. To confirm the role of the AKT in proliferation inhibited by SPARC overexpression, we transfected neuroblastoma cells with a plasmid vector carrying myr-AKT. Myr-AKT overexpression reversed SPARC-mediated PTEN and increased proliferation of neuroblastoma cells in vitro. PTEN overexpression in parallel with SPARC siRNA resulted in decreased AKT phosphorylation and proliferation in vitro. Taken together, these results establish SPARC as an effector of AKT-PTEN-mediated inhibition of proliferation in neuroblastoma in vitro and in vivo. PMID:22567126
Schaffer, Ashleigh E.; Yang, Almira J.; Thorel, Fabrizio; Herrera, Pedro L.
2011-01-01
The loss or dysfunction of the pancreatic endocrine β-cell results in diabetes. Recent innovative therapeutic approaches for diabetes aim to induce β-cell proliferation in vivo by pharmacological intervention. Based on the finding that overexpression of the transcription factor Nkx6.1 in islets in vitro increases β-cell proliferation while maintaining β-cell function, Nkx6.1 has been proposed as a potential target for diabetes therapy. However, it is unknown whether elevated Nkx6.1 levels in β-cells in vivo have similar effects as observed in isolated islets. To this end, we sought to investigate whether overexpression of Nkx6.1 in β-cells in vivo could increase β-cell mass and/or improve β-cell function in normal or β-cell-depleted mice. Using a bigenic inducible Cre-recombinase-based transgenic model, we analyzed the effects of Nkx6.1 overexpression on β-cell proliferation, β-cell mass, and glucose metabolism. We found that mice overexpressing Nkx6.1 in β-cells displayed similar β-cell proliferation rates and β-cell mass as control mice. Furthermore, after partial β-cell ablation, Nkx6.1 overexpression was not sufficient to induce β-cell regeneration under either nondiabetic or diabetic conditions. Together these results demonstrate that sustained Nkx6.1 overexpression in vivo does not stimulate β-cell proliferation, expand β-cell mass, or improve glucose metabolism in either normal or β-cell-depleted pancreata. Thus, raising cellular Nkx6.1 levels in β-cells in vivo is unlikely to have a positive impact on type 2 diabetes. PMID:21964593
CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.
Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie
2016-04-01
CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells. © 2015 International Federation for Cell Biology.
Zheng, H; Xue, S; Hu, Z L; Shan, J G; Yang, W G
2014-03-24
The Gax gene has been implicated in a variety of cell-developmental and biological processes, and aberrant Gax expression is linked to many diseases. In this study, to provide important insights for Gax-based gene therapy in vein graft restenosis and its anti-restenotic mechanism, we used rabbit vascular smooth muscle cells (VSMCs) to investigate the effects of Gax overexpression on proliferation, migration, cell cycle, and apoptosis in a serum-stimulated culture. Rabbit VSMC lines that stably overexpressed Gax were established by transfection with recombinant adenoviral vector Ad5-Gax. The effect of Gax overexpression on in vitro serum-induced VSMCs proliferation, migration, cell cycle, and apoptosis was assessed by MTT, wound healing, and flow cytometry assays, respectively. To investigate the effect of Gax overexpression on PCNA and MMP-2 in serum-induced VSMCs, immunocytochemistry, RT-PCR, and gelatin zymography were performed. The results clearly showed that Gax overexpression decreases PCNA expression in serum-induced VSMCs. Gax overexpression also significantly inhibited cell proliferation by blocking entry into the S-phase of the cell cycle, promoted cell apoptosis, and reduced cell migration activity by downregulating MMP-2 release and activity. These findings indicate that Gax would be an optimal target gene for gene therapy to treat vein graft restenosis.
Hong, Mina; Kim, HyungRyong; Kim, Inki
2014-07-18
Although first identified for their roles in protein synthesis, certain ribosomal proteins exert pleiotropic physiological functions in the cell. Ribosomal protein L19 is overexpressed in breast cancer cells by amplification and copy number variation. In this study, we examined the novel pro-apoptotic role of ribosomal protein L19 in the breast cancer cell line MCF7. Overexpression of RPL19 sensitized MCF7 cells to endoplasmic reticulum stress-induced cell death. RPL19 overexpression itself was not cytotoxic; however, cell death induction was enhanced when RPL19 overexpressing cells were incubated with endoplasmic reticulum stress-inducing agents, and this sensitizing effect was specific to MCF7 cells. Examination of the cell signaling pathways that mediate the unfolded protein response (UPR) revealed that overexpression of RPL19 induced pre-activation of the UPR, including phosphorylation of pERK-like ER kinase (PERK), phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α), and activation of p38 MAPK-associated stress signaling. Our findings suggest that upregulation of RPL19 induces ER stress, resulting in increased sensitivity to ER stress and enhanced cell death in MCF7 breast cancer cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Overexpression of Selenoprotein SelK in BGC-823 Cells Inhibits Cell Adhesion and Migration.
Ben, S B; Peng, B; Wang, G C; Li, C; Gu, H F; Jiang, H; Meng, X L; Lee, B J; Chen, C L
2015-10-01
Effects of human selenoprotein SelK on the adhesion and migration ability of human gastric cancer BGC-823 cells using Matrigel adhesion and transwell migration assays, respectively, were investigated in this study. The Matrigel adhesion ability of BGC-823 cells that overexpressed SelK declined extremely significantly (p < 0.01) compared with that of the cells not expressing the protein. The migration ability of BGC-823 cells that overexpressed SelK also declined extremely significantly (p < 0.01). On the other hand, the Matrigel adhesion ability and migration ability of the cells that overexpressed C-terminally truncated SelK did not decline significantly. The Matrigel adhesion ability and migration ability of human embryonic kidney HEK-293 cells that overexpressed SelK did not show significant change (p > 0.05) with the cells that overexpressed the C-terminally truncated protein. In addition to the effect on Matrigel adhesion and migration, the overexpression of SelK also caused a loss in cell viability (as measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) colorimetric assay) and induced apoptosis as shown by confocal microscopy and flow cytometry. The cytosolic free Ca2+ level of these cells was significantly increased as detected by flow cytometry. But the overexpression of SelK in HEK-293 cells caused neither significant loss in cell viability nor apoptosis induction. Only the elevation of cytosolic free Ca2+ level in these cells was significant. Taken together, the results suggest that the overexpression of SelK can inhibit human cancer cell Matrigel adhesion and migration and cause both the loss in cell viability and induction of apoptosis. The release of intracellular Ca2+ from the endoplasmic reticulum might be a mechanism whereby the protein exerted its impact. Furthermore, only the full-length protein, but not C-terminally truncated form, was capable of producing such impact. The embryonic cells were not influenced by the elevation of free Ca2+ level in cytosol, probably due to their much greater tolerance to the variation.
CD24 promotes the proliferation and inhibits the apoptosis of cervical cancer cells in vitro.
Pei, Zhen; Zhu, Guangchao; Huo, Xiaolei; Gao, Lu; Liao, Shan; He, Junyu; Long, Yuehua; Yi, Hong; Xiao, Songshu; Yi, Wei; Chen, Pan; Li, Xiaoling; Li, Guiyuan; Zhou, Yanhong
2016-03-01
The protein CD24 is a cell surface protein that appears to function as an adhesion molecule; its expression has been shown to correlate with prognosis in a variety of tumors. Herein, we investigated the possible role and mechanism of CD24 in cervical cancer. Our results showed that CD24 was overexpressed in cervical cancer tissues compared with that in the adjacent non‑cancerous tissues by qPCR, immunohistochemistry and western blotting technologies. To explore the possible mechanism of CD24 in cervical cancer, we elucidated the effect of CD24 on the proliferation and apoptosis of cervical cancer HeLa cells and found that a considerable increase in cell proliferation was observed in the HeLa cells with CD24 overexpession. The rate of cell apoptosis was decreased in the HeLa/CD24 cells compared with the HeLa or HeLa/vector cells. Cell apoptosis is closely related with a reduction in mitochondrial membrane potential (ΔΨm) and an increase in intracellular reactive oxygen species (ROS) and calcium ion (Ca2+) concentrations. Our results showed that overexpression of CD24 in the cervical cancer HeLa cells, led to an increase in ΔΨm and a decrease in intracellular ROS and Ca2+ concentrations. Furthermore, we found that CD24 was correlated with dysregulation of the MAPK signaling pathway in cervical cancer tissues in vitro. At the same time, we found that CD24 overexpression affected the expression of p38, JNK2 and c-Jun in vitro. In summary, our results suggest that CD24 is upregulated in cervical cancer tissues and plays its functions by affecting the MAPK signaling pathway in cervical cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Tao; Xi'an Medical University, Xi'an, Shaanxi Province; Zhang, Mei
Because of the high nutrient consumption and inadequate vascularization, solid tumor constantly undergoes metabolic stress during tumor development. Oncogenes and tumor suppressor genes participated in cancer cells' metabolic reprogramming. N-Myc downstream regulated gene 2 (NDRG2) is a recently identified tumor suppressor gene, but its function in cancer metabolism, particularly during metabolic stress, remains unclear. In this study, we found that NDRG2 overexpression significantly reduced hepatoma cell proliferation and enhanced cell apoptosis under glucose limitation. Moreover, NDRG2 overexpression aggravated energy imbalance and oxidative stress by decreasing the intracellular ATP and NADPH generation and increasing ROS levels. Strikingly, NDRG2 inhibited the activationmore » of fatty acid oxidation (FAO), which preserves ATP and NADPH purveyance in the absence of glucose. Finally, mechanistic investigation showed that NDRG2 overexpression suppressed the glucose-deprivation induced AMPK/ACC pathway activation in hepatoma cells, whereas the expression of a constitutively active form of AMPK abrogated glucose-deprivation induced AMPK activation and cell apoptosis. Thus, as a negative regulator of AMPK, NDRG2 disturbs the induction of FAO genes by glucose limitation, leading to dysregulation of ATP and NADPH, and thus reduces the tolerance of hepatoma cells to glucose limitation. - Highlights: • NDRG2 overexpression reduces the tolerance of hepatoma cells to glucose limitation. • NDRG2 overexpression aggravates energy imbalance and oxidative stress under glucose deprivation. • NDRG2 overexpression disturbs the activation of FAO in hepatoma cells under glucose limitation. • NDRG2 overexpression inhibits the activation of AMPK/ACC pathway in hepatoma cells during glucose starvation.« less
The production of nitric oxide in EL4 lymphoma cells overexpressing growth hormone.
Arnold, Robyn E; Weigent, Douglas A
2003-01-01
Growth hormone (GH) is produced by immunocompetent cells and has been implicated in the regulation of a multiplicity of functions in the immune system involved in growth and activation. However, the actions of endogenous or lymphocyte GH and its contribution to immune reactivity when compared with those of serum or exogenous GH are still unclear. In the present study, we overexpressed lymphocyte GH in EL4 lymphoma cells, which lack the GH receptor (GHR), to determine the role of endogenous GH in nitric oxide (NO) production and response to genotoxic stress. Western blot analysis demonstrated that the levels of GH increased approximately 40% in cells overexpressing GH (GHo) when compared with cells with vector alone. The results also show a substantial increase in NO production in cells overexpressing GH that could be blocked by N(G)-monomethyl-L-arginine (L-NMMA), an L-arginine analogue that competitively inhibits all three isoforms of nitric oxide synthase (NOS). No evidence was obtained to support an increase in peroxynitrite in cells overexpressing GH. Overexpression of GH increased NOS activity, inducible nitric oxide synthase (iNOS) promoter activity, and iNOS protein expression, whereas endothelial nitric oxide synthase and neuronal nitric oxide synthase protein levels were essentially unchanged. In addition, cells overexpressing GH showed increased arginine transport ability and intracellular arginase activity when compared with control cells. GH overexpression appeared to protect cells from the toxic effects of the DNA alkylating agent methyl methanesulfonate. This possibility was suggested by maintenance of the mitochondrial transmembrane potential in cells overexpressing GH when compared with control cells that could be blocked by L-NMMA. Taken together, the data support the notion that lymphocyte GH, independently of the GH receptor, may play a key role in the survival of lymphocytes exposed to stressful stimuli via the production of NO.
Alizadeh Zarei, M; Takhshid, M A; Behzad Behbahani, A; Hosseini, S Y; Okhovat, M A; Rafiee Dehbidi, Gh R; Mosleh Shirazi, M A
2017-09-01
Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to explore the potential synergistic effects of N-Myc Downstream-Regulated Gene 2 (NDRG2) overexpression, a newly identified candidate tumor suppressor gene, with radiotherapy against proliferation of prostate LNCaP cell line. In this study, LNCaP cells were exposed to X-ray radiation in the presence or absence of NDRG2 overexpression using plasmid PSES- pAdenoVator-PSA-NDRG2-IRES-GFP. The effects of NDRG2 overexpression, X-ray radiation or combination of both on the cell proliferation and apoptosis of LNCaP cells were then analyzed using MTT assay and flow cytometery, respectively. Results of MTT assay showed that NDRG2 overexpression and X-ray radiation had a synergistic effect against proliferation of LNCaP cells. Moreover, NDRG2 overexpression increased apoptotic effect of X-ray radiation in LNCaP cells synergistically. Our findings suggested that NDRG2 overexpression in combination with radiotherapy may be an effective therapeutic option against prostate cancer.
Deisting, Wibke; Raum, Tobias; Kufer, Peter; Baeuerle, Patrick A.; Münz, Markus
2015-01-01
Background Bispecific T cell engager (BiTE®) are single-chain bispecific antibody constructs with dual specificity for CD3 on T cells and a surface antigen on target cells. They can elicit a polyclonal cytotoxic T cell response that is not restricted by T cell receptor (TCR) specificity, and surface expression of MHC class I/peptide antigen complexes. Using human EpCAM/CD3-bispecific BiTE® antibody construct AMG 110, we here assessed to what extent surface expression of PD-L1, cytoplasmic expression of indoleamine-2,3-deoxygenase type 1, Bcl-2 and serpin PI-9, and the presence of transforming growth factor beta (TGF-β), interleukin-10 (IL-10) and adenosine in culture medium can impact redirected lysis by AMG 110-engaged T cells. Methods The seven factors, which are all involved in inhibiting T cell functions by cancer cells, were tested with human EpCAM-expressing Chinese hamster ovary (CHO) target cells at levels that in most cases exceeded those observed in a number of human cancer cell lines. Co-culture experiments were used to determine the impact of the evasion mechanisms on EC50 values and amplitude of redirected lysis by AMG 110, and on BiTE®-induced proliferation of previously resting human peripheral T cells. Findings An inhibitory effect on redirected lysis by AMG 110-engaged T cells was seen upon overexpression of serpin PI-9, Bcl-2, TGF-βand PD-L1. An inhibitory effect on induction of T cell proliferation was only seen with CHO cells overexpressing IDO. In no case, a single evasion mechanism rendered target cells completely resistant to BiTE®-induced lysis, and even various combinations could not. Conclusions Our data suggest that diverse mechanisms employed by cancer cells to fend off T cells cannot inactivate AMG 110-engaged T cells, and that inhibitory effects observed in vitro may be overcome by increased concentrations of the BiTE® antibody construct. PMID:26510188
Wu, Chenggang; Huang, I-Hsiu; Chang, Chungyu; Reardon-Robinson, Melissa Elizabeth; Das, Asis; Ton-That, Hung
2014-12-01
Sortase, a cysteine-transpeptidase conserved in Gram-positive bacteria, anchors on the cell wall many surface proteins that facilitate bacterial pathogenesis and fitness. Genetic disruption of the housekeeping sortase in several Gram-positive pathogens reported thus far attenuates virulence, but not bacterial growth. Paradoxically, we discovered that depletion of the housekeeping sortase SrtA was lethal for Actinomyces oris; yet, all of its predicted cell wall-anchored protein substrates (AcaA-N) were individually dispensable for cell viability. Using Tn5-transposon mutagenesis to identify factors that upend lethality of srtA deletion, we uncovered a set of genetic suppressors harbouring transposon insertions within genes of a locus encoding AcaC and a LytR-CpsA-Psr (LCP)-like protein. AcaC was shown to be highly glycosylated and dependent on LCP for its glycosylation. Upon SrtA depletion, the glycosylated form of AcaC, hereby renamed GspA, was accumulated in the membrane. Overexpression of GspA in a mutant lacking gspA and srtA was lethal; conversely, cells overexpressing a GspA mutant missing a membrane-localization domain were viable. The results reveal a unique glycosylation pathway in A. oris that is coupled to cell wall anchoring catalysed by sortase SrtA. Significantly, this novel phenomenon of glyco-stress provides convenient cell-based assays for developing a new class of inhibitors against Gram-positive pathogens. © 2014 John Wiley & Sons Ltd.
RING1 and YY1 binding protein suppresses breast cancer growth and metastasis.
Zhou, Hongyan; Li, Jie; Zhang, Zhanqiang; Ye, Runyi; Shao, Nan; Cheang, Tuckyun; Wang, Shenming
2016-12-01
Evidence suggests that RING1 and YY1 binding protein (RYBP) functions as a tumor suppressor. However, its role in breast cancer remains unclear. In the present study, the expression of RYBP was assessed in breast cancer patients and cell lines. Disease-free survival durations of breast cancer patients with high RYBP expression were determined based on the ATCG dataset. The effects of RYBP overexpression on cell growth, migration and invasive potency were also assessed. Nude mouse xenograft and lung metastasis models were also used to confirm the role of RYBP. The involvement of SRRM3 in RYBP-mediated breast cancer suppression was explored using SRRM3 siRNA. The potential relationship between RYBP, SRRM3, and REST-003 was examined by qPCR. The results showed that RYBP was downregulated in breast cancer patients and in several breast cancer cell lines. Breast cancer patients with high expression levels of RYBP displayed better disease-free survival. Overexpression of RYBP in MDA-MB-231 and SK-BR-3 cells significantly decreased cell proliferation, migration, and invasion ability, and increased the proportion of cells arrested in S-phase compared with the negative control cells. Additionally, upregulation of proliferation-related cell cycle proteins (cyclin A and cyclin B1) and E-cadherin, and downregulation of snail were observed in RYBP-overexpressing cells. Overexpression of RYBP reduced tumor volume and weight as well as metastatic foci in the lungs of nude mice. SRRM3 knockdown by siRNA, which is downregulated after RYBP overexpression, suppressed cell growth and metastasis in MDA-MB-231 and SK-BR-3 cells. Furthermore, qPCR analysis revealed that REST-003 ncRNA was downregulated in cells overexpressing RYBP and in SRRM3-inhibited cells. Moreover, cell invasion ability and growth were increased after SRRM3 upregulation in RYBP-overexpressing cells, but they were decreased following si-REST-003 transfection. In conclusion, overexpression of RYBP suppresses breast cancer growth and metastasis both in vitro and in vivo. SRRM3 and REST-003, which are downregulated in cells overexpressing RYBP, may be involved in RYBP-mediated breast cancer progression.
Ding, Jun; Holzwarth, Garrett; Bradford, C. Samuel; Cooley, Ben; Yoshinaga, Allen S.; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H.; Bakalinsky, Alan T.
2017-01-01
In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity. PMID:26051671
Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid
NASA Astrophysics Data System (ADS)
Chuacharoen, Thanida; Sabliov, Cristina M.
2017-02-01
Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.
Ponnusamy, Moorthy P; Seshacharyulu, Parthasarathy; Vaz, Arokiapriyanka; Dey, Parama; Batra, Surinder K
2011-04-26
Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be helpful for MUC4-directed therapy for the ovarian cancer stem cell population.
2011-01-01
Background Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. Methods MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. Results MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. Conclusion These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be helpful for MUC4-directed therapy for the ovarian cancer stem cell population. PMID:21521521
Jiang, Li; Luo, Man; Liu, Dan; Chen, Bojiang; Zhang, Wen; Mai, Lin; Zeng, Jing; Huang, Na; Huang, Yi; Mo, Xianming; Li, Weimin
2013-06-01
The pro-apoptotic Bcl-2 protein BAD initiated apoptosis in human cells and has been identified as a prognostic marker in non-small cell lung cancer (NSCLC). In this study, we aimed to explore the functions of BAD in NSCLC. Overexpression of BAD was performed by transfecting different NSCLC cell lines with wild-type BAD. Cell proliferation, cell cycle, apoptosis, and invasion were characterized in vitro. Tumorigenicity was analyzed in vivo. Western blot was performed to determine the effects of BAD overexpression on the Bcl-2 family proteins and apoptosis-related proteins. Overexpression of BAD significantly inhibited cell proliferation in H1299, H292, and SPC-A1 but not in SK-MES-1 and H460 cell lines in vitro. BAD overexpression also reduced the tumorigenicity of H1299/SPC-A1 cell in vivo. However, no appreciable effects on cell cycle distribution and invasion were observed in all these cell lines. BAD overexpression also induced apoptosis in all cell types, in which process expression of mitochondrial cytochrom c (cyto-c) and caspase 3 were increased, whereas Bcl-xl, Bcl-2, Bax and caspase 8 expressions did not changed. These findings indicated that a mitochondrial pathway, in which process cyto-c was released from mitochondrial to activate caspase 3, was involved in BAD overexpression-mediated apoptosis. Our data suggested that increased expression of BAD enhance apoptosis and has negative influence on cell proliferation and tumor growth in NSCLC. Bad is a new potential target for tumor interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Lijie; Dong, Pingping; Liu, Longzi
Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstratedmore » that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.« less
CARMA3 is overexpressed in colon cancer and regulates NF-{kappa}B activity and cyclin D1 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning
2012-09-07
Highlights: Black-Right-Pointing-Pointer CARMA3 expression is elevated in colon cancers. Black-Right-Pointing-Pointer CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. Black-Right-Pointing-Pointer CARMA3 upregulates cyclinD1 through NF-{kappa}B activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression andmore » TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-I{kappa}B levels and NF-{kappa}B activity and its overexpression increased p-I{kappa}B expression and NF-{kappa}B activity. NF-{kappa}B inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-{kappa}B mediated upregulation of cyclin D1.« less
2014-01-01
Background Especially in human tumor cells, the osteopontin (OPN) primary transcript is subject to alternative splicing, generating three isoforms termed OPNa, OPNb and OPNc. We previously demonstrated that the OPNc splice variant activates several aspects of the progression of ovarian and prostate cancers. The goal of the present study was to develop cell line models to determine the impact of OPNc overexpression on main cancer signaling pathways and thus obtain insights into the mechanisms of OPNc pro-tumorigenic roles. Methods Human ovarian and prostate cancer cell lines, OvCar-3 and PC-3 cells, respectively, were stably transfected to overexpress OPNc. Transcriptomic profiling was performed on these cells and compared to controls, to identify OPNc overexpression-dependent changes in gene expression levels and pathways by qRT-PCR analyses. Results Among 84 genes tested by using a multiplex real-time PCR Cancer Pathway Array approach, 34 and 16, respectively, were differentially expressed between OvCar-3 and PC-3 OPNc-overexpressing cells in relation to control clones. Differentially expressed genes are included in all main hallmarks of cancer, and several interacting proteins have been identified using an interactome network analysis. Based on marked up-regulation of Vegfa transcript in response to OPNc overexpression, we partially validated the array data by demonstrating that conditioned medium (CM) secreted from OvCar-3 and PC-3 OPNc-overexpressing cells significantly induced endothelial cell adhesion, proliferation and migration, compared to CM secreted from control cells. Conclusions Overall, the present study elucidated transcriptional changes of OvCar-3 and PC-3 cancer cell lines in response to OPNc overexpression, which provides an assessment for predicting the molecular mechanisms by which this splice variant promotes tumor progression features. PMID:24928374
Attenuation of teratoma formation by p27 overexpression in induced pluripotent stem cells.
Matsu-ura, Toru; Sasaki, Hiroshi; Okada, Motoi; Mikoshiba, Katsuhiko; Ashraf, Muhammad
2016-02-15
Pluripotent stem cells, such as embryonic stem cells or induced pluripotent stem cells, have a great potential for regenerative medicine. Induced pluripotent stem cells, in particular, are suitable for replacement of tissue by autologous transplantation. However, tumorigenicity is a major risk in clinical application of both embryonic stem cells and induced pluripotent stem cells. This study explores the possibility of manipulating the cell cycle for inhibition of tumorigenicity. We genetically modified mouse induced pluripotent stem cells (miPSCs) to overexpress p27 tumor suppressor and examined their proliferation rate, gene expression, cardiac differentiation, tumorigenicity, and therapeutic potential in a mouse model of coronary artery ligation. Overexpression of p27 inhibited cell division of miPSCs, and that inhibition was dependent on the expression level of p27. p27 overexpressing miPSCs had pluripotency characteristics but lost stemness earlier than normal miPSCs during embryoid body and teratoma formation. These cellular characteristics led to none or smaller teratoma when the cells were injected into nude mice. Transplantation of both miPSCs and p27 overexpressing miPSCs into the infarcted mouse heart reduced the infarction size and improved left ventricular function. The overexpression of p27 attenuated tumorigenicity by reducing proliferation and earlier loss of stemness of miPSCs. The overexpression of p27 did not affect pluripotency and differentiation characteristics of miPSC. Therefore, regulation of the proliferation rate of miPSCs offers great therapeutic potential for repair of the injured myocardium.
Lack of FasL-mediated killing leads to in vivo tumor promotion in mouse Lewis lung cancer.
Lee, J-K; Sayers, T J; Back, T C; Wigginton, J M; Wiltrout, R H
2003-03-01
Lewis lung carcinoma (3LL) cells were constitutively resistant to Fas-mediated apoptosis, but overexpression of Fas on 3LL cells allowed Fas-mediated apoptosis after crosslinking with agonist anti-Fas antibody (Jo2) in vitro. Surprisingly, Fas-overexpressing 3LL cells showed enhanced in vivo tumor progression, whereas no promotion of in vivo tumor growth was observed for dominant negative (DN) Fas-overexpressing 3LL transfectants in which the cytoplasmic death domain was deleted. In addition, the promotion of in vivo tumor growth by Fas-overexpression was reduced in gld (FasL-mutation) mice compared to normal mice. These data indicate that intact Fas/FasL cell signaling is required for the promotion of in vivo tumor growth by Fas overexpression in 3LL cells. In contrast to the efficient Fas-mediated killing induced in vitro by crosslinking with anti-Fas antibody, Fas-overexpressing 3LL cells were resistant in vitro to Fas-mediated apoptosis by activated T cells or transient FasL transfection. These data suggest that agonist anti-Fas antibody and natural FasL can transmit qualitatively different signals, and crosslinking of Fas with natural FasL on 3LL cells does not deliver the expected death signal. Thus, our results demonstrate that in some cases overexpression of Fas can result in a survival advantage for tumor cells in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genz, Berit; Thomas, Maria; Pützer, Brigitte M.
2014-11-01
Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluatedmore » an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.« less
2013-01-01
Introduction The Epithelial Cell Adhesion Molecule (EpCAM) has been shown to be strongly expressed in human breast cancer and cancer stem cells and its overexpression has been supposed to support tumor progression and metastasis. However, effects of EpCAM overexpression on normal breast epithelial cells have never been studied before. Therefore, we analyzed effects of transient adenoviral overexpression of EpCAM on proliferation, migration and differentiation of primary human mammary epithelial cells (HMECs). Methods HMECs were transfected by an adenoviral system for transient overexpression of EpCAM. Thereafter, changes in cell proliferation and migration were studied using a real time measurement system. Target gene expression was evaluated by transcriptome analysis in proliferating and polarized HMEC cultures. A Chicken Chorioallantoic Membrane (CAM) xenograft model was used to study effects on in vivo growth of HMECs. Results EpCAM overexpression in HMECs did not significantly alter gene expression profile of proliferating or growth arrested cells. Proliferating HMECs displayed predominantly glycosylated EpCAM isoforms and were inhibited in cell proliferation and migration by upregulation of p27KIP1 and p53. HMECs with overexpression of EpCAM showed a down regulation of E-cadherin. Moreover, cells were more resistant to TGF-β1 induced growth arrest and maintained longer capacities to proliferate in vitro. EpCAM overexpressing HMECs xenografts in chicken embryos showed hyperplastic growth, lack of lumen formation and increased infiltrates of the chicken leukocytes. Conclusions EpCAM revealed oncogenic features in normal human breast cells by inducing resistance to TGF-β1-mediated growth arrest and supporting a cell phenotype with longer proliferative capacities in vitro. EpCAM overexpression resulted in hyperplastic growth in vivo. Thus, we suggest that EpCAM acts as a prosurvival factor counteracting terminal differentiation processes in normal mammary glands. PMID:23758908
Mai, Anja; Muharram, Ghaffar; Barrow-McGee, Rachel; Baghirov, Habib; Rantala, Juha; Kermorgant, Stéphanie; Ivaska, Johanna
2014-05-01
Many carcinomas have acquired oncogenic mechanisms for activating c-Met, including c-Met overexpression and excessive autocrine or paracrine stimulation with hepatocyte growth factor (HGF). However, the biological outcome of c-Met activation through these distinct modes remains ambiguous. Here, we report that HGF-mediated c-Met stimulation triggers a mesenchymal-type collective cell invasion. By contrast, the overexpression of c-Met promotes cell rounding. Moreover, in a high-throughput siRNA screen that was performed using a library of siRNAs against putative regulators of integrin activity, we identified RhoA and the clathrin-adapter protein HIP1 as crucial c-Met effectors in these morphological changes. Transient RhoA activation was necessary for the HGF-induced invasion, whereas sustained RhoA activity regulated c-Met-induced cell rounding. In addition, c-Met-induced cell rounding correlated with the phosphorylation of filamin A and the downregulation of active cell-surface integrins. By contrast, a HIP1-mediated increase in β1-integrin turnover was required for the invasion triggered by HGF. Taken together, our results indicate that c-Met induces distinct cell morphology alterations depending on the stimulus that activates c-Met.
Fujita, H; Okada, F; Hamada , J; Hosokawa, M; Moriuchi, T; Koya, R C; Kuzumaki, N
2001-09-01
Gelsolin, an actin-binding protein, is implicated as a critical regulator in cell motility. In addition, we have reported that cellular levels of gelsolin are decreased in various tumor cells, and overexpression of gelsolin by gene transfer suppresses tumorigenicity. We sought to assess the effects of gelsolin overexpression on metastasis and to determine the importance of a carboxyl-terminus that confers Ca(2+) dependency on gelsolin for effects of its overexpression. Expression vectors with cDNA encoding either full-length wild-type or His321 mutant form, isolated from a flat revertant of Ras-transformed cells and a carboxyl-terminal truncate, C-del of gelsolin, were transfected into a highly metastatic murine melanoma cell line, B16-BL6. Expression of introduced cDNA in transfectants was confirmed using Western blotting, 2-dimensional gel electrophoresis and reverse transcription-polymerase chain reaction (RT-PCR). We characterized phenotypes of transfectants, such as growth rate, colony formation in soft agar, cell motility and metastasis formation in vivo. Transfectants expressing the wild-type, His321 mutant and C-del gelsolin exhibited reduced growth ability in soft agar. Although expression of integrin beta1 or alpha4 on the cell surface of transfectants was not changed, wild-type and His321 mutant gelsolin, except for C-del gelsolin, exhibited retardation of cell spreading, reduced chemotatic migration to fibronectin and suppressed lung colonization in spontaneous metastasis assay. Gelsolin may function as a metastasis suppressor as well as a tumor suppressor gene. The carboxyl-terminus of gelsolin is important for retardation of cell spreading, reduced chemotasis and metastasis suppression. Copyright 2001 Wiley-Liss, Inc.
Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress.
Ishikawa, Toshiki; Aki, Toshihiko; Yanagisawa, Shuichi; Uchimiya, Hirofumi; Kawai-Yamada, Maki
2015-10-01
BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death. © 2015 American Society of Plant Biologists. All Rights Reserved.
Yuan, Chun-Ling; Liang, Rong; Liu, Zhi-Hui; Li, Yong-Qiang; Luo, Xiao-Ling; Ye, Jia-Zhou; Lin, Yan
2018-06-01
Gastric carcinoma is one of the most common human malignancies and remains the second leading cause of cancer-associated mortality worldwide. Gastric carcinoma is characterized by early-stage metastasis and is typically diagnosed in the advanced stage. Previous results have indicated that bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) overexpression has been demonstrated to inhibit growth and metastasis of gastric cancer cells. However, the molecular mechanisms of the BAMBI-mediated signaling pathway in the progression of gastric cancer are poorly understood. In the present study, to assess whether BAMBI overexpression inhibited the growth and aggressiveness of gastric carcinoma cells through regulation of transforming growth factor (TGF)-β/epithelial-mesenchymal transition (EMT) signaling pathway, the growth and metastasis of gastric carcinoma cells were analyzed following BAMBI overexpression and knockdown in vitro and in vivo . Molecular changes in the TGF-β/EMT signaling pathway were studied in gastric carcinoma cells following BAMBI overexpression and knockdown. DNA methylation of the gene regions encoding the TGF-β/EMT signaling pathway was investigated in gastric carcinoma cells. Tumor growth in tumor-bearing mice was analyzed after mice were subjected to endogenous overexpression of BAMBI. Results indicated that BAMBI overexpression significantly inhibited gastric carcinoma cell growth and aggressiveness, whereas knockdown of BAMBI significantly promoted its growth and metastasis compared with the control (P<0.01). The TGF-β/EMT signaling pathway was downregulated in BAMBI-overexpressed gastric carcinoma cells; however, signaling was promoted following BAMBI knockdown. In addition, it was observed that BAMBI overexpression significantly downregulated the DNA methylation of the gene regions encoding the TGF-β/EMT signaling pathway (P<0.01). Furthermore, RNA interference-mediated BAMBI overexpression also promoted apoptosis in gastric cancer cells and significantly inhibited growth of gastric tumors in murine xenografts (P<0.01). In conclusion, the present findings suggest that BAMBI overexpression inhibited the TGF-β/EMT signaling pathway and suppressed the invasiveness of gastric tumors, suggesting BAMBI may be a potential target for the treatment of gastric carcinoma via regulation of the TGF-β/EMT signaling pathway.
CEACAM1 is overexpressed in oral tumors and related to tumorigenesis.
Wang, Fu-Fang; Guan, Bing-Xin; Yang, Jing-Yan; Wang, Hai-Tao; Zhou, Cheng-Jun
2017-03-01
Carcinoembryonic antigen-related adhesion molecule 1 (CEACAM1) is a type 1 transmembrane glycoprotein belonging to the CEA family, which has been known to exist as either soluble forms in body fluids or membrane-bound forms on the cell surface. Aberrant CEACAM1 expression is associated with tumorigenesis and has been reported in a variety of human tumors, especially malignancies. The aim of this study is to determine the expression of CEACAM1 in oral tumors, trying to study CEACAM1 different expressions as a function of histotype. CEACAM1 expression was observed by immunohistochemistry (IHC) with mouse anti-human antibody for CEACAM1. IHC was performed using avidin-biotin-diaminobenzidine staining. The results were expressed as average score ± SD (0 = negative/8 = highest) for each histotype. Oral tumors expressed more CEACAM1 than normal tissues including squamous and salivary epithelia (P < 0.05). In malignancies, the squamous cell carcinoma overexpressed CEACAM1, compared to well-differentiated squamous cell with more membranous expression; the intermediately and poorly differentiated squamous cell carcinoma showed more cytoplasmic expression (P < 0.05). In addition, the salivary tumors significantly expressed more CEACAM1 than squamous cell carcinoma (P < 0.05). So, we thought oral tumors overexpressed CEACAM1 and the cytoplasmic CEACAM1 might be involved in tumorigenesis, and also CEACAM1 might be regarded as a marker of salivary glandular tumors.
Ko, Hyeok-Jin; Park, Eunhye; Song, Joseph; Yang, Taek Ho; Lee, Hee Jong; Kim, Kyoung Heon
2012-01-01
Autotransporters have been employed as the anchoring scaffold for cell surface display by replacing their passenger domains with heterologous proteins to be displayed. We adopted an autotransporter (YfaL) of Escherichia coli for the cell surface display system. The critical regions in YfaL for surface display were identified for the construction of a ligation-independent cloning (LIC)-based display system. The designed system showed no detrimental effect on either the growth of the host cell or overexpressing heterologous proteins on the cell surface. We functionally displayed monomeric red fluorescent protein (mRFP1) as a reporter protein and diverse agarolytic enzymes from Saccharophagus degradans 2-40, including Aga86C and Aga86E, which previously had failed to be functional expressed. The system could display different sizes of proteins ranging from 25.3 to 143 kDa. We also attempted controlled release of the displayed proteins by incorporating a tobacco etch virus protease cleavage site into the C termini of the displayed proteins. The maximum level of the displayed protein was 6.1 × 104 molecules per a single cell, which corresponds to 5.6% of the entire cell surface of actively growing E. coli. PMID:22344647
Effects of CASP5 gene overexpression on angiogenesis of HMEC-1 cells.
Li, Haiyan; Li, Yuzhen; Cai, Limin; Bai, Bingxue; Wang, Yanhua
2015-01-01
The efficacy of gene overexpression of CASP5, a caspase family member, in angiogenesis in vitro and its mechanisms were clarified. Human full-length CASP5 gene was delivered into human microvascular endothelial HMEC-1 cells by recombinant lentivirus. The infection was estimated by green fluorescent protein. MTT method was used to analyze the efficacy of gene overexpression in cell proliferation ability, and Matrigel was used to estimate its effects in angiogenesis ability of cells. Meanwhile, Western blot was used to analyze the effects of CASP5 gene overexpression on the expression levels of angpt-1, angpt-2, Tie2 and VEGF-1 in the cells, which were signaling pathway factors related to angiogenesis. Recombinant lentivirus containing human full-length CASP5 gene was packed and purified successfully, with virus titer of 1×10(8) TU/ml. The recombinant lentivirus was used to infect HMEC-1 cells with MOI of 1, leading to a cell infection rate of 100%. There were no significant effects of CASP5 gene overexpression on both cell proliferation ability and the expression level of angpt-1. Meanwhile, expressions of angpt-2 and VEGF-1 were both enhanced, while Tie2 expression was inhibited. Results indicated that CASP5 gene overexpression promoted angiogenesis of HMEC-1 cells. CASP5 gene overexpression significantly promoted angiogenesis ability of HMEC-1 cells, which was probably achieved by inhibiting angpt-1/Tie2 and promoting VEGF-1 signal pathway.
Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H
2009-07-01
Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast surface/volume ratio, both at the control and the contaminated site. Chloroplast number per cell did not differ between wild and transgenic poplars at the control site. Soil contamination led to suppression of chloroplast replication in wild-type plants. From these results, we assume that overexpressing the bacterial gsh1 gene in the cytosol interacts with processes in the chloroplast and that sequestration of heavy metal phytochelatin complexes into the vacuole may partially counteract this interaction in plants grown at heavy metal-contaminated field sites. Further experiments are required to test these assumptions.
Walker, Louise A.; Martin-Yken, Hélène; Dague, Etienne; Legrand, Mélanie; Lee, Keunsook; Chauvel, Murielle; Firon, Arnaud; Rossignol, Tristan; Richard, Mathias L.; Munro, Carol A.; Bachellier-Bassi, Sophie; d'Enfert, Christophe
2014-01-01
Biofilm formation is an important virulence trait of the pathogenic yeast Candida albicans. We have combined gene overexpression, strain barcoding and microarray profiling to screen a library of 531 C. albicans conditional overexpression strains (∼10% of the genome) for genes affecting biofilm development in mixed-population experiments. The overexpression of 16 genes increased strain occupancy within a multi-strain biofilm, whereas overexpression of 4 genes decreased it. The set of 16 genes was significantly enriched for those encoding predicted glycosylphosphatidylinositol (GPI)-modified proteins, namely Ihd1/Pga36, Phr2, Pga15, Pga19, Pga22, Pga32, Pga37, Pga42 and Pga59; eight of which have been classified as pathogen-specific. Validation experiments using either individually- or competitively-grown overexpression strains revealed that the contribution of these genes to biofilm formation was variable and stage-specific. Deeper functional analysis of PGA59 and PGA22 at a single-cell resolution using atomic force microscopy showed that overexpression of either gene increased C. albicans ability to adhere to an abiotic substrate. However, unlike PGA59, PGA22 overexpression led to cell cluster formation that resulted in increased sensitivity to shear forces and decreased ability to form a single-strain biofilm. Within the multi-strain environment provided by the PGA22-non overexpressing cells, PGA22-overexpressing cells were protected from shear forces and fitter for biofilm development. Ultrastructural analysis, genome-wide transcript profiling and phenotypic analyses in a heterologous context suggested that PGA22 affects cell adherence through alteration of cell wall structure and/or function. Taken together, our findings reveal that several novel predicted GPI-modified proteins contribute to the cooperative behaviour between biofilm cells and are important participants during C. albicans biofilm formation. Moreover, they illustrate the power of using signature tagging in conjunction with gene overexpression for the identification of novel genes involved in processes pertaining to C. albicans virulence. PMID:25502890
Jones, David K; Johnson, Ashley C; Roti Roti, Elon C; Liu, Fang; Uelmen, Rebecca; Ayers, Rebecca A; Baczko, Istvan; Tester, David J; Ackerman, Michael J; Trudeau, Matthew C; Robertson, Gail A
2018-03-22
Reduced levels of the cardiac human (h)ERG ion channel protein and the corresponding repolarizing current I Kr can cause arrhythmia and sudden cardiac death, but the underlying cellular mechanisms controlling hERG surface expression are not well understood. Here, we identified TRIOBP-1, an F-actin-binding protein previously associated with actin polymerization, as a putative hERG-interacting protein in a yeast-two hybrid screen of a cardiac library. We corroborated this interaction by performing Förster resonance energy transfer (FRET) in HEK293 cells and co-immunoprecipitation in HEK293 cells and native cardiac tissue. TRIOBP-1 overexpression reduced hERG surface expression and current density, whereas reducing TRIOBP-1 expression via shRNA knockdown resulted in increased hERG protein levels. Immunolabeling in rat cardiomyocytes showed that native TRIOBP-1 colocalized predominantly with myosin-binding protein C and secondarily with rat ERG. In human stem cell-derived cardiomyocytes, TRIOBP-1 overexpression caused intracellular co-sequestration of hERG signal, reduced native I Kr and disrupted action potential repolarization. Ca 2+ currents were also somewhat reduced and cell capacitance was increased. These findings establish that TRIOBP-1 interacts directly with hERG and can affect protein levels, I Kr magnitude and cardiac membrane excitability. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Thach Nguyen, Kim; Le, Duc Vinh; Do, Dinh Ho; Huan Le, Quang
2016-06-01
HER-2/ErbB2/Neu(HER-2), a member of the epidermal growth factor receptor family, is specifically overexpressed on the surface of breast cancer cells and serves a therapeutic target for breast cancer. In this study, we aimed to isolate DNA aptamer (Ap) that specifically bind to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. We developed a novel multifunctional composite micelle with surface modification of Ap for targeted delivery of paclitaxel. This binary mixed system consisting of Ap modified pluronic®F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Polymeric micelles had a spherical shape and were self-assemblies of block copolymers of approximately 86.22 ± 1.45 nm diameter. PTX could be loaded with high encapsulation efficiency (83.28 ± 0.13%) and loading capacity (9.12 ± 0.34%). The release profile were 29%-35% in the first 12 h and 85%-93% after 12 d at pH 7.5 of receiving media. The IC50 doses by MTT assay showed the greater activity of nanoparticles loaded paclitaxel over free paclitaxel and killed cells up to 95% after 6 h. These results demonstrated unique assembly with the capacity to function as an efficient detection and delivery vehicle in the biological living system.
Tan, Shu-Tao; Liu, Sheng-Ye; Wu, Bin
2016-10-01
TRIM29 overexpression has been reported in several human malignancies and showed correlation with cancer cell malignancy. The aim of the current study is to examine its clinical significance and biological roles in human bladder cancer tissues and cell lines. A total of 102 cases of bladder cancer tissues were examined for TRIM29 expression by immunohistochemistry. siRNA and plasmid transfection were performed in 5637 and BIU-87 cell lines. Cell Counting Kit-8, flow cytometry, western blot, and real-time polymerase chain reaction were performed to examine its biological roles and mechanism in bladder cancer cells. We found that TRIM29 overexpression showed correlation with invading depth (p=0.0087). Knockdown of TRIM29 expression in bladder cancer cell line 5637 inhibited cell growth rate and cell cycle transition while its overexpression in BIU-87 cells accelerated cell proliferation and cell cycle progression. TRIM29 overexpression also inhibited cell apoptosis induced by cisplatin. In addition, we demonstrated that TRIM29 depletion decreased while its overexpression led to upregulated expression of cyclin D1, cyclin E, and Bcl-2. We also showed that TRIM29 knockdown inhibited protein kinase C (PKC) and nuclear factor κB (NF-κB) signaling while its overexpression stimulated the PKC and NF-κB pathways. BAY 11-7082 (NF-κB inhibitor) partly attenuated the effect of TRIM29 on expression of cyclin and Bcl-2. Treatment with PKC inhibitor staurosporine resulted in ameliorated TRIM29 induced activation of NF-κB. The current study demonstrated that TRIM29 upregulates cyclin and Bcl family proteins level to facilitate malignant cell growth and inhibit drug-induced apoptosis in bladder cancer, possibly through PKC-NF-κB signaling pathways.
Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis
Doolittle, Elizabeth; Peiris, Pubudu M.; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P.; Karathanasis, Efstathios
2015-01-01
Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection. PMID:26203676
Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis.
Doolittle, Elizabeth; Peiris, Pubudu M; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P; Karathanasis, Efstathios
2015-08-25
Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection.
Roeb, Elke; Bosserhoff, Anja-Katrin; Hamacher, Sabine; Jansen, Bettina; Dahmen, Judith; Wagner, Sandra; Matern, Siegfried
2005-01-01
AIM: To study the effect of gelatinases (especially MMP-9) on migration of tissue inhibitor of metalloproteinase (TIMP-1) overexpressing hepatoma cells. METHODS: Wild type HepG2 cells, cells stably transfected with TIMP-1 and TIMP-1 antagonist (MMP-9-H401A, a catalytically inactive matrix metalloproteinase (MMP) which still binds and neutralizes TIMP-1) were incubated in Boyden chambers either with or without Galardin (a synthetic inhibitor of MMP-1, -2, -3, -8, -9) or a specific inhibitor of gelatinases. RESULTS: Compared to wild type HepG2 cells, the cells overexpressing TIMP-1 showed 115% migration (P<0.05) and the cells overexpressing MMP-9-H401A showed 62% migration (P<0.01). Galardin reduced cell migration dose dependently in all cases. The gelatinase inhibitor reduced migration in TIMP-1 overexpressing cells predominantly. Furthermore, we examined intracellular signal transduction pathways of TIMP-1-dependent HepG2 cells. TIMP-1 deactivates cell signaling pathways of MMP-2 and MMP-9 involving p38 mitogen-activated protein kinase. Specific blockade of the ERK pathway suppresses gelatinase expression either in the presence or absence of TIMP-1. CONCLUSION: Overexpressing functional TIMP-1- enhanced migration of HepG2-TIMP-1 cells depends on enhanced MMP-activity, especially MMP-9. PMID:15754388
Targeting prostate cancer cells with hybrid elastin-like polypeptide/liposome nanoparticles
Zhang, Wei; Song, Yunmei; Eldi, Preethi; Guo, Xiuli; Hayball, John D; Garg, Sanjay; Albrecht, Hugo
2018-01-01
Prostate cancer cells frequently overexpress the gastrin-releasing peptide receptor, and various strategies have been applied in preclinical settings to target this receptor for the specific delivery of anticancer compounds. Recently, elastin-like polypeptide (ELP)-based self-assembling micelles with tethered GRP on the surface have been suggested to actively target prostate cancer cells. Poorly soluble chemotherapeutics such as docetaxel (DTX) can be loaded into the hydrophobic cores of ELP micelles, but only limited drug retention times have been achieved. Herein, we report the generation of hybrid ELP/liposome nanoparticles which self-assembled rapidly in response to temperature change, encapsulated DTX at high concentrations with slow release, displayed the GRP ligand on the surface, and specifically bound to GRP receptor expressing PC-3 cells as demonstrated by flow cytometry. This novel type of drug nanocarrier was successfully used to reduce cell viability of prostate cancer cells in vitro through the specific delivery of DTX. PMID:29391790
Liu, Min; Jing, Danqing; Wang, Yan; Liu, Yu; Yin, Shinan
2015-02-01
Angiotensin II (Ang II), the major effector hormone of renin-angiotensin system, acts as a promoter of insulin resistance and diabetes mellitus type 2 pathogenesis. Activation of Ang II type 2 receptor (AT2R) has been examined as a potential therapeutic strategy. However, there are conflicting findings regarding the role of AT2R. In the current study, we evaluated the effects of overexpressing AT2R by viral vector transduction on the apoptosis and function of pancreatic β-islet cells. The rat insulinoma cell line, INS-1, was transduced with a recombinant adenoviral vector expressing AT2R (Ad-G-AT2R-EGFP). AT2R overexpression resulted in significantly reduced cell viability and subsequently impaired glucose-stimulated insulin secretion (GSIS) function in INS-1 cells. Down-regulated expressions of GSIS pathway components, insulin, glucose transporter 2, and glucokinase were associated with AT2R overexpression. Further analysis determined that overexpression of AT2R induced G1-phase cell cycle arrest and Ang II-independent apoptotic cell death as indicated by increased Annexin V staining. To understand the apoptosis signaling triggered by AT2R overexpression, levels of caspase proteins were measured. Overexpression of AT2R significantly induced caspase-8, caspase-9, and caspase-3 cleavage, and decreased Bcl-2, pAkt, and pERK expression levels. AT2R-induced cell apoptosis was successfully blocked by the caspase inhibitor Z-VAD-FMK. Our findings suggested that AT2R overexpression triggers the apoptosis of INS-1 cells and dysfunction in insulin secretion. In conclusion, more careful design and consideration are required when applying AT2R-related therapies in treating diabetes.
Li, Chunli; Liu, Dingbin; Yuan, Ying; Huang, Shifeng; Shi, Meng; Tao, Kun; Feng, Wenli
2010-04-01
Apg-2, a mammalian heat-shock protein belonging to the heat-shock protein 110 (Hsp110) family, was previously found to be overexpressed in BaF3-BCR/ABL cells that were treated with hydrogen peroxide (H2O2) through our comparative proteomics study. The expression of Apg-2 in chronic myelogenous leukemia (CML) cells and its role have not been investigated, forming the basis for this study. BaF3-MIGR1 and BaF3-BCR/ABL cell lines stably overexpressing Apg-2 were established and exposed to 50 microM H2O2 for 10 min. Western blot analysis of Apg-2 expression confirmed that H2O2 treatment significantly up-regulated Apg-2 expression. Apg-2 overexpression elevated BaF3-BCR/ABL cell proportions in S and G2/M phase, increased cell proliferation and colony formation in vitro. Moreover, BaF3-MIGR1 and BaF3-BCR/ABL cells were exposed to 50 microM H2O2 in the absence or presence of Apg-2 overexpression and induction of H2AX phosphorylation, the reporters of DNA damage were assessed by Western blot and immunofluorescence. Results showed that exposure to H2O2 induced H2AX phosphorylation in BaF3-MIGR1 cells, but no increase was observed in BaF3-BCR/ABL cells. Together, the data indicate that Apg-2 is overexpressed and overexpression of Apg-2 in BaF3-BCR/ABL cells increases cell proliferation and protects cells from oxidative damage, which may play an important role in CML carcinogenesis and progression.
Cyclin D2 is sufficient to drive β cell self-renewal and regeneration.
Tschen, Shuen-Ing; Zeng, Chun; Field, Loren; Dhawan, Sangeeta; Bhushan, Anil; Georgia, Senta
2017-01-01
Diabetes results from an inadequate mass of functional β cells, due to either β cell loss caused by autoimmune destruction (type I diabetes) or β cell failure in response to insulin resistance (type II diabetes). Elucidating the mechanisms that regulate β cell mass may be key to developing new techniques that foster β cell regeneration as a cellular therapy to treat diabetes. While previous studies concluded that cyclin D2 is required for postnatal β cell self-renewal in mice, it is not clear if cyclin D2 is sufficient to drive β cell self-renewal. Using transgenic mice that overexpress cyclin D2 specifically in β cells, we show that cyclin D2 overexpression increases β cell self-renewal post-weaning and results in increased β cell mass. β cells that overexpress cyclin D2 are responsive to glucose stimulation, suggesting they are functionally mature. β cells that overexpress cyclin D2 demonstrate an enhanced regenerative capacity after injury induced by streptozotocin toxicity. To understand if cyclin D2 overexpression is sufficient to drive β cell self-renewal, we generated a novel mouse model where cyclin D2 is only expressed in β cells of cyclin D2 -/- mice. Transgenic overexpression of cyclin D2 in cyclin D2 - / - β cells was sufficient to restore β cell mass, maintain normoglycaemia, and improve regenerative capacity when compared with cyclin D2 -/- littermates. Taken together, our results indicate that cyclin D2 is sufficient to regulate β cell self-renewal and that manipulation of its expression could be used to enhance β cell regeneration.
Noh, Hyangsoon; Yan, Jun; Hong, Sungguan; Kong, Ling-Yuan; Gabrusiewicz, Konrad; Xia, Xueqing; Heimberger, Amy B; Li, Shulin
2016-11-01
Intracellular vimentin overexpression has been associated with epithelial-mesenchymal transition, metastasis, invasion, and proliferation, but cell surface vimentin (CSV) is less understood. Furthermore, it remains unknown whether CSV can serve as a therapeutic target in CSV-expressing tumor cells. We found that CSV was present on glioblastoma multiforme (GBM) cancer stem cells and that CSV expression was associated with spheroid formation in those cells. A newly developed monoclonal antibody against CSV, 86C, specifically and significantly induced apoptosis and inhibited spheroid formation in GBM cells in vitro. The addition of 86C to GBM cells in vitro also led to rapid internalization of vimentin and decreased GBM cell viability. These findings were associated with an increase in caspase-3 activity, indicating activation of apoptosis. Finally, treatment with 86C inhibited GBM progression in vivo. In conclusion, CSV-expressing GBM cells have properties of tumor initiating cells, and targeting CSV with the monoclonal antibody 86C is a promising approach in the treatment of GBM.
Targeted Identification of Metastasis-associated Cell-surface Sialoglycoproteins in Prostate Cancer*
Yang, Lifang; Nyalwidhe, Julius O.; Guo, Siqi; Drake, Richard R.; Semmes, O. John
2011-01-01
Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC4ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins via click chemistry was followed by SDS-PAGE separation and liquid chromatography-tandem MS analysis. We identified 324 proteins from N2 and 372 proteins of ML2. Using conservative annotation, 64 proteins (26%) from N2 and 72 proteins (29%) from ML2 were classified as extracellular or membrane-associated glycoproteins. A selective enrichment of sialoglycoproteins was confirmed. When compared with global proteomic analysis of the same cells, the proportion of identified glycoprotein and cell-surface proteins were on average threefold higher using the selective capture approach. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the vast majority of glycoproteins overexpressed in the metastatic ML2 subline were involved in cell motility, migration, and invasion. Our approach effectively targeted surface sialoglycoproteins and efficiently identified proteins that underlie the metastatic potential of the ML2 cells. PMID:21447706
Targeted identification of metastasis-associated cell-surface sialoglycoproteins in prostate cancer.
Yang, Lifang; Nyalwidhe, Julius O; Guo, Siqi; Drake, Richard R; Semmes, O John
2011-06-01
Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC(4)ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins via click chemistry was followed by SDS-PAGE separation and liquid chromatography-tandem MS analysis. We identified 324 proteins from N2 and 372 proteins of ML2. Using conservative annotation, 64 proteins (26%) from N2 and 72 proteins (29%) from ML2 were classified as extracellular or membrane-associated glycoproteins. A selective enrichment of sialoglycoproteins was confirmed. When compared with global proteomic analysis of the same cells, the proportion of identified glycoprotein and cell-surface proteins were on average threefold higher using the selective capture approach. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the vast majority of glycoproteins overexpressed in the metastatic ML2 subline were involved in cell motility, migration, and invasion. Our approach effectively targeted surface sialoglycoproteins and efficiently identified proteins that underlie the metastatic potential of the ML2 cells.
Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Li, E-mail: luli7300@126.com; Song, Hui-Fang; Wei, Jiao-Long
2014-01-24
Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limitingmore » catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.« less
Lou, Kexin; Chen, Ning; Li, Zhihong; Zhang, Bei; Wang, Xiuli; Chen, Ye; Xu, Haining; Wang, Dongwei; Wang, Hao
2017-01-02
Abnormal expression of microRNA (miR)-142-5p has been reported in hepatocellular carcinoma (HCC). However, little information is available regarding the functional role of miR-142-5p in HCC. We aimed to explore the effects of miR-142-5p aberrant expression on HCC cell growth and cell apoptosis, as well as the underlying mechanism. Human HCC cell lines HepG2 and SMMC-7721 cells were transfected with miR-142-5p mimic, inhibitor, or a corresponding negative control. Cell viability, cell cycle distribution, and cell apoptosis were then analyzed. In addition, protein expression of Forkhead box, class O (FOXO) 1 and 3, a Bcl-2-interacting mediator of cell death (Bim), procaspase 3, and activated caspase 3 was measured. After transfection with miR-142-5p inhibitor, FOXO1 and FOXO3 were overexpressed, and then the cell viability and cell apoptosis were determined again. The relative cell viability in both HepG2 and SMMC-7721 cells was significantly reduced by miR-142-5p overexpression (p < 0.05). miR-142-5p overexpression displayed a significant blockage at the G1/S transition and significantly increased the percentages of G0/G1 phase. Moreover, the results showed that miR-142-5p overexpression significantly induced cell apoptosis and statistically elevated the protein expression levels of FOXO1, FOXO3, Bim, procaspase 3, and activated caspase 3. However, the cells transfected with miR-142-5p inhibitor showed contrary results. Additionally, the effects of miR-142-5p inhibitor on cell viability and apoptosis were reversed by overexpression of FOXO. In conclusion, our results suggest that miR-142-5p overexpression shows an important protective role in HCC by inhibiting cell growth and inducing apoptosis. These effects might be by regulating FOXO expression in HCC cells.
Wnt/beta-Catenin, Foxa2, and CXCR4 Axis Controls Prostate Cancer Progression
2014-07-01
NT1 cells that over-expressing Foxa2. The reason we used NT1 cells for the Foxa2 over-expressing experiments is that NT1 is an AR-expressing... cells . We have also established NT1 cells over-expressing a dominant active beta-catenin. We have characterized these cells . Our research found: 1...expression profiles of control NT1 , NT1 /Foxa2, and NT1 /beta-catenin cells Figure 1. We did RT-PCR to examine the expression of key
Gao, Yunhe; Cai, Aizhen; Xi, Hongqing; Li, Jiyang; Xu, Wei; Zhang, Yanmei; Zhang, Kecheng; Cui, Jianxin; Wu, Xiaosong; Wei, Bo; Chen, Lin
2017-04-26
Ring finger protein 43 (RNF43) is a member of the transmembrane E3 ubiquitin ligase family that was originally found in stem cells and plays important roles in tumor formation and progression. Our previous study indicated that RNF43 might be a tumor suppressor protein in gastric cancer. Given its antagonistic relationship with leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), one of the gastric cancer stem cell markers, investigation of the potential role of RNF43 in gastric stem cancer cells is necessary. Immunohistochemistry staining, western blot analysis, and quantitative reverse transcription polymerase chain reaction were used to determine the mRNA and protein expression level of RNF43 and other Wnt pathway factors. Gastric cancer stem-like cells were obtained from gastric cancer tumor and cell lines by tumorsphere culture. The adeno-associated virus system was used to upregulate RNF43 expression in cancer cells. Functional experiments including tumorsphere formation, chemotherapy resistance, surface marker detection, and tumor xenograft assay were performed to measure stem-like properties in gastric cancer stem-like cells after RNF43 overexpression. RNF43 loss was significantly associated with TNM stage, distant metastasis, and Lauren classification, and predicted worse prognosis in gastric cancer patients. RNF43 expression was even lower in tumorspheres derived from tumor tissues or cell lines compared with adherent cancer cells and normal gastric cells. Overexpression of RNF43 in gastric cancer cells impaired their stem-like properties, including sphere formation ability, chemoresistance in vitro, and tumorigenicity in vivo. Moreover, Wnt pathway-related proteins were decreased in RNF43-overexpressing cells, while Wnt pathway activators could reverse the trend to some extent. Our findings indicated that RNF43 might not only participate in gastric cancer progression, but also attenuate the stemness of gastric cancer stem-like cells through the Wnt/β-catenin pathway.
Zhang, Na; Bai, Guangzhen; Zhong, Daixing; Su, Kai; Liu, Boya; Li, Xiaofei; Wang, Yunjie; Wang, Xiaoping
2014-01-01
Thyroid cancer-1 (TC-1), a natively disordered protein, is widely expressed in vertebrates and overexpressed in many kinds of tumors. However, its exact role and regulation mechanism in human non-small cell lung cancer (NSCLC) are still unclear. In the present study, we found that TC-1 is highly expressed in NSCLC and that its aberrant expression is strongly associated with NSCLC cell proliferation. Exogenous TC-1 overexpression promotes cell proliferation, accelerates the cell G1-to-S-phase transition, and reduces apoptosis in NSCLC. The knockdown of TC-1, however, inhibits NSCLC cell proliferation, cycle transition, and apoptosis resistance. Furthermore, we also demonstrated that PD173074, which functions as an inhibitor of the TC-1 in NSCLC, decreases the expression of TC-1 and inhibits TC-1 overexpression mediated cell proliferation in vitro and in vivo. Nevertheless, the inhibition function of PD173074 on NSCLC cell proliferation was eliminated in cells with TC-1 knockdown. These results suggest that PD173074 plays a significant role in TC-1 overexpression mediated NSCLC cell proliferation and may be a potential intervention target for the prevention of cell proliferation in NSCLC. PMID:24941347
NF-E2 Overexpression Delays Erythroid Maturation and Increases Erythrocyte Production
Mutschler, Manuel; Magin, Angela S.; Buerge, Martina; Roelz, Roland; Schanne, Daniel H.; Will, Britta; Pilz, Ingo H.; Migliaccio, Anna Rita; Pahl, Heike L.
2009-01-01
Summary The transcription factor Nuclear Factor-Erythroid 2 (NF-E2) is overexpressed in the vast majority of patients with polycythaemia vera (PV). In murine models, NF-E2 overexpression increases proliferation and promotes cellular viability in the absence of erythropoietin (EPO). EPO-independent growth is a hallmark of PV. We therefore hypothesized that NF-E2 overexpression contributes to erythrocytosis, the pathognomonic feature of PV. Consequently, we investigated the effect of NF-E2 overexpression in healthy CD34+ cells. NF-E2 overexpression led to a delay in erythroid maturation, manifested by a belated appearance of glycophorin A-positive erythroid precursors. Maturation delay was similarly observed in primary PV patient erythroid cultures compared to healthy controls. Protracted maturation led to a significant increase in the accumulated number of erythroid cells both in PV cultures and in CD34+ cells overexpressing NF-E2. Similarly, NF-E2 overexpression altered erythroid colony formation, leading to an increase in BFU-E formation. These data indicate that NF-E2 overexpression delays the early phase of erythroid maturation, resulting in an expansion of erythroid progenitors, thereby increasing the number of erythrocytes derived from one CD34+ cell. These data propose a role for NF-E2 in mediating the erythrocytosis of PV. PMID:19466964
LncRNA CCAT2 promotes tumorigenesis by over-expressed Pokemon in non-small cell lung cancer.
Zhao, Zhihong; Wang, Ju; Wang, Shengfa; Chang, Hao; Zhang, Tiewa; Qu, Junfeng
2017-03-01
Non-small cell lung cancer (NSCLC) remains one of the most important death-related diseases, with poor effective diagnosis and less therapeutic biomarkers. LncRNA colon cancer-associated transcript 2 (CCAT2) was identified as an oncogenic lncRNA and over-expressed in many tumor cells. The aims of this study were to detect the correlation between CCAT2 and its regulatory genes and then explore the potential mechanism between them in NSCLC. In this study, qRT-PCR was used to detect CCAT2, Pokemon and p21 expression. Western-blot was used to detect protein levels of Pokemon and p21. CCK-8 assay and Transwell chambers were used to assess cell viability and invasion. CCAT2 and Pokemon were over-expressed in NSCLC tissue and cells. In NSCLC cells, CCAT2 knockdown significantly decreased cell viability and invasion as well as Pokemon expression, but increased the expression of p21; then CCAT2 overexpression revealed an opposite result. In addition, over-expressed Pokemon reversed the results that induced by si-CCAT2, while down-regulation of Pokemon significantly reversed the results that induced by CCAT2 overexpression. The results indicated that CCAT2 promotes tumorigenesis by over-expression of Pokemon, and the potential mechanism might relate to the Pokemon related gene p21. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Calreticulin Regulates VEGF-A in Neuroblastoma Cells.
Weng, Wen-Chin; Lin, Kuan-Hung; Wu, Pei-Yi; Lu, Yi-Chien; Weng, Yi-Cheng; Wang, Bo-Jeng; Liao, Yung-Feng; Hsu, Wen-Ming; Lee, Wang-Tso; Lee, Hsinyu
2015-08-01
Calreticulin (CRT) has been previously correlated with the differentiation of neuroblastoma (NB), implying a favorable prognostic factor. Vascular endothelial growth factor (VEGF) has been reported to participate in the behavior of NB. This study investigated the association of CRT and VEGF-A in NB cells. The expressions of VEGF-A and HIF-1α, with overexpression or knockdown of CRT, were measured in three NB cells (SH-SY5Y, SK-N-DZ, and stNB-V1). An inducible CRT NB cell line and knockdown CRT stable cell lines were also established. The impacts of CRT overexpression on NB cell apoptosis, proliferation, and differentiation were also evaluated. We further examined the role of VEGF-A in the NB cell differentiation via VEGF receptor blockade. Constitutive overexpression of CRT led to NB cell differentiation without proliferation. Thus, an inducible CRT stNB-V1 cell line was generated by a tetracycline-regulated gene system. CRT overexpression increased VEGF-A and HIF-1α messenger RNA (mRNA) expressions in SH-SY5Y, SK-N-DZ, and stNB-V1 cells. CRT overexpression also enhanced VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. Knockdown of CRT decreased VEGF-A and HIF-1α mRNA expressions and lowered VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. We further demonstrated that NB cell apoptosis was not affected by CRT overexpression in stNB-V1 cells. Nevertheless, overexpression of CRT suppressed cell proliferation and enhanced cell differentiation in stNB-V1 cells, whereas blockage of VEGFR-1 markedly suppressed the expression of neuron-specific markers including GAP43, NSE2, and NFH, as well as TrkA, a molecular marker indicative of NB cell differentiation. Our findings suggest that VEGF-A is involved in CRT-related neuronal differentiation in NB. Our work may provide important information for developing a new therapeutic strategy to improve the outcome of NB patients.
Neuroglobin Overexpression Inhibits AMPK Signaling and Promotes Cell Anabolism
Cai, Bin; Li, Wenjun; Mao, XiaoOu; Winters, Ali; Ryou, Myoung-Gwi; Liu, Ran; Greenberg, David A.; Wang, Ning; Jin, Kunlin; Yang, Shao-Hua
2017-01-01
Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMPK signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling. PMID:25616953
Neuroglobin Overexpression Inhibits AMPK Signaling and Promotes Cell Anabolism.
Cai, Bin; Li, Wenjun; Mao, XiaoOu; Winters, Ali; Ryou, Myoung-Gwi; Liu, Ran; Greenberg, David A; Wang, Ning; Jin, Kunlin; Yang, Shao-Hua
2016-03-01
Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in the brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb-overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling.
Overexpression of B7-H3 augments anti-apoptosis of colorectal cancer cells by Jak2-STAT3.
Zhang, Ting; Jiang, Bo; Zou, Shi-Tao; Liu, Fen; Hua, Dong
2015-02-14
To investigate the role of the overexpression of B7-H3 in apoptosis in colorectal cancer cell lines and the underlying molecular mechanisms. SW620 cells that highly overexpressed B7-H3 (SW620-B7-H3-EGFP) and HCT8 cells stably transfected with B7-H3 shRNA (HCT8-shB7-H3) were previously constructed in our laboratory. Cells transfected with pIRES2-EGFP were used as negative controls (SW620-NC and HCT8-NC). Real-time PCR and western blotting analysis were used to detect the mRNA and protein expressions of the apoptosis regulator proteins Bcl-2, Bcl-xl and Bax. A cell proliferation assay was used to evaluate the survival rate and drug sensitivity of the cells. The effect of drug resistance was detected by a cell cycle assay. Active caspase-3 western blotting was used to reflect the anti-apoptotic ability of cells. Western blotting was also performed to determine the expression of proteins associated with the Jak2-STAT3 signaling pathway and the apoptosis regulator proteins after the treatment with AG490, a Jak2 specific inhibitor, in B7-H3 overexpressing cells. The data were analyzed by GraphPad Prism 6 using a non-paired t-test. Whether by overexpression in SW620 cells or downregulation in HCT8, B7-H3 significantly affected the expression of anti- and pro-apoptotic proteins, at both the transcriptional and translational levels, compared with the negative control (P < 0.05). A cell proliferation assay revealed that B7-H3 overexpression increased the drug resistance of cells and resulted in a higher survival rate (P < 0.05). In addition, the results of cell cycle and active caspase-3 western blotting proved that B7-H3 overexpression inhibited apoptosis in colorectal cancer cell lines (P < 0.05). B7-H3 overexpression improved Jak2 and STAT3 phosphorylation and, in turn, increased the expression of the downstream anti-apoptotic proteins B-cell CLL/lymphoma 2 (Bcl-2) and Bcl-xl, based on western blotting (P < 0.05). After treating B7-H3 overexpressing cells with the Jak2-specific inhibitor AG490, the phosphorylation of Jak2 and STAT3, and the expression of Bcl-2 and Bcl-xl, decreased accordingly (P < 0.05). This finding suggested that the Jak2-STAT3 pathway is involved in the mechanism mediating the anti-apoptotic ability of B7-H3. The overexpression of B7-H3 induces resistance to apoptosis in colorectal cancer cell lines by upregulating the Jak2-STAT3 signaling pathway, potentially providing new approaches to the treatment of colorectal cancer.
Orgad, Oded; Oren, Yoram; Walker, Sharon L; Herzberg, Moshe
2011-08-01
Among various functions, extracellular polymeric substances (EPS) provide microbial biofilms with mechanical stability and affect initial cell attachment, the first stage in the biofilm formation process. The role of alginate, an abundant polysaccharide in Pseudomonas aeruginosa biofilms, in the viscoelastic properties and adhesion kinetics of EPS was analyzed using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. EPS was extracted from two P. aeruginosa biofilms, a wild type strain, PAO1, and a mucoid strain, PAOmucA22 that over-expresses alginate production. The higher alginate content in the EPS originating from the mucoid biofilms was clearly shown to increase both the rate and the extent of attachment of the EPS, as well as the layer's thickness. Also, the presence of calcium and elevated ionic strength increased the thickness of the EPS layer. Dynamic light scattering (DLS) showed that the presence of calcium and elevated ionic strength induced intermolecular attractive interactions in the mucoid EPS molecules. For the wild type EPS, in the presence of calcium, an elevated shift in the distribution of the diffusion coefficients was observed with DLS due to a more compacted conformation of the EPS molecules. Moreover, the alginate over-expression effect on EPS adherence was compared to the effect of alginate over-expression on P. aeruginosa cell attachment. In a parallel plate flow cell, under similar hydraulic and aquatic conditions as those applied for the EPS adsorption tests in the QCM-D flow cell, reduced adherence of the mucoid strain was clearly observed compared to the wild type isogenic bacteria. The results suggest that alginate contributes to steric hindrance and shielding of cell surface features and adhesins that are known to promote cell attachment. © 2011 Taylor & Francis
Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.
Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng
Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.
Sasaki, Natsuki; Nakamura, Masayuki; Kodama, Akiko; Urata, Yuka; Shiokawa, Nari; Hayashi, Takehiro; Sano, Akira
2016-11-01
The autophagy pathway has recently been implicated in several neurodegenerative diseases. Recently, it was reported that chorein-depleted cells showed accumulation of autophagic markers and impaired autophagic flux. Here, we demonstrate that chorein overexpression preserves cell viability from starvation-induced cell death in human embryonic kidney 293 (HEK293) cells. Subsequent coimmunoprecipitation and reverse coimmunoprecipitation assays using extracts from chorein that stably overexpressed HEK293 cells revealed that chorein interacts with α-tubulin and histone deacetylase 6, a known α-tubulin deacetylater and central component of basal autophagy. Indeed, acetylated α-tubulin immunoreactivity was significantly decreased in chorein that stably overexpressed HEK293 cells. These results suggest that chorein/histone deacetylase 6/α-tubulin interactions may play an important role in starvation-induced cell stress, and their disruption may be one of the molecular pathogenic mechanisms of chorea-acanthocytosis.-Sasaki, N., Nakamura, M., Kodama, A., Urata, Y., Shiokawa, N., Hayashi, T., Sano, A. Chorein interacts with α-tubulin and histone deacetylase 6, and overexpression preserves cell viability during nutrient deprivation in human embryonic kidney 293 cells. © FASEB.
Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin
2017-01-01
Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Dong; Liu, Weijiao; Wang, Lei; Wang, Hao; Pan, Jie
2016-03-01
In this study, fluoridated hydroxyapatite: Eu3+ nanorod-loaded folate-conjugated TPGS micelles were prepared by thin-film hydration. The findings in this study demonstrate that micelles show improved dispersion, high stability, and excellent fluorescent property in aqueous solutions, suitable for targeted imaging of cancer cells with over-expressing folate receptors on their surface. The micelles designed in this study will be a promising tool for early detection of cancer.
Nguyen, Minh Hong; Ojima, Yoshihiro; Sakka, Makiko; Sakka, Kazuo; Taya, Masahito
2014-10-01
Polysaccharides are major structural constituents to develop the three-dimensional architecture of Escherichia coli biofilms. In this study, confocal laser scanning microscopy was applied in combination with a fluorescent probe to analyze the location and arrangement of exopolysaccharide (EPSh) in microcolonies of E. coli K-12 derived strains, formed as biofilms on solid surfaces and flocs in the liquid phase. For this purpose, a novel fluorescent probe was constructed by conjugating a carbohydrate-binding module 3, from Paenibacillus curdlanolyticus, with the green fluorescence protein (GFP-CBM3). The GFP-CBM3 fused protein exhibited strong affinity to microcrystalline cellulose. Moreover, GFP-CBM3 specifically bound to cell-dense microcolonies in the E. coli biofilms, and to their flocs induced by bcsB overexpression. Therefore, the fused protein presents as a novel marker for EPSh produced by E. coli cells. Overexpression of bcsB was associated with abundant EPSh production and enhanced E. coli biofilm formation, which was similarly detectable by GFP-CBM3 probing. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Luo, Yong; Li, Mingchuan; Zuo, Xuemei; Basourakos, Spyridon P.; Zhang, Jiao; Zhao, Jiahui; Han, Yili; Lin, Yunhua; Wang, Yongxing; Jiang, Yongguang; Lan, Ling
2018-01-01
Hypoxia-inducible factor-1α (HIF-1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF-1α remain unclear. β-catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF-1α and β-catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4-2B, were grouped as follows: Negative control (no treatment), HIF-1α overexpression group (transfected with HIF-1α overexpression plasmid) and β-catenin silenced group (transfected with HIF-1α plasmids and β-catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4-2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4-2B cells, transfection with HIF-1α overexpression plasmid led to an enhanced β-catenin nuclear translocation, while β-catenin silencing inhibited β-catenin nuclear translocation. The enhanced β-catenin nuclear translocation induced by HIF-1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non-homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF-1α overexpression enhanced β-catenin nuclear translocation, which led to the activation of the β-catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF-1α overexpression promotes the radioresistance of PCa cells. PMID:29658569
Zhou, Dong-Hui; Li, Chao; Yang, Li-Na
2015-01-01
Recepteur d'origine nantais (RON) is a receptor tyrosine kinase whose overexpression has been observed in human gastric cancers. This study aimed to determine whether overexpression of the variant RONΔ160 could induce tumorigenicity of gastric cancer cells in vitro or in vivo, and whether its specific small molecule inhibitor (Compound I) could inhibit the effect of RONΔ160. We constructed human gastric cancer cell line MGC-803 that was stably transfected with a recombinant plasmid expressing RONΔ160, and the effect of RONΔ160 overexpression and macrophage-stimulating protein (MSP) activation on proliferation, migration and invasion abilities of MGC-803 cells were evaluated. Tumor-bearing mice with gastric cancer cells were used to analyze the effects of RONΔ160 overexpression and Compound I on implanted tumor growth. In vitro, overexpression of RONΔ160 in MGC-803 cells resulted changes to their cell morphology, and promoted cell proliferation, migration and invasion. In addition, overexpression of RONΔ160 increased the proportion of cells in the S phase. The effect of RONΔ160 was significantly enhanced by induction of MSP inducing (p < 0.05). In vivo, RONΔ160 promoted the growth of MGC-803 cells in nude mice, including increased tumor size and weight, and lower tumor incubation period. The Compound I inhibited the tumorigenic abilities of RONΔ160 (p <0.05). The results indicate that overexpression of the variant RONΔ160 altered the phenotype and tumorigenicity of MGC-803 cells. Its specific small molecule inhibitor could inhibit the effect of RONΔ160. Therefore, the variant RONΔ160 may become a potential therapeutic target for gastric cancer.
Cyclin D2 is sufficient to drive β cell self-renewal and regeneration
2017-01-01
ABSTRACT Diabetes results from an inadequate mass of functional β cells, due to either β cell loss caused by autoimmune destruction (type I diabetes) or β cell failure in response to insulin resistance (type II diabetes). Elucidating the mechanisms that regulate β cell mass may be key to developing new techniques that foster β cell regeneration as a cellular therapy to treat diabetes. While previous studies concluded that cyclin D2 is required for postnatal β cell self-renewal in mice, it is not clear if cyclin D2 is sufficient to drive β cell self-renewal. Using transgenic mice that overexpress cyclin D2 specifically in β cells, we show that cyclin D2 overexpression increases β cell self-renewal post-weaning and results in increased β cell mass. β cells that overexpress cyclin D2 are responsive to glucose stimulation, suggesting they are functionally mature. β cells that overexpress cyclin D2 demonstrate an enhanced regenerative capacity after injury induced by streptozotocin toxicity. To understand if cyclin D2 overexpression is sufficient to drive β cell self-renewal, we generated a novel mouse model where cyclin D2 is only expressed in β cells of cyclin D2−/− mice. Transgenic overexpression of cyclin D2 in cyclin D2−/− β cells was sufficient to restore β cell mass, maintain normoglycaemia, and improve regenerative capacity when compared with cyclin D2−/− littermates. Taken together, our results indicate that cyclin D2 is sufficient to regulate β cell self-renewal and that manipulation of its expression could be used to enhance β cell regeneration. PMID:28763258
FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao
2015-10-09
The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models bothmore » in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.« less
Kütscher, Christian; Lampert, Florian M; Kunze, Mirjam; Markfeld-Erol, Filiz; Stark, G Björn; Finkenzeller, Günter
2016-05-01
Postnatal vasculogenesis is mediated by mobilization of endothelial progenitor cells (EPCs) from bone marrow and homing to ischemic tissues. This feature emphasizes this cell type for cell-based therapies aiming at the improvement of neovascularization in tissue engineering applications and regenerative medicine. In animal models, it was demonstrated that implantation of EPCs from cord blood (cbEPCs) led to the formation of a complex functional neovasculature, whereas EPCs isolated from adult peripheral blood (pbEPCs) showed a limited vasculogenic potential, which may be attributed to age-related dysfunction. Recently, it was demonstrated that activation of hypoxia-inducible factor-1α (Hif-1α) improves cell functions of progenitor cells of mesenchymal and endothelial origin. Thus, we hypothesized that overexpression of Hif-1α may improve the vasculogenesis-related phenotype of pbEPCs. In the present study, we overexpressed Hif-1α in pbEPCs and cbEPCs by using recombinant adenoviruses and investigated effects on stem cell- and vasculogenesis-related cell parameters. Overexpression of Hif-1α enhanced proliferation, invasion, cell survival and in vitro capillary sprout formation of both EPC populations. Migration was increased in cbEPCs upon Hif-1α overexpression, but not in pbEPCs. Cellular senescence was decreased in pbEPCs, while remained in cbEPCs, which showed, as expected, intrinsically a dramatically lower senescent phenotype in relation to pbEPCs. Similarly, the colony-formation capacity was much higher in cbEPCs in comparison to pbEPCs and was further increased by Hif-1α overexpression, whereas Hif-1α transduction exerted no significant influence on colony formation of pbEPCs. In summary, our experiments illustrated multifarious effects of Hif-1α overexpression on stem cell and vasculogenic parameters. Therefore, Hif-1α overexpression may represent a therapeutic option to improve cellular functions of adult as well as postnatal EPCs. Copyright © 2016. Published by Elsevier Inc.
Effect of SOCS1 overexpression on RPE cell activation by proinflammatory cytokines.
Bazewicz, Magdalena; Draganova, Dafina; Makhoul, Maya; Chtarto, Abdel; Elmaleh, Valerie; Tenenbaum, Liliane; Caspers, Laure; Bruyns, Catherine; Willermain, François
2016-09-06
The purpose of this study was to investigate the in vitro effect of Suppressor Of Cytokine Signaling 1 (SOCS1) overexpression in retinal pigment epithelium (RPE) cells on their activation by pro-inflammatory cytokines IFNγ, TNFα and IL-17. Retinal pigment epithelium cells (ARPE-19) were stably transfected with the control plasmid pIRES2-AcGFP1 or the plasmid pSOCS1-IRES2-AcGFP1. They were stimulated by IFNγ (150ng/ml), TNFα (30ng/ml) or IL-17 (100ng/ml). The levels of SOCS1 mRNA were measured by real-time PCR. Signal Transducer and Activator of Transcription 1 (STAT1) phosphorylation and IκBα expression were analysed by western Blot (WB). IL-8 secretion was analysed by ELISA and expression of MHCII molecules and ICAM-1/CD54 by flow cytometry. Our data show that SOCS1 mRNA overexpression in RPE cells prevents IFNγ-induced SOCS1 mRNA increase and IFNγ-mediated STAT1 phosphorylation. Moreover, SOCS1 overexpression in RPE cells inhibits IFNγ-induced decrease of IL-8 secretion and prevents IFNγ-induced MHC II and ICAM1/CD54 upregulation. However, SOCS1 overexpression does not affect TNFα-induced IκBα degradation nor block TNFα-induced or IL-17-induced IL-8 secretion. On the contrary, IL-17-induced secretion is increased by SOCS1 overexpression. In conclusion, SOCS1 overexpression in RPE cells inhibits some IFNγ-mediated responses that lead to uveitis development. This notion raises the possibility that SOCS1 overexpression could be a novel target for treating non-infectious uveitis. However, some proinflammatory effects of TNFα and IL-17 stimulation on RPE are not blocked by SOCS1 overexpression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip
2016-01-01
Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064
Nakamichi, Y; Nagamatsu, S
1999-06-24
To explore alpha-SNAP function in insulin exocytosis from either immature or mature secretory granules in pancreatic beta cells, we studied the effects of overexpression of adenovirus-mediated wild-type alpha-SNAP and C-terminally deleted alpha-SNAP mutant (1-285) on newly synthesized proinsulin and insulin release by rat islets and MIN6 cells. Rat islets overexpressing alpha-SNAP and mutant alpha-SNAP were pulse-chased. Exocytosis from immature and mature insulin secretory granules was measured as fractional (%) labeled-proinsulin release immediately after the pulse-labeling and percentage labeled-insulin release after a 3-h chase period, respectively. There was no difference in percentage labeled-proinsulin release between the control and alpha-SNAP or mutant alpha-SNAP-overexpressed islets. Although percentage labeled-insulin release after a 3-h chase period was significantly increased in alpha-SNAP-overexpressed islets, it was decreased in mutant alpha-SNAP-overexpressed islets. Thus, the results demonstrated that alpha-SNAP overexpression in rat islets primarily increased exocytosis from mature, but not immature insulin secretory granules. On the other hand, in MIN6 cells, alpha-SNAP overexpression scarcely affected glucose-stimulated insulin release; therefore, we examined the effect of mutant alpha-SNAP overexpression as the dominant-negative inhibitor on the newly synthesized proinsulin/insulin release using the same protocol as in the rat islet experiments. alpha-SNAP mutant (1-285) overexpression in MIN6 cells decreased the percentage labeled insulin release from mature secretory granules, but not percentage labeled proinsulin release from immature secretory granules. Thus, our data demonstrate that alpha-SNAP functions mainly in the mature insulin secretory granules in pancreatic beta cells. Copyright 1999 Academic Press.
Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian
2016-01-01
Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells. PMID:27542229
Sanz, Ricardo L; Ferraro, Gino B; Girouard, Marie-Pier; Fournier, Alyson E
2017-08-11
IgLONs are members of the immunoglobulin superfamily of cell adhesion proteins implicated in the process of neuronal outgrowth, cell adhesion and subdomain target recognition. IgLONs form homophilic and heterophilic complexes on the cell surface that repress or promote growth depending on the neuronal population, the developmental stage and surface repertoire of IgLON family members. In the present study, we identified a metalloproteinase-dependent mechanism necessary to promote growth in embryonic dorsal root ganglion cells (DRGs). Treatment of embryonic DRG neurons with pan-metalloproteinase inhibitors, tissue inhibitor of metalloproteinase-3, or an inhibitor of ADAM Metallopeptidase Domain 10 (ADAM10) reduces outgrowth from DRG neurons indicating that metalloproteinase activity is important for outgrowth. The IgLON family members Neurotrimin (NTM) and Limbic System-Associated Membrane Protein (LSAMP) were identified as ADAM10 substrates that are shed from the cell surface of DRG neurons. Overexpression of LSAMP and NTM suppresses outgrowth from DRG neurons. Furthermore, LSAMP loss of function decreases the outgrowth sensitivity to an ADAM10 inhibitor. Together our findings support a role for ADAM-dependent shedding of cell surface LSAMP in promoting outgrowth from DRG neurons.
The Role of Notch Signaling Pathway in Breast Cancer Pathogenesis
2005-07-01
breast cancer cells, I tested whether ErbB2 overexpression will cooperate with Notch in HMLE cells. While overexpression of activated Notch1 failed to...tyrosine kinase upstream of Ras normally found overexpressed in many breast cancers , also failed to transform HMLE cells. These observations suggested...cooperation between Notch1IC and ErbB2 signaling in transforming HMLE cells. Breast cancers typically do not harbor oncogenic Ras mutations; nevertheless
Brief Reports: Nfix Promotes Survival of Immature Hematopoietic Cells via Regulation of c-Mpl.
Hall, Trent; Walker, Megan; Ganuza, Miguel; Holmfeldt, Per; Bordas, Marie; Kang, Guolian; Bi, Wenjian; Palmer, Lance E; Finkelstein, David; McKinney-Freeman, Shannon
2018-02-12
Hematopoietic stem and progenitor cells (HSPCs) are necessary for life-long blood production and replenishment of the hematopoietic system during stress. We recently reported that nuclear factor I/X (Nfix) promotes HSPC survival post-transplant. Here, we report that ectopic expression of Nfix in primary mouse HSPCs extends their ex vivo culture from about 20 to 40 days. HSPCs overexpressing Nfix display hypersensitivity to supportive cytokines and reduced apoptosis when subjected to cytokine deprivation relative to controls. Ectopic Nfix resulted in elevated levels of c-Mpl transcripts and cell surface protein on primary murine HSPCs as well as increased phosphorylation of STAT5, which is known to be activated down-stream of c-MPL. Blocking c-MPL signaling by removal of thrombopoietin or addition of a c-MPL neutralizing antibody negated the antiapoptotic effect of Nfix overexpression on cultured HSPCs. Furthermore, NFIX was capable of binding to and transcriptionally activating a proximal c-Mpl promoter fragment. In sum, these data suggest that NFIX-mediated upregulation of c-Mpl transcription can protect primitive hematopoietic cells from stress ex vivo. Stem Cells 2018. © AlphaMed Press 2018.
Kim, Sun Hwa; Jeong, Ji Hoon; Chun, Ki Woo; Park, Tae Gwan
2005-09-13
Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with anionic surface charge were surface coated with cationic di-block copolymer, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL) conjugate, for enhancing their site-specific intracellular delivery against folate receptor overexpressing cancer cells. The PLGA nanoparticles coated with the conjugate were characterized in terms of size, surface charge, and change in surface composition by XPS. By employing the flow cytometry method and confocal image analysis, the extent of cellular uptake was comparatively evaluated under various conditions. PLL-PEG-FOL coated PLGA nanoparticles demonstrated far greater extent of cellular uptake to KB cells, suggesting that they were mainly taken up by folate receptor-mediated endocytosis. The enhanced cellular uptake was also observed even in the presence of serum proteins, possibly due to the densely seeded PEG chains. The PLL-PEG-FOL coated PLGA nanoparticles could be potentially applied for cancer cell targeted delivery of various therapeutic agents.
NASA Astrophysics Data System (ADS)
Huang, Xiaohua; El-Sayed, Ivan H.; El-Sayed, Mostafa A.
2005-08-01
Gold nanoparticles with unique optical properties offer useful applications in biotechnology. In this article two applications that we have developed are summarized, in one they are used in cancer cell diagnostics and in the other they are found to have catalytic property for the NADH oxidation reaction which is important in ATP formations. By conjugation with anti-EGFR antibodies which specifically target EGFR that are usually overexpressed on most cancer cells, gold nanoparticles are used as a molecular contrast agent for cancer cell diagnostics using their both strong surface plasmon absorption and efficient Mie scattering properties. Au nanoparticles are also good catalysts for many reactions due to their high surface to volume ratio. Au nanoparticles are found to be the catalyst for the NADH oxidation reaction. This was studied by monitoring the effect of the nanoparticles on NADH fluorescence intensity and lifetime as well as the change of the surface plasmon absorption band during the reaction.
Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla
2015-01-01
The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival.
Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla
2015-01-01
The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival. PMID:25616580
Singh, Bhuminder; Bogatcheva, Galina; Starchenko, Alina; Sinnaeve, Justine; Lapierre, Lynne A.; Williams, Janice A.; Goldenring, James R.; Coffey, Robert J.
2015-01-01
ABSTRACT Directed delivery of EGF receptor (EGFR) ligands to the apical or basolateral surface is a crucial regulatory step in the initiation of EGFR signaling in polarized epithelial cells. Herein, we show that the EGFR ligand betacellulin (BTC) is preferentially sorted to the basolateral surface of polarized MDCK cells. By using sequential truncations and site-directed mutagenesis within the BTC cytoplasmic domain, combined with selective cell-surface biotinylation and immunofluorescence, we have uncovered a monoleucine-based basolateral-sorting motif (EExxxL, specifically 156EEMETL161). Disruption of this sorting motif led to equivalent apical and basolateral localization of BTC. Unlike other EGFR ligands, BTC mistrafficking induced formation of lateral lumens in polarized MDCK cells, and this process was significantly attenuated by inhibition of EGFR. Additionally, expression of a cancer-associated somatic BTC mutation (E156K) led to BTC mistrafficking and induced lateral lumens in MDCK cells. Overexpression of BTC, especially mistrafficking forms, increased the growth of MDCK cells. These results uncover a unique role for BTC mistrafficking in promoting epithelial reorganization. PMID:26272915
Cross, Jane L; Boulos, Sherif; Shepherd, Kate L; Craig, Amanda J; Lee, Sharon; Bakker, Anthony J; Knuckey, Neville W; Meloni, Bruno P
2012-07-01
In this study we have assessed sodium-calcium exchanger (NCX) protein over-expression on cell viability in primary rat cortical neuronal and HEK293 cell cultures when subjected to oxygen-glucose deprivation (OGD). In cortical neuronal cultures, NCX2 and NCX3 over-expression was achieved using adenoviral vectors, and following OGD increased neuronal survival from ≈20% for control vector treated cultures to ≈80% for both NCX isoforms. In addition, we demonstrated that NCX2 and NCX3 over-expression in cortical neuronal cultures enables neurons to maintain intracellular calcium at significantly lower levels than control vector treated cultures when exposed to high (9mM) extracellular calcium challenge. Further assessment of NCX activity during OGD was performed using HEK293 cell lines generated to over-express NCX1, NCX2 or NCX3 isoforms. While it was shown that NCX isoform expression differed considerably in the different HEK293 cell lines, high levels of NCX over-expression was associated with increased resistance to OGD. Taken together, our findings show that high levels of NCX over-expression increases neuronal and HEK293 cell survival following OGD, improves calcium management in neuronal cultures and provides additional support for NCX as a therapeutic target to reduce ischemic brain injury. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Kong, Lingxin; Guo, Sufen; Liu, Chunfeng; Zhao, Yiling; Feng, Chong; Liu, Yunshuang; Wang, Tao; Li, Caijuan
2016-03-01
The formation of EMT and EMT-induced CSC-like phenotype is crucial for the metastasis of tumor cells. The stromal cell-derived factor-1 (SDF-1) is upregulated in various human carcinomas, which is closely associated with proliferation, migration, invasion and prognosis of malignancies. However, limited attention has been directed towards the effect of SDF-1 on epithelial to mesenchymal transition (EMT) or cancer stem cell (CSC)-like phenotype formation in breast cancer cells and the related mechanism. In the present study, we screened MCF-7 cells with low SDF-1 expression level for the purpose of evaluating whether SDF-1 is involved in EMT and CSC-like phenotype formation in MCF-7 cells. The pEGFP-N1-SDF-1 plasmid was transfected into MCF-7 cells, and the stably overexpressed SDF-1 in MCF-7 cells was confirmed by real-time PCR and western blot analysis. Colony formation assay, MTT, wound healing assay and Transwell invasion assay demonstrated that overexpression of SDF-1 significantly boosted the proliferation, migration and invasion of MCF-7 cells compared with parental (P<0.05). Flow cytometry analysis revealed a notable increase of CD44+/CD24- subpopulation in SDF-1 overexpressing MCF-7 cells (P<0.001), accompanied by the apparently elevated ALDH activity and the upregulation of the stem cell markers OCT-4, Nanog, and SOX2 compared with parental (P<0.01). Besides, western blot analysis and immunofluorescence assay observed the significant decreased expression of E-cadherin and enhanced expression of slug, fibronectin and vimentin in SDF-1 overexpressed MCF-7 cells in comparison with parental (P<0.01). Further study found that overexpression of SDF-1 induced the activation of NF-κB pathway in MCF-7 cells. Conversely, suppressing or silencing p65 expression by antagonist or RNA interference could remarkably increase the expression of E-cadherin in SDF-1 overexpressed MCF-7 cells (P<0.001). Overall, the above results indicated that overexpression of SDF-1 enhanced EMT by activating the NF-κB pathway of MCF-7 cells and further induced the formation of CSC-like phenotypes, ultimately promoting the proliferation and metastasis of MCF-7 cells. Therefore, SDF-1 may further be assessed as a potential target for gene therapy of breast cancer.
Lampert, F M; Kütscher, C; Stark, G B; Finkenzeller, G
2016-03-01
Reconstruction of large bone defects still represents a major medical challenge. In recent years tissue engineering has developed techniques based on adult mesenchymal stem cells (MSCs) that could represent an attractive therapeutical option to treat large bone defects in the future. It has been demonstrated in various animal models that ex vivo expanded MSCs are capable of promoting the regeneration of skeletal defects after implantation. However, for the efficient regeneration of bone in tissue engineering applications, a rapid vascularization of implanted grafts is essential to ensure the survival of cells in the early post-implantational phase. A promising strategy to enhance vascularization of MSC-containing implants could consist of overexpression of the angiogenic master transcription factor Hypoxia-inducible factor 1 (Hif-1) in the MSCs in order to induce angiogenesis and support osteogenesis. In the present study, we overexpressed Hif-1α in MSCs by using recombinant adenoviruses and investigated cell-autonomous effects. Overexpression of Hif-1α enhanced proliferation, migration, cell survival and expression of pro-angiogenic genes. Other parameters such as expression of the osteogenic markers BMP-2 and RunX2 were decreased. Hif-1α overexpression had no effect on invasion, senescence and osteogenic differentiation of MSCs. Our experiments revealed multifarious effects of Hif-1α overexpression on cell-autonomous parameters. Therefore, Hif-1α overexpression may represent a therapeutic option to improve cellular functions of MSCs to treat critical sized bone defects. © 2015 Wiley Periodicals, Inc.
IQGAP1 promotes CXCR4 chemokine receptor function and trafficking via EEA-1+ endosomes
Bamidele, Adebowale O.; Kremer, Kimberly N.; Hirsova, Petra; Clift, Ian C.; Gores, Gregory J.; Billadeau, Daniel D.
2015-01-01
IQ motif–containing GTPase-activating protein 1 (IQGAP1) is a cytoskeleton-interacting scaffold protein. CXCR4 is a chemokine receptor that binds stromal cell–derived factor-1 (SDF-1; also known as CXCL12). Both IQGAP1 and CXCR4 are overexpressed in cancer cell types, yet it was unclear whether these molecules functionally interact. Here, we show that depleting IQGAP1 in Jurkat T leukemic cells reduced CXCR4 expression, disrupted trafficking of endocytosed CXCR4 via EEA-1+ endosomes, and decreased efficiency of CXCR4 recycling. SDF-1–induced cell migration and activation of extracellular signal-regulated kinases 1 and 2 (ERK) MAPK were strongly inhibited, even when forced overexpression restored CXCR4 levels. Similar results were seen in KMBC and HEK293 cells. Exploring the mechanism, we found that SDF-1 treatment induced IQGAP1 binding to α-tubulin and localization to CXCR4-containing endosomes and that CXCR4-containing EEA-1+ endosomes were abnormally located distal from the microtubule (MT)-organizing center (MTOC) in IQGAP1-deficient cells. Thus, IQGAP1 critically mediates CXCR4 cell surface expression and signaling, evidently by regulating EEA-1+ endosome interactions with MTs during CXCR4 trafficking and recycling. IQGAP1 may similarly promote CXCR4 functions in other cancer cell types. PMID:26195666
Shioda, Norifumi; Ishikawa, Kiyoshi; Tagashira, Hideaki; Ishizuka, Toru; Yawo, Hiromu; Fukunaga, Kohji
2012-07-06
The σ1 receptor (σ(1)R) regulates endoplasmic reticulum (ER)/mitochondrial interorganellar Ca(2+) mobilization through the inositol 1,4,5-trisphosphate receptor (IP(3)R). Here, we observed that expression of a novel splice variant of σ(1)R, termed short form σ(1)R (σ(1)SR), has a detrimental effect on mitochondrial energy production and cell survival. σ(1)SR mRNA lacks 47 ribonucleotides encoding exon 2, resulting in a frameshift and formation of a truncated receptor. σ(1)SR localizes primarily in the ER at perinuclear regions and forms a complex with σ(1)R but not with IP(3)R in the mitochondrion-associated ER membrane. Overexpression of both σ(1)R and the truncated isoform promotes mitochondrial elongation with increased ER mitochondrial contact surface. σ(1)R overexpression increases the efficiency of mitochondrial Ca(2+) uptake in response to IP(3)R-driven stimuli, whereas σ(1)SR overexpression reduces it. Most importantly, σ(1)R promotes ATP production via increased mitochondrial Ca(2+) uptake, promoting cell survival in the presence of ER stress. By contrast, σ(1)SR suppresses ATP production following ER stress, enhancing cell death. Taken together, the newly identified σ(1)SR isoform interferes with σ(1)R function relevant to mitochondrial energy production under ER stress conditions, promoting cellular apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo, E-mail: csshin@snu.ac.kr
2009-05-15
{alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2more » was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.« less
Chae, Young Kwang; Choi, Wooyoung M; Bae, William H; Anker, Jonathan; Davis, Andrew A; Agte, Sarita; Iams, Wade T; Cruz, Marcelo; Matsangou, Maria; Giles, Francis J
2018-01-18
Immunotherapy is emerging as a promising option for lung cancer treatment. Various endothelial adhesion molecules, such as integrin and selectin, as well as various cellular barrier molecules such as desmosome and tight junctions, regulate T-cell infiltration in the tumor microenvironment. However, little is known regarding how these molecules affect immune cells in patients with lung cancer. We demonstrated for the first time that overexpression of endothelial adhesion molecules and cellular barrier molecule genes was linked to differential infiltration of particular immune cells in non-small cell lung cancer. Overexpression of endothelial adhesion molecule genes is associated with significantly lower infiltration of activated CD4 and CD8 T-cells, but higher infiltration of activated B-cells and regulatory T-cells. In contrast, overexpression of desmosome genes was correlated with significantly higher infiltration of activated CD4 and CD8 T-cells, but lower infiltration of activated B-cells and regulatory T-cells in lung adenocarcinoma. This inverse relation of immune cells aligns with previous studies of tumor-infiltrating B-cells inhibiting T-cell activation. Although overexpression of endothelial adhesion molecule or cellular barrier molecule genes alone was not predictive of overall survival in our sample, these genetic signatures may serve as biomarkers of immune exclusion, or resistance to T-cell mediated immunotherapy.
Kim, Min-Gyun; Pak, Jhang Ho; Choi, Won Ho; Park, Jeong-Yeol; Nam, Joo-Hyun
2012-01-01
Objective To investigate the relationship between cisplatin resistance and histone deacetylase (HDAC) isoform overexpression in ovarian cancer cell lines. Methods Expression of four HDAC isoforms (HDAC 1, 2, 3, and 4) in two ovarian cancer cell lines, SKOV3 and OVCAR3, exposed to various concentrations of cisplatin was examined by western blot analyses. Cells were transfected with plasmid DNA of each HDAC. The overexpression of protein and mRNA of each HDAC was confirmed by western blot and reverse transcriptase-polymerase chain reaction analyses, respectively. The cell viability of the SKOV3 and OVCAR3 cells transfected with HDAC plasmid DNA was measured using the cell counting kit-8 assay after treatment with cisplatin. Results The 50% inhibitory concentration of the SKOV3 and OVCAR3 cells can be determined 15-24 hours after treatment with 15 µg/mL cisplatin. The expression level of acetylated histone 3 protein in SKOV3 cells increased after exposure to cisplatin. Compared with control cells at 24 hours after cisplatin exposure, the viability of SKOV3 cells overexpressing HDAC 1 and 3 increased by 15% and 13% (p<0.05), respectively. On the other hand, OVCAR3 cells that overexpressed HDAC 2 and 4 exhibited increased cell viability by 23% and 20% (p<0.05), respectively, compared with control cells 24 hours after exposure to cisplatin. Conclusion In SKOV3 and OVCAR3 epithelial ovarian cancer cell lines, the correlation between HDAC overexpression and cisplatin resistance was confirmed. However, the specific HDAC isoform associated with resistance to cisplatin varied depending on the ovarian cancer cell line. These results may suggest that each HDAC isoform conveys cisplatin resistance via different mechanisms. PMID:22808361
S100A4 is frequently overexpressed in lung cancer cells and promotes cell growth and cell motility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Na; Sato, Daisuke; Saiki, Yuriko
2014-05-09
Highlights: • We observed frequent overexpression of S100A4 in lung cancer cell lines. • Knockdown of S100A4 suppressed proliferation in lung cancer cells. • Forced expression of S100A4 accelerated cell motility in lung cancer cells. • PRDM2 was found to be one of the downstream suppressed genes of S100A4. - Abstract: S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In thismore » study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annabi, Borhane; Currie, Jean-Christophe; Bouzeghrane, Mounia
Purpose: PCK3145 is an anti-metastatic synthetic peptide with promising therapeutic efficacy against hormone-refractory prostate cancer. The characterization of the PCK3145 peptide cell surface binding/internalization mechanisms and of the receptors involved remained to be explored. Results: [{sup 14}C]PCK3145 cell surface binding assays showed rapid and transient kinetic profile, that was inhibited by RGD peptides, laminin, hyaluronan, and type-I collagen. RGD peptides were however unable to inhibit PCK3145 intracellular uptake. Far-Western ligand binding studies enabled the identification of the 37-kDa laminin receptor precursor (37LRP) as a potential ligand for PCK3145. Overexpression of the recombinant 37LRP indeed led to an increase in PCK3145more » binding but unexpectedly not to its uptake. Conclusions: Our data support the implication of laminin receptors in cell surface binding and in transducing PCK3145 anti-metastatic effects, and provide a rational for targeting cancers that express high levels of such laminin receptors.« less
Li, Huijuan; Jiang, Li; Yu, Zhangbin; Han, Shuping; Liu, Xuehua; Li, Mengmeng; Zhu, Chun; Qiao, Lixing; Huang, Li
2017-12-01
In previous studies, TUC40-, a new long noncoding RNA, was found to be overexpressed in human ventricular septal defect (VSD) embryonic heart samples. In this article, we carried out experiments on the P19 cell line to elucidate the effects of TUC40- overexpression on cardiomyocyte development relevant to VSD pathogenesis. We established the overexpression cell model by plasmid transfection, and explored the expression profile of Pbx1, the sense gene of TUC40-, and the marker genes of cardiomyocyte linage commitment (Nkx2.5 and GATA4) and maturation (cardiac troponin T). In addition, we combined cell cycle and Cell Counting Kit-8 analysis to detect cell proliferation and used flow cytometry and caspase-3 assays to test apoptosis. At last, bioinformatics analysis was performed to show the possible role of TUC40-. In the control group, Pbx1 elevated steadily during cardiomyocyte induction; whereas in the overexpression group, it showed significantly lower expression at day 6, 8 and 10 of induction. Cells in the overexpression group failed to induce cardiomyocytes indicated by GATA4 and cardiac troponin T. Proliferation was inhibited possibly owing to G2/M cell cycle arrest and the induced apoptosis rate was higher in the overexpression group. TUC40- overexpression reduced Pbx1 expression, cardiomyocyte induction and differentiation, inhibited proliferation and promoted apoptosis. Combining the results and previous studies, we propose TUC40- as a potential pathologic factor for VSD. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Nakamura, K D M; Tilli, T M; Wanderley, J L; Palumbo, A; Mattos, R M; Ferreira, A C; Klumb, C E; Nasciutti, L E; Gimba, E R
2016-02-01
Osteopontin (OPN) is a phosphoprotein that activates several aspects of tumor progression. Alternative splicing of the OPN primary transcript generates three splicing isoforms, OPNa, OPNb and OPNc. In this report, we investigated some cellular mechanisms by which OPN splice variants could mediate PC3 prostate cancer (PCa) cell survival and growth in response to docetaxel (DXT)-induced cell death. Cell survival before and after DXT treatment was analyzed by phase-contrast microscopy and crystal-violet staining assays. Quantitative real-time PCR and immunocytochemical staining assays were used to evaluate the putative involvement of epithelial-mesenchymal transition (EMT) and OPN isoforms on mediating PC3 cell survival. Upon DXT treatment, PC3 cells overexpressing OPNb or OPNc isoforms showed higher cell densities, compared to cells overexpressing OPNa and controls. Notably, cells overexpressing OPNb or OPNc isoforms showed a downregulated pattern of EMT epithelial cell markers, while mesenchymal markers were mostly upregulated in these experimental conditions. We concluded that OPNc or OPNb overexpression in PC3 cells can mediate resistance and cell survival features in response to DXT-induced cell death. Our data also provide evidence the EMT program could be one of the molecular mechanisms mediating survival in OPNb- or OPNc-overexpressing cells in response to DXT treatment. These data could further contribute to a better understanding of the mechanisms by which PCa cells acquire resistance to DXT treatment.
Khan, Abrar M; Ahmad, Farhan Jalees; Panda, Amulya K; Talegaonkar, Sushama
2016-06-30
Overexpression of P-glycoprotein (P-gp) efflux transporter in glioma cells thwarts the build-up of therapeutic concentration of drugs usually resulting into poor therapeutic outcome. To surmount aforesaid challenge, Imatinib (IMM) loaded Poly-lactide-co-glycolic acid nanoparticles (IMM-PLGA-NPs) were developed and optimized by Box Behnken Design as a new treatment stratagem in malignant glioma. Optimized NPs were functionalized with Pluronic(®) P84, P-gp inhibitor (IMM-PLGA-P84-NPs) which showed size, PDI, zeta potential, drug loading, 182.63±13.56nm, 0.196±0.021, -15.2±1.49mV, 40.63±2.04μg/mg, respectively. Intracellular uptake study conducted on A172, U251MG and C6 glioma cells demonstrated significantly high uptake of IMM through NPs when compared with IMM solution (IMM-S), p<0.001. IMM-PLGA-P84-NPs showed better uptake in P-gp expressing cell line (U251MG and C6) while uncoated NPs showed higher uptake in non-P-gp expressing cell line (A-172). Cytotoxicity studies demonstrated significantly low IC50 for both IMM-PLGA-NPs and IMM-PLGA-P84-NPs when compared with IC50 of IMM-S. IMM-PLGA-P84-NPs showed a significantly low IC50 against P-gp overexpressing cell lines when compared with IC50 of IMM-PLGA-NPs. In contrary, IMM-PLGA-NPs showed lower IC50 against non P-gp expressing cell line. This study demonstrated the feasibility of targeting surface decorated NPs to multidrug resistant gliomas. However, to address its clinical utility extensive in vivo studies are required. Copyright © 2016 Elsevier B.V. All rights reserved.
Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport.
Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh
2015-09-01
The importance of endosome-to-trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51-VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. © 2015 Hirata, Fujita, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.
2013-01-01
Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486
Expression and functional studies of the GDNF family receptor-alpha3 (GFRα3) in the pancreas
Nivlet, Laure; Herrmann, Joel; Martin, Delia Esteban; Meunier, Aline; Orvain, Christophe; Gradwohl, Gérard
2018-01-01
The generation of therapeutic β-cells from human pluripotent stem cells relies on the identification of growth factors that faithfully mimic pancreatic β-cell development in vitro. In this context, the aim of the study was to determine the expression and function of the Glial cell line derived neurotrophic factor receptor α 3 (GFRα3) and its ligand Artemin in islet cell development and function. GFRα3 and Artn expression were characterized by in situ hybridization, immunochemistry and qRT-PCR. We used GFRα3-deficient mice to study GFRα3 function and generated a transgenic mice overexpressing Artn in the embryonic pancreas to study Artn function. We found that GFRα3 is expressed at the surface of a subset of Ngn3-positive endocrine progenitors as well as of embryonic α- and β-cells, while Artn is found in the pancreatic mesenchyme. Adult β-cells lack GFRα3 but α-cells express the receptor. GFRα3 was also found in parasympathetic and sympathetic intra islets neurons as well as in glial cells in the embryonic and adult pancreas. The loss of GFRα3 or overexpression of Artn has no impact on Ngn3- and islet- cells formation and maintenance in the embryo. Islet organisation and innervation as well as glucose homeostasis is normal in GFRα3-deficient mice suggesting functional redundancy. PMID:26576643
Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyatt, Dustin C.; Ceresa, Brian P.
2008-11-01
The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads canmore » stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.« less
Kojima, Hiroko; Uemura, Toshimasa
2005-01-28
Core binding factor alpha-1 (Cbfa1), known as an essential transcription factor for osteogenic lineage, has two major N-terminal isoforms: Pebp2alphaA and Til-1. To study the roles of these isoforms in bone regeneration, we applied an adenoviral vector carrying their genes to transduce primary osteoprogenitor cells in vitro and in vivo. Overexpression of the two isoforms induced rapid and marked osteoblast differentiation, with Til-1 being more effective in vitro, by examination of the alkaline phosphatase activity, calcium content, and Alizarin red staining. Til-1 overexpressing cells/porous ceramic composites were transplanted into subcutaneous and bone defect sites in Fischer rats (cultured bone transplantation model) and markedly affected in vivo bone formation and osteoblast markers. The results demonstrated that the reconstitution of bone tissues, such as cortical bone and trabecular bone was accelerated by implantation of Til-1 overexpressing cells/porous ceramic composites. Moreover, the new bone formation by Til-1 overexpression appeared to reflect replacement of new bone within the implant boundaries. To ascertain whether implanted Cbfa1 overexpressing cells could differentiate into osteogenic cells to create bone or whether it stimulated the surrounding recipient tissue to regenerate bone, implanted male donor cells were visualized by fluorescent in situ hybridization analysis. The proportion of implanted cells in the presumptive bone forming region was over 80% and did not change throughout from 3 days to 8 weeks after implantation. These findings suggested that the newly formed bone in the porous area of the scaffold is mostly produced by the implanted donor cells or their derived cells, effectively by Til-1 overexpression.
Zhang, Fang; Sodroski, Catherine; Cha, Helen; Li, Qisheng; Liang, T Jake
2017-01-01
The signaling molecule and transcriptional regulator SMAD6, which inhibits the transforming growth factor β signaling pathway, is required for infection of hepatocytes by hepatitis C virus (HCV). We investigated the mechanisms by which SMAD6 and another inhibitory SMAD (SMAD7) promote HCV infection in human hepatoma cells and hepatocytes. We infected Huh7 and Huh7.5.1 cells and primary human hepatocytes with Japanese fulminant hepatitis-1 (JFH1) HCV cell culture system (HCVcc). We then measured HCV binding, intracellular levels of HCV RNA, and expression of target genes. We examined HCV entry in HepG2/microRNA (miR) 122/CD81 cells, which support entry and replication of HCV, were transfected these cells with small interfering RNAs targeting inhibitory SMADs to analyze gene expression profiles. Uptake of labeled low-density lipoprotein (LDL) and cholesterol was measured. Cell surface proteins were quantified by flow cytometry. We obtained liver biopsy samples from 69 patients with chronic HCV infection and 19 uninfected individuals (controls) and measured levels of syndecan 1 (SDC1), SMAD7, and SMAD6 messenger RNAs (mRNAs). Small interfering RNA knockdown of SMAD6 blocked the binding and infection of hepatoma cell lines and primary human hepatocytes by HCV, whereas SMAD6 overexpression increased HCV infection. We found levels of mRNAs encoding heparan sulfate proteoglycans (HSPGs), particularly SDC1 mRNA, and cell surface levels of heparan sulfate to be reduced in cells after SMAD6 knockdown. SMAD6 knockdown also reduced transcription of genes encoding lipoprotein and cholesterol uptake receptors, including the LDL receptor (LDLR), the very LDLR, and the scavenger receptor class B member 1 in hepatocytes; knockdown of SMAD6 also inhibited cell uptake of cholesterol and lipoprotein. Overexpression of SMAD6 increased the expression of these genes. Similar effects were observed with knockdown and overexpression of SMAD7. In addition, HCV infection of cells increased the expression of SMAD6, which required the activity of nuclear factor-κB, but not transforming growth factor β. Liver tissues from patients with chronic HCV infection had significantly higher levels of SMAD6, SMAD7, and HSPG mRNAs than controls. In studies of hepatoma cell lines and primary human hepatocytes, we found that infection with HCV leads to activation of nuclear factor-κB, resulting in increased expression of SMAD6 and SMAD7. Up-regulation of SMAD6 and SMAD7 induces the expression of HSPGs, such as SDC1, as well as LDLR, very LDLR, and the scavenger receptor class B member 1, which promote HCV entry and propagation, as well as cellular uptake of cholesterol and lipoprotein. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Busch, Maike; Große-Kreul, Jan; Wirtz, Janina Jasmin; Beier, Manfred; Stephan, Harald; Royer-Pokora, Brigitte; Metz, Klaus; Dünker, Nicole
2017-08-01
Trefoil factor family (TFF) peptides have been shown to play a pivotal role in oncogenic transformation, tumorigenesis and metastasis by changing cell proliferation, apoptosis, migration and invasion behavior of various cancer cell lines. In the study presented, we investigated the effect of TFF1 overexpression on cell growth, viability, migration and tumorigenicity of different retinoblastoma (RB) cell lines. Transient TFF1 overexpression significantly increases RB cell apoptosis levels. Stable, lentiviral TFF1 overexpression likewise decreases RB cell viability, proliferation and growth and significantly increases apoptosis as revealed by WST-1 assays, BrdU and DAPI cell counts. TFF1-induced apoptosis is executed via cleaved caspase-3 activation as revealed by caspase blockage experiments and caspase-3 immunocytochemistry. Results from pG13-luciferase reporter assays and Western blot analyses indicate that TFF1-induced apoptosis is mediated through transcriptional activity of p53 with concurrently downregulated miR-18a expression. In ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF1 overexpression significantly decreases the size of tumors forming from Y79 and RB355 cells and reduces the migration potential of RB355 cells. Differentially expressed genes and pathways involved in cancer progression were identified after TFF1 overexpression in Y79 cells by gene expression array analysis, underlining the effects on reduced tumorigenicity. TFF1 knockdown in RBL30 cells revealed caspase-3/7-independent apoptosis induction, but no changes on cell proliferation level. In summary, the in vitro and in vivo data demonstrate for the first time a tumor suppressor function of TFF1 in RB cells which is at least partly mediated by p53 activation and miR-18a downregulation. © 2017 UICC.
Kawaguchi, Tsutomu; Komatsu, Shuhei; Ichikawa, Daisuke; Hirajima, Shoji; Nishimura, Yukihisa; Konishi, Hirotaka; Shiozaki, Atsushi; Fujiwara, Hitoshi; Okamoto, Kazuma; Tsuda, Hitoshi; Otsuji, Eigo
2017-06-01
Recent studies have shown that some members of the tripartite motif-containing protein family function as important regulators for carcinogenesis. In this study, we investigated whether tripartite motif-containing protein 44 acts as a cancer-promoting gene through its overexpression in esophageal squamous cell carcinoma. We analyzed esophageal squamous cell carcinoma cell lines to evaluate malignant potential and also analyzed 68 primary tumors to evaluate clinical relevance of tripartite motif-containing protein 44 protein in esophageal squamous cell carcinoma patients. Expression of the tripartite motif-containing protein 44 protein was detected in esophageal squamous cell carcinoma cell lines (8/14 cell lines; 57%) and primary tumor samples of esophageal squamous cell carcinoma (39/68 cases; 57%). Knockdown of tripartite motif-containing protein 44 expression in esophageal squamous cell carcinoma cells using several specific small interfering RNAs inhibited cell migration and invasion, but not cell proliferation. Immunohistochemical analysis demonstrated that the overexpression of the tripartite motif-containing protein 44 protein in the tumor infiltrated region was associated with the status of lymph node metastasis ( p = 0.049), and the overall survival rates were significantly worse among patients with tripartite motif-containing protein 44-overexpressing tumors than those with non-expressing tumors ( p = 0.029). Moreover, multivariate Cox regression model identified that overexpression of the tripartite motif-containing protein 44 protein was an independent worse prognostic factor (hazard ratio = 2.815; p = 0.041), as well as lymphatic invasion (hazard ratio = 2.735; p = 0.037). These results suggest that tripartite motif-containing protein 44 protein could play a crucial role in tumor invasion through its overexpression and highlight its usefulness as a predictor and potential therapeutic target in esophageal squamous cell carcinoma.
Xiao, Jie; Peng, Feng; Yu, Chao; Wang, Min; Li, Xu; Li, Zhipeng; Jiang, Jianxin; Sun, Chengyi
2014-01-01
Background: We intended to investigate the role of microRNA 137 (miR-137) in regulating pancreatic cancer cells’ growth in vitro and tumor development in vivo. Methods: QTR-PCR was used to examine the expression of miR-137 in pancreatic cancer cell lines and tumor cells from human patients. Lentivirual vector containing miR-137 mimic was used to overexpress miR-137 in PANC-1 and MIA PaCa-2 cells. The effects of overexpressing miR-137 on pancreatic cancer cell invasion and chemo-sensitivity to 5-fluorouracil (5-FU) were examined by cell migration and survival essays in vitro. The molecular target of miR-137, pleiotropic growth factor (PTN), was down-regulated by siRNA to examine its effects on cancer cell invasion. MIA PaCa-2 cells with endogenously overexpressed miR-137 were transplanted into null mice to examine tumor growth in vivo. Results: We found miR-137 was markedly underexpressed in both pancreatic cancer cell lines and tumor cells from patients. In cancer cells, transfection of lentivirus containing miR-137 mimic was able to markedly upregulate endogenous expression of miR-137, inhibited cancer cell invasion and increased sensitivities to chemotherapy reagent 5-FU. PTN was significantly down-regulated by overexpressing miR-137 in pancreatic cancer cells, and knocking down PTN was effective to rescue the reduced cancer cell invasion ability caused by miR-137 overexpression. More importantly, overexpressing miR-137 led to significant inhibition on tumor formation, including reductions in tumor weight and tumor size in vivo. Conclusion: Our study demonstrated that miR-137 played an important role in pancreatic cancer development. It may become a new therapeutic target for gene therapy in patients suffered from pancreatic cancer. PMID:25550779
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion
2005-12-16
To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly,more » PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.« less
Jacob, A N; Kalapurakal, J; Davidson, W R; Kandpal, G; Dunson, N; Prashar, Y; Kandpal, R P
1999-01-01
We have used a modified differential display PCR protocol for isolating 3' restriction fragments of cDNAs specifically expressed or overexpressed in metastatic prostate carcinoma cell line DU145. Several cDNA fragments were identified that matched to milk fat globule protein, UFO/Axl, a receptor tyrosine kinase, human homologue of a Xenopus maternal transcript, laminin and laminin receptor, human carcinoma-associated antigen, and some expressed sequence tags. The transcript for milk fat globule protein, a marker protein shown to be overexpressed in breast tumors, was elevated in DU145 cells. The expression of UFO/Axl, a receptor tyrosine kinase, was considerably higher in DU145 cells as compared to normal prostate cells and prostatic carcinoma cell line PC-3. The overexpression of UFO oncogene in DU145 cells is discussed in the context of prostate cancer metastasis.
Shetty, Aditya; Dasari, Subramanyam; Banerjee, Souresh; Gheewala, Taher; Zheng, Guoxing; Chen, Aoshuang; Kajdacsy-Balla, Andre; Bosland, Maarten C; Munirathinam, Gnanasekar
2016-11-01
Hepatoma-derived growth factor (HDGF) is a heparin-binding growth factor, which has previously been shown to be expressed in a variety of cancers. HDGF overexpression has also previously been correlated with a poor prognosis in several cancers. The significance of HDGF in prostate cancer, however, has not been investigated. Here, we show that HDGF is overexpressed in both androgen-sensitive LNCaP cells and androgen-insensitive DU145, 22RV1, and PC-3 cells. Forced overexpression enhanced cell viability of RWPE-1 cells, whereas HDGF knockdown reduced cell proliferation in human prostate cancer cells. We also show that HDGF may serve as a survival-related protein as ectopic overexpression of HDGF in RWPE cells up-regulated the expression of antiapoptosis proteins cyclin E and BCL-2, whereas simultaneously down-regulating proapoptotic protein BAX. Western blot analysis also showed that HDGF overexpression modulated the activity of phospho-AKT as well as NF-kB, and these results correlated with in vitro migration and invasion assays. We next assessed the therapeutic potential of HDGF inhibition with a HDGF monoclonal antibody and vitamin k 2 , showing reduced cell proliferation as well as inhibition of NF-kB expression in HDGF overexpressed RWPE cells treated with a HDGF monoclonal antibody and vitamin K 2 . Collectively, our results suggest that HDGF is a relevant protein in prostate oncogenesis and may serve as a potential therapeutic target in prostate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
[The effect of Foxc2 overexpression on the osteogenic properties of C3H10T1/2 cells].
Wang, Min-Jiao; Si, Jia-Wen; Li, Hong-Liang; Ouyang, Ning-Juan; Shen, Guo-Fang
2016-08-01
To investigate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation of C3H10T1/2 cells. C3H10T1/2 cells were transfected with plenti-Foxc2 and selected with puromycin for stable clones. The expression of Foxc2 was determined by real-time PCR and Western blot. Cell proliferation was detected by CCK-8 kit. Cell cycle and apoptosis were detected by flow cytometry. The level of osteogenic biomarkers Runx2, OPN, OCN and adipogenic biomarker PPARγ were quantified by real-time PCR and Western blot. Alkaline phosphatase (ALP) staining and oil red staining were conducted to evaluate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation. Statistical analysis was performed using SPSS 17.0 software package. C3H10T1/2-Foxc2 cell line was successfully constructed and verified by direct sequencing and Foxc2 overexpression in vitro. Cell proliferation was reduced and cell cycle was blocked in G1/G0 phase. Enhanced ALP staining and reduced oil red staining were observed in C3H10T1/2-Foxc2 cells as compared with the control. Foxc2 overexpression up-regulated Runx2, OPN, OCN during osteogenic differentiation and down-regulated PPARγduring adipogenic differentiation. C3H10T1/2 cell line stably expressing Foxc2 gene was successfully established, cell proliferation was reduced, osteogenesis biomarkers were up-regulated during the osteogenesis by overexpression Foxc2, PPARγwas down-regulated during adipogenesis.
Ye, Kaishan; Wang, Shuanke; Yang, Yong; Kang, Xuewen; Wang, Jing; Han, Hua
2015-09-01
Aplasia Ras homologue member Ⅰ (ARHI), an imprinted tumor-suppressor gene, is downregulated in various types of cancer. However, the expression, function and specific mechanisms of ARHI in human osteosarcoma (OS) cells remain unclear. The aim of the present study was to assess the effect of ARHI on OS cell proliferation and apoptosis and its associated mechanism. In the study, ARHI mRNA and protein levels were markedly downregulated in OS cells compared with the human osteoblast precursor cell line hFOB1.19. By generating stable transfectants, ARHI was overexpressed in OS cells that had low levels of ARHI. Overexpression of ARHI inhibited cell viability and proliferation and induced apoptosis. However, caspase‑3 activity was not changed by ARHI overexpression. In addition, phosphorylated Akt protein expression decreased in the ARHI overexpression group compared to that in the control vector group. The knockdown of ARHI also resulted in the promotion of cell proliferation and the attenuation of apoptosis in MG‑63 cells. Additionally, ARHI silencing increased the level of p‑Akt. The present results indicate that ARHI inhibits OS cell proliferation and may have a key role in the development of OS.
B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex.
Wallace, Caroline H; Wu, Bill X; Salem, Mohammad; Ansa-Addo, Ephraim A; Metelli, Alessandra; Sun, Shaoli; Gilkeson, Gary; Shlomchik, Mark J; Liu, Bei; Li, Zihai
2018-04-05
GARP, a cell surface docking receptor for binding and activating latent TGF-β, is highly expressed by platelets and activated Tregs. While GARP is implicated in immune invasion in cancer, the roles of the GARP-TGF-β axis in systemic autoimmune diseases are unknown. Although B cells do not express GARP at baseline, we found that the GARP-TGF-β complex is induced on activated human and mouse B cells by ligands for multiple TLRs, including TLR4, TLR7, and TLR9. GARP overexpression on B cells inhibited their proliferation, induced IgA class-switching, and dampened T cell-independent antibody production. In contrast, B cell-specific deletion of GARP-encoding gene Lrrc32 in mice led to development of systemic autoimmune diseases spontaneously as well as worsening of pristane-induced lupus-like disease. Canonical TGF-β signaling more readily upregulates GARP in Peyer patch B cells than in splenic B cells. Furthermore, we demonstrated that B cells are required for the induction of oral tolerance of T cell-dependent antigens via GARP. Our studies reveal for the first time to our knowledge that cell surface GARP-TGF-β is an important checkpoint for regulating B cell peripheral tolerance, highlighting a mechanism of autoimmune disease pathogenesis.
Structural centrosome aberrations sensitize polarized epithelia to basal cell extrusion.
Ganier, Olivier; Schnerch, Dominik; Nigg, Erich A
2018-06-01
Centrosome aberrations disrupt tissue architecture and may confer invasive properties to cancer cells. Here we show that structural centrosome aberrations, induced by overexpression of either Ninein-like protein (NLP) or CEP131/AZI1, sensitize polarized mammalian epithelia to basal cell extrusion. While unperturbed epithelia typically dispose of damaged cells through apical dissemination into luminal cavities, certain oncogenic mutations cause a switch in directionality towards basal cell extrusion, raising the potential for metastatic cell dissemination. Here we report that NLP-induced centrosome aberrations trigger the preferential extrusion of damaged cells towards the basal surface of epithelial monolayers. This switch in directionality from apical to basal dissemination coincides with a profound reorganization of the microtubule cytoskeleton, which in turn prevents the contractile ring repositioning that is required to support extrusion towards the apical surface. While the basal extrusion of cells harbouring NLP-induced centrosome aberrations requires exogenously induced cell damage, structural centrosome aberrations induced by excess CEP131 trigger the spontaneous dissemination of dying cells towards the basal surface from MDCK cysts. Thus, similar to oncogenic mutations, structural centrosome aberrations can favour basal extrusion of damaged cells from polarized epithelia. Assuming that additional mutations may promote cell survival, this process could sensitize epithelia to disseminate potentially metastatic cells. © 2018 The Authors.
Ueda, Yukiko; Neel, Nicole F.; Schutyser, Evemie; Raman, Dayanidhi; Richmond, Ann
2009-01-01
The CXC chemokine receptor 4 (CXCR4) contributes to the metastasis of human breast cancer cells. The CXCR4 COOH-terminal domain (CTD) seems to play a major role in regulating receptor desensitization and down-regulation. We expressed either wild-type CXCR4 (CXCR4-WT) or CTD-truncated CXCR4 (CXCR4-ΔCTD) in MCF-7 human mammary carcinoma cells to determine whether the CTD is involved in CXCR4-modulated proliferation of mammary carcinoma cells. CXCR4-WT-transduced MCF-7 cells (MCF-7/CXCR4-WT cells) do not differ from vector-transduced MCF-7 control cells in morphology or growth rate. However, CXCR4-ΔCTD-transduced MCF-7 cells (MCF-7/CXCR4-ΔCTD cells) exhibit a higher growth rate and altered morphology, potentially indicating an epithelial-to-mesenchymal transition. Furthermore, extracellular signal-regulated kinase (ERK) activation and cell motility are increased in these cells. Ligand induces receptor association with β-arrestin for both CXCR4-WT and CXCR4-ΔCTD in these MCF-7 cells. Overexpressed CXCR4-WT localizes predominantly to the cell surface in unstimulated cells, whereas a significant portion of overexpressed CXCR4-ΔCTD resides intracellularly in recycling endosomes. Analysis with human oligomicroarray, Western blot, and immunohistochemistry showed that E-cadherin and Zonula occludens are down-regulated in MCF-7/CXCR4-ΔCTD cells. The array analysis also indicates that mesenchymal marker proteins and certain growth factor receptors are up-regulated in MCF-7/CXCR4-ΔCTD cells. These observations suggest that (a) the overexpression of CXCR4-ΔCTD leads to a gain-of-function of CXCR4-mediated signaling and (b) the CTD of CXCR4-WT may perform a feedback repressor function in this signaling pathway. These data will contribute to our understanding of how CXCR4-ΔCTD may promote progression of breast tumors to metastatic lesions. PMID:16740704
Liu, Shasha; Liu, Bingrong
2018-03-09
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide, making it is a serious threat to human health. It is imperative to develop new therapeutics to improve the CRC treatment efficiency. The aim of this study was to investigate the role of NPRL2 in improving sensitivity to CPT-11 in colon cancer cells. MATERIAL AND METHODS NPRL2 overexpression was established by transfecting the recombinant lentivirus-encoding NPRL2 gene into HCT116 colon cancer cells. Cell proliferation was identified using Cell Counting Kit-8 (CCK8) assay. Cell cycle and apoptosis were examined by flow cytometry. An immunofluorescence staining assay was conducted to examine the expression of γ-H2AX. Wound-healing and Transwell assays were utilized to show cell migration and invasion capability. The expression of apoptosis-related proteins (cleaved caspase-3, caspase-9, cleaved PARP, BAX, and Bcl-2), invasion-related proteins (MMP2, MMP9, p-PI3K, and p-AKT), and DNA damage checkpoint pathway proteins (p-ATM, p-Chk2, Cdc25C, Cdc2, and Cyclin B1) were quantified by Western blotting. RESULTS A CCK8 assay revealed that the overexpression of NPRL2 improved the sensitivity of CPT-11 in HCT116 cells (P<0.05). Functionally, NPRL2 overexpression elevated the sensitivity of CPT-11 by preventing colon cancer cell proliferation, cell movement, and invasion, and promoting cell apoptosis and G2/M cell cycle arrest. Mechanistically, NPRL2 overexpression enhanced CPT-11 sensitivity by activating the DNA damage checkpoint pathway. CONCLUSIONS NPRL2 overexpression enhances sensitivity to CPT-11 treatment in colon cancer cells, and it may serve as a molecular therapeutic agent to treat patients with CRC.
Ohashi, Takuma; Komatsu, Shuhei; Ichikawa, Daisuke; Miyamae, Mahito; Okajima, Wataru; Imamura, Taisuke; Kiuchi, Jun; Kosuga, Toshiyuki; Konishi, Hirotaka; Shiozaki, Atsushi; Fujiwara, Hitoshi; Okamoto, Kazuma; Tsuda, Hitoshi; Otsuji, Eigo
2017-01-01
Background: PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK) is a serine–threonine kinase and overexpressed in various types of cancer by inhibiting the transactivation activities of p53 and PTEN. We tested whether PBK/TOPK acts as a cancer-promoting gene through its activation/overexpression in gastric cancer (GC). Methods: We analysed five GC cell lines and 144 primary tumours, which were curatively resected in our hospital between 2001 and 2003. Results: Overexpression of the PBK/TOPK protein was frequently detected in GC cell lines (4 out of 5 lines, 80.0%) was detected in primary tumour samples of GC (24 out of 144 cases, 16.6%) and was significantly correlated with venous invasion, tumour depth and recurrence rate. PDZ-binding kinase/T-LAK cell-originated protein kinase-overexpressing tumours had a worse survival rate than those with non-expressing tumours (P=0.0009, log-rank test). PDZ-binding kinase/T-LAK cell-originated protein kinase positivity was independently associated with a worse outcome in multivariate analysis (P<0.0001, hazard ratio 6.40 (2.71–14.49)). In PBK/TOPK-overexpressing GC cells, knockdown of PBK/TOPK inhibited the cell proliferation through the p53 activation in a TP53 mutation-dependent manner and inhibited the migration/invasion through the PTEN upregulation in a TP53 mutation-independent manner. Conclusions: These findings suggest PBK/TOPK plays a crucial role in tumour malignant potential through its overexpression and highlight its usefulness as a prognostic factor and potential therapeutic target in GC. PMID:27898655
Litkouhi, Babak; Kwong, Joseph; Lo, Chun-Min; Smedley, James G; McClane, Bruce A; Aponte, Margarita; Gao, Zhijian; Sarno, Jennifer L; Hinners, Jennifer; Welch, William R; Berkowitz, Ross S; Mok, Samuel C; Garner, Elizabeth I O
2007-01-01
Background Claudin-4, a tight junction (TJ) protein and receptor for the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE), is overexpressed in epithelial ovarian cancer (EOC). Previous research suggests DNA methylation is a mechanism for claudin-4 overexpression in cancer and that C-CPE acts as an absorption-enhancing agent in claudin-4-expressing cells. We sought to correlate claudin-4 overexpression in EOC with clinical outcomes and TJ barrier function, investigate DNA methylation as a mechanism for overexpression, and evaluate the effect of C-CPE on the TJ. Methods Claudin-4 expression in EOC was quantified and correlated with clinical outcomes. Claudin-4 methylation status was determined, and claudin-4-negative cell lines were treated with a demethylating agent. Electric cell-substrate impedance sensing was used to calculate junctional (paracellular) resistance (Rb) in EOC cells after claudin-4 silencing and after C-CPE treatment. Results Claudin-4 overexpression in EOC does not correlate with survival or other clinical endpoints and is associated with hypomethylation. Claudin-4 overexpression correlates with Rb and C-CPE treatment of EOC cells significantly decreased Rb in a dose- and claudin-4-dependent noncytotoxic manner. Conclusions C-CPE treatment of EOC cells leads to altered TJ function. Further research is needed to determine the potential clinical applications of C-CPE in EOC drug delivery strategies. PMID:17460774
Farmer, John T; Weigent, Douglas A
2007-01-01
In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.
Wu, Qingwei; Zhao, Yingying; Wang, Peihua
2018-03-01
This study aims to investigate the roles of miR-204 in tumor angiogenesis of head and neck squamous cell carcinoma (HNSCC). Here, we found that miR-204 level was reduced in HNSCC tissues relative to that in normal adjacent tissues. Overexpression of miR-204 promoted tumor angiogenesis in HNSCC cells. Mechanistically, JAK2 was identified as a direct target of miR-204, and miR-204 overexpression blocked JAK2/STAT3 pathway. Moreover, overexpression of JAK2 attenuated the inhibition of miR-204 on tumor angiogenesis of HNSCC. Furthermore, overexpression of miR-204 enhanced sensitivity of cetuximab in HNSCC cells, this effect was attenuated by JAK2 overexpression too. Importantly, JAK2 expression was negatively correlated with miR-204 level in HNSCC tissues. Therefore, miR-204 acts as a tumor suppressor by blocking JAK2/STAT3 pathway in HNSCC cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Campone, Mario; Noël, Bélinda; Couriaud, Cécile; Grau, Morgan; Guillemin, Yannis; Gautier, Fabien; Gouraud, Wilfried; Charbonnel, Catherine; Campion, Loïc; Jézéquel, Pascal; Braun, Frédérique; Barré, Benjamin; Coqueret, Olivier; Barillé-Nion, Sophie; Juin, Philippe
2011-09-07
Anti-apoptotic signals induced downstream of HER2 are known to contribute to the resistance to current treatments of breast cancer cells that overexpress this member of the EGFR family. Whether or not some of these signals are also involved in tumor maintenance by counteracting constitutive death signals is much less understood. To address this, we investigated what role anti- and pro-apoptotic Bcl-2 family members, key regulators of cancer cell survival, might play in the viability of HER2 overexpressing breast cancer cells. We used cell lines as an in vitro model of HER2-overexpressing cells in order to evaluate how anti-apoptotic Bcl-2, Bcl-xL and Mcl-1, and pro-apoptotic Puma and Bim impact on their survival, and to investigate how the constitutive expression of these proteins is regulated. Expression of the proteins of interest was confirmed using lysates from HER2-overexpressing tumors and through analysis of publicly available RNA expression data. We show that the depletion of Mcl-1 is sufficient to induce apoptosis in HER2-overexpressing breast cancer cells. This Mcl-1 dependence is due to Bim expression and it directly results from oncogenic signaling, as depletion of the oncoprotein c-Myc, which occupies regions of the Bim promoter as evaluated in ChIP assays, decreases Bim levels and mitigates Mcl-1 dependence. Consistently, a reduction of c-Myc expression by inhibition of mTORC1 activity abrogates occupancy of the Bim promoter by c-Myc, decreases Bim expression and promotes tolerance to Mcl-1 depletion. Western blot analysis confirms that naïve HER2-overexpressing tumors constitutively express detectable levels of Mcl-1 and Bim, while expression data hint on enrichment for Mcl-1 transcripts in these tumors. This work establishes that, in HER2-overexpressing tumors, it is necessary, and maybe sufficient, to therapeutically impact on the Mcl-1/Bim balance for efficient induction of cancer cell death.
HIF-2α mediates hypoxia-induced LIF expression in human colorectal cancer cells
Zhao, Yuhan; Zhang, Cen; Wang, Jiabei; Yue, Xuetian; Yang, Qifeng; Hu, Wenwei
2015-01-01
Leukemia inhibitory factor (LIF), a multi-functional cytokine, has a complex role in cancer. While LIF induces the differentiation of several myeloid leukemia cells and inhibits their growth, it also promotes tumor progression, metastasis and chemoresistance in many solid tumors. LIF is frequently overexpressed in a variety of human tumors and its overexpression is often associated with poor prognosis of patients. Currently, the mechanism for LIF overexpression in tumor cells is not well-understood. Here, we report that hypoxia, a hallmark of solid tumors, induced LIF mRNA expression in human colorectal cancer cells. Analysis of LIF promoter revealed several hypoxia-responsive elements (HREs) that can specifically interact with and be transactivated by HIF-2α but not HIF-1α. Consistently, ectopic expression of HIF-2α but not HIF-1α transcriptionally induced LIF expression levels in cells. Knockdown of endogenous HIF-2α but not HIF-1α by siRNA largely abolished the induction of LIF by hypoxia in cells. Furthermore, there is a strong association of HIF-2α overexpression with LIF overexpression in human colorectal cancer specimens. In summary, results from this study demonstrate that hypoxia induces LIF expression in human cancer cells mainly through HIF-2α, which could be an important underlying mechanism for LIF overexpression in human cancers. PMID:25726527
Overexpression of SPAG9 in human gastric cancer is correlated with poor prognosis.
Miao, Zhi-Feng; Wang, Zhen-Ning; Zhao, Ting-Ting; Xu, Ying-Ying; Wu, Jian-Hua; Liu, Xing-Yu; Xu, Hao; You, Yi; Xu, Hui-Mian
2015-11-01
Sperm associated antigen 9 (SPAG9) protein has been found to play an important role in cancer progression but the involved mechanisms are still obscure. Its clinical significance in human gastric cancers remains unexplored. In the present study, SPAG9 expression was analyzed in 147 gastric cancer specimens. We observed weak staining in normal gastric mucosa and positive staining in 65 out of 147 (44.2 %) cancer samples. Overexpression of SPAG9 correlated with local invasion (p = 0.0101), lymph node metastasis (p = 0.0488), TNM stage (p = 0.0002), and relapse (p = 0.0018). Importantly, SPAG9 overexpression correlated with poor overall survival (p = 0.0008). Furthermore, we performed siRNA knockdown of SPAG9 in HGC-27 cells with high endogenous expression and transfected SPAG9 plasmid in SGC-7901 cell line with low endogenous level. SPAG9 overexpression promoted while its depletion inhibited cell proliferation, cell cycle transition, and invasive cell growth. SPAG9 overxpression also increased chemoresistance to 5--fluorouracil (5-FU) in SGC-7901 cells. Further analysis showed that SPAG9 knockdown downregulated and its overexpression upregulated cyclin D1, MMP9, and p-p38 expression. In conclusion, SPAG9 overexpression in gastric cancer correlates with poor prognosis and contributes to gastric cancer cell proliferation, invasion, and chemoresistance. SPAG9 promotes gastric cancer invasion, possibly through p38-MMP9 signaling pathways.
Butler, Georgina S; Dean, Richard A; Smith, Derek; Overall, Christopher M
2009-01-01
The modification of cell surface proteins by plasma membrane and soluble proteases is important for physiological and pathological processes. Methods to identify shed and soluble substrates are crucial to further define the substrate repertoire, termed the substrate degradome, of individual proteases. Identifying protease substrates is essential to elucidate protease function and involvement in different homeostatic and disease pathways. This characterisation is also crucial for drug target identification and validation, which would then allow the rational design of specific targeted inhibitors for therapeutic intervention. We describe two methods for identifying and quantifying shed cell surface protease targets in cultured cells utilising Isotope-Coded Affinity Tags (ICAT) and Isobaric Tags for Relative and Absolute Quantification (iTRAQ). As a model system to develop these techniques, we chose a cell-membrane expressed matrix metalloproteinase, MMP-14, but the concepts can be applied to proteases of other classes. By over-expression, or conversely inhibition, of a particular protease with careful selection of control conditions (e.g. vector or inactive protease) and differential labelling, shed proteins can be identified and quantified by mass spectrometry (MS), MS/MS fragmentation and database searching.
[Overexpressed miRNA-134b inhibits proliferation and invasion of CD133+ U87 glioma stem cells].
Liu, Yifeng; Zhang, Baochao; Wen, Changming; Wen, Gongling; Zhou, Guoping; Zhang, Jingwei; He, Haifa; Wang, Ning; Li, Wei
2017-05-01
Objective To investigate the role of microRNA-134b (miR-134b) in the tumorigenesis of glioma stem cells (GSCs) and the possible molecular mechanism. Methods Real-time quantitative PCR (qRT-PCR) was used to evalate the expression of miR-134b in CD133 + and CD133 - U87 GSCs. A lentiviral vector overexpressing miR-134b in U87 GSCs was constructed, and the effect of miR-134b overexpression on matrix metalloproteinase-2 (MMP-2), MMP-9 and MMP-12 expressions at both mRNA and protein levels were detected by qRT-PCR and Western blotting, respectively. Transwell TM assay was performed to determine the effect of miR-134b overexpression on GSCs invasion ability. Tumor xenograft models in nude mice were established to evaluate the effect of miR-134b overexpression on tumorgenesis in vivo. Results The qRT-PCR showed that, compared with CD133 - cells, miR-134b was significantly down-regulated in CD133 + cells. Cell line over-expressing miR-134b was successfully established, and miR-134b was up-regulated significantly compared with empty vector control. Overexpression of miR-134b remarkably inhibited the invasion of U87 GSCs and the expression of MMP-12. However, overexpression of miR-134b did not affect MMP-2 and MMP-9 expressions. miR-134b also suppressed U87 GSCs xenograft growth in vivo. Tumor volume in tumor xenograft model group was significantly lower than that in control group, and tumor weight decreased by 42% in the former group. Conclusion Overexpression of miR-134b inhibits the growth and invasion of CD133 + GSCs.
Luo, Yong; Li, Mingchuan; Zuo, Xuemei; Basourakos, Spyridon P; Zhang, Jiao; Zhao, Jiahui; Han, Yili; Lin, Yunhua; Wang, Yongxing; Jiang, Yongguang; Lan, Ling
2018-06-01
Hypoxia-inducible factor‑1α (HIF‑1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF‑1α remain unclear. β‑catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF‑1α and β‑catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4‑2B, were grouped as follows: Negative control (no treatment), HIF‑1α overexpression group (transfected with HIF‑1α overexpression plasmid) and β‑catenin silenced group (transfected with HIF‑1α plasmids and β‑catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4‑2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4‑2B cells, transfection with HIF‑1α overexpression plasmid led to an enhanced β‑catenin nuclear translocation, while β‑catenin silencing inhibited β‑catenin nuclear translocation. The enhanced β‑catenin nuclear translocation induced by HIF‑1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non‑homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF‑1α overexpression enhanced β‑catenin nuclear translocation, which led to the activation of the β‑catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF‑1α overexpression promotes the radioresistance of PCa cells.
Ko, Ying-Hui; Domingo-Vidal, Marina; Roche, Megan; Lin, Zhao; Whitaker-Menezes, Diana; Seifert, Erin; Capparelli, Claudia; Tuluc, Madalina; Birbe, Ruth C.; Tassone, Patrick; Curry, Joseph M.; Navarro-Sabaté, Àurea; Manzano, Anna; Bartrons, Ramon; Caro, Jaime; Martinez-Outschoorn, Ubaldo
2016-01-01
A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer. PMID:27803158
Decreased RECQL5 correlated with disease progression of osteosarcoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Junlong; Zhi, Liqiang; Dai, Xin
Human RecQ helicase family, consisting of RECQL, RECQL4, RECQL5, BLM and WRN, has critical roles in genetic stability and tumorigenesis. Although RECQL5 has been reported to correlate with the susceptibility to malignances including osteosarcoma, the specific effect on tumor genesis and progression is not yet clarified. Here we focused on the relationship between RECQL5 expression and osteosarcoma disease progression, and further investigated the function of RECQL5 on MG-63 cell proliferation and apoptosis. By immunohistochemical analysis, qRT-PCR and western blot, we found that RECQL5 expression was downregulated in osteosarcoma tissues and cells. Patients with advanced tumor stage and low grade expressedmore » lower RECQL5. To construct a stable RECQL5 overexpression osteosarcoma cell line (MG-63-RECQL5), RECQL5 gene was inserted into the human AAVS1 safe harbor by CRISPR/Cas9 system. The overexpression of RECQL5 was verified by qRT-PCR and western blot. Cell proliferation, cell cycle and apoptosis assay revealed that RECQL5 overexpression inhibited proliferation, induced G1-phase arrest and promoted apoptosis in MG-63 cells. Collectively, our results suggested RECQL5 as a tumor suppressor in osteosarcoma and may be a potential therapeutic target for osteosarcoma treatment. - Highlights: • The expression of RECQL5 was downregulated in osteosarcoma tissues and cells. • Decreased RECQL5 correlated with osteosarcoma Enneking surgical classification. • We constructed a stable RECQL5 overexpression cell line by CRISPR/Cas9 system. • RECQL5 overexpression inhibited proliferation of MG-63 cells. • RECQL5 overexpression promoted apoptosis of MG-63 cells.« less
Kuroda, Kouichi; Ueda, Mitsuyoshi
2017-12-01
Microbial cell factories are subject to various stresses, leading to the reductions of metabolic activity and bioproduction efficiency. Therefore, the development of stress-tolerant microorganisms is important for improving bio-production efficiency. Recently, modifications of cell surface properties and master regulators have been shown to be effective approaches for enhancing stress tolerance. The cell surface is an attractive target owing to its interactions with the environment and its role in transmitting environmental information. Cell surface engineering in yeast has enabled the convenient modification of cell surface properties. Displaying random peptide libraries and subsequent screening can successfully improve stress tolerance. Furthermore, master regulators including transcription factors are also promising target to be engineered because stress tolerance is determined by many cooperative factors and modification of master regulators can simultaneously affect the expression of multiple downstream genes. The key single amino acid mutations in transcription factors have been identified by analyzing tolerant yeasts that were isolated by adaptive evolution under stress conditions. This enabled the reconstruction of stress-tolerant yeast without burdening cells by introducing the identified mutations. Therefore, for the construction of stress-tolerant yeast from any strains, these two approaches are promising alternatives to conventional overexpression and deletion of stress-related genes. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Ruvoletto, M G; Tono, N; Carollo, D; Vilei, T; Trentin, L; Muraca, M; Marino, M; Gatta, A; Fassina, G; Pontisso, P
2004-03-01
A variant of the serpin squamous cell carcinoma antigen (SCCA) has been identified as a hepatitis B virus binding protein and high expression of SCCA has recently been found in hepatocarcinoma. Since HBV is involved in liver carcinogenesis, experiments were carried out to examine the effect of HBV preS1 envelope protein on SCCA expression. Surface and intracellular staining for SCCA was assessed by FACS analysis. Preincubation of HepG2 cells and primary human hepatocytes with preS1 protein or with preS1(21-47) tetrameric peptide significantly increased the surface expression of SCCA, without modification of its overall cellular burden, suggesting a surface redistribution of the serpin. An increase in HBV binding and internalization was observed after pre-incubation of the cells with preS1 preparations, compared to cells preincubated with medium alone. Pretreatment of cells with DMSO, while not influencing SCCA basal expression, was responsible for an increase in the efficiency of HBV internalization and this effect was additive to that obtained after incubation with preS1 preparations. In conclusion, the HBV preS1(21-47) sequence is able to induce overexpression of SCCA at the cell surface facilitating virus internalization, while the increased efficiency of HBV entry following DMSO addition is not mediated by SCCA.
OTX1 promotes colorectal cancer progression through epithelial-mesenchymal transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Kun; Cai, Xin-Yi; Li, Qiang
2014-01-31
Highlights: • OTX1 is overexpression in colorectal cancer tissues. • Overexpression of OTX1 promotes colorectal cancer cell proliferation and invasion in vitro and tumor growth in vivo. • Depletion of OTX1 inhibits colorectal cancer cell proliferation and invasion in vitro. • Overexpression of OTX1 is linked to the EMT-like phenotype. - Abstract: Orthodenticle homeobox 1 (OTX1), a transcription factor containing a bicoid-like homeodomain, plays a role in brain and sensory organ development. In this study, we report that OTX1 is overexpressed in human colorectal cancer (CRC) and OTX1 overexpression is associated with higher stage. Functional analyses reveal that overexpression ofmore » OTX1 results in accumulation of CRC cell proliferation and invasion in vitro and tumor growth in vivo, whereas ablation of OTX1 expression significantly inhibits the proliferative and invasive capability of CRC cells in vitro. Together, our results indicate that OTX1 is involved in human colon carcinogenesis and may serve as a potential therapeutic target for human colorectal cancer.« less
Yang, Xiang-Yi; Liu, Qiao-Rui; Wu, Li-Ming; Zheng, Xu-Lei; Ma, Cong; Na, Ri-Su
2018-05-01
In order to investigate the effect of secretagogin (SCGN) on colorectal cancer (CRC) cells apoptosis, invasion and migration in vitro. Expression of SCGN in CRC tissues and the paired adjacent non-tumorous tissues (n = 36) and four human CRC cell lines (HT29, HCT116, SW480 and SW620) were detected. SW480 cells were transfected with the SCGN overexpression plasmid (eGFP-SCGN), si-SCGN-773, and the corresponding negative controls (NCs). Then, cell-cycle distribution, cell apoptosis, migration, invasion and expression of apoptosis- and metastasis-related proteins were detected. SCGN was significantly downregulated in CRC tissues as compared with the adjacent non-tumorous tissues. The expression of SCGN in HT29 and SW480 cells were lower than those in HT116 and SW620 cells. We transfected SW480 cells with SCGN overexpression plasmid eGFP-SCGN and found the increased cell apoptosis, with cell arresting at G0/G1 phase. SW480 cells with SCGN overexpression showed wider wound width and fewer invaded cells than control and blank cells, with upregulated Bax, cleaved Caspase 3 and E-cadherin, and downregulated Bcl-2 and Vimentin. We also transfected SW480 cells with si-SCGN-773 and found si-SCGN increased cell migration and invasion, but did not affect cell apoptosis and expression of related proteins. We concluded that the overexpression of SCGN in SW480 cells promoted cell apoptosis and inhibited cell migration and invasion. Copyright © 2018. Published by Elsevier Masson SAS.
Forced expression of Hnf4a induces hepatic gene activation through directed differentiation.
Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Fathi, Fardin
2016-08-05
Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.
2017-07-01
followed by RNA isolation and qPCR analysis. CRISPR Based Overexpression of PCAT14 Stable cell lines overexpressing PCAT14 endogenously were made using...Supplementary Figure 2B, C). To overexpress PCAT14, we used a CRISPR (clustered regularly interspaced short palindromic repeat)- Cas9 Synergistic...the workflow to endogenously overexpress PCAT14 in prostate cancer cells using CRISPR /SAM system. B. Bar plots represent fold increase in PCAT14 level
Kratzat, Susanne; Nikolova, Viktoriya; Miething, Cornelius; Hoellein, Alexander; Schoeffmann, Stephanie; Gorka, Oliver; Pietschmann, Elke; Illert, Anna-Lena; Ruland, Jürgen; Peschel, Christian; Nilsson, Jonas; Duyster, Justus; Keller, Ulrich
2012-01-01
The Cks1 component of the SCFSkp2 complex is necessary for p27Kip1 ubiquitylation and degradation. Cks1 expression is elevated in various B cell malignancies including Burkitt lymphoma and multiple myeloma. We have previously shown that loss of Cks1 results in elevated p27Kip1 levels and delayed tumor development in a mouse model of Myc-induced B cell lymphoma. Surprisingly, loss of Skp2 in the same mouse model also resulted in elevated p27Kip1 levels but exhibited no impact on tumor onset. This raises the possibility that Cks1 could have other oncogenic activities than suppressing p27Kip1. To challenge this notion we have targeted overexpression of Cks1 to B cells using a conditional retroviral bone marrow transduction-transplantation system. Despite potent ectopic overexpression, Cks1 was unable to promote B cell hyperproliferation or B cell malignancies, indicating that Cks1 is not oncogenic when overexpressed in B cells. Since Skp2 overexpression can drive T-cell tumorigenesis or other cancers we also widened the quest for oncogenic activity of Cks1 by ubiquitously expressing Cks1 in hematopoetic progenitors. At variance with c-Myc overexpression, which caused acute myeloid leukemia, Cks1 overexpression did not induce myeloproliferation or leukemia. Therefore, despite being associated with a poor prognosis in various malignancies, sole Cks1 expression is insufficient to induce lymphoma or a myeloproliferative disease in vivo. PMID:22624029
NASA Astrophysics Data System (ADS)
Huff, Terry B.; Hansen, Matthew N.; Tong, Ling; Zhao, Yan; Wang, Haifeng; Zweifel, Daniel A.; Cheng, Ji-Xin; Wei, Alexander
2007-02-01
Plasmon-resonant gold nanorods have outstanding potential as multifunctional agents for image-guided therapies. Nanorods have large absorption cross sections at near-infrared (NIR) frequencies, and produce two-photon luminescence (TPL) when excited by fs-pulsed laser irradiation. The TPL signals can be detected with single-particle sensitivity, enabling nanorods to be imaged in vivo while passing through blood vessels at subpicomolar concentrations. Furthermore, cells labeled with nanorods become highly susceptible to photothermal damage when irradiated at plasmon resonance, often resulting in a dramatic blebbing of the cell membrane. However, the straightforward application of gold nanorods for cell-specific labeling is obstructed by the presence of CTAB, a cationic surfactant carried over from nanorod synthesis which also promotes their nonspecific uptake into cells. Careful exchange and replacement of CTAB can be achieved by introducing oligoethyleneglycol (OEG) units capable of chemisorption onto nanorod surfaces by in situ dithiocarbamate formation, a novel method of surface functionalization. Nanorods with a dense coating of methyl-terminated OEG chains are shielded from nonspecific cell uptake, whereas nanorods functionalized with folate-terminated OEG chains accumulate on the surface of tumor cells overexpressing their cognate receptor, with subsequent delivery of photoinduced cell damage at low laser fluence.
NASA Astrophysics Data System (ADS)
Pallaoro, Alessia; Hoonejani, Mehran R.; Braun, Gary B.; Meinhart, Carl; Moskovits, Martin
2013-01-01
Surface-enhanced Raman spectroscopy (SERS) biotags (SBTs) that carry peptides as cell recognition moieties were made from polymer-encapsulated silver nanoparticle dimers, infused with unique Raman reporter molecules. We previously demonstrated their potential use for identification of malignant cells, a central goal in cancer research, through a multiplexed, ratiometric method that can confidently distinguish between cancerous and noncancerous epithelial prostate cells in vitro based on receptor overexpression. Progress has been made toward the application of this quantitative methodology for the identification of cancer cells in a microfluidic flow-focusing device. Beads are used as cell mimics to evaluate the devices. Cells (and beads) are simultaneously incubated with two sets of SBTs while in suspension, then injected into the device for laser interrogation under flow. Each cell event is characterized by a composite Raman spectrum, deconvoluted into its single components to ultimately determine their relative contribution. We have found that using SBTs ratiometrically can provide cell identification in flow, insensitive to normal causes of uncertainty in optical measurements such as variations in focal plane, cell concentration, autofluorescence, and turbidity.
Al-Mayhani, M. Talal F.; Grenfell, Richard; Narita, Masashi; Piccirillo, Sara; Kenney-Herbert, Emma; Fawcett, James W.; Collins, V. Peter; Ichimura, Koichi; Watts, Colin
2011-01-01
Glioblastoma multiforme (GBM) is the most common type of primary brain tumor and a highly malignant and heterogeneous cancer. Current conventional therapies fail to eradicate or curb GBM cell growth. Hence, exploring the cellular and molecular basis of GBM cell growth is vital to develop novel therapeutic approaches. Neuroglia (NG)-2 is a transmembrane proteoglycan expressed by NG2+ progenitors and is strongly linked to cell proliferation in the normal brain. By using NG2 as a biomarker we identify a GBM cell population (GBM NG2+ cells) with robust proliferative, clonogenic, and tumorigenic capacity. We show that a significant proportion (mean 83%) of cells proliferating in the tumor mass express NG2 and that over 50% of GBM NG2+ cells are proliferating. Compared with the GBM NG2− cells from the same tumor, the GBM of NG2+ cells overexpress genes associated with aggressive tumorigenicity, including overexpression of Mitosis and Cell Cycling Module genes (e.g., MELK, CDC, MCM, E2F), which have been previously shown to correlate with poor survival in GBM. We also show that the coexpression pattern of NG2 with other glial progenitor markers in GBM does not recapitulate that described in the normal brain. The expression of NG2 by such an aggressive and actively cycling GBM population combined with its location on the cell surface identifies this cell population as a potential therapeutic target in a subset of patients with GBM. PMID:21798846
Detection of squamous carcinoma cells using gold nanoparticles
NASA Astrophysics Data System (ADS)
Dai, Wei-Yun; Lee, Sze-tsen; Hsu, Yih-Chih
2015-03-01
The goal of this study is to use gold nanoparticle as a diagnostic agent to detect human squamous carcinoma cells. Gold nanoparticles were synthesized and the gold nanoparticle size was 34.3 ± 6.2 nm. Based on the over-expression of epidermal growth factor receptor (EGFR) biomarkers in squamous carcinoma cells, we hypothesized that EGFR could be a feasible biomarker with a target moiety for detection. We further modified polyclonal antibodies of EGFR on the surface of gold nanoparticles. We found selected squamous carcinoma cells can be selectively detected using EGFR antibody-modified gold nanoparticles via receptor-mediated endocytosis. Cell death was also examined to determine the survival status of squamous carcinoma cells with respect to gold nanoparticle treatment and EGFR polyclonal antibody modification.
Van Laar, Victor S.; Berman, Sarah B.; Hastings, Teresa G.
2017-01-01
Mitochondrial dysfunction has been implicated in Parkinson’s disease (PD) neuropathology. Mic60, also known as mitofilin, is a protein of the inner mitochondrial membrane and a key component of the mitochondrial contact site and cristae junction organizing system (MICOS). Mic60 is critical for maintaining mitochondrial membrane structure and function. We previously demonstrated that mitochondrial Mic60 protein is susceptible to both covalent modification and loss in abundance following exposure to dopamine quinone. In this study, we utilized neuronally-differentiated SH-SY5Y and PC12 dopaminergic cell lines to examine the effects of altered Mic60 levels on mitochondrial function and cellular vulnerability in response to PD-relevant stressors. Short hairpin RNA (shRNA)-mediated knockdown of endogenous Mic60 protein in neuronal SH-SY5Y cells significantly potentiated dopamine-induced cell death, which was rescued by co-expressing shRNA-insensitive Mic60. Conversely, in PC12 and SH-SY5Y cells, Mic60 overexpression significantly attenuated both dopamine- and rotenone-induced cell death as compared to controls. Mic60 overexpression in SH-SY5Y cells was also associated with increased mitochondrial respiration, and, following rotenone exposure, increased spare respiratory capacity. Mic60 knockdown cells exhibited suppressed respiration and, following rotenone treatment, decreased spare respiratory capacity. Mic60 overexpression also affected mitochondrial fission/fusion dynamics. PC12 cells overexpressing Mic60 exhibited increased mitochondrial interconnectivity. Further, both PC12 cells and primary rat cortical neurons overexpressing Mic60 displayed suppressed mitochondrial fission and increased mitochondrial length in neurites. These results suggest that altering levels of Mic60 in dopaminergic neuronal cells significantly affects both mitochondrial homeostasis and cellular vulnerability to the PD-relevant stressors dopamine and rotenone, carrying implications for PD pathogenesis. PMID:27001148
Matsushima-Nishiwaki, Rie; Toyoda, Hidenori; Nagasawa, Tomoaki; Yasuda, Eisuke; Chiba, Naokazu; Okuda, Seiji; Maeda, Atsuyuki; Kaneoka, Yuji; Kumada, Takashi; Kozawa, Osamu
2016-01-01
Human hepatocellular carcinoma (HCC) is one of the major malignancies in the world. Small heat shock proteins (HSPs) are reported to play an important role in the regulation of a variety of cancer cell functions, and the functions of small HSPs are regulated by post-translational modifications such as phosphorylation. We previously reported that protein levels of a small HSP, HSP20 (HSPB6), decrease in vascular invasion positive HCC compared with those in the negative vascular invasion. Therefore, in the present study, we investigated whether HSP20 is implicated in HCC cell migration and the invasion using human HCC-derived HuH7 cells. The transforming growth factor (TGF)-α-induced migration and invasion were suppressed in the wild-type-HSP20 overexpressed cells in which phosphorylated HSP20 was detected. Phospho-mimic-HSP20 overexpression reduced the migration and invasion compared with unphosphorylated HSP20 overexpression. Dibutyryl cAMP, which enhanced the phosphorylation of wild-type-HSP20, significantly reduced the TGF-α-induced cell migration of wild-type HSP20 overexpressed cells. The TGF-α-induced cell migration was inhibited by SP600125, a c-Jun N-terminal kinases (JNK) inhibitor. In phospho-mimic-HSP20 overexpressed HuH7 cells, TGF-α-stimulated JNK phosphorylation was suppressed compared with the unphosphorylated HSP20 overexpressed cells. Moreover, the level of phospho-HSP20 protein in human HCC tissues was significantly correlated with tumor invasion. Taken together, our findings strongly suggest that phosphorylated HSP20 inhibits TGF-α-induced HCC cell migration and invasion via suppression of the JNK signaling pathway.
The inhibition of superoxide production in EL4 lymphoma cells overexpressing growth hormone.
Arnold, Robyn E; Weigent, Douglas A
2003-05-01
A substantial body of research exists to support the production of growth hormone by cells of the immune system. However, the function and mechanism of action of lymphocyte-derived growth hormone remain largely unelucidated. Since, it has been found that exogenous growth hormone (GH) primes neutrophils for the production of reactive oxygen intermediates (ROI) and in particular superoxide (O2-), we investigated the role of GH on the production of O2- in T cells. Furthermore, we examined whether endogenous and exogenous GH act similarly. Our studies show that overexpression of GH in EL4, a T-cell lymphoma cell line, results in a decrease in the production of O2- compared to control cells, as detected using the fluorescent dye, dihydroethidium. O2- production in control cells was not affected by treatment with inhibitors of xanthine oxidase or a non-specific NADPH-oxidase inhibitor. However, treatment with diallyl sulfide, an inhibitor of cytochrome P450 2E1 mimicked the reduction in O2- production seen in cells overexpressing GH. Although no significant change could be detected in CYP2E1 protein levels, CYP2E1 activity was found to be greater in control EL4 than in cells overexpressing GH. Both the decrease in O2- production and the lower CYP2E1 activity in GH overexpressing cells could be abrogated by treatment with N(G)-monomethyl-L-arginine, an inhibitor of nitric oxide synthase. The overexpression of GH protects cells from apoptosis induced by isoniazid, a CYP2E1 inducer, suggesting a role for nitric oxide as a mediator in the regulation of xenobiotic metabolism and apoptosis-protection by lymphocyte GH.
Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel
2004-01-01
Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate–binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane. PMID:15229288
Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel
2004-10-01
Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate-binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane.
2008-03-01
were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas , suggesting that these proteins play a...1-4). In addition, short CUX1 isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas ...alternative mRNA. The p110 and p75 isoforms are overexpressed in different types of cancers, such as in leiomyomas and breast cancers. In tissue culture
2007-03-01
overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas , suggesting that these proteins play a key role in tumor...isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas , suggesting that these proteins...G1/S transition. In addition, the p110 and p75 isoforms are overexpressed in different types of human cancers, such as in leiomyomas and breast
2011-01-01
Background NAC domain transcription factors initiate secondary cell wall biosynthesis in Arabidopsis fibres and vessels by activating numerous transcriptional regulators and biosynthetic genes. NAC family member SND2 is an indirect target of a principal regulator of fibre secondary cell wall formation, SND1. A previous study showed that overexpression of SND2 produced a fibre cell-specific increase in secondary cell wall thickness in Arabidopsis stems, and that the protein was able to transactivate the cellulose synthase8 (CesA8) promoter. However, the full repertoire of genes regulated by SND2 is unknown, and the effect of its overexpression on cell wall chemistry remains unexplored. Results We overexpressed SND2 in Arabidopsis and analyzed homozygous lines with regards to stem chemistry, biomass and fibre secondary cell wall thickness. A line showing upregulation of CesA8 was selected for transcriptome-wide gene expression profiling. We found evidence for upregulation of biosynthetic genes associated with cellulose, xylan, mannan and lignin polymerization in this line, in agreement with significant co-expression of these genes with native SND2 transcripts according to public microarray repositories. Only minor alterations in cell wall chemistry were detected. Transcription factor MYB103, in addition to SND1, was upregulated in SND2-overexpressing plants, and we detected upregulation of genes encoding components of a signal transduction machinery recently proposed to initiate secondary cell wall formation. Several homozygous T4 and hemizygous T1 transgenic lines with pronounced SND2 overexpression levels revealed a negative impact on fibre wall deposition, which may be indirectly attributable to excessive overexpression rather than co-suppression. Conversely, overexpression of SND2 in Eucalyptus stems led to increased fibre cross-sectional cell area. Conclusions This study supports a function for SND2 in the regulation of cellulose and hemicellulose biosynthetic genes in addition of those involved in lignin polymerization and signalling. SND2 seems to occupy a subordinate but central tier in the secondary cell wall transcriptional network. Our results reveal phenotypic differences in the effect of SND2 overexpression between woody and herbaceous stems and emphasize the importance of expression thresholds in transcription factor studies. PMID:22133261
Ma, Jui-Wen; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Kao, Jung-Yie; Way, Tzong-Der
2016-09-13
Human epidermal growth factor receptor-2 (HER-2)-positive breast cancer tends to be aggressive, highly metastatic, and drug resistant and spreads rapidly. Studies have indicated that emodin inhibits HER-2 expression. This study compared the HER-2-inhibitory effects of two compounds extracted from rhubarb roots: aloe-emodin (AE) and rhein. Our results indicated that AE exerted the most potent inhibitory effect on HER-2 expression. Treatment of HER-2-overexpressing breast cancer cells with AE reduced tumor initiation, cell migration, and cell invasion. AE was able to suppress YB-1 expression, further suppressing downstream HER-2 expression. AE suppressed YB-1 expression through the inhibition of Twist in HER-2-overexpressing breast cancer cells. Our data also found that AE inhibited cancer metastasis and cancer stem cells through the inhibition of EMT. Interestingly, AE suppressed YB-1 expression through the downregulation of the intracellular integrin-linked kinase (ILK)/protein kinase B (Akt)/mTOR signaling pathway in HER-2-overexpressing breast cancer cells. In vivo study showed the positive result of antitumor activity of AE in nude mice injected with human HER-2-overexpressing breast cancer cells. These findings suggest the possible application of AE in the treatment of HER-2-positive breast cancer.
B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex
Wallace, Caroline H.; Wu, Bill X.; Salem, Mohammad; Ansa-Addo, Ephraim A.; Metelli, Alessandra; Sun, Shaoli; Gilkeson, Gary; Shlomchik, Mark J.
2018-01-01
GARP, a cell surface docking receptor for binding and activating latent TGF-β, is highly expressed by platelets and activated Tregs. While GARP is implicated in immune invasion in cancer, the roles of the GARP-TGF-β axis in systemic autoimmune diseases are unknown. Although B cells do not express GARP at baseline, we found that the GARP-TGF-β complex is induced on activated human and mouse B cells by ligands for multiple TLRs, including TLR4, TLR7, and TLR9. GARP overexpression on B cells inhibited their proliferation, induced IgA class-switching, and dampened T cell–independent antibody production. In contrast, B cell–specific deletion of GARP-encoding gene Lrrc32 in mice led to development of systemic autoimmune diseases spontaneously as well as worsening of pristane-induced lupus-like disease. Canonical TGF-β signaling more readily upregulates GARP in Peyer patch B cells than in splenic B cells. Furthermore, we demonstrated that B cells are required for the induction of oral tolerance of T cell–dependent antigens via GARP. Our studies reveal for the first time to our knowledge that cell surface GARP-TGF-β is an important checkpoint for regulating B cell peripheral tolerance, highlighting a mechanism of autoimmune disease pathogenesis. PMID:29618665
Zeimet, A G; Reimer, D; Sopper, S; Boesch, M; Martowicz, A; Roessler, J; Wiedemair, A M; Rumpold, H; Untergasser, G; Concin, N; Hofstetter, G; Muller-Holzner, E; Fiegl, H; Marth, C; Wolf, D; Pesta, M; Hatina, J
2012-01-01
Because of its semi-solid character in dissemination and growth, advanced ovarian cancer with its hundreds of peritoneal tumor nodules and plaques appears to be an excellent in vivo model for studying the cancer stem cell hypothesis. The most important obstacle, however, is to adequately define and isolate these tumor-initiating cells endowed with the properties of anoikis-resistance and unlimited self-renewal. Until now, no universal single marker or marker constellation has been found to faithfully isolate (ovarian) cancer stem cells. As these multipotent cells are known to possess highly elaborated efflux systems for cytotoxic agents, these pump systems have been exploited to outline putative stem cells as a side-population (SP) via dye exclusion analysis. Furthermore, the cells in question have been isolated via flow cytometry on the basis of cell surface markers thought to be characteristic for stem cells.In the Vienna variant of the ovarian cancer cell line A2780 a proof-of-principle model with both a stable SP and a stable ALDH1A1+ cell population was established. Double staining clearly revealed that both cell fractions were not identical. Of note, A2780V cells were negative for expression of surface markers CD44 and CD117 (c-kit). When cultured on monolayers of healthy human mesothelial cells, green-fluorescence-protein (GFP)-transfected SP of A2780V exhibited spheroid-formation, whereas non-side-population (NSP) developed a spare monolayer growing over the healthy mesothelium. Furthermore, A2780V SP was found to be partially resistant to platinum. However, this resistance could not be explained by over-expression of the "excision repair cross-complementation group 1" (ERCC1) gene, which is essentially involved in the repair of platinated DNA damage. ERCC1 was, nonetheless, over-expressed in A2780V cells grown as spheres under stem cell-selective conditions as compared to adherent monolayers cultured under differentiating conditions. The same was true for the primary ovarian cancer cells B-57.In summary our investigations indicate that even in multi-passaged cancer cell lines hierarchic government of growth and differentiation is conserved and that the key cancer stem cell population may be composed of small overlapping cell fractions defined by various arbitrary markers.
Iwamoto, Masashi; Watashi, Koichi; Tsukuda, Senko; Aly, Hussein Hassan; Fukasawa, Masayoshi; Fujimoto, Akira; Suzuki, Ryosuke; Aizaki, Hideki; Ito, Takayoshi; Koiwai, Osamu; Kusuhara, Hiroyuki; Wakita, Takaji
2014-01-17
Hepatitis B virus (HBV) entry has been analyzed using infection-susceptible cells, including primary human hepatocytes, primary tupaia hepatocytes, and HepaRG cells. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) membrane transporter was reported as an HBV entry receptor. In this study, we established a strain of HepG2 cells engineered to overexpress the human NTCP gene (HepG2-hNTCP-C4 cells). HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood-borne and cell culture-derived HBV. HBV infection was facilitated by pretreating cells with 3% dimethyl sulfoxide permitting nearly 50% of the cells to be infected with HBV. Knockdown analysis suggested that HBV infection of HepG2-hNTCP-C4 cells was mediated by NTCP. HBV infection was blocked by an anti-HBV surface protein neutralizing antibody, by compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its derivatives. The infection assay suggested that cyclosporin B was a more potent inhibitor of HBV entry than was cyclosporin A. Further chemical screening identified oxysterols, oxidized derivatives of cholesterol, as inhibitors of HBV infection. Thus, the HepG2-hNTCP-C4 cell line established in this study is a useful tool for the identification of inhibitors of HBV infection as well as for the analysis of the molecular mechanisms of HBV infection. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
PrP(C) regulates epidermal growth factor receptor function and cell shape dynamics in Neuro2a cells.
Llorens, Franc; Carulla, Patricia; Villa, Ana; Torres, Juan M; Fortes, Puri; Ferrer, Isidre; del Río, José A
2013-10-01
The prion protein (PrP) plays a key role in prion disease pathogenesis. Although the misfolded and pathologic variant of this protein (PrP(SC)) has been studied in depth, the physiological role of PrP(C) remains elusive and controversial. PrP(C) is a cell-surface glycoprotein involved in multiple cellular functions at the plasma membrane, where it interacts with a myriad of partners and regulates several intracellular signal transduction cascades. However, little is known about the gene expression changes modulated by PrP(C) in animals and in cellular models. In this article, we present PrP(C)-dependent gene expression signature in N2a cells and its implication in the most overrepresented functions: cell cycle, cell growth and proliferation, and maintenance of cell shape. PrP(C) over-expression enhances cell proliferation and cell cycle re-entrance after serum stimulation, while PrP(C) silencing slows down cell cycle progression. In addition, MAP kinase and protein kinase B (AKT) pathway activation are under the regulation of PrP(C) in asynchronous cells and following mitogenic stimulation. These effects are due in part to the modulation of epidermal growth factor receptor (EGFR) by PrP(C) in the plasma membrane, where the two proteins interact in a multimeric complex. We also describe how PrP(C) over-expression modulates filopodia formation by Rho GTPase regulation mainly in an AKT-Cdc42-N-WASP-dependent pathway. © 2013 International Society for Neurochemistry.
van der Mark, Vincent A; Rudi de Waart, D; Shevchenko, Valery; Elferink, Ronald P J Oude; Chamuleau, Robert A F M; Hoekstra, Ruurdtje
2017-01-01
Dimethylsulfoxide (DMSO) induces cellular differentiation and expression of drug metabolic enzymes in the human liver cell line HepaRG; however, DMSO also induces cell death and interferes with cellular activities. The aim of this study was to examine whether overexpression of the constitutive androstane receptor (CAR, NR1I3), the nuclear receptor controlling various drug metabolism genes, would sufficiently promote differentiation and drug metabolism in HepaRG cells, optionally without using DMSO. By stable lentiviral overexpression of CAR, HepaRG cultures were less affected by DMSO in total protein content and obtained increased resistance to acetaminophen- and amiodarone-induced cell death. Transcript levels of CAR target genes were significantly increased in HepaRG-CAR cultures without DMSO, resulting in increased activities of cytochrome P450 (P450) enzymes and bilirubin conjugation to levels equal or surpassing those of HepaRG cells cultured with DMSO. Unexpectedly, CAR overexpression also increased the activities of non-CAR target P450s, as well as albumin production. In combination with DMSO treatment, CAR overexpression further increased transcript levels and activities of CAR targets. Induction of CYP1A2 and CYP2B6 remained unchanged, whereas CYP3A4 was reduced. Moreover, the metabolism of low-clearance compounds warfarin and prednisolone was increased. In conclusion, CAR overexpression creates a more physiologically relevant environment for studies on hepatic (drug) metabolism and differentiation in HepaRG cells without the utilization of DMSO. DMSO still may be applied to accomplish higher drug metabolism, required for sensitive assays, such as low-clearance studies and identification of (rare) metabolites, whereas reduced total protein content after DMSO culture is diminished by CAR overexpression. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
PPE57 induces activation of macrophages and drives Th1-type immune responses through TLR2.
Xu, Ying; Yang, Enzhuo; Huang, Qi; Ni, Wenwen; Kong, Cong; Liu, Guoyuan; Li, Guanghua; Su, Haibo; Wang, Honghai
2015-06-01
Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are related proteins exclusive to Mycobacteria that play diverse roles in modulating critical innate immune pathways. In this study, we observed that the PPE57 protein is associated with the cell wall and is exposed on the cell surface. PPE57 enhances Mycobacterium spp. entering into macrophages and plays a role in macrophage phagocytosis. To explore the underlying mechanism, we demonstrated that PPE57 is able to recognise Toll-like receptor 2 (TLR2) and further induce macrophage activation by augmenting the expression of several cell surface molecules (CD40, CD80, CD86 and MHC class II) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-12p40) within macrophages. These molecules are involved in the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signalling pathways. We demonstrated that PPE57 effectively polarises T cells to secrete interferon (IFN)-γ and IL-2 and to up-regulate CXCR3 expression in vivo and in vitro, suggesting that this protein may contribute to Th1 polarisation during the immune response. Moreover, recombinant Bacillus Calmette-Guérin (BCG) over-expressing PPE57 could provide better protective efficacy against Mycobacterium tuberculosis challenge compared with BCG. Taken together, our data provides several pieces of evidence that PPE57 may regulate innate and adaptive immunity by interacting with TLR2. These findings indicate that PPE57 protein is a potential antigen for the rational design of an efficient vaccine against M. tuberculosis. PPE57 is located on the cell surface and enhances mycobacterium entry into macrophage. PPE57 interacts directly with TLR2 on macrophages. PPE57 plays a key role in the activation of macrophages in a TLR2-dependent manner. PPE57 induces a Th1 immune response via TLR2-mediated macrophage functions. Recombinant BCG over-expressing PPE57 could improve protective efficacy against M. tuberculosis.
Nguyen, S; Beziat, V; Dhedin, N; Kuentz, M; Vernant, J P; Debre, P; Vieillard, V
2009-05-01
Natural killer (NK) cells generated after haploidentical hematopoietic SCT in patients with AML are characterized by specific phenotypic features and impaired functioning that may affect transplantation outcome. We show that IFN-gamma produced by immature CD56(bright) NK cells upregulates cell surface expression of HLA-E on AML blasts and that this upregulation protects leukemic cells from NK-mediated cell lysis through the mediation of CD94/NKG2A, an inhibitory receptor overexpressed on NK cells after haploidentical SCT. Two years after transplantation, however, maturing NK cells were functionally active, as evidenced by high cytotoxicity and poor IFN-gamma production. This implies that maturation of NK cells is the key to improved immune responses and transplantation outcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guofeng; Xu, Jingren; Li, Zengchun, E-mail: lizc.2007@yahoo.com.cn
Highlights: Black-Right-Pointing-Pointer RAGE overexpression suppresses cell proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer RAGE overexpression decreases Wnt/{beta}-catenin signaling. Black-Right-Pointing-Pointer RAGE overexpression decreases ERK and PI3K signaling. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes PI3K signaling restored by RAGE blockade. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes ERK signaling restored by RAGE blockade. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a crucial role in bone metabolism. However, the role of RAGE in the control of osteoblast proliferation is not yet evaluated. In the present study, we demonstrate that RAGE overexpression inhibits osteoblast proliferation in vitro. The negative regulation of RAGEmore » on cell proliferation results from suppression of Wnt, PI3K and ERK signaling, and is restored by RAGE neutralizing antibody. Prevention of Wnt signaling using Sfrp1 or DKK1 rescues RAGE-decreased PI3K and ERK signaling and cell proliferation, indicating that the altered cell growth in RAGE overexpressing cells is in part secondary to alterations in Wnt signaling. Consistently, RAGE overexpression inhibits the expression of Wnt targets cyclin D1 and c-myc, which is partially reversed by RAGE blockade. Overall, these results suggest that RAGE inhibits osteoblast proliferation via suppression of Wnt, PI3K and ERK signaling, which provides novel mechanisms by which RAGE regulates osteoblast growth.« less
Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency.
Han, Chengquan; Deng, Ruizhi; Mao, Tingchao; Luo, Yan; Wei, Biao; Meng, Peng; Zhao, Lu; Zhang, Qing; Quan, Fusheng; Liu, Jun; Zhang, Yong
2018-05-23
Ten-eleven translocation 3 (TET3) mediates active DNA demethylation of paternal genomes during mouse embryonic development. However, the mechanism of DNA demethylation in goat embryos remains unknown. In addition, aberrant DNA methylation reprogramming prevalently occurs in embryos cloned by somatic cell nuclear transfer (SCNT). In this study, we reported that TET3 is a key factor in DNA demethylation in goat pre-implantation embryos. Knockdown of Tet3 hindered DNA demethylation at the two- to four-cell stage in goat embryos and decreased Nanog expression in blastocysts. Overexpression of Tet3 in somatic cells can initiate DNA demethylation, reduce 5-methylcytosine level, increase 5-hydroxymethylcytosine level and promote the expression of key pluripotency genes. After SCNT, overexpression of Tet3 in donor cells corrected abnormal DNA hypermethylation of cloned embryos and significantly enhanced in vitro and in vivo developmental rate (P < 0.05). We conclude that overexpression of Tet3 in donor cells significantly improves goat SCNT efficiency. © 2018 Federation of European Biochemical Societies.
Mathew, Stephen O; Chaudhary, Pankaj; Powers, Sheila B; Vishwanatha, Jamboor K; Mathew, Porunelloor A
2016-10-18
Prostate cancer is the most common type of cancer diagnosed and the second leading cause of cancer-related death in American men. Natural Killer (NK) cells are the first line of defense against cancer and infections. NK cell function is regulated by a delicate balance between signals received through activating and inhibitory receptors. Previously, we identified Lectin-like transcript-1 (LLT1/OCIL/CLEC2D) as a counter-receptor for the NK cell inhibitory receptor NKRP1A (CD161). Interaction of LLT1 expressed on target cells with NKRP1A inhibits NK cell activation. In this study, we have found that LLT1 was overexpressed on prostate cancer cell lines (DU145, LNCaP, 22Rv1 and PC3) and in primary prostate cancer tissues both at the mRNA and protein level. We further showed that LLT1 is retained intracellularly in normal prostate cells with minimal cell surface expression. Blocking LLT1 interaction with NKRP1A by anti-LLT1 mAb on prostate cancer cells increased the NK-mediated cytotoxicity of prostate cancer cells. The results indicate that prostate cancer cells may evade immune attack by NK cells by expressing LLT1 to inhibit NK cell-mediated cytolytic activity through LLT1-NKRP1A interaction. Blocking LLT1-NKRP1A interaction will make prostate cancer cells susceptible to killing by NK cells and therefore may be a new therapeutic option for treatment of prostate cancer.
Kisfalvi, Krisztina; Hurd, Cliff; Guha, Sushovan; Rozengurt, Enrique
2010-05-01
Neurotensin (NT) stimulates protein kinase D1 (PKD1), extracellular signal regulated kinase (ERK), c-Jun N-terminal Kinase (JNK), and DNA synthesis in the human pancreatic adenocarcinoma cell line PANC-1. To determine the effect of PKD1 overexpression on these biological responses, we generated inducible stable PANC-1 clones that express wild-type (WT) or kinase-dead (K618N) forms of PKD1 in response to the ecdysone analog ponasterone-A (PonA). NT potently stimulated c-Jun Ser(63) phosphorylation in both wild type and clonal derivatives of PANC-1 cells. PonA-induced expression of WT, but not K618N PKD1, rapidly blocked NT-mediated c-Jun Ser(63) phosphorylation either at the level of or upstream of MKK4, a dual-specificity kinase that leads to JNK activation. This is the first demonstration that PKD1 suppresses NT-induced JNK/cJun activation in PANC-1 cells. In contrast, PKD1 overexpression markedly increased the duration of NT-induced ERK activation in these cells. The reciprocal influence of PKD1 signaling on pro-mitogenicERK and pro-apopotic JNK/c-Jun pathways prompted us to examine whether PKD1 overexpression promotes DNA synthesis and proliferation of PANC-1 cells. Our results show that PKD1 overexpression increased DNA synthesis and cell numbers of PANC-1 cells cultured in regular dishes or in polyhydroxyethylmethacrylate [Poly-(HEMA)]-coated dishes to eliminate cell adhesion (anchorage-independent growth). Furthermore, PKD1 overexpression markedly enhanced DNA synthesis induced by NT (1-10 nM). These results indicate that PKD1 mediates mitogenic signaling in PANC-1 and suggests that this enzyme could be a novel target for the development of therapeutic drugs that restrict the proliferation of these cells.
Ravacci, Graziela Rosa; Brentani, Maria Mitzi; Tortelli, Tharcisio Citrângulo; Torrinhas, Raquel Suzana M M; Santos, Jéssica Reis; Logullo, Angela Flávia; Waitzberg, Dan Linetzky
2015-01-01
In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36), transport (FABP4), and storage (DGAT) of exogenous fatty acids (FA), as well as increased activation of "de novo" FA synthesis (FASN). We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPARγ pathway. Inhibition of the mTORC1 pathway markers, p70S6 K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR) was detected in HB4aC5.2. Based on these results, a PPARγ selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4) in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPARγ activity. This reprogramming was inhibited by DHA.
Liu, Ming; Chen, Yumei; Song, Guixian; Chen, Bin; Wang, Lihua; Li, Xing; Kong, Xiangqing; Shen, Yahui; Qian, Lingmei
2016-01-15
Compared to healthy controls, microRNA-29c (miR-29c) is highly expressed in the heart during progression towards ventricular septal defect. However, studies on miR-29c function in heart development are scarce. We investigated the role of miR-29c in P19 cell proliferation, apoptosis, and differentiation and the underlying mechanisms. We evaluated proliferation and cell cycle progression, detected morphological changes; apoptosis rate; BAX, BCL2, GATA binding protein 4 (GATA4), cardiac troponin T (cTnT), and myocyte enhancer factor 2C (MEF2C) expression; and caspase-3, -8, and -9 activity in miR-29c-overexpressing P19 cells, and investigated whether WNT4 was a miR-29c target. MiR-29c-overexpressing cells had decreased proliferation, increased G1 cells, and significantly higher apoptotic rate than the controls. Expression of the apoptosis-related BAX and BCL2 genes and caspase-3, -8, and -9 activity were significantly increased in miR-29c-overexpressing cells. Expression of the cardiac-specific markers GATA4, cTnT, and MEF2C revealed promoted differentiation in miR-29c-overexpressing cells compared to the controls. Luciferase assay confirmed that WNT4 is a miR-29c target. Wnt4 and β-catenin expression was decreased in miR-29c-overexpressing cells. MiR-29c inhibits P19 cell proliferation and promotes apoptosis and differentiation, possibly by suppressing Wnt4 signaling, whose deregulation contributes to congenital heart disease development. Copyright © 2015 Elsevier B.V. All rights reserved.
MiR-328 suppresses the survival of esophageal cancer cells by targeting PLCE1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Na; Zhao, Wenchao; Zhang, Zhongmian
2016-01-29
Esophageal cancer (EC) is the sixth leading cause of death worldwide. Recent studies have highlighted the vital role of microRNAs (miRNAs) in EC development and diagnosis. In our study, qPCR analysis showed that miRNA-328 was expressed at significantly low levels in EC109 and EC9706 cells. The results also showed that overexpression of miR-328 by lentivirus-mediated gene transfer markedly inhibited cell proliferation and invasion, and enhanced apoptosis; whereas, inhibition of miR-328 significantly promoted cell proliferation and invasion, and suppressed apoptosis in EC109 and EC9706 cells. Dual-luciferase reporter assay confirmed that miR-328 directly targeted phospholipase C epsilon 1 (PLCE1) by binding to target sequencesmore » in the 3′-UTR. qPCR and Western blot analysis showed that the PLCE1 was overexpressed in EC109 and EC9706 cells. Additionally, we found that miR-328 overexpression decreased PLCE1 mRNA and protein levels, while miR-328 inhibition enhanced the PLCE1 expression. Further analysis showed that PLCE1 overexpression rescued the inhibitory effect of miR-328 on cell proliferation and invasion, and repressed the promotive effect of miR-328 on cell apoptosis. In conclusion, our results suggest that miR-328 suppresses the survival of EC cells by regulating PLCE1 expression, which might be a potential therapeutic method for EC. - Highlights: • PLCE1 was a target gene of miR-328. • MiR-328 overexpression decreased PLCE1 expression. • PLCE1 overexpression rescued the inhibitory effect of miR-328 on the survival of EC cells.« less
Wajih, Nadeem; Hutson, Susan M; Owen, John; Wallin, Reidar
2005-09-09
Some recombinant vitamin K-dependent blood coagulation factors (factors VII, IX, and protein C) have become valuable pharmaceuticals in the treatment of bleeding complications and sepsis. Because of their vitamin K-dependent post-translational modification, their synthesis by eukaryotic cells is essential. The eukaryotic cell harbors a vitamin K-dependent gamma-carboxylation system that converts the proteins to gamma-carboxyglutamic acid-containing proteins. However, the system in eukaryotic cells has limited capacity, and cell lines overexpressing vitamin K-dependent clotting factors produce only a fraction of the recombinant proteins as fully gamma-carboxylated, physiologically competent proteins. In this work we have used recombinant human factor IX (r-hFIX)-producing baby hamster kidney (BHK) cells, engineered to stably overexpress various components of the gamma-carboxylation system of the cell, to determine whether increased production of functional r-hFIX can be accomplished. All BHK cell lines secreted r-hFIX into serum-free medium. Overexpression of gamma-carboxylase is shown to inhibit production of functional r-hFIX. On the other hand, cells overexpressing VKORC1, the reduced vitamin K cofactor-producing enzyme of the vitamin K-dependent gamma-carboxylation system, produced 2.9-fold more functional r-hFIX than control BHK cells. The data are consistent with the notion that VKORC1 is the rate-limiting step in the system and is a key regulatory protein in synthesis of active vitamin K-dependent proteins. The data suggest that overexpression of VKORC1 can be utilized for increased cellular production of recombinant vitamin K-dependent proteins.
Lu, Zhihe; Su, Jingrong; Li, Zhengrong; Zhan, Yuzhu; Ye, Decai
2017-01-01
Gemcitabine (GEM) and Baicalein (BCL) are reported to have anti-tumor effects including pancreatic cancer. Hyaluronic acid (HA) can bind to over-expressed receptors in various kinds of cancer cells. The aim of this study is to develop prodrugs containing HA, BCL and GEM, and construct nanomedicine incorporate GEM and BCL in the core and HA on the surface. This system could target the cancer cells and co-deliver the drugs. GEM-stearic acid lipid prodrug (GEM-SA) and hyaluronic acid-amino acid-baicalein prodrug (HA-AA-BCL) were synthesized. Then, GEM and BCL prodrug-based targeted nanostructured lipid carriers (HA-GEM-BCL NLCs) were prepared by the nanoprecipitation technique. The in vitro cytotoxicity studies of the NLCs were evaluated on AsPC1 pancreatic cancer cell line. In vivo anti-tumor effects were observed on the murine-bearing pancreatic cancer model. HA-GEM-BCL NLCs were effective in entering pancreatic cancer cells over-expressing HA receptors, and showed cytotoxicity of tumor cells in vitro. In vivo study revealed significant tumor growth inhibition ability of HA-GEM-BCL NLCs in murine pancreatic cancer model. It could be concluded that HA-GEM-BCL NLCs could be featured as promising co-delivery, tumor-targeted nanomedicine for the treatment of cancers.
[S100A7 promotes the metastasis and epithelial-mesenchymal transition on HeLa and CaSki cells].
Tian, T; Hua, Z; Wang, L Z; Wang, X Y; Chen, H Y; Liu, Z H; Cui, Z M
2018-02-25
Objective: To elucidate the impact of over-expression of S100A7 on migration, invasion, proliferation, cell cycle, and epithelial-mesenchymal transition (EMT) in human cervical cancer HeLa and CaSki cells. Methods: (1) Immunohistochemistry of SP was used to examine the expression of S100A7 in 40 cases of squamous cervical cancer tissues and 20 cases of normal cervical tissues. (2) The vectors of pLVX-IRES-Neo-S100A7 and pLVX-IRES-Neo were used to transfect human cervical cancer HeLa and CaSki cells, and the positive clones were screened and identified. Next, transwell migration assay, cell counting kit-8 (CCK-8) assay and fluorescence activating cell sorter (FACS) were used to detect the effect of S100A7-overexpression on the migration, invasion, proliferation and cell cycle of cervical cancer cells. Furthermore, western blot was performed to observe the expression of epithelial marker (E-cadherin) and mesenchymal markers (N-cadherin, vimentin, and fibronectin) of EMT. Results: (1) S100A7 expression was significantly higher in cervical squamous cancer tissues (median 91.6) than that in normal cervical tissues (median 52.1; Z=- 2.948, P= 0.003) . (2) Stable S100A7-overexpressed cells were established using lentiviral-mediated gene delivery in HeLa and CaSki cells. S100A7 was detected by real-time quantitative reverse transcription PCR, S100A7 mRNA of S100A7-overexpressed cells were 119±3 and 177±16, increased significantly compared with control groups of median ( P< 0.01) . Compared with the control cells, the number of S100A7-overexpressed HeLa and CaSki cells that passed the transwell membrane assay were increased significanatly (572±51 vs 337±25, P< 0.01; 100±8 vs 41±4, P< 0.01) .Matrigel invasion assay showed that the number of S100A7-overexpressed HeLa and CaSki cells that passed the transwell membrane were respectively 441±15 and 110±14, elevated significantly compared with control cells (156±21 and 59±7; P< 0.05) . However, S100A7 overexpression didn't influence the proliferation and cell cycle progression of HeLa and CaSki cells ( P> 0.05) . Expression of E-cadherin was dramatically decreased, while N-cadherin, vimentin, and fibronectin increased in S100A7-overexpressed cells. Conclusion: S100A7 enhances the migration, invasion and EMT of HeLa cells and CaSki cells, and may be plays an important role in the development of cervical cancer.
Jiang, Bin; Jen, Michele; Perrin, Louisiane; Wertheim, Jason A; Ameer, Guillermo A
2015-12-01
Endothelial cells (ECs) that are differentiated from induced pluripotent stem cells (iPSCs) can be used in establishing disease models for personalized drug discovery or developing patient-specific vascularized tissues or organoids. However, a number of technical challenges are often associated with iPSC-ECs in culture, including instability of the endothelial phenotype and limited cell proliferative capacity over time. Early senescence is believed to be the primary mechanism underlying these limitations. Sirtuin1 (SIRT1) is an NAD(+)-dependent deacetylase involved in the regulation of cell senescence, redox state, and inflammatory status. We hypothesize that overexpression of the SIRT1 gene in iPSC-ECs will maintain EC phenotype, function, and proliferative capacity by overcoming early cell senescence. SIRT1 gene was packaged into a lentiviral vector (LV-SIRT1) and transduced into iPSC-ECs at passage 4. Beginning with passage 5, iPSC-ECs exhibited a fibroblast-like morphology, whereas iPSC-ECs overexpressing SIRT1 maintained EC cobblestone morphology. SIRT1 overexpressing iPSC-ECs also exhibited a higher percentage of canonical markers of endothelia (LV-SIRT1 61.8% CD31(+) vs. LV-empty 31.7% CD31(+), P < 0.001; LV-SIRT1 46.3% CD144(+) vs. LV-empty 20.5% CD144(+), P < 0.02), with a higher nitric oxide synthesis, lower β-galactosidase production indicating decreased senescence (3.4% for LV-SIRT1 vs. 38.6% for LV-empty, P < 0.001), enhanced angiogenesis, increased deacetylation activity, and higher proliferation rate. SIRT1 overexpressing iPSC-ECs continued to proliferate through passage 9 with high purity of EC-like characteristics, while iPSC-ECs without SIRT1 overexpression became senescent after passage 5. Taken together, SIRT1 overexpression in iPSC-ECs maintains EC phenotype, improves EC function, and extends cell lifespan, overcoming critical hurdles associated with the use of iPSC-ECs in translational research.
Park, Dayoung; Arabyan, Narine; Williams, Cynthia C.; Song, Ting; Mitra, Anupam; Weimer, Bart C.; Lebrilla, Carlito B.
2016-01-01
Although gut host-pathogen interactions are glycan-mediated processes, few details are known about the participating structures. Here we employ high-resolution mass spectrometric profiling to comprehensively identify and quantitatively measure the exact modifications of native intestinal epithelial cell surface N-glycans induced by S. typhimurium infection. Sixty minutes postinfection, select sialylated structures showed decreases in terms of total number and abundances. To assess the effect of cell surface mannosylation, we selectively rerouted glycan expression on the host using the alpha-mannosidase inhibitor, kifunensine, toward overexpression of high mannose. Under these conditions, internalization of S. typhimurium significantly increased, demonstrating that bacteria show preference for particular structures. Finally, we developed a novel assay to measure membrane glycoprotein turnover rates, which revealed that glycan modifications occur by bacterial enzyme activity rather than by host-derived restructuring strategies. This study is the first to provide precise structural information on how host N-glycans are altered to support S. typhimurium invasion. PMID:27754876
Saito, Yukihiro; Nakamura, Kazufumi; Yoshida, Masashi; Sugiyama, Hiroki; Takano, Makoto; Nagase, Satoshi; Morita, Hiroshi; Kusano, Kengo F; Ito, Hiroshi
2018-05-30
A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 10 3 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.
Bracke, A; Schäfer, S; von Bohlen Und Halbach, V; Klempin, F; Bente, K; Bracke, K; Staar, D; van den Brandt, J; Harzsch, S; Bader, M; Wenzel, U O; Peters, J; von Bohlen Und Halbach, O
2018-02-23
The (pro)renin receptor [(P)RR], also known as ATP6AP2 [ATPase 6 accessory protein 2], is highly expressed in the brain. ATP6AP2 plays a role in early brain development, adult hippocampal neurogenesis and in cognitive functions. Lack of ATP6AP2 has deleterious effects, and mutations of ATP6AP2 in humans are associated with, e.g. X-linked intellectual disability. However, little is known about the effects of over-expression of ATP6AP2 in the adult brain. We hypothesized that mice over-expressing ATP6AP2 in the brain might exhibit altered neuroanatomical features and behavioural responses. To this end, we investigated heterozygous transgenic female mice and confirmed increased levels of ATP6AP2 in the brain. Our data show that over-expression of ATP6AP2 does not affect adult hippocampal neurogenesis, exercise-induced cell proliferation, or dendritic spine densities in the hippocampus. Only a reduced ventricular volume on the gross morphological level was found. However, ATP6AP2 over-expressing mice displayed altered exploratory behaviour with respect to the hole-board and novel object recognition tests. Moreover, primary adult hippocampal neural stem cells over-expressing ATP6AP2 exhibit a faster cell cycle progression and increased cell proliferation. Together, in contrast to the known deleterious effects of ATP6AP2 depletion, a moderate over-expression results in moderate behavioural changes and affects cell proliferation rate in vitro.
Hagiwara-Chatani, Natsumi; Shirai, Kota; Kido, Takumi; Horigome, Tomoatsu; Yasue, Akihiro; Adachi, Naoki; Hirai, Yohei
2017-01-01
Embryonic stem (ES) and induced pluripotent stem (iPS) cells are attractive tools for regenerative medicine therapies. However, aberrant cell populations that display flattened morphology and lose ground-state pluripotency often appear spontaneously, unless glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase kinase (MEK1/2) are inactivated. Here, we show that membrane translocation of the t-SNARE protein syntaxin-4 possibly is involved in this phenomenon. We found that mouse ES cells cultured without GSK3β/MEK1/2 inhibitors (2i) spontaneously extrude syntaxin-4 at the cell surface and that artificial expression of cell surface syntaxin-4 induces appreciable morphological changes and mesodermal differentiation through dephosphorylation of Akt. Transcriptome analyses revealed several candidate elements responsible for this, specifically, an E-to P-cadherin switch and a marked downregulation of Zscan4 proteins, which are DNA-binding proteins essential for ES cell pluripotency. Embryonic carcinoma cell lines F9 and P19CL6, which maintain undifferentiated states independently of Zscan4 proteins, exhibited similar cellular behaviors upon stimulation with cell surface syntaxin-4. The functional ablation of E-cadherin and overexpression of P-cadherin reproduced syntaxin-4-induced cell morphology, demonstrating that the E- to P-cadherin switch executes morphological signals from cell surface syntaxin-4. Thus, spontaneous membrane translocation of syntaxin-4 emerged as a critical element for maintenance of the stem-cell niche. PMID:28057922
PTK7 is a novel oncogenic target for esophageal squamous cell carcinoma.
Liu, Kang; Song, Guiqin; Zhang, Xuqian; Li, Qiujiang; Zhao, Yunxia; Zhou, Yuchuan; Xiong, Rong; Hu, Xin; Tang, Zhirong; Feng, Gang
2017-05-25
Overexpression of PTK7 has been found in multiple cancers and has been proposed to serve as a prognostic marker for intrahepatic cholangiocarcinoma. Its role in esophageal cancer, however, remains to be clarified. We hypothesize that PTK7 positively regulates tumorigenesis of esophageal cancer. We examined PTK7 expression pattern in human esophageal squamous carcinoma by Oncomine expression analysis and by immunohistochemistry (IHC) staining. We knocked down PTK7 in two esophageal squamous cell carcinoma cell lines, TE-5, and TE-9, by siRNA, and evaluated cell proliferation, apoptosis, and migration ofPTK7-defective cells. Expressions of major apoptotic regulators and effectors were also determined by quantitative real-time PCR in PTK7-defective cells. We further overexpressed PTK7 in the cell to evaluate its effects on cell proliferation, apoptosis, and migration. Both Oncomine expression and IHC analyses showed that PTK7 is overexpressed in clinical esophageal squamous cell carcinoma tumors. PTK7 siRNA suppressed cell growth and promoted apoptosis of TE-5 and TE-9. PTK7-defective cells further displayed reduced cellular migration that was concomitant with upregulation of E-cadherin. Conversely, overexpression of PTK7 promotes cell proliferation and invasion, while apoptosis of the PTK7-overexpressing cells is repressed. Notably, major apoptotic regulators, such as p53 and caspases, are significantly upregulated in siPTK7 cells. PTK7 plays an oncogenic role in tumorigenesis and metastasis of esophageal squamous carcinoma. PTK7 achieves its oncogenic function in esophageal squamous cell carcinoma partially through the negative regulation of apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, C.W.; Brondyk, W.H.; Burgess, J.A.
1988-05-01
A human c-sis cDNA in an expression vector was introduced into human diploid fibroblasts by transfection or electroporation. Fibroblast clones showing an aberrant, densely packed colony morphology were isolated and found to overexpress a 3.6-kilobase sis mRNA species and associated immunoprecipitable platelet-derived growth factor (PDGF) 2 proteins. Parallel analyses in cell clones of sis mRNA expression and colony formation in agar indicated that, above a threshold, a linear, positive correlation existed between sis overexpression and acquired anchorage independence. The sis-overexpressing cells formed transient, regressing tumor nodules when injected into nude mice, consistent with the finite life span which they retained.more » Protein products generated from the transfected c-sis construct in two overexpressing clones were immunoprecipitated with anti-human PDGF antibodies. One clone contained an apparent PDGF dimer of 21 kilodaltons; the second clone contained only on apparent PDGF monomer of 12 kilodaltons, which was shown to account for all of the mitogenic activity present in the cells, essentially all of which was concentrated in the membrane fraction. The results demonstrate a clear link between sis overexpression and acquisition of a partially transformed, anchorage-independent phenotype, and when combined with previous observations of sis overexpression in human tumors, clearly implicate sis overexpression as a genetic mechanism which contributes to human cell transformation.« less
Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.
Tanami, Hideaki; Imoto, Issei; Hirasawa, Akira; Yuki, Yasuhiro; Sonoda, Itaru; Inoue, Jun; Yasui, Kohichiro; Misawa-Furihata, Akiko; Kawakami, Yutaka; Inazawa, Johji
2004-11-18
Comparative genomic hybridization (CGH) using 40 cell lines derived from malignant melanomas (MMs) revealed frequent amplification at 7q33-q34 containing BRAF gene, which often is mutated in MM. We found this gene to be amplified to a remarkable degree in the MM cell lines that exhibited high-level gains at 7q33-q34 in CGH. Among 40 cell lines, the eight lines that revealed neither BRAF nor NRAS mutations showed even higher levels of BRAF mRNA expression than the 32 mutated lines, although DNA amplification at 7q33-q34 was not detected in every lines overexpressing BRAF. MM cells that carried wild-type BRAF and NRAS showed constitutive overexpression of B-Raf protein and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), even after serum starvation. Not only downregulation of the endogenously overexpressed wild-type B-Raf by antisense oligonucleotide but also a treatment with an inhibitor of mitogen-activated protein kinase kinase (MAPKK, MEK) reduced phosphorylated ERK1/2 and cell growth, whereas the exogenously expressed wild-type B-Raf promoted cell growth in MM cells. Our results provide the evidence that overexpression of wild-type B-Raf, in part but not always as a result of gene amplification, is one of the mechanisms underlying constitutive activation of the MAPK pathway that stimulates growth of MM cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hanwen; Pirisi, Lucia; Creek, Kim E., E-mail: creekk@sccp.sc.edu
Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistancemore » to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling.« less
Ferreira, Luciana Bueno; Tavares, Catarina; Pestana, Ana; Pereira, Catarina Leite; Eloy, Catarina; Pinto, Marta Teixeira; Castro, Patricia; Batista, Rui; Rios, Elisabete; Sobrinho-Simões, Manuel; Pereira Gimba, Etel Rodrigues; Soares, Paula
2016-01-01
Osteopontin (OPN) is a matricellular protein overexpressed in cancer cells and modulates tumorigenesis and metastasis, including in thyroid cancer (TC). The contribution of each OPN splice variant (OPN-SV), named OPNa, OPNb and OPNc, in TC is currently unknown. This study evaluates the expression of total OPN (tOPN) and OPN-SV in TC tissues and cell lines, their correlation with clinicopathological, molecular features and their functional roles. We showed that tOPN and OPNa are overexpressed in classic papillary thyroid carcinoma (cPTC) in relation to adjacent thyroid, adenoma and follicular variant of papillary thyroid carcinoma (fvPTC) tissues. In cPTC, OPNa overexpression is associated with larger tumor size, vascular invasion, extrathyroid extension and BRAFV600E mutation. We found that TC cell lines overexpressing OPNa exhibited increased proliferation, migration, motility and in vivo invasion. Conditioned medium secreted from cells overexpressing OPNa induce MMP2 and MMP9 metalloproteinases activity. In summary, we described the expression pattern of OPN-SV in cPTC samples and the key role of OPNa expression on activating TC tumor progression features. Our findings highlight OPNa variant as TC biomarker, besides being a putative target for cPTC therapeutic approaches. PMID:27409830
Ferreira, Luciana Bueno; Tavares, Catarina; Pestana, Ana; Pereira, Catarina Leite; Eloy, Catarina; Pinto, Marta Teixeira; Castro, Patricia; Batista, Rui; Rios, Elisabete; Sobrinho-Simões, Manuel; Gimba, Etel Rodrigues Pereira; Soares, Paula
2016-08-09
Osteopontin (OPN) is a matricellular protein overexpressed in cancer cells and modulates tumorigenesis and metastasis, including in thyroid cancer (TC). The contribution of each OPN splice variant (OPN-SV), named OPNa, OPNb and OPNc, in TC is currently unknown. This study evaluates the expression of total OPN (tOPN) and OPN-SV in TC tissues and cell lines, their correlation with clinicopathological, molecular features and their functional roles. We showed that tOPN and OPNa are overexpressed in classic papillary thyroid carcinoma (cPTC) in relation to adjacent thyroid, adenoma and follicular variant of papillary thyroid carcinoma (fvPTC) tissues. In cPTC, OPNa overexpression is associated with larger tumor size, vascular invasion, extrathyroid extension and BRAFV600E mutation. We found that TC cell lines overexpressing OPNa exhibited increased proliferation, migration, motility and in vivo invasion. Conditioned medium secreted from cells overexpressing OPNa induce MMP2 and MMP9 metalloproteinases activity. In summary, we described the expression pattern of OPN-SV in cPTC samples and the key role of OPNa expression on activating TC tumor progression features. Our findings highlight OPNa variant as TC biomarker, besides being a putative target for cPTC therapeutic approaches.
Ishibashi, Tomohiko; Yokota, Takafumi; Satoh, Yusuke; Ichii, Michiko; Sudo, Takao; Doi, Yukiko; Ueda, Tomoaki; Nagate, Yasuhiro; Hamanaka, Yuri; Tanimura, Akira; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru
2018-01-15
Information of myeloid lineage-related antigen on hematopoietic stem/progenitor cells (HSPCs) is important to clarify the mechanisms regulating hematopoiesis, as well as for the diagnosis and treatment of myeloid malignancies. We previously reported that special AT-rich sequence binding protein 1 (SATB1), a global chromatin organizer, promotes lymphoid differentiation from HSPCs. To search a novel cell surface molecule discriminating early myeloid and lymphoid differentiation, we performed microarray analyses comparing SATB1-overexpressed HSPCs with mock-transduced HSPCs. The results drew our attention to membrane-spanning 4-domains, subfamily A, member 3 (Ms4a3) as the most downregulated molecule in HSPCs with forced overexpression of SATB1. Ms4a3 expression was undetectable in hematopoietic stem cells, but showed a concomitant increase with progressive myeloid differentiation, whereas not only lymphoid but also megakaryocytic-erythrocytic progenitors were entirely devoid of Ms4a3 expression. Further analysis revealed that a subset of CD34 + CD38 + CD33 + progenitor population in human adult bone marrow expressed MS4A3, and those MS4A3 + progenitors only produced granulocyte/macrophage colonies, losing erythroid colony- and mixed colony-forming capacity. These results suggest that cell surface expression of MS4A3 is useful to distinguish granulocyte/macrophage lineage-committed progenitors from other lineage-related ones in early human hematopoiesis. In conclusion, MS4A3 is useful to monitor early stage of myeloid differentiation in human hematopoiesis. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon
2011-11-11
Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation.more » Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.« less
de Araujo, Wallace Martins; Robbs, Bruno Kaufmann; Bastos, Lilian G; de Souza, Waldemir F; Vidal, Flávia C B; Viola, João P B; Morgado-Diaz, Jose A
2016-02-01
Lithium is a well-established non-competitive inhibitor of glycogen synthase kinase-3β (GSK-3β), a kinase that is involved in several cellular processes related to cancer progression. GSK-3β is regulated upstream by PI3K/Akt, which is negatively modulated by PTEN. The role that lithium plays in cancer is controversial because lithium can activate or inhibit survival signaling pathways depending on the cell type. In this study, we analyzed the mechanisms by which lithium can modulate events related to colorectal cancer (CRC) progression and evaluated the role that survival signaling pathways such as PI3K/Akt and PTEN play in this context. We show that the administration of lithium decreased the proliferative potential of CRC cells in a GSK-3β-independent manner but induced the accumulation of cells in G2/M phase. Furthermore, high doses of lithium increased apoptosis, which was accompanied by decreased proteins levels of Akt and PTEN. Then, cells that were induced to overexpress PTEN were treated with lithium; we observed that low doses of lithium strongly increased apoptosis. Additionally, PTEN overexpression reduced proliferation, but this effect was minor compared with that in cells treated with lithium alone. Furthermore, we demonstrated that PTEN overexpression and lithium treatment separately reduced cell migration, colony formation, and invasion, and these effects were enhanced when lithium treatment and PTEN overexpression were combined. In conclusion, our findings indicate that PTEN overexpression and lithium treatment cooperate to reduce the malignancy of CRC cells and highlight lithium and PTEN as potential candidates for studies to identify new therapeutic approaches for CRC treatment. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jiayao; Medical College of NanKai University, Tianjin; Li, Qinggang
2012-05-11
Highlights: Black-Right-Pointing-Pointer Overexpression of Robo2 caused reduced UB branching and glomerular number. Black-Right-Pointing-Pointer Fewer MM cells surrounding the UB after overexpression of Robo2 in vitro. Black-Right-Pointing-Pointer No abnormal Epithelial Morphology of UB or apoptosis of mm cells in the kidney. Black-Right-Pointing-Pointer Overexpression of Robo2 affected MM cells migration and caused UB deficit. Black-Right-Pointing-Pointer The reduced glomerular number can also be caused by fewer MM cells. -- Abstract: Roundabout 2 (Robo2) is a member of the membrane protein receptor family. The chemorepulsive effect of Slit2-Robo2 signaling plays vital roles in nervous system development and neuron migration. Slit2-Robo2 signaling is also importantmore » for maintaining the normal morphogenesis of the kidney and urinary collecting system, especially for the branching of the ureteric bud (UB) at the proper site. Slit2 or Robo2 mouse mutants exhibit multilobular kidneys, multiple ureters, and dilatation of the ureter, renal pelvis, and collecting duct system, which lead to vesicoureteral reflux. To understand the effect of Robo2 on kidney development, we used microinjection and electroporation to overexpress GFP-Robo2 in an in vitro embryonic kidney model. Our results show reduced UB branching and decreased glomerular number after in vitro Robo2 overexpression in the embryonic kidneys. We found fewer metanephric mesenchymal (MM) cells surrounding the UB but no abnormal morphology in the branching epithelial UB. Meanwhile, no significant change in MM proliferation or apoptosis was observed. These findings indicate that Robo2 is involved in the development of embryonic kidneys and that the normal expression of Robo2 can help maintain proper UB branching and glomerular morphogenesis. Overexpression of Robo2 leads to reduced UB branching caused by fewer surrounding MM cells, but MM cell apoptosis is not involved in this effect. Our study demonstrates that overexpression of Robo2 by microinjection in embryonic kidneys is an effective approach to study the function of Robo2.« less
2014-01-01
Background Translational exploration of bacterial toxins has come to the forefront of research given their potential as a chemotherapeutic tool. Studies in select tissues have demonstrated that Clostridium perfringens iota toxin binds to CD44 and lipolysis stimulated lipoprotein receptor (LSR) cell-surface proteins. We recently demonstrated that LSR expression correlates with estrogen receptor positive breast cancers and that LSR signaling directs aggressive, tumor-initiating cell behaviors. Herein, we identify the mechanisms of iota toxin cytotoxicity in a tissue-specific, breast cancer model with the ultimate goal of laying the foundation for using iota toxin as a targeted breast cancer therapy. Methods In vitro model systems were used to determine the cytotoxic effect of iota toxin on breast cancer intrinsic subtypes. The use of overexpression and knockdown technologies confirmed the roles of LSR and CD44 in regulating iota toxin endocytosis and induction of cell death. Lastly, cytotoxicity assays were used to demonstrate the effect of iota toxin on a validated set of tamoxifen resistant breast cancer cell lines. Results Treatment of 14 breast cancer cell lines revealed that LSR+/CD44- lines were highly sensitive, LSR+/CD44+ lines were slightly sensitive, and LSR-/CD44+ lines were resistant to iota cytotoxicity. Reduction in LSR expression resulted in a significant decrease in toxin sensitivity; however, overexpression of CD44 conveyed toxin resistance. CD44 overexpression was correlated with decreased toxin-stimulated lysosome formation and decreased cytosolic levels of iota toxin. These findings indicated that expression of CD44 drives iota toxin resistance through inhibition of endocytosis in breast cancer cells, a role not previously defined for CD44. Moreover, tamoxifen-resistant breast cancer cells exhibited robust expression of LSR and were highly sensitive to iota-induced cytotoxicity. Conclusions Collectively, these data are the first to show that iota toxin has the potential to be an effective, targeted therapy for breast cancer. PMID:24990559
Fagan-Solis, Katerina D; Reaves, Denise K; Rangel, M Cristina; Popoff, Michel R; Stiles, Bradley G; Fleming, Jodie M
2014-07-02
Translational exploration of bacterial toxins has come to the forefront of research given their potential as a chemotherapeutic tool. Studies in select tissues have demonstrated that Clostridium perfringens iota toxin binds to CD44 and lipolysis stimulated lipoprotein receptor (LSR) cell-surface proteins. We recently demonstrated that LSR expression correlates with estrogen receptor positive breast cancers and that LSR signaling directs aggressive, tumor-initiating cell behaviors. Herein, we identify the mechanisms of iota toxin cytotoxicity in a tissue-specific, breast cancer model with the ultimate goal of laying the foundation for using iota toxin as a targeted breast cancer therapy. In vitro model systems were used to determine the cytotoxic effect of iota toxin on breast cancer intrinsic subtypes. The use of overexpression and knockdown technologies confirmed the roles of LSR and CD44 in regulating iota toxin endocytosis and induction of cell death. Lastly, cytotoxicity assays were used to demonstrate the effect of iota toxin on a validated set of tamoxifen resistant breast cancer cell lines. Treatment of 14 breast cancer cell lines revealed that LSR+/CD44- lines were highly sensitive, LSR+/CD44+ lines were slightly sensitive, and LSR-/CD44+ lines were resistant to iota cytotoxicity. Reduction in LSR expression resulted in a significant decrease in toxin sensitivity; however, overexpression of CD44 conveyed toxin resistance. CD44 overexpression was correlated with decreased toxin-stimulated lysosome formation and decreased cytosolic levels of iota toxin. These findings indicated that expression of CD44 drives iota toxin resistance through inhibition of endocytosis in breast cancer cells, a role not previously defined for CD44. Moreover, tamoxifen-resistant breast cancer cells exhibited robust expression of LSR and were highly sensitive to iota-induced cytotoxicity. Collectively, these data are the first to show that iota toxin has the potential to be an effective, targeted therapy for breast cancer.
Wang, Bin; Qin, Hao; Wang, Yuejian; Chen, Weixiong; Luo, Jie; Zhu, Xiaolin; Wen, Weiping; Lei, Wenbin
2014-09-01
The aim of the present study was to explore the effect of DJ-1-mediated PI3K/AKT/mTOR pathway on the proliferation, apoptosis, invasion, migration and other tumor biological characteristics of laryngeal squamous cell SNU-46, through stable transfection and overexpression of the DJ-1 gene. Retrovirus carrying DJ-1 gene was used to stabilize transfected human laryngeal squamous carcinoma SNU-46 cell line, and monoclonal cell line of stably overexpressed DJ-1 protein was screened out by G418. DJ-1 protein expression was determined by western blotting, and changes of p-AKT, p-mTOR and PTEN protein content were detected, followed by the detection of changes in proliferation, apoptosis, invasion, migration and other tumor biological characteristics of laryngeal squamous carcinoma cell line with stably transfected DJ-1 protein overexpression by flow cytometry, CCK-8 method and Transwell. We successfully constructed a laryngeal squamous carcinoma cell line of stably overexpressed DJ-1 protein and termed it SNU-46-DJ-1. After overexpression of DJ-1 protein, the levels of PTEN expression in laryngeal squamous cell SNU-46 decreased and p-AKT and p-mTOR protein expression levels increased. Compared to the untreated SNU-46 cells, the proliferation rate of SNU-46-DJ-1 cells increased (0.834±0.336 vs. 0.676±0.112; p<0.001); invasiveness was enhanced (165.7±13.6 vs. 100.0±17.4; p=0.001), the migration ability was enhanced (207.3±13.1 vs. 175.3±13.3; p=0.036), and the apoptosis rate decreased (3.533±5.167 vs. 16.397±5.447%; p=0.019). The overexpression of DJ-1 protein in laryngeal squamous carcinoma SNU-46 cells can accelerate proliferation rate, increase the invasion and migration capacity, and reduce apoptosis, by activating the PI3K/AKT/mTOR pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalan, Vinod; Islam, Farhadul; Pillai, Suja
Purpose: This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. Methods: In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS wasmore » examined using immunofluorescence and western blot. Results: Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Conclusions: Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. - Highlights: • miR-1288 was more often noted in neoplastic than non-neoplastic tissue. • miR-1288 overexpression increased proliferative/invasive activities of ESCC. • miR-1288 overexpression showed repression of FOXO1 protein expression. • miR-1288 functions as an oncogenic miRNA in ESCCs.« less
xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression.
Ji, Xiangming; Qian, Jun; Rahman, S M Jamshedur; Siska, Peter J; Zou, Yong; Harris, Bradford K; Hoeksema, Megan D; Trenary, Irina A; Heidi, Chen; Eisenberg, Rosana; Rathmell, Jeffrey C; Young, Jamey D; Massion, Pierre P
2018-05-23
Many tumors increase uptake and dependence on glucose, cystine or glutamine. These basic observations on cancer cell metabolism have opened multiple new diagnostic and therapeutic avenues in cancer research. Recent studies demonstrated that smoking could induce the expression of xCT (SLC7A11) in oral cancer cells, suggesting that overexpression of xCT may support lung tumor progression. We hypothesized that overexpression of xCT occurs in lung cancer cells to satisfy the metabolic requirements for growth and survival. Our results demonstrated that 1) xCT was highly expressed at the cytoplasmic membrane in non-small cell lung cancer (NSCLC), 2) the expression of xCT was correlated with advanced stage and predicted a worse 5-year survival, 3) targeting xCT transport activity in xCT overexpressing NSCLC cells with sulfasalazine decreased cell proliferation and invasion in vitro and in vivo and 4) increased dependence on glutamine was observed in xCT overexpressed normal airway epithelial cells. These results suggested that xCT regulate metabolic requirements during lung cancer progression and be a potential therapeutic target in NSCLC.
Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells12
Wittig-Blaich, Stephanie M; Kacprzyk, Lukasz A; Eismann, Thorsten; Bewerunge-Hudler, Melanie; Kruse, Petra; Winkler, Eva; Strauss, Wolfgang S L; Hibst, Raimund; Steiner, Rudolf; Schrader, Mark; Mertens, Daniel; Sültmann, Holger; Wittig, Rainer
2011-01-01
The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases. PMID:21750652
Zheng, Meige; Duan, Junxiu; He, Zhendan; Wang, Zhiwei; Mu, Shuhua; Zeng, Zhiwen; Qu, Junle; Zhang, Jian; Wang, Dong
2016-10-01
Bone marrow stromal cells (BMSCs) can differentiate into Schwann-like cells in vivo and effectively promote nerve regeneration and functional recovery as the seed cells for peripheral nerve repair. However, the survival rate and neural differentiation rate of the transplanted BMSCs are very low, which would limit their efficacy. In this work, rat BMSCs were infected by recombinant lentiviruses to construct tropomyosin receptor kinase A (TrkA)-overexpressing BMSCs and TrkA-shRNA-expressing BMSCs, which were then used in transplantation for rat sciatic nerve defects. We showed that lentivirus-mediated overexpression of TrkA in BMSCs can promote cell survival and protect against serum-starve-induced apoptosis in vitro. At 8 weeks after transplantation, the Schwann-like differentiated ratio of the existing implanted cells had reached 74.8 ± 1.6% in TrkA-overexpressing BMSCs-laden nerve grafts, while 40.7 ± 2.3% and 42.3 ± 1.5% in vector and control BMSCs-laden nerve grafts, but only 8.2 ± 1.8% in TrkA-shRNA-expressing BMSCs-laden nerve grafts. The cell apoptosis ratio of the existing implanted cells in TrkA-overexpressing BMSCs-laden nerve grafts was 16.5 ± 1.2%, while 33.9 ± 1.9% and 42.6 ± 2.9% in vector and control BMSCs-laden nerve grafts, but 87.2 ± 2.5% in TrkA-shRNA-expressing BMSCs-laden nerve grafts. These results demonstrate that TrkA overexpression can improve the survival and Schwann-like cell differentiation of BMSCs and prevent cell death in nerve grafts, which may have potential implication in advancing cell transplantation for peripheral nerve repair. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma.
Gopalan, Vinod; Islam, Farhadul; Pillai, Suja; Tang, Johnny Cheuk-On; Tong, Daniel King-Hung; Law, Simon; Chan, Kwok-Wah; Lam, Alfred King-Yin
2016-11-01
This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS was examined using immunofluorescence and western blot. Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. Copyright © 2016 Elsevier Inc. All rights reserved.
IL-10-overexpressing B cells regulate innate and adaptive immune responses.
Stanic, Barbara; van de Veen, Willem; Wirz, Oliver F; Rückert, Beate; Morita, Hideaki; Söllner, Stefan; Akdis, Cezmi A; Akdis, Mübeccel
2015-03-01
Distinct human IL-10-producing B-cell subsets with immunoregulatory properties have been described. However, the broader spectrum of their direct cellular targets and suppressive mechanisms has not been extensively studied, particularly in relation to direct and indirect IL-10-mediated functions. The aim of the study was to investigate the effects of IL-10 overexpression on the phenotype and immunoregulatory capacity of B cells. Primary human B cells were transfected with hIL-10, and IL-10-overexpressing B cells were characterized for cytokine and immunoglobulin production by means of specific ELISA and bead-based assays. Antigen presentation, costimulation capacity, and transcription factor signatures were analyzed by means of flow cytometry and quantitative RT-PCR. Effects of IL-10-overexpresing B cells on Toll-like receptor-triggered cytokine release from PBMCs, LPS-triggered maturation of monocyte-derived dendritic cells, and tetanus toxoid-induced PBMC proliferation were assessed in autologous cocultures. IL-10-overexpressing B cells acquired a prominent immunoregulatory profile comprising upregulation of suppressor of cytokine signaling 3 (SOCS3), glycoprotein A repetitions predominant (GARP), the IL-2 receptor α chain (CD25), and programmed cell death 1 ligand 1 (PD-L1). Concurrently, their secretion profile was characterized by a significant reduction in levels of proinflammatory cytokines (TNF-α, IL-8, and macrophage inflammatory protein 1α) and augmented production of anti-inflammatory IL-1 receptor antagonist and vascular endothelial growth factor. Furthermore, IL-10 overexpression was associated with a decrease in costimulatory potential. IL-10-overexpressing B cells secreted less IgE and potently suppressed proinflammatory cytokines in PBMCs, maturation of monocyte-derived dendritic cells (rendering their profile to regulatory phenotype), and antigen-specific proliferation in vitro. Our data demonstrate an essential role for IL-10 in inducing an immunoregulatory phenotype in B cells that exerts substantial anti-inflammatory and immunosuppressive functions. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Klumpp, Dominik; Misovic, Milan; Szteyn, Kalina; Shumilina, Ekaterina; Rudner, Justine; Huber, Stephan M.
2016-01-01
Messenger RNA data of lymphohematopoietic cancer lines suggest a correlation between expression of the cation channel TRPM2 and the antiapoptotic protein Bcl-2. The latter is overexpressed in various tumor entities and mediates therapy resistance. Here, we analyzed the crosstalk between Bcl-2 and TRPM2 channels in T cell leukemia cells during oxidative stress as conferred by ionizing radiation (IR). To this end, the effects of TRPM2 inhibition or knock-down on plasma membrane currents, Ca2+ signaling, mitochondrial superoxide anion formation, and cell cycle progression were compared between irradiated (0–10 Gy) Bcl-2-overexpressing and empty vector-transfected Jurkat cells. As a result, IR stimulated a TRPM2-mediated Ca2+-entry, which was higher in Bcl-2-overexpressing than in control cells and which contributed to IR-induced G2/M cell cycle arrest. TRPM2 inhibition induced a release from G2/M arrest resulting in cell death. Collectively, this data suggests a pivotal function of TRPM2 in the DNA damage response of T cell leukemia cells. Apoptosis-resistant Bcl-2-overexpressing cells even can afford higher TRPM2 activity without risking a hazardous Ca2+-overload-induced mitochondrial superoxide anion formation. PMID:26839633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fangyi; Dong, Lei, E-mail: dlleidong@126.com; Xing, Rong
2014-02-07
Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC.more » HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC.« less
Xu, Jiao; Lin, Liangbo; Yong, Min; Dong, Xiaojing; Yu, Tinghe; Hu, Lina
2016-01-01
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the adenosine triphosphate‑binding cassette transporter family, members of which are involved in several types of cancer. Previous studies by our group reported that CFTR was highly expressed in serous ovarian cancer (SOC) tissues, and that knockdown of CFTR suppressed the proliferation of ovarian cancer in vitro and in vivo. Thus, the aim of the present study was to construct a recombinant adenoviral vector for the expression of the human CFTR gene in order to study the role of CFTR overexpression in the malignant invasion and migration of SOC cells in vitro. The present study then focused on the mechanisms of the role of CFTR in the migratory and invasive malignant properties of SOC cells. The CFTR gene was inserted into an adenoviral vector by using the AdEasy system in order to obtain the Ad‑CFTR overexpression vector, which was used to transfect the A2780 SOC cell line. Reverse-transcription polymerase chain reaction, western blot analysis and immunofluorescence were performed to detect the expression and localization of CFTR. Cell invasion and motility of the transfected cells compared with those of control cells were observed using Transwell and wound healing assays. A ~4,700 bp fragment of the CFTR gene was confirmed to be correctly cloned in the adenoviral vector and amplification of Ad‑CFTR was observed in HEK293 cells during package. After 48 h of transfection with Ad‑CFTR, ~90% of A2780 cells were red fluorescence protein‑positive. Immunofluorescence showed that following transfection, CFTR expression was increased and CFTR was located in the cell membrane and cytoplasm. CFTR overexpression was shown to enhance the invasion and motility of A2780 cells in vitro. Furthermore, the effects of CFTR overexpression on the activation c‑Src signaling were observed by western blot analysis. CFTR overexpressing cells showed the lowest activity of phospho‑Src (Tyr530), suggesting that CFTR may affect the activation of c‑Src signaling. The results of the present study demonstrated that adenovirus‑mediated CFTR overexpression enhanced cell invasion and motility of SOC cells in vitro. Furthermore, CFTR may be critical for the activation of c‑Src signaling.
Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment
Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana
2015-01-01
Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved. PMID:26041732
Luo, Hongyu; Wu, Zenghui; Qi, Shijie; Jin, Wei; Han, Bing; Wu, Jiangping
2011-01-01
IL-7 plays vital roles in thymocyte development, T cell homeostasis, and the survival of these cells. IL-7 receptor α (IL-7Rα) on thymocytes and T cells is rapidly internalized upon IL-7 ligation. Ephrins (Efns) are cell surface molecules and ligands of the largest receptor kinase family, Eph kinases. We discovered that T cell-specific double gene knock-out (dKO) of Efnb1 and Efnb2 in mice led to reduced IL-7Rα expression in thymocytes and T cells, and that IL-7Rα down-regulation was accelerated in dKO CD4 cells upon IL-7 treatment. On the other hand, Efnb1 and Efnb2 overexpression on T cell lymphoma EL4 cells retarded IL-7Rα down-regulation. dKO T cells manifested compromised STAT5 activation and homeostatic proliferation, an IL-7-dependent process. Fluorescence resonance energy transfer and immunoprecipitation demonstrated that Efnb1 and Efnb2 interacted physically with IL-7Rα. Such interaction likely retarded IL-7Rα internalization, as Efnb1 and Efnb2 were not internalized. Therefore, we revealed a novel function of Efnb1 and Efnb2 in stabilizing IL-7Rα expression at the post-translational level, and a previously unknown modus operandi of Efnbs in the regulation of expression of other vital cell surface receptors. PMID:22069310
Flagellum Density Regulates Proteus mirabilis Swarmer Cell Motility in Viscous Environments
Tuson, Hannah H.; Copeland, Matthew F.; Carey, Sonia; Sacotte, Ryan
2013-01-01
Proteus mirabilis is an opportunistic pathogen that is frequently associated with urinary tract infections. In the lab, P. mirabilis cells become long and multinucleate and increase their number of flagella as they colonize agar surfaces during swarming. Swarming has been implicated in pathogenesis; however, it is unclear how energetically costly changes in P. mirabilis cell morphology translate into an advantage for adapting to environmental changes. We investigated two morphological changes that occur during swarming—increases in cell length and flagellum density—and discovered that an increase in the surface density of flagella enabled cells to translate rapidly through fluids of increasing viscosity; in contrast, cell length had a small effect on motility. We found that swarm cells had a surface density of flagella that was ∼5 times larger than that of vegetative cells and were motile in fluids with a viscosity that inhibits vegetative cell motility. To test the relationship between flagellum density and velocity, we overexpressed FlhD4C2, the master regulator of the flagellar operon, in vegetative cells of P. mirabilis and found that increased flagellum density produced an increase in cell velocity. Our results establish a relationship between P. mirabilis flagellum density and cell motility in viscous environments that may be relevant to its adaptation during the infection of mammalian urinary tracts and movement in contact with indwelling catheters. PMID:23144253
SOX15 regulates proliferation and migration of endometrial cancer cells.
Rui, Xiaohui; Xu, Yun; Jiang, Xiping; Guo, Caixia; Jiang, Jingting
2017-10-31
The study aimed to investigate the effects of Sry-like high mobility group box 15 ( SOX15 ) on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry (IHC) was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low expression SOX15 Reverse-transcription quantitative real-time PCR (RT-qPCR) and Western blot were performed to examine expression of SOX15 mRNA and SOX15 protein, respectively. By conducting a series of cell proliferation assay and migration assay, we analyzed the influence of SOX15 overexpression or low expression on EC cell proliferation and migration. The expression of SOX15 mRNA and protein in EC tissues was significantly lower than that in adjacent tissues. After lentivirus-transfecting SOX15 , the expression level of SOX15 mRNA and protein was significantly increased in cells of SOX15 group, and decreased in sh- SOX15 group. Overexpression of SOX15 could suppress cell proliferation, while down-regulation of SOX15 increased cell proliferation. Flow cytometry results indicated that overexpression of SOX15 induced the ratio of cell-cycle arrest in G 1 stage. In addition, Transwell migration assay results showed that SOX15 overexpression significantly inhibited cell migration, and also down-regulation of SOX15 promoted the migration. As a whole, SOX15 could regulate the proliferation and migration of EC cells and up- regulation of SOX15 could be valuable for EC treatment. © 2017 The Author(s).
Kinetic Limitations of Cooperativity-Based Drug Delivery Systems
NASA Astrophysics Data System (ADS)
Licata, Nicholas A.; Tkachenko, Alexei V.
2008-04-01
We study theoretically a novel drug delivery system that utilizes the overexpression of certain proteins in cancerous cells for cell-specific chemotherapy. The system consists of dendrimers conjugated with “keys” (ex: folic acid) which “key-lock” bind to particular cell-membrane proteins (ex: folate receptor). The increased concentration of “locks” on the surface leads to a longer residence time for the dendrimer and greater incorporation into the cell. Cooperative binding of the nanocomplexes leads to an enhancement of cell specificity. However, both our theory and detailed analysis of in vitro experiments indicate that the degree of cooperativity is kinetically limited. We demonstrate that cooperativity and hence the specificity to particular cell type can be increased by making the strength of individual bonds weaker, and suggest a particular implementation of this idea.
Feng, Dingqing; Yan, Keqin; Zhou, Ying; Liang, Haiyan; Liang, Jing; Zhao, Weidong; Dong, Zhongjun; Ling, Bin
2016-10-04
The human papillomavirus (HPV) oncoproteins E6 and E7 are risk factors that are primarily responsible for the initiation and progression of cervical cancer, and they play a key role in immortalization and transformation by reprogramming differentiating host epithelial cells. It is unclear how cervical epithelial cells transform into tumor-initiating cells (TICs). Here, we observed that the germ stem cell protein Piwil2 is expressed in pre-cancerous and malignant lesions of the cervix and cervical cancer cell lines with the exception of the non-HPV-infected C33a cell line. Knockdown of Piwil2 by shRNA led to a marked reduction in proliferation and colony formation, in vivo tumorigenicity, chemo-resistance, and the proportion of cancer stem-like cells. In contrast, Piwil2 overexpression induced malignant transformation of HaCaT cells and the acquisition of tumor-initiating capabilities. Gene-set enrichment analysis revealed embryonic stem cell (ESC) identity, malignant biological behavior, and specifically, activation targets of the cell reprogramming factors c-Myc, Klf4, Nanog, Oct4, and Sox2 in Piwil2-overexpressing HaCaT cells. We further confirmed that E6 and E7 reactivated Piwil2 and that E6 and E7 overexpression resulted in a similar gene-set enrichment pattern as Piwil2 overexpression in HaCaT cells. Moreover, Piwil2 overexpression or E6 and E7 activation induced H3K9 acetylation but reduced H3K9 trimethylation, which contributed to the epigenetic reprogramming and ESC signature maintenance, as predicted previously. Our study demonstrates that Piwil2, reactivated by the HPV oncoproteins E6 and E7, plays an essential role in the transformation of cervical epithelial cells to TICs via epigenetics-based cell reprogramming.
Jiang, Wei; Sun, Xiaoning; Han, Yuhua; Ding, Mingxiao; Shi, Yan; Deng, Hongkui
2009-01-01
Under normal conditions, the regeneration of mouse β cells is mainly dependent on their own duplication. Although there is evidence that pancreatic progenitor cells exist around duct, whether non-β cells in the islet could also potentially contribute to β cell regeneration in vivo is still controversial. Here, we developed a novel transgenic mouse model to study the pancreatic β cell regeneration, which could specifically inhibit β cell proliferation by overexpressing p21 cip in β cells via regulation of the Tet-on system. We discovered that p21 overexpression could inhibit β-cell duplication in the transgenic mice and these mice would gradually suffer from hyperglycemia. Importantly, the recovery efficiency of the p21-overexpressing mice from streptozotocin-induced diabetes was significantly higher than control mice, which is embodied by better physiological quality and earlier emergence of insulin expressing cells. Furthermore, in the islets of these streptozotocin-treated transgenic mice, we found a large population of proliferating cells which expressed pancreatic duodenal homeobox 1 (PDX1) but not markers of terminally differentiated cells. Transcription factors characteristic of early pancreatic development, such as Nkx2.2 and NeuroD1, and pancreatic progenitor markers, such as Ngn3 and c-Met, could also be detected in these islets. Thus, our work showed for the first time that when β cell self-duplication is repressed by p21 overexpression, the markers for embryonic pancreatic progenitor cells could be detected in islets, which might contribute to the recovery of these transgenic mice from streptozotocin-induced diabetes. These discoveries could be important for exploring new diabetes therapies that directly promote the regeneration of pancreatic progenitors to differentiate into islet β cells in vivo. PMID:20020058
Deng, Jingcheng; Dai, Tingting; Sun, Yiyu; Zhang, Qi; Jiang, Zhaohua; Li, Shengli; Cao, Weigang
2017-02-01
Constant levels of homeobox transcription factor Prox1 expression are required throughout the life of lymphatic endothelial cells (LECs) to maintain their differentiated identity. Recent studies have demonstrated that using human LECs for cell transplantation therapy may improve secondary lymphedema in a nude rat model. However, the application is currently limited by the low yield of LECs. In this study, Prox1 was overexpressed in human adipose tissue-derived stem cells (hADSCs) by using the transfection of lentiviral vectors to induce the differentiation of hADSCs to LECs. After 14 days of Prox1 overexpression, flow cytometry analysis found that the expression of LEC-specific markers such as Podoplanin and VEGFR3, along with the endothelial cell (EC) marker CD31, on Prox1-overexpressed hADSCs was significantly increased; however, the expression of mesenchymal stem cell markers, such as CD29, CD44, and CD90, was substantially reduced. In addition, the mRNA levels of the LEC-specific markers, such as Prox1, Podoplanin, LYVE1, and VEGFR3, in Prox1-overexpressed hADSCs were significantly increased at day 7 and maintained a continuously increased expression level for 28 observation days, according to real-time reverse transcriptase-polymerase chain reaction results. Western blotting and immunofluorescence staining results further confirmed that overexpression of Prox1 in hADSCs significantly increased the protein levels of Podoplanin, LYVE1, and VEGFR3, as well as those of the EC markers such as VWF and CD144, at day 14. Moreover, these differentiated cells were found to form tube-like structures in matrigel, measured by the tube formation assay. These findings suggested that overexpression of Prox1 in hADSCs successfully induced the differentiation of hADSCs into stable lymphatic endothelial-like cells. This study achieved a long-lasting expression of Prox1 in lymphatic endothelial-like cells, and it provided a potentially useful approach for developing novel therapies for limb lymphedema and lymphatic system-related diseases.
Gondolf, Vibe M.; Stoppel, Rhea; Ebert, Berit; ...
2014-12-10
Background: Engineering of plants with a composition of lignocellulosic biomass that is more suitable for downstream processing is of high interest for next-generation biofuel production. Lignocellulosic biomass contains a high proportion of pentose residues, which are more difficult to convert into fuels than hexoses. Therefore, increasing the hexose/pentose ratio in biomass is one approach for biomass improvement. A genetic engineering approach was used to investigate whether the amount of pectic galactan can be specifically increased in cell walls of Arabidopsis fiber cells, which in turn could provide a potential source of readily fermentable galactose. Results: First it was tested ifmore » overexpression of various plant UDP-glucose 4-epimerases (UGEs) could increase the availability of UDP-galactose and thereby increase the biosynthesis of galactan. Constitutive and tissue-specific expression of a poplar UGE and three Arabidopsis UGEs in Arabidopsis plants could not significantly increase the amount of cell wall bound galactose. We then investigated co-overexpression of AtUGE2 together with the β-1,4-galactan synthase GalS1. Co-overexpression of AtUGE2 and GalS1 led to over 80% increase in cell wall galactose levels in Arabidopsis stems, providing evidence that these proteins work synergistically. Furthermore, AtUGE2 and GalS1 overexpression in combination with overexpression of the NST1 master regulator for secondary cell wall biosynthesis resulted in increased thickness of fiber cell walls in addition to the high cell wall galactose levels. Immunofluorescence microscopy confirmed that the increased galactose was present as β-1,4-galactan in secondary cell walls. Conclusions: This approach clearly indicates that simultaneous overexpression of AtUGE2 and GalS1 increases the cell wall galactose to much higher levels than can be achieved by overexpressing either one of these proteins alone. Moreover, the increased galactan content in fiber cells while improving the biomass composition had no impact on plant growth and development and hence on the overall biomass amount. Thus, we could show that the gene stacking approach described here is a promising method to engineer advanced feedstocks for biofuel production.« less
Sakuma, Keiichiro; Sasaki, Eiichi; Kimura, Kenya; Komori, Koji; Shimizu, Yasuhiro; Yatabe, Yasushi; Aoki, Masahiro
2018-06-05
HNRNPLL (heterogeneous nuclear ribonucleoprotein L-like), an RNA-binding protein that regulates alternative splicing of pre-mRNAs, has been shown to regulate differentiation of lymphocytes, as well as metastasis of colorectal cancer cells. Here we show that HNRNPLL promotes cell cycle progression and hence proliferation of colorectal cancer cells. Functional annotation analysis of those genes whose expression levels were changed by three-fold or more in RNA sequencing analysis between SW480 cells overexpressing HNRNPLL and those knocked down for HNRNPLL revealed enrichment of DNA replication-related genes by HNRNPLL overexpression. Among 13 genes detected in the DNA replication pathway, PCNA, RFC3, and FEN1 showed reproducible upregulation by HNRNPLL overexpression both at mRNA and protein levels in SW480 and HT29 cells. Importantly, knockdown of any of these genes alone suppressed the proliferation promoting effect induced by HNRNPLL overexpression. RNA-immunoprecipitation assay presented a binding of FLAG-tagged HNRNPLL to mRNA of these genes, and HNRNPLL overexpression significantly suppressed the downregulation of these genes during 12 hours of actinomycin D treatment, suggesting a role of HNRNPLL in mRNA stability. Finally, analysis of a public RNA sequencing dataset of clinical samples suggested a link between overexpression of HNRNPLL and that of PCNA, RFC3, and FEN1. This link was further supported by immunohistochemistry of colorectal cancer clinical samples, whereas expression of CDKN1A, which is known to inhibit the cooperative function of PCNA, RFC3, and FEN1, was negatively associated with HNRNPLL expression. These results indicate that HNRNPLL stabilizes mRNAs encoding regulators of DNA replication and promotes colorectal cancer cell proliferation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Zhang, Xiaoping; Degenstein, Linda; Cao, Yun; Stein, Jeffrey; Osei, Kwame; Wang, Jie
2012-01-01
Rodent pancreatic β-cells that naturally lack hypoglycemia/hypoxia inducible mitochondrial protein 1 (HIMP1) are susceptible to hypoglycemia and hypoxia influences. A linkage between the hypoglycemia/hypoxia susceptibility and the lack of HIMP1 is suggested in a recent study using transformed β-cells lines. To further illuminate this linkage, we applied mouse insulin 1 gene promoter (MIP) to control HIMP1-a isoform cDNA and have generated three lines (L1 to L3) of heterozygous HIMP1 transgenic (Tg) mice by breeding of three founders with C57BL/6J mice. In HIMP1-Tg mice/islets, we performed quantitative polymerase chain reaction (PCR), immunoblot, histology, and physiology studies to investigate HIMP1 overexpression and its link to β-cell function/survival and body glucose homeostasis. We found that the HIMP1 level increased steadily in β-cells of L1 to L3 heterozygous HIMP1-Tg mice. HIMP1 overexpression at relatively lower levels in L1 heterozygotes results in a negligible decline in blood glucose concentrations and an insignificant elevation in blood insulin levels, while HIMP1 overexpression at higher levels are toxic, causing hyperglycemia in L2/3 heterozygotes. Follow-up studies in 5-30-week-old L1 heterozygous mice/islets found that HIMP1 overexpression at relatively lower levels in β-cells has enhanced basal insulin biosynthesis, basal insulin secretion, and tolerances to low oxygen/glucose influences. The findings enforced the linkage between the hypoglycemia/hypoxia susceptibility and the lack of HIMP1 in β-cells, and show a potential value of HIMP1 overexpression at relatively lower levels in modulating β-cell function and survival.
Li, Xuejiao; Jiang, Zhongxiu; Li, Xiangmin; Zhang, Xiaoye
2018-01-01
Osteopontin (OPN) is a promoter for tumor progression. It has been reported to promote non-small cell lung cancer (NSCLC) progression via the activation of nuclear factor-κB (NF-κB) signaling. As the increased acetylation of NF-κB p65 is linked to NF-κB activation, the regulation of NF-κB p65 acetylation could be a potential treatment target for OPN-induced NSCLC progression. Sirtuin 1 (SIRT1) is a deacetylase, and the role of SIRT1 in tumor progression is still controversial. The effect and mechanism of SIRT1 on OPN-induced tumor progression remains unknown. The results presented in this research demonstrated that OPN inhibited SIRT1 expression and promoted NF-κB p65 acetylation in NSCLC cell lines (A549 and NCI-H358). In this article, overexpression of SIRT1 was induced by infection of SIRT1-overexpressing lentiviral vectors. The overexpression of SIRT1 protected NSCLC cells against OPN-induced NF-κB p65 acetylation and epithelial-mesenchymal transition (EMT), as indicated by the reduction of OPN-induced changes in the expression levels of EMT-related markers and cellular morphology. Furthermore, SIRT1 overexpression significantly attenuated OPN-induced cell proliferation, migration and invasion. Moreover, overexpression of SIRT1 inhibited OPN-induced NF-κB activation. As OPN induced NSCLC cell EMT through activation of NF-κB signaling, OPN-induced SIRT1 downregulation may play an important role in NSCLC cell EMT via NF-κB signaling. The results suggest that SIRT1 could be a tumor suppressor to attenuate OPN-induced NSCLC progression through the regulation of NF-κB signaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun
2014-08-08
Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuousmore » TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.« less
Bai, Yu-chun; Kang, Quan; Luo, Qing; Wu, Dao-qi; Ye, Wei-xia; Lin, Xue-mei; Zhao, Yong
2011-10-01
To explore the expression of connective tissue growth factor (CTGF) in pancreatic cancer and its influence on the proliferation and migration of cancer cells. The expression of CTGF in pancreatic cell line PANC-1 cells was analyzed by real-time PCR and in pancreatic carcinoma (50 cases) tissues by immunohistochemistry. The ability of proliferation and migration in vitro of PANC-1 cells was tested by MTT assay, scratch test and Boyden chamber test after the CTGF gene was overexpressed by Ad5-CTGF or silenced with Ad5-siCTGF transfection. CTGF was overexpressed in both pancreatic cancer cells and tissues. Overxpression of CTGF leads to increased proliferation and migration of PANC-1 cells. The CTGF-transfected PANC-1 cells showed apparent stronger proliferation ability and scratch-repair ability than that of empty vector controls. The results of Boyden chamber test showed that there were 34 cells/field (200× magnificantion) of the CTGF-transfected overexpressing cells, much more than the 11 cells/field of the empty vector control cells; and 6 cells/microscopic field of the Ad5-siCTGF-transfected silenced cells, much less than the 15 cells/field of the control cells. CTGF is overexpressed in both pancreatic cancer cells in vitro and in vivo, indicating that it may play an important role in the cell proliferation and migration in pancreatic cancer.
Du, Hongyan; Liang, Zhibing; Zhang, Yanling; Jie, Feilong; Li, Jinlong; Fei, Yang; Huang, Zhi; Pei, Nana; Wang, Suihai; Li, Andrew; Chen, Baihong; Zhang, Yi; Sumners, Colin; Li, Ming; Li, Hongwei
2013-01-01
Increasing evidence suggests that the renin-angiotensin system (RAS) plays an important role in tumorigenesis. The interaction between Angiotensin II (AngII) and angiotensin type 1 receptor (AT1R) may have a pivotal role in hepatocellular carcinoma (HCC) and therefore, AT1R blocker and angiotensin I-converting enzyme (ACE) inhibitors may have therapeutic potential in the treatment of hepatic cancer. Although the involvement of AT1R has been well explored, the role of the angiotensin II Type 2 receptor (AT2R) in HCC progression remains poorly understood. Thus, the aim of this study was to explore the effects of AT2R overexpression on HCC cells in vitro and in mouse models of human HCC. An AT2R recombinant adenoviral vector (Ad-G-AT2R-EGFP) was transduced into HCC cell lines and orthotopic tumor grafts. The results indicate that the high dose of Ad-G-AT2R-EGFP-induced overexpression of AT2R in transduced HCC cell lines produced apoptosis. AT2R overexpression in SMMC7721 cells inhibited cell proliferation with a significant reduction of S-phase cells and an enrichment of G1-phase cells through changing expression of CDK4 and cyclinD1. The data also indicate that overexpression of AT2R led to apoptosis via cell death signaling pathway that is dependent on activation of p38 MAPK, pJNK, caspase-8 and caspase-3 and inactivation of pp42/44 MAPK (Erk1/2). Finally, we demonstrated that moderately increasing AT2R expression could increase the growth of HCC tumors and the proliferation of HCC cells in vivo. Our findings suggest that AT2R overexpression regulates proliferation of hepatocellular carcinoma cells in vitro and in vivo, and the precise mechanisms of this phenomenon are yet to be fully determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhiyong; Wu, Shuwen; Lv, Shouzheng
2015-06-05
Liver receptor homolog-1 (LRH-1) plays an important role in the onset and progression of many cancer types. However, the role of LRH-1 in osteosarcoma has not been well investigated. In this study, the critical role of LRH-1 in osteosarcoma cells was described. Quantitative polymerase chain reaction and Western blot analysis results revealed that LRH-1 was highly overexpressed in osteosarcoma cells. LRH-1 was knocked down by small interfering RNA (siRNA), and this phenomenon significantly inhibited osteosarcoma cell proliferation. Bioinformatics analysis results showed that LRH-1 contained putative binding sites of microRNA-451 (miR-451); this result was further validated through a dual-luciferase activity reportermore » assay. miR-451 was overexpressed in osteosarcoma cells through transfection of miR-451 mimics; miR-451 overexpression then significantly inhibited LRH-1 expression and cell proliferation. The loss of LRH-1 by siRNA or miR-451 mimics significantly impaired Wnt/β-catenin activity, leading to G0/G1 cell cycle arrest. Results showed that LRH-1 is implicated in osteosarcoma. Therefore, miR-451-induced suppression of LRH-1 can be a novel therapy to treat osteosarcoma. - Highlights: • LRH-1 was highly overexpressed in osteosarcoma cells. • Knockdown of LRH-1 inhibited osteosarcoma cell proliferation. • miR-451 directly targeted and regulated LRH-1 expression. • Overexpression of miR-451 suppressed Wnt activity.« less
FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis.
Tan, BeeShin; Anaka, Matthew; Deb, Siddhartha; Freyer, Claudia; Ebert, Lisa M; Chueh, Anderly C; Al-Obaidi, Sheren; Behren, Andreas; Jayachandran, Aparna; Cebon, Jonathan; Chen, Weisan; Mariadason, John M
2014-01-15
The Forkhead box P3 (FOXP3) transcription factor is the key driver of regulatory T cell (Treg cells) differentiation and immunosuppressive function. In addition, FOXP3 has been reported to be expressed in many tumors, including melanoma. However, its role in tumorigenesis is conflicting, with both tumor suppressive and tumor promoting functions described. The aim of the current study was to characterize the expression and function of FOXP3 in melanoma. FOXP3 expression was detected by immunohistochemistry (IHC) in 12% (18/146) of stage III and IV melanomas. However expression was confined to fewer than 1% of cells in these tumors. Stable over-expression of FOXP3 in the SK-MEL-28 melanoma cell line reduced cell proliferation and clonogenicity in vitro, and reduced xenograft growth in vivo. FOXP3 over-expression also increased pigmentation and the rate of apoptosis of SK-MEL-28 cells. Based on its infrequent expression in human melanoma, and its growth inhibitory and pro-apoptotic effect in over-expressing melanoma cells, we conclude that FOXP3 is not likely to be a key tumor suppressor or promoter in melanoma.
Glucose Limitation Alters Glutamine Metabolism in MUC1-Overexpressing Pancreatic Cancer Cells.
Gebregiworgis, Teklab; Purohit, Vinee; Shukla, Surendra K; Tadros, Saber; Chaika, Nina V; Abrego, Jaime; Mulder, Scott E; Gunda, Venugopal; Singh, Pankaj K; Powers, Robert
2017-10-06
Pancreatic cancer cells overexpressing Mucin 1 (MUC1) rely on aerobic glycolysis and, correspondingly, are dependent on glucose for survival. Our NMR metabolomics comparative analysis of control (S2-013.Neo) and MUC1-overexpressing (S2-013.MUC1) cells demonstrates that MUC1 reprograms glutamine metabolism upon glucose limitation. The observed alteration in glutamine metabolism under glucose limitation was accompanied by a relative decrease in the proliferation of MUC1-overexpressing cells compared with steady-state conditions. Moreover, glucose limitation induces G1 phase arrest where S2-013.MUC1 cells fail to enter S phase and synthesize DNA because of a significant disruption in pyrimidine nucleotide biosynthesis. Our metabolomics analysis indicates that glutamine is the major source of oxaloacetate in S2-013.Neo and S2-013.MUC1 cells, where oxaloacetate is converted to aspartate, an important metabolite for pyrimidine nucleotide biosynthesis. However, glucose limitation impedes the flow of glutamine carbons into the pyrimidine nucleotide rings and instead leads to a significant accumulation of glutamine-derived aspartate in S2-013.MUC1 cells.
Cell Surface Trafficking of TLR1 Is Differentially Regulated by the Chaperones PRAT4A and PRAT4B*
Hart, Bryan E.; Tapping, Richard I.
2012-01-01
The subcellular localization of Toll-like receptors (TLRs) is critical to their ability to function as innate immune sensors of microbial infection. We previously reported that an I602S polymorphism of human TLR1 is associated with aberrant trafficking of the receptor to the cell surface, loss of responses to TLR1 agonists, and differential susceptibility to diseases caused by pathogenic mycobacteria. Through an extensive analysis of receptor deletion and point mutants we have discovered that position 602 resides within a short 6 amino acid cytoplasmic region that is required for TLR1 surface expression. This short trafficking motif, in conjunction with the adjacent transmembrane domain, is sufficient to direct TLR1 to the cell surface. A serine at position 602 interrupts this trafficking motif and prevents cell surface expression of TLR1. Additionally, we have found that ER-resident TLR chaperones, PRAT4A and PRAT4B, act as positive and negative regulators of TLR1 surface trafficking, respectively. Importantly, either over-expression of PRAT4A or knock-down of PRAT4B rescues cell surface expression of the TLR1 602S variant. We also report that IFN-γ treatment of primary human monocytes derived from homozygous 602S individuals rescues TLR1 cell surface trafficking and cellular responses to soluble agonists. This event appears to be mediated by PRAT4A whose expression is strongly induced in human monocytes by IFN-γ. Collectively, these results provide a mechanism for the differential trafficking of TLR1 I602S variants, and highlight the distinct roles for PRAT4A and PRAT4B in the regulation of TLR1 surface expression. PMID:22447933
Juhász, Kata; Thuenauer, Roland; Spachinger, Andrea; Duda, Ernő; Horváth, Ibolya; Vígh, László; Sonnleitner, Alois; Balogi, Zsolt
2013-01-01
Tumor specific cell surface localization and release of the stress inducible heat shock protein 70 (Hsp70) stimulate the immune system against cancer cells. A key immune stimulatory function of tumor-derived Hsp70 has been exemplified with the murine melanoma cell model, B16 overexpressing exogenous Hsp70. Despite the therapeutic potential mechanism of Hsp70 transport to the surface and release remained poorly understood. We investigated principles of Hsp70 trafficking in B16 melanoma cells with low and high level of Hsp70. In cells with low level of Hsp70 apparent trafficking of Hsp70 was mediated by endosomes. Excess Hsp70 triggered a series of changes such as a switch of Hsp70 trafficking from endosomes to lysosomes and a concomitant accumulation of Hsp70 in lysosomes. Moreover, lysosomal rerouting resulted in an elevated concentration of surface Hsp70 and enabled active release of Hsp70. In fact, hyperthermia, a clinically applicable approach triggered immediate active lysosomal release of soluble Hsp70 from cells with excess Hsp70. Furthermore, excess Hsp70 enabled targeting of internalized surface Hsp70 to lysosomes, allowing in turn heat-induced secretion of surface Hsp70. Altogether, we show that excess Hsp70 expressed in B16 melanoma cells diverts Hsp70 trafficking from endosomes to lysosomes, thereby supporting its surface localization and lysosomal release. Controlled excess-induced lysosomal rerouting and secretion of Hsp70 is proposed as a promising tool to stimulate anti-tumor immunity targeting melanoma. PMID:22920897
Frison, Héloïse; Giono, Gloria; Thébault, Paméla; Fournier, Marilaine; Labrecque, Nathalie; Bijl, Janet J
2013-01-01
Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation.
Li, Zhipeng; Li, Xu; Yu, Chao; Wang, Min; Peng, Feng; Xiao, Jie; Tian, Rui; Jiang, Jianxin; Sun, Chengyi
2014-12-01
We intended to investigate the role of microRNA 100 (miR-100) in regulating pancreatic cancer cells' growth in vitro and tumor development in vivo. QTR-PCR was used to examine the expression of miR-100 in pancreatic cancer cell lines and tumor cells from human patients. Lentivirual vector containing miR-100 mimics (lv-miR-100) was used to overexpress miR-100 in MIA PaCa-2 and FCPAC-1 cells. The effects of overexpressing miR-100 on pancreatic cancer cell proliferation and chemosensitivity to cisplatin were examined by cell proliferation essay in vitro. MIA PaCa-2 cells with endogenously overexpressed miR-100 were transplanted into null mice to examine tumor growth in vivo. The predicted target of miR-100, fibroblast growth factor receptor 3 (FGFR3), was downregulated by siRNA to examine its effect on pancreatic cancer cells. We found miR-100 was markedly underexpressed in both pancreatic cancer cell lines and tumor cells from patients. In cancer cells, transfection of lv-miR-100 was able to upregulate endogenous expression of miR-100, inhibited cancer cell proliferation, and increased sensitivities to cisplatin. Overexpressing miR-100 led to significant inhibition on tumor formation in vivo. Luciferase essay showed FGFR3 was direct target of miR-100. FGFR3 was significantly downregulated by overexpressing miR-100 in pancreatic cancer cells and knocking down FGFR3 by siRNA exerted similar effect as miR-100. Our study demonstrated that miR-100 played an important role in pancreatic cancer development, possibly through targeting FGFR3. It may become a new therapeutic target for gene therapy in patients suffered from pancreatic cancer.
Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qipeng; Yao, Bei; Li, Ning
The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H{sub 2}O{sub 2} enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosismore » of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H{sub 2}O{sub 2} level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H{sub 2}O{sub 2} upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.« less
2004-04-01
Muc4 /sialomucin complex (SMC) is a high M(r) heterodimeric glycoprotein complex which was originally observed at the cell surfaces of 13762 rat...kinase ErbB2. An important aspect of SMC/ Muc4 is its ability to repress apoptosis when transfected into tumor cells. Our hypothesis is that SMC/ Muc4 ...signaling through ErbB2 involved in epithelial differentiation and repression of apoptosis. Both of these functions may contribute to tumor progression when Muc4 /SMC is inappropriately overexpressed.
Muralidharan, Ranganayaki; Babu, Anish; Amreddy, Narsireddy; Basalingappa, Kanthesh; Mehta, Meghna; Chen, Allshine; Zhao, Yan Daniel; Kompella, Uday B; Munshi, Anupama; Ramesh, Rajagopal
2016-06-21
Human antigen R (HuR) is an RNA binding protein that is overexpressed in many human cancers, including lung cancer, and has been shown to regulate the expression of several oncoproteins. Further, HuR overexpression in cancer cells has been associated with poor-prognosis and therapy resistance. Therefore, we hypothesized that targeted inhibition of HuR in cancer cells should suppress several HuR-regulated oncoproteins resulting in an effective anticancer efficacy. To test our hypothesis, in the present study we investigated the efficacy of folate receptor-α (FRA)-targeted DOTAP:Cholesterol lipid nanoparticles carrying HuR siRNA (HuR-FNP) against human lung cancer cells. The therapeutic efficacy of HuR-FNP was tested in FRA overexpressing human H1299 lung cancer cell line and compared to normal lung fibroblast (CCD16) cells that had low to no FRA expression. Physico-chemical characterization studies showed HuR-FNP particle size was 303.3 nm in diameter and had a positive surface charge (+4.3 mV). Gel retardation and serum stability assays showed that the FNPs were efficiently protected siRNA from rapid degradation. FNP uptake was significantly higher in H1299 cells compared to CCD16 cells indicating a receptor-dose effect. The results of competitive inhibition studies in H1299 cells demonstrated that HuR-FNPs were efficiently internalized via FRA-mediated endocytosis. Biologic studies demonstrated HuR-FNP but not C-FNP (control siRNA) induced G1 phase cell-cycle arrest and apoptosis in H1299 cells resulting in significant growth inhibition. Further, HuR-FNP exhibited significantly higher cytotoxicity against H1299 cells than it did against CCD16 cells. The reduction in H1299 cell viability was correlated with a marked decrease in HuR mRNA and protein expression. Further, reduced expression of HuR-regulated oncoproteins (cyclin D1, cyclin E, and Bcl-2) and increased p27 tumor suppressor protein were observed in HuR-FNP-treated H1299 cells but not in C-FNP-treated cells. Finally, cell migration was significantly inhibited in HuR-FNP-treated H1299 cells compared to C-FNP. Our results demonstrate that HuR is a molecular target for lung cancer therapy and its suppression using HuR-FNP produced significant therapeutic efficacy in vitro.
Regulation of Id2 expression in EL4 T lymphoma cells overexpressing growth hormone.
Weigent, Douglas A
2009-01-01
In previous studies, we have shown that overexpression of growth hormone (GH) in cells of the immune system upregulates proteins involved in cell growth and protects from apoptosis. Here, we report that overexpression of GH in EL4 T lymphoma cells (GHo) also significantly increased levels of the inhibitor of differentiation-2 (Id2). The increase in Id2 was suggested in both Id2 promoter luciferase assays and by Western analysis for Id2 protein. To identify the regulatory elements that mediate transcriptional activation by GH in the Id2 promoter, promoter deletion analysis was performed. Deletion analysis revealed that transactivation involved a 301-132bp region upstream to the Id2 transcriptional start site. The pattern in the human GHo Jurkat T lymphoma cell line paralleled that found in the mouse GHo EL4 T lymphoma cell line. Significantly less Id2 was detected in the nucleus of GHo EL4 T lymphoma cells compared to vector alone controls. Although serum increased the levels of Id2 in control vector alone cells, no difference was found in the total levels of Id2 in GHo EL4 T lymphoma cells treated with or without serum. The increase in Id2 expression in GHo EL4 T lymphoma cells measured by Id2 promoter luciferase expression and Western blot analysis was blocked by the overexpression of a dominant-negative mutant of STAT5. The results suggest that in EL4 T lymphoma cells overexpressing GH, there is an upregulation of Id2 protein that appears to involve STAT protein activity.
Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Serna, Ana; Echevarría, Miriam
2015-01-01
Abnormal AQP3 overexpression in tumor cells of different origins has been reported and a role for this enhanced AQP3 expression in cell proliferation and tumor processess has been indicated. To further understand the role AQP3 plays in cell proliferation we explore the effect that stable over expression of AQP3 produces over the proliferation rate and cell cycle of mammalian cells. The cell cycle was analyzed by flow cytometry with propidium iodide (PI) and the cell proliferation rate measured through cell counting and BrdU staining. Cells with overexpression of AQP3 (AQP3-o) showed higher proliferation rate and larger percentage of cells in phases S and G2/M, than wild type cells (wt). Evaluation of the cell response against arresting the cell cycle with Nocodazole showed that AQP3-o exhibited a less modified cell cycle pattern and lower Annexin V specific staining than wt, consistently with a higher resistance to apoptosis of AQP3-overexpressing cells. The cell volume and complexity were also larger in AQP3-o compared to wt cells. After transcriptomic analysis, RT-qPCR was performed to highlight key molecules implicated in cell proliferation which expression may be altered by overexpression of AQP3 and the comparative analysis between both type of cells showed significant changes in the expression of Zeb2, Jun, JunB, NF-kβ, Cxcl9, Cxcl10, TNF, and TNF receptors. We conclude that the role of AQP3 in cell proliferation seems to be connected to increments in the cell cycle turnover and changes in the expression levels of relevant genes for this process. Larger expression of AQP3 may confer to the cell a more tumor like phenotype and contributes to explain the presence of this protein in many different tumors.
Hu, Kunpeng; Huang, Pinzhu; Luo, Hui; Yao, Zhicheng; Wang, Qingliang; Xiong, Zhiyong; Lin, Jizong; Huang, He; Xu, Shilei; Zhang, Peng; Liu, Bo
2017-08-01
Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.
High cell surface death receptor expression determines type I versus type II signaling.
Meng, Xue Wei; Peterson, Kevin L; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D; Gores, Gregory J; Kaufmann, Scott H
2011-10-14
Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression.
MUC1-Targeted Cancer Cell Photothermal Ablation Using Bioinspired Gold Nanorods.
Zelasko-Leon, Daria C; Fuentes, Christina M; Messersmith, Phillip B
2015-01-01
Recent studies have highlighted the overexpression of mucin 1 (MUC1) in various epithelial carcinomas and its role in tumorigenesis. These mucins present a novel targeting opportunity for nanoparticle-mediated photothermal cancer treatments due to their unique antenna-like extracellular extension. In this study, MUC1 antibodies and albumin were immobilized onto the surface of gold nanorods using a "primer" of polydopamine (PD), a molecular mimic of catechol- and amine-rich mussel adhesive proteins. PD forms an adhesive platform for the deposition of albumin and MUC1 antibodies, achieving a surface that is stable, bioinert and biofunctional. Two-photon luminescence confocal and darkfield scattering imaging revealed targeting of MUC1-BSA-PD-NRs to MUC1+ MCF-7 breast cancer and SCC-15 squamous cell carcinoma cells lines. Treated cells were exposed to a laser encompassing the near-infrared AuNR longitudinal surface plasmon and assessed for photothermal ablation. MUC1-BSA-PD-NRs substantially decreased cell viability in photoirradiated MCF-7 cell lines vs. MUC1- MDA-MB-231 breast cancer cells (p < 0.005). Agents exhibited no cytotoxicity in the absence of photothermal treatment. The facile nature of the coating method, combined with targeting and photoablation efficacy, are attractive features of these candidate cancer nanotherapeutics.
Zhang, Ling; Wang, Yangzhong; Tian, Qianqian; Liu, Yang; Li, Jinghong
2017-03-15
A novel ECL biosensor for cytosensing and cell surface carbohydrate expression evaluation was developed, by the integration of the peptide modified interface for highly specific carbohydrate recognition and sodium alginate loaded glucose oxidase as the signal probe with high signal amplification efficiency. A cysteine-terminated peptide self-assembled on the electrode through Au-S bond to construct a functional interface for cell capture, with decent biocompatibility and high affinity for the human breast cancer cell MCF-7. Concanavalin A lectin modified gold nanoparticles specifically recognized the cell surface carbohydrates and were absorbed on the electrode, followed by the immobilization of multiple glucose oxidase conjugated sodium alginate, which could remarkably increase the sensitivity of the biosensor with enhanced catalysis. The as-proposed ECL cytosensor was successfully applied for the detection of the MCF-7 tumor cells, whose glycans on the cell membranes are over-expressed. A low detection limit of 150cellsmL -1 was obtained, with a wide dynamic linear range from 5.0×10 2 to 5.0×10 5 cellsmL -1 . Due to the excellent sensitivity, stability and biocompatibility, the ECL biosensor would be promising in reliable diagnostics of glycan relevant biomarkers for cancer and other diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Lu, Yuan; Zhang, Chong; Lai, Qiheng; Zhao, Hongxin; Xing, Xin-Hui
2011-02-08
Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways. Copyright © 2010 Elsevier Inc. All rights reserved.
Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya
2015-01-01
Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13+CD133+ cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13+CD133+ cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation. PMID:25808356
Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya; Kamiya, Akihide
2015-07-15
Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13(+)CD133(+) cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13(+)CD133(+) cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation.
Fatima, Sarwat; Chui, Chung H; Tang, Wing K; Hui, Kin S; Au, Ho W; Li, Wing Y; Wong, Mei M; Cheung, Filly; Tsao, S W; Lam, King Y; Beh, Philip S L; Wong, John; Law, Simon; Srivastava, Gopesh; Ho, Kwok P; Chan, Albert S C; Tang, Johnny C O
2006-01-01
Esophageal squamous cell carcinoma (ESCC) has a high mortality rate and geographic differences in incidence. Previous studies of comparative genomic hybridization (CGH) showed that chromosomal 5p is frequently amplified in cell lines and primary ESCC of Hong Kong Chinese origin. In this report, attempt was made to study two novel genes, named as JS-1 and JS-2, which are located in chromosome 5p15.2 and are 5' upstream to delta catenin for their roles in molecular pathogenesis of ESCC. Eleven cell lines, 27 primary ESCC cases and multiple human tissue cDNA panels (MTC) of digestive system were studied for the expression level of JS-1 and JS-2 by RT-PCR. The full-length cDNA sequences of JS-1 and JS-2 were determined from a non-tumor esophageal epithelial cell line by 3' and 5' rapid amplification of cDNA ends (RACE). The transforming capacity of JS-1 and JS-2 was also investigated by transfecting NIH 3T3 cells with the expression vector pcDNA3.1(-) cloned with the full coding sequences and it was followed by the study of foci formation of the transfected cells under confluence growth and the anchorage-independent growth in soft agar. Forty-five percent (5/11) and 18% (2/11) of the ESCC cell lines showed overexpression of JS-1 and JS-2 respectively, while 55% (15/27) and 14% (3/22) primary ESCC cases showed overexpression of JS-1 and JS-2 respectively. JS-1 overexpression was most common in patients with stage II ESCC (6/27; 22%) whereas JS-2 was only overexpressed in a dysplastic lesion (1/22; 4%) and stage III tumors (2/22; 9%). The expression levels of JS-1 and JS-2 are both low in normal esophageal tissues. Overexpression of JS-1 in NIH 3T3 cells caused foci formation in confluence growth and colony formation in soft agar but not for JS-2. A high grade sarcoma was formed in the athymic nude mice when NIH 3T3 cells overexpressing JS-1 were injected subcutaneously. Our results thus indicate that the frequent overexpression of JS-1 in ESCC and its transforming capacity in normal cells may play a critical role in the molecular pathogenesis of ESCC. The present study also forms the ground work for further identification of novel mechanisms of molecular carcinogenesis in ESCC and other cancers.
Song, Yingli; Jin, Di; Jiang, Xiaoshu; Lv, Chunmei; Zhu, Hui
2018-01-01
The prevalence of type 2 diabetes mellitus (T2DM) increased rapidly in the world. The development of β-cell dysfunction is the quintessential defects in T2DM patients However, the pathogenesis of β-cell dysfunction is still unclear. MicroRNAs are short non-coding RNAs and has been reported to be involved in pathogenesis of β-cell dysfunction and T2DM. Here, we investigated the mechanisms by which miR-26a regulate β-cell function and insulin signaling pathway in high fat diet (HFD) fed and db/db T2DM mice model. The expression of miR-26a was down-regulated dramatically in the serum and islets of both HFD and db/db mice model. miR-26a overexpression protected against HFD-induced diabetes and maintained prolonged normoglycemic time in HFD fed mice. Overexpression of miR-26a improved β-cell dysfunction in T2DM mice. Further, we identified that PTEN is a direct target gene of miR-26a. Overexpression of miR-26a significantly inhibited the luciferase activity of hPTEN 3'-UTR, while the effect of miR-26a disappeared when the miR-26a potential binding site within the PTEN 3'-UTR was mutated. Overexpression of miR-26a reduced both the mRNA and protein levels of PTEN in vitro and in vivo. We also found that miR-26a overexpression increased the expression of p-Akt and p-FoxO-1, while the effect of miR-26a was blocked by PTEN overexpression. In conclusion, our data indicated that miR-26a potentially contributes to the β-cell dysfunction in T2DM, and miR-26a may be a new therapeutic strategy against T2DM. Copyright © 2017 Elsevier Inc. All rights reserved.
Accardo, Antonella; Salsano, Giuseppina; Morisco, Anna; Aurilio, Michela; Parisi, Antonio; Maione, Francesco; Cicala, Carla; Tesauro, Diego; Aloj, Luigi; De Rosa, Giuseppe; Morelli, Giancarlo
2012-01-01
Objectives Drug delivery systems consisting of liposomes displaying a cell surface receptor-targeting peptide are being developed to specifically deliver chemotherapeutic drugs to tumors overexpressing a target receptor. This study addresses novel liposome composition approaches to specifically target tissues overexpressing bombesin (BN) receptors. Methods A new amphiphilic peptide derivative (MonY-BN) containing the BN(7–14) peptide, the DTPA (diethylenetriaminepentaacetate) chelating agent, a hydrophobic moiety with two C18 alkyl chains, and polyethylene glycol spacers, has been synthesized by solid-phase methods. Liposomes have been generated by co-aggregation of MonY-BN with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The structural and biological properties of these new target-selective drug-delivery systems have been characterized. Results Liposomes with a DSPC/MonY-BN (97/3 molar ratio) composition showed a diameter of 145.5 ± 31.5 nm and a polydispersity index of 0.20 ± 0.05. High doxorubicin (Dox) loading was obtained with the remote pH gradient method using citrate as the inner buffer. Specific binding to PC-3 cells of DSPC/MonY-BN liposomes was obtained (2.7% ± 0.3%, at 37°C), compared with peptide-free DSPC liposomes (1.4% ± 0.2% at 37°C). Incubation of cells with DSPC/ MonY-BN/Dox showed significantly lower cell survival compared with DSPC/Dox-treated cells, in the presence of 100 ng/mL and 300 ng/mL drug amounts, in cytotoxicity experiments. Intravenous treatment of PC-3 xenograft-bearing mice with DSPC/MonY-BN/Dox at 10 mg/kg Dox dose produced higher tumour growth inhibition (60%) compared with nonspecific DSPC/ Dox liposomes (36%) relative to control animals. Conclusion The structural and loading properties of DSPC/MonY-BN liposomes along with the observed in-vitro and in-vivo activity are encouraging for further development of this approach for target-specific cancer chemotherapy. PMID:22619538
Hong, Kwang-Won; Kim, Chang-Goo; Lee, Seung-Hyun; Chang, Ki-Hwan; Shin, Yong Won; Ryoo, Kyung-Hwan; Kim, Se-Ho; Kim, Yong-Sung
2010-01-01
The epidermal growth factor receptor (EGFR) overexpressed in many epithelial tumors is an attractive target for tumor therapy since numerous blocking agents of EGFR signaling have proven their anti-tumor activity. Here we report a novel monoclonal antibody (mAb), A13, which was generated from mice immunized with human cervical carcinoma A431 cells. In addition to binding to soluble EGFR with affinity of K(D) approximately 5.8nM, mAb A13 specifically bound to a variety of tumor cells and human placenta tissues expressing EGFR. A13 efficiently inhibited both EGF-dependant EGFR tyrosine phosphorylation in cervical and breast tumor cells and also in vitro colony formation of EGFR-overexpressing lung tumors. Competition and sandwich ELISAs, competitive surface plasmon resonance, and domain-level epitope mapping analyses demonstrated that mAb A13 competitively bound to the domain III (amino acids 302-503) of EGFR with EGF, but recognized distinct epitopes from those of cetuximab (Erbitux). Our results demonstrated that anti-EGFR mAb A13 interfered with EGFR proliferation signaling by blocking EGF binding to EGFR with different epitopes from those of cetuximab, suggesting that combination therapies of mAb A13 with cetuximab may prove beneficial for anti-tumor therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh
2009-07-17
c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, andmore » IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.« less
Deniaud, Emmanuelle; Baguet, Joël; Chalard, Roxane; Blanquier, Bariza; Brinza, Lilia; Meunier, Julien; Michallet, Marie-Cécile; Laugraud, Aurélie; Ah-Soon, Claudette; Wierinckx, Anne; Castellazzi, Marc; Lachuer, Joël; Gautier, Christian
2009-01-01
Background The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. Methodology and Principal Findings We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. Conclusion This study shows that the binding to DNA of overexpressed Sp1 induces an inhibition of cell cycle progression that precedes apoptosis and a transcriptional response targeting genes containing Sp1 binding sites in their promoter or not suggesting both direct Sp1-driven transcription and indirect mechanisms. PMID:19753117
The RNA binding protein tristetraprolin down-regulates autophagy in lung adenocarcinoma cells.
Dong, Fei; Li, Cen; Wang, Pu; Deng, Xiaoya; Luo, Qinli; Tang, Xiaokui; Xu, Li
2018-06-01
Tristetraprolin (TTP) is the most well-known member of RNA-binding zinc-finger protein that play a significant role in accelerating mRNA decay. Increasingly studies have reported that TTP was functioned as a tumor suppressor gene in several types of carcinomas, while its underlying mechanism is not clear yet. In the current study, we found that TTP overexpression decreased cell proliferation and increased cell death in lung adenocarcinoma cells, with the cell cycle arrest at the S phase. Remarkably, instead of inducing cell apoptosis directly, TTP overexpression alters cell autophagy. Our studies demonstrate that TTP overexpression has no effect on apoptosis related genes, but decreases the expression of autophagy-related genes, including Beclin 1 and LC3II. The level of autophagy flux assessed by infection with the mGFP-RFP-LC3 adenovirus construction has been blocked by TTP overexpression. Moreover, the autophagic vacuoles number detected by transmission electron microscopy decreased with TTP expression up-regulation. Our results indicate, for the first time, that TTP suppresses cell proliferation and increases cell death through cell autophagy pathway in lung cancer cells. Our study provides a new angle of view for TTP function as a tumor suppressor which could be targeted in tumor treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Mesoporous silica nanoparticles as a breast cancer targeting contrast agent for ultrasound imaging
NASA Astrophysics Data System (ADS)
Milgroom, Andrew Carson
Current clinical use of ultrasound for breast cancer diagnostics is strictly limited to a role as a supplementary detection method to other modalities, such as mammography or MRI. A major reason for ultrasound’s role as a secondary method is its inability to discern between cancerous and non-cancerous bodies of similar density, like dense calcifications or benign fibroadenomas. Its detection capabilities are further diminished by the variable density of the surrounding breast tissue with the progression of age. Preliminary studies suggest that mesoporous silica nanoparticles (MSNs) are a good candidate as an in situ contrast agent for ultrasound. By tagging the silica particle surface with the cancer-targeting antibody trastuzumab (Herceptin), suspect regions of interest can be better identified in real time with standard ultrasound equipment. Once the silica-antibody conjugate is injected into the bloodstream and enters the cancerous growth’s vasculature, the antibody arm will bind to HER2, a cell surface receptor known to be dysfunctional or overexpressed in certain types of breast cancer. As more particles aggregate at the cell surface, backscatter of the ultrasonic waves increases as a result of the higher porous silica concentration. This translates to an increased contrast around the lesion boundary. Tumor detection through ultrasound contrast enhancement provides a tremendous advantage over current cancer diagnostics because is it significantly cheaper and can be monitored in real time. Characterization of MCM-41 type MSNs suggests that these particles have sufficient stability and particle size distribution to penetrate through fenestrated tumor vasculature and accumulate in HER2+ breast cancer cells through the enhanced permeation and retention (EPR) effect. A study of acoustic properties showed that particle concentration is linearly correlated to image contrast in clinical frequency-range ultrasound, although less pronounced than typical microbubble-type contrast agents. In vitro studies using cells with varied levels of HER2 expression demonstrated the selectivity of the MSN-Herceptin conjugate to cells with HER2 overexpression. Fluorescence imaging suggest these images remain surface-bound and are not incorporated into the cell body. This study demonstrates the potential of MSNs as a stable, safe, and effective imaging contrast agent for ultrasound-based cancer diagnostics. Ultimately this work will contribute towards the improvement of diagnostic alternatives to conventional ionizing radiation-intensive imaging—such as MRI or X-ray—without compromising the specificity of the test.
Ravacci, Graziela Rosa; Brentani, Maria Mitzi; Tortelli, Tharcisio Citrângulo; Torrinhas, Raquel Suzana M. M.; Santos, Jéssica Reis; Logullo, Angela Flávia; Waitzberg, Dan Linetzky
2015-01-01
In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36), transport (FABP4), and storage (DGAT) of exogenous fatty acids (FA), as well as increased activation of “de novo” FA synthesis (FASN). We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPARγ pathway. Inhibition of the mTORC1 pathway markers, p70S6 K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR) was detected in HB4aC5.2. Based on these results, a PPARγ selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4) in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPARγ activity. This reprogramming was inhibited by DHA. PMID:26640797
BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James
2006-10-01
The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ER{alpha} signaling. However, many ER{alpha}-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ER{alpha} signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ER{alpha}-negative cells. We previously noticed that both ER{alpha}-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ER{alpha}-negative cell lines even exceeded its over-expression level inmore » ER{alpha}-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ER{alpha}-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene.« less
RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease
Robinson, Adam B.; Stogsdill, Jeffrey A.; Lewis, Joshua B.; Wood, Tyler T.; Reynolds, Paul R.
2012-01-01
Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD. PMID:22934052
Shift of microRNA profile upon orthotopic xenografting of glioblastoma spheroid cultures.
Halle, Bo; Thomassen, Mads; Venkatesan, Ranga; Kaimal, Vivek; Marcusson, Eric G; Munthe, Sune; Sørensen, Mia D; Aaberg-Jessen, Charlotte; Jensen, Stine S; Meyer, Morten; Kruse, Torben A; Christiansen, Helle; Schmidt, Steffen; Mollenhauer, Jan; Schulz, Mette K; Andersen, Claus; Kristensen, Bjarne W
2016-07-01
Glioblastomas always recur despite surgery, radiotherapy and chemotherapy. A key player in the therapeutic resistance may be immature tumor cells with stem-like properties (TSCs) escaping conventional treatment. A group of promising molecular targets are microRNAs (miRs). miRs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. In this study we aimed to identify over-expressed TSC-related miRs potentially amenable for therapeutic targeting. We used non-differentiated glioblastoma spheroid cultures (GSCs) containing TSCs and compared these to xenografts using a NanoString nCounter platform. This revealed 19 over-expressed miRs in the non-differentiated GSCs. Additionally, non-differentiated GSCs were compared to neural stem cells (NSCs) using a microarray platform. This revealed four significantly over-expressed miRs in the non-differentiated GSCs in comparison to the NSCs. The three most over-expressed miRs in the non-differentiated GSCs compared to xenografts were miR-126, -137 and -128. KEGG pathway analysis suggested the main biological function of these over-expressed miRs to be cell-cycle arrest and diminished proliferation. To functionally validate the profiling results suggesting association of these miRs with stem-like properties, experimental over-expression of miR-128 was performed. A consecutive limiting dilution assay confirmed a significantly elevated spheroid formation in the miR-128 over-expressing cells. This may provide potential therapeutic targets for anti-miRs to identify novel treatment options for GBM patients.
Zhao, Jing; Feng, Si-Shen
2014-03-01
Drug formulation by ligand conjugated nanoparticles of biodegradable polymers has become one of the most important strategies in drug targeting. We have developed in our previous work nanoparticles of a mixture of two vitamin E TPGS based copolymers PLA-TPGS and TPGS-TOOH with the latter for Herceptin conjugation for targeted delivery of anticancer drugs such as docetaxel to the cancer cells of human epidermal growth factor receptor 2 (HER2) overexpression. In this research, we investigated the effects of the PEG chain length in TPGS, which is in fact a PEGylated vitamin E, on the cellular uptake and cytotoxicity of the drug formulated in the Herceptin-conjugated nanoparticles of PLA-TPGS/TPGS-COOH blend (NPs). Such NPs of PEG1000, PEG2000, PEG3350 and PEG5000, i.e. the PEG of molecule weight 1000, 2000, 3350 and 5000, were prepared by the nanoprecipitation method and characterized for their size and size distribution, drug loading, surface morphology, surface charge and surface chemistry as well as in vitro drug release profile, cellular uptake and cytotoxicity. We found among such nanoparticles, those of PEG1000, i.e. of the shortest PEG tethering chain length, could result in the best therapeutic effects, which are 24.1%, 37.3%, 38.1% more efficient in cellular uptake and 68.1%, 90%, 92.6% lower in IC50 (thus higher in cytotoxicity) than the Herceptin-conjugated nanoparticles of PLA-TPGS/TPGS-COOH blend of PEG2000, PEG3350 and PEG5000 respectively in treatment of SK-BR-3 cancer cells which are of high HER2 overexpression. We provided a theoretical explanation from surface mechanics and thermodynamics for endocytosis of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Peptide ligands targeting integrin alpha3beta1 in non-small cell lung cancer.
Lau, Derick; Guo, Linlang; Liu, Ruiwu; Marik, Jan; Lam, Kit
2006-06-01
Lung cancer is one of the most common cancers and is the leading cause of cancer death. We wish to identify peptide ligands for unique cell surface receptors of non-small lung cancer with the hope of developing these ligands as diagnostic and therapeutic agents. Using the method of 'one-bead one-peptide' combinatorial chemistry, a library of random cyclic octapeptides was synthesized on polystyrene beads. This library was used to screen for peptides that promoted attachment of lung adenocarcinoma cells employing a 'cell-growth-on-bead' assay. Consensus peptide sequences of cNGXGXXc were identified. These peptides promoted cell adhesion by targeting integrin alpha3beta1 over-expressed in non-small lung cancer cells. These peptide beads can be applied to capture cancer cells in malignant pleural fluid for purpose of diagnosis of lung cancer.
Yang, Jia-Sin; Lin, Chiao-Wen; Hsieh, Yi-Hsien; Chien, Ming-Hsien; Chuang, Chun-Yi; Yang, Shun-Fa
2017-10-10
Oral cancer is a solid malignant tumor that is prone to occur following hypoxia. There are no clear studies showing a link between hypoxia and oral carcinogenesis. Carbonic anhydrase IX (CAIX), which is a hypoxia-induced transmembrane protein, is highly expressed in various types of human cancer. However, the effects of CAIX on the metastasis of human oral cancer cells and the underlying molecular mechanisms have not been clarified. In this study, we observed that CAIX overexpression increased the migratory and invasive abilities of SCC-9 and SAS cells. In addition, CAIX overexpression increased the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9) and the phosphorylation of focal adhesion kinase (FAK), steroid receptor coactivator (Src), and extracellular signal-regulated kinase 1/2 signaling proteins. CAIX overexpression also increased the binding capacity of nuclear factor-κB (NF-κB), c-Jun, and c-Fos on the MMP-9 gene promoter. In addition, treatment with MMP-9 short hairpin RNA, an MMP inhibitor (GM6001), an FAK mutant, or an MEK inhibitor (U0126) inhibited CAIX-induced cell motility in SCC-9 cells. Moreover, data sets from The Cancer Genome Atlas demonstrated that CAIX expression was significantly associated with advanced progression and poor survival in oral cancer. In conclusion, it can be inferred that CAIX overexpression induces MMP-9 gene expression, which consequently induces the metastasis of oral cancer cells.
Yang, Jia-Sin; Lin, Chiao-Wen; Hsieh, Yi-Hsien; Chien, Ming-Hsien; Chuang, Chun-Yi; Yang, Shun-Fa
2017-01-01
Oral cancer is a solid malignant tumor that is prone to occur following hypoxia. There are no clear studies showing a link between hypoxia and oral carcinogenesis. Carbonic anhydrase IX (CAIX), which is a hypoxia-induced transmembrane protein, is highly expressed in various types of human cancer. However, the effects of CAIX on the metastasis of human oral cancer cells and the underlying molecular mechanisms have not been clarified. In this study, we observed that CAIX overexpression increased the migratory and invasive abilities of SCC-9 and SAS cells. In addition, CAIX overexpression increased the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9) and the phosphorylation of focal adhesion kinase (FAK), steroid receptor coactivator (Src), and extracellular signal-regulated kinase 1/2 signaling proteins. CAIX overexpression also increased the binding capacity of nuclear factor-κB (NF-κB), c-Jun, and c-Fos on the MMP-9 gene promoter. In addition, treatment with MMP-9 short hairpin RNA, an MMP inhibitor (GM6001), an FAK mutant, or an MEK inhibitor (U0126) inhibited CAIX-induced cell motility in SCC-9 cells. Moreover, data sets from The Cancer Genome Atlas demonstrated that CAIX expression was significantly associated with advanced progression and poor survival in oral cancer. In conclusion, it can be inferred that CAIX overexpression induces MMP-9 gene expression, which consequently induces the metastasis of oral cancer cells. PMID:29137326
Zhang, Jing-Jing; Cheng, Fang-Fang; Zheng, Ting-Ting; Zhu, Jun-Jie
2017-03-15
Quantifying the glycan expression status on cell surfaces is of vital importance for insight into the glycan function in biological processes and related diseases. Here we developed a versatile aptasensor for electrochemical quantification of cell surface glycan by taking advantage of the cell-specific aptamer, and the lectin-functionalized gold nanoparticles acting as both a glycan recognition unit and a signal amplification probe. To construct the aptasensor, amine-functionalized mucin 1 protein (MUC1) aptamer was first covalently conjugated to carboxylated-magnetic beads (MBs) using the succinimide coupling (EDC-NHS) method. On the basis of the specific recognition between aptamer and MUC1 protein that overexpressed on the surface of MCF-7 cells, the aptamer conjugated MBs showed a predominant capability for cell capture with high selectivity. Moreover, a lectin-based nanoprobe was designed by noncovalent assembly of concanavalin A (ConA) on gold nanoparticles (AuNPs). This nanoprobe incorporated the abilities of both the specific carbohydrate recognition and the signal amplification based on the gold-promoted reduction of silver ions. By coupling with electrochemical stripping analysis, the proposed sandwich-type cytosensor showed an excellent analytical performance for the ultrasensitive detection of MCF-7 cells and quantification of cell surface glycan. More importantly, taking advantage of Con A-gold nanoprobe catalyzed silver enhancement, the proposed method was further used for naked-eye tracking glycolytic inhibition in living cells. This aptasensor holds great promise as a new point-of-care diagnostic tool for analyzing glycan expression on living cells and further helps cancer diagnosis and treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
MiR-300 suppresses laryngeal squamous cell carcinoma proliferation and metastasis by targeting ROS1.
Ge, Wensheng; Han, Chaodong; Wang, Jing; Zhang, Yunping
2016-01-01
Laryngeal squamous cell carcinoma (LSCC) is a common aggressive head and neck cancer with high mortality and incidence. MicroRNAs (miRNAs) are short, non-coding and endogenous RNAs that posttranscriptionally inhibit gene expression. In this study, we showed that miR-300 expression was downregulated in LSCC tissues compared with adjacent no-tumor tissues. MiR-300 overexpression inhibited Hep-2 cell proliferation, as well as the expression of ki-67 and PCNA. Moreover, overexpression of miR-300 repressed the cell invasion in Hep-2 cells. We identified c-ros oncogene 1 receptor tyrosine kinase (ROS1) as a direct target gene of miR-300 in Hep-2 cell. Furthermore, ROS1 expression was upregulated in LSCC tissues compared with adjacent no-tumor tissues. Interesting, there were an inverse correlation between ROS1 and miR-300 expression in the LSCC tissues. Overexpression of ROS1 increased the Hep-2 cells proliferation and invasion. Overexpression of ROS1 abrogated miR-300 induced cell growth and invasion inhibition. Therefore, our data suggested that miR-300 acted as a tumor suppressive gene in LSCC.
MiR-300 suppresses laryngeal squamous cell carcinoma proliferation and metastasis by targeting ROS1
Ge, Wensheng; Han, Chaodong; Wang, Jing; Zhang, Yunping
2016-01-01
Laryngeal squamous cell carcinoma (LSCC) is a common aggressive head and neck cancer with high mortality and incidence. MicroRNAs (miRNAs) are short, non-coding and endogenous RNAs that posttranscriptionally inhibit gene expression. In this study, we showed that miR-300 expression was downregulated in LSCC tissues compared with adjacent no-tumor tissues. MiR-300 overexpression inhibited Hep-2 cell proliferation, as well as the expression of ki-67 and PCNA. Moreover, overexpression of miR-300 repressed the cell invasion in Hep-2 cells. We identified c-ros oncogene 1 receptor tyrosine kinase (ROS1) as a direct target gene of miR-300 in Hep-2 cell. Furthermore, ROS1 expression was upregulated in LSCC tissues compared with adjacent no-tumor tissues. Interesting, there were an inverse correlation between ROS1 and miR-300 expression in the LSCC tissues. Overexpression of ROS1 increased the Hep-2 cells proliferation and invasion. Overexpression of ROS1 abrogated miR-300 induced cell growth and invasion inhibition. Therefore, our data suggested that miR-300 acted as a tumor suppressive gene in LSCC. PMID:27725869
Lin, Qiuyue; Sun, Ming-Zhong; Guo, Chunmei; Shi, Ji; Chen, Xin; Liu, Shuqing
2015-02-01
The signal adaptor CRK family protein play important roles in cancer cell progression, proliferation, migration and invasion. Previously, we showed that CRK was involved in lymphatic metastatic potential of murine hepatocarcinoma cells. In current work, as a member of CRK family, chicken tumour virus number 10 regulator of kinase-like protein (CRKL) was revealed to be associated with malignant behaviors of Hca-P, a murine HCC cell with lymph node metastatic (LNM) rate of ∼25%. CRKL overexpression in Hca-P by a constructed eukaryotic expression vector of pcDNA3.1/V5-HisB-CRKL significantly ameliorated its malignant biological properties. CCK-8 and soft agar colony formation assays indicated CRKL overexpression significantly inhibits the cell proliferation and colony formation abilities of Hca-P. Additionally, transwell assays indicated that the Hca-P cell migration and invasion capacities were apparently reduced following CRKL overexpression. As Hca-P is an ideal hepatocarcinoma cell model with low (initial) LNM potential, CRKL is shown to act as a potential suppressor and to provide new insight for both the malignant behaviors of hepatocarcinoma cells and lymphatic metastasis mechanism of hepatocarcinoma. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Chen, Ching-Yun; Tseng, Kuo-Yun; Lai, Yen-Liang; Chen, Yo-Shen; Lin, Feng-Huei; Lin, Shankung
2017-01-01
Many studies have indicated that loss of the osteoblastogenic potential in bone marrow mesenchymal stem cells (bmMSCs) is the major component in the etiology of the aging-related bone deficit. But how the bmMSCs lose osteogenic capability in aging is unclear. Using 2-dimentional cultures, we examined the dose response of human bmMSCs, isolated from adult and aged donors, to exogenous insulin-like growth factor 1 (IGF-1), a growth factor regulating bone formation. The data showed that the mitogenic activity and the osteoblastogenic potential of bmMSCs in response to IGF-1 were impaired with aging, whereas higher doses of IGF-1 increased the proliferation rate and osteogenic potential of aging bmMSCs. Subsequently, we seeded IGF-1-overexpressing aging bmMSCs into calcium-alginate scaffolds and incubated in a bioreactor with constant perfusion for varying time periods to examine the effect of IGF-1 overexpression to the bone-forming capability of aging bmMSCs. We found that IGF-1 overexpression in aging bmMSCs facilitated the formation of cell clusters in scaffolds, increased the cell survival inside the cell clusters, induced the expression of osteoblast markers, and enhanced the biomineralization of cell clusters. These results indicated that IGF-1 overexpression enhanced cells' osteogenic capability. Thus, our data suggest that the aging-related loss of osteogenic potential in bmMSCs can be attributed in part to the impairment in bmMSCs' IGF-1 signaling, and support possible application of IGF-1-overexpressing autologous bmMSCs in repairing bone defect of the elderly and in producing bone graft materials for repairing large scale bone injury in the elderly.
Nagy, Zsolt; Acs, Bence; Butz, Henriett; Feldman, Karolina; Marta, Alexa; Szabo, Peter M; Baghy, Kornelia; Pazmany, Tamas; Racz, Karoly; Liko, Istvan; Patocs, Attila
2016-01-01
The glucocorticoid receptor (GR) plays a crucial role in inflammatory responses. GR has several isoforms, of which the most deeply studied are the GRα and GRß. Recently it has been suggested that in addition to its negative dominant effect on GRα, the GRß may have a GRα-independent transcriptional activity. The GRß isoform was found to be frequently overexpressed in various autoimmune diseases, including inflammatory bowel disease (IBD). In this study, we wished to test whether the gene expression profile found in a GRß overexpressing intestinal cell line (Caco-2GRß) might mimic the gene expression alterations found in patients with IBD. Whole genome microarray analysis was performed in both normal and GRß overexpressing Caco-2 cell lines with and without dexamethasone treatment. IBD-related genes were identified from a meta-analysis of 245 microarrays available in online microarray deposits performed on intestinal mucosa samples from patients with IBD and healthy individuals. The differentially expressed genes were further studied using in silico pathway analysis. Overexpression of GRß altered a large proportion of genes that were not regulated by dexamethasone suggesting that GRß may have a GRα-independent role in the regulation of gene expression. About 10% of genes differentially expressed in colonic mucosa samples from IBD patients compared to normal subjects were also detected in Caco-2 GRß intestinal cell line. Common genes are involved in cell adhesion and cell proliferation. Overexpression of GRß in intestinal cells may affect appropriate mucosal repair and intact barrier function. The proposed novel role of GRß in intestinal epithelium warrants further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
t-Darpp overexpression in HER2-positive breast cancer confers a survival advantage in lapatinib.
Christenson, Jessica L; Denny, Erin C; Kane, Susan E
2015-10-20
Drug resistance is a major barrier to successful cancer treatment. For patients with HER2-positive breast cancer who initially respond to therapy, the majority develop resistance within one year of treatment. Patient outcomes could improve significantly if we can find and exploit common mechanisms of acquired resistance to different targeted therapies. Overexpression of t-Darpp, a truncated form of the dual kinase/phosphatase inhibitor Darpp-32, has been linked to acquired resistance to trastuzumab, a front-line therapy for HER2-positive breast cancer. Darpp-32 reverses t-Darpp's effect on trastuzumab resistance. In this study, we examined whether t-Darpp could be involved in resistance to lapatinib, another HER2-targeted therapeutic. Lapatinib-resistant SKBR3 cells (SK/LapR) showed a marked change in the Darpp-32:t-Darpp ratio toward a predominance of t-Darpp. Overexpression of t-Darpp alone was not sufficient to confer lapatinib resistance, but cells that overexpress t-Darpp partially mimicked the molecular resistance phenotype observed in SK/LapR cells exposed to lapatinib. SK/LapR cells failed to down-regulate Survivin and failed to induce BIM accumulation in response to lapatinib; cells overexpressing t-Darpp exhibited only the failed BIM accumulation. t-Darpp knock-down reversed this phenotype. Using a fluorescence-based co-culture system, we found that cells overexpressing t-Darpp formed colonies in lapatinib within 3-4 weeks, whereas parental cells in the same co-culture did not. Overall, t-Darpp appears to mediate a survival advantage in lapatinib, possibly linked to failed lapatinib-induced BIM accumulation. t-Darpp might also be relevant to acquired resistance to other cancer drugs that rely on BIM accumulation to induce apoptosis.
ERAP1 overexpression in HPV-induced malignancies: A possible novel immune evasion mechanism.
Steinbach, Alina; Winter, Jan; Reuschenbach, Miriam; Blatnik, Renata; Klevenz, Alexandra; Bertrand, Miriam; Hoppe, Stephanie; von Knebel Doeberitz, Magnus; Grabowska, Agnieszka K; Riemer, Angelika B
2017-01-01
Immune evasion of tumors poses a major challenge for immunotherapy. For human papillomavirus (HPV)-induced malignancies, multiple immune evasion mechanisms have been described, including altered expression of antigen processing machinery (APM) components. These changes can directly influence epitope presentation and thus T-cell responses against tumor cells. To date, the APM had not been studied systematically in a large array of HPV + tumor samples. Therefore in this study, systematic expression analysis of the APM was performed on the mRNA and protein level in a comprehensive collection of HPV16 + cell lines. Subsequently, HPV + cervical tissue samples were examined by immunohistochemistry. ERAP1 (endoplasmic reticulum aminopeptidase 1) was the only APM component consistently altered - namely overexpressed - in HPV16 + tumor cell lines. ERAP1 was also found to be overexpressed in cervical intraepithelial neoplasia and cervical cancer samples; expression levels were increasing with disease stage. On the functional level, the influence of ERAP1 expression levels on HPV16 E7-derived epitope presentation was investigated by mass spectrometry and in cytotoxicity assays with HPV16-specific T-cell lines. ERAP1 overexpression did not cause a complete destruction of any of the HPV epitopes analyzed, however, an influence of ERAP1 overexpression on the presentation levels of certain HPV epitopes could be demonstrated by HPV16-specific CD8 + T-cells. These showed enhanced killing toward HPV16 + CaSki cells whose ERAP1 expression had been attenuated to normal levels. ERAP1 overexpression may thus represent a novel immune evasion mechanism in HPV-induced malignancies, in cases when presentation of clinically relevant epitopes is reduced by overactivity of this peptidase.
A Cell-targeted Photodynamic Nanomedicine Strategy for Head & Neck Cancers
Master, Alyssa; Malamas, Anthony; Solanki, Rachna; Clausen, Dana M.; Eiseman, Julie L.; Gupta, Anirban Sen
2013-01-01
Photodynamic Therapy (PDT) holds great promise for the treatment of head and neck (H&N) carcinomas where repeated loco-regional therapy often becomes necessary due to the highly aggressive and recurrent nature of the cancers. While interstitial light delivery technologies are being refined for PDT of H&N and other cancers, a parallel clinically relevant research area is the formulation of photosensitizers in nanovehicles that allow systemic administration yet preferential enhanced uptake in the tumor. This approach can render dual-selectivity of PDT, by harnessing both the drug and the light delivery within the tumor. To this end, we report on a cell-targeted nanomedicine approach for the photosensitizer silicon phthalocyanine-4 (Pc 4), by packaging it within polymeric micelles that are surface-decorated with GE11-peptides to promote enhanced cell-selective binding and receptor-mediated internalization in EGFR-overexpressing H&N cancer cells. Using fluorescence spectroscopy and confocal microscopy, we demonstrate in vitro that the EGFR-targeted Pc 4-nanoformulation undergoes faster and higher uptake in EGFR-overexpressing H&N SCC-15 cells. We further demonstrate that this enhanced Pc 4 uptake results in significant cell-killing and drastically reduced post-PDT clonogenicity. Building on this in vitro data, we demonstrate that the EGFR-targeted Pc 4-nanoformulation results in significant intra-tumoral drug uptake and subsequent enhanced PDT response, in vivo, in SCC-15 xenografts in mice. Altogether our results show significant promise towards a cell-targeted photodynamic nanomedicine for effective treatment of H&N carcinomas. PMID:23531079
Clift, Ian C.; Bamidele, Adebowale O.; Rodriguez-Ramirez, Christie; Kremer, Kimberly N.
2014-01-01
CXC chemokine receptor 4 (CXCR4) is a G protein–coupled receptor (GPCR) located on the cell surface that signals upon binding the chemokine stromal derived factor-1 (SDF-1; also called CXCL 12). CXCR4 promotes neuroblastoma proliferation and chemotaxis. CXCR4 expression negatively correlates with prognosis and drives neuroblastoma growth and metastasis in mouse models. All functions of CXCR4 require its expression on the cell surface, yet the molecular mechanisms that regulate CXCR4 cell-surface levels in neuroblastoma are poorly understood. We characterized CXCR4 cell-surface regulation in the related SH-SY5Y and SK-N-SH human neuroblastoma cell lines. SDF-1 treatment caused rapid down-modulation of CXCR4 in SH-SY5Y cells. Pharmacologic activation of protein kinase C similarly reduced CXCR4, but via a distinct mechanism. Analysis of CXCR4 mutants delineated two CXCR4 regions required for SDF-1 treatment to decrease cell-surface CXCR4 in neuroblastoma cells: the isoleucine-leucine motif at residues 328 and 329 and residues 343–352. In contrast, and unlike CXCR4 regulation in other cell types, serines 324, 325, 338, and 339 were not required. Arrestin proteins can bind and regulate GPCR cell-surface expression, often functioning together with kinases such as G protein–coupled receptor kinase 2 (GRK2). Using SK-N-SH cells which are naturally deficient in β-arrestin1, we showed that β-arrestin1 is required for the CXCR4 343–352 region to modulate CXCR4 cell-surface expression following treatment with SDF-1. Moreover, GRK2 overexpression enhanced CXCR4 internalization, via a mechanism requiring both β-arrestin1 expression and the 343–352 region. Together, these results characterize CXCR4 structural domains and β-arrestin1 as critical regulators of CXCR4 cell-surface expression in neuroblastoma. β-Arrestin1 levels may therefore influence the CXCR4-driven metastasis of neuroblastoma as well as prognosis. PMID:24452472
Differential signaling and regulation of apical vs. basolateral EGFR in polarized epithelial cells.
Kuwada, S K; Lund, K A; Li, X F; Cliften, P; Amsler, K; Opresko, L K; Wiley, H S
1998-12-01
Overexpression of the epidermal growth factor receptors (EGFR) in polarized kidney epithelial cells caused them to appear in high numbers at both the basolateral and apical cell surfaces. We utilized these cells to look for differences in the regulation and signaling of apical vs. basolateral EGFR. Apical and basolateral EGFR were biologically active and mediated EGF-induced cell proliferation to similar degrees. Receptor downregulation and endocytosis were less efficient at the apical surface, resulting in prolonged EGF-induced tyrosine kinase activity at the apical cell membrane. Tyrosine phosphorylation of EGFR substrates known to mediate cell proliferation, Src-homologous and collagen protein (SHC), extracellularly regulated kinase 1 (ERK1), and ERK2 could be induced similarly by activation of apical or basolateral EGFR. Focal adhesion kinase was tyrosine phosphorylated more by basolateral than by apical EGFR; however, beta-catenin was tyrosine phosphorylated to a much greater degree following the activation of mislocalized apical EGFR. Thus EGFR regulation and EGFR-mediated phosphorylation of certain substrates differ at the apical and basolateral cell membrane domains. This suggests that EGFR mislocalization could result in abnormal signal transduction and aberrant cell behavior.
Mechano growth factor, a splice variant of IGF-1, promotes neurogenesis in the aging mouse brain.
Tang, Jason J; Podratz, Jewel L; Lange, Miranda; Scrable, Heidi J; Jang, Mi-Hyeon; Windebank, Anthony J
2017-07-07
Mechano growth factor (MGF) is a splice variant of IGF-1 first described in skeletal muscle. MGF induces muscle cell proliferation in response to muscle stress and injury. In control mice we found endogenous expression of MGF in neurogenic areas of the brain and these levels declined with age. To better understand the role of MGF in the brain, we used transgenic mice that constitutively overexpressed MGF from birth. MGF overexpression significantly increased the number of BrdU+ proliferative cells in the dentate gyrus (DG) of the hippocampus and subventricular zone (SVG). Although MGF overexpression increased the overall rate of adult hippocampal neurogenesis at the proliferation stage it did not alter the distribution of neurons at post-mitotic maturation stages. We then used the lac-operon system to conditionally overexpress MGF in the mouse brain beginning at 1, 3 and 12 months with histological and behavioral observation at 24 months of age. With conditional overexpression there was an increase of BrdU+ proliferating cells and BrdU+ differentiated mature neurons in the olfactory bulbs at 24 months when overexpression was induced from 1 and 3 months of age but not when started at 12 months. This was associated with preserved olfactory function. In vitro, MGF increased the size and number of neurospheres harvested from SVZ-derived neural stem cells (NSCs). These findings indicate that MGF overexpression increases the number of neural progenitor cells and promotes neurogenesis but does not alter the distribution of adult newborn neurons at post-mitotic stages. Maintaining youthful levels of MGF may be important in reversing age-related neuronal loss and brain dysfunction.
Shrestha, Roshan L.; Ahn, Grace S.; Staples, Mae I.; Sathyan, Kizhakke M.; Karpova, Tatiana S.; Foltz, Daniel R.; Basrai, Munira A.
2017-01-01
Chromosomal instability (CIN) is a hallmark of many cancers and a major contributor to tumorigenesis. Centromere and kinetochore associated proteins such as the evolutionarily conserved centromeric histone H3 variant CENP-A, associate with centromeric DNA for centromere function and chromosomal stability. Stringent regulation of cellular CENP-A levels prevents its mislocalization in yeast and flies to maintain genome stability. CENP-A overexpression and mislocalization are observed in several cancers and reported to be associated with increased invasiveness and poor prognosis. We examined whether there is a direct relationship between mislocalization of overexpressed CENP-A and CIN using HeLa and chromosomally stable diploid RPE1 cell lines as model systems. Our results show that mislocalization of overexpressed CENP-A to chromosome arms leads to chromosome congression defects, lagging chromosomes, micronuclei formation and a delay in mitotic exit. CENP-A overexpressing cells showed altered localization of centromere and kinetochore associated proteins such as CENP-C, CENP-T and Nuf2 leading to weakened native kinetochores as shown by reduced interkinetochore distance and CIN. Importantly, our results show that mislocalization of CENP-A to chromosome arms is one of the major contributors for CIN as depletion of histone chaperone DAXX prevents CENP-A mislocalization and rescues the reduced interkinetochore distance and CIN phenotype in CENP-A overexpressing cells. In summary, our results establish that CENP-A overexpression and mislocalization result in a CIN phenotype in human cells. This study provides insights into how overexpression of CENP-A may contribute to CIN in cancers and underscore the importance of understanding the pathways that prevent CENP-A mislocalization for genome stability. PMID:28596481
PAQR3 Inhibits the Proliferation and Tumorigenesis in Esophageal Cancer Cells.
Zhou, Fang; Wang, Shunchang; Wang, Jianjun
2017-05-24
Progestin and adipoQ receptor family member III (PAQR3), a member of the PAQR family, is frequently downregulated in different types of human cancer. However, its expression and functions in esophageal cancer are still unknown. This study aimed to explore the expression of PAQR3 in esophageal cancer cell lines and to investigate the role of PAQR3 in the development of esophageal cancer. Our data showed that PAQR3 is expressed in low amounts in human esophageal cancer cell lines. Overexpression of PAQR3 significantly suppressed the proliferation, migration, and invasion of esophageal cancer cells. In addition, overexpression of PAQR3 downregulated the protein expression levels of RAF1, p-MEK1, and p-ERK1/2 in esophageal cancer cells. Furthermore, overexpression of PAQR3 attenuated the tumor growth in a tumor xenograft model. In conclusion, we demonstrated that overexpression of PAQR3 suppresses cell proliferation, migration, and invasion in esophageal cancer in vitro and in vivo. Therefore, PAQR3 may act as a therapeutic target for human esophageal cancer.
Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA
NASA Astrophysics Data System (ADS)
Chen, Lijue; She, Xiaodong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue
2018-02-01
The technology of RNA interference (RNAi) that uses small interfering RNA (siRNA) to silence the gene expression with complementary messenger RNA (mRNA) sequence has great potential for the treatment of cancer in which certain genes were usually found overexpressed. However, the carry and delivery of siRNA to the target site in the human body can be challenging for this technology to be used clinically to silence the cancer-related gene expression. In this work, rod shaped mesoporous silica nanoparticles (MSNs) were developed as siRNA delivery system for specific intracellular delivery. The rod MSNs with an aspect ratio of 1.5 had a high surface area of 934.28 m2/g and achieved a siRNA loading of more than 80 mg/g. With the epidermal growth factor (EGF) grafted on the surface of the MSNs, siRNA can be delivered to the epidermal growth factor receptor (EGFR) overexpressed colorectal cancer cells with high intracellular concentration compared to MSNs without EGF and lead to survivin gene knocking down to less than 30%.
Small Molecules that Suppress IGF-Activated Prostate Cancers
2006-04-01
selectively impair the growth of IGF2-overexpressing hepatocellular carcinoma cells. For cell viability assays, IGF2-expressing cells were plated at a...produced at high levels in liver tumors (27). We identified three chemically analogous compounds that killed IGF2-overexpressing hepatocellular carcinoma cells... hepatocellular carcinoma cell lines that we recently characterized2 indicated that one of the three chemi- cals, 94G6, exhibited the highest cytotoxicity
miR-203a is involved in HBx-induced inflammation by targeting Rap1a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, AiRong; Chen, Huo; Xu, ChunFang
Hepatitis B virus (HBV) causes acute and chronic hepatitis, and is one of the major causes of cirrhosis and hepatocellular carcinoma. Accumulating evidence suggests that inflammation is the key factor for liver cirrhosis and hepatocellular carcinoma. MicroRNAs play important roles in many biological processes. Here, we aim to explore the function of microRNAs in the HBX-induced inflammation. First, microarray experiment showed that HBV{sup +} liver samples expressed higher level of miR-203a compared to HBV{sup -} liver samples. To verify these alterations, HBx-coding plasmid was transfected into HepG2 cells to overexpress HBx protein. The real-time PCR results suggested that over-expression ofmore » HBx could induce up-regulation of miR-203a. To define how up-regulation of miR-203a can induce liver cells inflammation, we over-expressed miR-203a in HepG2 cells. Annexin V staining and BrdU staining suggested that overexpression of miR-203a significantly increased the cell apoptosis and proliferation, meanwhile, over-expression of miR-203a could lead to a decrease in G0/G1 phase cells and an increase in G2/M phase cells. Some cytokines production including IL-6 and IL-8 were significantly increased, but TGFβ and IFNγ were decreased in miR-203a over-expressed HepG2 cells. Luciferase reporter assay experiments, protein mass-spectrum assay and real-time PCR all together demonstrated that Rap1a was the target gene of miR-203a. Further experiments showed that these alterations were modulated through PI3K/ERK/p38/NFκB pathways. These data suggested that HBV-infection could up-regulate the expression of miR-203a, thus down regulated the expression of Rap1a and affected the PI3K/ERK/p38/NFκB pathways, finally induced the hepatitis inflammation. - Highlights: • HBX induces the over-expression of miR-203a in HepG2 cells. • miR-203a targets Rap1a to induce the inflammation in HepG2 cells. • miR-203a regulates the apoptosis and cell cycles of HepG2 cells. • miR-203a alters the MAPK signaling pathway by down-regulating the Rap1a.« less
Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Nowwarote, Nunthawan; Aguilar, Panuroot; Palaga, Tanapat
2013-01-01
Notch signaling plays critical roles in stem cells by regulating cell fate determination and differentiation. The aim of this study was to evaluate the participation of Notch signaling in neurogenic commitment of human periodontal ligament-derived mesenchymal stem cells (hPDLSCs) and to examine the ability to control differentiation of these cells using modified surfaces containing affinity immobilized Notch ligands. Neurogenic induction of hPDLSCs was performed via neurosphere formation. Cells were aggregated and form spheres as early 1 day in culture. In addition, the induced cells exhibited increased mRNA and protein expression of neuronal markers that is, β3-tubulin and neurofilament. During neuronal differentiation, a significant increase of Hes1 and Hey1 mRNA expression was noted. Using pharmacological inhibition (γ-secretase inhibitor) or genetic manipulation (overexpression of dominant negative mastermind-like transcription co-activators), neurosphere formation was attenuated and a marked decrease in neurogenic mRNA expression was observed. To confirm the role of Notch signaling in neuronal differentiation of hPDLSCs, the Notch ligand, Jagged-1, is bound to the surface using an affinity immobilization technique. The hPDLSC cultured on a Jagged-1-modified surface had increased expression of Notch signaling target genes, Hes-1 and Hey-1, confirming the activity and potency of surface-bound Jagged-1. Further, hPDLSC on surface-bound Jagged-1 under serum-free conditions showed multiple long and thin neurite-like extensions, and an increase in the expression of neurogenic mRNA markers was observed. Pretreatment of the cells with γ-secretase inhibitor, DAPT, before seeding on the Jagged-1-modified surface blocked development of the neurite-like morphology. Together, the results in this study suggest the involvement of Notch signaling in neurogenic commitment of hPDLSCs. PMID:23379739
Apolipoprotein D Internalization Is a Basigin-dependent Mechanism.
Najyb, Ouafa; Brissette, Louise; Rassart, Eric
2015-06-26
Apolipoprotein D (apoD), a member of the lipocalin family, is a 29-kDa secreted glycoprotein that binds and transports small lipophilic molecules. Expressed in several tissues, apoD is up-regulated under different stress stimuli and in a variety of pathologies. Numerous studies have revealed that overexpression of apoD led to neuroprotection in various mouse models of acute stress and neurodegeneration. This multifunctional protein is internalized in several cells types, but the specific internalization mechanism remains unknown. In this study, we demonstrate that the internalization of apoD involves a specific cell surface receptor in 293T cells, identified as the transmembrane glycoprotein basigin (BSG, CD147); more particularly, its low glycosylated form. Our results show that internalized apoD colocalizes with BSG into vesicular compartments. Down-regulation of BSG disrupted the internalization of apoD in cells. In contrast, overexpression of basigin in SH-5YSY cells, which poorly express BSG, restored the uptake of apoD. Cyclophilin A, a known ligand of BSG, competitively reduced apoD internalization, confirming that BSG is a key player in the apoD internalization process. In summary, our results demonstrate that basigin is very likely the apoD receptor and provide additional clues on the mechanisms involved in apoD-mediated functions, including neuroprotection. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Katayama, Ryohei; Fang, Siyang; Tsutsui, Saki; Akatsuka, Akinobu; Shan, Mingde; Choi, Hyeong-Wook; Fujita, Naoya; Yoshimatsu, Kentaro; Shiina, Isamu; Yamori, Takao; Dan, Shingo
2018-01-01
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) were demonstrated to provide survival benefit in patients with non-small cell lung cancer (NSCLC) harboring activating mutations of EGFR; however, emergence of acquired resistance to EGFR-TKIs has been shown to cause poor outcome. To overcome the TKI resistance, drugs with different mode of action are required. We previously reported that M-COPA (2-methylcoprophilinamide), a Golgi disruptor, suppressed the growth of gastric cancers overexpressing receptor tyrosine kinases (RTKs) such as hepatocyte growth factor receptor (MET) via downregulating their cell surface expression. In this study, we examined the antitumor effect of M-COPA on NSCLC cells with TKI resistance. As a result, M-COPA effectively downregulated cell surface EGFR and its downstream signals, and finally exerted in vivo antitumor effect in NSCLC cells harboring secondary (T790M/del19) and tertiary (C797S/T790M/del19) mutated EGFR, which exhibit acquired resistance to first- and third generation EGFR-TKIs, respectively. M-COPA also downregulated MET expression potentially involved in the acquired resistance to EGFR-TKIs via bypassing the EGFR pathway blockade. These results provide the first evidence that targeting the Golgi apparatus might be a promising therapeutic strategy to overcome the vicious cycle of TKI resistance in EGFR-mutated NSCLC cells via downregulating cell surface RTK expression. PMID:29416720
Ling, Youguo; Zhang, Xiaojuan; Bai, Yuanyuan; Li, Ping; Wei, Congwen; Song, Ting; Zheng, Zirui; Guan, Kai; Zhang, Yanhong; Zhang, Buchang; Liu, Xuedong; Ma, Runlin Z; Cao, Cheng; Zhong, Hui; Xu, Quanbin
2014-08-08
The spindle assembly checkpoint kinase Mps1 is highly expressed in several types of cancers, but its cellular involvement in tumorigenesis is less defined. Herein, we confirm that Mps1 is overexpressed in colon cancer tissues. Further, we find that forced expression of Mps1 in the colon cancer cell line SW480 enables cells to become resistant to both Mps1 inhibition-induced checkpoint depletion and cell death. Overexpression of Mps1 also increases genome instability in tumor cells owing to a weakened spindle assembly checkpoint. Collectively, our findings suggest that high levels of Mps1 contribute to tumorigenesis by attenuating the spindle assembly checkpoint. Copyright © 2014 Elsevier Inc. All rights reserved.
Tissue Factor promotes breast cancer stem cell activity in vitro.
Shaker, Hudhaifah; Harrison, Hannah; Clarke, Robert; Landberg, Goran; Bundred, Nigel J; Versteeg, Henri H; Kirwan, Cliona C
2017-04-18
Cancer stem cells (CSCs) are a subpopulation of cells that can self-renew and initiate tumours. The clotting-initiating protein Tissue Factor (TF) promotes metastasis and may be overexpressed in cancer cells with increased CSC activity. We sought to determine whether TF promotes breast CSC activity in vitro using human breast cancer cell lines. TF expression was compared in anoikis-resistant (CSC-enriched) and unselected cells. In cells sorted into of TF-expressing and TF-negative (FACS), and in cells transfected to knockdown TF (siRNA) and overexpress TF (cDNA), CSC activity was compared by (i) mammosphere forming efficiency (MFE) (ii) holoclone colony formation (Hc) and (iii) ALDH1 activity. TF expression was increased in anoikis-resistant and high ALDH1-activity T47D cells compared to unselected cells. FACS sorted TF-expressing T47Ds and TF-overexpressing MCF7s had increased CSC activity compared to TF-low cells. TF siRNA cells (MDAMB231,T47D) had reduced CSC activity compared to control cells. FVIIa increased MFE and ALDH1 in a dose-dependent manner (MDAMB231, T47D). The effects of FVIIa on MFE were abrogated by TF siRNA (T47D). Breast CSCs (in vitro) demonstrate increased activity when selected for high TF expression, when induced to overexpress TF, and when stimulated (with FVIIa). Targeting the TF pathway in vivo may abrogate CSC activity.
Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane.
Stanca, Sarmiza E; Matthäus, Christian; Neugebauer, Ute; Nietzsche, Sandor; Fritzsche, Wolfgang; Dellith, Jan; Heintzmann, Rainer; Weber, Karina; Deckert, Volker; Krafft, Christoph; Popp, Jürgen
2015-10-01
Certain carboxyl groups of the plasma membrane are involved in tumorgenesis processes. A gold core-hydroxyapatite shell (AuHA) nanocomposite is introduced as chemo-spectroscopic sensor to monitor these carboxyl groups of the cell membrane. Hydroxyapatite (HA) plays the role both of a chemical detector and of a biocompatible Raman marker. The principle of detection is based on chemical interaction between the hydroxyl groups of the HA and the carboxyl terminus of the proteins. The AuHA exhibits a surface enhanced Raman scattering (SERS) signal at 954 cm(-1) which can be used for its localization. The bio-sensing capacity of AuHA towards human skin epidermoid carcinoma (A431) and Chinese hamster ovary (CHO) cell lines is investigated using Raman microspectroscopic imaging. The localization of AuHA on cells is correlated with scanning electron microscopy, transmission electron microscopy and structured illumination fluorescence microscopy. This qualitative approach is a step towards a quantitative study of the proteins terminus. This method would enable further studies on the molecular profiling of the plasma membrane, in an attempt to provide accurate cell identification. Using a gold core-hydroxyapatite shell (AuHA) nanocomposite, the authors in this paper showed the feasibility of detecting and differentiating cell surface molecules by surface enhanced Raman scattering. Copyright © 2015 Elsevier Inc. All rights reserved.
Kumar, Santosh; Wang, Gang; Liu, Wenjuan; Ding, Wenwen; Dong, Ming; Zheng, Na; Ye, Hongyu; Liu, Jie
2018-06-11
HIMF (hypoxia-induced mitogenic factor/found in inflammatory zone 1/resistin like α) is a secretory and cytokine-like protein and serves as a critical stimulator of hypoxia-induced pulmonary hypertension. With a role for HIMF in heart disease unknown, we explored the possible roles for HIMF in cardiac hypertrophy by overexpressing and knocking down HIMF in cardiomyocytes and characterizing HIMF gene ( himf ) knockout mice. We found that HIMF mRNA and protein levels were upregulated in phenylephrine-stimulated cardiomyocyte hypertrophy and our mouse model of transverse aortic constriction-induced cardiac hypertrophy, as well as in human hearts with dilated cardiomyopathy. Furthermore, HIMF overexpression could induce cardiomyocyte hypertrophy, as characterized by elevated protein expression of hypertrophic biomarkers (ANP [atrial natriuretic peptide] and β-MHC [myosin heavy chain-β]) and increased cell-surface area compared with controls. Conversely, HIMF knockdown prevented phenylephrine-induced cardiomyocyte hypertrophy and himf ablation in knockout mice significantly attenuated transverse aortic constriction-induced hypertrophic remodeling and cardiac dysfunction. HIMF overexpression increased the cytosolic Ca 2+ concentration and activated the CaN-NFAT (calcineurin-nuclear factor of activated T cell) and MAPK (mitogen-activated protein kinase) pathways; this effect could be prevented by reducing cytosolic Ca 2+ concentration with L-type Ca 2+ channel blocker nifedipine or inhibiting the CaSR (Ca 2+ sensing receptor) with Calhex 231. Furthermore, HIMF overexpression increased HIF-1α (hypoxia-inducible factor) expression in neonatal rat ventricular myocytes, and HIMF knockout inhibited HIF-1α upregulation in transverse aortic constriction mice. Knockdown of HIF-1α attenuated HIMF-induced cardiomyocyte hypertrophy. In conclusion, HIMF has a critical role in the development of cardiac hypertrophy, and targeting HIMF may represent a potential therapeutic strategy. © 2018 American Heart Association, Inc.
Zhou, Lina; Zhao, Lu; Shang, Mei; He, Tongtong; Tang, Zeli; Sun, Hengchang; Ren, Pengli; Lin, Zhipeng; Chen, Tingjin; Yu, Jinyun; Xu, Jin; Yu, Xinbing; Huang, Yan
2017-01-01
Background Numerous experimental and epidemiological studies have demonstrated a link between Clonorchis sinensis (C. sinensis) infestation and cholangiocarcinoma (CCA) as well as hepatocellular carcinoma (HCC). The underlying molecular mechanism involved in the malignancy of CCA and HCC has not yet been addressed. Csseverin, a component of the excretory/secretory products of C. sinensis (CsESPs), was confirmed to cause obvious apoptotic inhibition in the human HCC cell line PLC. However, the antiapoptotic mechanism is unclear. In the present study, we investigated the cellular features of the antiapoptotic mechanism upon transfection of the Csseverin gene. Methods In the present study, we evaluated the effects of Csseverin gene overexpression on the apoptosis of PLC cells using an Annexin PE/7-AAD assay. Western blotting was applied to quantify the activation of caspase-3 and caspase-9, the mitochondrial translocation of Bax and the release of Cyt c upon Csseverin overexpression in PLC cells. Laser scanning confocal microscopy was used to analyze the changes of intracellular calcium. Fluorescence assay and immunofluorescence assays were performed to observe the changes of the mitochondrial permeability transition pore (MPTP). Results The overexpression of Csseverin in PLC cells showed apoptosis resistance after the induction of apoptosis. Additionally, the activation of caspase-3 and caspase-9 was specifically weakened in Csseverin overexpression PLC cells. The overexpression of Csseverin reduced the increase in intracellular free Ca2+, thereby inhibiting MPTP opening in PLC cells. Moreover, Bax mitochondrial translocation and the subsequent release of Cyt c were downregulated in apoptotic Csseverin overexpression PLC cells. Conclusions The present findings suggest that Csseverin, a component of CsESPs, confers protection from human HCC cell apoptosis via the inactivation of membranous Ca2+ channels. Csseverin might be involved in the process of HCC through C. sinensis infestation in affected patients. PMID:29125839
Sun, Changyu; Zhang, Zhihao; He, Ping; Zhou, Yan; Xie, Xuhua
2017-08-01
The SASH1 gene is discovered as a tumor suppressor recently. However, the molecular mechanisms of SASH1 in hepatocarcinoma (HCC) remain unclear. In present studies, we investigated the molecular mechanisms of SASH1 on cell invasion and metastasis of hepatocarcinoma in vivo and in vitro. In this study, SASH1 overexpression HCC cell lines were treated with purmorphamine (0, 0.5, 1, 2μmol/l). Western blot and qRT-PCR were used to examine the related gene expression of EMT markers and the Shh-Gli1 and PI3K/Akt-dependent pathway. Cell migration and invasion were assessed by Transwell assay. In addition, a mice SASH1 overexpression HCC orthotopic xenograft model was established and treated with purmorphamine or 740Y-P or PDGF. Tumor volume was assessed, and H&E staining was applied to histopathologic analysis. The results showed that purmorphamine exposure significantly increased the mRNA and protein expression levels of Shh and Gli1 in a dose-dependent manner in the SASH1 overexpression HepG2 and HCCLM3 cells. Besides, purmorphamine promoted the migration and invasion of SASH1 overexpression HCC cells, as well as the EMT progress. Moreover, purmorphamine significantly increased the synthesis of PI3K and pAkt in a dose-dependent manner. Furthermore, the invasion and migration abilities were also improved by treatment with 740Y-P or PDGF in the SASH1 overexpression HCC cells. Additionally, the agonists promoted tumor growth and intrahepatic and pulmonary metastasis of the orthotopic transplantation tumors grown from SASH1 overexpression HCC cells in vivo. In conclusion, SASH1 may inhibit hepatocarcinoma cell invasion and metastasis through down-regulating the Shh-Gli1 and PI3K-AKT pathways in vivo and in vitro. Copyright © 2017. Published by Elsevier Ltd.
Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R
2014-05-01
Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent.
Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction
Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R
2014-01-01
Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent. PMID:24464222
Design of RGD-ATWLPPR peptide conjugates for the dual targeting of αVβ3 integrin and neuropilin-1.
Thoreau, Fabien; Vanwonterghem, Laetitia; Henry, Maxime; Coll, Jean-Luc; Boturyn, Didier
2018-05-18
Targeting the tumour microenvironment is a promising strategy to detect and/or treat cancer. The design of selective compounds that co-target several receptors frequently overexpressed in solid tumours may allow a reliable and selective detection of tumours. Here we report the modular synthesis of compounds encompassing ligands of αVβ3 integrin and neuropilin-1 that are overexpressed in the tumour microenvironment. These compounds were then evaluated through cellular experiments and imaging of tumours in mice. We observed that the peptide that displays both ligands is more specifically accumulating in the tumours than in controls. Simultaneous interaction with αVβ3 integrin and NRP1 induces NRP1 stabilization at the cell membrane surface which is not observed with the co-injection of the controls.
Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment.
Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana
2015-09-01
Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cordone, Iole; Masi, Serena; Summa, Valentina; Carosi, Mariantonia; Vidiri, Antonello; Fabi, Alessandra; Pasquale, Alessia; Conti, Laura; Rosito, Immacolata; Carapella, Carmine Maria; Villani, Veronica; Pace, Andrea
2017-04-11
Cancer is a mosaic of tumor cell subpopulations, where only a minority is responsible for disease recurrence and cancer invasiveness. We focused on one of the most aggressive circulating tumor cells (CTCs) which, from the primitive tumor, spreads to the central nervous system (CNS), evaluating the expression of prognostic and putative cancer stem cell markers in breast cancer (BC) leptomeningeal metastasis (LM). Flow cytometry immunophenotypic analysis of cerebrospinal fluid (CSF) samples (4.5 ml) was performed in 13 consecutive cases of BCLM. Syndecan-1 (CD138), MUC-1 (CD227) CD45, CD34, and the putative cancer stem cell markers CD15, CD24, CD44, and CD133 surface expression were evaluated on CSF floating tumor cells. The tumor-associated leukocyte population was also characterized. Despite a low absolute cell number (8 cell/μl, range 1-86), the flow cytometry characterization was successfully conducted in all the samples. Syndecan-1 and MUC-1 overexpression was documented on BC cells in all the samples analyzed; CD44, CD24, CD15, and CD133 in 77%, 75%, 70%, and 45% of cases, respectively. A strong syndecan-1 and MUC-1 expression was also documented by immunohistochemistry on primary breast cancer tissues, performed in four patients. The CSF tumor population was flanked by T lymphocytes, with a different immunophenotype between the CSF and peripheral blood samples (P ≤ 0.02). Flow cytometry can be successfully employed for solid tumor LM characterization even in CSF samples with low cell count. This in vivo study documents that CSF floating BC cells overexpress prognostic and putative cancer stem cell biomarkers related to tumor invasiveness, potentially representing a molecular target for circulating tumor cell detection and LM treatment monitoring, as well as a primary target for innovative treatment strategies. The T lymphocyte infiltration, documented in all CSF samples, suggests a possible involvement of the CNS lymphatic system in both lymphoid and cancer cell migration into and out of the meninges, supporting the extension of a new form of cellular immunotherapy to LM. Due to the small number of cases, validation on large cohorts of patients are warranted to confirm these findings and to evaluate the impact and value of these results for diagnosis and management of LM.
Liu, Kai; Huang, Wen; Yan, Dan-Qing; Luo, Qing; Min, Xiang
2017-08-31
The study evaluated the ability of long intergenic noncoding RNA LINC00312 (LINC00312) to influence the proliferation, invasion, and migration of thyroid cancer (TC) cells by regulating miRNA-197-3p. TC tissues and adjacent normal tissues were collected from 211 TC patients. K1 (papillary TC), SW579 (squamous TC), and 8505C (anaplastic TC) cell lines were assigned into a blank, negative control (NC), LINC00312 overexpression, miR-197-3p inhibitors, and LINC00312 overexpression + miR-197-3p mimics group. The expression of LINC00312, miR-197-3p , and p120 were measured using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation was assessed via CCK8 assay, cell invasion through the scratch test, and cell migration via Transwell assay. In comparison with adjacent normal tissues, the expression of LINC00312 is down-regulated and the expression of miR-197-3p is up-regulated in TC tissues. The dual luciferase reporter gene assay confirmed that P120 is a target of miR-197-3p The expression of LINC00312 and p120 was higher in the LINC00312 overexpression group than in the blank and NV groups. However, the expression of miR-197-3p was lower in the LINC00312 overexpression group than in the blank and NC groups. The miR-197-3p inhibitors group had a higher expression of miR-197-3p , but a lower expression of p120 than the blank and NC groups. The LINC00312 overexpression and miR-197-3p inhibitor groups had reduced cell proliferation, invasion and migration than the blank and NC groups. These results indicate that a LINC00312 overexpression inhibits the proliferation, invasion, and migration of TC cells and that this can be achieved by down-regulating miR-197-3p . © 2017 The Author(s).
Guo, Zheng; Wang, Yili; Yang, Jing; Zhong, Jinghua; Liu, Xia; Xu, Mingjun
The purpose of this study is to characterize the effect of KAI1 overexpression on the biological behavior of nasopharyngeal carcinoma (NPC) cells. Nasopharyngeal carcinoma is a highly malignant tumor with a high rate of incidence in China. Currently, there are no ideal therapeutic options for patients with NPC, but a targeted therapy would have great potential for treating it. Therefore, there is an urgent need for novel therapeutic targets to provide new options for treating NPC. The KAI1 gene was originally identified as a metastasis suppressor gene for advanced human cancer. In NPC cell lines and tissues, the expression of KAI1 decreased as the metastatic potential of cells increased, but its potential as a therapeutic target has not been elucidated. Non-transformed nasopharyngeal epithelium cell NP69 and NPC cell line C666-1 were cultured and KAI1 expression in these cells was detected by qRT-PCR and Western blot. After the transfection of KAI1-pCDNA3.1 to NP69 and C666-1, the KAI1 expression in these cells was detected by qRT-PCR and Western blot, the proliferation was performed by MTS, the cell cycle and apoptosis were performed by flow cytometry, the migration and invasion were examined by transwell. Our results showed that KAI1 was significantly upregulated in C666-1 cells compared to that in NP69 cells. In addition, KAI1 overexpression significantly inhibited the proliferation, cell cycle, migration, and invasion, and promoted apoptosis of C666-1 cells, but had no significant effect on NP69 cells. Our findings suggest that KAI1 overexpression promotes apoptosis and inhibits proliferation, cell cycle, migration, and invasion in NPC cells. We hypothesize that KAI1 overexpression could be a potential therapeutic target for NPC. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Lei; Wang, Jin; Zeng, Lingkong; Li, Qiong; Liu, Yalan
2018-01-01
Background The poor survival rate of mesenchymal stromal cells (MSC) transplanted into recipient lungs greatly limits their therapeutic efficacy for diseases like bronchopulmonary dysplasia (BPD). The aim of this study is to evaluate the effect of thioredoxin-1 (Trx-1) overexpression on improving the potential for bone marrow-derived mesenchymal stromal cells (BMSCs) to confer resistance against hyperoxia-induced cell injury. Methods 80% O2 was used to imitate the microenvironment surrounding-transplanted cells in the hyperoxia-induced lung injury in vitro. BMSC proliferation and apoptotic rates and the levels of reactive oxygen species (ROS) were measured. The effects of Trx-1 overexpression on the level of antioxidants and growth factors were investigated. We also investigated the activation of apoptosis-regulating kinase-1 (ASK1) and p38 mitogen-activated protein kinases (MAPK). Result Trx-1 overexpression significantly reduced hyperoxia-induced BMSC apoptosis and increased cell proliferation. We demonstrated that Trx-1 overexpression upregulated the levels of superoxide dismutase and glutathione peroxidase as well as downregulated the production of ROS. Furthermore, we illustrated that Trx-1 protected BMSCs against hyperoxic injury via decreasing the ASK1/P38 MAPK activation rate. Conclusion These results demonstrate that Trx-1 overexpression improved the ability of BMSCs to counteract hyperoxia-induced injury, thus increasing their potential to treat hyperoxia-induced lung diseases such as BPD. PMID:29599892
Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis
Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.
2017-01-01
The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019
Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.
Matrka, Marie C; Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F; Lane, Andrew N; Romick-Rosendale, Lindsey E; Wells, Susanne I
2017-01-01
The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.
Gualdi, Luciana; Tagliabue, Letizia; Bertagnoli, Stefano; Ieranò, Teresa; De Castro, Cristina; Landini, Paolo
2008-07-01
In enterobacteria, the CsgD protein activates production of two extracellular structures: thin aggregative fimbriae (curli) and cellulose. While curli fibres promote biofilm formation and cell aggregation, the evidence for a direct role of cellulose as an additional determinant for biofilm formation is not as straightforward. The MG1655 laboratory strain of Escherichia coli only produces limited amounts of curli and cellulose; however, ectopic csgD expression results in strong stimulation of curli and cellulose production. We show that, in a csgD-overexpressing derivative of MG1655, cellulose production negatively affects curli-mediated surface adhesion and cell aggregation, thus acting as a negative determinant for biofilm formation. Consistent with this observation, deletion of the bcsA gene, necessary for cellulose production, resulted in a significant increase in curli-dependent adhesion. We found that cellulose production increased tolerance to desiccation, suggesting that the function of cellulose might be related to resistance to environmental stresses rather than to biofilm formation. Production of the curli/cellulose network in enterobacteria typically takes place at low growth temperature (<32 degrees C), but not at 37 degrees C. We show that CsgD overexpression can overcome temperature-dependent control of the curli-encoding csgBA operon, but not of the cellulose-related adrA gene, suggesting very tight temperature control of cellulose production in E. coli MG1655.
Tight Junction–Associated Signaling Pathways Modulate Cell Proliferation in Uveal Melanoma
Jayagopal, Ashwath; Yang, Jin-Long; Haselton, Frederick R.; Chang, Min S.
2011-01-01
Purpose. To investigate the role of tight junction (TJ)–associated signaling pathways in the proliferation of uveal melanoma. Methods. Human uveal melanoma cell lines overexpressing the TJ molecule blood vessel epicardial substance (Bves) were generated. The effects of Bves overexpression on TJ protein expression, cell proliferation, and cell cycle distribution were quantified. In addition, localization and transcription activity of the TJ-associated protein ZO-1–associated nucleic acid binding protein (ZONAB) were evaluated using immunofluorescence and bioluminescence reporter assays to study the involvement of Bves signaling in cell proliferation-associated pathways. Results. Bves overexpression in uveal melanoma cell lines resulted in increased expression of the TJ proteins occludin and ZO-1, reduced cell proliferation, and increased sequestration of ZONAB at TJs and reduced ZONAB transcriptional activity. Conclusions. TJ proteins are present in uveal melanoma, and TJ-associated signaling pathways modulate cell signaling pathways relevant to proliferation in uveal melanoma. PMID:20861479
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karam, Manale; Legay, Christine; Auclair, Christian
2012-03-10
Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cellmore » proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic properties and would, therefore, define PKD1 as a potentially new promising anti-tumor therapeutic target.« less
Katase, Naoki; Nishimatsu, Shin-Ichiro; Yamauchi, Akira; Yamamura, Masahiro; Terada, Kumiko; Itadani, Masumi; Okada, Naoko; Hassan, Nur Mohammad Monsur; Nagatsuka, Hitoshi; Ikeda, Tohru; Nohno, Tsutomu; Fujita, Shuichi
2018-01-19
DKK3, a member of the dickkopf Wnt signaling pathway inhibitor family, is believed to be a tumor suppressor because of its reduced expression in cancer cells. However, our previous studies have revealed that DKK3 expression is predominantly observed in head and neck/oral squamous cell carcinoma (HNSCC/OSCC). Interestingly, HNSCC/OSCC patients with DKK3 expression showed a high rate of metastasis and poorer survival, and siRNA-mediated knockdown of DKK3 in HNSCC-derived cancer cell lines resulted in reduced cellular migration and invasion. From these data, it was hypothesized that DKK3 might exert an oncogenic function specific to HNSCC. In the present research, the DKK3 overexpression model was established, and its influences were investigated, together with molecular mechanism studies. The DKK3 expression profile in cancer cell lines was investigated, including HNSCC/OSCC, esophageal, gastric, colorectal, pancreatic, prostatic, and lung cancers. DKK3 overexpression was performed in HNSCC-derived cells by transfection of expression plasmid. The effects of DKK3 overexpression were assessed on cellular proliferation, migration, invasion, and in vivo tumor growth. The molecular mechanism of DKK3 overexpression was investigated by Western blotting and microarray analysis. DKK3 overexpression significantly elevated cellular proliferation, migration, and invasion, as well as increased mRNA expression of cyclin D1 and c-myc. However, reporter assays did not show TCF/LEF activation, suggesting that the increased malignant property of cancer cells was not driven by the Wnt/β-catenin pathway. For the investigation of the pathways/molecules in DKK3-mediated signals, the Western blot analyses revealed that phosphorylation of Akt (S473) and c-Jun (Ser63) was elevated. The application of a PI3K kinase inhibitor, LY294002, on HSC-3 DKK3 cells significantly decreased tumor cell proliferation, migration, and invasion. From these results, we demonstrated that DKK3 might contribute to cellular proliferation, invasion, migration, and tumor cell survival in HNSCC cells through a mechanism other than the canonical Wnt signaling pathway, which might be attributed to PI3K-Akt signaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Gao, Yang; Chang, Na
The abnormality of nuclear receptor-related protein 1 (Nurr1) in expression and function can contribute to neurodegeneration of dopaminergic neurons and occurrence of Parkinson's disease (PD). However, its related mechanism in PD is still unknown. In this study, we found that Nurr1 was down-regulated and CCL2 was up-regulated in PD patients and PD mice. CCL2 promoted apoptosis and secretion of TNF-α and IL-1β in SH-SY5Y cells and inhibited cell viability while knockdown of CCL2 exerted the opposite effects. Nurr1 overexpression inhibited apoptosis, the release of TNF-α and IL-1β and promoted viability in α-Syn-treated SH-SY5Y cells, which was markedly promoted by CCL2more » antibody and dramatically reversed by CCL2. Nurr1 overexpression negatively regulated CCL2 expression in vivo and in vitro. Furthermore, Nurr1 overexpression remarkably relieved MPTP-induced movement disorder and spatial memory deficits and played neuroprotective and anti-inflammatory roles in MPTP-induced PD mice by down-regulating CCL2 in vivo. In conclusion, Nurr1 overexpression exerts neuroprotective and anti-inflammatory roles via down-regulating CCL2 in both in vivo and in vitro PD models, contributing to developing mechanism-based and neuroprotective strategies against PD. - Highlights: • Nurr1 was down-regulated and CCL2 was up-regulated in PD patients and PD mice. • Nurr1 overexpression inhibited apoptosis, release of TNF-α and IL-1β and promoted viability in α-Syn-treated SH-SY5Y cells. • CCL2 reversed the effect of Nurr1 overexpression on apoptosis, inflammatory cytokines secretion and viability. • Nurr1 overexpression negatively regulated CCL2 expression in vivo and in vitro. • Nurr1 overexpression remarkably relieved MPTP-induced movement disorder and spatial memory deficits.« less
Kil, Laurens P; de Bruijn, Marjolein J W; van Nimwegen, Menno; Corneth, Odilia B J; van Hamburg, Jan Piet; Dingjan, Gemma M; Thaiss, Friedrich; Rimmelzwaan, Guus F; Elewaut, Dirk; Delsing, Dianne; van Loo, Pieter Fokko; Hendriks, Rudi W
2012-04-19
On antigen binding by the B-cell receptor (BCR), B cells up-regulate protein expression of the key downstream signaling molecule Bruton tyrosine kinase (Btk), but the effects of Btk up-regulation on B-cell function are unknown. Here, we show that transgenic mice overexpressing Btk specifically in B cells spontaneously formed germinal centers and manifested increased plasma cell numbers, leading to antinuclear autoantibody production and systemic lupus erythematosus (SLE)-like autoimmune pathology affecting kidneys, lungs, and salivary glands. Autoimmunity was fully dependent on Btk kinase activity, because Btk inhibitor treatment (PCI-32765) could normalize B-cell activation and differentiation, and because autoantibodies were absent in Btk transgenic mice overexpressing a kinase inactive Btk mutant. B cells overexpressing wild-type Btk were selectively hyperresponsive to BCR stimulation and showed enhanced Ca(2+) influx, nuclear factor (NF)-κB activation, resistance to Fas-mediated apoptosis, and defective elimination of selfreactive B cells in vivo. These findings unravel a crucial role for Btk in setting the threshold for B-cell activation and counterselection of autoreactive B cells, making Btk an attractive therapeutic target in systemic autoimmune disease such as SLE. The finding of in vivo pathology associated with Btk overexpression may have important implications for the development of gene therapy strategies for X-linked agammaglobulinemia, the immunodeficiency associated with mutations in BTK.
Pickel, Lara; Matsuzuka, Takaya; Doi, Chiyo; Ayuzawa, Rie; Maurya, Dharmendra Kumar; Xie, Sheng-Xue; Berkland, Cory; Tamura, Masaaki
2010-02-01
The endogenous angiotensin II (Ang II) type 2 receptor (AT 2) has been shown to mediate apoptosis in cardiovascular tissues. Thus, the aim of this study was to explore the anti-cancer effect of AT 2 over-expression on lung adenocarcinoma cells in vitro using adenoviral (Ad), FuGENE, and nanoparticle vectors. All three gene transfection methods efficiently transfected AT 2 cDNA into lung cancer cells but caused minimal gene transfection in normal lung epithelial cells. Ad-AT 2 significantly attenuated multiple human lung cancer cell growth (A549 and H358) as compared to the control viral vector, Ad-LacZ, when cell viability was examined by direct cell count. Examination of annexin V by flow cytometry revealed the activation of the apoptotic pathway via AT 2 over-expression. Western Blot analysis confirmed the activation of caspase-3. Similarly, poly (lactide-co-glycolic acid) (PLGA) biodegradable nanoparticles encapsulated AT 2 plasmid DNA were shown to be effectively taken up into the lung cancer cell. Nanoparticle-based AT 2 gene transfection markedly increased AT 2 expression and resultant cell death in A549 cells. These results indicate that AT 2 over-expression effectively attenuates growth of lung adenocarcinoma cells through intrinsic apoptosis. Our results also suggest that PLGA nanoparticles can be used as an efficient gene delivery vector for lung adenocarcinoma targeted therapy.
Chi, Xiaoyuan; Su, Peng; Bi, Dan; Tai, Zhao; Li, Yingying; Pang, Yue; Li, Qingwei
2018-04-01
The lamprey (Lampetra japonica), a representative of the jawless vertebrates, is the oldest extant species in the world. LIP-1, which has a jacalin-like domain and an aerolysin pore-forming domain, has previously been identified in Lampetra japonica. However, the structure and function of the LIP-1 protein have not been described. In this study, the LIP-1 gene was overexpressed in HeLa cells and H293T cells. The results showed that the overexpression of LIP-1 in HeLa cells significantly elevated LDH release (P < 0.05), phosphatidylserine exposure and ROS accumulation. The overexpression of LIP-1 also had remarkable effects on the organelles in HeLa cells, while it had no effect on H293T cell organelles. Array data indicated that overexpression of LIP-1 primarily upregulated P53 signaling pathways in HeLa cells. Cell cycle assay results confirmed that LIP-1 caused arrest in the G 2 /M phase of the cell cycle in HeLa cells. In summary, our findings provide insights into the function and characterization of LIP-1 genes in vertebrates and establish the foundation for further research into the biological function of LIP-1. Our observations suggest that this lamprey protein has the potential for use in new applications in the medical field. Copyright © 2018. Published by Elsevier Ltd.
FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis.
Tan, BeeShin; Anaka, Matthew; Deb, Siddhartha; Freyer, Claudia; Ebert, Lisa M.; Chueh, Anderly C.; Al-Obaidi, Sheren; Behren, Andreas; Jayachandran, Aparna; Cebon, Jonathan; Chen, Weisan; Mariadason, John M.
2014-01-01
The Forkhead box P3 (FOXP3) transcription factor is the key driver of regulatory T cell (Treg cells) differentiation and immunosuppressive function. In addition, FOXP3 has been reported to be expressed in many tumors, including melanoma. However, its role in tumorigenesis is conficting, with both tumor suppressive and tumor promoting functions described. The aim of the current study was to characterize the expression and function of FOXP3 in melanoma. FOXP3 expression was detected by immunohistochemistry (IHC) in 12% (18/146) of stage III and IV melanomas. However expression was confined to fewer than 1% of cells in these tumors. Stable over-expression of FOXP3 in the SK-MEL-28 melanoma cell line reduced cell proliferation and clonogenicity in vitro, and reduced xenograft growth in vivo. FOXP3 over-expression also increased pigmentation and the rate of apoptosis of SK-MEL-28 cells. Based on its infrequent expression in human melanoma, and its growth inhibitory and pro-apoptotic effect in over-expressing melanoma cells, we conclude that FOXP3 is not likely to be a key tumor suppressor or promoter in melanoma. PMID:24406338
Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro
2011-01-01
By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.
Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro
2011-01-01
By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p. PMID:21660142
Sun, Lei; Yang, Xiaowei; Chen, Feifei; Li, Rongpeng; Li, Xuesong; Liu, Zhenxing; Gu, Yuyu; Gong, Xiaoyan; Liu, Zhonghua; Wei, Hua; Huang, Ying; Yuan, Sheng
2013-01-01
Fission yeast cells express Rpl32-2 highly while Rpl32-1 lowly in log phase; in contrast, expression of Rpl32-1 raises and reaches a peak level while Rpl32-2 is downregulated to a low basic level when cells enter into stationary phase. Overexpression of Rpl32-1 inhibits cell growth while overexpression of Rpl32-2 does not. Deleting rpl32-2 impairs cell growth more severely than deleting rpl32-1 does. Cell growth impaired by deleting either paralog can be rescued completely by reintroducing rpl32-2, but only partly by rpl32-1. Overexpression of Rpl32-1 inhibits cell division, yielding 4c DNA and multiple septa, while overexpressed Rpl32-2 promotes it. Transcriptomics analysis proved that Rpl32 paralogs regulate expression of a subset of genes related with cell division and stress response in a distinctive way. This functional difference of the two paralogs is due to their difference of 95th amino acid residue. The significance of a competitive inhibition between Rpl32 paralogs on their expression is discussed. PMID:23577148
Development of cytotoxicity-sensitive human cells using overexpression of long non-coding RNAs.
Tani, Hidenori; Torimura, Masaki
2015-05-01
Biosensors using live cells are analytical devices that have the advantage of being highly sensitive for their targets. Although attention has primarily focused on reporter gene assays using functional promoters, cell viability assays are still efficient. We focus on long non-coding RNAs (lncRNAs) that are involved in the molecular mechanisms associated with responses to cellular stresses as a new biological material. Here we have developed human live cells transfected with lncRNAs that can be used as an intelligent sensor of cytotoxicity for a broad range of environmental stresses. We identified three lncRNAs (GAS5, IDI2-AS1, and SNHG15) that responded to cycloheximide in HEK293 cells. Overexpression of these lncRNAs sensitized human cells to cell death in response to various stresses (cycloheximide, ultraviolet irradiation, mercury II chloride, or hydrogen peroxide). In particular, dual lncRNA (GAS5 plus IDI2-AS1, or GAS5 plus SNHG15) overexpression sensitized cells to cell death by more cellular stresses. We propose a method for highly sensitive biosensors using overexpression of lncRNAs that can potentially measure the cytotoxicity signals of various environmental stresses. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction.
Ginés, Silvia; Mariño, Marta; Mallol, Josefa; Canela, Enric I; Morimoto, Chikao; Callebaut, Christian; Hovanessian, Ara; Casadó, Vicent; Lluis, Carmen; Franco, Rafael
2002-01-01
The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA-CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50-70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA-CD26 interaction in the lymphocyte-epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA-CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA-CD26 interaction on the cell surface has a role in lymphocyte-epithelial cell adhesion. PMID:11772392
Expression of TMPRSS4 in non-small cell lung cancer and its modulation by hypoxia
NGUYEN, TRI-HUNG; WEBER, WILLIAM; HAVARI, EVIS; CONNORS, TIMOTHY; BAGLEY, REBECCA G.; McLAREN, RAJASHREE; NAMBIAR, PRASHANT R.; MADDEN, STEPHEN L.; TEICHER, BEVERLY A.; ROBERTS, BRUCE; KAPLAN, JOHANNE; SHANKARA, SRINIVAS
2012-01-01
Overexpression of TMPRSS4, a cell surface-associated transmembrane serine protease, has been reported in pancreatic, colorectal and thyroid cancers, and has been implicated in tumor cell migration and metastasis. Few reports have investigated both TMPRSS4 gene expression levels and the protein products. In this study, quantitative RT-PCR and protein staining were used to assess TMPRSS4 expression in primary non-small cell lung carcinoma (NSCLC) tissues and in lung tumor cell lines. At the transcriptional level, TMPRSS4 message was significantly elevated in the majority of human squamous cell and adenocarcinomas compared with normal lung tissues. Staining of over 100 NSCLC primary tumor and normal specimens with rabbit polyclonal anti-TMPRSS4 antibodies confirmed expression at the protein level in both squamous cell and adenocarcinomas with little or no staining in normal lung tissues. Human lung tumor cell lines expressed varying levels of TMPRSS4 mRNA in vitro. Interestingly, tumor cell lines with high levels of TMPRSS4 mRNA failed to show detectable TMPRSS4 protein by either immunoblotting or flow cytometry. However, protein levels were increased under hypoxic culture conditions suggesting that hypoxia within the tumor microenvironment may upregulate TMPRSS4 protein expression in vivo. This was supported by the observation of TMPRSS4 protein in xenograft tumors derived from the cell lines. In addition, staining of human squamous cell carcinoma samples for carbonic anhydrase IX (CAIX), a hypoxia marker, showed TMPRSS4 positive cells adjacent to CAIX positive cells. Overall, these results indicate that the cancer-associated TMPRSS4 protein is overexpressed in NSCLC and may represent a potential therapeutic target. PMID:22692880
Perretti, Mauro; Ingegnoli, Francesca; Wheller, Samantha K.; Blades, Mark C.; Solito, Egle; Pitzalis, Costantino
2015-01-01
The effect of the glucocorticoid inducible protein annexin 1 (ANXA1) on the process of monocytic cell migration was studied using transfected U937 cells expressing variable protein levels. An antisense (AS) (36.4AS; ~50% less ANXA1) and a sense (S) clone (15S; overexpressing the bioactive 24-kDa fragment) together with the empty plasmid CMV clone were obtained and compared with wild-type U937 cells in various models of cell migration in vitro and in vivo. 15S-transfected U937 cells displayed a reduced (50%) degree of trans-endothelial migration in response to stromal cell-derived factor-1α (CXC chemokine ligand 12 (CXCL12)). In addition, the inhibitory role of endogenous ANXA1 on U937 cell migration in vitro was confirmed by the potentiating effect of a neutralizing anti-ANXA1 serum. Importantly, overexpression of ANXA1 in clone 15S inhibited the extent of cell migration into rheumatoid synovial grafts transplanted into SCID mice. ANXA1 inhibitory effects were not due to modifications in adhesion molecule or CXCL12 receptor (CXCR4) expression as shown by the similar amounts of surface molecules found in transfected and wild-type U937 cells. Likewise, an equal chemotactic response to CXCL12 in vitro excluded an intrinsic defect in cell motility in clones 15S and 36.4AS. These data strongly support the notion that ANXA1 critically interferes with a leukocyte endothelial step essential for U937 cell, and possibly monocyte, transmigration both in vitro and in vivo. PMID:12165536
Anti-CD30-targeted gold nanoparticles for photothermal therapy of L-428 Hodgkin’s cell
Qu, Xiaochao; Yao, Cuiping; Wang, Jing; Li, Zheng; Zhang, Zhenxi
2012-01-01
Purpose Due to the efficient bioconjugation and highly photothermal effect, gold nanoparticles can stain receptor-overexpressing cancer cells through specific targeting of ligands to receptors, strongly absorb specific light and efficiently convert it into heat based on the property of surface plasmon resonance, and then induce the localized protein denaturation and cell death. Methods Two gold nanoparticle–antibody conjugates, gold-BerH2 antibody (anti-CD30 receptor) and gold-ACT1 antibody (anti-CD25-receptor), were synthesized. Gold-BerH2 conjugates can specifically bind to the surface of L-428 Hodgkin’s cells, and gold-ACT1 conjugates were used for the control. The gold nanoparticle-induced L-428 cell-killing experiments were implemented with different experimental parameters. Results At a relatively low concentration of gold and short incubation time, the influence of cytotoxicity of gold on cell viability can be overlooked. Under laser irradiation at suitable power, the high killing efficiency of gold-targeted L-428 cells was achieved, but little damage was done to nontargeted cancer cells. Conclusion Gold nanoparticle-mediated photothermal therapy provides a relatively safe therapeutic technique for cancer treatment. PMID:23269868
Rehemtulla, Alnawaz; Hamilton, A Christin; Taneja, Neelam; Fridman, Jordan; Juan, Todd SC; Maybaum, Jonathan; Chinnaiyan, Arul
1999-01-01
Abstract Bcl-2 and Bcl-XL belong to a family of proteins overexpressed in a variety of human cancers which inhibit apoptosis in response to a number of stimuli including chemotherapeutic agents and ionizing radiation. To better understand the role of these polypeptides in modulating the response of cancer cells to ionizing radiation we used cell lines that were engineered to overexpress the two polypeptides. Although Bcl-2 and Bcl-XL overexpression resulted in inhibition of radiation-induced apoptosis, it did not result in enhanced clonogenic survival. Consistent with this was the observation that Bcl-2 and Bcl-XL protected cells from DNA fragmentation, loss of mitochondrial membrane potential, and caspase activation for up to 72 hours after irradiation. Beyond 72 hours, there was a rapid loss in the ability of Bcl-2 and Bcl-XL to inhibit these markers of apoptosis. When Bcl-XL was analyzed at 72 hours after irradiation and beyond, a rapid accumulation of a 16-kDa form of Bcl-XL was observed. To test the hypothesis that cleavage of the 29-kDa form of Bcl-XL by caspases to a 16-kDa polypeptide results in its inability to inhibit apoptosis beyond 72 hours, we constructed a cell line that overexpressed a caspase-resistant form of Bcl-XL Bcl-XLΔloop. Cells overexpressing Bcl-XL-Δloop were resistant to apoptosis beyond 72 hours after irradiation and did not contain the 16-kDa form at these time points. In addition, Bcl-XL-Δloop overexpression resulted in enhanced clonogenic survival compared with control or Bcl-XL overexpressing cells. These results provide a molecular basis for the observation that expression of Bcl-2 or Bcl-XL is not a prognostic marker of tumor response to cancer therapy. PMID:10935471
Tahara, Kenichi; Takizawa, Makiko; Yamane, Arito; Osaki, Yohei; Ishizaki, Takuma; Mitsui, Takeki; Yokohama, Akihiko; Saitoh, Takayuki; Tsukamoto, Norifumi; Matsumoto, Morio; Murakami, Hirokazu; Nojima, Yoshihisa; Handa, Hiroshi
2017-08-01
B-cell lymphoma 6 (BCL6) attenuates DNA damage response (DDR) through gene repression and facilitates tolerance to genomic instability during immunoglobulin affinity maturation in germinal center (GC) B cells. Although BCL6 expression is repressed through normal differentiation of GC B cells into plasma cells, a recent study showed the ectopic expression of BCL6 in primary multiple myeloma (MM) cells. However, the functional roles of BCL6 in MM cells are largely unknown. Here, we report that overexpression of BCL6 in a MM cell line, KMS12PE, induced transcriptional repression of ataxia telangiectasia mutated (ATM), a DDR signaling kinase, which was associated with a reduction in γH2AX formation after DNA damage. In contrast, transcription of known targets of BCL6 in GC B cells was not affected, suggesting a cell type-specific function of BCL6. To further investigate the effects of BCL6 overexpression on the MM cell line, we undertook mRNA sequence analysis and found an upregulation in the genomic mutator activation-induced cytidine deaminase (AID) with alteration in the gene expression profile, which is suggestive of de-differentiation from plasma cells. Moreover, interleukin-6 exposure to KMS12PE led to upregulation of BCL6 and AID, downregulation of ATM, and attenuation of DDR, which were consistent with the effects of BCL6 overexpression in this MM cell line. Taken together, these results indicated that overexpression of BCL6 alters gene expression profile and confers decreased DDR in MM cells. This phenotypic change could be reproduced by interleukin-6 stimulation, suggesting an important role of external stimuli in inducing genomic instability, which is a hallmark of MM cells. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Li, C; Li, Q; Cai, Y; He, Y; Lan, X; Wang, W; Liu, J; Wang, S; Zhu, G; Fan, J; Zhou, Y; Sun, R
2016-09-01
Oral squamous cell carcinoma (OSCC) is the most common cancer of the head and neck and is associated with a high rate of lymph node metastasis. The initial step in the metastasis and transition of tumors is epithelial-mesenchymal transition (EMT)-induced angiogenesis, which can be mediated by angiopoietin 2 (ANG2), a key regulatory factor in angiogenesis. In the present study, immunohistochemistry and real-time quantitative reverse transcriptase (qRT-PCR) were used to measure the expression of ANG2 in OSCC tissues. Plasmids encoding ANG2 mRNA were used for increased ANG2 expression in the OSCC cell line TCA8113. The short interfering RNA (siRNA)-targeting ANG2 mRNA sequences were used to inhibit ANG2 expression in TCA8113 cells. Subsequently, transwell assays were performed to examine the effects of ANG2 on TCA8113 cell migration and invasion. Furthermore, in vivo assays were performed to assess the effect of ANG2 on tumor growth. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays and immunohistochemistry were used to examine cell apoptosis and angiogenesis in tumor tissues, respectively. Finally, western blot analysis was performed to evaluate tumor formation-related proteins in OSCC tissues. We found that protein expression of ANG2 was remarkably upregulated in OSCC tissues. Overexpression of ANG2 increased the migration and invasion of TCA8113 cells by regulating EMT. Further investigations showed that overexpression of ANG2 increased tumor growth in nude mice, and angiogenesis of OSCC tissues increased in the presence of ANG2 overexpression. Overexpression of ANG2 also reduced cell apoptosis in tumor tissue cells. Finally, we found that overexpression of ANG2 resulted in changes in the expression of tumor formation-related proteins including vimentin, E-cadherin, Bim, PUMA, Bcl-2, Bax, Cyclin D1, PCNA and CD31. Our findings show that ANG2 has an important role in the migration and invasion of OSCC. More importantly, further investigations suggested that overexpression of ANG2 might increase OSCC metastasis by promoting angiogenesis in nude mice. This stimulatory effect could be achieved by inducing abnormal EMT and by reducing apoptosis and increasing proliferation of cells.
Clinical value of R-spondins in triple-negative and metaplastic breast cancers.
Coussy, F; Lallemand, F; Vacher, S; Schnitzler, A; Chemlali, W; Caly, M; Nicolas, A; Richon, S; Meseure, D; El Botty, R; De-Plater, L; Fuhrmann, L; Dubois, T; Roman-Roman, S; Dangles-Marie, V; Marangoni, E; Bièche, I
2017-06-06
RSPO ligands, activators of the Wnt/β-catenin pathway, are overexpressed in different cancers. The objective of this study was to investigate the role of RSPOs in breast cancer (BC). Expression of RSPO and markers of various cancer pathways were measured in breast tumours and cell lines by qRT-PCR. The effect of RSPO on the Wnt/β-catenin pathway activity was determined by luciferase assay, western blotting, and qRT-PCR. The effect of RSPO2 inhibition on proliferation was determined by using RSPO2 siRNAs. The effect of IWR-1, an inhibitor of the Wnt/β-catenin pathway, was examined on the growth of an RSPO2-positive patient-derived xenograft (PDX) model of metaplastic triple-negative BC. We detected RSPO2 and RSPO4 overexpression levels in BC, particularly in triple-negative BC (TNBC), metaplastic BC, and triple-negative cell lines. Various mechanisms could account for this overexpression: presence of fusion transcripts involving RSPO, and amplification or hypomethylation of RSPO genes. Patients with RSPO2-overexpressing tumours have a poorer metastasis-free survival (P=3.6 × 10 -4 ). RSPO2 and RSPO4 stimulate Wnt/β-catenin pathway activity. Inhibition of RSPO expression in a TN cell line inhibits cell growth, and IWR-1 significantly inhibits the growth of an RSPO2-overexpressing PDX. RSPO overexpression could therefore be a new prognostic biomarker and therapeutic target for TNBC.
Li, Jinbo; Wang, Qian; Yang, Renlei; Zhang, Jiaqi; Li, Xing; Zhou, Xichao; Miao, Dengshun
2017-05-01
Previous studies have shown that estrogen regulates bone homeostasis through regulatory effects on oxidative stress. However, it is unclear how estrogen deficiency triggers reactive oxygen species (ROS) accumulation. Recent studies provide evidence that the B lymphoma Mo-MLV insertion region 1 (BMI-1) plays a critical role in protection against oxidative stress and that this gene is directly regulated by estrogen via estrogen receptor (ER) at the transcriptional level. In this study, ovariectomized mice were given drinking water with/without antioxidant N-acetyl-cysteine (NAC, 1 mg/mL) supplementation, and compared with each other and with sham mice. Results showed that ovariectomy resulted in bone loss with increased osteoclast surface, increased ROS levels, T cell activation, and increased TNF and RANKL levels in serum and in CD4 T cells; NAC supplementation largely prevented these alterations. BMI-1 expression levels were dramatically downregulated in CD4 T cells from ovariectomized mice. We supplemented drinking water to BMI-1-deficient mice with/without NAC and compared them with each other and with wild-type (WT) mice. We found that BMI-1 deficiency mimicked alterations observed in ovariectomy whereas NAC supplementation reversed all alterations induced by BMI-1 deficiency. Because T cells are critical in mediating ovariectomy-induced bone loss, we further assessed whether BMI-1 overexpression in lymphocytes can protect against estrogen deficiency-induced osteoclastogenesis and bone loss by inhibiting oxidative stress, T cell activation, and RANKL production. When WT and Eμ-BMI-1 transgenic mice with BMI-1 specifically overexpressed in lymphocytes were ovariectomized and compared with each other and with WT sham mice, we found that BMI-1 overexpression in lymphocytes clearly reversed all alterations induced by ovariectomy. Results from this study indicate that estrogen deficiency downregulates BMI-1 and subsequently increases ROS, T cell activation, and RANKL production in T cells, thus enhancing osteoclastogenesis and accelerating bone loss. This study clarifies a novel mechanism regulating estrogen deficiency-induced bone loss. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Hirano, Kazumi; Sasaki, Norihiko; Ichimiya, Tomomi; Miura, Taichi; Van Kuppevelt, Toin H; Nishihara, Shoko
2012-01-01
Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs) and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH) of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.
Hirano, Kazumi; Sasaki, Norihiko; Ichimiya, Tomomi; Miura, Taichi; Van Kuppevelt, Toin H.; Nishihara, Shoko
2012-01-01
Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs) and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH) of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs. PMID:22916262
Giraudier, Stéphane; Chagraoui, Hédia; Komura, Emiko; Barnache, Stéphane; Blanchet, Benoit; LeCouedic, Jean Pierre; Smith, David F; Larbret, Frédéric; Taksin, Anne-Laure; Moreau-Gachelin, Françoise; Casadevall, Nicole; Tulliez, Michel; Hulin, Anne; Debili, Najet; Vainchenker, William
2002-10-15
Idiopathic myelofibrosis (IMF) is a chronic myeloproliferative disorder characterized by megakaryocyte hyperplasia and bone marrow fibrosis. Biologically, an autonomous megakaryocyte growth and differentiation is noticed, which contributes to the megakaryocyte accumulation. To better understand the molecular mechanisms involved in this spontaneous growth, we searched for genes differentially expressed between normal megakaryocytes requiring cytokines to grow and IMF spontaneously proliferating megakaryocytes. Using a differential display technique, we found that the immunophilin FKBP51 was 2 to 8 times overexpressed in megakaryocytes derived from patients' CD34(+) cells in comparison to normal megakaryocytes. Overexpression was moderate and confirmed in 8 of 10 patients, both at the mRNA and protein levels. Overexpression of FKBP51 in a UT-7/Mpl cell line and in normal CD34(+) cells induced a resistance to apoptosis mediated by cytokine deprivation with no effect on proliferation. FKBP51 interacts with both calcineurin and heat shock protein (HSP)70/HSP90. However, a mutant FKBP51 deleted in the HSP70/HSP90 binding site kept the antiapoptotic effect, suggesting that the calcineurin pathway was responsible for the FKBP51 effect. Overexpression of FKBP51 in UT-7/Mpl cells induced a marked inhibition of calcineurin activity. Pharmacologic inhibition of calcineurin by cyclosporin A mimicked the effect of FKBP51. The data support the conclusion that FKBP51 inhibits apoptosis through a calcineurin-dependent pathway. In conclusion, FKBP51 is overexpressed in IMF megakaryocytes and this overexpression could be, in part, responsible for the megakaryocytic accumulation observed in this disorder by regulating their apoptotic program.
Zhang, Yi; Gong, Xiao-Gang; Wang, Zhen-Zhen; Sun, Hong-Mei; Guo, Zhen-Yu; Hu, Jing-Hong; Ma, Ling; Li, Ping; Chen, Nai-Hong
2016-05-01
DJ-1/PARK7, the Parkinson's disease-related protein, plays an important role in mitochondrial function. However, the mechanisms by which DJ-1 affects mitochondrial function are not fully understood. Akt is a promoter of neuron survival and is partly involved in the neurodegenerative process. This research aimed at investigating a possible relationship between DJ-1 and Akt signalling in regulating mitochondrial function in the dopaminergic neuron-like cells SH-SY5Y and PC-12. Overexpression of DJ-1 was firstly validated at both the transcriptional and translational levels after transit transfection with plasmid pcDNA3-Flag-DJ-1. Confocal fluorescence microscopy demonstrated that overexpression of DJ-1 increased the mitochondrial mass, but did not disrupt the mitochondrial morphology. In addition, mitochondrial complex I activity was raised in DJ-1-overexpressing cells, and this rise occurred with an increase in cellular adenosine 5'-triphosphate content. Moreover, immunoblotting demonstrated that the levels of phosphoinositide 3-kinase and the total Akt were not altered in DJ-1-overexpressing cells, and nor was the Akt phosphorylation on serine 473 changed. By contrast, Akt phosphorylation on threonine 308 was significantly augmented by overexpression of DJ-1, and the expression of glycogen synthase kinase-3beta, a downstream effector of Akt, was suppressed. In summary, these results suggest that overexpression of DJ-1 improves the mitochondrial function, at least in part, through a mechanism involving Akt phosphorylation on threonine 308. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Nian, Qing; Chi, Jianxiang; Xiao, Qing; Wei, Chunmei; Costeas, Paul; Yang, Zesong; Liu, Lin; Wang, Li
2015-09-01
Secreted protein acidic and rich in cysteine (SPARC) has a complex and pleiotropic biological role in cell life during disease. The role of SPARC in myelodysplastic syndrome (MDS) is not yet fully understood. In the present study, we investigated the role of SPARC protein overproduction in the proliferation and apoptosis of SKM-1 cells, an acute myeloid leukemia cell line transformed from MDS. SKM-1 cells were infected with the pGC-GV-SPARC vector. The cells were then assessed for proliferation and cell death following treatment with low-dose cytosine arabinoside (Ara‑C). The microarray analysis results revealed that samples from SPARC‑overexpressed cells compared to SPARC protein, in SKM-1 cells led to proliferation inhibition and promoted programmed cell death and these effects were greater when treated with Ara-C. The mRNA and protein expression levels of SPARC were detected by SPARC overexpression in cells treated with Ara-C resulting in a significant upregulation of the mixed lineage kinase domain-like (MLKL) gene expression and five other genes. The results showed that the necrotic signaling pathway may play a role when the two conditions were combined via the upregulation of the MLKL protein. MLKL upregulation in SPARC overexpressed cells treated with Ara-C, indicates necrosis as a possible cell death process for the SKM-1 cells under these stringent conditions.
Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J
2015-10-01
Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Genz, Berit; Thomas, Maria; Pützer, Brigitte M; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin
2014-11-01
Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Wei; Zhou, Pang-Hu; Hu, Wei
2016-03-01
Forkhead box O4 (FOXO4) has been reported to be a novel tumor suppressor gene in gastrointestinal cancers; however, its role in clear‑cell renal carcinoma cells (ccRCC) has remained largely elusive. The present study assessed the expression levels of FOXO4 in RCC tissues and cells. Furthermore, the effects of vector‑mediated overexpression of FOXO4 on the apoptotic rate of the 786‑0 and Caki‑1 cell lines and the role of Bim in this process were investigated. The results demonstrated that the protein and mRNA expression levels of FOXO4 were decreased in renal cancer tissues and cell lines compared with those in normal tissues and cell lines. FOXO4 overexpression significantly increased the apoptotic rate of ccRCC cells in vitro, along with increased protein expression levels of Bim, cleaved‑caspase 3, B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax) and cytochrome c, as well as a decrease in Bcl‑2 expression. Of note, the apoptotic effects of FOXO4 overexpression in 786‑0 cells were inhibited by small interfering RNA‑mediated knockdown of Bim. The results of the present study indicated that FOXO4 has an inhibitory effect in ccRCC, at least in part through inducing apoptosis via upregulation of Bim in the mitochondria-dependent pathway.
Cell-surface marker discovery for lung cancer
Cohen, Allison S.; Khalil, Farah K.; Welsh, Eric A.; Schabath, Matthew B.; Enkemann, Steven A.; Davis, Andrea; Zhou, Jun-Min; Boulware, David C.; Kim, Jongphil; Haura, Eric B.; Morse, David L.
2017-01-01
Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients. PMID:29371917
Chen, Zhen; Chen, Yifan; Xu, Meng; Chen, Likun; Zhang, Xu; To, Kenneth Kin Wah; Zhao, Hongyun; Wang, Fang; Xia, Zhongjun; Chen, Xiaoqin; Fu, Liwu
2016-08-01
The overexpression of ATP-binding cassette (ABC) transporters has been proved to be a major trigger for multidrug resistance (MDR) in certain types of cancer. In our study, we investigated whether osimertinib (AZD9291), a third-generation irreversible tyrosine kinase inhibitor of both activating EGFR mutations and resistance-associated T790M point mutation, could reverse MDR induced by ABCB1 and ABCG2 in vitro, in vivo, and ex vivo Our results showed that osimertinib significantly increased the sensitivity of ABCB1- and ABCG2-overexpressing cells to their substrate chemotherapeutic agents in vitro and in the model of ABCB1-overexpressing KBv200 cell xenograft in nude mice. Mechanistically, osimertinib increased the intracellular accumulations of doxorubicin (DOX) and Rhodamine 123 (Rho 123) by inhibiting the efflux function of the transporters in ABCB1- or ABCG2-overexpressing cells but not in their parental sensitive cells. Furthermore, osimertinib stimulated the ATPase activity of both ABCB1 and ABCG2 and competed with the [(125)I] iodoarylazidoprazosin photolabeling bound to ABCB1 or ABCG2, but did not alter the localization and expression of ABCB1 or ABCG2 in mRNA and protein levels nor the phosphorylations of EGFR, AKT, and ERK. Importantly, osimertinib also enhanced the cytotoxicity of DOX and intracellular accumulation of Rho 123 in ABCB1-overexpressing primary leukemia cells. Overall, these findings suggest osimertinib reverses ABCB1- and ABCG2-mediated MDR via inhibiting ABCB1 and ABCG2 from pumping out chemotherapeutic agents and provide possibility for cancer combinational therapy with osimertinib in the clinic. Mol Cancer Ther; 15(8); 1845-58. ©2016 AACR. ©2016 American Association for Cancer Research.
Overexpression of Cullin7 is associated with hepatocellular carcinoma progression and pathogenesis.
An, Jun; Zhang, Zhigang; Liu, Zhiyong; Wang, Ruizhi; Hui, Dayang; Jin, Yi
2017-12-06
Overexpression of Cullin7 is associated with some types of malignancies. However, the part of Cullin7 in hepatocellular carcinoma remains unclear. The aim of this study was to investigate the role of Cullin7 in pathogenesis and the progression of hepatocellular carcinoma. In the present study, the expression of Cullin7 in hepatocellular carcinoma cell lines and five surgical hepatocellular carcinoma specimens was detected with quantitative reverse transcription PCR and western blotting. In addition, the protein expression of Cullin7 was examined in 162 cases of archived hepatocellular carcinoma using immunohistochemistry. We found elevated expression of both mRNA and protein levels of Cullin7 in hepatocellular carcinoma cell lines, and Cullin7 protein was significantly upregulated in hepatocellular carcinoma compared with paired normal hepatic tissues. The immunohistochemistry analysis revealed that overexpression of Cullin7 occurred in 69.1% of hepatocellular carcinoma samples, which was a significantly higher rate than that in adjacent normal hepatic tissue (P < 0.01). Statistical analysis found that overexpression of Cullin7 was significantly associated with lymph node metastasis, tumor thrombus of the portal vein and advanced clinical stage (P < 0.05). Furthermore, by overexpressing Cullin7 in hepatocellular carcinoma HepG2 cells, we revealed that Cullin7 could significantly enhance cell proliferation, growth, migration and invasion. Conversely, knocking down Cullin7 expression with short hairpin RNAi in hepatocellular carcinoma HepG2 cells inhibited cell proliferation, growth, migration and invasion. Our studies provide evidence that overexpression of Cullin7 plays an important role in the pathogenesis and progression of hepatocellular carcinoma and may be a valuable marker for hepatocellular carcinoma management.
CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Wen Min; Doucet, Michele; Huang, David
2013-07-26
Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found thatmore » CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co-activator of ER in breast cancer cells and that its increased expression in tumors may result in estrogen-independent ER activation, thereby reducing estrogen dependence and response to anti-estrogen therapy.« less
Hayashi, Kensuke
2017-01-01
Drebrin is localized in actin-rich regions of neuronal and non-neuronal cells. In mature neurons, its localization is strictly restricted to the postsynaptic sites. In order to understand the function of drebrin in cells, many studies have been performed to examine the effect of overexpression or knocking down of drebrin in various cell types, including neurons, myoblasts, kidney cells, and intestinal epithelial cells. In most cases alteration of cell shape and impairment or facilitation of actin-based activities of these cells were observed. Interestingly, overexpression of drebrin in matured neurons results in the alteration in dendritic spine morphology. Further studies have shown alteration in the localization of postsynaptic receptors and even changes in synaptic transmission caused by drebrin overexpression or depletion in neurons. These drebrin's effects are thought to come from drebrin's actin-cross-linking activity or competitive binding to actin against tropomyosin, fascin, and α-actinin. Furthermore, drebrin binds to various molecules, such as homer, EB3, and cell-cell junctional proteins, indicating that drebrin is a multifunctional cytoskeletal regulator.
Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiying; Rao, Qing, E-mail: raoqing@gmail.com; Wang, Min
2009-09-04
Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation,more » and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.« less
Reprogramming of single-cell derived mesenchymal stem cells into hair cell-like cells
Lin, Zhaoyu; Perez, Philip; Sun, Zhenyu; Liu, Jan-Jan; Shin, June Ho; Hyrc, Krzysztof L.; Samways, Damien; Egan, Terry; Holley, Matthew C.; Bao, Jianxin
2012-01-01
Hypothesis Adult mesenchymal stem cells (MSCs) can be converted into hair cell-like cells by transdetermination. Background Given the fundamental role sensory hair cells play in sound detection and the irreversibility of their loss in mammals, much research has focused on developing methods to generate new hair cells as a means of treating permanent hearing loss. Although MSCs can differentiate into multiple cell lineages, no efficient means of reprogramming them into sensory hair cells exists. Earlier work has shown that the transcription factor Atoh1 is necessary for early development of hair cells, but it is not clear whether Atoh1 can be used to convert MSCs into hair cells. Methods Clonal MSC cell lines were established and reprogrammed into hair cell-like cells by a combination of protein transfer, adenoviral based gene transfer and co-culture with neurons. During transdetermination, inner ear molecular markers were analyzed by RT-PCR, and cell structures were examined by immunocytochemistry. Results Atoh1 overexpression in MSCs failed to convert MSCs into hair cell-like cells, suggesting that the ability of Atoh1 to induce hair cell differentiation is context dependent. Because Atoh1 overexpression successfully transforms VOT-E36 cells into hair cell-like cells, we modified the cell context of MSCs by performing a total protein transfer from VOT-E36 cells prior to overexpressing Atoh1. The modified MSCs were transformed into hair cell-like cells and attracted contacts from spiral ganglion neurons in a co-culture model. Conclusion We established a new procedure, consisting of VOT-E36 protein transfer, Atoh1 overexpression, and co-culture with spiral ganglion neurons, which can transform MSCs into hair cell-like cells. PMID:23111404
CD44 is a direct target of miR-199a-3p and contributes to aggressive progression in osteosarcoma
Gao, Yan; Feng, Yong; Shen, Jacson K.; Lin, Min; Choy, Edwin; Cote, Gregory M.; Harmon, David C.; Mankin, Henry J.; Hornicek, Francis J.; Duan, Zhenfeng
2015-01-01
Osteosarcoma is the most common primary bone malignancy in children and adolescents. Herein, we investigated the role of cluster of differentiation 44 (CD44), a cell-surface glycoprotein involved in cell-cell interactions, cell adhesion, and migration in osteosarcoma. We constructed a human osteosarcoma tissue microarray with 114 patient tumor specimens, including tumor tissues from primary, metastatic, and recurrent stages, and determined the expression of CD44 by immunohistochemistry. Results showed that CD44 was overexpressed in metastatic and recurrent osteosarcoma as compared with primary tumors. Higher expression of CD44 was found in both patients with shorter survival and patients who exhibited unfavorable response to chemotherapy before surgical resection. Additionally, the 3′-untranslated region of CD44 mRNA was the direct target of microRNA-199a-3p (miR-199a-3p). Overexpression of miR-199a-3p significantly inhibited CD44 expression in osteosarcoma cells. miR-199a-3p is one of the most dramatically decreased miRs in osteosarcoma cells and tumor tissues as compared with normal osteoblast cells. Transfection of miR-199a-3p significantly increased the drug sensitivity through down-regulation of CD44 in osteosarcoma cells. Taken together, these results suggest that the CD44-miR-199a-3p axis plays an important role in the development of metastasis, recurrence, and drug resistance of osteosarcoma. Developing strategies to target CD44 may improve the clinical outcome of osteosarcoma. PMID:26079799
DSE promotes aggressive glioma cell phenotypes by enhancing HB-EGF/ErbB signaling.
Liao, Wen-Chieh; Liao, Chih-Kai; Tsai, You-Huan; Tseng, To-Jung; Chuang, Li-Ching; Lan, Chyn-Tair; Chang, Hung-Ming; Liu, Chiung-Hui
2018-01-01
Remodeling of the extracellular matrix (ECM) in the tumor microenvironment promotes glioma progression. Chondroitin sulfate (CS) proteoglycans appear in the ECM and on the cell surface, and can be catalyzed by dermatan sulfate epimerase to form chondroitin sulfate/dermatan sulfate (CS/DS) hybrid chains. Dermatan sulfate epimerase 1 (DSE) is overexpressed in many types of cancer, and CS/DS chains mediate several growth factor signals. However, the role of DSE in gliomas has never been explored. In the present study, we determined the expression of DSE in gliomas by consulting a public database and conducting immunohistochemistry on a tissue array. Our investigation revealed that DSE was upregulated in gliomas compared with normal brain tissue. Furthermore, high DSE expression was associated with advanced tumor grade and poor survival. We found high DSE expression in several glioblastoma cell lines, and DSE expression directly mediated DS chain formation in glioblastoma cells. Knockdown of DSE suppressed the proliferation, migration, and invasion of glioblastoma cells. In contrast, overexpression of DSE in GL261 cells enhanced these malignant phenotypes and in vivo tumor growth. Interestingly, we found that DSE selectively regulated heparin-binding EGF-like growth factor (HB-EGF)-induced signaling in glioblastoma cells. Inhibiting epidermal growth factor receptor (EGFR) and ErbB2 with afatinib suppressed DSE-enhanced malignant phenotypes, establishing the critical role of the ErbB pathway in regulating the effects of DSE expression. This evidence indicates that upregulation of DSE in gliomas contributes to malignant behavior in cancer cells. We provide novel insight into the significance of DS chains in ErbB signaling and glioma pathogenesis.
Sullivan, Lisa M.; Sims, Hillary; Bastawisy, Ahmed El; Yousef, Hend F.; Zekri, Abdel-Rahman N.; Bahnassy, Abeer A.; ElShamy, Wael M.
2017-01-01
Tumor-initiating cells (TICs) are cancer cells endowed with self-renewal, multi-lineage differentiation, increased chemo-resistance, and in breast cancers the CD44+/CD24-/ALDH1+ phenotype. Triple negative breast cancers show lack of BRCA1 expression in addition to enhanced basal, epithelial-to-mesenchymal transition (EMT), and TIC phenotypes. BRCA1-IRIS (hereafter IRIS) is an oncogene produced by the alternative usage of the BRCA1 locus. IRIS is involved in induction of replication, transcription of selected oncogenes, and promoting breast cancer cells aggressiveness. Here, we demonstrate that IRIS overexpression (IRISOE) promotes TNBCs through suppressing BRCA1 expression, enhancing basal-biomarkers, EMT-inducers, and stemness-enforcers expression. IRISOE also activates the TIC phenotype in TNBC cells through elevating CD44 and ALDH1 expression/activity and preventing CD24 surface presentation by activating the internalization pathway EGFR→c-Src→cortactin. We show that the intrinsic sensitivity to an anti-CD24 cross-linking antibody-induced cell death in membranous CD24 expressing/luminal A cells could be acquired in cytoplasmic CD24 expressing IRISOE TNBC/TIC cells through IRIS silencing or inactivation. We show that fewer IRISOE TNBC/TICs cells form large tumors composed of TICs, resembling TNBCs early lesions in patients that contain metastatic precursors capable of disseminating and metastasizing at an early stage of the disease. IRIS-inhibitory peptide killed these IRISOE TNBC/TICs, in vivo and prevented their dissemination and metastasis. We propose IRIS inactivation could be pursued to prevent dissemination and metastasis from early TNBC tumor lesions in patients. PMID:28052035
Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy
2008-01-01
Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.
Thangasamy, Thilakavathy; Sittadjody, Sivanandane; H. Limesand, Kirsten; Burd, Randy
2008-01-01
Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 μM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 μM). Both pcDNA3 and Tyr DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase. PMID:18791269
Han, Weifeng; Chen, Lei; Liu, Junpeng; Guo, Ai
2017-04-01
The carboxyl terminus of Hsc70-interacting protein (CHIP, also known as STUB1) plays critical roles in the proliferation and differentiation of many types of cells. The potential function of CHIP in tendon-derived stem cells (TDSCs) remains largely unknown at present. Here, we investigated the effects of CHIP on tenogenic differentiation of TDSCs via lentivirus-mediated overexpression. Forced expression of CHIP induced morphological changes and significantly enhanced cell proliferation, as well as tendon differentiation in vitro. Upon stimulation with differentiation induction medium, CHIP-overexpressing TDSCs displayed significant inhibition of differentiation into osteogenic and adipogenic lineages. Subsequent implantation of TDSCs overexpressing CHIP with collagen sponges into nude mice induced a marked increase in ectopic tendon formation in vivo, compared with the control group. Our findings collectively suggest that CHIP is an important contributory factor to tenogenic tissue formation. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Overexpression of SASH1 Inhibits the Proliferation, Invasion, and EMT in Hepatocarcinoma Cells.
He, Ping; Zhang, Hong-Xia; Sun, Chang-Yu; Chen, Chun-Yong; Jiang, He-Qing
2016-01-01
The SASH1 (SAM- and SH3-domain containing 1) gene, a member of the SLY (SH3 domain containing expressed in lymphocytes) family of signal adapter proteins, has been implicated in tumorigenesis of many types of cancers. However, the role and mechanism of SASH1 in the invasion and metastasis of hepatocarcinoma are largely unknown. In this study, we investigated the role and mechanism of SASH1 in the invasion and metastasis of hepatocarcinoma. Our results showed that SASH1 was lowly expressed in hepatocarcinoma cell lines. The in vitro experiments showed that overexpression of SASH1 inhibited the proliferation and migration/invasion of hepatocarcinoma cells, as well as the epithelial-mesenchymal transition (EMT) progress. Furthermore, overexpression of SASH1 suppressed the expression of Shh as well as Smo, Ptc, and Gli-1 in hepatocarcinoma cells. Taken together, these results suggest that overexpression of SASH1 inhibited the proliferation and invasion of hepatocarcinoma cells through the inactivation of Shh signaling pathway. Therefore, these findings reveal that SASH1 may be a potential therapeutic target for the treatment of hepatocarcinoma.
Atomic force microscopy as a tool to study Xenopus laevis embryo
NASA Astrophysics Data System (ADS)
Pukhlyakova, E. A.; Efremov, Yu M.; Bagrov, D. V.; Luchinskaya, N. N.; Kiryukhin, D. O.; Belousov, L. V.; Shaitan, K. V.
2012-02-01
Atomic force microscopy (AFM) has become a powerful tool for imaging biological structures (from single molecules to living cells) and carrying out measurements of their mechanical properties. AFM provides three-dimensional high-resolution images of the studied biological objects in physiological environment. However there are only few AFM investigations of fresh tissue explants and virtually no such research on a whole organism, since most researchers work with cell cultures. In the current work AFM was used to observe the surface of living and fixed embryos and to measure mechanical properties of naive embryos and embryos with overexpression of guanine nucleotide-binding protein G-alpha-13.
Liu, Kan; Zhao, Chaofei; Chen, Jianwen; Wu, Shengpan; Yao, Yuanxin; Wu, Chong; Luo, Guoxiong; Zhang, Xu
2016-06-01
Objective To establish selenoprotein P, plasma 1 (SEPP1) gene recombinant lentiviral vector and investigate the effect of SEPP1 on the proliferation of human clear cell renal cell carcinoma (ccRCC) cells. Methods cDNA sequence of SEPP1 was cloned from the total cDNA of HEK293T cells by PCR. Then, the cDNA fragment was combined with the pLV-EGFP(2A)Puro vector and the constructed plasmid pLV-EGFP(2A)Puro-SEPP1 was transfected into HEK293T cells for packaging the virus. Forty-eight hours after transfected with the virus supernatant, the level of SEPP1 protein in 769-P and 786-O cells were tested by Western blotting. Cells were divided into recombinant lentivirus-infected cells, empty vector lentivirus-infected cells and the blank control cells. Cell proliferation rate was detected by MTS assay, colony forming ability was evaluated by plate clony formation assay and cell cycle change was assayed by flow cytometry after transfected with pLV-EGFP(2A)Puro-SEPP1 or empty pLV-EGFP(2A)Puro vector. Results Enzyme digestion analysis and DNA sequencing showed that the recombinant plasmid pLV-EGFP(2A)Puro-SEPP1 was constructed successfully. After being infected by the virus supernatant, the 786-O and 769-P cells expressed EGFP. Compared with the empty vector group and the blank control group, expression level of SEPP1 in the experimental group was much higher. The cell proliferative ability was inhibited in the cells overexpressing SEPP1, and the colony forming ability of SEPP1-overexpressed cells evidently decreased. Cell cycle was arrested in G2/M phase in 786-O cells overexpressing SEPP1. Conclusion The recombinant plasmid pLV-EGFP(2A)Puro-SEPP1 has been constructed successfully. Overexpression of SEPP1 could significantly reduce the proliferation rate of 786-O and 769P cells, and cause G2/M phase arrest of 786-O cells.
Limb-bud and Heart Overexpression Inhibits the Proliferation and Migration of PC3M Cells.
Liu, Qicai; Li, Ermao; Huang, Long; Cheng, Minsheng; Li, Li
2018-01-01
Background: The limb-bud and heart gene ( LBH ) was discovered in the early 21st century and is specifically expressed in the mouse embryonic limb and heart development. Increasing evidences have indicated that LBH not only plays an important role in embryo development, it is also closely correlated with the occurance and progression of many tumors. However, its function in prostate cancer (PCa) is still not well understood. Here, we explored the effects of LBH on the proliferation and migration of the PCa cell line PC3M. Methods: LBH expression in tissues and cell lines of PCa was detected by immunohistochemistry and Western blotting. Lentivirus was used to transduct the LBH gene into the PC3M cells. Stable LBH-overexpressing PC3M-LBH cells and PC3M-NC control cells were obtained via puromycin screening. Cell proliferation was examined using the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution and apoptosis rate were investigated using flow cytometry. Cell migration was studied using the Transwell assay. Results: LBH expression level was down-regulated in 3 different PCa cell lines, especially in PC3M cells, compared with the normal prostate epithelial cells(RWPE-1). Cell lines of LBH-upregulated PC3M-LBH and PC3M-NC control were successfully constructed. Significantly increased LBH expression level and decreased cyclin D1 and cyclin E2 expression level was found in PC3M-LBH cells as compared to the PC3M-NC cells. The overexpression of LBH significantly inhibited PC3M cell proliferation in vitro and tumor growth in nude mice. LBH overexpression in PC3M cell, also induced cell cycle G0/G1 phase arrest and decreased the migration of PC3M cells. Conclusions : Our results reveal that LBH expression is down-regulated in the tissue and cell lines of PCa. LBH overexpression inhibits PC3M cell proliferation and tumor growth by inducing cell cycle arrest through down-regulating cyclin D1and cyclin E2 expression. LBH might be a therapeutic target and potential diagnostic marker in PCa.
Jackson, Robyn; Tilokee, Everad L; Latham, Nicholas; Mount, Seth; Rafatian, Ghazaleh; Strydhorst, Jared; Ye, Bin; Boodhwani, Munir; Chan, Vincent; Ruel, Marc; Ruddy, Terrence D; Suuronen, Erik J; Stewart, Duncan J; Davis, Darryl R
2015-09-11
Insulin-like growth factor 1 (IGF-1) activates prosurvival pathways and improves postischemic cardiac function, but this key cytokine is not robustly expressed by cultured human cardiac stem cells. We explored the influence of an enhanced IGF-1 paracrine signature on explant-derived cardiac stem cell-mediated cardiac repair. Receptor profiling demonstrated that IGF-1 receptor expression was increased in the infarct border zones of experimentally infarcted mice by 1 week after myocardial infarction. Human explant-derived cells underwent somatic gene transfer to overexpress human IGF-1 or the green fluorescent protein reporter alone. After culture in hypoxic reduced-serum media, overexpression of IGF-1 enhanced proliferation and expression of prosurvival transcripts and prosurvival proteins and decreased expression of apoptotic markers in both explant-derived cells and cocultured neonatal rat ventricular cardiomyocytes. Transplant of explant-derived cells genetically engineered to overexpress IGF-1 into immunodeficient mice 1 week after infarction boosted IGF-1 content within infarcted tissue and long-term engraftment of transplanted cells while reducing apoptosis and long-term myocardial scarring. Paracrine engineering of explant-derived cells to overexpress IGF-1 provided a targeted means of improving cardiac stem cell-mediated repair by enhancing the long-term survival of transplanted cells and surrounding myocardium. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Liang, John J; Oelkers, Peter; Guo, Cuiying; Chu, Pi-Chun; Dixon, Joseph L; Ginsberg, Henry N; Sturley, Stephen L
2004-10-22
The relative importance of each core lipid in the assembly and secretion of very low density lipoproteins (VLDL) has been of interest over the past decade. The isolation of genes encoding diacylglycerol acyltransferase (DGAT) and acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) provided the opportunity to investigate the effects of isolated increases in triglycerides (TG) or cholesteryl esters (CE) on apolipoprotein B (apoB) lipoprotein biogenesis. Overexpression of human DGAT1 in rat hepatoma McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of TG. These effects were associated with decreased intracellular degradation and increased secretion of newly synthesized apoB as VLDL. Similarly, overexpression of human ACAT1 or ACAT2 in McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of CE. This led to decreased intracellular degradation and increased secretion of VLDL apoB. Overexpression of ACAT2 had a significantly greater impact upon assembly and secretion of VLDL from liver cells than did overexpression of ACAT1. The addition of oleic acid (OA) to media resulted in a further increase in VLDL secretion from cells expressing DGAT1, ACAT1, or ACAT2. VLDL secreted from DGAT1-expressing cells incubated in OA had a higher TG:CE ratio than VLDL secreted from ACAT1- and ACAT2-expressing cells treated with OA. These studies indicate that increasing DGAT1, ACAT1, or ACAT2 expression in McA-RH7777 cells stimulates the assembly and secretion of VLDL from liver cells and that the core composition of the secreted VLDL reflects the enzymatic activity that is elevated.
CCNG2 Overexpression Mediated by AKT Inhibits Tumor Cell Proliferation in Human Astrocytoma Cells.
Zhang, Danfeng; Wang, Chunhui; Li, Zhenxing; Li, Yiming; Dai, Dawei; Han, Kaiwei; Lv, Liquan; Lu, Yicheng; Hou, Lijun; Wang, Junyu
2018-01-01
The cyclin family protein CCNG2 has an important inhibitory role in cancer initiation and progression, but the exact mechanism is still unknown. In this study, we examined the relationship between CCNG2 and the malignancy of astrocytomas and whether the AKT pathway, which is upregulated in astrocytomas, may inhibit CCNG2 expression. CCNG2 expression was found to be negatively associated with the pathological grade and proliferative activity of astrocytomas, as the highest expression was found in control brain tissue ( N = 31), whereas the lowest expression was in high-grade glioma tissue ( N = 31). Additionally, CCNG2 overexpression in glioma cell lines, T98G and U251 inhibited proliferation and arrested cells in the G0/G1 phase. Moreover, CCNG2 overexpression could increase glioma cells apoptosis. In contrast, AKT activity increased in glioma cells that had low CCNG2 expression. Expression of CCNG2 was higher in cells treated with the AKT kinase inhibitor MK-2206 indicating that the presence of phosphorylated AKT may inhibit the expression of CCNG2. Inhibition of AKT also led to decreased colony formation in T98G and U251 cells and knocked down of CCNG2 reversed the result. Finally, overexpression of CCNG2 in glioma cells reduced tumor volume in a murine model. To conclude, low expression of CCNG2 correlated with the severity astrocytoma and CCNG2 overexpression could induce apoptosis and inhibit proliferation. Inhibition of AKT activity increased the expression of CCNG2. The present study highlights the regulatory consequences of CCNG2 expression and AKT activity in astrocytoma tumorigenesis and the potential use of CCNG2 in anticancer treatment.
Bell, Jill A.; Reed, Melissa A.; Consitt, Leslie A.; Martin, Ola J.; Haynie, Kimberly R.; Hulver, Matthew W.; Muoio, Deborah M.; Dohm, G. Lynis
2010-01-01
Context: Intracellular lipid partitioning toward storage and the incomplete oxidation of fatty acids (FA) have been linked to insulin resistance. Objective: To gain insight into how intracellular lipid metabolism is related to insulin signal transduction, we examined the effects of severe obesity, excess FA, and overexpression of the FA transporter, FA translocase (FAT)/CD36, in primary human skeletal myocytes. Design, Setting, and Patients: Insulin signal transduction, FA oxidation, and metabolism were measured in skeletal muscle cells harvested from lean and severely obese women. To emulate the obesity phenotype in our cell culture system, we incubated cells from lean individuals with excess FA or overexpressed FAT/CD36 using recombinant adenoviral technology. Results: Complete oxidation of FA was significantly reduced, whereas total lipid accumulation, FA esterification into lipid intermediates, and incomplete oxidation were up-regulated in the muscle cells of severely obese subjects. Insulin signal transduction was reduced in the muscle cells from severely obese subjects compared to lean controls. Incubation of muscle cells from lean subjects with lipids reduced insulin signal transduction and increased lipid storage and incomplete FA oxidation. CD36 overexpression increased FA transport capacity, but did not impair complete FA oxidation and insulin signal transduction in muscle cells from lean subjects. Conclusions: Cultured myocytes from severely obese women express perturbations in FA metabolism and insulin signaling reminiscent of those observed in vivo. The obesity phenotype can be recapitulated in muscle cells from lean subjects via exposure to excess lipid, but not by overexpressing the FAT/CD36 FA transporter. PMID:20427507
Ihara, Yoshito; Urata, Yoshishige; Goto, Shinji; Kondo, Takahito
2006-01-01
Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells.
IDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway.
Li, Kaishu; Ouyang, Leping; He, Mingliang; Luo, Ming; Cai, Wangqing; Tu, Yalin; Pi, Rongbiao; Liu, Anmin
2017-04-25
Numerous studies have reported that glioma patients with isocitrate dehydrogenase 1(IDH1) R132H mutation are sensitive to temozolomide treatment. However, the mechanism of IDH1 mutations on the chemosensitivity of glioma remains unclear. In this study, we investigated the role and the potential mechanism of Nrf2 in IDH1 R132H-mediated drug resistance. Wild type IDH1 (R132H-WT) and mutant IDH1 (R132H) plasmids were constructed. Stable U87 cells and U251 cells overexpressing IDH1 were generated. Phenotypic differences between IDH1-WT and IDH1 R132H overexpressing cells were evaluated using MTT, cell colony formation assay, scratch test assay and flow cytometry. Expression of IDH1 and its associated targets, nuclear factor-erythroid 2-related factor 2 (Nrf2), NAD(P)H quinine oxidoreductase 1 (NQO1), multidrug resistant protein 1 (MRP1) and p53 were analyzed. The IDH1 R132H overexpressing cells were more sensitive to temozolomide than WT and the control, and Nrf2 was significantly decreased in IDH1 R132H overexpressing cells. We found that knocking down Nrf2 could decrease resistance to temozolomide. The nuclear translocation of Nrf2 in IDH1 R132H overexpressing cells was lower than the WT and the control groups after temozolomide treatment. When compared with WT cells, NQO1 expression was reduced in IDH1 R132H cells, especially after temozolomide treatment. P53 was involved in the resistance mechanism of temozolomide mediated by Nrf2 and NQO1. Nrf2 played an important role in IDH1 R132H-mediated drug resistance. The present study provides new insight for glioma chemotherapy with temozolomide.
IDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway
Luo, Ming; Cai, Wangqing; Tu, Yalin; Pi, Rongbiao; Liu, Anmin
2017-01-01
Purpose Numerous studies have reported that glioma patients with isocitrate dehydrogenase 1(IDH1) R132H mutation are sensitive to temozolomide treatment. However, the mechanism of IDH1 mutations on the chemosensitivity of glioma remains unclear. In this study, we investigated the role and the potential mechanism of Nrf2 in IDH1 R132H-mediated drug resistance. Methods Wild type IDH1 (R132H-WT) and mutant IDH1 (R132H) plasmids were constructed. Stable U87 cells and U251 cells overexpressing IDH1 were generated. Phenotypic differences between IDH1-WT and IDH1 R132H overexpressing cells were evaluated using MTT, cell colony formation assay, scratch test assay and flow cytometry. Expression of IDH1 and its associated targets, nuclear factor-erythroid 2-related factor 2 (Nrf2), NAD(P)H quinine oxidoreductase 1 (NQO1), multidrug resistant protein 1 (MRP1) and p53 were analyzed. Results The IDH1 R132H overexpressing cells were more sensitive to temozolomide than WT and the control, and Nrf2 was significantly decreased in IDH1 R132H overexpressing cells. We found that knocking down Nrf2 could decrease resistance to temozolomide. The nuclear translocation of Nrf2 in IDH1 R132H overexpressing cells was lower than the WT and the control groups after temozolomide treatment. When compared with WT cells, NQO1 expression was reduced in IDH1 R132H cells, especially after temozolomide treatment. P53 was involved in the resistance mechanism of temozolomide mediated by Nrf2 and NQO1. Conclusions Nrf2 played an important role in IDH1 R132H-mediated drug resistance. The present study provides new insight for glioma chemotherapy with temozolomide. PMID:28427200
Watson, Gregory A; Naran, Sanjay; Zhang, Xinglu; Stang, Michael T; Queiroz de Oliveira, Pierre E; Hughes, Steven J
2011-01-01
Introduction The CD95/CD95L pathway plays a critical role in tissue homeostasis and immune system regulation; however, the function of this pathway in malignancy remains poorly understood. We hypothesized that CD95L expression in esophageal adenocarcinoma confers advantages to the neoplasm other than immune privilege. Methods CD95L expression was characterized in immortalized squamous esophagus (HET-1A) and Barrett esophagus (BAR-T) cells; adenocarcinoma cell lines FLO-1, SEG-1, and BIC-1, and MDA468 (- control); and KFL cells (+ control). Analyses included reverse transcription-polymerase chain reaction, immunoblots of whole cell and secretory vesicle lysates, FACScan analysis, laser scanning confocal microscopy of native proteins and fluorescent constructs, and assessment of apoptosis and ERK1/2 pathways. Results Cleaved, soluble CD95L is expressed at both the RNA and protein levels in these cell lines derived from esophageal adenocarcinoma and other human tissues. CD95L was neither trafficked to the cell membrane nor secreted into the media or within vesicles, rather the protein seems to be sequestered in the cytoplasm. CD95 and CD95L colocalize by immunofluorescence, but an interaction was not proven by immunoprecipitation. Overexpression of CD95L in the adenocarcinoma cell lines induced robust apoptosis and, under conditions of pan-caspase inhibition, resulted in activation of ERK signaling. Conclusions CD95L localization in EA cells is inconsistent with the conference of immune privilege and is more consistent with a function that promotes tumor growth through alternative CD95 signaling. Reduced cell surface expression of CD95 affects cell sensitivity to extracellular apoptotic signals more significantly than alterations in downstream modulators of apoptosis. PMID:21390183
Wang, Yalin; Jiang, Yan; Bian, Cuicui; Dong, Yi; Ma, Chao; Hu, Xiaolin; Liu, Ziling
2015-09-01
Chronic myeloid leukemia (CML) is a clonal disorder characterized by excessive accumulation of myeloid cells in the peripheral blood. In the present study, to investigate the role of Hiwi in leukemogenesis, lentivirus-mediated Hiwi overexpression was performed in a CML cell line, K562 cells. Our data revealed that Hiwi protein expression was undetectable in K562 cells, and its overexpression suppressed cell proliferation, induced cell cycle arrest at G0/G1 and G2/M phases, and promoted apoptosis in K562 cells in vitro. Expression of anti-apoptotic protein, Bcl-2, was decreased in cells expressing Hiwi, whereas that of pro-apoptotic proteins, Bax, activated caspase-3, -9, and cleaved poly (ADP-ribose) polymerase were increased. Additionally, Hiwi upregulation enhanced the chemosensitivity of CML cells to daunomycin. Our study illustrates that expression deletion of Hiwi may be involved in the pathogenesis of human CML and suggests a possible role of Hiwi in regulating the cell growth, cell cycle, and apoptosis of CML cells in vitro.
Sun, Huidong; Gao, Yanchao; Lu, Kemei; Zhao, Guimei; Li, Xuehua; Li, Zhu; Chang, Hong
2015-10-24
Klotho is a discovered aging suppressor gene, and its overexpression in mice extends the life span of the animal. Recently, Klotho is also identified as a tumor suppressor gene in variety of tumors; however, the potential role and the antitumor mechanism remain unclarified in liver cancers. RT-PCR and western blotting analysis were used to detect the expression of Klotho, β-catenin, C-myc, and Cyclin D1. MTT assay was used to detect the survival rates of HepG2 and SMMC-7721 cells. Colony formation assay was used to test the proliferation ability in Klotho transfected cells. FACS was used to detect the cell apoptosis rate in different groups. The results showed that lower expression of Klotho were found in liver cancer cell lines than the immortalized liver cell L02. Also, MTT assay results found that overexpression or recombinant Klotho administration suppressed the proliferation of liver cancer cells HepG2 and SMMC-7721. Moreover, the colony formation assay results showed that the number of colonies was significantly lower in the cells with transfection with pCMV-Klotho than the controls. Thus, functional analysis demonstrated that Klotho expression inhibited the proliferation of liver cancer cells and Klotho worked as an important antitumor gene in tumor progression. Next, the mechanism was partly clarified that Klotho expression induced cell apoptosis in HepG2 and SMMC-7721 cells, and this phenomenon was mainly involved in the Wnt/β-catenin signaling pathway. The western blotting analysis revealed that overexpression or recombinant administration of Klotho obviously decreased the expression levels of β-catenin, C-myc, and Cyclin D1 in HepG2 cells. Most importantly, the antitumor mechanism for Klotho due to that overexpression of Klotho not only decreased the endogenous β-catenin levels but also inhibited the nuclear translocation of β-catenin to delay the cell cycle progression. Klotho was a tumor suppressor gene, and overexpression of Klotho suppressed the proliferation of liver cancer cells partly due to negative regulation of Wnt/β-catenin signaling pathway. So, Klotho might be used as a potential target, and the study will contribute to treatment for therapy of liver cancer patients.
Neuroligin-1 overexpression in newborn granule cells in vivo.
Schnell, Eric; Bensen, Aesoon L; Washburn, Eric K; Westbrook, Gary L
2012-01-01
Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons.
Lack of a direct role for macrosialin in oxidized LDL metabolism.
de Beer, Maria C; Zhao, Zhenze; Webb, Nancy R; van der Westhuyzen, Deneys R; de Villiers, Willem J S
2003-04-01
Murine macrosialin (MS), a scavenger receptor family member, is a heavily glycosylated transmembrane protein expressed predominantly in macrophage late endosomes. MS is also found on the cell surface where it is suggested, on the basis of ligand blotting, to bind oxidized LDL (oxLDL). Here we report on the regulation of MS by an atherogenic high-fat diet and oxLDL, and on the inability of MS in transfected cells to bind oxLDL. MS expression was markedly increased in the livers of atherosclerosis-susceptible C57BL/6 and atherosclerosis-resistant C3H/HeJ mice fed an atherogenic high-fat diet. In resident-mouse peritoneal macrophages, treatment with oxLDL upregulated MS mRNA and protein expression 1.5- to 3-fold. MS, overexpressed in COS-7 cells through adenovirus mediated gene transfer, bound oxLDL by ligand blotting. However, no binding of oxLDL to MS was observed in intact transfected COS-7 and Chinese hamster ovary cells, despite significant cell surface expression of MS. Furthermore, inhibition of MS through gene silencing did not affect the binding of oxLDL to macrophages. We conclude that although MS expression in macrophages and Kupffer cells is responsive to a proatherogenic inflammatory diet and to oxLDL, MS does not function as an oxLDL receptor on the cell surface.
YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang
2012-09-10
Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model tomore » study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap-overexpression phenotype in P19 cells. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap-overexpression phenotype in cortical progenitors.« less
Patki, Mugdha; Huang, Yanfang; Ratnam, Manohar
2016-07-22
It is believed that growth of castration resistant prostate cancer (CRPC) cells is enabled by sensitization to minimal residual post-castrate androgen due to overexpression of the androgen receptor (AR). Evidence is derived from androgen-induced colony formation in the absence of cell-secreted factors or from studies involving forced AR overexpression in hormone-dependent cells. On the other hand, standard cell line models established from CRPC patient tumors (e.g., LNCaP and VCaP) are hormone-dependent and require selection pressure in castrated mice to re-emerge as CRPC cells and the resulting tumors then tend to be insensitive to the androgen antagonist enzalutamide. Therefore, we examined established CRPC model cells produced by castration of mice bearing hormone-dependent cell line xenografts including CRPC cells overexpressing full-length AR (C4-2) or co-expressing wtAR and splice-variant AR-V7 that is incapable of ligand binding (22Rv1). In standard colony formation assays, C4-2 cells were shown to be androgen-dependent and sensitive to enzalutamide whereas 22Rv1 cells were incapable of colony formation under identical conditions. However, both C4-2 and 22Rv1 cells formed colonies in conditioned media derived from the same cells or from HEK293 fibroblasts that were proven to lack androgenic activity. This effect was (i) not enhanced by androgen, (ii) insensitive to enzalutamide, (iii) dependent on AR (in C4-2) and on AR-V7 and wtAR (in 22Rv1) and (iv) sensitive to inhibitors of several signaling pathways, similar to androgen-stimulation. Therefore, during progression to CRPC in vivo, coordinate cellular changes accompanying overexpression of AR may enable cooperation between hormone-independent activity of AR and actions of cellular secretory factors to completely override androgen-dependence and sensitivity to drugs targeting hormonal factors. Copyright © 2016 Elsevier Inc. All rights reserved.
Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam
2016-01-01
The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.
Saito, Makoto; Takano, Takashi; Nishimura, Tomohiro; Kohara, Michinori; Tsukiyama-Kohara, Kyoko
2015-01-01
In our previous study, we demonstrated that 3β-hydroxysterol Δ24-reductase (DHCR24) was overexpressed in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), and that its expression was induced by HCV. Using a monoclonal antibody against DHCR24 (2-152a MAb), we found that DHCR24 was specifically expressed on the surface of HCC cell lines. Based on these findings, we aimed to establish a novel targeting strategy using 2-152a MAb to treat HCV-related HCC. In the present study, we examined the antitumor activity of 2-152a MAb. In the presence of complement, HCC-derived HuH-7 cells were killed by treatment with 2-152a MAb, which was mediated by complement-dependent cytotoxicity (CDC). In addition, the antigen recognition domain of 2-152a MAb was responsible for the unique anti-HCV activity. These findings demonstrate the feasibility of using 2-152a MAb for antibody therapy against HCV-related HCC. In addition, surface DHCR24 on HCC cells exhibited a functional property, agonist-induced internalization. We showed that 2-152a MAb-mediated binding of a cytotoxic agent (a saponin-conjugated secondary antibody) to surface DHCR24 led to significant cytotoxicity. This suggests that surface DHCR24 on HCC cells can function as a carrier for internalization. Therefore, surface DHCR24 could be a valuable target for HCV-related HCC therapy, and 2-152a MAb appears to be useful for this targeted therapy. PMID:25875901
NASA Astrophysics Data System (ADS)
Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes
2016-04-01
The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.
Macovei, Anca; Faè, Matteo; Biggiogera, Marco; de Sousa Araújo, Susana; Carbonera, Daniela; Balestrazzi, Alma
2018-01-01
The role of tyrosyl-DNA phosphodiesterase 2 (Tdp2) involved in the repair of 5′-end-blocking DNA lesions is still poorly explored in plants. To gain novel insights, Medicago truncatula suspension cultures overexpressing the MtTdp2α gene (Tdp2α-13C and Tdp2α-28 lines, respectively) and a control (CTRL) line carrying the empty vector were investigated. Transmission electron microscopy (TEM) revealed enlarged nucleoli (up to 44% expansion of the area, compared to CTRL), the presence of nucleolar vacuoles, increased frequency of multinucleolate cells (up to 4.3-fold compared to CTRL) and reduced number of ring-shaped nucleoli in Tdp2α-13C and Tdp2α-28 lines. Ultrastructural data suggesting for enhanced nucleolar activity in MtTdp2α-overexpressing lines were integrated with results from bromouridine incorporation. The latter revealed an increase of labeled transcripts in both Tdp2α-13C and Tdp2α-28 cells, within the nucleolus and in the extra-nucleolar region. MtTdp2α-overexpressing cells showed tolerance to etoposide, a selective inhibitor of DNA topoisomerase II, as evidenced by DNA diffusion assay. TEM analysis revealed etoposide-induced rearrangements within the nucleolus, resembling the nucleolar caps observed in animal cells under transcription impairment. Based on these findings it is evident that MtTdp2α-overexpression enhances nucleolar activity in plant cells. PMID:29868059
Suenaga, Tadahiro; Arase, Hisashi; Yamasaki, Sho; Kohno, Masayuki; Yokosuka, Tadashi; Takeuchi, Arata; Hattori, Takamichi; Saito, Takashi
2007-11-01
Lymphocyte proliferation is regulated by signals through antigen receptors, co-stimulatory receptors, and other positive and negative modulators. Several membrane tetraspanning molecules are also involved in the regulation of lymphocyte growth and death. We cloned a new B cell-specific tetraspanning (BTS) membrane molecule, which is similar to CD20 in terms of expression, structure and function. BTS is specifically expressed in the B cell line and its expression is increased after the pre-B cell stage. BTS is expressed in intracellular granules and on the cell surface. Overexpression of BTS in immature B cell lines induces growth retardation through inhibition of cell cycle progression and cell size increase without inducing apoptosis. This inhibitory function is mediated predominantly by the N terminus of BTS. The development of mature B cells is inhibited in transgenic mice expressing BTS, suggesting that BTS is involved in the in vivo regulation of B cells. These results indicate that BTS plays a role in the regulation of cell division and B cell growth.
Establishment and characterization of a unique 1 microm diameter liver-derived progenitor cell line.
Aravalli, Rajagopal N; Behnan Sahin, M; Cressman, Erik N K; Steer, Clifford J
2010-01-01
Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 microm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers. Copyright 2009 Elsevier Inc. All rights reserved.
Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes.
Terao, Naoko; Takamatsu, Shinji; Minehira, Tomomi; Sobajima, Tomoaki; Nakayama, Kotarosumitomo; Kamada, Yoshihiro; Miyoshi, Eiji
2015-04-07
To evaluate/isolate cancer stem cells (CSCs) from tissue or cell lines according to various definitions and cell surface markers. Lectin microarray analysis was conducted on CSC-like fractions of the human pancreatic cancer cell line Panc1 by establishing anti-cancer drug-resistant cells. Changes in glycan structure of CSC-like cells were also investigated in sphere-forming cells as well as in CSC fractions obtained from overexpression of CD24 and CD44. Several types of fucosylation were increased under these conditions, and the expression of fucosylation regulatory genes such as fucosyltransferases, GDP-fucose synthetic enzymes, and GDP-fucose transporters were dramatically enhanced in CSC-like cells. These changes were significant in gemcitabine-resistant cells and sphere cells of a human pancreatic cancer cell line, Panc1. However, downregulation of cellular fucosylation by knockdown of the GDP-fucose transporter did not alter gemcitabine resistance, indicating that increased cellular fucosylation is a result of CSC-like transformation. Fucosylation might be a biomarker of CSC-like cells in pancreatic cancer.
Overexpression of RBM5 induces autophagy in human lung adenocarcinoma cells.
Su, Zhenzhong; Wang, Ke; Li, Ranwei; Yin, Jinzhi; Hao, Yuqiu; Lv, Xuejiao; Li, Junyao; Zhao, Lijing; Du, Yanwei; Li, Ping; Zhang, Jie
2016-02-29
Dysfunctions in autophagy and apoptosis are closely interacted and play an important role in cancer development. RNA binding motif 5 (RBM5) is a tumor suppressor gene, which inhibits tumor cells' growth and enhances chemosensitivity through inducing apoptosis in our previous studies. In this study, we investigated the relationship between RBM5 overexpression and autophagy in human lung adenocarcinoma cells. Human lung adenocarcinoma cancer (A549) cells were cultured in vitro and were transiently transfected with a RBM5 expressing plasmid (GV287-RBM5) or plasmid with scrambled control sequence. RBM5 expression was determined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Intracellular LC-3 I/II, Beclin-1, lysosome associated membrane protein-1 (LAMP1), Bcl-2, and NF-κB/p65 protein levels were detected by Western blot. Chemical staining with monodansylcadaverine (MDC) and acridine orange (AO) was applied to detect acidic vesicular organelles (AVOs). The ultrastructure changes were observed under transmission electron microscope (TEM). Then, transplanted tumor models of A549 cells on BALB/c nude mice were established and treated with the recombinant plasmids carried by attenuated Salmonella to induce RBM5 overexpression in tumor tissues. RBM5, LC-3, LAMP1, and Beclin1 expression was determined by immunohistochemistry staining in plasmids-treated A549 xenografts. Our study demonstrated that overexpression of RBM5 caused an increase in the autophagy-related proteins including LC3-I, LC3-II, LC3-II/LC3-I ratio, Beclin1, and LAMP1 in A549 cells. A large number of autophagosomes with double-membrane structure and AVOs were detected in the cytoplasm of A549 cells transfected with GV287-RBM5 at 24 h. We observed that the protein level of NF-κB/P65 was increased and the protein level of Bcl-2 decreased by RBM5 overexpression. Furthermore, treatment with an autophagy inhibitor, 3-MA, enhanced RBM5-induced cell death and chemosensitivity in A549 cells. Furthermore, we successfully established the lung adenocarcinoma animal model using A549 cells. Overexpression of RBM5 enhanced the LC-3, LAMP1, and Beclin1 expression in the A549 xenografts. Our findings showed for the first time that RBM5 overexpression induced autophagy in human lung adenocarcinoma cells, which might be driven by upregulation of Beclin1, NF-κB/P65, and downregulation of Bcl-2. RBM5-enhanced autophagy acts in a cytoprotective way and inhibition of autophagy may improve the anti-tumor efficacy of RBM5 in lung cancer.
Faria, Márcia; Matos, Paulo; Pereira, Teresa; Cabrera, Rafael; Cardoso, Bruno A.; Bugalho, Maria João
2017-01-01
Overexpression of tumor-associated RAC1b has been recently highlighted as one of the most promising targets for therapeutic intervention in colon, breast, lung and pancreatic cancer. RAC1b is a hyperactive variant of the small GTPase RAC1 and has been recently shown to be overexpressed in a subset of papillary thyroid carcinomas associated with unfavorable outcome. Using the K1 PTC derived cell line as an in vitro model, we observed that both RAC1 and RAC1b were able to induce a significant increase on NF-kB and cyclin D1 reporter activity. A clear p65 nuclear localization was found in cells transfected with RAC1b-WT, confirming NF-kB canonical pathway activation. Consistently, we observed a RAC1b-mediated decrease in IκBα (NF-kB inhibitor) protein levels. Moreover, we show that RAC1b overexpression stimulates G1/S progression and protects thyroid cells against induced apoptosis, the latter through a process involving the NF-kB pathway. Present data support previous findings suggesting an important role for RAC1b in the development of follicular cell-derived thyroid malignancies and point out NF-kB activation as one of the molecular mechanisms associated with the pro-tumorigenic advantage of RAC1b overexpression in thyroid carcinomas. PMID:28234980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Wenqing; Weng, Shuqiang; Zhang, Si
2013-05-10
Highlights: •β1,4GT1 interacts with EGFR both in vitro and in vivo. •β1,4GT1 co-localizes with EGFR on the cell surface. •β1,4GT1 inhibits {sup 125}I-EGF binding to EGFR. •β1,4GT1 inhibits EGF induced EGFR dimerization and phosphorylation. -- Abstract: Our previous studies showed that cell surface β1,4-galactosyltransferase 1 (β1,4GT1) negatively regulated cell survival through inhibition and modulation of the epidermal growth factor receptor (EGFR) signaling pathway in human hepatocellular carcinoma (HCC) SMMC-7721 cells. However, the underlying mechanism remains unclear. Here we demonstrated that β1,4-galactosyltransferase 1 (β1,4GT1) interacted with EGFR in vitro by GST pull-down analysis. Furthermore, we demonstrated that β1,4GT1 bound to EGFRmore » in vivo by co-immunoprecipitation and determined the co-localization of β1,4GT1 and EGFR on the cell surface via confocal laser scanning microscopy analysis. Finally, using {sup 125}I-EGF binding experiments and Western blot analysis, we found that overexpression of β1,4GT1 inhibited {sup 125}I-EGF binding to EGFR, and consequently reduced the levels of EGFR dimerization and phosphorylation. In contrast, RNAi-mediated knockdown of β1,4GT1 increased the levels of EGFR dimerization and phosphorylation. These data suggest that cell surface β1,4GT1 interacts with EGFR and inhibits EGFR activation.« less
Yao, Zong-Feng; Wang, Ying; Lin, Yu-Hong; Wu, Yan; Zhu, An-You; Wang, Rui; Shen, Lin; Xi, Jin; Qi, Qi; Jiang, Zhi-Quan; Lü, He-Zuo; Hu, Jian-Guo
2017-01-01
Our previous study showed that Schwann cells (SCs) promote survival, proliferation and migration of co-transplanted oligodendrocyte progenitor cells (OPCs) and neurological recovery in rats with spinal cord injury (SCI). A subsequent in vitro study confirmed that SCs modulated OPC proliferation and migration by secreting platelet-derived growth factor (PDGF)-AA and fibroblast growth factor-2 (FGF)-2. We also found that PDGF-AA stimulated OPC proliferation and their differentiation into oligodendrocytes (OLs) at later stages. We therefore speculated that PDGF-AA administration can exert the same effect as SC co-transplantation in SCI repair. To test this hypothesis, in this study we investigated the effect of transplanting PDGF-AA-overexpressing OPCs in a rat model of SCI. We found that PDGF-AA overexpression in OPCs promoted their survival, proliferation, and migration and differentiation into OLs in vivo . OPCs overexpressing PDGF-AA were also associated with increased myelination and tissue repair after SCI, leading to the recovery of neurological function. These results indicate that PDGF-AA-overexpressing OPCs may be an effective treatment for SCI.
Zenoni, Sara; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Sanson, Andrea; de Groot, Peter; Sordo, Sara; Citterio, Sandra; Monti, Francesca; Pezzotti, Mario
2011-08-01
• Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. • PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. • The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. • These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
MicroRNA-126 enhances the sensitivity of osteosarcoma cells to cisplatin and methotrexate
JIANG, LIANGDONG; HE, AIYONG; HE, XIAOJIE; TAO, CHENG
2015-01-01
The establishment of novel chemotherapy drugs for osteosarcoma is urgently required, and the mechanisms and effects of cisplatin (DDP) and methotrexate (MTX) in the current treatment of osteosarcoma have not been fully elucidated. The present study aimed to observe the effect of DDP, MTX and rapamycin on osteosarcoma cell proliferation and apoptosis, and to investigate the association between miR-126 and the effects of DDP and MTX in osteosarcoma cells. miR-126-overexpressing and -silencing lentiviral vectors were constructed, and MG63 and U-2 OS osteosarcoma cells were infected. An MTT assay was conducted to detect transfected cell proliferation, and the effects of the chemotherapy drugs on transfected cell apoptosis were detected by flow cytometry. The cell cycle of the transfected cells was analyzed via flow cytometry. As the miR-126-overexpressing and -silencing osteosarcoma cell lines were successfully constructed, it was observed that DDP and MTX inhibited osteosarcoma cell proliferation. With the decreased expression of miR-126, the sensitivity of osteosarcoma cells to DDP and MTX was reduced at the same concentration. The flow cytometry suggested that DDP and MTX could promote the apoptosis of osteosarcoma cells with overexpressed miR-126, whereas they could not significantly impact the apoptosis of the miR-126-silenced osteosarcoma cells. Meanwhile, DDP inhibited the cell cycle of the miR-126-overexpressing osteosarcoma cells. In conclusion, DDP and MTX inhibited the proliferation and promoted the apoptosis of the osteosarcoma cells, and these processes were dependent upon the expression of miR-126. PMID:26788206
Dai, Hai-Ping; Zhu, Guo-Hua; Wu, Li-Li; Wang, Qian; Yao, Hong; Wang, Qin-Rong; Wen, Li-Jun; Qiu, Hui-Ying; Shen, Qun; Chen, Su-Ning; Wu, De-Pei
2017-06-01
To explore the effect of LPXN overexpression on the proliferation, adhesion and invasion of THP-1 cells and its possible mechanism. A THP-1 cell line with stable overexpression of LPXN was constucted by using a lentivirus method, CCK-8 was used to detect the proliferation of cells, adhesion test was used to evaluate adhesion ablity of cells to Fn. Transwell assay was used to detect the change of invasion capability. Western blot was used to detect expression of LPXN, ERK, pERK and integrin α4, α5, β1, the Gelatin zymography was applied to detect activity of MMP2/MMP9 secreted by the THP-1 cells. Successful establishment of THP-1 cells with LPXN overexpression (THP-1 LPXN) was confirmed with Western blot. THP-1 LPXN cells were shown to proliferate faster than the control THP-1 vector cells. Adhesion to Fn and expression of ERK, integrin α4, α5 and β1 in the THP-1 LPXN cells were higher than that in the control cells. Invasion across matrigel and enhanced activity of MMP2 could be detected both in the THP-1 LPXN cells as compared with the control cells. Ectopically ovexpression of LPXN may promote proliferation of THP-1 cells through up-regulation of ERK; promote adhesion of THP-1 cells through up-regulating the integrin α4/β1 as well as integrin α5/β1 complex; promote invasion of THP-1 cells through activating MMP2.
Cathcart, Mary-Clare; Gately, Kathy; Cummins, Robert; Kay, Elaine; O'Byrne, Kenneth J; Pidgeon, Graham P
2011-03-09
Thromboxane synthase (TXS) metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and/or a survival factor in the disease. TXS expression was examined in human NSCLC and matched controls by western analysis and IHC. TXS metabolite (TXB2) levels were measured by EIA. A 204-patient NSCLC TMA was stained for COX-2 and downstream TXS expression. TXS tissue expression was correlated with clinical parameters, including overall survival. Cell proliferation/survival and invasion was examined in NSCLC cells following both selective TXS inhibition and stable TXS over-expression. TXS was over-expressed in human NSCLC samples, relative to matched normal controls. TXS and TXB2 levels were increased in protein (p < 0.05) and plasma (p < 0.01) NSCLC samples respectively. TXS tissue expression was higher in adenocarcinoma (p < 0.001) and female patients (p < 0.05). No significant correlation with patient survival was observed. Selective TXS inhibition significantly reduced tumour cell growth and increased apoptosis, while TXS over-expression stimulated cell proliferation and invasiveness, and was protective against apoptosis. TXS is over-expressed in NSCLC, particularly in the adenocarcinoma subtype. Inhibition of this enzyme inhibits proliferation and induces apoptosis. Targeting thromboxane synthase alone, or in combination with conventional chemotherapy is a potential therapeutic strategy for NSCLC.
Rudnicka, Caroline; Mochizuki, Satsuki; Okada, Yasunori; McLaughlin, Claire; Leedman, Peter J; Stuart, Lisa; Epis, Michael; Hoyne, Gerard; Boulos, Sherif; Johnson, Liam; Schlaich, Markus; Matthews, Vance
2016-10-01
Prostate cancer is one of the most prevalent cancers in men. It is critical to identify and characterize oncogenes that drive the pathogenesis of human prostate cancer. The current study builds upon previous research showing that a disintegrin and metallproteinase (ADAM)28 is involved in the pathogenesis of numerous cancers. Our novel study used overexpression, pharmacological, and molecular approaches to investigate the biological function of ADAM28 in human prostate cancer cells, with a focus on cell proliferation and migration. The results of this study provide important insights into the role of metalloproteinases in human prostate cancer.The expression of ADAM28 protein levels was assessed within human prostate tumors and normal adjacent tissue by immunohistochemistry. Immunocytochemistry and western blotting were used to assess ADAM28 protein expression in human prostate cancer cell lines. Functional assays were conducted to assess proliferation and migration in human prostate cancer cells in which ADAM28 protein expression or activity had been altered by overexpression, pharmacological inhibition, or by siRNA gene knockdown.The membrane bound ADAM28 was increased in human tumor biopsies and prostate cancer cell lines. Pharmacological inhibition of ADAM28 activity and/or knockdown of ADAM28 significantly reduced proliferation and migration of human prostate cancer cells, while overexpression of ADAM28 significantly increased proliferation and migration.ADAM28 is overexpressed in primary human prostate tumor biopsies, and it promotes human prostate cancer cell proliferation and migration. This study supports the notion that inhibition of ADAM28 may be a potential novel therapeutic strategy for human prostate cancer.
Lee, Hyang-Mi; Kim, Ji-Sun; Kang, Sa-Ouk
2016-12-01
Despite the importance of glutathione in Dictyostelium, the role of glutathione synthetase (gshB/GSS) has not been clearly investigated. In this study, we observed that increasing glutathione content by constitutive expression of gshB leads to mound-arrest and defects in 3',5'-cyclic adenosine monophosphate (cAMP)-mediated aggregation and developmental gene expression. The overexpression of gpaB encoding G protein alpha 2 (Gα2), an essential component of the cAMP signalling pathway, results in a phenotype similar to that caused by gshB overexpression, whereas gpaB knockdown in gshB-overexpressing cells partially rescues the above-mentioned phenotypic defects. Furthermore, Gα2 is highly enriched at the plasma membrane of gshB-overexpressing cells compared to wild-type cells. Therefore, our findings suggest that glutathione upregulates cAMP signalling via Gα2 modulation during Dictyostelium development. © 2016 Federation of European Biochemical Societies.
Weng, X; Yan, Y Y; Tong, Y H; Fan, Y; Zeng, J M; Wang, L L; Lin, N M
2016-06-23
To investigate the effect of Keap1-Nrf2 pathway on cell proliferation, metastasis and drug resistance of human lung cancer A549 cell line. A549-Keap1 cell line, constantly expressing wild type Keap1, was established by lentiviral transfection. Real-time RT-PCR and western blot were used to determine the expression of Nrf2 and its target gene in A549 cells. Sulforhodamine B (SRB) assay, flow cytometry, colony formation assay, transwell assay, and cell wound-healing assay were performed to explore the effect of wild type Keap1 expression on the proliferation, invasion, migration and drug resistance of A549 cells. Over-expressed Keap1 decreased the expression of Nrf2 protein and the mRNA level of its downstream target genes and inhibited the ability of cell proliferation and clone formation of A549 cells. Keap1 overexpression induced G0/G1 phase arrest. The percentage of A549-Keap1 cells in G0/G1 phase was significantly higher than that of A549-GFP cells (80.2±5.9)% vs. (67.1±0.9%)(P<0.05). Compared with the invasive A549-Keap1 cells (156.33±17.37), the number of invasive A549-GFP cells was significantly higher (306.67±22.19) in a high power field. Keap1 overexpression significantly enhanced the sensitivity of A549 cells to carboplatin and gemcitabine (P<0.01). The IC50s of carboplatin in A549-Keap1 and A549-GFP cells were (52.1±3.3) μmol/L and (107.8±12.9) μmol/L, respectively. The IC50s of gemcitabine in A549-Keap1 and A549-GFP cells were (6.8±1.2) μmol/L and (9.9±0.5) μmol/L, respectively. Keap1 overexpression significantly inhibits the expression of Nrf2 and its downstream target genes, suppresses tumor cell proliferation and metastasis, and enhances the sensitivity of A549 cells to anticancer drugs.
Effect of HSP27 on Human Breast Tumor Cell Growth and Motility
1999-08-01
the small stress protein, HSP27 , on growth and motility characteristics of normal and tumor-derived human mammary cell lines. We hypothesized that...cells overexpressing HSP27 would show increased motility, altered chemotactic properties, increased resistance to heat killing and to certain drugs...Donna has prepared and studied 19 clonal MDA23 1 breast tumor cell lines that overexpress human HSP27 , and determined that, while heat resistance is
Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Haruna; Yu, Dong; Miura, Masahiko
2007-11-30
Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. Asmore » expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo.« less
Zheng, Nana; Huo, Zihe; Zhang, Bin; Meng, Mei; Cao, Zhifei; Wang, Zhiwei; Zhou, Quansheng
2016-08-05
Thrombomodulin (TM) is an endothelial cell membrane protein and plays critical roles in anti-thrombosis, anti-inflammation, vascular endothelial protection, and is traditionally regarded as a "vascular protection god". In recent years, although TM has been reported to be down-regulated in a variety of malignant tumors including lung cancer, the role and mechanism of TM in lung cancer are enigmatic. In this study, we found that induction of TM overexpression by cholesterol-reducing drug atorvastatin significantly diminished the tumorigenic capability of the lung cancer cells. Moreover, we demonstrated that TM overexpression caused G0/G1 phase arrest and markedly reduced the colony forming capability of the cells. Furthermore, overexpression of TM inhibited cell migration and invasion. Consistently, depletion of TM promoted cell growth, reduced the cell population at the G0/G1 phase, and enhanced cell migratory ability. Mechanistic study revealed that TM up-regulated E-cadherin but down-regulated N-cadherin expression, resulting in reversal of epithelial-mesenchymal transition (EMT) in the lung cancer cells. Moreover, silencing TM expression led to decreased E-cadherin and increased N-cadherin. Taken together, our study suggests that TM functions as a tumor suppressive protein, providing a conceptual framework for inducing TM overexpression as a sensible strategy and approach for novel anti-lung cancer drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.
Banisadr, Arsham; Safdari, Yaghoub; Kianmehr, Anvarsadat; Pourafshar, Mahdieh
2018-04-03
The aim of this study was to produce a humanized single chain antibody (scFv) as a potential improved product design to target EGFR (Epidermal Growth Factor Receptor) overexpressing cancer cells. To this end, CDR loops of cetuximab (an FDA-approved anti-EGFR antibody) were grafted on framework regions derived from type 3 (VH3 and VL3 kappa) human germline sequences to obtain recombinant VH and VL domainslinked together with a flexible linker [(Gly 4 Ser) 3 ] to form a scFv. Codon optimized synthetic gene encoding the scFv (with NH2-VH-linker-VL-COOH orientation) was expressed in E. coli Origami™ 2(DE3) cells and the resultant scFv purified by using Ni-NTA affinity chromatography. The scFv, called cet.Hum scFv, was evaluated in ELISA and immunoblot to determine whether it can recognize EGFR. The scFv was able to recognize EGFR over-expressing cancer cells (A-431) but failed to detect cancer cells with low levels of EGFR (MCF-7 cells). Although the affinity of the scFv forA-431 cells was 9 fold lower than that of cetuximab, it was strong enough to recognize these cells. Considering its ability to bind EGFR molecules, the scFv may exhibit a potential application for the detection of EGFR-overexpressing cancer cells.
Folate receptor {alpha} regulates cell proliferation in mouse gonadotroph {alpha}T3-1 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Congjun; Evans, Chheng-Orn; Stevens, Victoria L.
We have previously found that the mRNA and protein levels of the folate receptor alpha (FR{alpha}) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FR{alpha} has not fully been determined. We investigated the effect of FR{alpha} over-expression in the mouse gonadotroph {alpha}T3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FR{alpha} were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNAmore » staining. These observations indicate that over-expression of FR{alpha} promotes cell proliferation. These effects were abrogated in the same {alpha}T3-1 cells when transfected with a mutant FR{alpha} cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FR{alpha} over-expressing cells. In summary, our data suggests that FR{alpha} regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.« less
Britain, Colleen M; Holdbrooks, Andrew T; Anderson, Joshua C; Willey, Christopher D; Bellis, Susan L
2018-02-05
The ST6Gal-I sialyltransferase is upregulated in numerous cancers, and high expression of this enzyme correlates with poor patient prognosis in various malignancies, including ovarian cancer. Through its sialylation of a select cohort of cell surface receptors, ST6Gal-I modulates cell signaling to promote tumor cell survival. The goal of the present study was to investigate the influence of ST6Gal-I on another important receptor that controls cancer cell behavior, EGFR. Additionally, the effect of ST6Gal-I on cancer cells treated with the common EGFR inhibitor, gefitinib, was evaluated. Using the OV4 ovarian cancer cell line, which lacks endogenous ST6Gal-I expression, a kinomics assay revealed that cells with forced overexpression of ST6Gal-I exhibited increased global tyrosine kinase activity, a finding confirmed by immunoblotting whole cell lysates with an anti-phosphotyrosine antibody. Interestingly, the kinomics assay suggested that one of the most highly activated tyrosine kinases in ST6Gal-I-overexpressing OV4 cells was EGFR. Based on these findings, additional analyses were performed to investigate the effect of ST6Gal-I on EGFR activation. To this end, we utilized, in addition to OV4 cells, the SKOV3 ovarian cancer cell line, engineered with both ST6Gal-I overexpression and knockdown, as well as the BxPC3 pancreatic cancer cell line with knockdown of ST6Gal-I. In all three cell lines, we determined that EGFR is a substrate of ST6Gal-I, and that the sialylation status of EGFR directly correlates with ST6Gal-I expression. Cells with differential ST6Gal-I expression were subsequently evaluated for EGFR tyrosine phosphorylation. Cells with high ST6Gal-I expression were found to have elevated levels of basal and EGF-induced EGFR activation. Conversely, knockdown of ST6Gal-I greatly attenuated EGFR activation, both basally and post EGF treatment. Finally, to illustrate the functional importance of ST6Gal-I in regulating EGFR-dependent survival, cells were treated with gefitinib, an EGFR inhibitor widely used for cancer therapy. These studies showed that ST6Gal-I promotes resistance to gefitinib-mediated apoptosis, as measured by caspase activity assays. Results herein indicate that ST6Gal-I promotes EGFR activation and protects against gefitinib-mediated cell death. Establishing the tumor-associated ST6Gal-I sialyltransferase as a regulator of EGFR provides novel insight into the role of glycosylation in growth factor signaling and chemoresistance.
Bai, Ge; Chu, Jianhu; Eli, Mayinur; Bao, Yongxing; Wen, Hao
2017-10-01
Progestin and adipoQ receptor family member 3 (PAQR3) has exhibited anticancer activity in multiple malignancies. However, its expression and function in esophageal squamous cell carcinoma (ESCC) is still elusive. In this work, we examined the expression of PAQR3 in 40 surgically resected ESCC specimens and their adjacent normal tissues. The expression of PAQR3 in ESCC cell lines was measured after treatment with the demethylating agent 5-aza-2'-deoxycytidine (5-Aza-CdR). The effects of overexpression of PAQR3 on cell proliferation, colony formation, invasion, and tumorigenesis were investigated. It was found that the PAQR3 mRNA level was significantly lower in ESCC than that in adjacent normal tissues (P=0.0318). Low PAQR3 expression was significantly associated with more advanced TNM stage (P=0.0093) and absent lymph node involvement (P=0.0324). Compared to normal esophageal epithelial cells, ESCC cells had significantly lower levels of PAQR3. 5-Aza-CdR treatment led to an induction of PAQR3 in ESCC cells. Enforced expression of PAQR3 significantly inhibited ESCC cell proliferation, colony formation and invasion. Moreover, PAQR3 overexpression blocked cell cycle transition from G1 to S phase, which was associated with induction of p27 and p21 and reduction of cyclin D1, CDK4, and CDK2. Mechanistically, overexpression of PAQR3 suppressed the phosphorylation of ERK1/2 in ESCC cells. In vivo tumorigenic studies confirmed that PAQR3 overexpression retarded the growth of ECA-109 xenograft tumors and inhibited the activation of ERK signaling. Taken together, PAQR3 is epigenetically silenced in ESCC and restoration of PAQR3 suppresses the aggressive phenotype of ESCC cells. Therefore, PAQR3 may represent a potential target for the treatment of ESCC. Copyright © 2017. Published by Elsevier Masson SAS.
Elevated levels of Ser/Thr protein phosphatase 5 (PP5) in human breast cancer
Golden, Teresa; Aragon, Ileana V.; Rutland, Beth; Tucker, J. Allan; Shevde, Lalita A.; Samant, Rajeev S.; Zhou, Guofei; Amable, Lauren; Skarra, Danalea; Honkanen, Richard E.
2008-01-01
Ser/Thr protein phosphatase 5 (PP5) regulates several signaling-cascades that suppress growth and/or facilitate apoptosis in response to genomic stress. The expression of PP5 is responsive to hypoxia inducible factor-1 (HIF-1) and estrogen, which have both been linked to the progression of human breast cancer. Still, it is not clear if PP5 plays a role in the development of human cancer. Here, immunostaining of breast cancer tissue-microarrays (TMAs) revealed a positive correlation between PP5 overexpression and ductal carcinoma in situ (DCIS; P value 0.0028), invasive ductal carcinoma (IDC; P value 0.012) and IDC with metastases at the time of diagnosis (P value 0.0001). In a mouse xenograft model, the constitutive overexpression of PP5 was associated with an increase in the rate of tumor growth. In a MCF-7 cell culture model overexpression correlated with both an increase in the rate of proliferation and protection from cell death induced by oxidative stress, UVC-irradiation, adriamycin, and vinblastine. PP5 overexpression had no apparent effect on the sensitivity of MCF-7 cells to taxol or rapamycin. Western analysis of extracts from cells over-expressing PP5 revealed a decrease in the phosphorylation of known substrates for PP5. Together, these studies indicate that elevated levels of PP5 protein occur in human breast cancer and suggest that PP5 overexpression may aid tumor progression. PMID:18280813
Wei, Min; Zhu, Li; Li, Yafen; Chen, Weiguo; Han, Baosan; Wang, Zhiwei; He, Jianrong; Yao, Hongliang; Yang, Zhongyin; Zhang, Qing; Liu, Bingya; Gu, Qinlong; Zhu, Zhenggang; Shen, Kunwei
2011-08-01
Cyclin D1 is aberrantly expressed in many types of cancers, including breast cancer. High levels of cyclin D1b, the truncated isoform of cyclin D1, have been reported to be associated with a poor prognosis for breast cancer patients. In the present study, we used siRNA to target cyclin D1b overexpression and assessed its ability to suppress breast cancer growth in nude mice. Cyclin D1b siRNA effectively inhibited overexpression of cyclin D1b. Depletion of cyclin D1b promoted apoptosis of cyclin D1b-overexpressing cells and blocked their proliferation and transformation phenotypes. Notably, cyclin D1b overexpression is correlated with triple-negative basal-like breast cancers, which lack specific therapeutic targets. Administration of cyclin D1b siRNA inhibited breast tumor growth in nude mice and cyclin D1b siRNA synergistically enhanced the cell killing effects of doxorubicin in cell culture, with this combination significantly suppressing tumor growth in the mouse model. In conclusion, the results indicate that cyclin D1b, which is overexpressed in breast cancer, may serve as a novel and effective therapeutic target. More importantly, the present study clearly demonstrated a very promising therapeutic potential for cyclin D1b siRNA in the treatment of cyclin D1b-overexpressing breast cancers, including the very malignant triple-negative breast cancers. © 2011 Japanese Cancer Association.
Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J
2014-01-01
Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.
ILK Induces Cardiomyogenesis in the Human Heart
Traister, Alexandra; Aafaqi, Shabana; Masse, Stephane; Dai, Xiaojing; Li, Mark; Hinek, Aleksander; Nanthakumar, Kumaraswamy; Hannigan, Gregory; Coles, John G.
2012-01-01
Background Integrin-linked kinase (ILK) is a widely conserved serine/threonine kinase that regulates diverse signal transduction pathways implicated in cardiac hypertrophy and contractility. In this study we explored whether experimental overexpression of ILK would up-regulate morphogenesis in the human fetal heart. Methodology/Principal Findings Primary cultures of human fetal myocardial cells (19–22 weeks gestation) yielded scattered aggregates of cardioblasts positive for the early cardiac lineage marker nk×2.5 and containing nascent sarcomeres. Cardiac cells in colonies uniformly expressed the gap junction protein connexin 43 (C×43) and displayed a spectrum of differentiation with only a subset of cells exhibiting the late cardiomyogenic marker troponin T (cTnT) and evidence of electrical excitability. Adenovirus-mediated overexpression of ILK potently increased the number of new aggregates of primitive cardioblasts (p<0.001). The number of cardioblast colonies was significantly decreased (p<0.05) when ILK expression was knocked down with ILK targeted siRNA. Interestingly, overexpression of the activation resistant ILK mutant (ILKR211A) resulted in much greater increase in the number of new cell aggregates as compared to overexpression of wild-type ILK (ILKWT). The cardiomyogenic effects of ILKR211A and ILKWT were accompanied by concurrent activation of β-catenin (p<0.001) and increase expression of progenitor cell marker islet-1, which was also observed in lysates of transgenic mice with cardiac-specific over-expression of ILKR211A and ILKWT. Finally, endogenous ILK expression was shown to increase in concert with those of cardiomyogenic markers during directed cardiomyogenic differentiation in human embryonic stem cells (hESCs). Conclusions/Significance In the human fetal heart ILK activation is instructive to the specification of mesodermal precursor cells towards a cardiomyogenic lineage. Induction of cardiomyogenesis by ILK overexpression bypasses the requirement of proximal PI3K activation for transduction of growth factor- and β1-integrin-mediated differentiation signals. Altogether, our data indicate that ILK represents a novel regulatory checkpoint during human cardiomyogenesis. PMID:22666394
Jung, Eui-Man; Kim, Yu-Kyung; Lee, Geun-Shik; Hyun, Sang-Hwan; Hwang, Woo-Suk; Jeung, Eui-Bae
2012-07-01
Diabetes mellitus is a metabolic disease caused by impaired insulin secretion from the pancreatic β cells and increased insulin resistance in peripheral tissues. Recently, the overexpression of inducible cyclic AMP (cAMP) early repressor (ICER) Iγ in rodent pancreatic β cells was found to induce insulin deficiency and glucagon overproduction similar to that found in human diabetes mellitus. ICER Iγ with only a DNA binding domain interrupts the transcriptional regulation of the cAMP responsive element-binding protein (CREB) target genes. Based on this information, we hypothesized that the overexpression of ICER Iγ, the most powerful competitor to CREB, could be useful for generating a pig model of diabetes. First, we evaluated the promoter activities of the human insulin gene for the β cell-specific overexpression of ICER Iγ in the pig pancreas. The maximum promoter activity region [-1,431 nucleotides (nt) to +1 nt, +1 = the transcriptional start site] of the insulin gene presented an activity level 3-fold higher than a promoterless construct. Second, ICER Iγ overexpression controlled by this promoter region significantly blocked the glucose-mediated insulin transcription, such as that regulated by the viral promoter in the pancreatic β cell line, MIN6. This suggests that the human insulin promoter may facilitate the overexpression of ICER Iγ in porcine pancreatic β cells. In addition, the overexpression of ICER Iγ in porcine β cells may induce human-like type 1 diabetes mellitus in pigs. In the present study, we generated transgenic fibroblasts containing ICER Iγ cDNA controlled by the human insulin promoter, as well as two screening markers, the green fluorescence protein and the neomycin resistance gene. These fibroblasts may provide a source for somatic cell nuclear transfer to generate a pig model that mimics human diabetes mellitus.
Han, Xiu-guo; Mo, Hui-min; Liu, Xu-qiang; Li, Yan; Du, Lin; Qiao, Han; Fan, Qi-ming; Zhao, Jie; Zhang, Shu-hong; Tang, Ting-ting
2018-01-01
Osteosarcoma is the most common bone cancer in children and adolescents. Tissue inhibitors of metalloproteinases (TIMPs)-3 inhibit matrix metalloproteinases to limit extracellular matrix degradation. Cisplatin is a widely used chemotherapeutic drug used to cure osteosarcoma. Interleukin (IL)-6 and TIMP3 play important roles in the drug resistance of osteosarcoma; however, their relationship in this process remains unclear. This study aimed to explore the role of TIMP3 in the cisplatin sensitivity of osteosarcoma and its underlying molecular mechanisms in vitro and in vivo. We compared TIMP3 expression levels between patients with cisplatin-sensitive and -insensitive osteosarcoma. TIMP3 was overexpressed or knocked down in the Saos2-lung cell line, which is a Saos2 subtype isolated from pulmonary metastases that has higher cisplatin chemoresistance than Saos2 cells. IL-6 expression, cell proliferation, sensitivity to cisplatin, migration, and invasion after TIMP3 overexpression or knockdown were determined. The same experiments were performed using MG63 and U2OS cells. Subsequently, luciferase-labeled Saos2-lung cells overexpressing TIMP3 were injected into the tibiae of nude mice treated with cisplatin. The results showed that IL-6 inhibited TIMP3 expression in Saos2 and Saos2-lung cells via signal transducer and activator of transcription 3 (STAT3) activation. STAT3 knockdown reversed the effect of IL-6. The expression of TIMP3 was higher in patients with cisplatin-sensitive osteosarcoma than in those with insensitive osteosarcoma. IL-6 expression was downregulated upon TIMP3 overexpression, and upregulated by TIMP3 knockdown. TIMP3 overexpression suppressed cell proliferation and enhanced cisplatin sensitivity by activating apoptosis-related signal pathways and inhibiting IL-6 expression in vitro and in vivo. In conclusion, cisplatin sensitivity correlated positively with TIMP3 expression, which is regulated by the IL-6/TIMP3/caspase pathway. The TIMP3 pathway could represent a target for new therapies to treat osteosarcoma. PMID:29731768
PTEN-mediated ERK1/2 inhibition and paradoxical cellular proliferation following Pnck overexpression
Deb, Tushar B; Barndt, Robert J; Zuo, Annie H; Sengupta, Surojeet; Coticchia, Christine M; Johnson, Michael D
2014-01-01
Pregnancy upregulated non-ubiquitous calmodulin kinase (Pnck), a novel calmodulin kinase, is significantly overexpressed in breast and renal cancers. We present evidence that at high cell density, overexpression of Pnck in HEK 293 cells inhibits serum-induced extracellular signal-regulated kinase (ERK1/ERK2) activation. ERK1/2 inhibition is calcium-dependent and Pnck kinase activity is required for ERK1/2 inhibition, since expression of a kinase-dead (K44A) and a catalytic loop phosphorylation mutant (T171A) Pnck protein is unable to inhibit ERK 1/2 activity. Ras is constitutively active at high cell density, and Pnck does not alter Ras activation, suggesting that Pnck inhibition of ERK1/2 activity is independent of Ras activity. Pnck inhibition of serum-induced ERK1/2 activity is lost in cells in which phosphatase and tensin homolog (PTEN) is suppressed, suggesting that Pnck inhibition of ERK1/2 activity is mediated by PTEN. Overexpression of protein phosphatase-active but lipid phosphatase-dead PTEN protein inhibits ERK1/2 activity in control cells and enhances Pnck-mediated ERK1/2 inhibition, suggesting that Pnck increases availability of protein phosphatase active PTEN for ERK1/2 inhibition. Pnck is a stress-responsive kinase; however, serum-induced p38 MAP kinase activity is also downregulated by Pnck in a Pnck kinase- and PTEN-dependent manner, similar to ERK1/2 inhibition. Pnck overexpression increases proliferation, which is inhibited by PTEN knockdown, implying that PTEN acts as a paradoxical promoter of proliferation in ERK1/2 and p38 MAP kinase phosphorylation-inhibited, Pnck-overexpressing cells. Overall, these data reveal a novel function of Pnck in the regulation of ERK1/2 and p38 MAP kinase activity and cell proliferation, which is mediated by paradoxical PTEN functions. The possible biological implications of these data are discussed. PMID:24552815
2011-01-01
Background Well differentiated papillary mesothelioma of the peritoneum (WDPMP) is a rare variant of epithelial mesothelioma of low malignancy potential, usually found in women with no history of asbestos exposure. In this study, we perform the first exome sequencing of WDPMP. Results WDPMP exome sequencing reveals the first somatic mutation of E2F1, R166H, to be identified in human cancer. The location is in the evolutionarily conserved DNA binding domain and computationally predicted to be mutated in the critical contact point between E2F1 and its DNA target. We show that the R166H mutation abrogates E2F1's DNA binding ability and is associated with reduced activation of E2F1 downstream target genes. Mutant E2F1 proteins are also observed in higher quantities when compared with wild-type E2F1 protein levels and the mutant protein's resistance to degradation was found to be the cause of its accumulation within mutant over-expressing cells. Cells over-expressing wild-type E2F1 show decreased proliferation compared to mutant over-expressing cells, but cell proliferation rates of mutant over-expressing cells were comparable to cells over-expressing the empty vector. Conclusions The R166H mutation in E2F1 is shown to have a deleterious effect on its DNA binding ability as well as increasing its stability and subsequent accumulation in R166H mutant cells. Based on the results, two compatible theories can be formed: R166H mutation appears to allow for protein over-expression while minimizing the apoptotic consequence and the R166H mutation may behave similarly to SV40 large T antigen, inhibiting tumor suppressive functions of retinoblastoma protein 1. PMID:21955916
Tu, Chun; Ahmad, Gulzar; Mohapatra, Bhopal; Bhattacharyya, Sohinee; Ortega-Cava, Cesar F; Chung, Byung Min; Wagner, Kay-Uwe; Raja, Srikumar M; Naramura, Mayumi; Band, Vimla
2011-01-01
ESCRT pathway proteins play a key role in sorting ubiquitinated membrane receptors towards lysosomes providing an important mechanism for attenuating cell surface receptor signaling. However, recent studies point to a positive role of ESCRT proteins in signal transduction in multiple species studied under physiological and pathological conditions. ESCRT components such as Tsg101 and Hrs are overexpressed in human cancers and Tsg101 depletion is detrimental for cell proliferation, survival and transformed phenotype of tumor cells. However, the mechanisms underlying the positive contributions of ESCRT pathway to surface receptor signaling have remained unclear. In a recent study, we showed that Tsg101 and Vps4 are essential for translocation of active Src from endosomes to focal adhesion and invadopodia, thereby revealing a role of ESCRT pathway in promoting Src-mediated migration and invasion. We discuss the implications of these and other recent studies which together suggest a role for the ESCRT pathway in recycling of endocytic cargo proteins, aside from its role in lysosomal targeting, potentially explaining the positive roles of ESCRT proteins in signal transduction. PMID:21866262
Tajabadi, Naser; Baradaran, Ali; Ebrahimpour, Afshin; Rahim, Raha A; Bakar, Fatimah A; Manap, Mohd Yazid A; Mohammed, Abdulkarim S; Saari, Nazamid
2015-01-01
Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products. PMID:25757029
Identification and validation of FGFR2 peptide for detection of early Barrett's neoplasia
Zhou, Juan; He, Lei; Pang, Zhijun; Appelman, Henry D.; Kuick, Rork; Beer, David G.; Li, Meng; Wang, Thomas D.
2017-01-01
The incidence of esophageal adenocarcinoma (EAC) is rising rapidly, and early detection within the precursor state of Barrett's esophagus (BE) is challenged by flat premalignant lesions that are difficult detect with conventional endoscopic surveillance. Overexpression of cell surface fibroblast growth factor receptor 2 (FGFR2) is an early event in progression of BE to EAC, and is a promising imaging target. We used phage display to identify the peptide SRRPASFRTARE that binds specifically to the extracellular domain of FGFR2. We labeled this peptide with a near-infrared fluorophore Cy5.5, and validated the specific binding to FGFR2 overexpressed in cells in vitro. We found high affinity kd = 68 nM and rapid binding k = 0.16 min−1 (6.2 min). In human esophageal specimens, we found significantly greater peptide binding to high-grade dysplasia (HGD) versus either BE or normal squamous epithelium, and good correlation with anti-FGFR2 antibody. We also observed significantly greater peptide binding to excised specimens of esophageal squamous cell carcinoma and gastric cancer compared to normal mucosa. These results demonstrate potential for this FGFR2 peptide to be used as a clinical imaging agent to guide tissue biopsy and improve methods for early detection of EAC and potentially other epithelial-derived cancers. PMID:29152066
Lee, Ok Ran; Cho, Hyung-Taeg
2012-12-01
Aminopeptidase M1 (APM1) was the first M1 metallopeptidase family member identified in Arabidopsis, isolated by its affinity for the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). A loss-of-function mutation showed various developmental defects in cell division and auxin transport. APM1 was shown to be localized in endomembrane structures, the cytoplasm, and the plasma membrane. These previous results suggested that APM1 has diverse functional roles in different cell and tissue types. Here we report that APM1 localized to the cytoplasm, and its over-expression in the root hair cell caused longer root hair phenotypes. Treatment of aminopeptidase inhibitors caused internalization of auxin efflux PIN-FORMED proteins in root hair cells and suppressed short root hair phenotype of PIN3 overexpression line (PIN3ox). APM1 also localized to the cytoplasm in tobacco BY-2 cells, its over-expression had little effect on auxin transport in these cells.
RANKL-induced DC-STAMP Is Essential for Osteoclastogenesis
Kukita, Toshio; Wada, Naohisa; Kukita, Akiko; Kakimoto, Takashi; Sandra, Ferry; Toh, Kazuko; Nagata, Kengo; Iijima, Tadahiko; Horiuchi, Madoka; Matsusaki, Hiromi; Hieshima, Kunio; Yoshie, Osamu; Nomiyama, Hisayuki
2004-01-01
Osteoclasts are bone-resorbing, multinucleated giant cells that are essential for bone remodeling and are formed through cell fusion of mononuclear precursor cells. Although receptor activator of nuclear factor–κB ligand (RANKL) has been demonstrated to be an important osteoclastogenic cytokine, the cell surface molecules involved in osteoclastogenesis are mostly unknown. Here, we report that the seven-transmembrane receptor-like molecule, dendritic cell–specific transmembrane protein (DC-STAMP) is involved in osteoclastogenesis. Expression of DC-STAMP is rapidly induced in osteoclast precursor cells by RANKL and other osteoclastogenic stimulations. Targeted inhibition of DC-STAMP by small interfering RNAs and specific antibody markedly suppressed the formation of multinucleated osteoclast-like cells. Overexpression of DC-STAMP enhanced osteoclastogenesis in the presence of RANKL. Furthermore, DC-STAMP directly induced the expression of the osteoclast marker tartrate-resistant acid phosphatase. These data demonstrate for the first time that DC-STAMP has an essential role in osteoclastogenesis. PMID:15452179
Lemaire, Laurent; Nel, Janske; Franconi, Florence; Bastiat, Guillaume; Saulnier, Patrick
2016-01-01
Growing tumor cell lines, such as U87-MG glioma cells, under mild hypoxia (3% O2) leads to a ca. 40% reduction in growth rate once implanted in the brain of nude mice, as compared to normoxia (21% O2) grown cells, wherein the former over-express HIF-1 and VEGF-A. Despite developing differently, the tumors have similar: blood perfusion, oxygen consumption, and vascular surface area parameters, whereas the number of blood vessels is nearly doubled in the tumor arising from normoxia cultured cells. Interestingly, tumor oxygen tension, measured using 19F-oximetry, showed that the normoxia grown cells led to tumors characterized by mild hypoxic environment (approximately 4%) conditions, whilst the hypoxia grown cells led to tumors characterized by physioxic environment (approximately 6%) conditions. This reversal in oxygen concentration may be responsible for the apparent paradoxical growth profiles. PMID:27788227