Sample records for cell surface proteoglycans

  1. Proteoglycans and neuronal migration in the cerebral cortex during development and disease

    PubMed Central

    Maeda, Nobuaki

    2015-01-01

    Chondroitin sulfate proteoglycans and heparan sulfate proteoglycans are major constituents of the extracellular matrix and the cell surface in the brain. Proteoglycans bind with many proteins including growth factors, chemokines, axon guidance molecules, and cell adhesion molecules through both the glycosaminoglycan and the core protein portions. The functions of proteoglycans are flexibly regulated due to the structural variability of glycosaminoglycans, which are generated by multiple glycosaminoglycan synthesis and modifying enzymes. Neuronal cell surface proteoglycans such as PTPζ, neuroglycan C and syndecan-3 function as direct receptors for heparin-binding growth factors that induce neuronal migration. The lectican family, secreted chondroitin sulfate proteoglycans, forms large aggregates with hyaluronic acid and tenascins, in which many signaling molecules and enzymes including matrix proteases are preserved. In the developing cerebrum, secreted chondroitin sulfate proteoglycans such as neurocan, versican and phosphacan are richly expressed in the areas that are strategically important for neuronal migration such as the striatum, marginal zone, subplate and subventricular zone in the neocortex. These proteoglycans may anchor various attractive and/or repulsive cues, regulating the migration routes of inhibitory neurons. Recent studies demonstrated that the genes encoding proteoglycan core proteins and glycosaminoglycan synthesis and modifying enzymes are associated with various psychiatric and intellectual disorders, which may be related to the defects of neuronal migration. PMID:25852466

  2. Heparan Sulfate Modification of the Transmembrane Receptor CD47 Is Necessary for Inhibition of T Cell Receptor Signaling by Thrombospondin-1*

    PubMed Central

    Kaur, Sukhbir; Kuznetsova, Svetlana A.; Pendrak, Michael L.; Sipes, John M.; Romeo, Martin J.; Li, Zhuqing; Zhang, Lijuan; Roberts, David D.

    2011-01-01

    Cell surface proteoglycans on T cells contribute to retroviral infection, binding of chemokines and other proteins, and are necessary for some T cell responses to the matricellular glycoprotein thrombospondin-1. The major cell surface proteoglycans expressed by primary T cells and Jurkat T cells have an apparent Mr > 200,000 and are modified with chondroitin sulfate and heparan sulfate chains. Thrombospondin-1 bound in a heparin-inhibitable manner to this proteoglycan and to a soluble form released into the medium. Based on mass spectrometry, knockdown, and immunochemical analyses, the proteoglycan contains two major core proteins as follows: amyloid precursor-like protein-2 (APLP2, apparent Mr 230,000) and CD47 (apparent Mr > 250,000). CD47 is a known thrombospondin-1 receptor but was not previously reported to be a proteoglycan. This proteoglycan isoform of CD47 is widely expressed on vascular cells. Mutagenesis identified glycosaminoglycan modification of CD47 at Ser64 and Ser79. Inhibition of T cell receptor signaling by thrombospondin-1 was lost in CD47-deficient T cells that express the proteoglycan isoform of APLP2, indicating that binding to APLP2 is not sufficient. Inhibition of CD69 induction was restored in CD47-deficient cells by re-expressing CD47 or an S79A mutant but not by the S64A mutant. Therefore, inhibition of T cell receptor signaling by thrombospondin-1 is mediated by CD47 and requires its modification at Ser64. PMID:21343308

  3. Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study.

    PubMed

    Hayashi, K; Hayashi, M; Jalkanen, M; Firestone, J H; Trelstad, R L; Bernfield, M

    1987-10-01

    The core protein of the proteoglycan at the cell surface of NMuMG mouse mammary epithelial cells bears both heparan and chondroitin sulfate chains and is recognized by the monoclonal antibody 281-2. Using this antibody and the peroxidase-antiperoxidase staining technique in adult mouse tissues, we found that the antibody recognizes the antigen in a highly restricted distribution, staining a variety of epithelial cells but no cells derived from embryonic mesoderm or neural crest. The antibody fails to stain any stromal (mesenchymal) or neuronal cells, with the exception of plasma cells and Leydig cells. Squamous and transitional epithelia stain intensely over their entire surfaces, whereas cuboidal and columnar epithelia stain moderately and only at the lateral surface of the basal cells. Within squamous and transitional epithelial tissues that undergo physiological regeneration (e.g., epidermis), the most superficial and differentiated cell types fail to stain. Within glandular and branched epithelia (e.g., pancreas), the secretory alveolar cells fail to stain. When evaluated by electron microscopy, granular deposits of stain are seen on the plasma membrane, especially on lateral surfaces, but none are noted within the cells or the basement membrane. These results indicate that in adult tissues the core protein of this heparan sulfate-rich proteoglycan is expressed almost exclusively at epithelial cell surfaces. Expression appears to be lost as the cells become either mature or highly differentiated.

  4. Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery

    PubMed Central

    Misra, Suniti; Hascall, Vincent C.; Atanelishvili, Ilia; Moreno Rodriguez, Ricardo; Markwald, Roger R.; Ghatak, Shibnath

    2015-01-01

    The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer. PMID:26448753

  5. Monoclonal Antibody and an Antibody-Toxin Conjugate to a Cell Surface Proteoglycan of Melanoma Cells Suppress in vivo Tumor Growth

    NASA Astrophysics Data System (ADS)

    Bumol, T. F.; Wang, Q. C.; Reisfeld, R. A.; Kaplan, N. O.

    1983-01-01

    A monoclonal antibody directed against a cell surface chondroitin sulfate proteoglycan of human melanoma cells, 9.2.27, and its diphtheria toxin A chain (DTA) conjugate were investigated for their effects on in vitro protein synthesis and in vivo tumor growth of human melanoma cells. The 9.2.27 IgG and its DTA conjugate display similar serological activities against melanoma target cells but only the conjugate can induce consistent in vitro inhibition of protein synthesis and toxicity in M21 melanoma cells. However, both 9.2.27 IgG and its DTA conjugate effect significant suppression of M21 tumor growth in vivo in an immunotherapy model of a rapidly growing tumor in athymic nu/nu mice, suggesting that other host mechanisms may mediate monoclonal antibody-induced tumor suppression.

  6. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    NASA Astrophysics Data System (ADS)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  7. Bone Matrix Proteins: Isolation and Characterization of a Novel Cell-binding Keratan Sulfate Proteoglycan (Osteoadherin) from Bovine Bone

    PubMed Central

    Wendel, Mikael; Sommarin, Yngve; Heinegård, Dick

    1998-01-01

    A small cell-binding proteoglycan for which we propose the name osteoadherin was extracted from bovine bone with guanidine hydrochloride–containing EDTA. It was purified to homogeneity using a combination of ion-exchange chromatography, hydroxyapatite chromatography, and gel filtration. The Mr of the proteoglycan was 85,000 as determined by SDS-PAGE. The protein is rich in aspartic acid, glutamic acid, and leucine. Two internal octapeptides from the proteoglycan contained the sequences Glu-Ile-Asn-Leu-Ser-His-Asn-Lys and Arg-Asp-Leu-Tyr-Phe-Asn-Lys-Ile. These sequences are not previously described, and support the notion that osteoadherin belongs to the family of leucine-rich repeat proteins. A monospecific antiserum was raised in rabbits. An enzyme-linked immunosorbent assay was developed, and showed the osteoadherin content of bone extracts to be 0.4 mg/g of tissue wet weight, whereas none was found in extracts of various other bovine tissues. Metabolic labeling of primary bovine osteoblasts followed by immunoprecipitation showed the cells to synthesize and secrete the proteoglycan. Digesting the immunoprecipitated osteoadherin with N-glycosidase reduced its apparent size to 47 kD, thus showing the presence of several N-linked oligosaccharides. Digestion with keratanase indicated some of the oligosaccharides to be extended to keratan sulfate chains. In immunohistochemical studies of the bovine fetal rib growth plate, osteoadherin was exclusively identified in the primary bone spongiosa. Osteoadherin binds to hydroxyapatite. A potential function of this proteoglycan is to bind cells, since we showed it to be as efficient as fibronectin in promoting osteoblast attachment in vitro. The binding appears to be mediated by the integrin αvβ3, since this was the only integrin isolated by osteoadherin affinity chromatography of surface-iodinated osteoblast extracts. PMID:9566981

  8. Proteoglycans synthesized by smooth muscle cells derived from monkey (Macaca nemestrina) aorta.

    PubMed

    Chang, Y; Yanagishita, M; Hascall, V C; Wight, T N

    1983-05-10

    Smooth muscle cells derived from monkey aorta were cultured in medium with [35S]sulfate and [3H]glucosamine as labeling precursors. Proteoglycans in the medium and in 4 M guanidine HCl extracts of the cell layer were purified by DEAE-Sephacel and molecular sieve chromatography. Both preparations contained a predominant, large chondroitin sulfate proteoglycan (Kav = 0.30 on Sepharose CL-2B) with glycosaminoglycan chains of Mr approximately 43,000 average containing a ratio of 6-sulfate to 4-sulfate of approximately 2. Approximately 7 and 27% of the 3H label in this proteoglycan were present in N-linked and O-linked oligosaccharides, respectively. Reaggregation experiments indicated that a large proportion of these proteoglycans can form link protein-stabilized aggregates. The medium fraction also contained a smaller dermatan sulfate proteoglycan (Kav = 0.67 on Sepharose CL-2B) with glycosaminoglycan chains of Mr approximately 43,000 containing a ratio of 6-sulfate to 4-sulfate of about 0.5. This proteoglycan contained approximately the same percentage of N-linked oligosaccharides as the chondroitin sulfate proteoglycan, but few or no O-linked oligosaccharides. A smaller dermatan sulfate proteoglycan with a single chain was present only in the cell layer. Additionally, small amounts of heparan sulfate proteoglycans were synthesized by the cells.

  9. Culture of human anulus fibrosus cells on polyamide nanofibers: extracellular matrix production.

    PubMed

    Gruber, Helen E; Hoelscher, Gretchen; Ingram, Jane A; Hanley, Edward N

    2009-01-01

    Studies were approved by the authors' Human Subjects Institutional Review Board. Human anulus cells were tested for growth and extracellular matrix (ECM) production in vitro. To investigate cell attachment, cell proliferation, and ECM production of human intervertebral disc anulus cells seeded onto randomly oriented electrospun polyamide nanofibers. Because nanofibrillar matrices have the potential to promote microenvironments, which may mimic in vivo conditions and resemble connective tissue, their utilization opens new avenues for cell-based tissue engineering applications for disc cells. Anulus cells were isolated from 4 cervical spine surgical disc specimens, expanded, and seeded into either routine plastic culture (control) or a nanofiber surface of randomly oriented electrospun polyamide nanofibers (Ultra-Web-coated culture dish, Corning) with a positive charge or without a charge. Cells were cultured for 9 days, digital images captured, cells harvested, embedded in paraffin, and examined for production of extracellular matrix (ECM). Additional anulus cultures were tested to quantitatively assess total proteoglycan production and cell proliferation under control or nanofiber cultures. Cells attached well and exhibited cell extensions within the nanofiber layers; cells on the charged nanofiber surface deposited greater amounts of chondroitin sulfate than of type II collagen than cells cultured on the uncharged nanofiber surface. Results showed that culture of anulus cells on nanofibers was permissive for secretion and assembly of type II collagen and chondroitin sulfate. Significantly greater total proteoglycan formation was present after culture on the nanofiber with added charge conditions {control, 0.6116 microg/mL +/- 0.186 [4] [mean +/- sem(n)] vs. 1.201 +/- 0.2509 [4], P < 0.05}. Cell proliferation, however, did not differ among treatment groups. Culture of anulus cells on nanofibers was found to be permissive for secretion and assembly of type II collagen and chondroitin sulfate, and culture on nanofibers with added charge significantly increased total proteoglycan production. These novel findings point to the need for further examination of nanofibrillar 3D culture of anulus cells for tissue engineering applications.

  10. Biochemical properties of a keratan sulphate/chondroitin sulphate proteoglycan expressed in primate pluripotent stem cells*

    PubMed Central

    Cooper, Susan; Bennett, William; Andrade, Jessica; Reubinoff, Benjamin E; Thomson, James; Pera, Martin F

    2002-01-01

    We previously identified a pericellular matrix keratan sulphate/chondroitin sulphate proteoglycan present on the surface of human embryonal carcinoma stem cells, cells whose differentiation mimics early development. Antibodies reactive with various epitopes on this molecule define a cluster of differentiation markers for primate pluripotent stem cells. We describe the purification of a form of this molecule which is secreted or shed into the culture medium. Biochemical analysis of the secreted form of this molecule shows that the monomeric form, whilst containing keratan sulphate, resembles mucins in its structure and its modification with O-linked carbohydrate. Immunofluorescence and immunoblotting data show that monkey and human pluripotent stem cells react with antibodies directed against epitopes on either carbohydrate side chains or the protein core of the molecule. PMID:12033730

  11. Proteoglycans in polarized epithelial Madin-Darby canine kidney cells.

    PubMed Central

    Svennevig, K; Prydz, K; Kolset, S O

    1995-01-01

    Madin-Darby canine kidney (MDCK) cells were cultured on polycarbonate filters to study the synthesis and sorting of proteoglycans in polarized epithelial cells. Two strains of MDCK cells were used. MDCK I cells resemble distal tubule epithelial cells, and MDCK II cells share some characteristics with proximal tubule cells. Both strains were grown to confluency and labelled with [35S]sulphate for 24 h. The apical and basolateral media and the cell fractions were harvested and analysed by DEAE ion-exchange chromatography. A large portion of the [35S]sulphate-labelled macromolecules bound strongly to the ion-exchange columns, and could be eluted in three distinct peaks. The latest eluting peak was demonstrated to contain almost exclusively chondroitin sulphate, whereas peak 2 contained mostly heparan sulphate, demonstrated by using chondroitinase ABC and nitrous acid (pH 1.5) respectively to depolymerize the [35S]glycosaminoglycan chains. Peak 1 contained negligible amounts of proteoglycans. Large differences could be observed in proteoglycan sorting in MDCK I and II cells. Strain I secreted approx. 67% of the proteoglycans to the apical side and 17% to the basolateral side. The cell fraction contained 17% of the proteoglycans after 24 h of labelling. In contrast, 19% of the proteoglycans were sorted to the apical side of MDCK II cells and 61% to the basolateral side, whereas the cell fraction contained 20%. Furthermore, the level of [35S]proteoglycan biosynthesis (apical and basolateral media and cell fraction total) was higher in MDCK I cells than in strain II. Based on the amount of material degraded by chondroitinase ABC and nitrous acid respectively, and the total amounts of [35S]proteoglycans recovered from the cells, it was calculated that the MDCK I strain synthesized approx. 56% chondroitin sulphate and 44% heparan sulphate. In contrast, the MDCK II strain synthesized 69% heparan sulphate and 31% chondroitin sulphate. To further identify the [35S]proteoglycans synthesized by MDCK I and II cells, antibodies against perlecan, versican and syndecan were used. The antibody against mouse syndecan did not cross-react with any of the proteoglycans produced in MDCK I or II cells. Both MDCK I and II cells expressed perlecan; 57-61% could be recovered from the basolateral fractions and 18-34% from the apical medium. Versican was also found in both MDCK I and II cells. Compared with perlecan, a larger percentage of versican (43-53%) was found in the cell fractions. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:7487945

  12. Astrocytes Specifically Remove Surface-Adsorbed Fibrinogen and Locally Express Chondroitin Sulfate Proteoglycans

    PubMed Central

    Hsiao, Tony W.; Swarup, Vimal P.; Kuberan, Balagurunathan; Tresco, Patrick A.; Hlady, Vladimir

    2013-01-01

    Surface-adsorbed fibrinogen (FBG) was recognized by adhering astrocytes and removed from the substrates in vitro by a two-phase removal process. The cells removed adsorbed FBG from binary proteins surface patterns (FBG + laminin, or FBG + albumin) while leaving the other protein behind. Astrocytes preferentially expressed chondroitin sulfate proteoglycan (CSPG) at the loci of fibrinogen stimuli; however no differences in overall CSPG production as a function of FBG surface coverage were identified. Removal of FBG by astrocytes was also found to be independent of transforming growth factor type β (TGF-β) receptor based signaling as cells maintained CSPG production in the presence of TGF-β receptor kinase inhibitor, SB 431542. The inhibitor decreased CSPG expression, but did not abolicsh it entirely. Because blood contact and subsequent FBG adsorption are unavoidable in neural implantations, the results indicate that implant-adsorbed FBG may contribute to reactive astrogliosis around the implant as astrocytes specifically recognize adsorbed FBG. PMID:23499985

  13. Matrix metalloproteinase 9-mediated shedding of syndecan 4 in response to tumor necrosis factor α: a contributor to endothelial cell glycocalyx dysfunction.

    PubMed

    Ramnath, Raina; Foster, Rebecca R; Qiu, Yan; Cope, George; Butler, Matthew J; Salmon, Andrew H; Mathieson, Peter W; Coward, Richard J; Welsh, Gavin I; Satchell, Simon C

    2014-11-01

    The endothelial surface glycocalyx is a hydrated mesh in which proteoglycans are prominent. It is damaged in diseases associated with elevated levels of tumor necrosis factor α (TNF-α). We investigated the mechanism of TNF-α-induced disruption of the glomerular endothelial glycocalyx. We used conditionally immortalized human glomerular endothelial cells (GEnCs), quantitative PCR arrays, Western blotting, immunoprecipitation, immunofluorescence, and dot blots to examine the effects of TNF-α. TNF-α induced syndecan 4 (SDC4) mRNA up-regulation by 2.5-fold, whereas cell surface SDC4 and heparan sulfate (HS) were reduced by 36 and 30%, respectively, and SDC4 and sulfated glycosaminoglycan in the culture medium were increased by 52 and 65%, respectively, indicating TNF-α-induced shedding. Small interfering (siRNA) knockdown of SDC4 (by 52%) caused a corresponding loss of cell surface HS of similar magnitude (38%), and immunoprecipitation demonstrated that SDC4 and HS are shed as intact proteoglycan ectodomains. All of the effects of TNF-α on SDC4 and HS were abrogated by the metalloproteinase (MMP) inhibitor batimastat. Also abrogated was the associated 37% increase in albumin passage across GEnC monolayers. Specific MMP9 knockdown by siRNA similarly blocked TNF-α effects. SDC4 is the predominant HS proteoglycan in the GEnC glycocalyx. TNF-α-induced MMP9-mediated shedding of SDC4 is likely to contribute to the endothelial glycocalyx disruption observed in diabetes and inflammatory states. © FASEB.

  14. [The Role of Membrane-Bound Heat Shock Proteins Hsp90 in Migration of Tumor Cells in vitro and Involvement of Cell Surface Heparan Sulfate Proteoglycans in Protein Binding to Plasma Membrane].

    PubMed

    Snigireva, A V; Vrublevskaya, V V; Skarga, Y Y; Morenkov, O S

    2016-01-01

    Heat shock protein Hsp90, detected in the extracellular space and on the membrane of cells, plays an important role in cell motility, migration, invasion and metastasis of tumor cells. At present, the functional role and molecular mechanisms of Hsp90 binding to plasma membrane are not elucidated. Using isoform-specific antibodies against Hsp90, Hsp9α and Hsp90β, we showed that membrane-bound Hsp90α and Hsp90β play a significant role in migration of human fibrosarcoma (HT1080) and glioblastoma (A-172) cells in vitro. Disorders of sulfonation of cell heparan sulfates, cleavage of cell heparan. sulfates by heparinase I/III as well as treatment of cells with heparin lead to an abrupt reduction in the expression level of Hsp90 isoforms. Furthermore, heparin significantly inhibits tumor cell migration. The results obtained demonstrate that two isoforms of membrane-bound Hsp90 are involved in migration of tumor cells in vitro and that cell surface heparan sulfate proteoglycans play a pivotal role in the "anchoring" of Hsp90α and Hsp90β to the plasma membrane.

  15. Proteoglycan 4 (PRG4) synthesis and immunolocalization in bovine meniscus.

    PubMed

    Schumacher, Barbara L; Schmidt, Tannin A; Voegtline, Michael S; Chen, Albert C; Sah, Robert L

    2005-05-01

    Proteoglycan 4 (PRG4) is synthesized and secreted into the synovial fluid by articular chondrocytes and synovial cells, lining the cavity of joints. A thin layer of PRG4 is also present at the articular surface, where it appears to be involved in boundary lubrication. This study investigated if PRG4 is also synthesized and secreted by the cells within meniscus, and if PRG4 is also present in, and at the surface of, meniscus. PRG4 was visualized in sections of bovine calf menisci by immunohistochemistry. PRG4 was detected in two regions: (1) at the femoral and tibial surfaces of the meniscus, and within cells below these surfaces; and (2) within and near cells along the radial tie fibers and circumferential fibers. From meniscus tissue harvested from these surfaces, PRG4 was extracted with 4M GuHCl and quantified by ELISA. There was 0.20 +/- 0.01 and 0.25 +/- 0.04 microg PRG4/cm(2) area of lateral and medial meniscus surface, respectively. ELISA analysis of spent medium from other samples of meniscus surface tissue incubated in medium supplemented with serum and ascorbate showed that 8.1 +/- 1.1 microg PRG4/cm(2) area of meniscus surface was secreted over six days. These results demonstrate that PRG4 is synthesized and secreted by certain cell populations in the meniscus, and that PRG4 is present in the meniscus at surfaces and also internal fibers where it may contribute to boundary lubrication.

  16. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine

    PubMed Central

    Theocharis, Achilleas D.; Skandalis, Spyros S.; Neill, Thomas; Multhaupt, Hinke A. B.; Hubo, Mario; Frey, Helena; Gopal, Sandeep; Gomes, Angélica; Afratis, Nikos; Lim, Hooi Ching; Couchman, John R.; Filmus, Jorge; Sanderson, Ralph D.; Schaefer, Liliana; Iozzo, Renato V.; Karamanos, Nikos K.

    2015-01-01

    Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer. PMID:25829250

  17. Structural Aspects of N-Glycosylations and the C-terminal Region in Human Glypican-1*

    PubMed Central

    Awad, Wael; Adamczyk, Barbara; Örnros, Jessica; Karlsson, Niclas G.; Mani, Katrin; Logan, Derek T.

    2015-01-01

    Glypicans are multifunctional cell surface proteoglycans involved in several important cellular signaling pathways. Glypican-1 (Gpc1) is the predominant heparan sulfate proteoglycan in the developing and adult human brain. The two N-linked glycans and the C-terminal domain that attach the core protein to the cell membrane are not resolved in the Gpc1 crystal structure. Therefore, we have studied Gpc1 using crystallography, small angle x-ray scattering, and chromatographic approaches to elucidate the composition, structure, and function of the N-glycans and the C terminus and also the topology of Gpc1 with respect to the membrane. The C terminus is shown to be highly flexible in solution, but it orients the core protein transverse to the membrane, directing a surface evolutionarily conserved in Gpc1 orthologs toward the membrane, where it may interact with signaling molecules and/or membrane receptors on the cell surface, or even the enzymes involved in heparan sulfate substitution in the Golgi apparatus. Furthermore, the N-glycans are shown to extend the protein stability and lifetime by protection against proteolysis and aggregation. PMID:26203194

  18. Heparan sulfate proteoglycans undergo differential expression alterations in right sided colorectal cancer, depending on their metastatic character.

    PubMed

    Fernández-Vega, Iván; García-Suárez, Olivia; García, Beatriz; Crespo, Ainara; Astudillo, Aurora; Quirós, Luis M

    2015-10-20

    Heparan sulfate proteoglycans (HSPGs) are complex molecules involved in the growth, invasion and metastatic properties of cancerous cells. This study analyses the alterations in the expression patterns of these molecules in right sided colorectal cancer (CRC), both metastatic and non-metastatic. Twenty right sided CRCs were studied. A transcriptomic approach was used, employing qPCR to analyze both the expression of the enzymes involved in heparan sulfate (HS) chains biosynthesis, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate (CS) chains, we include the study of the genes involved in the biosynthesis of these glycosaminoglycans. Immunohistochemical techniques were also used to analyze tissue expression of particular genes showing significant expression differences, of potential interest. Changes in proteoglycan core proteins differ depending on their location; those located intracellularly or in the extracellular matrix show very similar alteration patterns, while those located on the cell surface vary greatly depending on the nature of the tumor: glypicans 1, 3, 6 and betaglycan are affected in the non-metastatic tumors, whereas in the metastatic, only glypican-1 and syndecan-1 are modified, the latter showing opposing alterations in levels of RNA and of protein, suggesting post-transcriptional regulation in these tumors. Furthermore, in non-metastatic tumors, polymerization of glycosaminoglycan chains is modified, particularly affecting the synthesis of the tetrasaccharide linker and the initiation and elongation of CS chains, HS chains being less affected. Regarding the enzymes responsible for the modificaton of the HS chains, alterations were only found in non-metastatic tumors, affecting N-sulfation and the isoforms HS6ST1, HS3ST3B and HS3ST5. In contrast, synthesis of the CS chains suggests changes in epimerization and sulfation of the C4 and C2 in both types of tumor. Right sided CRCs show alterations in the expression of HSPGs, including the expression of the cell surface core proteins, many glycosiltransferases and some enzymes that modify the HS chains depending on the metastatic nature of the tumor, resulting more affected in non-metastatic ones. However, matrix proteoglycans and enzymes involved in CS fine structure synthesis are extensively modified independetly of the presence of lymph node metastasis.

  19. Studies of proteoglycan involvement in CPP-mediated delivery.

    PubMed

    Wittrup, Anders; Zhang, Si-He; Belting, Mattias

    2011-01-01

    Cell-penetrating peptides (CPPs) are widely used to deliver macromolecular cargoes to intracellular sites of action. Many CPPs have been demonstrated to rely on cell surface heparan sulfate proteoglycans (HSPGs) for efficient cellular entry and delivery. In this chapter, we describe methods for the study of PG involvement in CPP uptake. We provide descriptions of how to determine whether uptake of a CPP of interest is dependent on PGs. We also provide detailed protocols for the purification of PGs by anion-exchange chromatography as well as the characterization of the HSPG core protein composition of a cell line of interest. Finally, we present methods for modulating the expression level of specific HSPG core proteins as a means to determine the core protein specificity in the uptake of a particular CPP.

  20. Mucin (MUC1) Expression and Function in Prostate Cancer Cells

    DTIC Science & Technology

    2001-09-01

    Interactions at the Cell Surface of Mouse Uterine Epithelial Cells and Periimplantation -Stage Embryos. Trophoblast Res., 4:211-241, 1990. 37. Dutt...and Julian, J. Heparan Sulfate Proteoglycan Expression by Periimplantation Stage Embryos. Dev. Biol. 155:97-106,1993. 56. Rohde, L.H., and Carson...Modulators of Embryo-Uterine Epithelial Cell Attachment. In: S.K. Dey (ed.), Molecular and Cellular Aspects of Periimplantation Processes, Springer

  1. Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined Malaria Proteins

    DTIC Science & Technology

    2015-11-01

    AWARD NUMBER: W81XWH-13-1-0139 TITLE: Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined...DATES COVERED 15Aug2013 - 14Aug2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0139 Targeting Common but Complex Proteoglycans on...outbreaks in epidemic regions of the world. Prior to this application we discovered that human breast cancer cells express this same carbohydrate

  2. Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined Malaria Proteins

    DTIC Science & Technology

    2014-09-01

    chondroitin sulfate A proteoglycans present on all tested breast cancer cells and the vast majority of tested tissue biopsies. Using pull down assays...Invited, Daugaard. C) 2014. Gordon research conference, July 6-11; Targeting of cancer-specific chondroitin sulfate on circulating tumor cells using...now successfully identified a number of proteoglycans that interact with the recombinant malaria protein VAR2CSA when sulfated on carbon 4 of the CS

  3. Interactions between meniscal cells and a self assembled biomimetic surface composed of hyaluronic acid, chitosan and meniscal extracellular matrix molecules.

    PubMed

    Tan, Guak-Kim; Dinnes, Donna L M; Butler, Lauren N; Cooper-White, Justin J

    2010-08-01

    Menisci are one of the most commonly injured parts of the knee with a limited healing potential. This study focuses on fabrication and characterization of biomimetic surfaces for meniscal tissue engineering. To achieve this, a combination of hyaluronic acid/chitosan (HA/CH) mutilayers with covalently immobilized major extracellular matrix (ECM) components of native meniscus, namely collagen I/II (COL.I/II) and chondroitin-6-sulfate (C6S) was employed. Adsorption of the biomolecules was monitored using a quartz crystal microbalance with dissipation (QCM-D) and fourier transform-surface plasmon resonance (FT-SPR). Immobilization of the biomolecules onto HA/CH mutilayers was achieved by sequential adsorption, with optimum binding at a molar ratio of 1.4:1 (COL.I/II: C6S). After adding COL.I/II, the layers became relatively more rigid and large aggregates were evident. The effects of the modified surfaces on cell proliferation, gene expression and proteoglycan production of rat meniscal cells were examined. Quantitative real-time reverse transcriptase polymerase chain reaction (RT-qPCR) analysis showed that primary meniscal cells dedifferentiated rapidly after one passage in monolayer culture. This process could be reversed by culturing the cells on C6S surfaces, as indicated by increases in both collagen II and aggrecan gene expression, as well as proteoglycan production. Cells with abundant lipid vacuoles were evident on all the surfaces over an extended culture period. The results demonstrate the feasibility of C6S surfaces to avoid the dedifferentiation that normally occurs during monolayer expansion of meniscal cells. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  4. Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans.

    PubMed

    Skandalis, Spyros S; Afratis, Nikolaos; Smirlaki, Gianna; Nikitovic, Dragana; Theocharis, Achilleas D; Tzanakakis, George N; Karamanos, Nikos K

    2014-04-01

    In hormone-dependent breast cancer, estrogen receptors are the principal signaling molecules that regulate several cell functions either by the genomic pathway acting directly as transcription factors in the nucleus or by the non-genomic pathway interacting with other receptors and their adjacent pathways like EGFR/IGFR. It is well established in literature that EGFR and IGFR signaling pathways promote cell proliferation and differentiation. Moreover, recent data indicate the cross-talk between ERs and EGFR/IGFR signaling pathways causing a transformation of cell functions as well as deregulation on normal expression pattern of matrix molecules. Specifically, proteoglycans, a major category of extracellular matrix (ECM) and cell surface macromolecules, are modified during malignancy and cause alterations in cancer cell signaling, affecting eventually functional cell properties such as proliferation, adhesion and migration. The on-going strategies to block only one of the above signaling effectors result cancer cells to overcome such inactivation using alternative signaling pathways. In this article, we therefore review the underlying mechanisms in respect to the role of ERs and the involvement of cross-talk between ERs, IGFR and EGFR in breast cancer cell properties and expression of extracellular secreted and cell bound proteoglycans involved in cancer progression. Understanding such signaling pathways may help to establish new potential pharmacological targets in terms of using ECM molecules to design novel anticancer therapies. © 2013. Published by Elsevier B.V. All rights reserved.

  5. Cartilage Protective and Chondrogenic Capacity of WIN-34B, a New Herbal Agent, in the Collagenase-Induced Osteoarthritis Rabbit Model and in Progenitor Cells from Subchondral Bone

    PubMed Central

    Huh, Jeong-Eun; Park, Yeon-Cheol; Seo, Byung-Kwan; Lee, Jae-Dong; Baek, Yong-Hyeon; Choi, Do-Young; Park, Dong-Suk

    2013-01-01

    We sought to determine the cartilage repair capacity of WIN-34B in the collagenase-induced osteoarthritis rabbit model and in progenitor cells from subchondral bone. The cartilage protective effect of WIN-34B was measured by clinical and histological scores, cartilage area, and proteoglycan and collagen contents in the collagenase-induced osteoarthritis rabbit model. The efficacy of chondrogenic differentiation of WIN-34B was assessed by expression of CD105, CD73, type II collagen, and aggrecan in vivo and was analyzed by the surface markers of progenitor cells, the mRNA levels of chondrogenic marker genes, and the level of proteoglycan, GAG, and type II collagen in vitro. Oral administration of WIN-34B significantly increased cartilage area, and this was associated with the recovery of proteoglycan and collagen content. Moreover, WIN-34B at 200 mg/kg significantly increased the expression of CD105, CD73, type II collagen, and aggrecan compared to the vehicle group. WIN-34B markedly enhanced the chondrogenic differentiation of CD105 and type II collagen in the progenitor cells from subchondral bone. Also, we confirmed that treatment with WIN-34B strongly increased the number of SH-2(CD105) cells and expression type II collagen in subchondral progenitor cells. Moreover, WIN-34B significantly increased proteoglycan, as measured by alcian blue staining; the mRNA level of type II α1 collagen, cartilage link protein, and aggrecan; and the inhibition of cartilage matrix molecules, such as GAG and type II collagen, in IL-1β-treated progenitor cells. These findings suggest that WIN-34B could be a potential candidate for effective anti-osteoarthritic therapy with cartilage repair as well as cartilage protection via enhancement of chondrogenic differentiation in the collagenase-induced osteoarthritis rabbit model and progenitor cells from subchondral bone. PMID:23983790

  6. Mast Cells Produce a Unique Chondroitin Sulfate Epitope.

    PubMed

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S

    2016-02-01

    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells. © 2016 The Histochemical Society.

  7. The cDNA sequence of mouse Pgp-1 and homology to human CD44 cell surface antigen and proteoglycan core/link proteins.

    PubMed

    Wolffe, E J; Gause, W C; Pelfrey, C M; Holland, S M; Steinberg, A D; August, J T

    1990-01-05

    We describe the isolation and sequencing of a cDNA encoding mouse Pgp-1. An oligonucleotide probe corresponding to the NH2-terminal sequence of the purified protein was synthesized by the polymerase chain reaction and used to screen a mouse macrophage lambda gt11 library. A cDNA clone with an insert of 1.2 kilobases was selected and sequenced. In Northern blot analysis, only cells expressing Pgp-1 contained mRNA species that hybridized with this Pgp-1 cDNA. The nucleotide sequence of the cDNA has a single open reading frame that yields a protein-coding sequence of 1076 base pairs followed by a 132-base pair 3'-untranslated sequence that includes a putative polyadenylation signal but no poly(A) tail. The translated sequence comprises a 13-amino acid signal peptide followed by a polypeptide core of 345 residues corresponding to an Mr of 37,800. Portions of the deduced amino acid sequence were identical to those obtained by amino acid sequence analysis from the purified glycoprotein, confirming that the cDNA encodes Pgp-1. The predicted structure of Pgp-1 includes an NH2-terminal extracellular domain (residues 14-265), a transmembrane domain (residues 266-286), and a cytoplasmic tail (residues 287-358). Portions of the mouse Pgp-1 sequence are highly similar to that of the human CD44 cell surface glycoprotein implicated in cell adhesion. The protein also shows sequence similarity to the proteoglycan tandem repeat sequences found in cartilage link protein and cartilage proteoglycan core protein which are thought to be involved in binding to hyaluronic acid.

  8. Effects of high glucose on the production of heparan sulfate proteoglycan by mesangial and epithelial cells.

    PubMed

    van Det, N F; van den Born, J; Tamsma, J T; Verhagen, N A; Berden, J H; Bruijn, J A; Daha, M R; van der Woude, F J

    1996-04-01

    Changes in heparan sulfate metabolism may be important in the pathogenesis of diabetic nephropathy. Recent studies performed on renal biopsies from patients with diabetic nephropathy revealed a decrease in heparan sulfate glycosaminoglycan staining in the glomerular basement membrane without changes in staining for heparan sulfate proteoglycan-core protein. To understand this phenomenon at the cellular level, we investigated the effect of high glucose conditions on the synthesis of heparan sulfate proteoglycan by glomerular cells in vitro. Human adult mesangial and glomerular visceral epithelial cells were cultured under normal (5 mM) and high glucose (25 mM) conditions. Immunofluorescence performed on cells cultured in 25 mM glucose confirmed and extended the in vivo histological observations. Using metabolic labeling we observed an altered proteoglycan production under high glucose conditions, with predominantly a decrease in heparan sulfate compared to dermatan sulfate or chondroitin sulfate proteoglycan. N-sulfation analysis of heparan sulfate proteoglycan produced under high glucose conditions revealed less di- and tetrasaccharides compared to larger oligosaccharides, indicating an altered sulfation pattern. Furthermore, with quantification of glomerular basement membrane heparan sulfate by ELISA, a significant decrease was observed when mesangial and visceral epithelial cells were cultured in high glucose conditions. We conclude that high glucose concentration induces a significant alteration of heparan sulfate production by mesangial cells and visceral epithelial cells. Changes in sulfation and changes in absolute quantities are both observed and may explain the earlier in vivo observations. These changes may be of importance for the altered integrity of the glomerular charge-dependent filtration barrier and growth-factor matrix interactions in diabetic nephropathy.

  9. Heparan sulfate proteoglycans mediate renal carcinoma metastasis.

    PubMed

    Qazi, Henry; Shi, Zhong-Dong; Song, Jonathan W; Cancel, Limary M; Huang, Peigen; Zeng, Ye; Roberge, Sylvie; Munn, Lance L; Tarbell, John M

    2016-12-15

    The surface proteoglycan/glycoprotein layer (glycocalyx) on tumor cells has been associated with cellular functions that can potentially enable invasion and metastasis. In addition, aggressive tumor cells with high metastatic potential have enhanced invasion rates in response to interstitial flow stimuli in vitro. Our previous studies suggest that heparan sulfate (HS) in the glycocalyx plays an important role in this flow mediated mechanostransduction and upregulation of invasive and metastatic potential. In this study, highly metastatic renal cell carcinoma cells were genetically modified to suppress HS production by knocking down its synthetic enzyme NDST1. Using modified Boyden chamber and microfluidic assays, we show that flow-enhanced invasion is suppressed in HS deficient cells. To assess the ability of these cells to metastasize in vivo, parental or knockdown cells expressing fluorescence reporters were injected into kidney capsules in SCID mice. Histological analysis confirmed that there was a large reduction (95%) in metastasis to distant organs by tumors formed from the NDST1 knockdown cells compared to control cells with intact HS. The ability of these cells to invade surrounding tissue was also impaired. The substantial inhibition of metastasis and invasion upon reduction of HS suggests an active role for the tumor cell glycocalyx in tumor progression. © 2016 UICC.

  10. Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3 and 3-B-3(-) Chondroitin Sulphate Motifs Are Morphogenetic Markers Of Tissue Development.

    PubMed

    Hayes, Anthony J; Smith, Susan M; Caterson, Bruce; Melrose, James

    2018-06-11

    This study reviewed the occurrence of chondroitin sulphate (CS) motifs 4-C-3, 7-D-4 and 3-B-3(-) which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7-D-4, 4-C-3 and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  11. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans

    PubMed Central

    Tan, Li; Showalter, Allan M.; Egelund, Jack; Hernandez-Sanchez, Arianna; Doblin, Monika S.; Bacic, Antony

    2012-01-01

    Arabinogalactan-proteins (AGPs) are complex glycoconjugates that are commonly found at the cell surface and in secretions of plants. Their location and diversity of structures have made them attractive targets as modulators of plant development but definitive proof of their direct role(s) in biological processes remains elusive. Here we overview the current state of knowledge on AGPs, identify key challenges impeding progress in the field and propose approaches using modern bioinformatic, (bio)chemical, cell biological, molecular and genetic techniques that could be applied to redress these gaps in our knowledge. PMID:22754559

  12. Release of chromaffin granule glycoproteins and proteoglycans from potassium-stimulated PC12 pheochromocytoma cells.

    PubMed

    Salton, S R; Margolis, R U; Margolis, R K

    1983-10-01

    Cultured PC12 pheochromocytoma cells were labeled with [3H]glucosamine, and the glycoproteins and proteoglycans released following potassium-induced depolarization were fractionated and characterized. Exposure of PC12 cells for 20 min to a high concentration of potassium (51.5 mM in Krebs-Ringers-HEPES buffer) results in an approximately sixfold increase in the release of labeled glycoproteins and proteoglycans, compared to incubation in physiological levels of potassium (6 mM). The released complex carbohydrates include chromogranins, dopamine beta-hydroxylase, and two chondroitin sulfate/heparan sulfate proteoglycan fractions, which together account for 7.4% of the soluble cell radioactivity. The chromogranins contained galactosyl(beta 1 leads to 3)N-acetylgalactosamine, as well as several mono- and disialyl O-glycosidically-linked oligosaccharides, and the tetrasaccharide AcNeu(alpha 2 leads to 3)Gal(beta 1 leads to 3)[AcNeu(alpha 2 leads to 6)] GalNAcol, obtained by alkaline borohydride treatment of the chromogranin glycopeptides, accounted for almost half of the total chromogranin labeling. The proteoglycan fractions varied in their relative proportions of chondroitin sulfate (23-68%), heparan sulfate (16-23%), and glycoprotein oligosaccharides (16-54%), which are of the tri- and tetraantennary and O-glycosidic types. As previously found in the case of proteoglycans from bovine chromaffin granules, the more acidic species has a considerably higher proportion of carbohydrate in the form of sulfated glycosaminoglycans.

  13. Expression of the cell-surface heparan sulfate proteoglycan syndecan-2 in developing rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2013-09-01

    In the anterior pituitary gland, folliculo-stellate cells and five types of hormone-producing cells are surrounded by an extracellular matrix (ECM) essential for these cells to perform their respective roles. Syndecans-type I transmembrane cell-surface heparan sulfate proteoglycans act as major ECM coreceptors via their respective heparan sulfate chains and efficiently transduce intracellular signals through the convergent action of their transmembrane and cytoplasmic domains. The syndecans comprise four family members in vertebrates: syndecan-1, -2, -3 and -4. However, whether syndecans are produced in the pituitary gland or whether they have a role as a coreceptor is not known. We therefore used (1) reverse transcription plus the polymerase chain reaction to analyze the expression of syndecan genes and (2) immunohistochemical techniques to identify the cells that produce the syndecans in the anterior pituitary gland of adult rat. Syndecan-2 mRNA expression was clearly detected in the corticotropes of the anterior pituitary gland. Moreover, the expression of syndecan-2 in the developing pituitary gland had a distinct temporospatial pattern. To identify the cells expressing syndecan-2 in the developing pituitary gland, we used double-immunohistochemistry for syndecan-2 and the cell markers E-cadherin (immature cells) and Ki-67 (proliferating cells). Some E-cadherin- and Ki-67-immunopositive cells expressed syndecan-2. Therefore, syndecan-2 expression occurs in developmentally regulated patterns and syndecan-2 probably has different roles in adult and developing anterior pituitary glands.

  14. Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide.

    PubMed

    Kim, Aeyung; Shin, Tae-Hwan; Shin, Seung-Min; Pham, Chuong D; Choi, Dong-Ki; Kwon, Myung-Hee; Kim, Yong-Sung

    2012-01-01

    Cellular internalization of bacteriophage by surface-displayed cell penetrating peptides has been reported, though the underlying mechanism remains elusive. Here we describe in detail the internalization mechanism and intracellular trafficking and stability of filamentous M13 phages, the cellular entry of which is mediated by surface-displayed cell-penetrating light chain variable domain 3D8 VL transbody (3D8 VL-M13) or TAT peptide (TAT-M13). Recombinant 3D8 VL-M13 and TAT-M13 phages were efficiently internalized into living mammalian cells via physiologically relevant, energy-dependent endocytosis and were recovered from the cells in their infective form with the yield of 3D8 VL-M13 being higher (0.005 ≈ 0.01%) than that of TAT-M13 (0.001 ≈ 0.005%). Biochemical and genetic studies revealed that 3D8 VL-M13 was internalized principally by caveolae-mediated endocytosis via interaction with heparan sulfate proteoglycans as cell surface receptors, whereas TAT-M13 was internalized by clathrin- and caveolae-mediated endocytosis utilizing chondroitin sulfate proteoglycans as cell surface receptors, suggesting that phage internalization occurs by physiological endocytotic mechanism through specific cell surface receptors rather than non-specific transcytotic pathways. Internalized 3D8 VL-M13 phages routed to the cytosol and remained stable for more than 18 h without further trafficking to other subcellular compartments, whereas TAT-M13 phages routed to several subcellular compartments before being degraded in lysosomes even after 2 h of internalization. Our results suggest that the internalizing mechanism and intracellular trafficking of filamentous M13 bacteriophages largely follow the attributes of the displayed cell-penetrating moiety. Efficient internalization and cytosolic localization of 3D8 VL transbody-displayed phages will provide a useful tool for intracellular delivery of polar macromolecules such as proteins, peptides, and siRNAs.

  15. Cellular Internalization Mechanism and Intracellular Trafficking of Filamentous M13 Phages Displaying a Cell-Penetrating Transbody and TAT Peptide

    PubMed Central

    Shin, Seung-Min; Pham, Chuong D.; Choi, Dong-Ki; Kwon, Myung-Hee; Kim, Yong-Sung

    2012-01-01

    Cellular internalization of bacteriophage by surface-displayed cell penetrating peptides has been reported, though the underlying mechanism remains elusive. Here we describe in detail the internalization mechanism and intracellular trafficking and stability of filamentous M13 phages, the cellular entry of which is mediated by surface-displayed cell-penetrating light chain variable domain 3D8 VL transbody (3D8 VL-M13) or TAT peptide (TAT-M13). Recombinant 3D8 VL-M13 and TAT-M13 phages were efficiently internalized into living mammalian cells via physiologically relevant, energy-dependent endocytosis and were recovered from the cells in their infective form with the yield of 3D8 VL-M13 being higher (0.005∼0.01%) than that of TAT-M13 (0.001∼0.005%). Biochemical and genetic studies revealed that 3D8 VL-M13 was internalized principally by caveolae-mediated endocytosis via interaction with heparan sulfate proteoglycans as cell surface receptors, whereas TAT-M13 was internalized by clathrin- and caveolae-mediated endocytosis utilizing chondroitin sulfate proteoglycans as cell surface receptors, suggesting that phage internalization occurs by physiological endocytotic mechanism through specific cell surface receptors rather than non-specific transcytotic pathways. Internalized 3D8 VL-M13 phages routed to the cytosol and remained stable for more than 18 h without further trafficking to other subcellular compartments, whereas TAT-M13 phages routed to several subcellular compartments before being degraded in lysosomes even after 2 h of internalization. Our results suggest that the internalizing mechanism and intracellular trafficking of filamentous M13 bacteriophages largely follow the attributes of the displayed cell-penetrating moiety. Efficient internalization and cytosolic localization of 3D8 VL transbody-displayed phages will provide a useful tool for intracellular delivery of polar macromolecules such as proteins, peptides, and siRNAs. PMID:23251631

  16. Agrin and Perlecan Mediate Tumorigenic Processes in Oral Squamous Cell Carcinoma

    PubMed Central

    Kawahara, Rebeca; Granato, Daniela C.; Carnielli, Carolina M.; Cervigne, Nilva K.; Oliveria, Carine E.; Martinez, César A. R.; Yokoo, Sami; Fonseca, Felipe P.; Lopes, Marcio; Santos-Silva, Alan R.; Graner, Edgard; Coletta, Ricardo D.; Leme, Adriana Franco Paes

    2014-01-01

    Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels. PMID:25506919

  17. Cerebroglycan: an integral membrane heparan sulfate proteoglycan that is unique to the developing nervous system and expressed specifically during neuronal differentiation

    PubMed Central

    1994-01-01

    Heparan sulfate proteoglycans (HSPGs) are found on the surface of all adherent cells and participate in the binding of growth factors, extracellular matrix glycoproteins, cell adhesion molecules, and proteases and antiproteases. We report here the cloning and pattern of expression of cerebroglycan, a glycosylphosphatidylinositol (GPI)- anchored HSPG that is found in the developing rat brain (previously referred to as HSPG M13; Herndon, M. E., and A. D. Lander. 1990. Neuron. 4:949-961). The cerebroglycan core protein has a predicted molecular mass of 58.6 kD and five potential heparan sulfate attachment sites. Together with glypican (David, G., V. Lories, B. Decock, P. Marynen, J.-J. Cassiman, and H. Van den Berghe. 1990. J. Cell Biol. 111:3165-3176), it defines a family of integral membrane HSPGs characterized by GPI linkage and conserved structural motifs, including a pattern of 14 cysteine residues that is absolutely conserved. Unlike other known integral membrane HSPGs, including glypican and members of the syndecan family of transmembrane proteoglycans, cerebroglycan is expressed in only one tissue: the nervous system. In situ hybridization experiments at several developmental stages strongly suggest that cerebroglycan message is widely and transiently expressed by immature neurons, appearing around the time of final mitosis and disappearing after cell migration and axon outgrowth have been completed. These results suggest that cerebroglycan may fulfill a function related to the motile behaviors of developing neurons. PMID:8294498

  18. Altered Liver Proteoglycan/Glycosaminoglycan Structure as a Manifestation of Extracellular Matrix Remodeling upon BCG-induced Granulomatosis in Mice.

    PubMed

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2017-01-01

    Experimental BCG-induced granulomatosis in mice was used to study changes in the dynamics of individual liver proteoglycan components reflecting phasic extracellular matrix remodeling, determined by the host-parasite interaction and associated with granuloma development. In the early BCG-granulomatosis period, the increase in individual proteoglycan components promotes granuloma formation, providing conditions for mycobacteria adhesion to host cells, migration of phagocytic cells from circulation, and cell-cell interaction leading to granuloma development and fibrosis. Later, reduced reserve capacity of the extracellular matrix, development of interstitial fibrosis and granuloma fibrosis can lead to trophic shortage for cells within the granulomas, migration of macrophages out of them, and development of spontaneous necrosis and apoptosis typical of tuberculosis.

  19. Salmon cartilage proteoglycan suppresses mouse experimental colitis through induction of Foxp3{sup +} regulatory T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsui, Toshihito; Department of Digestive Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562; Sashinami, Hiroshi

    Research highlights: {yields} Salmon proteoglycan suppresses IL-10{sup -/-} cell transfer-induced colitis progression. {yields} Salmon proteoglycan suppresses Th1- and Th17-related factors in colitis mice. {yields} Salmon proteoglycan enhances Foxp3 expression. -- Abstract: Proteoglycans (PGs) are complex glycohydrates which are widely distributed in extracellular matrix (ECM). PGs are involved in the construction of ECM, cell proliferation and differentiation. ECM components are involved in transduction of proinflammatory responses, but it is still unknown whether PGs are involved in inflammatory response. In this study, we investigated the effect of PG extracted from salmon cartilage on the progression of experimental colitis-induced in severe combined immunodeficiencymore » mice by cell transfer from interleukin-10 (IL-10){sup -/-} mice. IL-10{sup -/-} cell-transferred mice showed weight loss, colon shortening and histological appearance of mild colitis. Daily oral administration of PG attenuated the clinical progression of colitis in a dose-dependent manner. Colitis-induced mice showed the elevated expression of IFN-{gamma}, IL-12, TNF-{alpha}, IL-21, IL-23p19, IL-6, IL-17A and retinoic acid-related orphan receptor {gamma}t (ROR{gamma}t) in lamina propria mononuclear cells (LPMCs) and oral administration of PG suppressed the expression of these factors. Conversely, expression of Foxp3 that induces CD4{sup +}CD25{sup +} regulatory T cells in LPMCs was enhanced by PG administration. These findings suggested that salmon PG attenuated the progression of colitis due to suppression of inflammatory response by enhancement of regulatory T cell induction.« less

  20. Smad2-dependent glycosaminoglycan elongation in aortic valve interstitial cells enhances binding of LDL to proteoglycans.

    PubMed

    Osman, Narin; Grande-Allen, K Jane; Ballinger, Mandy L; Getachew, Robel; Marasco, Silvana; O'Brien, Kevin D; Little, Peter J

    2013-01-01

    Calcific aortic valve disease is a progressive condition that shares some common pathogenic features with atherosclerosis. Transforming growth factor-β1 is a recognized mediator of atherosclerosis and is expressed in aortic valve lesions. Transforming growth factorβ1 stimulates glycosaminoglycan elongation of proteoglycans that is associated with increased lipid binding. We investigated the presence of transforming growth factor-β1 and downstream signaling intermediates in diseased human aortic valves and the effects of activated transforming growth factor-β1 receptor signaling on aortic valve interstitial cell proteoglycan synthesis and lipid binding as a possible mechanism for the initiation of the early lesion of calcific aortic valve disease. Diseased human aortic valve leaflets demonstrated strong immunohistochemical staining for transforming growth factor-β1 and phosphorylated Smad2/3. In primary porcine aortic valve interstitial cells, Western blots showed that transforming growth factor-β1 stimulated phosphorylation in both the carboxy and linker regions of Smad2/3, which was inhibited by the transforming growth factor-β1 receptor inhibitor SB431542. Gel electrophoresis and size exclusion chromatography demonstrated that SB431542 decreased transforming growth factor-β1-mediated [(35)S]-sulfate incorporation into proteoglycans in a dose-dependent manner. Further, in proteoglycans derived from transforming growth factor-β1-treated valve interstitial cells, gel mobility shift assays demonstrated that inhibition of transforming growth factor-β1 receptor signaling resulted in decreased lipid binding. Classic transforming growth factor-β1 signaling is present in human aortic valves in vivo and contributes to the modification of proteoglycans expressed by valve interstitial cells in vitro. These findings suggest that transforming growth factor-β1 may promote increased low-density lipoprotein binding in the early phases of calcific aortic valve disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Direct Peptide Interaction with Surface Glycosaminoglycans Contributes to the Cell Penetration of Maurocalcine*

    PubMed Central

    Ram, Narendra; Aroui, Sonia; Jaumain, Emilie; Bichraoui, Hicham; Mabrouk, Kamel; Ronjat, Michel; Lortat-Jacob, Hugues; De Waard, Michel

    2008-01-01

    Maurocalcine (MCa), initially identified from a tunisian scorpion venom, defines a new member of the family of cell penetrating peptides by its ability to efficiently cross the plasma membrane. The initiating mechanistic step required for the cell translocation of a cell penetrating peptide implicates its binding onto cell surface components such as membrane lipids and/or heparan sulfate proteoglycans. Here we characterized the interaction of wild-type MCa and MCa K20A, a mutant analogue with reduced cell-penetration efficiency, with heparin (HP) and heparan sulfates (HS) through surface plasma resonance. HP and HS bind both to MCa, indicating that heparan sulfate proteoglycans may represent an important entry route of the peptide. This is confirmed by the fact that (i) both compounds bind with reduced affinity to MCa K20A and (ii) the cell penetration of wild-type or mutant MCa coupled to fluorescent streptavidin is reduced by about 50% in mutant Chinese hamster ovary cell lines lacking either all glycosaminoglycans (GAGs) or just HS. Incubating MCa with soluble HS, HP, or chondroitin sulfates also inhibits the cell penetration of MCa-streptavidin complexes. Analyses of the cell distributions of MCa/streptavidin in several Chinese hamster ovary cell lines show that the distribution of the complex coincides with the endosomal marker Lyso-Tracker red and is not affected by the absence of GAGs. The distribution of MCa/streptavidin is not coincident with that of transferrin receptors nor affected by a dominant-negative dynamin 2 K44A mutant, an inhibitor of clathrin-mediated endocytosis. However, entry of the complex is greatly diminished by amiloride, indicating the importance of macropinocytosis in MCa/streptavidin entry. It is concluded that (i) interaction of MCa with GAGs quantitatively improves the cell penetration of MCa, and (ii) GAG-dependent and -independent MCa penetration rely similarly on the macropinocytosis pathway. PMID:18603532

  2. Syndecan-4 inhibits Wnt/β-catenin signaling through regulation of low-density-lipoprotein receptor-related protein (LRP6) and R-spondin 3.

    PubMed

    Astudillo, Pablo; Carrasco, Héctor; Larraín, Juan

    2014-01-01

    Regulation of Wnt signaling is crucial for embryonic development and adult homeostasis. Here we study the role of Syndecan-4 (SDC4), a cell-surface heparan sulphate proteoglycan, and Fibronectin (FN), in Wnt/β-catenin signaling. Gain- and loss-of-function experiments in mammalian cell lines and Xenopus embryos demonstrate that SDC4 and FN inhibit Wnt/β-catenin signaling. Epistatic and biochemical experiments show that this inhibition occurs at the cell membrane level through regulation of LRP6. R-spondin 3, a ligand that promotes canonical and non-canonical Wnt signaling, is more prone to potentiate Wnt/β-catenin signaling when SDC4 levels are reduced, suggesting a model whereby SDC4 tunes the ability of R-spondin to modulate the different Wnt signaling pathways. Since SDC4 has been previously related to non-canonical Wnt signaling, our results also suggest that this proteoglycan can be a key component in the regulation of Wnt signaling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Gen; Kobayashi, Takeshi; Takeda, Yoshie

    Highlights: • Proteoglycan from salmon nasal cartridge (SNC-PG) promoted wound healing in fibroblast monolayers. • SNC-PG stimulated both cell proliferation and cell migration. • Interaction between chondroitin sulfate-units and CD44 is responsible for the effect. - Abstract: Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers bymore » stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10 μg/ml, but showed much less effect at higher concentrations (100–1000 μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure.« less

  4. Independent modulation of collagen fibrillogenesis by decorin and lumican.

    PubMed

    Neame, P J; Kay, C J; McQuillan, D J; Beales, M P; Hassell, J R

    2000-05-01

    The leucine-rich proteoglycans (also known as "small, leucine-rich proteoglycans," or SLRPs) lumican and decorin are thought to be involved in the regulation of collagen fibril assembly. Preparation of these proteoglycans in chemical amounts without exposure to denaturants has recently been achieved by infecting HT-1080 cells with vaccinia virus that contains an expression cassette for these molecules. Addition of lumican and decorin to a collagen fibrillogenesis assay based on turbidity demonstrated that lumican accelerated initial fibril formation while decorin retarded initial fibril formation. At the end of fibrillogenesis, both proteoglycans resulted in an overall reduced turbidity, suggesting that fibril diameter was lower. The presence of both proteoglycans had a synergistic effect, retarding fibril formation to a greater degree than either proteoglycan individually. Competitive binding studies showed that lumican did not compete for decorin-binding sites on collagen fibrils. Both proteoglycans increased the stability of fibrils to thermal denaturation to approximately the same degree. These studies show that lumican does not compete for decorin-binding sites on collagen, that decorin and lumican modulate collagen fibrillogenesis, and that, in the process, they also enhance collagen fibril stability.

  5. Effects of glucosamine on proteoglycan loss by tendon, ligament and joint capsule explant cultures.

    PubMed

    Ilic, M Z; Martinac, B; Samiric, T; Handley, C J

    2008-12-01

    To investigate the effect of glucosamine on the loss of newly synthesized radiolabeled large and small proteoglycans by bovine tendon, ligament and joint capsule. The kinetics of loss of (35)S-labeled large and small proteoglycans from explant cultures of tendon, ligament and joint capsule treated with 10mM glucosamine was investigated over a 10-day culture period. The kinetics of loss of (35)S-labeled small proteoglycans and the formation of free [(35)S]sulfate were determined for the last 10 days of a 15-day culture period. The proteoglycan core proteins were analyzed by gel electrophoresis followed by fluorography. The metabolism of tendon, ligament and joint capsule explants exposed to 10mM glucosamine was evaluated by incorporation of [(3)H]serine and [(35)S]sulfate into protein and glycosaminoglycans, respectively. Glucosamine at 10mM stimulated the loss of small proteoglycans from ligament explant cultures. This was due to the increased loss of both macromolecular and free [(35)S]sulfate to the medium indicating that glucosamine affected the release of small proteoglycans as well as their intracellular degradation. The degradation pattern of small proteoglycans in ligament was not affected by glucosamine. In contrast, glucosamine did not have an effect on the loss of large or small proteoglycans from tendon and joint capsule or large proteoglycans from ligament explant cultures. The metabolism of cells in tendon, ligament and joint capsule was not impaired by the presence of 10mM glucosamine. Glucosamine stimulated the loss of small proteoglycans from ligament but did not have an effect on small proteoglycan catabolism in joint capsule and tendon or large proteoglycan catabolism in ligament, tendon or synovial capsule. The consequences of glucosamine therapy at clinically relevant concentrations on proteoglycan catabolism in joint fibrous connective tissues need to be further assessed in an animal model.

  6. Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined Malaria Proteins

    DTIC Science & Technology

    2014-09-01

    protein VAR2CSA. We have extensive data demonstrating that this protein specifically targets sulfated chondroitin sulfate A proteoglycans present on all... chondroitin sulfate A on circulating tumor cells using a evolutionary refined malaria protein B) National Annual PhD meeting in Oncology, March 26-27...malaria protein VAR2CSA when sulfated on carbon 4 of the CS backbone. We have identified CSPG4 as a major protein in breast cancer cells, but also a

  7. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins.

    PubMed

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-10-01

    Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis. Copyright © 2015. Published by Elsevier Ltd.

  8. Salubrinal inhibits the expression of proteoglycans and favors neurite outgrowth from cortical neurons in vitro.

    PubMed

    Barreda-Manso, M Asunción; Yanguas-Casás, Natalia; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo

    2015-07-01

    After CNS injury, astrocytes and mesenchymal cells attempt to restore the disrupted glia limitans by secreting proteoglycans and extracellular matrix proteins (ECMs), forming the so-called glial scar. Although the glial scar is important in sealing the lesion, it is also a physical and functional barrier that prevents axonal regeneration. The synthesis of secretory proteins in the RER is under the control of the initiation factor of translation eIF2α. Inhibiting the synthesis of secretory proteins by increasing the phosphorylation of eIF2α, might be a pharmacologically efficient way of reducing proteoglycans and other profibrotic proteins present in the glial scar. Salubrinal, a neuroprotective drug, decreased the expression and secretion of proteoglycans and other profibrotic proteins induced by EGF or TGFβ, maintaining eIF2α phosphorylated. Besides, Salubrinal also reduced the transcription of proteoglycans and other profibrotic proteins, suggesting that it induced the degradation of non-translated mRNA. In a model in vitro of the glial scar, cortical neurons grown on cocultures of astrocytes and fibroblasts with TGFβ treated with Salubrinal, showed increased neurite outgrowth compared to untreated cells. Our results suggest that Salubrinal may be considered of therapeutic value facilitating axonal regeneration, by reducing overproduction and secretion of proteoglycans and profibrotic protein inhibitors of axonal growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A Role for Serglycin Proteoglycan in Mast Cell Apoptosis Induced by a Secretory Granule-mediated Pathway*

    PubMed Central

    Melo, Fabio Rabelo; Waern, Ida; Rönnberg, Elin; Åbrink, Magnus; Lee, David M.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Turk, Boris; Wernersson, Sara; Pejler, Gunnar

    2011-01-01

    Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane and that this process is serglycin-dependent. Indeed, we show that wild-type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin−/− cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol, and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis. PMID:21123167

  10. Proteoglycan: collagen interactions in connective tissues. Ultrastructural, biochemical, functional and evolutionary aspects.

    PubMed

    Scott, J E

    1991-06-01

    Electron histochemical investigations of mammalian and echinoderm tissues, using cupromeronic blue to stain proteoglycans (PGs) specifically in critical electrolyte concentration methods, showed that collagen fibrils are associated with keratan sulphate and chondroitin (dermatan) sulphate ('tadpole') PGs at the a, c, d and e bands on the fibril surface, giving rise to the 'one proteoglycan: one binding site' hypothesis. Intra-fibrillar PGs have been observed, distributed in a regular way which suggests that collagen fibrils are aggregates of 'protofibrils', some of which carry PGs at their surfaces. A scheme for remodelling of collagen fibrils, based on recycling of these protofibrils, is outlined. The choice of which tadpole PG to use to carry out a given function is decided to a considerable extent by the availability of oxygen to the relevant tissue element.

  11. Expression of small leucine-rich proteoglycans in rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2013-01-01

    Proteoglycans are components of the extracellular matrix and comprise a specific core protein substituted with covalently linked glycosaminoglycan chains. Small leucine-rich proteoglycans (SLRPs) are a major family of proteoglycans and have key roles as potent effectors in cellular signaling pathways. Research during the last two decades has shown that SLRPs regulate biological functions in many tissues such as skin, tendon, kidney, liver, and heart. However, little is known of the expression of SLRPs, or the characteristics of the cells that produce them, in the anterior pituitary gland. Therefore, we have determined whether SLRPs are present in rat anterior pituitary gland. We have used real-time reverse transcription with the polymerase chain reaction to analyze the expression of SLRP genes and have identified the cells that produce SLRPs by using in situ hybridization with a digoxigenin-labeled cRNA probe. We have clearly detected the mRNA expression of SLRP genes, and cells expressing decorin, biglycan, fibromodulin, lumican, proline/arginine-rich end leucine-rich repeat protein (PRELP), and osteoglycin are located in the anterior pituitary gland. We have also investigated the possible double-staining of SLRP mRNA and pituitary hormones, S100 protein (a marker of folliculostellate cells), desmin (a marker of capillary pericytes), and isolectin B4 (a marker of endothelial cells). Decorin, biglycan, fibromodulin, lumican, PRELP, and osteoglycin mRNA have been identified in S100-protein-positive and desmin-positive cells. Thus, we conclude that folliculostellate cells and pericytes produce SLRPs in rat anterior pituitary gland.

  12. Induction of Syndecan-4 by Organic-Inorganic Hybrid Molecules with a 1,10-Phenanthroline Structure in Cultured Vascular Endothelial Cells.

    PubMed

    Hara, Takato; Kojima, Takayuki; Matsuzaki, Hiroka; Nakamura, Takehiro; Yoshida, Eiko; Fujiwara, Yasuyuki; Yamamoto, Chika; Saito, Shinichi; Kaji, Toshiyuki

    2017-02-08

    Organic-inorganic hybrid molecules constitute analytical tools used in biological systems. Vascular endothelial cells synthesize and secrete proteoglycans, which are macromolecules consisting of a core protein and glycosaminoglycan side chains. Although the expression of endothelial proteoglycans is regulated by several cytokines/growth factors, there may be alternative pathways for proteoglycan synthesis aside from downstream pathways activated by these cytokines/growth factors. Here, we investigated organic-inorganic hybrid molecules to determine a variant capable of analyzing the expression of syndecan-4, a transmembrane heparan-sulfate proteoglycan, and identified 1,10-phenanthroline ( o -Phen) with or without zinc (Zn-Phen) or rhodium (Rh-Phen). Bovine aortic endothelial cells in culture were treated with these compounds, and the expression of syndecan-4 mRNA and core proteins was determined by real-time reverse transcription polymerase chain reaction and Western blot analysis, respectively. Our findings indicated that o -Phen and Zn-Phen specifically and strongly induced syndecan-4 expression in cultured vascular endothelial cells through activation of the hypoxia-inducible factor-1α/β pathway via inhibition of prolyl hydroxylase-domain-containing protein 2. These results demonstrated an alternative pathway involved in mediating induction of endothelial syndecan-4 expression and revealed organic-inorganic hybrid molecules as effective tools for analyzing biological systems.

  13. Recombinant Domain V of Human Perlecan Is a Bioactive Vascular Proteoglycan.

    PubMed

    Rnjak-Kovacina, Jelena; Tang, Fengying; Lin, Xiaoting; Whitelock, John M; Lord, Megan S

    2017-12-01

    The C-terminal domain V of the extracellular matrix proteoglycan perlecan plays unique and often divergent roles in a number of biological processes, including angiogenesis, vascular cell interactions, wound healing, and autophagy. Recombinant forms of domain V have been proposed as therapeutic agents for the treatment of cancer, stroke, and the development of cardiovascular devices and bioartificial tissues. However, the effect of domain V appears to be related to the differences in domain V structure and function observed in different expression systems and environments and exactly how this occurs is not well understood. In this study, the sequence from amino acid 3626 to 4391 of the perlecan protein core, which includes domain V, is expressed in HEK-293 cells and purified as a secreted product from conditioned media. This recombinant domain V (rDV) is expressed as a proteoglycan decorated with heparan sulfate and chondroitin sulfate chains and supports endothelial cell interactions to the same extent as full-length perlecan. This expression system serves as an important model of recombinant proteoglycan expression, as well as a source of biologically active rDV for therapeutic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carrier of Wingless (Cow), a Secreted Heparan Sulfate Proteoglycan, Promotes Extracellular Transport of Wingless

    PubMed Central

    Chang, Yung-Heng; Sun, Yi Henry

    2014-01-01

    Morphogens are signaling molecules that regulate growth and patterning during development by forming a gradient and activating different target genes at different concentrations. The extracellular distribution of morphogens is tightly regulated, with the Drosophila morphogen Wingless (Wg) relying on Dally-like (Dlp) and transcytosis for its distribution. However, in the absence of Dlp or endocytic activity, Wg can still move across cells along the apical (Ap) surface. We identified a novel secreted heparan sulfate proteoglycan (HSPG) that binds to Wg and promotes its extracellular distribution by increasing Wg mobility, which was thus named Carrier of Wg (Cow). Cow promotes the Ap transport of Wg, independent of Dlp and endocytosis, and this function addresses a previous gap in the understanding of Wg movement. This is the first example of a diffusible HSPG acting as a carrier to promote the extracellular movement of a morphogen. PMID:25360738

  15. Proteoglycan biosynthesis in chondrocytes: protein A-gold localization of proteoglycan protein core and chondroitin sulfate within Golgi subcompartments

    PubMed Central

    1985-01-01

    The intracellular pathway of cartilage proteoglycan biosynthesis was investigated in isolated chondrocytes using a protein A-gold electron microscopy immunolocalization procedure. Proteoglycans contain a protein core to which chondroitin sulfate and keratan sulfate chains and oligosaccharides are added in posttranslational processing. Specific antibodies have been used in this study to determine separately the distribution of the protein core and chondroitin sulfate components. In normal chondrocytes, proteoglycan protein core was readily localized only in smooth-membraned vesicles which co-labeled with ricin, indicating them to be galactose-rich medial/trans-Golgi cisternae, whereas there was only a low level of labeling in the rough endoplasmic reticulum. Chondroitin sulfate was also localized in medial/trans-Golgi cisternae of control chondrocytes but was not detected in other cellular compartments. In cells treated with monensin (up to 1.0 microM), which strongly inhibits proteoglycan secretion (Burditt, L.J., A. Ratcliffe, P. R. Fryer, and T. Hardingham, 1985, Biochim. Biophys. Acta., 844:247-255), there was greatly increased intracellular localization of proteoglycan protein core in both ricin- positive vesicles, and in ricin-negative vesicles (derived from cis- Golgi stacks) and in the distended rough endoplasmic reticulum. Chondroitin sulfate also increased in abundance after monensin treatment, but continued to be localized only in ricin-positive vesicles. The results suggested that the synthesis of chondroitin sulfate on proteoglycan only occurs in medial/trans-Golgi cisternae as a late event in proteoglycan biosynthesis. This also suggests that glycosaminoglycan synthesis on proteoglycans takes place in a compartment in common with events in the biosynthesis of both O-linked and N-linked oligosaccharides on other secretory glycoproteins. PMID:3934179

  16. Heparan sulfate proteoglycans regulate autophagy in Drosophila.

    PubMed

    Reynolds-Peterson, Claire E; Zhao, Na; Xu, Jie; Serman, Taryn M; Xu, Jielin; Selleck, Scott B

    2017-08-03

    Heparan sulfate-modified proteoglycans (HSPGs) are important regulators of signaling and molecular recognition at the cell surface and in the extracellular space. Disruption of HSPG core proteins, HS-synthesis, or HS-degradation can have profound effects on growth, patterning, and cell survival. The Drosophila neuromuscular junction provides a tractable model for understanding the activities of HSPGs at a synapse that displays developmental and activity-dependent plasticity. Muscle cell-specific knockdown of HS biosynthesis disrupted the organization of a specialized postsynaptic membrane, the subsynaptic reticulum (SSR), and affected the number and morphology of mitochondria. We provide evidence that these changes result from a dysregulation of macroautophagy (hereafter referred to as autophagy). Cellular and molecular markers of autophagy are all consistent with an increase in the levels of autophagy in the absence of normal HS-chain biosynthesis and modification. HS production is also required for normal levels of autophagy in the fat body, the central energy storage and nutritional sensing organ in Drosophila. Genetic mosaic analysis indicates that HS-dependent regulation of autophagy occurs non-cell autonomously, consistent with HSPGs influencing this cellular process via signaling in the extracellular space. These findings demonstrate that HS biosynthesis has important regulatory effects on autophagy and that autophagy is critical for normal assembly of postsynaptic membrane specializations.

  17. Polymer Formulations for Cartilage Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutowska, Anna; Jasionowski, Marek; Morris, J. E.

    2001-05-15

    Regeneration of destroyed articular cartilage can be induced by transplantation of cartilage cells into a defect. The best results are obtained with the use of autologus cells. However, obtaining large amounts of autologus cartilage cells causes a problem of creating a large cartilage defect in a donor site. Techniques are currently being developed to harvest a small number of cells and propagate them in vitro. It is a challenging task, however, due to the fact that ordinarily, in a cell culture on flat surfaces, chondrocytes do not maintain their in vivo phenotype and irreversibly diminish or cease the synthesis ofmore » aggregating proteoglycans. Therefore, the research is continuing to develop culture conditions for chondrocytes with the preserved phenotype.« less

  18. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma.

    PubMed

    Neri, Paola; Bahlis, Nizar J

    2012-09-01

    Multiple myeloma (MM) is a clonal disorder of plasma cells that remains, for the most part, incurable despite the advent of several novel therapeutic agents. Tumor cells in this disease are cradled within the bone marrow (BM) microenvironment by an array of adhesive interactions between the BM cellular residents, the surrounding extracellular matrix (ECM) components such as fibronectin (FN), laminin, vascular cell adhesion molecule-1 (VCAM-1), proteoglycans, collagens and hyaluronan, and a variety of adhesion molecules on the surface of MM cells including integrins, hyaluronan receptors (CD44 and RHAMM) and heparan sulfate proteoglycans. Several signaling responses are activated by these interactions, affecting the survival, proliferation and migration of MM cells. An important consequence of these direct adhesive interactions between the BM/ECM and MM cells is the development of drug resistance. This phenomenon is termed "cell adhesion-mediated drug resistance" (CAM-DR) and it is thought to be one of the major mechanisms by which MM cells escape the cytotoxic effects of therapeutic agents. This review will focus on the adhesion molecules involved in the cross-talk between MM cells and components of the BM microenvironment. The complex signaling networks downstream of these adhesive molecules mediated by direct ligand binding or inside-out soluble factors signaling will also be reviewed. Finally, novel therapeutic strategies targeting these molecules will be discussed. Identification of the mediators of MM-BM interaction is essential to understand MM biology and to elucidate novel therapeutic targets for this disease.

  19. Glycobiology of the ocular surface: Mucins and lectins

    PubMed Central

    Argüeso, Pablo

    2013-01-01

    Glycosylation is an important and common form of posttranscriptional modification of proteins in cells. A vast array of biological functions has been ascribed to glycans during the last decade thanks to a rapid evolution in glycomic technologies. Glycogenes highly expressed at the human ocular surface include families of glycosyltransferases, proteoglycans, glycan degradation proteins, as well as mucins and carbohydrate-binding proteins such as the galectins. On the apical glycocalyx, mucin O-glycans promote boundary lubrication, prevent bacterial adhesion and endocytic activity, and maintain epithelial barrier function through interactions with galectins. The emerging roles attributed to glycans are contributing to the appreciation of their biological capabilities at the ocular surface. PMID:23325272

  20. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    PubMed Central

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A.B.; Pataki, Csilla; Okina, Elena; Xian, Xiaojie; Pedersen, Mikael E.; Stevens, Troy; Griesbeck, Oliver; Park, Pyong Woo; Pocock, Roger

    2015-01-01

    Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior. PMID:26391658

  1. Effects of oxygen toxicity on cuprolinic blue-stained proteoglycans in alveolar basement membranes.

    PubMed

    Ferrara, T B; Fox, R B

    1992-02-01

    Effects of oxygen toxicity on distribution and density of proteoglycans in basement membranes of newborn rat lungs were assessed by electron microscopic analysis of tissues processed with cuprolinic blue, a cationic label that characteristically labels these anionically charged macromolecules. Newborn rats placed in greater than 95% oxygen at birth were killed at weekly intervals for 4 wk, and lung tissues fixed in 2.5% glutaraldehyde with 0.2% cuprolinic blue were processed for electron microscopy. Alveolar basement membranes from oxygen-treated and control animals were compared for differences in thickness and proteoglycan concentration and distribution. Results showed progressive thickening of alveolar basement membranes with increased duration of oxygen exposure. The normal distribution of proteoglycans, which is predominantly in the lamina rara externa of alveolar basement membranes, was frequently lost in thickened membranes found in oxygen-treated animals. Density of proteoglycans in these membranes decreased to 56% of normal by 2 wk of age and remained low with continued oxygen administration. Proteoglycan concentration in basement membranes on the interstitial side of alveolar capillaries in both control and oxygen-treated animals was low compared with proteoglycan concentration in basement membranes that opposed the alveolar air space, and administration of oxygen diminished these differences. These results demonstrate a direct alteration of proteoglycan distribution and density in the developing lung as a result of oxygen toxicity. This could result in decreased cell adhesion, influence the cellular response to lung injury, and contribute to the increased permeability seen with this disorder.

  2. Neoproteoglycans in tissue engineering.

    PubMed

    Weyers, Amanda; Linhardt, Robert J

    2013-05-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein-glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer-glycosaminoglycan complexes. © 2013 The Authors Journal compilation © 2013 FEBS.

  3. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  4. Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea.

    PubMed

    Almubrad, Turki; Akhtar, Saeed

    2011-01-01

    The stroma is the major part of the cornea, in which collagen fibrils and proteoglycans are distributed uniformly. We describe the ultrastructure of corneal layers, collagen fibrils (CF), and proteoglycans (PGs) in the tree shrew cornea. Tree shrew corneas (5, 6, and 10 week old animals) and normal human corneas (24, 25, and 54 years old) were fixed in 2.5% glutaraldehyde containing cuprolinic blue in a sodium acetate buffer. The tissue was processed for electron microscopy. The 'iTEM Olympus Soft Imaging Solutions GmbH' program was used to measure the corneal layers, collagen fibril diameters and proteoglycan areas. The tree shrew cornea consists of 5 layers: the epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. The epithelium was composed of squamous cells, wing cells and basal cells. The Bowman's layer was 5.5±1.0 µm thick and very similar to a normal human Bowman's layer. The stroma was 258±7.00 µm thick and consisted of collagen fibril lamellae. The lamellae were interlaced with one another in the anterior stroma, but ran parallel to one another in the middle and posterior stroma. Collagen fibrils were decorated with proteoglycan filaments with an area size of 390 ±438 nm(2). The collagen fibril had a minimum diameter of 39±4.25 nm. The interfibrillar spacing was 52.91±6.07 nm. Within the collagen fibrils, very small electron-dense particles were present. The structure of the tree shrew cornea is very similar to that of the normal human cornea. As is the case with the human cornea, the tree shrew cornea had a Bowman's layer, lamellar interlacing in the anterior stroma and electron-dense particles within the collagen fibrils. The similarities of the tree shrew cornea with the human cornea suggest that it could be a good structural model to use when studying changes in collagen fibrils and proteoglycans in non-genetic corneal diseases, such as ectasia caused after LASIK (laser-assisted in situ keratomileusis).

  5. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin

    PubMed Central

    1996-01-01

    Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein, results in the accumulation of phosphorylated tyrosine residues on beta-catenin, uncoupling of N-cadherin from its association with the actin containing cytoskeleton, and loss of N- cadherin function. We now report that binding of these ligands to the GalNAcPTase results in the absence of the PTP1B-like phosphatase from its association with N-cadherin as well as the loss of the tyrosine kinase and tyrosine phosphatase activities that otherwise co- precipitate with N-cadherin. Control antibodies and proteoglycans have no such effect. This effect is similar to that observed with tyrosine kinase inhibitors, suggesting that the GalNAcPTase/proteoglycan interaction inhibits a tyrosine kinase, thereby preventing the phosphorylation of the PTP1B-like phosphatase, and its association with N-cadherin. Taken together these data indicate that a PTP1B-like tyrosine phosphatase can regulate N-cadherin function through its ability to dephosphorylate beta-catenin and that the association of the phosphatase with N-cadherin is regulated via the interaction of the GalNAcPTase with its proteoglycan ligand. In this manner the GalNAcPTase-proteoglycan interaction may play a major role in morphogenetic cell and tissue interactions during development. PMID:8707857

  6. Laminin and collagen modulate expression of the small leucine-rich proteoglycan fibromodulin in rat anterior pituitary gland.

    PubMed

    Syaidah, Rahimi; Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-11-01

    The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.

  7. The extracellular matrix of rat pacinian corpuscles: an analysis of its fine structure.

    PubMed

    Dubový, P; Bednárová, J

    1999-12-01

    The Pacinian corpuscle consists of a sensory axon terminal that is enveloped by two different structures, the inner core and the capsule. Since proteoglycans are extremely water soluble and are extracted by conventional methods for electron microscopy, the current picture of the structural composition of the extracellular matrix in the inner core and the capsule of the Pacinian corpuscle is incomplete. To study the structural composition of the extracellular matrix of the Pacinian corpuscles, cationic dyes (ruthenium red, alcian blue, acridine orange) and tannic acid were applied simultaneously with the aldehyde fixation. The interosseal Pacinian corpuscles of the rat were fixed either in 2% formaldehyde and 1.5% glutaraldehyde, with the addition of one of these cationic dyes or, in Zamboni's fixative, with tannic acid added. The cationic dyes and tannic acid revealed a different structural pattern of proteoglycans in the extracellular matrix in the inner core and in the capsule of the rat Pacinian corpuscles. The inner core surrounding the sensory axon terminal is a compartment containing proteoglycans that were distributed not only in the extracellular matrix but also in the cytoplasm of the lamellae. In addition, this excitable domain was separated from the capsular fluid by a thick layer of proteoglycans on its surface. An enlarged interlamellar space of the capsule contained large amounts of proteoglycans that were removed by digestion with chondroitinase-ABC. Ruthenium red and alcian blue provided only electron dense granules, probably corresponding to collapsed monomeric proteoglycan molecules. Acridine orange and tannic acid preserved proteoglycans very well and made it possible to visualize them as "bottlebrush" structures in the electron microscope. These results show that the inner core and the capsule of rat Pacinian corpuscles have different structural patterns of proteoglycans, which are probably involved in different functions.

  8. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans

    PubMed Central

    Jones, Peter J. H.; MacKay, Dylan. S.; Senanayake, Vijitha K.; Pu, Shuaihua; Jenkins, David J. A.; Connelly, Philip W.; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M.; West, Sheila G.; Liu, Xiaoran; Fleming, Jennifer A.; Hantgan, Roy R.; Rudel, Lawrence L.

    2015-01-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets; 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p=0.0005 and p=0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p=0.0243) and DHA-enriched high oleic canola oil (p=0.0249), although high-oleic canola oil had the lowest binding at baseline (p=0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. PMID:25528432

  9. Analysis of maternal-zygotic ugdh mutants reveals divergent roles for HSPGs in vertebrate embryogenesis and provides new insight into the initiation of left-right asymmetry.

    PubMed

    Superina, Simone; Borovina, Antonia; Ciruna, Brian

    2014-03-15

    Growth factors and morphogens regulate embryonic patterning, cell fate specification, cell migration, and morphogenesis. The activity and behavior of these signaling molecules are regulated in the extracellular space through interactions with proteoglycans (Bernfield et al., 1999; Perrimon and Bernfield 2000; Lander and Selleck 2000; Selleck 2000). Proteoglycans are high molecular-weight proteins consisting of a core protein with covalently linked glycosaminoglycan (GAG) side chains, which are thought to mediate ligand interaction. Drosophila mutant embryos deficient for UDP-glucose dehydrogenase activity (Ugdh, required for GAG synthesis) exhibit abnormal Fgf, Wnt and TGFß signaling and die during gastrulation, indicating a broad and critical role for proteoglycans during early embryonic development (Lin et al., 1999; Lin and Perrimon 2000) (Hacker et al., 1997). Mouse Ugdh mutants also die at gastrulation, however, only Fgf signaling appears disrupted (Garcia-Garcia and Anderson, 2003). These findings suggested a possible divergence in the requirement for proteoglycans during Drosophila and mouse embryogenesis, and that mammals may have evolved alternative means of regulating Wnt and TGFß activity. To further examine the function of proteoglycans in vertebrate development, we have characterized zebrafish mutants devoid of both maternal and zygotic Ugdh/Jekyll activity (MZjekyll). We demonstrate that MZjekyll mutant embryos display abnormal Fgf, Shh, and Wnt signaling activities, with concomitant defects in central nervous system patterning, cardiac ventricular fate specification and axial morphogenesis. Furthermore, we uncover a novel role for proteoglycans in left-right pattern formation. Our findings resolve longstanding questions into the evolutionary conservation of Ugdh function and provide new mechanistic insights into the initiation of left-right asymmetry. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  11. Thrombin-mediated proteoglycan synthesis utilizes both protein-tyrosine kinase and serine/threonine kinase receptor transactivation in vascular smooth muscle cells.

    PubMed

    Burch, Micah L; Getachew, Robel; Osman, Narin; Febbraio, Mark A; Little, Peter J

    2013-03-08

    G protein-coupled receptor signaling is mediated by three main mechanisms of action; these are the classical pathway, β-arrestin scaffold signaling, and the transactivation of protein-tyrosine kinase receptors such as those for EGF and PDGF. Recently, it has been demonstrated that G protein-coupled receptors can also mediate signals via transactivation of serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Atherosclerosis is characterized by the development of lipid-laden plaques in blood vessel walls. Initiation of plaque development occurs via low density lipoprotein retention in the neointima of vessels due to binding with modified proteoglycans secreted by vascular smooth muscle cells. Here we show that transactivation of protein-tyrosine kinase receptors is mediated by matrix metalloproteinase triple membrane bypass signaling. In contrast, serine/threonine kinase receptor transactivation is mediated by a cytoskeletal rearrangement-Rho kinase-integrin system, and both protein-tyrosine kinase and serine/threonine kinase receptor transactivation concomitantly account for the total proteoglycan synthesis stimulated by thrombin in vascular smooth muscle. This work provides evidence of thrombin-mediated proteoglycan synthesis and paves the way for a potential therapeutic target for plaque development and atherosclerosis.

  12. Novel role of ADAMTS-5 protein in proteoglycan turnover and lipoprotein retention in atherosclerosis.

    PubMed

    Didangelos, Athanasios; Mayr, Ursula; Monaco, Claudia; Mayr, Manuel

    2012-06-01

    Atherosclerosis is initiated by the retention of lipoproteins on proteoglycans in the arterial intima. However, the mechanisms leading to proteoglycan accumulation and lipoprotein retention are poorly understood. In this study, we set out to investigate the role of ADAMTS-5 (a disintegrin and metalloprotease with thrombospondin motifs-5) in the vasculature. ADAMTS-5 was markedly reduced in atherosclerotic aortas of apolipoprotein E-null (apoE(-/-)) mice. The reduction of ADAMTS-5 was accompanied by accumulation of biglycan and versican, the major lipoprotein-binding proteoglycans, in atherosclerosis. ADAMTS-5 activity induced the release of ADAMTS-specific versican (DPEAAE(441)) and aggrecan ((374)ALGS) fragments as well as biglycan and link protein from the aortic wall. Fibroblast growth factor 2 (FGF-2) inhibited ADAMTS-5 expression in isolated aortic smooth muscle cells and blocked the spontaneous release of ADAMTS-generated versican and aggrecan fragments from aortic explants. In aortas of ADAMTS-5-deficient mice, DPEAAE(441) versican neoepitopes were not detectable. Instead, biglycan levels were increased, highlighting the role of ADAMTS-5 in the catabolism of vascular proteoglycans. Importantly, ADAMTS-5 proteolytic activity reduced the LDL binding ability of biglycan and released LDL from human aortic lesions. This study provides the first evidence implicating ADAMTS-5 in the regulation of proteoglycan turnover and lipoprotein retention in atherosclerosis.

  13. Human recombinant Fab fragment from combinatorial libraries of a B-cell lymphoma patient recognizes core protein of chondroitin sulphate proteoglycan 4.

    PubMed

    Egami, Yoko; Narushima, Yuta; Ohshima, Motohiro; Yoshida, Akira; Yoneta, Naruki; Masaki, Yasufumi; Itoh, Kunihiko

    2018-01-01

    CD antigens are well known as therapeutic targets of B-cell lymphoma. To isolate therapeutic antibodies that recognize novel targets other than CD antigens, we constructed a phage display combinatorial antibody Fab library from bone marrow lymphocytes of B-cell lymphoma patient. To eliminate antibodies reactive with known B-cell lymphoma antigen, non-hematopoietic and patient's sera reactive HeLaS3 cells was selected as a target of whole cell panning. Five rounds of panning against live HeLaS3 cells retrieved single Fab clone, termed AHSA (Antibody to HeLa Surface Antigen). Using phage display random peptide library, LSYLEP was identified as an epitope sequence of AHSA. LC-MS/MS analysis of AHSA-precipitated HeLaS3 cell lysates detected several fragments corresponding to the sequence of chondroitin sulphate proteoglycan 4 (CSPG4) core protein. Since LSYLEP sequence was at the position of 313-318 of CSPG4, we considered that CSPG4 was AHSA-associated antigen. Double staining of CSPG4-postive MDA-MB-435S cells with AHSA and anti-CSPG4 rabbit antibody showed identical staining position, and reduced AHSA reactivity was observed in CSPG4-siRNA treated MDA-MB-435S cells. In conclusion, we retrieved a human Fab from antibody library of B-cell lymphoma patient, and identified CSPG4 as a recognizing antigen. AHSA may have potential benefits for development of CSPG4-targeting theranostics for B-cell lymphoma. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  14. (S)-[6]-Gingerol inhibits TGF-β-stimulated biglycan synthesis but not glycosaminoglycan hyperelongation in human vascular smooth muscle cells.

    PubMed

    Kamato, Danielle; Babaahmadi Rezaei, Hossein; Getachew, Robel; Thach, Lyna; Guidone, Daniel; Osman, Narin; Roufogalis, Basil; Duke, Colin C; Tran, Van Hoan; Zheng, Wenhua; Little, Peter J

    2013-07-01

    (S)-[6]-Gingerol is under investigation for a variety of therapeutic uses. Transforming growth factor (TGF)-β stimulates proteoglycan synthesis, leading to increased binding of low-density lipoproteins, which is the initiating step in atherosclerosis. We evaluated the effects of (S)-[6]-gingerol on these TGF-β-mediated proteoglycan changes to explore its potential as an anti-atherosclerotic agent. Purified (S)-[6]-gingerol was assessed for its effects on proteoglycan synthesis by [(35) S]-sulfate incorporation into glycosaminoglycan chains and [(35) S]-Met/Cys incorporation into proteoglycans and total proteins in human vascular smooth muscle cells. Biglycan level was assessed by real-time quantitative polymerase chain reactions and the effects of (S)-[6]-gingerol on TGF-β signalling by assessment of the phosphorylation of Smads and Akt by western blotting. (S)-[6]-Gingerol concentration-dependently inhibited TGF-β-stimulated proteoglycan core protein synthesis, and this was not secondary to inhibition of total protein synthesis. (S)-[6]-Gingerol inhibited biglycan mRNA expression. (S)-[6]-Gingerol did not inhibit TGF-β-stimulated glycosaminoglycan hyperelongation or phosphorylation of Smad 2, in either the carboxy terminal or linker region, or Akt phosphorylation. The activity of (S)-[6]-gingerol to inhibit TGF-β-stimulated biglycan synthesis suggests a potential role for ginger in the prevention of atherosclerosis or other lipid-binding diseases. The signalling studies indicate a novel site of action of (S)-[6]-gingerol in inhibiting TGF-β responses. © 2013 Royal Pharmaceutical Society.

  15. Decorin and biglycan retain LDL in disease-prone valvular and aortic subendothelial intimal matrix

    PubMed Central

    Neufeld, Edward B.; Zadrozny, Leah M.; Phillips, Darci; Aponte, Angel; Yu, Zu-Xi; Balaban, Robert S.

    2014-01-01

    Objective Subendothelial LDL retention by intimal matrix proteoglycans is an initial step in atherosclerosis and calcific aortic valve disease. Herein, we identify decorin and biglycan as the proteoglycans that preferentially retain LDL in intimal matrix at disease-prone sites in normal valve and vessel wall. Methods The porcine aortic valve and renal artery ostial diverter, initiation sites of calcific valve disease and renal atherosclerosis, respectively, from normal non-diseased animals were used as models in these studies. Results Fluorescent human LDL was selectively retained on the lesion-prone collagen/proteoglycan-enriched aortic surface of the valve, where the elastic lamina is depleted, as previously observed in lesion-prone sites in the renal ostium. iTRAQ mass spectrometry of valve and diverter protein extracts identified decorin and biglycan as the major subendothelial intimal matrix proteoglycans electrostatically retained on human LDL affinity columns. Decorin levels correlated with LDL binding in lesion-prone sites in both tissues. Collagen binding to LDL was shown to be proteoglycan-mediated. All known basement membrane proteoglycans bound LDL suggesting they may modulate LDL uptake into the subendothelial matrix. The association of purified decorin with human LDL in an in vitro microassay was blocked by serum albumin and heparin suggesting anti-atherogenic roles for these proteins in vivo. Conclusions LDL electrostatic interactions with decorin and biglycan in the valve leaflets and vascular wall is a major source of LDL retention. The complementary electrostatic sites on LDL or these proteoglycans may provide a novel therapeutic target for preventing one of the earliest events in these cardiovascular diseases. PMID:24529131

  16. High resolution immunoelectron microscopic localization of functional domains of laminin, nidogen, and heparan sulfate proteoglycan in epithelial basement membrane of mouse cornea reveals different topological orientations.

    PubMed

    Schittny, J C; Timpl, R; Engel, J

    1988-10-01

    Thin and ultrathin cryosections of mouse cornea were labeled with affinity-purified antibodies directed against either laminin, its central segments (domain 1), the end of its long arm (domain 3), the end of one of its short arms (domain 4), nidogen, or low density heparan sulfate proteoglycan. All basement membrane proteins are detected by indirect immunofluorescence exclusively in the epithelial basement membrane, in Descemet's membrane, and in small amorphous plaques located in the stroma. Immunoelectron microscopy using the protein A-gold technique demonstrated laminin domain 1 and nidogen in a narrow segment of the lamina densa at the junction to the lamina lucida within the epithelial basement membrane. Domain 3 shows three preferred locations at both the cellular and stromal boundaries of the epithelial basement membrane and in its center. Domain 4 is located predominantly in the lamina lucida and the adjacent half of the lamina densa. The low density heparan sulfate proteoglycan is found all across the basement membrane showing a similar uniform distribution as with antibodies against the whole laminin molecule. In Descemet's membrane an even distribution was found with all these antibodies. It is concluded that within the epithelial basement membrane the center of the laminin molecule is located near the lamina densa/lamina lucida junction and that its long arm favors three major orientations. One is close to the cell surface indicating binding to a cell receptor, while the other two are directed to internal matrix structures. The apparent codistribution of laminin domain 1 and nidogen agrees with biochemical evidence that nidogen binds to this domain.

  17. Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea

    PubMed Central

    Almubrad, Turki

    2011-01-01

    Purpose The stroma is the major part of the cornea, in which collagen fibrils and proteoglycans are distributed uniformly. We describe the ultrastructure of corneal layers, collagen fibrils (CF), and proteoglycans (PGs) in the tree shrew cornea. Methods Tree shrew corneas (5, 6, and 10 week old animals) and normal human corneas (24, 25, and 54 years old) were fixed in 2.5% glutaraldehyde containing cuprolinic blue in a sodium acetate buffer. The tissue was processed for electron microscopy. The ‘iTEM Olympus Soft Imaging Solutions GmbH’ program was used to measure the corneal layers, collagen fibril diameters and proteoglycan areas. Results The tree shrew cornea consists of 5 layers: the epithelium, Bowman’s layer, stroma, Descemet’s membrane, and endothelium. The epithelium was composed of squamous cells, wing cells and basal cells. The Bowman’s layer was 5.5±1.0 µm thick and very similar to a normal human Bowman’s layer. The stroma was 258±7.00 µm thick and consisted of collagen fibril lamellae. The lamellae were interlaced with one another in the anterior stroma, but ran parallel to one another in the middle and posterior stroma. Collagen fibrils were decorated with proteoglycan filaments with an area size of 390 ±438 nm2. The collagen fibril had a minimum diameter of 39±4.25 nm. The interfibrillar spacing was 52.91±6.07 nm. Within the collagen fibrils, very small electron-dense particles were present. Conclusions The structure of the tree shrew cornea is very similar to that of the normal human cornea. As is the case with the human cornea, the tree shrew cornea had a Bowman's layer, lamellar interlacing in the anterior stroma and electron-dense particles within the collagen fibrils. The similarities of the tree shrew cornea with the human cornea suggest that it could be a good structural model to use when studying changes in collagen fibrils and proteoglycans in non-genetic corneal diseases, such as ectasia caused after LASIK (laser-assisted in situ keratomileusis). PMID:21921979

  18. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    PubMed Central

    Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.

    2015-01-01

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702

  19. Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces

    NASA Astrophysics Data System (ADS)

    Tsao, Simon Chang-Hao; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Christophi, Christopher; Cebon, Jonathan; Shiddiky, Muhammad J. A.; Behren, Andreas; Trau, Matt

    2016-01-01

    With new systemic therapies becoming available for metastatic melanoma such as BRAF and PD-1 inhibitors, there is an increasing demand for methods to assist with treatment selection and response monitoring. Quantification and characterisation of circulating melanoma cells (CMCs) has been regarded as an excellent non-invasive candidate but a sensitive and efficient tool to do these is lacking. Herein we demonstrate a microfluidic approach for melanoma cell capture and subsequent on-chip evaluation of BRAF mutation status. Our approach utilizes a recently discovered alternating current electrohydrodynamic (AC-EHD)-induced surface shear forces, referred to as nanoshearing. A key feature of nanoshearing is the ability to agitate fluid to encourage contact with surface-bound antibody for the cell capture whilst removing nonspecific cells from the surface. By adjusting the AC-EHD force to match the binding affinity of antibodies against the melanoma-associated chondroitin sulphate proteoglycan (MCSP), a commonly expressed melanoma antigen, this platform achieved an average recovery of 84.7% from biological samples. Subsequent staining with anti-BRAFV600E specific antibody enabled on-chip evaluation of BRAFV600E mutation status in melanoma cells. We believe that the ability of nanoshearing-based capture to enumerate melanoma cells and subsequent on-chip characterisation has the potential as a rapid screening tool while making treatment decisions.

  20. The Arabidopsis SOS5 Locus Encodes a Putative Cell Surface Adhesion Protein and Is Required for Normal Cell Expansion

    PubMed Central

    Shi, Huazhong; Kim, YongSig; Guo, Yan; Stevenson, Becky; Zhu, Jian-Kang

    2003-01-01

    Cell surface proteoglycans have been implicated in many aspects of plant growth and development, but genetic evidence supporting their function has been lacking. Here, we report that the Salt Overly Sensitive5 (SOS5) gene encodes a putative cell surface adhesion protein and is required for normal cell expansion. The sos5 mutant was isolated in a screen for Arabidopsis salt-hypersensitive mutants. Under salt stress, the root tips of sos5 mutant plants swell and root growth is arrested. The root-swelling phenotype is caused by abnormal expansion of epidermal, cortical, and endodermal cells. The SOS5 gene was isolated through map-based cloning. The predicted SOS5 protein contains an N-terminal signal sequence for plasma membrane localization, two arabinogalactan protein–like domains, two fasciclin-like domains, and a C-terminal glycosylphosphatidylinositol lipid anchor signal sequence. The presence of fasciclin-like domains, which typically are found in animal cell adhesion proteins, suggests a role for SOS5 in cell-to-cell adhesion in plants. The SOS5 protein was present at the outer surface of the plasma membrane. The cell walls are thinner in the sos5 mutant, and those between neighboring epidermal and cortical cells in sos5 roots appear less organized. SOS5 is expressed ubiquitously in all plant organs and tissues, including guard cells in the leaf. PMID:12509519

  1. Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: cells for human cartilage tissue engineering.

    PubMed

    Hsieh-Bonassera, Nancy D; Wu, Iwen; Lin, Jonathan K; Schumacher, Barbara L; Chen, Albert C; Masuda, Koichi; Bugbee, William D; Sah, Robert L

    2009-11-01

    To determine if selected culture conditions enhance the expansion and redifferentiation of chondrocytes isolated from human osteoarthritic cartilage with yields appropriate for creation of constructs for treatment of joint-scale cartilage defects, damage, or osteoarthritis. Chondrocytes isolated from osteoarthritic cartilage were analyzed to determine the effects of medium supplement on cell expansion in monolayer and then cell redifferentiation in alginate beads. Expansion was assessed as cell number estimated from DNA, growth rate, and day of maximal growth. Redifferentiation was evaluated quantitatively from proteoglycan and collagen type II content, and qualitatively by histology and immunohistochemistry. Using either serum or a growth factor cocktail (TFP: transforming growth factor beta1, fibroblast growth factor 2, and platelet-derived growth factor type bb), cell growth rate in monolayer was increased to 5.5x that of corresponding conditions without TFP, and cell number increased 100-fold within 17 days. In subsequent alginate bead culture with human serum or transforming growth factor beta1 and insulin-transferrin-selenium-linoleic acid-bovine serum albumin, redifferentiation was enhanced with increased proteoglycan and collagen type II production. Effects of human serum were dose dependent, and 5% or higher induced formation of chondron-like structures with abundant proteoglycan-rich matrix. Chondrocytes from osteoarthritic cartilage can be stimulated to undergo 100-fold expansion and then redifferentiation, suggesting that they may be useful as a cell source for joint-scale cartilage tissue engineering.

  2. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    PubMed

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Leukocyte Cell Surface Proteinases: Regulation of Expression, Functions, and Mechanisms of Surface Localization

    PubMed Central

    Owen, Caroline A.

    2008-01-01

    A number of proteinases are expressed on the surface of leukocytes including members of the serine, metallo-, and cysteine proteinase superfamilies. Some proteinases are anchored to the plasma membrane of leukocytes by a transmembrane domain or a glycosyl phosphatidyl inositol (GPI) anchor. Other proteinases bind with high affinity to classical receptors, or with lower affinity to integrins, proteoglycans, or other leukocyte surface molecules. Leukocyte surface levels of proteinases are regulated by: 1) cytokines, chemokines, bacterial products, and growth factors which stimulate synthesis and/or release of proteinase by cells; 2) the availability of surface binding sites for proteinases; and/or 3) internalization or shedding of surface-bound proteinases. The binding of proteinases to leukocyte surfaces serves many functions including: 1) concentrating the activity of proteinases to the immediate pericellular environment; 2) facilitating pro-enzyme activation; 3) increasing proteinase stability and retention in the extracellular space; 4) regulating leukocyte function by proteinases signaling through cell surface binding sites or other surface proteins; and 5) protecting proteinases from inhibition by extracellular proteinase inhibitors. There is strong evidence that membrane-associated proteinases on leukocytes play critical roles in wound healing, inflammation, extracellular matrix remodeling, fibrinolysis, and coagulation. This review will outline the biology of membrane-associated proteinases expressed by leukocytes and their roles in physiologic and pathologic processes. PMID:18329945

  4. Surface glycosaminoglycans mediate adherence between HeLa cells and Lactobacillus salivarius Lv72.

    PubMed

    Martín, Rebeca; Martín, Carla; Escobedo, Susana; Suárez, Juan E; Quirós, Luis M

    2013-09-17

    The adhesion of lactobacilli to the vaginal surface is of paramount importance to develop their probiotic functions. For this reason, the role of HeLa cell surface proteoglycans in the attachment of Lactobacillus salivarius Lv72, a mutualistic strain of vaginal origin, was investigated. Incubation of cultures with a variety of glycosaminoglycans (chondroitin sulfate A and C, heparin and heparan sulfate) resulted in marked binding interference. However, no single glycosaminoglycan was able to completely abolish cell binding, the sum of all having an additive effect that suggests cooperation between them and recognition of specific adhesins on the bacterial surface. In contrast, chondroitin sulfate B enhanced cell to cell attachment, showing the relevance of the stereochemistry of the uronic acid and the sulfation pattern on binding. Elimination of the HeLa surface glycosaminoglycans with lyases also resulted in severe adherence impairment. Advantage was taken of the Lactobacillus-glycosaminoglycans interaction to identify an adhesin from the bacterial surface. This protein, identify as a soluble binding protein of an ABC transporter system (OppA) by MALDI-TOF/(MS), was overproduced in Escherichia coli, purified and shown to interfere with L. salivarius Lv72 adhesion to HeLa cells. These data suggest that glycosaminoglycans play a fundamental role in attachment of mutualistic bacteria to the epithelium that lines the cavities where the normal microbiota thrives, OppA being a bacterial adhesin involved in the process.

  5. Prostate cancer cells specifically reorganize epithelial cell-fibroblast communication through proteoglycan and junction pathways.

    PubMed

    Suhovskih, Anastasia V; Kashuba, Vladimir I; Klein, George; Grigorieva, Elvira V

    2017-01-02

    Microenvironment and stromal fibroblasts are able to inhibit tumor cell proliferation both through secreted signaling molecules and direct cell-cell interactions but molecular mechanisms of these effects remain unclear. In this study, we investigated a role of cell-cell contact-related molecules (protein ECM components, proteoglycans (PGs) and junction-related molecules) in intercellular communications between the human TERT immortalized fibroblasts (BjTERT fibroblasts) and normal (PNT2) or cancer (LNCaP, PC3, DU145) prostate epithelial cells. It was shown that BjTERT-PNT2 cell coculture resulted in significant decrease of both BjTERT and PNT2 proliferation rates and reorganization of transcriptional activity of cell-cell contact-related genes in both cell types. Immunocytochemical staining revealed redistribution of DCN and LUM in PNT2 cells and significant increase of SDC1 at the intercellular contact zones between BjTERT and PNT2 cells, suggesting active involvement of the PGs in cell-cell contacts and contact inhibition of cell proliferation. Unlike to PNT2 cells, PC3 cells did not respond to BjTERT in terms of PGs expression, moderately increased transcriptional activity of junctions-related genes (especially tight junction) and failed to establish PC3-BjTERT contacts. At the same time, PC3 cells significantly down-regulated junctions-related genes (especially focal adhesions and adherens junctions) in BjTERT fibroblasts resulting in visible preference for homotypic PC3-PC3 over heterotypic PC3-BjTERT contacts and autonomous growth of PC3 clones. Taken together, the results demonstrate that an instructing role of fibroblasts to normal prostate epithelial cells is revoked by cancer cells through deregulation of proteoglycans and junction molecules expression and overall disorganization of fibroblast-cancer cell communication.

  6. Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies

    PubMed Central

    Harris, J P; Capadona, J R; Miller, R H; Healy, B C; Shanmuganathan, K; Rowan, S J; Weder, C; Tyler, D J

    2012-01-01

    The hypothesis is that mechanical mismatch between brain tissue and microelectrodes influences the inflammatory response. Our unique, mechanically-adaptive polymer nanocomposite enabled this study within the cerebral cortex of rats. The initial tensile storage modulus of 5 GPa decreases to 12 MPa within 15 minutes under physiological conditions. The response to the nanocomposite was compared to surface-matched, stiffer implants of traditional wires (411 GPa) coated with the identical polymer substrate and implanted on the contralateral side. Both implants were tethered. Fluorescent immunohistochemistry labeling examined neurons, intermediate filaments, macrophages, microglia, and proteoglycans. We demonstrate, for the first time, a system that decouples the mechanical and surface chemistry components of the neural response. The neuronal nuclei density within 100 μm of the device at four weeks post implantation was greater for the compliant nanocomposite compared to the stiff wire. At eight weeks post implantation, the neuronal nuclei density around the nanocomposite was maintained, but the density around the wire recovered to match the nanocomposite. The glial scar response to the compliant nanocomposite was less vigorous than to the stiffer wire. The results suggest that mechanically associated factors such as proteoglycans and intermediate filaments are important modulators of the response of the compliant nanocomposite. PMID:22049097

  7. Syndecan-1/CD147 association is essential for cyclophilin B-induced activation of p44/42 mitogen-activated protein kinases and promotion of cell adhesion and chemotaxis.

    PubMed

    Pakula, Rachel; Melchior, Aurélie; Denys, Agnès; Vanpouille, Christophe; Mazurier, Joël; Allain, Fabrice

    2007-05-01

    Many of the biological functions attributed to cell surface proteoglycans are dependent on the interaction with extracellular mediators through their heparan sulphate (HS) moieties and the participation of their core proteins in signaling events. A class of recently identified inflammatory mediators is secreted cyclophilins, which are mostly known as cyclosporin A-binding proteins. We previously demonstrated that cyclophilin B (CyPB) triggers chemotaxis and integrin-mediated adhesion of T lymphocytes mainly of the CD4+/CD45RO+ phenotype. These activities are related to interactions with two types of binding sites, CD147 and cell surface HS. Here, we demonstrate that CyPB-mediated adhesion of CD4+/CD45RO+ T cells is related to p44/42 mitogen-activated protein kinase (MAPK) activation by a mechanism involving CD147 and HS proteoglycans (HSPG). Although HSPG core proteins are represented by syndecan-1, -2, -4, CD44v3 and betaglycan in CD4+/CD45RO+ T cells, we found that only syndecan-1 is physically associated with CD147. The intensity of the heterocomplex increased in response to CyPB, suggesting a transient enhancement and/or stabilization in the association of CD147 to syndecan-1. Pretreatment with anti-syndecan-1 antibodies or knockdown of syndecan-1 expression by RNA interference dramatically reduced CyPB-induced p44/p42 MAPK activation and consequent migration and adhesion, supporting the model in which syndecan-1 serves as a binding subunit to form the fully active receptor of CyPB. Altogether, our findings provide a novel example of a soluble mediator in which a member of the syndecan family plays a critical role in efficient interaction with signaling receptors and initiation of cellular responses.

  8. Imaging articular cartilage using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Mansfield, Jessica C.; Winlove, C. Peter; Knapp, Karen; Matcher, Stephen J.

    2006-02-01

    Sub cellular resolution images of equine articular cartilage have been obtained using both second harmonic generation microscopy (SHGM) and two-photon fluorescence microscopy (TPFM). The SHGM images clearly map the distribution of the collagen II fibers within the extracellular matrix while the TPFM images show the distribution of endogenous two-photon fluorophores in both the cells and the extracellular matrix, highlighting especially the pericellular matrix and bright 2-3μm diameter features within the cells. To investigate the source of TPF in the extracellular matrix experiments have been carried out to see if it may originate from the proteoglycans. Pure solutions of the following proteoglycans hyaluronan, chondroitin sulfate and aggrecan have been imaged, only the aggrecan produced any TPF and here the intensity was not great enough to account for the TPF in the extracellular matrix. Also cartilage samples were subjected to a process to remove proteoglycans and cellular components. After this process the TPF from the samples had decreased by a factor of two, with respect to the SHG intensity.

  9. Target cell cyclophilins facilitate human papillomavirus type 16 infection.

    PubMed

    Bienkowska-Haba, Malgorzata; Patel, Hetalkumar D; Sapp, Martin

    2009-07-01

    Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV-induced diseases.

  10. Small leucine rich proteoglycan family regulates multiple signalling pathways in neural development and maintenance.

    PubMed

    Dellett, Margaret; Hu, Wanzhou; Papadaki, Vasiliki; Ohnuma, Shin-ichi

    2012-04-01

    The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  11. Hyaluronan Induces the Selective Accumulation of Matrix- and Cell-Associated Proteoglycans by Mesangial Cells

    PubMed Central

    Kastner, Sabine; Thomas, Gareth J.; Jenkins, Robert H.; Davies, Malcolm; Steadman, Robert

    2007-01-01

    Mesangial cells (MCs) are essential for normal renal function through the synthesis of their own extracellular matrix, which forms the structural support of the renal glomerulus. In many renal diseases this matrix is reorganized in response to a variety of cytokines and growth factors. This study examines proteoglycan and hyaluronan (HA) synthesis by MCs triggered by proinflammatory agents and investigates the effect of an exogenous HA matrix on matrix synthesis by MCs. Metabolic labeling, ion exchange and size exclusion chromatography, Western blotting, and immunocytochemistry were used to identify changes in matrix accumulation. When incubated with interleukin-1, platelet-derived growth factor, or fetal calf serum, MCs initiated rapid HA synthesis associated with the up-regulation of HA synthase-2 and increased the synthesis of versican, perlecan, and decorin/biglycan. HA was both released into the medium and incorporated into extensive pericellular coats. Adding exogenous HA to unstimulated cells that had undetectable pericellular coats of HA selectively reduced perlecan and versican turnover, whereas other proteoglycans were unaffected. These results suggest that high levels of HA in the mesangium in disease is a mechanism controlling the accumulation of specific mesangial matrix components. HA may thus be an attractive target for therapeutic intervention. PMID:17974600

  12. Changes in collagen fibril network organization and proteoglycan distribution in equine articular cartilage during maturation and growth

    PubMed Central

    Hyttinen, Mika M; Holopainen, Jaakko; René van Weeren, P; Firth, Elwyn C; Helminen, Heikki J; Brama, Pieter A J

    2009-01-01

    The aim of this study was to record growth-related changes in collagen network organization and proteoglycan distribution in intermittently peak-loaded and continuously lower-level-loaded articular cartilage. Cartilage from the proximal phalangeal bone of the equine metacarpophalangeal joint at birth, at 5, 11 and 18 months, and at 6–10 years of age was collected from two sites. Site 1, at the joint margin, is unloaded at slow gaits but is subjected to high-intensity loading during athletic activity; site 2 is a continuously but less intensively loaded site in the centre of the joint. The degree of collagen parallelism was determined with quantitative polarized light microscopy and the parallelism index for collagen fibrils was computed from the cartilage surface to the osteochondral junction. Concurrent changes in the proteoglycan distribution were quantified with digital densitometry. We found that the parallelism index increased significantly with age (up to 90%). At birth, site 2 exhibited a more organized collagen network than site 1. In adult horses this situation was reversed. The superficial and intermediate zones exhibited the greatest reorganization of collagen. Site 1 had a higher proteoglycan content than site 2 at birth but here too the situation was reversed in adult horses. We conclude that large changes in joint loading during growth and maturation in the period from birth to adulthood profoundly affect the architecture of the collagen network in equine cartilage. In addition, the distribution and content of proteoglycans are modified significantly by altered joint use. Intermittent peak-loading with shear seems to induce higher collagen parallelism and a lower proteoglycan content in cartilage than more constant weight-bearing. Therefore, we hypothesize that the formation of mature articular cartilage with a highly parallel collagen network and relatively low proteoglycan content in the peak-loaded area of a joint is needed to withstand intermittent stress and shear, whereas a constantly weight-bearing joint area benefits from lower collagen parallelism and a higher proteoglycan content. PMID:19732210

  13. Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination.

    PubMed

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-08-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions.

  14. Effect of Arabinogalactan Proteins from the Root Caps of Pea and Brassica napus on Aphanomyces euteiches Zoospore Chemotaxis and Germination12[C][W

    PubMed Central

    Cannesan, Marc Antoine; Durand, Caroline; Burel, Carole; Gangneux, Christophe; Lerouge, Patrice; Ishii, Tadashi; Laval, Karine; Follet-Gueye, Marie-Laure; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2012-01-01

    Root tips of many plant species release a number of border, or border-like, cells that are thought to play a major role in the protection of root meristem. However, little is currently known on the structure and function of the cell wall components of such root cells. Here, we investigate the sugar composition of the cell wall of the root cap in two species: pea (Pisum sativum), which makes border cells, and Brassica napus, which makes border-like cells. We find that the cell walls are highly enriched in arabinose and galactose, two major residues of arabinogalactan proteins. We confirm the presence of arabinogalactan protein epitopes on root cap cell walls using immunofluorescence microscopy. We then focused on these proteoglycans by analyzing their carbohydrate moieties, linkages, and electrophoretic characteristics. The data reveal (1) significant structural differences between B. napus and pea root cap arabinogalactan proteins and (2) a cross-link between these proteoglycans and pectic polysaccharides. Finally, we assessed the impact of root cap arabinogalactan proteins on the behavior of zoospores of Aphanomyces euteiches, an oomycetous pathogen of pea roots. We find that although the arabinogalactan proteins of both species induce encystment and prevent germination, the effects of both species are similar. However, the arabinogalactan protein fraction from pea attracts zoospores far more effectively than that from B. napus. This suggests that root arabinogalactan proteins are involved in the control of early infection of roots and highlights a novel role for these proteoglycans in root-microbe interactions. PMID:22645070

  15. A model study of factors involved in adhesion of Pseudomonas fluorescens to meat.

    PubMed Central

    Piette, J P; Idziak, E S

    1992-01-01

    A study was undertaken to investigate the factors involved in the adhesion of Pseudomonas fluorescens to model meat surfaces (tendon slices). Adhesion was fast (less than 2.5 min) and was not suppressed by killing the cells with UV, gamma rays, or heat, indicating that physiological activity was not required. In various salt solutions (NaCl, KCl, CaCl2, MgCl2), adhesion increased with increasing ionic strength up to 10 to 100 mM, suggesting that, at low ionic strengths, electrostatic interactions were involved in the adhesion process. At higher ionic strengths (greater than 10 to 100 mM) or in the presence of Al3+ ions, adhesion was sharply reduced. Selectively blocking of carboxyl or amino groups at the cell surface by chemical means did not affect adhesion. These groups are therefore not directly involved in an adhesive bond with tendon. Given a sufficient cell concentration (10(10) CFU.ml-1) in the adhesion medium, the surface of tendon was almost entirely covered with adherent bacteria. This suggests that if the adhesion is specific, the attachment sites on the tendon surface must be located within collagen or proteoglycan molecules. Images PMID:1444387

  16. The Effects of Oxygen Level and Glucose Concentration on the Metabolism of Porcine TMJ Disc Cells

    PubMed Central

    Cisewski, Sarah E.; Zhang, Lixia; Kuo, Jonathan; Wright, Gregory J.; Wu, Yongren; Kern, Michael J.; Yao, Hai

    2015-01-01

    Objective To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. Design TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 hours with 0, 1.5, 5, or 25mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-3H]proline and [35S]sulfate into the cells, respectively. Results TMJ disc cell viability significantly decreased (P<0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P<0.0001), while a decrease in glucose concentration significantly decreased viability (P<0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P<0.0001) and matrix synthesis (P<0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P<0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P<0.0001), ATP production (P=0.00015), and collagen (P=0.0002) and proteoglycan synthesis (P<0.0001). Conclusions Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. PMID:26033165

  17. The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells.

    PubMed

    Cisewski, S E; Zhang, L; Kuo, J; Wright, G J; Wu, Y; Kern, M J; Yao, H

    2015-10-01

    To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. TMJ disc cell viability significantly decreased (P < 0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P < 0.0001), while a decrease in glucose concentration significantly decreased viability (P < 0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P < 0.0001) and matrix synthesis (P < 0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P < 0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P < 0.0001), ATP production (P = 0.00015), and collagen (P = 0.0002) and proteoglycan synthesis (P < 0.0001). Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction

    PubMed Central

    Toh, Yi-Chin; Voldman, Joel

    2011-01-01

    Shear stress is a ubiquitous environmental cue experienced by stem cells when they are being differentiated or expanded in perfusion cultures. However, its role in modulating self-renewing stem cell phenotypes is unclear, since shear is usually only studied in the context of cardiovascular differentiation. We used a multiplex microfluidic array, which overcomes the limitations of macroperfusion systems in shear application throughput and precision, to initiate a comprehensive, quantitative study of shear effects on self-renewing mouse embryonic stem cells (mESCs), where shear stresses varying by >1000 times (0.016–16 dyn/cm2) are applied simultaneously. When compared with static controls in the presence or absence of a saturated soluble environment (i.e., mESC-conditioned medium), we ascertained that flow-induced shear stress specifically up-regulates the epiblast marker Fgf5. Epiblast-state transition in mESCs involves heparan sulfate proteoglycans (HSPGs), which have also been shown to transduce shear stress in endothelial cells. By disrupting (with sulfation inhibitors and heparinase) and partially reconstituting (with heparin) HSPG function, we show that mESCs also mechanically sense shear stress via HSPGs to modulate Fgf5 expression. This study demonstrates that self-renewing mESCs possess the molecular machinery to sense shear stress and provides quantitative shear application benchmarks for future scalable stem cell culture systems.—Toh, Y.-C., Voldman, J. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. PMID:21183594

  19. Massive aggrecan and versican accumulation in thoracic aortic aneurysm and dissection

    PubMed Central

    Cikach, Frank S.; Koch, Christopher D.; Mead, Timothy J.; Galatioto, Josephine; Willard, Belinda B.; Emerton, Kelly B.; Eagleton, Matthew J.; Blackstone, Eugene H.; Ramirez, Francesco; Roselli, Eric E.; Apte, Suneel S.

    2018-01-01

    Proteoglycan accumulation is a hallmark of medial degeneration in thoracic aortic aneurysm and dissection (TAAD). Here, we defined the aortic proteoglycanome using mass spectrometry, and based on the findings, investigated the large aggregating proteoglycans aggrecan and versican in human ascending TAAD and a mouse model of severe Marfan syndrome. The aortic proteoglycanome comprises 20 proteoglycans including aggrecan and versican. Antibodies against these proteoglycans intensely stained medial degeneration lesions in TAAD, contrasting with modest intralamellar staining in controls. Aggrecan, but not versican, was increased in longitudinal analysis of Fbn1mgR/mgR aortas. TAAD and Fbn1mgR/mgR aortas had increased aggrecan and versican mRNAs, and reduced expression of a key proteoglycanase gene, ADAMTS5, was seen in TAAD. Fbn1mgR/mgR mice with ascending aortic dissection and/or rupture had dramatically increased aggrecan staining compared with mice without these complications. Thus, aggrecan and versican accumulation in ascending TAAD occurs via increased synthesis and/or reduced proteolytic turnover, and correlates with aortic dissection/rupture in Fbn1mgR/mgR mice. Tissue swelling imposed by aggrecan and versican is proposed to be profoundly deleterious to aortic wall mechanics and smooth muscle cell homeostasis, predisposing to type-A dissections. These proteoglycans provide potential biomarkers for refined risk stratification and timing of elective aortic aneurysm repair. PMID:29515038

  20. Massive aggrecan and versican accumulation in thoracic aortic aneurysm and dissection.

    PubMed

    Cikach, Frank S; Koch, Christopher D; Mead, Timothy J; Galatioto, Josephine; Willard, Belinda B; Emerton, Kelly B; Eagleton, Matthew J; Blackstone, Eugene H; Ramirez, Francesco; Roselli, Eric E; Apte, Suneel S

    2018-03-08

    Proteoglycan accumulation is a hallmark of medial degeneration in thoracic aortic aneurysm and dissection (TAAD). Here, we defined the aortic proteoglycanome using mass spectrometry, and based on the findings, investigated the large aggregating proteoglycans aggrecan and versican in human ascending TAAD and a mouse model of severe Marfan syndrome. The aortic proteoglycanome comprises 20 proteoglycans including aggrecan and versican. Antibodies against these proteoglycans intensely stained medial degeneration lesions in TAAD, contrasting with modest intralamellar staining in controls. Aggrecan, but not versican, was increased in longitudinal analysis of Fbn1mgR/mgR aortas. TAAD and Fbn1mgR/mgR aortas had increased aggrecan and versican mRNAs, and reduced expression of a key proteoglycanase gene, ADAMTS5, was seen in TAAD. Fbn1mgR/mgR mice with ascending aortic dissection and/or rupture had dramatically increased aggrecan staining compared with mice without these complications. Thus, aggrecan and versican accumulation in ascending TAAD occurs via increased synthesis and/or reduced proteolytic turnover, and correlates with aortic dissection/rupture in Fbn1mgR/mgR mice. Tissue swelling imposed by aggrecan and versican is proposed to be profoundly deleterious to aortic wall mechanics and smooth muscle cell homeostasis, predisposing to type-A dissections. These proteoglycans provide potential biomarkers for refined risk stratification and timing of elective aortic aneurysm repair.

  1. Lidocaine cytotoxicity to the bovine articular chondrocytes in vitro: changes in cell viability and proteoglycan metabolism.

    PubMed

    Miyazaki, Tsuyoshi; Kobayashi, Shigeru; Takeno, Kenichi; Yayama, Takafumi; Meir, Adam; Baba, Hisatoshi

    2011-07-01

    A lot of studies on the effect of intra-articular injections are clinical, but many questions on the effect of lidocaine to articular chondrocytes remain unanswered. This study was performed to determine the effects of varying concentrations and exposure times of lidocaine on the viability and proteoglycan metabolism of chondrocytes in vitro. Cartilage was obtained from metatarsal joints of adult bovines. Chondrocytes in alginate beads were cultured in medium containing 6% fetal calf serum at 370 mOsmol at cell densities of 4 million cells/ml. They were then cultured for 24 h under 21% oxygen with 0.125, 0.25, 0.5, and 1% lidocaine and without lidocaine as control. The cell viability profile across intact beads was determined by manual counting using fluorescent probes and transmission electron microscopy. Lactate production was measured enzymatically as a marker of energy metabolism. Glycosaminoglycan (GAG) accumulation was measured using a modified dimethylmethylene blue assay. Cell viability decreased in a time- and dose-dependent manner in the concentration range of 0.125-1.0% lidocaine under the confocal microscope. Under the electron microscope, apoptosis increased as the concentration of lidocaine increased. GAG accumulation/tissue volume decreases as the concentration of lidocaine increased. However, GAG produced per million cells and the rate of lactate production per live cell were significantly higher for cells cultured at 0.5 and 1% lidocaine than the control group. Bovine chondrocytes cultured in alginate beads under high oxygen pressure are negatively influenced by increasing concentrations of lidocaine. Cell viability and proteoglycan production (GAG accumulation/tissue volume) decreased as the concentration of lidocaine increased. These data suggest caution in prolonged exposure of cartilage to high concentration lidocaine. Repeated joint injection of lidocaine potentially worsens osteoarthrosis by accelerating cartilage degradation.

  2. Topographical investigation of changes in depth-wise proteoglycan distribution in rabbit femoral articular cartilage at 4 weeks after transection of the anterior cruciate ligament.

    PubMed

    Arokoski, Mikko E A; Tiitu, Virpi; Jurvelin, Jukka S; Korhonen, Rami K; Fick, James M

    2015-09-01

    In this study, we explore topographical changes in proteoglycan distribution from femoral condylar cartilage in early osteoarthritis, acquired from both the lateral and medial condyles of anterior cruciate ligament transected (ACLT) and contralateral (CNTRL) rabbit knee joints, at 4 weeks post operation. Four sites across the cartilage surface in a parasagittal plane were defined across tissue sections taken from femoral condyles, and proteoglycan (PG) content was quantified using digital densitometry. The greatest depth-wise change in PG content due to an ACLT (compared to the CNTRL group) was observed anteriorly (site C) from the most weight-bearing location within the lateral compartment. In the medial compartment, the greatest change was observed in the most weight-bearing location (site B). The depth-wise changes in PG content were observed up to 48% and 28% depth from the tissue surface at these aforementioned sites, respectively (p < 0.05). The smallest depth-wise change in PG content was observed posteriorly (site A) from the most weight-bearing location within both femoral condyles (up to 20% and up to 5% depth from the tissue surface at lateral and medial compartments, respectively). This study gives further insight into how early cartilage deterioration progresses across the parasagittal plane of the femoral condyle. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Podocalyxin as a major pluripotent marker and novel keratan sulfate proteoglycan in human embryonic and induced pluripotent stem cells.

    PubMed

    Toyoda, Hidenao; Nagai, Yuko; Kojima, Aya; Kinoshita-Toyoda, Akiko

    2017-04-01

    Podocalyxin (PC) was first identified as a heavily sialylated transmembrane protein of glomerular podocytes. Recent studies suggest that PC is a remarkable glycoconjugate that acts as a universal glyco-carrier. The glycoforms of PC are responsible for multiple functions in normal tissue, human cancer cells, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). PC is employed as a major pluripotent marker of hESCs and hiPSCs. Among the general antibodies for human PC, TRA-1-60 and TRA-1-81 recognize the keratan sulfate (KS)-related structures. Therefore, It is worthwhile to summarize the outstanding chemical characteristic of PC, including the KS-related structures. Here, we review the glycoforms of PC and discuss the potential of PC as a novel KS proteoglycan in undifferentiated hESCs and hiPSCs.

  4. Identification of cell surface glycoprotein markers for glioblastoma-derived stem-like cells using a lectin microarray and LC-MS/MS approach

    PubMed Central

    He, Jintang; Liu, Yashu; Xie, Xiaolei; Zhu, Thant; Soules, Mary; DiMeco, Francesco; Vescovi, Angelo L.; Fan, Xing; Lubman, David M.

    2010-01-01

    Despite progress in the treatment of glioblastoma, more than 95% of patients suffering from this disease still die within two years. Recent findings support the belief that cancer stem-like cells are responsible for tumor formation and ongoing growth. Here a method combining lectin microarray and LC-MS/MS was used to discover the cell surface glycoprotein markers of a glioblastoma-derived stem-like cell line. Lectin microarray analysis of cell surface glycans showed that two galactose-specific lectins Trichosanthes kirilowii agglutinin (TKA) and Peanut agglutinin (PNA) could distinguish the stem-like glioblastoma neurosphere culture from a traditional adherent glioblastoma cell line. Agarose-bound TKA and PNA were used to capture the glycoproteins from the two cell cultures, which were analyzed by LC-MS/MS. The glycoproteins were quantified by spectral counting, resulting in the identification of 12 and 11 potential glycoprotein markers from the TKA and PNA captured fractions respectively. Almost all of these proteins were membrane proteins. Differential expression was verified by Western blotting analysis of 6 interesting proteins, including the up-regulated Receptor-type tyrosine-protein phosphatase zeta, Tenascin-C, Chondroitin sulfate proteoglycan NG2, Podocalyxin-like protein 1 and CD90, and the down-regulated CD44. An improved understanding of these proteins may be important for earlier diagnosis and better therapeutic targeting of glioblastoma. PMID:20235609

  5. Extracellular matrix structure.

    PubMed

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Extracellular Matrix and Redox Signaling in Cellular Responses to Stress.

    PubMed

    Roberts, David D

    2017-10-20

    Cells in multicellular organisms communicate extensively with neighboring cells and distant organs using a variety of secreted proteins and small molecules. Cells also reside in a structural extracellular matrix (ECM), and changes in its composition, mechanical properties, and post-translational modifications provide additional layers of communication. This Forum addresses emerging mechanisms by which redox signaling controls and is controlled by changes in the ECM, focusing on the roles of matricellular proteins. These proteins engage specific cell surface signaling receptors, integrins, and proteoglycans to regulate the biosynthesis and catabolism of redox signaling molecules and the activation of their signal transducers. These signaling pathways, in turn, regulate the composition of ECM and its function. Covalent post-translational modifications of ECM by redox molecules further regulate its structure and function. Recent studies of acute injuries and chronic disease have identified important pathophysiological roles for this cross-talk and new therapeutic opportunities. Antioxid. Redox Signal. 27, 771-773.

  7. Response of human corneal fibroblasts on silk film surface patterns.

    PubMed

    Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L

    2010-06-11

    Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.

  8. α3 Chains of type V collagen regulate breast tumour growth via glypican-1

    PubMed Central

    Huang, Guorui; Ge, Gaoxiang; Izzi, Valerio; Greenspan, Daniel S.

    2017-01-01

    Pericellular α3(V) collagen can affect the functioning of cells, such as adipocytes and pancreatic β cells. Here we show that α3(V) chains are an abundant product of normal mammary gland basal cells, and that α3(V) ablation in a mouse mammary tumour model inhibits mammary tumour progression by reducing the proliferative potential of tumour cells. These effects are shown to be primarily cell autonomous, from loss of α3(V) chains normally produced by tumour cells, in which they affect growth by enhancing the ability of cell surface proteoglycan glypican-1 to act as a co-receptor for FGF2. Thus, a mechanism is presented for microenvironmental influence on tumour growth. α3(V) chains are produced in both basal-like and luminal human breast tumours, and its expression levels are tightly coupled with those of glypican-1 across breast cancer types. Evidence indicates α3(V) chains as potential targets for inhibiting tumour growth and as markers of oncogenic transformation. PMID:28102194

  9. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering.

    PubMed

    Gil, Eun Seok; Mandal, Biman B; Park, Sang-Hyug; Marchant, Jeffrey K; Omenetto, Fiorenzo G; Kaplan, David L

    2010-12-01

    RGD-coupled silk protein-biomaterial lamellar systems were prepared and studied with human cornea fibroblasts (hCFs) to match functional requirements. A strategy for corneal tissue engineering was pursued to replicate the structural hierarchy of human corneal stroma within thin stacks of lamellae-like tissues, in this case constructed from scaffolds constructed with RGD-coupled, patterned, porous, mechanically robust and transparent silk films. The influence of RGD-coupling on the orientation, proliferation, ECM organization, and gene expression of hCFs was assessed. RGD surface modification enhanced cell attachment, proliferation, alignment and expression of both collagens (type I and V) and proteoglycans (decorin and biglycan). Confocal and histological images of the lamellar systems revealed that the bio-functionalized silk human cornea 3D constructs exhibited integrated corneal stroma tissue with helicoidal multi-lamellar alignment of collagen-rich and proteoglycan-rich extracellular matrix, with transparency of the construct. This biomimetic approach to replicate corneal stromal tissue structural hierarchy and architecture demonstrates a useful strategy for engineering human cornea. Further, this approach can be exploited for other tissue systems due to the pervasive nature of such helicoids in most human tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. The role of heparins and nano-heparins as therapeutic tool in breast cancer.

    PubMed

    Afratis, Nikos A; Karamanou, Konstantina; Piperigkou, Zoi; Vynios, Demitrios H; Theocharis, Achilleas D

    2017-06-01

    Glycosaminoglycans are integral part of the dynamic extracellular matrix (ECM) network that control crucial biochemical and biomechanical signals required for tissue morphogenesis, differentiation, homeostasis and cancer development. Breast cancer cells communicate with stromal ones to modulate ECM mainly through release of soluble effectors during cancer progression. The intracellular cross-talk between cell surface receptors and estrogen receptors is important for the regulation of breast cancer cell properties and production of ECM molecules. In turn, reorganized ECM-cell surface interface modulates signaling cascades, which regulate almost all aspects of breast cell behavior. Heparan sulfate chains present on cell surface and matrix proteoglycans are involved in regulation of breast cancer functions since they are capable of binding numerous matrix molecules, growth factors and inflammatory mediators thus modulating their signaling. In addition to its anticoagulant activity, there is accumulating evidence highlighting various anticancer activities of heparin and nano-heparin derivatives in numerous types of cancer. Importantly, heparin derivatives significantly reduce breast cancer cell proliferation and metastasis in vitro and in vivo models as well as regulates the expression profile of major ECM macromolecules, providing strong evidence for therapeutic targeting. Nano-formulations of the glycosaminoglycan heparin are possibly novel tools for targeting tumor microenvironment. In this review, the role of heparan sulfate/heparin and its nano-formulations in breast cancer biology are presented and discussed in terms of future pharmacological targeting.

  11. Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain.

    PubMed

    Merle, B; Durussel, L; Delmas, P D; Clézardin, P

    1999-12-01

    Several studies overwhelmingly support the notion that decorin (DCN) is involved in matrix assembly, and in the control of cell adhesion and proliferation. However, nothing is known about the role of DCN during cell migration. Cell migration is a tightly regulated process which requires both adhesion (at the leading edge of the cell) and de-adhesion (at the trailing edge of the cell) from the substratum. We have determined in this study the effect of DCN on MG-63 osteosarcoma cell migration and have analyzed whether its effect is mediated by the protein core and/or the glycosaminoglycan side chain. DCN impeded the migration-promoting effect of matrix molecules (fibronectin, collagen type I) known to interact with the proteoglycan. Conversely, DCN did not counteract the migration-promoting effect of fibrinogen lacking proteoglycan affinity. DCN bearing dermatan-sulfate chains (i.e., skin and cartilage DCN) was about 20-fold more effective in inhibiting cell migration than DCN bearing chondroitin-sulfate chains (i.e., bone DCN). In addition, chondroitinase AC-treatment of cartilage DCN (which specifically removes chondroitin-sulfate chains) did not attenuate the inhibitory effect of this proteoglycan, while cartilage DCN deprived of both chondroitin- and dermatan-sulfate chains failed to alter cell migration promoted by either fibronectin or its heparin- and cell-binding domains. These data assert that the dermatan-sulfate chains of DCN are responsible for a negative influence on cell migration. However, isolated glycosaminoglycans failed to alter cell migration promoted by fibronectin, indicating that strongly negatively charged glycosaminoglycans alone cannot account for the impaired cell motility seen with DCN. Overall, these results show that the inhibitory action of DCN is dependent of substratum binding, is differentially mediated by its glycosaminoglycan side chains (chondroitin-sulfate vs. dermatan-sulfate chains), and is independent of a steric hindrance effect exerted by its glycosaminoglycan side chains. Copyright 1999 Wiley-Liss, Inc.

  12. Bone Proteoglycan Changes During Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Uzawa, K.; Pornprasertsuk, S.; Arnaud, S.; Grindeland, R.; Grzesik, W.

    1999-01-01

    Skeletal adaptability to mechanical loads is well known since the last century. Disuse osteopenia due to the microgravity environment is one of the major concerns for space travelers. Several studies have indicated that a retardation of the mineralization process and a delay in matrix maturation occur during the space flight. Mineralizing fibrillar type I collagen possesses distinct cross-linking chemistries and their dynamic changes during mineralization correlate well with its function as a mineral organizer. Our previous studies suggested that a certain group of matrix proteoglycans in bone play an inhibitory role in the mineralization process through their interaction with collagen. Based on these studies, we hypothesized that the altered mineralization during spaceflight is due in part to changes in matrix components secreted by cells in response to microgravity. In this study, we employed hindlimb elevation (tail suspension) rat model to study the effects of skeletal unloading on matrix proteoglycans in bone.

  13. RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins.

    PubMed

    Piacentino, Michael L; Zuch, Daniel T; Fishman, Julie; Rose, Sviatlana; Speranza, Emily E; Li, Christy; Yu, Jia; Chung, Oliver; Ramachandran, Janani; Ferrell, Patrick; Patel, Vijeta; Reyna, Arlene; Hameeduddin, Hajerah; Chaves, James; Hewitt, Finnegan B; Bardot, Evan; Lee, David; Core, Amanda B; Hogan, John D; Keenan, Jessica L; Luo, Lingqi; Coulombe-Huntington, Jasmin; Blute, Todd A; Oleinik, Ekaterina; Ibn-Salem, Jonas; Poustka, Albert J; Bradham, Cynthia A

    2016-02-15

    The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning. © 2016. Published by The Company of Biologists Ltd.

  14. In Vitro Analysis of Cartilage Regeneration Using a Collagen Type I Hydrogel (CaReS) in the Bovine Cartilage Punch Model.

    PubMed

    Horbert, Victoria; Xin, Long; Foehr, Peter; Brinkmann, Olaf; Bungartz, Matthias; Burgkart, Rainer H; Graeve, T; Kinne, Raimund W

    2018-02-01

    Objective Limitations of matrix-assisted autologous chondrocyte implantation to regenerate functional hyaline cartilage demand a better understanding of the underlying cellular/molecular processes. Thus, the regenerative capacity of a clinically approved hydrogel collagen type I implant was tested in a standardized bovine cartilage punch model. Methods Cartilage rings (outer diameter 6 mm; inner defect diameter 2 mm) were prepared from the bovine trochlear groove. Collagen implants (± bovine chondrocytes) were placed inside the cartilage rings and cultured up to 12 weeks. Cartilage-implant constructs were analyzed by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, RNA expression, and implant push-out force. Results Cartilage-implant constructs revealed vital morphology, preserved matrix integrity throughout culture, progressive, but slight proteoglycan loss from the "host" cartilage or its surface and decreasing proteoglycan release into the culture supernatant. In contrast, collagen 2 and 1 content of cartilage and cartilage-implant interface was approximately constant over time. Cell-free and cell-loaded implants showed (1) cell migration onto/into the implant, (2) progressive deposition of aggrecan and constant levels of collagens 1 and 2, (3) progressively increased mRNA levels for aggrecan and collagen 2, and (4) significantly augmented push-out forces over time. Cell-loaded implants displayed a significantly earlier and more long-lasting deposition of aggrecan, as well as tendentially higher push-out forces. Conclusion Preserved tissue integrity and progressively increasing cartilage differentiation and push-out forces for up to 12 weeks of cultivation suggest initial cartilage regeneration and lateral bonding of the implant in this in vitro model for cartilage replacement materials.

  15. The initial repair response of articular cartilage after mechanically induced damage.

    PubMed

    van Haaften, Eline E; Ito, Keita; van Donkelaar, Corrinus C

    2017-06-01

    The regenerative potential of articular cartilage (AC) defects is limited and depends on defect size, biomechanical conditions, and age. Early events after overloading might be predictive for cartilage degeneration in the long term. Therefore, the present aim is to investigate the temporal response of cartilage to overloading at cell, matrix, and tissue level during the first period after mechanical overloading. In the present study, the effect of high loading (∼8 MPa) at a high rate (∼14 MPa/s) at day 0 during a 9 day period on collagen damage, gene expression, cell death, and biochemical composition in AC was investigated. A model system was developed which enabled culturing osteochondral explants after loading. Proteoglycan content was repeatedly monitored over time using μCT, whereas other evaluations required destructive measurements. Changes in matrix related gene expressions indicated a degenerative response during the first 6 h after loading. After 24 h, this was restored and data suggested an initial repair response. Cell death and microscopic damage increased after 24 h following loading. These degradative changes were not restored within the 9 day culture period, and were accompanied by a slight loss of proteoglycans at the articular surface that extended into the middle zones. The combined findings indicate that high magnitude loading of articular cartilage at a high rate induces an initial damage that later initiates a healing response that can probably not be retained due to loss of cell viability. Consequently, the matrix cannot be restored in the short term. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1265-1273, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Cell-Surface Bound Nonreceptors and Signaling Morphogen Gradients

    PubMed Central

    Wan, Frederic Y.M.

    2013-01-01

    The patterning of many developing tissues is orchestrated by gradients of signaling morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. Such interactions are thought to make gradients robust, i.e. insensitive to change in the face of genetic or environmental perturbations. But just how this is accomplished is a major unanswered question. Recently extensive numerical simulations suggest that robustness of signaling gradients can be achieved through morphogen degradation mediated by cell surface bound non-signaling receptor molecules (or nonreceptors for short) such as heparan sulfate proteoglycans (HSPG). The present paper provides a mathematical validation of the results from the aforementioned numerical experiments. Extension of a basic extracellular model to include reversible binding with nonreceptors synthesized at a prescribed rate and mediated morphogen degradation shows that the signaling gradient diminishes with increasing concentration of cell-surface nonreceptors. Perturbation and asymptotic solutions obtained for i) low (receptor and nonreceptor) occupancy, and ii) high nonreceptor concntration permit more explicit delineation of the effects of nonreceptors on signaling gradients and facilitate the identification of scenarios in which the presence of nonreceptors may or may not be effective in promoting robustness. PMID:25232201

  17. The agmatine-containing poly(amidoamine) polymer AGMA1 binds cell surface heparan sulfates and prevents attachment of mucosal human papillomaviruses.

    PubMed

    Cagno, Valeria; Donalisio, Manuela; Bugatti, Antonella; Civra, Andrea; Cavalli, Roberta; Ranucci, Elisabetta; Ferruti, Paolo; Rusnati, Marco; Lembo, David

    2015-09-01

    The agmatine-containing poly(amidoamine) polymer AGMA1 was recently shown to inhibit the infectivity of several viruses, including human papillomavirus 16 (HPV-16), that exploit cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The aim of this work was to assess the antiviral activity of AGMA1 and its spectrum of activity against a panel of low-risk and high-risk HPVs and to elucidate its mechanism of action. AGMA1 was found to be a potent inhibitor of mucosal HPV types (i.e., types 16, 31, 45, and 6) in pseudovirus-based neutralization assays. The 50% inhibitory concentration was between 0.34 μg/ml and 0.73 μg/ml, and no evidence of cytotoxicity was observed. AGMA1 interacted with immobilized heparin and with cellular heparan sulfates, exerting its antiviral action by preventing virus attachment to the cell surface. The findings from this study indicate that AGMA1 is a leading candidate compound for further development as an active ingredient of a topical microbicide against HPV and other sexually transmitted viral infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model.

    PubMed

    Elder, Steven H; Cooley, Avery J; Borazjani, Ali; Sowell, Brittany L; To, Harrison; Tran, Scott C

    2009-10-01

    A scaffoldless or self-assembly approach to cartilage tissue engineering has been used to produce hyaline cartilage from bone marrow-derived mesenchymal stem cells (bMSCs), but the mechanical properties of such engineered cartilage and the effects the transforming growth factor (TGF) isoform have not been fully explored. This study employs a cell culture insert model to produce tissue-engineered cartilage using bMSCs. Neonatal pig bMSCs were isolated by plastic adherence and expanded in monolayer before being seeded into porous transwell inserts and cultured for 4 or 8 weeks in defined chondrogenic media containing either TGF-beta1 or TGF-beta3. Following biomechanical evaluation in confined compression, colorimetric dimethyl methylene blue and Sircol dye-binding assays were used to analyze glycosaminoglycan (GAG) and collagen contents, respectively. Histological sections were stained with toluidine blue for proteoglycans and with picrosirius red to reveal collagen orientation, and immunostained for detection of collagen types I and II. Neocartilage increased in thickness, collagen, and GAG content between 4 and 8 weeks. Proteoglycan concentration increased with depth from the top surface. The tissue contained much more collagen type II than type I, and there was a consistent pattern of collagen alignment. TGF-beta1-treated and TGF-beta3-treated constructs were similar at 4 weeks, but 8-week TGF-beta1 constructs had a higher aggregate modulus and GAG content compared to TGF-beta3. These results demonstrate that bMSCs can generate functional hyaline-like cartilage through a self-assembling process.

  19. Lipoprotein lipase-dependent binding and uptake of low density lipoproteins by THP-1 monocytes and macrophages: possible involvement of lipid rafts.

    PubMed

    Makoveichuk, Elena; Castel, Susanna; Vilaró, Senen; Olivecrona, Gunilla

    2004-11-08

    Lipoprotein lipase (LPL) is produced by cells in the artery wall and can mediate binding of lipoproteins to cell surface heparan sulfate proteoglycans (HSPG), resulting in endocytosis (the bridging function). Active, dimeric LPL may dissociate to inactive monomers, the main form found in plasma. We have studied binding/internalization of human low density lipoprotein (LDL), mediated by bovine LPL, using THP-1 monocytes and macrophages. Uptake of (125)I-LDL was similar in monocytes and macrophages and was not affected by the LDL-receptor family antagonist receptor-associated protein (RAP) or by the phagocytosis inhibitor cytochalasin D. In contrast, uptake depended on HSPG and on membrane cholesterol. Incubation in the presence of dexamethasone increased the endogenous production of LPL by the cells and also increased LPL-mediated binding of LDL to the cell surfaces. Monomeric LPL was bound to the cells mostly in a heparin-resistant fashion. We conclude that the uptake of LDL mediated by LPL dimers is receptor-independent and involves cholesterol-enriched membrane areas (lipid rafts). Dimeric and monomeric LPL differ in their ability to mediate binding/uptake of LDL, probably due to different mechanisms for binding/internalization.

  20. DcR3 binds to ovarian cancer via heparan sulfate proteoglycans and modulates tumor cells response to platinum with corresponding alteration in the expression of BRCA1

    PubMed Central

    2012-01-01

    Background Overcoming platinum resistance is a major obstacle in the treatment of Epithelial Ovarian Cancer (EOC). In our previous work Decoy Receptor 3 (DcR3) was found to be related to platinum resistance. The major objective of this work was to define the cellular interaction of DcR3 with EOC and to explore its effects on platinum responsiveness. Methods We studied cell lines and primary cultures for the expression of and the cells ability to bind DcR3. Cells were cultured with DcR3 and then exposed to platinum. Cell viability was determined by MTT assay. Finally, the cells molecular response to DcR3 was studied using real time RT-PCR based differential expression arrays, standard RT-PCR, and Western blot. Results High DcR3 in the peritoneal cavity of women with EOC is associated with significantly shorter time to first recurrence after platinum based therapy (p = 0.02). None-malignant cells contribute DcR3 in the peritoneal cavity. The cell lines studied do not secrete DcR3; however they all bind exogenous DcR3 to their surface implying that they can be effected by DcR3 from other sources. DcR3s protein binding partners are minimally expressed or negative, however, all cells expressed the DcR3 binding Heparan Sulfate Proteoglycans (HSPGs) Syndecans-2, and CD44v3. DcR3 binding was inhibited by heparin and heparinase. After DcR3 exposure both SKOV-3 and OVCAR-3 became more resistant to platinum with 15% more cells surviving at high doses. On the contrary CaOV3 became more sensitive to platinum with 20–25% more cell death. PCR array analysis showed increase expression of BRCA1 mRNA in SKOV-3 and OVCAR-3 and decreased BRCA1 expression in CaOV-3 after exposure to DcR3. This was confirmed by gene specific real time PCR and Western blot analysis. Conclusions Non-malignant cells contribute to the high levels of DcR3 in ovarian cancer. DcR3 binds readily to EOC cells via HSPGs and alter their responsiveness to platinum chemotherapy. The paradoxical responses seen were related to the expression pattern of HSPGs available on the cells surface to interact with. Although the mechanism behind this is not completely known alterations in DNA repair pathways including the expression of BRCA1 appear to be involved. PMID:22583667

  1. Proteoglycans in Leiomyoma and Normal Myometrium

    PubMed Central

    Barker, Nichole M.; Carrino, David A.; Caplan, Arnold I.; Hurd, William W.; Liu, James H.; Tan, Huiqing; Mesiano, Sam

    2015-01-01

    Uterine leiomyoma are a common benign pelvic tumors composed of modified smooth muscle cells and a large amount of extracellular matrix (ECM). The proteoglycan composition of the leiomyoma ECM is thought to affect pathophysiology of the disease. To test this hypothesis, we examined the abundance (by immunoblotting) and expression (by quantitative real-time polymerase chain reaction) of the proteoglycans biglycan, decorin, and versican in leiomyoma and normal myometrium and determined whether expression is affected by steroid hormones and menstrual phase. Leiomyoma and normal myometrium were collected from women (n = 17) undergoing hysterectomy or myomectomy. In vitro studies were performed on immortalized leiomyoma (UtLM) and normal myometrial (hTERT-HM) cells with and without exposure to estradiol and progesterone. In leiomyoma tissue, abundance of decorin messenger RNA (mRNA) and protein were 2.6-fold and 1.4-fold lower, respectively, compared with normal myometrium. Abundance of versican mRNA was not different between matched samples, whereas versican protein was increased 1.8-fold in leiomyoma compared with myometrium. Decorin mRNA was 2.4-fold lower in secretory phase leiomyoma compared with proliferative phase tissue. In UtLM cells, progesterone decreased the abundance of decorin mRNA by 1.3-fold. Lower decorin expression in leiomyoma compared with myometrium may contribute to disease growth and progression. As decorin inhibits the activity of specific growth factors, its reduced level in the leiomyoma cell microenvironment may promote cell proliferation and ECM deposition. Our data suggest that decorin expression in leiomyoma is inhibited by progesterone, which may be a mechanism by which the ovarian steroids affect leiomyoma growth and disease progression. PMID:26423601

  2. Human mast cell neutral proteases generate modified LDL particles with increased proteoglycan binding.

    PubMed

    Maaninka, Katariina; Nguyen, Su Duy; Mäyränpää, Mikko I; Plihtari, Riia; Rajamäki, Kristiina; Lindsberg, Perttu J; Kovanen, Petri T; Öörni, Katariina

    2018-04-13

    Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. Mature human MCs were differentiated from human peripheral blood-derived CD34 + progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Regulation and function of endothelial glycocalyx layer in vascular diseases.

    PubMed

    Sieve, Irina; Münster-Kühnel, Anja K; Hilfiker-Kleiner, Denise

    2018-01-01

    In the vascular system, the endothelial surface layer (ESL) as the inner surface of blood vessels affects mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. It creates barriers between endothelial cells and blood and neighbouring cells. The glycocalyx, composed of glycoconjugates and proteoglycans, is an integral component of the ESL and a key element in inter- and intracellular communication and tissue homeostasis. In pathophysiological conditions (atherosclerosis, infection, ischemia/reperfusion injury, diabetes, trauma and acute lung injury) glycocalyx-degrading factors, i.e. reactive oxygen and nitrogen species, matrix metalloproteinases, heparanase and sialidases, damage the ESL, thereby impairing endothelial functions. This leads to increased capillary permeability, leucocyte-endothelium interactions, thrombosis and vascular inflammation, the latter further driving glycocalyx destruction. The present review highlights current knowledge on the vasculoprotective role of the ESL, with specific emphasis on its remodelling in inflammatory vascular diseases and discusses its potential as a novel therapeutic target to treat vascular pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Chondroitin Sulfate Is Indispensable for Pluripotency and Differentiation of Mouse Embryonic Stem Cells

    NASA Astrophysics Data System (ADS)

    Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi

    2014-01-01

    Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin.

  5. Engineering Cartilage

    MedlinePlus

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  6. Cancer Cell Glycocalyx Mediates Mechanostransduction and Flow-Regulated Invasion

    PubMed Central

    Qazi, Henry; Palomino, Rocio; Shi, Zhong-Dong; Munn, Lance L.; Tarbell, John M.

    2014-01-01

    Mammalian cells are covered by a surface proteoglycan (glycocalyx) layer, and it is known that blood vessel-lining endothelial cells use the glycocalyx to sense and transduce the shearing forces of blood flow into intracellular signals. Tumor cells in vivo are exposed to forces from interstitial fluid flow that may affect metastatic potential but are not reproduced by most in vitro cell motility assays. We hypothesized that glycocalyx-mediated mechanotransduction of interstitial flow shear stress is an un-recognized factor that can significantly enhance metastatic cell motility and play a role in augmentation of invasion. Involvement of MMP levels, cell adhesion molecules (CD44, α3 integrin), and glycocalyx components (heparan sulfate and hyaluronan) were investigated in a cell/collagen gel suspension model designed to mimic the interstitial flow microenvironment. Physiologic levels of flow upregulated MMP levels and enhanced the motility of metastatic cells. Blocking the flow-enhanced expression of MMP actvity or adhesion molecules (CD44 and integrins) resulted in blocking the flow-enhanced migratory activity. The presence of a glycocalyx-like layer was verified around tumor cells, and the degradation of this layer by hyaluronidase and heparinase blocked the flow-regulated invasion. This study shows for the first time that interstitial flow enhancement of metastatic cell motility can be mediated by the cell surface glycocalyx – a potential target for therapeutics. PMID:24077103

  7. Measuring shear force transmission across a biomimetic glycocalyx

    NASA Astrophysics Data System (ADS)

    Bray, Isabel; Young, Dylan; Scrimgeour, Jan

    Human blood vessels are lined with a low-density polymer brush known as the glycocalyx. This brush plays an active role in defining the mechanical and biochemical environment of the endothelial cell in the blood vessel wall. In addition, it is involved in the detection of mechanical stimuli, such as the shear stress from blood flowing in the vessel. In this work, we construct a biomimetic version of the glycocalyx on top of a soft deformable substrate in order to measure its ability to modulate the effects of shear stress at the endothelial cell surface. The soft substrate is stamped on to a glass substrate and then enclosed inside a microfluidic device that generates a controlled flow over the substrate. The hydrogel chemistry has been optimized so that it reliably stamps into a defined shape and has consistent mechanical properties. Fluorescent microbeads embedded in the gel allow measurement of the surface deformation, and subsequently, calculation of the shear force at the surface of the soft substrate. We investigate the effect of the major structural elements of the glycocalyx, hyaluronic acid and charged proteoglycans, on the magnitude of the shear force transmitted to the surface of the hydrogel.

  8. Combinatorial Discovery of Defined Substrates That Promote a Stem Cell State in Malignant Melanoma

    PubMed Central

    2017-01-01

    The tumor microenvironment is implicated in orchestrating cancer cell transformation and metastasis. However, specific cell–ligand interactions between cancer cells and the extracellular matrix are difficult to decipher due to a dynamic and multivariate presentation of many signaling molecules. Here we report a versatile peptide microarray platform that is capable of screening for cancer cell phenotypic changes in response to ligand–receptor interactions. Using a screen of 78 peptide combinations derived from proteins present in the melanoma microenvironment, we identify a proteoglycan binding and bone morphogenic protein 7 (BMP7) derived sequence that selectively promotes the expression of several putative melanoma initiating cell markers. We characterize signaling associated with each of these peptides in the activation of melanoma pro-tumorigenic signaling and reveal a role for proteoglycan mediated adhesion and signaling through Smad 2/3. A defined substratum that controls the state of malignant melanoma may prove useful in spatially normalizing a heterogeneous population of tumor cells for discovery of therapeutics that target a specific state and for identifying new drug targets and reagents for intervention. PMID:28573199

  9. Primers of glycosaminoglycan biosynthesis from Peruvian rain forest plants.

    PubMed

    Taylor, W H; Sinha, A; Khan, I A; McDaniel, S T; Esko, J D

    1998-08-28

    We have developed a rapid, high throughput screening assay for compounds that alter the assembly of glycosaminoglycan chains in Chinese hamster ovary cells. The assay uses autoradiography to measure the binding of newly synthesized [35S]proteoglycans and [35S]glycosaminoglycans to a positively charged membrane. Screening over 1000 extracts from a random plant collection obtained from the Amazon rain forest yielded five plants that stimulated glycosaminoglycan assembly in both wild-type cells and a mutant cell line defective in xylosyltransferase (the first committed enzyme involved in glycosaminoglycan biosynthesis). Fractionation of an extract of Maieta guianensis by silica gel and reverse-phase chromatography yielded two pure compounds with stimulatory activity. Spectroscopic analysis by NMR and mass spectrometry revealed that the active principles were xylosides of dimethylated ellagic acid. One of the compounds also contained a galloyl group at C-3 of the xylose moiety. These findings suggest that plants and other natural products may be a source of agents that can potentially alter glycosaminoglycan and proteoglycan formation in animal cells.

  10. Roles of Heparan Sulfate Sulfation in Dentinogenesis*

    PubMed Central

    Hayano, Satoru; Kurosaka, Hiroshi; Yanagita, Takeshi; Kalus, Ina; Milz, Fabian; Ishihara, Yoshihito; Islam, Md. Nurul; Kawanabe, Noriaki; Saito, Masahiro; Kamioka, Hiroshi; Adachi, Taiji; Dierks, Thomas; Yamashiro, Takashi

    2012-01-01

    Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix. PMID:22351753

  11. Proteoglycans: road signs for neurite outgrowth.

    PubMed

    Beller, Justin A; Snow, Diane M

    2014-02-15

    Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central nervous system. In this review, the structures of proteoglycans and the evidence suggesting their involvement in the response following spinal cord injury are presented. The review further describes the methods routinely used to determine the effect proteoglycans have on neurite outgrowth. The effects of proteoglycans on neurite outgrowth are not completely understood as there is disagreement on what component of the molecule is interacting with growing neurites and this ambiguity is chronicled in an historical context. Finally, the most recent findings suggesting possible receptors, interactions, and sulfation patterns that may be important in eliciting the effect of proteoglycans on neurite outgrowth are discussed. A greater understanding of the proteoglycan-neurite interaction is necessary for successfully promoting regeneration in the injured central nervous system.

  12. Differential modulation of degradative and repair responses of interleukin-1-treated chondrocytes by platelet-derived growth factor.

    PubMed Central

    Harvey, A K; Stack, S T; Chandrasekhar, S

    1993-01-01

    Interleukin 1 (IL-1) plays a dual role in cartilage matrix degeneration by promoting extracellular proteinase action such as the matrix metalloproteinases (increased degradation) and by suppressing the synthesis of extracellular matrix molecules (inhibition of repair). Platelet-derived growth factor (PDGF) is a wound-healing hormone which is released along with IL-1 during the inflammatory response. Since previous studies have shown that PDGF enhances IL-1 alpha effects on metalloproteinase activity, in this report, we have examined whether PDGF modifies IL-1 beta effects on cartilage proteoglycan synthesis. Initially, we confirmed that rabbit articular chondrocytes treated with IL-1 beta + PDGF induced higher proteinase activity, in comparison with IL-1-treated cells. We further observed that the increased proteinase activity correlated with an increase in the synthesis of collagenase/stromelysin proteins and a corresponding increase in the steady-state mRNA levels for both the enzymes. Studies on IL-1 receptor expression suggested that PDGF caused an increase in IL-1 receptor expression which, by augmenting the IL-1 response, may have led to the increase in proteinase induction. Analysis of proteoglycan synthesis confirmed that IL-1 reduced the incorporation of sulphated proteoglycan, aggrecan, into the extracellular matrix of chondrocytes, whereas PDGF stimulated it. However, cells treated with IL-1 + PDGF synthesized normal levels of aggrecan. This is in contrast with cells treated with IL-1 + fibroblast growth factor, in which case only proteinase activity was potentiated. The results allow us to conclude that (a) the two effector functions that play a role in matrix remodelling, namely matrix lysis (proteinase induction) and matrix repair (proteoglycan synthesis), occur via distinct pathways and (b) PDGF may play a crucial role in cartilage repair by initially causing matrix degradation followed by promoting new matrix synthesis. Images Figure 1 Figure 2 Figure 5 Figure 6 PMID:8503839

  13. Reduced Sulfation of Chondroitin Sulfate but Not Heparan Sulfate in Kidneys of Diabetic db/db Mice

    PubMed Central

    Reine, Trine M.; Grøndahl, Frøy; Jenssen, Trond G.; Hadler-Olsen, Elin; Prydz, Kristian

    2013-01-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes. PMID:23757342

  14. Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.

    PubMed

    Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

    2013-08-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.

  15. Proteoglycans in Leiomyoma and Normal Myometrium: Abundance, Steroid Hormone Control, and Implications for Pathophysiology.

    PubMed

    Barker, Nichole M; Carrino, David A; Caplan, Arnold I; Hurd, William W; Liu, James H; Tan, Huiqing; Mesiano, Sam

    2016-03-01

    Uterine leiomyoma are a common benign pelvic tumors composed of modified smooth muscle cells and a large amount of extracellular matrix (ECM). The proteoglycan composition of the leiomyoma ECM is thought to affect pathophysiology of the disease. To test this hypothesis, we examined the abundance (by immunoblotting) and expression (by quantitative real-time polymerase chain reaction) of the proteoglycans biglycan, decorin, and versican in leiomyoma and normal myometrium and determined whether expression is affected by steroid hormones and menstrual phase. Leiomyoma and normal myometrium were collected from women (n = 17) undergoing hysterectomy or myomectomy. In vitro studies were performed on immortalized leiomyoma (UtLM) and normal myometrial (hTERT-HM) cells with and without exposure to estradiol and progesterone. In leiomyoma tissue, abundance of decorin messenger RNA (mRNA) and protein were 2.6-fold and 1.4-fold lower, respectively, compared with normal myometrium. Abundance of versican mRNA was not different between matched samples, whereas versican protein was increased 1.8-fold in leiomyoma compared with myometrium. Decorin mRNA was 2.4-fold lower in secretory phase leiomyoma compared with proliferative phase tissue. In UtLM cells, progesterone decreased the abundance of decorin mRNA by 1.3-fold. Lower decorin expression in leiomyoma compared with myometrium may contribute to disease growth and progression. As decorin inhibits the activity of specific growth factors, its reduced level in the leiomyoma cell microenvironment may promote cell proliferation and ECM deposition. Our data suggest that decorin expression in leiomyoma is inhibited by progesterone, which may be a mechanism by which the ovarian steroids affect leiomyoma growth and disease progression. © The Author(s) 2015.

  16. Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration

    PubMed Central

    Gerardy-Schahn, Rita; Hildebrandt, Herbert

    2014-01-01

    Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system. PMID:24692354

  17. HB-EGF function in cardiac valve development requires interaction with heparan sulfate proteoglycans.

    PubMed

    Iwamoto, Ryo; Mine, Naoki; Kawaguchi, Taichiro; Minami, Seigo; Saeki, Kazuko; Mekada, Eisuke

    2010-07-01

    HB-EGF, a member of the EGF family of growth factors, plays an important role in cardiac valve development by suppressing mesenchymal cell proliferation. Here, we show that HB-EGF must interact with heparan sulfate proteoglycans (HSPGs) to properly function in this process. In developing valves, HB-EGF is synthesized in endocardial cells but accumulates in the mesenchyme by interacting with HSPGs. Disrupting the interaction between HB-EGF and HSPGs in an ex vivo model of endocardial cushion explants resulted in increased mesenchymal cell proliferation. Moreover, homozygous knock-in mice (HB(Delta)(hb/)(Delta)(hb)) expressing a mutant HB-EGF that cannot bind to HSPGs developed enlarged cardiac valves with hyperproliferation of mesenchymal cells; this resulted in a phenotype that resembled that of Hbegf-null mice. Interestingly, although Hbegf-null mice had abnormal heart chambers and lung alveoli, HB(Delta)(hb/)(Delta)(hb) mice did not exhibit these defects. These results indicate that interactions with HSPGs are essential for the function of HB-EGF, especially in cardiac valve development, in which HB-EGF suppresses mesenchymal cell proliferation.

  18. Anatomic Mesenchymal Stem Cell-Based Engineered Cartilage Constructs for Biologic Total Joint Replacement

    PubMed Central

    Saxena, Vishal; Kim, Minwook; Keah, Niobra M.; Neuwirth, Alexander L.; Stoeckl, Brendan D.; Bickard, Kevin; Restle, David J.; Salowe, Rebecca; Wang, Margaret Ye; Steinberg, David R.

    2016-01-01

    Cartilage has a poor healing response, and few viable options exist for repair of extensive damage. Hyaluronic acid (HA) hydrogels seeded with mesenchymal stem cells (MSCs) polymerized through UV crosslinking can generate functional tissue, but this crosslinking is not compatible with indirect rapid prototyping utilizing opaque anatomic molds. Methacrylate-modified polymers can also be chemically crosslinked in a cytocompatible manner using ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED). The objectives of this study were to (1) compare APS/TEMED crosslinking with UV crosslinking in terms of functional maturation of MSC-seeded HA hydrogels; (2) generate an anatomic mold of a complex joint surface through rapid prototyping; and (3) grow anatomic MSC-seeded HA hydrogel constructs using this alternative crosslinking method. Juvenile bovine MSCs were suspended in methacrylated HA (MeHA) and crosslinked either through UV polymerization or chemically with APS/TEMED to generate cylindrical constructs. Minipig porcine femoral heads were imaged using microCT, and anatomic negative molds were generated by three-dimensional printing using fused deposition modeling. Molded HA constructs were produced using the APS/TEMED method. All constructs were cultured for up to 12 weeks in a chemically defined medium supplemented with TGF-β3 and characterized by mechanical testing, biochemical assays, and histologic analysis. Both UV- and APS/TEMED-polymerized constructs showed increasing mechanical properties and robust proteoglycan and collagen deposition over time. At 12 weeks, APS/TEMED-polymerized constructs had higher equilibrium and dynamic moduli than UV-polymerized constructs, with no differences in proteoglycan or collagen content. Molded HA constructs retained their hemispherical shape in culture and demonstrated increasing mechanical properties and proteoglycan and collagen deposition, especially at the edges compared to the center of these larger constructs. Immunohistochemistry showed abundant collagen type II staining and little collagen type I staining. APS/TEMED crosslinking can be used to produce MSC-seeded HA-based neocartilage and can be used in combination with rapid prototyping techniques to generate anatomic MSC-seeded HA constructs for use in filling large and anatomically complex chondral defects or for biologic joint replacement. PMID:26871863

  19. Small leucine-rich repeat proteoglycans associated with mature insoluble elastin serve as binding sites for galectins.

    PubMed

    Itoh, Aiko; Nonaka, Yasuhiro; Ogawa, Takashi; Nakamura, Takanori; Nishi, Nozomu

    2017-11-01

    We previously reported that galectin-9 (Gal-9), an immunomodulatory animal lectin, could bind to insoluble collagen preparations and exerted direct cytocidal effects on immune cells. In the present study, we found that mature insoluble elastin is capable of binding Gal-9 and other members of the human galectin family. Lectin blot analysis of a series of commercial water-soluble elastin preparations, PES-(A) ~ PES-(E), revealed that only PES-(E) contained substances recognized by Gal-9. Gal-9-interacting substances in PES-(E) were affinity-purified, digested with trypsin and then analyzed by reversed-phase HPLC. Peptide fragments derived from five members of the small leucine-rich repeat proteoglycan family, versican, lumican, osteoglycin/mimecan, prolargin, and fibromodulin, were identified by N-terminal amino acid sequence analysis. The results indicate that Gal-9 and possibly other galectins recognize glycans attached to small leucine-rich repeat proteoglycans associated with insoluble elastin and also indicate the possibility that mature insoluble elastin serves as an extracellular reservoir for galectins.

  20. Decorin is a Zn(2+) Metalloprotein

    NASA Technical Reports Server (NTRS)

    Yang, Vivian W.-C.; LaBrenz, Steven R.; Rosenberg, Lawrence C.; McQuillan, David; Hoeoek, Magnus

    1998-01-01

    Decorin is ubiquitously distributed in the extracellular matrix of mammals and a member of the proteoglycan family characterized by a core protein dominated by Leucine Rich Repeat motifs. We here demonstrate that decorin extracted from bovine tissues under denaturing conditions or produced in recombinant "native" form by cultured mammalian cells, has a high affinity for Zn(2+). Binding of Zn(2+) to decorin is demonstrated by Zn(2+) chelating chromatography and equilibrium dialyses. The Zn(2+) binding sites are localized to the N-terminal domain of the core protein that contains 4 Cys residues in the spacing reminiscent of a Zn finger. A recombinant 41 amino acid long peptide representing the N-terminal domain of decorin has full Zn(2+) binding activity and binds two Zn(2+) ions with an average K(D) of 3 x 10(exp -7) M. Biglycan, a proteoglycan that is structurally closely related to decorin contains a similar high affinity Zn(2+) binding segment, whereas the structurally more distantly related proteoglycans, epiphycan and osteoglycin, did not bind Zn(2+) with high affinity.

  1. Studies on the asparagine-linked oligosaccharides from cartilage-specific proteoglycan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cioffi, L.C.

    1987-01-01

    Chondrocytes synthesize and secrete a cartilage-specific proteoglycan (PG-H) as one of their major products. This proteoglycan has attached to it several types of carbohydrate chains, including chondroitin sulfate, keratan sulfate, O-linked oligosaccharides, and asparagine-linked oligosaccharides. The asparagine-linked oligosaccharides found on PG-H were investigated in these studies. Methodology was developed for the isolation and separation of standard of standard complex and high mannose type oligosaccharides. This included digesting glycoproteins with N-glycanase and separation of the oligosaccharides according to type by concanavalin-A lectin chromatography. The different oligosaccharide types were then analyzed by high pressure liquid chromatography. This methodology was used in themore » subsequent studies on the PG-H asparagine-linked oligosaccharides. Initially, the asparagine-linked oligosaccharides recovered from the culture medium (CM) and cell-associated (Ma) fractions of PG-H from of tibial chondrocytes were labeled with (/sup 3/H)-mannose and the oligosaccharides were isolated and analyzed.« less

  2. [Notochord cells enhance proliferation and phenotype-keeping of intervertebral disc chondroid cells].

    PubMed

    Zhao, Xianfeng; Liu, Hao; Feng, Ganjun; Deng, Li; Li, Xiuqun; Liang, Tao

    2008-08-01

    To isolate and culture the chondroid cells and notochord cells from New Zealand rabbit immature nucleus pulposus (NP) in monolayer, and to evaluate the responsiveness of rabbit disc-derived chondroid cells to notochord cells with respect to cell proliferation and phenotype. The NP cells were released from the minced immature NP of 6 New Zealand rabbits (4-week-old) by 0.2% collagenase II digestion. The chondroid cells and notochord cells were purified by discontinuous gradient density centrifugation. The chondroid cells were cultured alone (group A) and co-cultured with notochord cells (group B) (1:1), and cell proliferation and phenotype including proteoglycan and collagen II were evaluated. The cells in both groups were observed by the inverted microscope, and the survival rates of the primary and passage cells were detected by toluidine blue staining. The growth curves of the second passage cells in both groups were determined by MTT. Besides, the expressions of proteoglycan and collagen II of the primary and passage cells were examined by toluidine blue and immunocytochemistry staining. The notochord cells and chondroid cells were isolated and purified. With the diameter of 10-15 microm, the notochord cell had abundant intracytoplasmic vesicles, while the chondroid cell, with the diameter of 4-6 microm, had no intracytoplasmic vesicle. The cell survival rate was 89.0%-95.3% in group A and 91.3%-96.3% in group B. There was no significant difference between the same passages in both groups (P > 0.05). The co-cultured cells (group B) increased in cell proliferation compared with the chondroid cells alone (group A) in repeated experiments. The cells in group A reached their logarithmic growth phase after 3-4 days of culture, while the cells in group B did after 2 days of culture. The cell proliferation in group B was more than that in group A after 4-day culture (P < 0.05). The co-cultured cells retained their phenotype for 5 passages, while parallel-cultured chondroid cells lost the expression of proteoglycan and collagen II after the third passage. The notochord cells are conducive for the proliferation and phenotype-keeping of the chondroid cells and may play a key role in preventing degeneration of the disc.

  3. Infection of Hepatocytes With HCV Increases Cell Surface Levels of Heparan Sulfate Proteoglycans, Uptake of Cholesterol and Lipoprotein, and Virus Entry by Up-regulating SMAD6 and SMAD7.

    PubMed

    Zhang, Fang; Sodroski, Catherine; Cha, Helen; Li, Qisheng; Liang, T Jake

    2017-01-01

    The signaling molecule and transcriptional regulator SMAD6, which inhibits the transforming growth factor β signaling pathway, is required for infection of hepatocytes by hepatitis C virus (HCV). We investigated the mechanisms by which SMAD6 and another inhibitory SMAD (SMAD7) promote HCV infection in human hepatoma cells and hepatocytes. We infected Huh7 and Huh7.5.1 cells and primary human hepatocytes with Japanese fulminant hepatitis-1 (JFH1) HCV cell culture system (HCVcc). We then measured HCV binding, intracellular levels of HCV RNA, and expression of target genes. We examined HCV entry in HepG2/microRNA (miR) 122/CD81 cells, which support entry and replication of HCV, were transfected these cells with small interfering RNAs targeting inhibitory SMADs to analyze gene expression profiles. Uptake of labeled low-density lipoprotein (LDL) and cholesterol was measured. Cell surface proteins were quantified by flow cytometry. We obtained liver biopsy samples from 69 patients with chronic HCV infection and 19 uninfected individuals (controls) and measured levels of syndecan 1 (SDC1), SMAD7, and SMAD6 messenger RNAs (mRNAs). Small interfering RNA knockdown of SMAD6 blocked the binding and infection of hepatoma cell lines and primary human hepatocytes by HCV, whereas SMAD6 overexpression increased HCV infection. We found levels of mRNAs encoding heparan sulfate proteoglycans (HSPGs), particularly SDC1 mRNA, and cell surface levels of heparan sulfate to be reduced in cells after SMAD6 knockdown. SMAD6 knockdown also reduced transcription of genes encoding lipoprotein and cholesterol uptake receptors, including the LDL receptor (LDLR), the very LDLR, and the scavenger receptor class B member 1 in hepatocytes; knockdown of SMAD6 also inhibited cell uptake of cholesterol and lipoprotein. Overexpression of SMAD6 increased the expression of these genes. Similar effects were observed with knockdown and overexpression of SMAD7. In addition, HCV infection of cells increased the expression of SMAD6, which required the activity of nuclear factor-κB, but not transforming growth factor β. Liver tissues from patients with chronic HCV infection had significantly higher levels of SMAD6, SMAD7, and HSPG mRNAs than controls. In studies of hepatoma cell lines and primary human hepatocytes, we found that infection with HCV leads to activation of nuclear factor-κB, resulting in increased expression of SMAD6 and SMAD7. Up-regulation of SMAD6 and SMAD7 induces the expression of HSPGs, such as SDC1, as well as LDLR, very LDLR, and the scavenger receptor class B member 1, which promote HCV entry and propagation, as well as cellular uptake of cholesterol and lipoprotein. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. S-layer and cytoplasmic membrane - exceptions from the typical archaeal cell wall with a focus on double membranes.

    PubMed

    Klingl, Andreas

    2014-01-01

    The common idea of typical cell wall architecture in archaea consists of a pseudo-crystalline proteinaceous surface layer (S-layer), situated upon the cytoplasmic membrane. This is true for the majority of described archaea, hitherto. Within the crenarchaea, the S-layer often represents the only cell wall component, but there are various exceptions from this wall architecture. Beside (glycosylated) S-layers in (hyper)thermophilic cren- and euryarchaea as well as halophilic archaea, one can find a great variety of other cell wall structures like proteoglycan-like S-layers (Halobacteria), glutaminylglycan (Natronococci), methanochondroitin (Methanosarcina) or double layered cell walls with pseudomurein (Methanothermus and Methanopyrus). The presence of an outermost cellular membrane in the crenarchaeal species Ignicoccus hospitalis already gave indications for an outer membrane similar to Gram-negative bacteria. Although there is just limited data concerning their biochemistry and ultrastructure, recent studies on the euryarchaeal methanogen Methanomassiliicoccus luminyensis, cells of the ARMAN group, and the SM1 euryarchaeon delivered further examples for this exceptional cell envelope type consisting of two membranes.

  5. HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles

    PubMed Central

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina; Lien, Kathy; Tugizov, Sharof M.

    2018-01-01

    Recently, we showed that HIV-1 is sequestered, i.e., trapped, in the intracellular vesicles of oral and genital epithelial cells. Here, we investigated the mechanisms of HIV-1 sequestration in vesicles of polarized tonsil, foreskin and cervical epithelial cells. HIV-1 internalization into epithelial cells is initiated by multiple entry pathways, including clathrin-, caveolin/lipid raft-associated endocytosis and macropinocytosis. Inhibition of HIV-1 attachment to galactosylceramide and heparan sulfate proteoglycans, and virus endocytosis and macropinocytosis reduced HIV-1 sequestration by 30–40%. T-cell immunoglobulin and mucin domain 1 (TIM-1) were expressed on the apical surface of polarized tonsil, cervical and foreskin epithelial cells. However, TIM-1-associated HIV-1 macropinocytosis and sequestration were detected mostly in tonsil epithelial cells. Sequestered HIV-1 was resistant to trypsin, pronase, and soluble CD4, indicating that the sequestered virus was intracellular. Inhibition of HIV-1 intraepithelial sequestration and elimination of vesicles containing virus in the mucosal epithelium may help in the prevention of HIV-1 mucosal transmission. PMID:29277006

  6. Juvenile porcine temporomandibular joint: Three different cartilaginous structures?

    PubMed

    Tabeian, Hessam; Bakker, Astrid D; de Vries, Teun J; Zandieh-Doulabi, Behrouz; Lobbezoo, Frank; Everts, Vincent

    2016-12-01

    The temporomandibular joint (TMJ) consists of three cartilaginous structures: the fossa, disc, and condyle. In juvenile idiopathic arthritis (JIA), inflammation of the TMJ leads to destruction of the condyle, but not of the fossa or the disc. Such a different effect of inflammation might be related to differences in matrix composition of the cartilaginous structures. The matrix composition of the three TMJ structures was analyzed in juvenile porcine samples and in an in vitro system of cells isolated from each anatomical structure embedded in 3% agarose gels. The matrix of all three anatomical structures of the TMJ contained collagen type I and its gene expression was maintained after isolation. The condyle and the fossa stained positive for collagen type II and proteoglycans, but the condyle contained considerably more collagen type II and proteoglycans than the fossa. The disc contained neither collagen type II protein nor expression of its gene, and the disc did not stain positive for proteoglycans. Aggrecan gene expression was lower in the disc compared to condyle and fossa cell-isolates. In general, the cell-isolates in vitro closely mimicked the characteristic features found in the tissue. The collagen type II content of the condyle clearly distinguished this cartilaginous structure from the disc and fossa. Since autoimmunity against collagen type II is associated with JIA, the relatively abundant presence of this type of collagen in the condyle might provide an explanation why primarily this cartilaginous structure of the TMJ is affected in JIA patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Rapid Endolysosomal Escape and Controlled Intracellular Trafficking of Cell Surface Mimetic Quantum-Dots-Anchored Peptides and Glycopeptides.

    PubMed

    Tan, Roger S; Naruchi, Kentaro; Amano, Maho; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2015-09-18

    A novel strategy for the development of a high performance nanoparticules platform was established by means of cell surface mimetic quantum-dots (QDs)-anchored peptides/glycopeptides, which was developed as a model system for nanoparticle-based drug delivery (NDD) vehicles with defined functions helping the specific intracellular trafficking after initial endocytosis. In this paper, we proposed a standardized protocol for the preparation of multifunctional QDs that allows for efficient cellular uptake and rapid escaping from the endolysosomal system and subsequent cytoplasmic molecular delivery to the target cellular compartment. Chemoselective ligation of the ketone-functionalized hexahistidine derivative facilitated both efficient endocytic entry and rapid endolysosomal escape of the aminooxy/phosphorylcholine self-assembled monolayer-coated QDs (AO/PCSAM-QDs) to the cytosol in various cell lines such as human normal and cancer cells, while modifications of these QDs with cell-penetrating arginine-rich peptides showed poor cellular uptake and induced self-aggregation of AO/PCSAM-QDs. Combined use of hexahistidylated AO/PCSAM-QDs with serglycine-like glycopeptides, namely synthetic proteoglycan initiators (PGIs), elicited the entry and controlled intracellular trafficking, Golgi localization, and also excretion of these nanoparticles, which suggested that the present approach would provide an ideal platform for the design of high performance NDD systems.

  8. Basement membrane of mouse bone marrow sinusoids shows distinctive structure and proteoglycan composition: a high resolution ultrastructural study.

    PubMed

    Inoue, S; Osmond, D G

    2001-11-01

    Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the exceptionally large quantity of CSPG may represent a reservoir of CD44 receptor for use in hemopoiesis. Copyright 2001 Wiley-Liss, Inc.

  9. Cell-surface glycosaminoglycans inhibit intranuclear uptake but promote post-nuclear processes of polyamidoamine dendrimer-pDNA transfection.

    PubMed

    Ziraksaz, Zarrintaj; Nomani, Alireza; Ruponen, Marika; Soleimani, Masoud; Tabbakhian, Majid; Haririan, Ismaeil

    2013-01-23

    Interaction of cell-surface glycosaminoglycans (GAGs) with non-viral vectors seems to be an important factor which modifies the intracellular destination of the gene complexes. Intracellular kinetics of polyamidoamine (PAMAM) dendrimer as a non-viral vector in cellular uptake, intranuclear delivery and transgene expression of plasmid DNA with regard to the cell-surface GAGs has not been investigated until now. The physicochemical properties of the PAMAM-pDNA complexes were characterized by photon correlation spectroscopy, atomic force microscopy, zeta measurement and agarose gel electrophoresis. The transfection efficiency and toxicity of the complexes at different nitrogen to phosphate (N:P) ratios were determined using various in vitro cell models such as human embryonic kidney cells, chinese hamster ovary cells and its mutants lacking cell-surface GAGs or heparan sulphate proteoglycans (HSPGs). Cellular uptake, nuclear uptake and transfection efficiency of the complexes were determined using flow cytometry and optimized cell-nuclei isolation with quantitative real-time PCR and luciferase assay. Physicochemical studies showed that PAMAM dendrimer binds pDNA efficiently, forms small complexes with high positive zeta potential and transfects cells properly at N:P ratios around 5 and higher. The cytotoxicity could be a problem at N:Ps higher than 10. GAGs elimination caused nearly one order of magnitude higher pDNA nuclear uptake and more than 2.6-fold higher transfection efficiency than CHO parent cells. However, neither AUC of nuclear uptake, nor AUC of transfection affected significantly by only cell-surface HSPGs elimination and interesting data related to the effect of GAGs on intranuclear pDNA using PAMAM as delivery vector have been reported in this study. Presented data shows that the rate-limiting step of PAMAM-pDNA complexes transfection is located after delivery to the cell nucleus and GAGs are regarded as an inhibitor of the intranuclear delivery step, while slightly promotes transgene expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. A mechanistic dissection of polyethylenimine mediated transfection of CHO cells: to enhance the efficiency of recombinant DNA utilization.

    PubMed

    Mozley, Olivia L; Thompson, Ben C; Fernandez-Martell, Alejandro; James, David C

    2014-01-01

    In this study, we examine the molecular and cellular interactions that underpin efficient internalization and utilization of polyethylenimine (PEI):DNA complexes (polyplexes) by Chinese Hamster Ovary (CHO) cells. Cell surface polyplex binding and internalization was a biphasic process, consisting of an initial rapid Phase (I), lasting approximately 15 min, followed by a slower second Phase (II), saturating at approximately 240 min post transfection. The second Phase accounted for the majority (60-70%) of polyplex internalization. While cell surface heparan sulphate proteoglycans (HSPGs) were rapidly cointernalized with polyplexes during Phase I, cell surface polyplex binding was not dependent on HSPGs. However, Phase II polyplex internalization and HSPG regeneration onto the surface of trypsinized cells occurred at similar rates, suggesting that the rate of recycling of HSPG-containing membrane to the plasma membrane limits Phase II internalization rate. Under optimal transfection conditions, polyplexes had a near neutral surface charge (zeta potential) and cell surface binding was dependent on hydrophobic interactions, being significantly inhibited by both chemical sequestration of cholesterol from the plasma membrane and addition of nonionic surfactant. Induced alterations in polyplex zeta potential, using ferric (III) citrate to decrease surface charge and varying PEI:DNA ratio to increase surface charge, served to inhibit polyplex binding or reduce secreted alkaline phosphatase reporter expression and cell viability, respectively. To increase polyplex hydrophobicity and internalization an alkylated derivative of PEI, propyl-PEI, was chemically synthesized. Using Design of Experiments-Response Surface Modeling to optimize the transfection process, the function of propyl-PEI was compared to that of unmodified PEI in both parental CHO-S cells and a subclone (Clone 4), which exhibited superior transgene expression via an increased resistance to polyplex cytotoxicity. The combination of propyl-PEI and Clone 4 doubled the efficiency of recombinant DNA utilization and reporter protein production. These data show that for maximal efficacy, strategies to increase polyplex internalization into cells must be used in concert with strategies to offset the inherent cytotoxicity of this process. © 2014 American Institute of Chemical Engineers.

  11. Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro.

    PubMed

    Spiteri, C G; Pilliar, R M; Kandel, R A

    2006-09-15

    Tissue engineering is being explored as a new approach to treat damaged cartilage. As the biomaterial used may influence tissue formation, the effects of substrate geometry on chondrocyte behavior in vitro were examined. Articular chondrocytes were isolated and cultured on the surface of smooth, rough, porous-coated, and fully porous Ti-6Al-4V substrates. The percentage of chondrocytes that attached to each substrate at 24 h was determined. After 24 and 72 h, chondrocytes were visualized by scanning electron microscopy and cell areas were measured. Collagen and proteoglycan accumulation within the first 24 h was determined by incorporation with [3H]-proline and [35S]-SO4, respectively. Chondrocyte attachment as well as matrix accumulation was enhanced as substrate surface area increased. Cell areas on the fully porous substrate were over four times greater than on any other substrate by 72 h in culture. After 8 weeks in culture, a continuous layer of cartilaginous tissue formed only on the surface of the fully porous substrate. This suggests that fully porous Ti-6Al-4V substrates provide the conditions that favor cartilage tissue formation by influencing cell attachment and extent of cell spreading. Understanding how substrate porosity influences chondrocyte behavior may help identify methods to further enhance cartilage tissue formation in vitro. 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006.

  12. Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects

    PubMed Central

    Nguema-Ona, Eric; Coimbra, Sílvia; Vicré-Gibouin, Maïté; Mollet, Jean-Claude; Driouich, Azeddine

    2012-01-01

    Background Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. Scope In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes. PMID:22786747

  13. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells.

    PubMed

    She, Zhi-Gang; Chang, Yunchao; Pang, Hong-Bo; Han, Wenlong; Chen, Hou-Zao; Smith, Jeffrey W; Stallcup, William B

    2016-01-01

    Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis. © 2015 American Heart Association, Inc.

  14. A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose.

    PubMed

    Pretzel, David; Linss, Stefanie; Ahrem, Hannes; Endres, Michaela; Kaps, Christian; Klemm, Dieter; Kinne, Raimund W

    2013-01-01

    Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model. Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material. Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures. Although TGF-β1 stimulation showed protective effects on matrix integrity, effects on other parameters were limited. The present bovine cartilage punch model represents a robust, reproducible and highly suitable tool for the long-term culture of cartilage, maintaining matrix integrity and homoeostasis. As an alternative to animal studies, this model may closely reflect early stages of cartilage regeneration, allowing the evaluation of promising biomaterials with/without chondrogenic factors.

  15. The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics

    PubMed Central

    Hammond, Edward; Khurana, Ashwani; Shridhar, Viji; Dredge, Keith

    2014-01-01

    Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer. PMID:25105093

  16. Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor 1 and osteogenic protein 1.

    PubMed

    Loeser, Richard F; Gandhi, Uma; Long, David L; Yin, Weihong; Chubinskaya, Susan

    2014-08-01

    To determine the effects of aging and oxidative stress on the response of human articular chondrocytes to insulin-like growth factor 1 (IGF-1) and osteogenic protein 1 (OP-1). Chondrocytes isolated from normal articular cartilage obtained from tissue donors were cultured in alginate beads or monolayer. Cells were stimulated with 50-100 ng/ml of IGF-1, OP-1, or both. Oxidative stress was induced using tert-butyl hydroperoxide. Sulfate incorporation was used to measure proteoglycan synthesis, and immunoblotting of cell lysates was performed to analyze cell signaling. Confocal microscopy was performed to measure nuclear translocation of Smad4. Chondrocytes isolated from the articular cartilage of tissue donors ranging in age from 24 years to 81 years demonstrated an age-related decline in proteoglycan synthesis stimulated by IGF-1 and IGF-1 plus OP-1. Induction of oxidative stress inhibited both IGF-1- and OP-1-stimulated proteoglycan synthesis. Signaling studies showed that oxidative stress inhibited IGF-1-stimulated Akt phosphorylation while increasing phosphorylation of ERK, and that these effects were greater in cells from older donors. Oxidative stress also increased p38 phosphorylation, which resulted in phosphorylation of Smad1 at the Ser(206) inhibitory site and reduced nuclear accumulation of Smad1. Oxidative stress also modestly reduced OP-1-stimulated nuclear translocation of Smad4. These results demonstrate an age-related reduction in the response of human chondrocytes to IGF-1 and OP-1, which are 2 important anabolic factors in cartilage, and suggest that oxidative stress may be a contributing factor by altering IGF-1 and OP-1 signaling. Copyright © 2014 by the American College of Rheumatology.

  17. Fibronectin on extracellular vesicles from microvascular endothelial cells is involved in the vesicle uptake into oligodendrocyte precursor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osawa, Sho; Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511; Kurachi, Masashi

    We previously reported transplantation of brain microvascular endothelial cells (MVECs) into cerebral white matter infarction model improved the animal's behavioral outcome by increasing the number of oligodendrocyte precursor cells (OPCs). We also revealed extracellular vesicles (EVs) derived from MVECs promoted survival and proliferation of OPCs in vitro. In this study, we investigated the mechanism how EVs derived from MVECs contribute to OPC survival and proliferation. Protein mass spectrometry and enzyme-linked immunosorbent assay revealed fibronectin was abundant on the surface of EVs from MVECs. As fibronectin has been reported to promote OPC survival and proliferation via integrin signaling pathway, we blocked themore » binding between fibronectin and integrins using RGD sequence mimics. Blocking the binding, however, did not attenuate the survival and proliferation promoting effect of EVs on OPCs. Flow cytometric and imaging analyses revealed fibronectin on EVs mediates their internalization into OPCs by its binding to heparan sulfate proteoglycan on OPCs. OPC survival and proliferation promoted by EVs were attenuated by blocking the internalization of EVs into OPCs. These lines of evidence suggest that fibronectin on EVs mediates their internalization into OPCs, and the cargo of EVs promotes survival and proliferation of OPCs, independent of integrin signaling pathway. - Highlights: • Fibronectin exists on the surface of extracellular vesicles from endothelial cells. • Integrin signaling is not involved in effects of extracellular vesicles on OPCs. • Fibronectin on the surface of extracellular vesicles mediates their uptake into OPCs.« less

  18. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    PubMed

    Ye, Ken; Felimban, Raed; Traianedes, Kathy; Moulton, Simon E; Wallace, Gordon G; Chung, Johnson; Quigley, Anita; Choong, Peter F M; Myers, Damian E

    2014-01-01

    Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  19. Conditioned Medium Derived from Notochordal Cell-Rich Nucleus Pulposus Tissue Stimulates Matrix Production by Canine Nucleus Pulposus Cells and Bone Marrow-Derived Stromal Cells

    PubMed Central

    de Vries, Stefan A.H.; Potier, Esther; van Doeselaar, Marina; Meij, Björn P.; Tryfonidou, Marianna A.

    2015-01-01

    Objectives: Conditioned medium derived from notochordal cell-rich nucleus pulposus tissue (NCCM) was previously shown to have a stimulatory effect on bone marrow stromal cells (BMSCs) and nucleus pulposus cells (NPCs) individually, in mixed species in vitro cell models. The objective of the current study was to assess the stimulatory effect of NCCM on NPCs in a homologous canine in vitro model and to investigate whether combined stimulation with NCCM and addition of BMSCs provides a synergistic stimulatory effect. Methods: BMSCs and NPCs were harvested from chondrodystrophic dogs with confirmed early intervertebral disc (IVD) degeneration. NCCM was produced from NP tissue of nonchondrodystrophic dogs with healthy IVDs. BMSCs or NPCs alone (3×106 cells/mL) and NPCs+BMSCs (6×106 cells/mL; mixed 1:1) were cultured for 4 weeks in 1.2% alginate beads under base medium (BM), NCCM, or with addition of 10 ng/mL transforming growth factor-β1 (TGF-β1) as a positive control. Beads were assessed for glycosaminoglycan (GAG) and DNA contents by biochemical assays, GAG deposition by Alcian blue staining, and gene expression (aggrecan, versican, collagen 1 and 2, SOX9, A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), and matrix metalloproteinase 13 [MMP13]) with real-time quantitative RT-PCR. Results: NCCM increased NPC proliferation, proteoglycan production, and expression of genes associated with a healthy NP-like phenotype. BMSCs also showed increased proteoglycan production under NCCM, but these effects were not observed at the gene level. Combined stimulation of NPCs with NCCM and coculturing with BMSCs did not result in increased proteoglycan content compared to stimulation with NCCM alone. Discussion: NCCM stimulates matrix production by both NPCs and BMSCs and directs NPCs toward a healthier phenotype. NCCM is therefore promising for IVD regeneration and identification of the bioactive components will be helpful to further develop this approach. In the current study, no synergistic effect of adding BMSCs was observed. PMID:25370929

  20. Lacritin and other new proteins of the lacrimal functional unit.

    PubMed

    McKown, Robert L; Wang, Ningning; Raab, Ronald W; Karnati, Roy; Zhang, Yinghui; Williams, Patricia B; Laurie, Gordon W

    2009-05-01

    The lacrimal functional unit (LFU) is defined by the 2007 International Dry Eye WorkShop as 'an integrated system comprising the lacrimal glands, ocular surface (cornea, conjunctiva and meibomian glands) and lids, and the sensory and motor nerves that connect them'. The LFU maintains a healthy ocular surface primarily through a properly functioning tear film that provides protection, lubrication, and an environment for corneal epithelial cell renewal. LFU cells express thousands of proteins. Over 200 new LFU proteins have been discovered in the last decade. Lacritin is a new LFU-specific growth factor in human tears that flows through ducts to target corneal epithelial cells on the ocular surface. When applied topically in rabbits, lacritin appears to increase the volume of basal tear secretion. Lacritin is one of only a handful of tear proteins preliminarily reported to be downregulated in blepharitis and in two dry eye syndromes. Computational analysis predicts an ordered C-terminal domain that binds the corneal epithelial cell surface proteoglycan syndecan-1 (SDC1) and is required for lacritin's low nanomolar mitogenic activity. The lacritin-binding site on the N-terminus of SDC1 is exposed by heparanase. Heparanase is constitutively expressed by the corneal epithelium and appears to be a normal constituent of tears. Binding triggers rapid signaling to downstream NFAT and mTOR. A wealth of other new proteins, originally designated as hypothetical when first identified by genomic sequencing, are expressed by the human LFU including: ALS2CL, ARHGEF19, KIAA1109, PLXNA1, POLG, WIPI1 and ZMIZ2. Their demonstrated or implied roles in human genetic disease or basic cellular functions are fuel for new investigation. Addressing topical areas in ocular surface physiology with new LFU proteins may reveal interesting new biological mechanisms and help get to the heart of ocular surface dysfunction.

  1. Replacement of proteoglycans in embryonic chick cartilage in organ culture after treatment with testicular hyaluronidase

    PubMed Central

    Hardingham, T. E.; Fitton-Jackson, Sylvia; Muir, Helen

    1972-01-01

    Explants of cartilage from tibiae of 11–12 days chick embryos were grown in organ culture. To one group hyaluronidase was added to the medium during the first 2 days of culture; the treated tissue was then cultured in medium without enzyme for a further 4 days. Control explants grown in hyaluronidase-free medium for 6 days grew rapidly in size and the total hexosamine content more than doubled during this time. After exposure to hyaluronidase, much of the hexosamine was lost from treated cartilage and appeared in the culture medium, but it was mostly replaced in the tissue during the subsequent recovery period. Analysis of cartilage and medium showed that net synthesis of hexosamine increased greatly in treated cartilage. The proteoglycans were extracted by two procedures from control and treated cartilage after 2, 4 and 6 days in culture. The hydrodynamic sizes of the purified proteoglycans were compared by gel chromatography and the composition of the gel-chromatographic fractions was determined. The proteoglycans from controls did not change during culture, but after exposure to hyaluronidase the proteoglycans from treated cartilage were of much smaller size and lower chondroitin sulphate content. During recovery, even though new proteoglycans were formed, they were nevertheless of smaller size and lower chondroitin sulphate content than control proteoglycans. They gradually became more like control proteoglycans during recovery from treatment, but even after 4 days they were not yet the same. After 2 days of treatment with the enzyme, the chondroitin sulphate in the cartilage was of shorter chain length than in controls but during recovery after 4 and 6 days in culture, the chain lengths in control and treated cartilage were similar. It is concluded that the proteoglycans formed in embryo cartilage in response to their depletion by enzyme treatment contained fewer chondroitin sulphate chains attached to the protein moiety of proteoglycans. This may have resulted from a failure under stress to glycosylate the protein moiety to the usual extent; alternatively the synthesis of normal proteoglycans of low chondroitin sulphate content may have increased, thus changing the proteoglycan population. PMID:4265022

  2. Age-related impairment of endothelial progenitor cell migration correlates with structural alterations of heparan sulfate proteoglycans.

    PubMed

    Williamson, Kate A; Hamilton, Andrew; Reynolds, John A; Sipos, Peter; Crocker, Ian; Stringer, Sally E; Alexander, Yvonne M

    2013-02-01

    Aging poses one of the largest risk factors for the development of cardiovascular disease. The increased propensity toward vascular pathology with advancing age maybe explained, in part, by a reduction in the ability of circulating endothelial progenitor cells to contribute to vascular repair and regeneration. Although there is evidence to suggest that colony forming unit-Hill cells and circulating angiogenic cells are subject to age-associated changes that impair their function, the impact of aging on human outgrowth endothelial cell (OEC) function has been less studied. We demonstrate that OECs isolated from cord blood or peripheral blood samples from young and old individuals exhibit different characteristics in terms of their migratory capacity. In addition, age-related structural changes were discovered in OEC heparan sulfate (HS), a glycocalyx component that is essential in many signalling pathways. An age-associated decline in the migratory response of OECs toward a gradient of VEGF significantly correlated with a reduction in the relative percentage of the trisulfated disaccharide, 2-O-sulfated-uronic acid, N, 6-O-sulfated-glucosamine (UA[2S]-GlcNS[6S]), within OEC cell surface HS polysaccharide chains. Furthermore, disruption of cell surface HS reduced the migratory response of peripheral blood-derived OECs isolated from young subjects to levels similar to that observed for OECs from older individuals. Together these findings suggest that aging is associated with alterations in the fine structure of HS on the cell surface of OECs. Such changes may modulate the migration, homing, and engraftment capacity of these repair cells, thereby contributing to the progression of endothelial dysfunction and age-related vascular pathologies. © 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  3. Role of proteoglycans in neuro-inflammation and central nervous system fibrosis.

    PubMed

    Heindryckx, Femke; Li, Jin-Ping

    2018-01-31

    Fibrosis is defined as the thickening and scarring of connective tissue, usually as a consequence of tissue damage. The central nervous system (CNS) is special in the sense that fibrogenic cells are restricted to vascular and meningeal areas. Inflammation and the disruption of the blood-brain barrier can lead to the infiltration of fibroblasts and trigger fibrotic response. While the initial function of the fibrotic tissue is to restore the blood-brain barrier and to limit the site of injury, it also demolishes the structure of extracellular matrix and impedes the healing process by producing inhibitory molecules and forming a physical and biochemical barrier that prevents axon regeneration. As a major constituent in the extracellular matrix, proteoglycans participate in the neuro-inflammation, modulating the fibrotic process. In this review, we will discuss the pathophysiology of fibrosis during acute injuries of the CNS, as well as during chronic neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and age-related neurodegeneration with focus on the functional roles of proteoglycans. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  4. Optimization of Methods for Articular Cartilage Surface Tissue Engineering: Cell Density and Transforming Growth Factor Beta Are Critical for Self-Assembly and Lubricin Secretion.

    PubMed

    Iwasa, Kenjiro; Reddi, A Hari

    2017-07-01

    Lubricin/superficial zone protein (SZP)/proteoglycan4 (PRG4) plays an important role in boundary lubrication in articular cartilage. Lubricin is secreted by superficial zone chondrocytes and synoviocytes of the synovium. The specific objective of this investigation is to optimize the methods for tissue engineering of articular cartilage surface. The aim of this study is to investigate the effect of cell density on the self-assembly of superficial zone chondrocytes and lubricin secretion as a functional assessment. Superficial zone chondrocytes were cultivated as a monolayer at low, medium, and high densities. Chondrocytes at the three different densities were treated with transforming growth factor beta (TGF-β)1 twice a week or daily, and the accumulated lubricin in the culture medium was analyzed by immunoblots and quantitated by enzyme-linked immunosorbent assay (ELISA). Cell numbers in low and medium densities were increased by TGF-β1; whereas cell numbers in high-density cell cultures were decreased by twice-a-week treatment of TGF-β1. On the other hand, the cell numbers were maintained by daily TGF-β treatment. Immunoblots and quantitation of lubricin by ELISA analysis indicated that TGF-β1 stimulated lubricin secretion by superficial zone chondrocytes at all densities with twice-a-week TGF-β treatment. It is noteworthy that the daily treatment of TGF-β1 increased lubricin much higher compared with twice-a-week treatment. These data demonstrate that daily treatment is optimal for the TGF-β1 response in a higher density of monolayer cultures. These findings have implications for self-assembly of surface zone chondrocytes of articular cartilage for application in tissue engineering of articular cartilage surface.

  5. The in vitro interactions between serum lipoproteins and proteoglycans of the neointima of rabbit aorta after a single balloon catheter injury.

    PubMed

    Alavi, M Z; Richardson, M; Moore, S

    1989-02-01

    The effect of injury-induced alterations in the aortic neointimal proteoglycans on their binding with homologous serum lipoproteins was examined. Proteoglycans of the aortic intimal-medial tissues of rabbits that had undergone denudation with a balloon catheter 12 weeks earlier were isolated after homogenization of the tissues in 0.33 M sucrose, ultracentrifugation and subsequently by gel-exclusion chromatography. Lipoproteins from the plasma of healthy donors were prepared by sequential, ultracentrifugal floatation after density adjustment with KBr. To study the interactions, aliquots of electrophoretically pure very low-density lipoproteins (VLDL, d less than 1.006 g/ml), low-density lipoproteins (LDL, d = 1.019-1.063 g/ml), or high-density lipoproteins (HDL, d = 1.210 g/ml) were incubated with proteoglycans in the presence of Ca++ and Mg++ at 4 C. The amount of cholesterol found in the resulting pellet was measured as a marker of the binding capacity of the proteoglycans. Among lipoprotein fractions both VLDL and LDL showed strong binding with proteoglycans, whereas no appreciable binding was observed when incubation experiments were done with HDL. There were significant differences in the lipoprotein binding capacity of proteoglycan of control and injured animals, indicating that injury induced changes in proteoglycan composition exert profound influences on their ionic interactions.

  6. An ultrastructural and immunogold localization study of proteoglycans associated with the osteocytes of fetal bone in osteogenesis imperfecta.

    PubMed

    Sarathchandra, P; Pope, F M; Ali, S Y

    1996-06-01

    Osteogenesis imperfecta (OI) is a rare, heterogeneous, inherited connective tissue disorder frequently caused by abnormalities of type I collagen. It is characterized by bone fragility, osteopenia, and progressive skeletal deformities. Electron microscopy of three OI type II fetal bone samples revealed numerous large osteocyte lacunae. In addition, there was a perilacunar osteoid-like band of collagen surrounding the osteocytes, which was unmineralized and morphologically unusual. Furthermore, large osteocyte lacunae contained fine particles and filamentous material similar to the expected ultrastructural appearance of proteoglycans. More detailed examination was carried out using histochemical and immunogold localization of proteoglycans at light and ultrastructural levels. These tests and the use of electron probe X-ray microanalysis confirmed that the material in the osteocyte lacunae was proteoglycan. In contrast, in the age- and site-matched normal fetal bone, all the osteocyte lacunae appeared negative for proteoglycan. Proteoglycans are regarded as inhibitors of calcification. Our observation of substantial amounts of proteoglycan in abnormally enlarged osteocytic lacunae of some OI fetal bone suggests association with the abnormal bone of this particular subtype of OI type II.

  7. The spatiotemporal relationships between chondroitin sulfate proteoglycans and terminations of calcitonin gene related peptide and parvalbumin immunoreactive afferents in the spinal cord of mouse embryos.

    PubMed

    Wang, Liqing; Yu, Chao; Wang, Jun; Zhao, Hui; Chan, Sun-On

    2017-08-10

    Chondroitin sulfate (CS) proteoglycans (PGs) are a family of complex molecules in the extracellular matrix and cell surface that regulate axon growth and guidance during development of the central nervous system. In this study, the expression of CSPGs was investigated in the mouse spinal cord at late embryonic and neonatal stages using CS-56 antibody. CS immunoreactivity was observed abundantly in ventral regions of spinal cord of embryonic day (E) 15 embryos. At E16 to E18, CS expression spread dorsally, but never reached the superficial layers of the dorsal horn. This pattern was maintained until postnatal day 4, the latest stage examined. Antibodies against calcitonin gene related peptide (CGRP) and parvalbumin (PV) were employed to label primary afferents from nociceptors and proprioceptors, respectively. CGRP-immunoreactive fibers terminated in the superficial regions of the dorsal horn where CSPGs were weakly expressed, whereas PV-immunoreactive fibers were found in CSPG-rich regions in the ventral horn. Therefore, we conclude that CS expression is spatiotemporally regulated in the spinal cord, which correlates to the termination of sensory afferents. This pattern suggests a role of CSPGs on patterning afferents in the spinal cord, probably through a differential response of axons to these growth inhibitory molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Increased syndecan-4 expression in sera and skin of patients with atopic dermatitis.

    PubMed

    Nakao, Momoko; Sugaya, Makoto; Takahashi, Naomi; Otobe, Sayaka; Nakajima, Rina; Oka, Tomonori; Kabasawa, Miyoko; Suga, Hiraku; Morimura, Sohshi; Miyagaki, Tomomitsu; Fujita, Hideki; Asano, Yoshihide; Sato, Shinichi

    2016-11-01

    Syndecan-4 (SDC-4) is a cell surface proteoglycan, which participates in signaling during cell adhesion, migration, proliferation, endocytosis, and mechanotransduction, and is expressed on various cells, including endothelial cells, epithelial cells, T cells, and eosinophils. Emerging evidences have suggested that SDC-4 might contribute to Th2-driven allergic immune responses. Here, we examined the role of SDC-4 in patients with atopic dermatitis (AD). Serum SDC-4 levels in AD patients were significantly higher than in healthy individuals, and they increased according to the disease severity. Importantly, they positively correlated with Eczema Area and Severity Index and itch visual analogue scale scores. Furthermore, serum SDC-4 levels decreased after treatment. We also analyzed SDC-4 expression in AD lesional skin. SDC-4 mRNA levels in AD skin were significantly higher than those of normal skin. Immunohistochemical staining revealed that SDC-4 was highly expressed in the epidermis and endothelial cells in AD lesional skin. Taken together, our study has demonstrated that SDC-4 expression was increased in sera and skin of AD patients, suggesting that SDC-4 may contribute to the development of AD.

  9. Syndecan-4 Regulates Muscle Differentiation and Is Internalized from the Plasma Membrane during Myogenesis.

    PubMed

    Rønning, Sissel B; Carlson, Cathrine R; Stang, Espen; Kolset, Svein O; Hollung, Kristin; Pedersen, Mona E

    2015-01-01

    The cell surface proteoglycan syndecan-4 has been reported to be crucial for muscle differentiation, but the molecular mechanisms still remain to be fully understood. During in vitro differentiation of bovine muscle cells immunocytochemical analyses showed strong labelling of syndecan-4 intracellularly, in close proximity with Golgi structures, in membranes of intracellular vesicles and finally, in the nuclear area including the nuclear envelope. Chase experiments showed that syndecan-4 was internalized from the plasma membrane during this process. Furthermore, when syndecan-4 was knocked down by siRNA more myotubes were formed, and the expression of myogenic transcription factors, β1-integrin and actin was influenced. However, when bovine muscle cells were treated with a cell-penetrating peptide containing the cytoplasmic region of syndecan-4, myoblast fusion and thus myotube formation was blocked, both in normal cells and in syndecan-4 knock down cells. Altogether this suggests that the cytoplasmic domain of syndecan-4 is important in regulation of myogenesis. The internalization of syndecan-4 from the plasma membrane during muscle differentiation and the nuclear localization of syndecan-4 in differentiated muscle cells may be part of this regulation, and is a novel aspect of syndecan biology which merits further studies.

  10. Analysis of the intermediate size proteoglycans from the developing chick limb buds.

    PubMed

    Vasan, N

    1982-08-01

    Limb-bud proteoglycans are heterogeneous molecules which vary in their chemical and physical properties with development. This report describes proteoglycan intermediates (PG-I) that predominate in stage-34 limbs, and compares them with proteoglycan aggregates (PG-A) in stage-38 limbs. We analysed proteoglycans and their components extracted with guanidinium chloride by subjecting them to density gradient centrifugation, molecular sieve chromatography, electrophoretic separation, and selective enzymatic degradation. PG-I and PG-A have similar chondroitin sulphate composition, amino sugars, chondroitin sulphate side-chain length, glycoprotein link factors, and hyaluronic acid binding capacity, and both cross react with antisera prepared against cartilage-specific chick sternal proteoglycans. However, PG-I has lower molecular weight, lower buoyant density, and fewer chondroitin sulphate side chains on the protein core. The PG-I in the developing limb can be considered a mixture of smaller aggregates and cartilage-specific large monomers in which the former predominate.

  11. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.

    PubMed

    Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-07-03

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.

  12. Wet-surface–enhanced ellipsometric contrast microscopy identifies slime as a major adhesion factor during bacterial surface motility

    PubMed Central

    Ducret, Adrien; Valignat, Marie-Pierre; Mouhamar, Fabrice; Mignot, Tâm; Theodoly, Olivier

    2012-01-01

    In biology, the extracellular matrix (ECM) promotes both cell adhesion and specific recognition, which is essential for central developmental processes in both eukaryotes and prokaryotes. However, live studies of the dynamic interactions between cells and the ECM, for example during motility, have been greatly impaired by imaging limitations: mostly the ability to observe the ECM at high resolution in absence of specific staining by live microscopy. To solve this problem, we developed a unique technique, wet-surface enhanced ellipsometry contrast (Wet-SEEC), which magnifies the contrast of transparent organic materials deposited on a substrate (called Wet-surf) with exquisite sensitivity. We show that Wet-SEEC allows both the observation of unprocessed nanofilms as low as 0.2 nm thick and their accurate 3D topographic reconstructions, directly by standard light microscopy. We next used Wet-SEEC to image slime secretion, a poorly defined property of many prokaryotic and eukaryotic organisms that move across solid surfaces in absence of obvious extracellular appendages (gliding). Using combined Wet-SEEC and fluorescent-staining experiments, we observed slime deposition by gliding Myxococcus xanthus cells at unprecedented resolution. Altogether, the results revealed that in this bacterium, slime associates preferentially with the outermost components of the motility machinery and promotes its adhesion to the substrate on the ventral side of the cell. Strikingly, analogous roles have been proposed for the extracellular proteoglycans of gliding diatoms and apicomplexa, suggesting that slime deposition is a general means for gliding organisms to adhere and move over surfaces. PMID:22665761

  13. In Vitro Maturation and In Vivo Integration and Function of an Engineered Cell-Seeded Disc-like Angle Ply Structure (DAPS) for Total Disc Arthroplasty.

    PubMed

    Martin, J T; Gullbrand, S E; Kim, D H; Ikuta, K; Pfeifer, C G; Ashinsky, B G; Smith, L J; Elliott, D M; Smith, H E; Mauck, R L

    2017-11-17

    Total disc replacement with an engineered substitute is a promising avenue for treating advanced intervertebral disc disease. Toward this goal, we developed cell-seeded disc-like angle ply structures (DAPS) and showed through in vitro studies that these constructs mature to match native disc composition, structure, and function with long-term culture. We then evaluated DAPS performance in an in vivo rat model of total disc replacement; over 5 weeks in vivo, DAPS maintained their structure, prevented intervertebral bony fusion, and matched native disc mechanical function at physiologic loads in situ. However, DAPS rapidly lost proteoglycan post-implantation and did not integrate into adjacent vertebrae. To address this, we modified the design to include polymer endplates to interface the DAPS with adjacent vertebrae, and showed that this modification mitigated in vivo proteoglycan loss while maintaining mechanical function and promoting integration. Together, these data demonstrate that cell-seeded engineered discs can replicate many characteristics of the native disc and are a viable option for total disc arthroplasty.

  14. Expression of the proteoglycan syndecan-4 and the mechanism by which it mediates stress fiber formation in folliculostellate cells in the rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Kouki, Tom; Fujiwara, Ken; Tsukada, Takehiro; Ly, Floren; Kikuchi, Motoshi; Yashiro, Takashi

    2012-08-01

    Folliculostellate (FS) cells in the anterior pituitary gland appear to have multifunctional properties. FS cells connect to each other at gap junctions and thereby form a histological and functional network. We have performed a series of studies on network formation in FS cells and recently reported that FS cells markedly prolong their cytoplasmic processes and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In this study, we investigated the mechanism of this extension of FS cell cytoplasmic processes under the influence of laminin and found that laminin promoted stress fiber formation within FS cells. Next, we noted that formation of stress fibers in FS cells was mediated by syndecan-4, a transmembrane proteoglycan that binds ECM and soluble factors via their extracellular glycosaminoglycan chain. We then observed that expressions of syndecan-4 and α-actinin (a microfilament bundling protein that cross-links actin stress fibers in FS cells) were upregulated by laminin. Using specific siRNA of syndecan-4, actin polymerization of FS cells was inhibited. Our findings suggest that FS cells received a signal from laminin-syndecan-4 interaction, which resulted in morphological changes, and that the formation of a morphological and functional network in FS cells was transduced by a syndecan-4-dependent mechanism in the presence of ECM.

  15. Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanakura, Y.; Thompson, H.; Nakano, T.

    1988-09-01

    Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of (35S) sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate (35S)more » proteoglycans. When ''MMC-like'' cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1-W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these ''second generation PMC'' formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.« less

  16. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through α2β1 integrin

    PubMed Central

    Bix, Gregory; Fu, Jian; Gonzalez, Eva M.; Macro, Laura; Barker, Amy; Campbell, Shelly; Zutter, Mary M.; Santoro, Samuel A.; Kim, Jiyeun K.; Höök, Magnus; Reed, Charles C.; Iozzo, Renato V.

    2004-01-01

    Endorepellin, the COOH-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits several aspects of angiogenesis. We provide evidence for a novel biological axis that links a soluble fragment of perlecan protein core to the major cell surface receptor for collagen I, α2β1 integrin, and provide an initial investigation of the intracellular signaling events that lead to endorepellin antiangiogenic activity. The interaction between endorepellin and α2β1 integrin triggers a unique signaling pathway that causes an increase in the second messenger cAMP; activation of two proximal kinases, protein kinase A and focal adhesion kinase; transient activation of p38 mitogen-activated protein kinase and heat shock protein 27, followed by a rapid down-regulation of the latter two proteins; and ultimately disassembly of actin stress fibers and focal adhesions. The end result is a profound block of endothelial cell migration and angiogenesis. Because perlecan is present in both endothelial and smooth muscle cell basement membranes, proteolytic activity during the initial stages of angiogenesis could liberate antiangiogenic fragments from blood vessels' walls, including endorepellin. PMID:15240572

  17. Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling

    PubMed Central

    Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.

    2013-01-01

    Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597

  18. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.

    1992-01-01

    The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.

  19. Distribution of extracellular matrix molecules in human uterine tubes during the menstrual cycle: a histological and immunohistochemical analysis.

    PubMed

    Godoy-Guzmán, Carlos; Nuñez, Claudio; Orihuela, Pedro; Campos, Antonio; Carriel, Víctor

    2018-04-16

    The uterine tube (UT) is an important and complex organ of the women's reproductive system. In general, the anatomy and basic histology of this organ are well-known. However, the composition and function of the extracellular matrix (ECM) of the UT is still poorly understood. The ECM is a complex supramolecular material produced by cells which is commonly restricted to the basement membrane and interstitial spaces. ECM molecules play not only a structural role, they are also important for cell growth, survival and differentiation in all tissues. In this context, the aim of this study was to evaluate the deposition and distribution of type I and III collagens and proteoglycans (decorin, biglycan, fibromodulin and versican) in human UT during the follicular and luteal phases by using histochemical and immunohistochemical techniques. Our results showed a broad synthesis of collagens (I and III) in the stroma of the UT. The analysis by regions showed, in the mucosa, a specific distribution of versican and fibromodulin in the epithelial surface, whereas decorin and fibromodulin were observed in the lamina propria. Versican and decorin were found in the stroma of the muscular layer, whereas all studied proteoglycans were identified in the serosa. Curiously, biglycan was restricted to the wall of the blood vessels of the serosa and muscular layers. Furthermore, there was an immunoreaction for collagens, decorin, versican and fibromodulin in the UT peripheral nerves. The differential distribution of these ECM molecules in the different layers of the UT could be related to specific structural and/or biomechanical functions needed for the oviductal transport, successful fertilization and early embryogenesis. However, further molecular studies under physiological and pathological conditions are still needed to elucidate the specific role of each molecule in the human UT. © 2018 Anatomical Society.

  20. Identification of Human Cathelicidin Peptide LL-37 as a Ligand for Macrophage Integrin αMβ2 (Mac-1, CD11b/CD18) that Promotes Phagocytosis by Opsonizing Bacteria

    PubMed Central

    Lishko, Valeryi K.; Moreno, Benjamin; Podolnikova, Nataly P.; Ugarova, Tatiana P.

    2016-01-01

    LL-37, a cationic antimicrobial peptide, has numerous immune-modulating effects. However, the identity of a receptor(s) mediating the responses in immune cells remains uncertain. We have recently demonstrated that LL-37 interacts with the αMI-domain of integrin αMβ2 (Mac-1), a major receptor on the surface of myeloid cells, and induces a migratory response in Mac-1-expressing monocyte/macrophages as well as activation of Mac-1 on neutrophils. Here, we show that LL-37 and its C-terminal derivative supported strong adhesion of various Mac-1-expressing cells, including HEK293 cells stably transfected with Mac-1, human U937 monocytic cells and murine IC-21 macrophages. The cell adhesion to LL-37 was partially inhibited by specific Mac-1 antagonists, including mAb against the αM integrin subunit and neutrophil inhibitory factor, and completely blocked when anti-Mac-1 antibodies were combined with heparin, suggesting that cell surface heparan sulfate proteoglycans act cooperatively with integrin Mac-1. Coating both Gram-negative and Gram-positive bacteria with LL-37 significantly potentiated their phagocytosis by macrophages, and this process was blocked by a combination of anti-Mac-1 mAb and heparin. Furthermore, phagocytosis by wild-type murine peritoneal macrophages of LL-37-coated latex beads, a model of foreign surfaces, was several fold higher than that of untreated beads. By contrast, LL-37 failed to augment phagocytosis of beads by Mac-1-deficient macrophages. These results identify LL-37 as a novel ligand for integrin Mac-1 and demonstrate that the interaction between Mac-1 on macrophages and bacteria-bound LL-37 promotes phagocytosis. PMID:27990411

  1. Early Transcriptional Responses of HepG2-A 16 Liver Cells to Infection by Plasmodium falciparum Sporozoites

    DTIC Science & Technology

    2011-07-29

    not wild-type sporozoites. Glypican-3 is a heparin sulfate proteoglycan (46) secreted in the plasma of hepatocellular carcinoma patients, and...regarded as a diagnostic serum marker for hepatocellular carcinoma (47-50). Unlike wild-type sporozoites, irradiated sporozoites are believed to invade...effector cells other than Kupffer cells. Expression of glypican-3 is known to stimulate the recruitment of macrophages into human hepatocellular

  2. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    PubMed

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  3. Species-Independent Modeling of High-Frequency Ultrasound Backscatter in Hyaline Cartilage.

    PubMed

    Männicke, Nils; Schöne, Martin; Liukkonen, Jukka; Fachet, Dominik; Inkinen, Satu; Malo, Markus K; Oelze, Michael L; Töyräs, Juha; Jurvelin, Jukka S; Raum, Kay

    2016-06-01

    Apparent integrated backscatter (AIB) is a common ultrasound parameter used to assess cartilage matrix degeneration. However, the specific contributions of chondrocytes, proteoglycan and collagen to AIB remain unknown. To reveal these relationships, this work examined biopsies and cross sections of human, ovine and bovine cartilage with 40-MHz ultrasound biomicroscopy. Site-matched estimates of collagen concentration, proteoglycan concentration, collagen orientation and cell number density were employed in quasi-least-squares linear regression analyses to model AIB. A positive correlation (R(2) = 0.51, p < 10(-4)) between AIB and a combination model of cell number density and collagen concentration was obtained for collagen orientations approximately perpendicular (>70°) to the sound beam direction. These findings indicate causal relationships between AIB and cartilage structural parameters and could aid in more sophisticated future interpretations of ultrasound backscatter. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.

    PubMed

    Brun, Paola; Scorzeto, Michele; Vassanelli, Stefano; Castagliuolo, Ignazio; Palù, Giorgio; Ghezzo, Francesca; Messina, Grazia M L; Iucci, Giovanna; Battaglia, Valentina; Sivolella, Stefano; Bagno, Andrea; Polzonetti, Giovanni; Marletta, Giovanni; Dettin, Monica

    2013-04-01

    The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Lubricin is Required for the Structural Integrity and Post-natal Maintenance of TMJ

    PubMed Central

    Koyama, E.; Saunders, C.; Salhab, I.; Decker, R.S.; Chen, I.; Um, H.; Pacifici, M.; Nah, H.D.

    2014-01-01

    The Proteoglycan 4 (Prg4) product lubricin plays essential roles in boundary lubrication and movement in limb synovial joints, but its roles in temporomandibular joint (TMJ) are unclear. Thus, we characterized the TMJ phenotype in wild-type and Prg4 –/– mouse littermates over age. As early as 2 weeks of age, mutant mice exhibited hyperplasia in the glenoid fossa articular cartilage, articular disc, and synovial membrane. By 1 month of age, there were fewer condylar superficial tenascin-C/Col1-positive cells and more numerous apoptotic condylar apical cells, while chondroprogenitors displayed higher mitotic activity, and Sox9-, Col2-, and ColX-expressing chondrocyte zones were significantly expanded. Mutant subchondral bone contained numerous Catepsin K- expressing osteoclasts at the chondro-osseous junction, increased invasive marrow cavities, and suboptimal subchondral bone. Mutant glenoid fossa, disc, synovial cells, and condyles displayed higher Hyaluronan synthase 2 expression. Mutant discs also lost their characteristic concave shape, exhibited ectopic chondrocyte differentiation, and occasionally adhered to condylar surfaces. A fibrinoid substance of unclear origin often covered the condylar surface. By 6 months of age, mutant condyles displayed osteoarthritic degradation with apical/mid-zone separation. In sum, lubricin exerts multiple essential direct and indirect roles to preserve TMJ structural and cellular integrity over post-natal life. PMID:24834922

  6. Sulfated Glycans and Related Digestive Enzymes in the Zika Virus Infectivity: Potential Mechanisms of Virus-Host Interaction and Perspectives in Drug Discovery.

    PubMed

    Pomin, Vitor H

    2017-01-01

    As broadly reported, there is an ongoing Zika virus (ZIKV) outbreak in countries of Latin America. Recent findings have demonstrated that ZIKV causes severe defects on the neural development in fetuses in utero and newborns. Very little is known about the molecular mechanisms involved in the ZIKV infectivity. Potential therapeutic agents are also under investigation. In this report, the possible mechanisms of action played by glycosaminoglycans (GAGs) displayed at the surface proteoglycans of host cells, and likely in charge of interactions with surface proteins of the ZIKV, are highlighted. As is common for the most viruses, these sulfated glycans serve as receptors for virus attachment onto the host cells and consequential entry during infection. The applications of (1) exogenous sulfated glycans of different origins and chemical structures capable of competing with the virus attachment receptors (supposedly GAGs) and (2) GAG-degrading enzymes able to digest the virus attachment receptors on the cells may be therapeutically beneficial as anti-ZIKV. This communication attempts, therefore, to offer some guidance for the future research programs aimed to unveil the molecular mechanisms underlying the ZIKV infectivity and to develop therapeutics capable of decreasing the devastating consequences caused by ZIKV outbreak in the Americas.

  7. Domain organization, genomic structure, evolution, and regulation of expression of the aggrecan gene family.

    PubMed

    Schwartz, N B; Pirok, E W; Mensch, J R; Domowicz, M S

    1999-01-01

    Proteoglycans are complex macromolecules, consisting of a polypeptide backbone to which are covalently attached one or more glycosaminoglycan chains. Molecular cloning has allowed identification of the genes encoding the core proteins of various proteoglycans, leading to a better understanding of the diversity of proteoglycan structure and function, as well as to the evolution of a classification of proteoglycans on the basis of emerging gene families that encode the different core proteins. One such family includes several proteoglycans that have been grouped with aggrecan, the large aggregating chondroitin sulfate proteoglycan of cartilage, based on a high number of sequence similarities within the N- and C-terminal domains. Thus far these proteoglycans include versican, neurocan, and brevican. It is now apparent that these proteins, as a group, are truly a gene family with shared structural motifs on the protein and nucleotide (mRNA) levels, and with nearly identical genomic organizations. Clearly a common ancestral origin is indicated for the members of the aggrecan family of proteoglycans. However, differing patterns of amplification and divergence have also occurred within certain exons across species and family members, leading to the class-characteristic protein motifs in the central carbohydrate-rich region exclusively. Thus the overall domain organization strongly suggests that sequence conservation in the terminal globular domains underlies common functions, whereas differences in the central portions of the genes account for functional specialization among the members of this gene family.

  8. The immunoglobulin-like domains 1 and 2 of the protein tyrosine phosphatase LAR adopt an unusual horseshoe-like conformation

    PubMed Central

    Biersmith, Bridget H.; Hammel, Michal; Geisbrecht, Erika R.; Bouyain, Samuel

    2011-01-01

    Neurogenesis depends on exquisitely regulated interactions between macromolecules on the cell surface and in the extracellular matrix. In particular, interactions between proteoglycans and members of the type IIa subgroup of receptor protein tyrosine phosphatases underlie critical developmental processes such as the formation of synapses at the neuromuscular junction and the migration of axons to their appropriate targets. We report here the crystal structures of the first and second immunoglobulin-like domains of the Drosophila type IIa receptor Dlar and its mouse homologue LAR. These two domains adopt an unusual antiparallel arrangement that has not been previously observed in tandem repeats of immunoglobulin-like domains and that is presumably conserved in all type IIa receptor protein tyrosine phosphatases. PMID:21402080

  9. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans.

    PubMed

    Noborn, Fredrik; Gomez Toledo, Alejandro; Green, Anders; Nasir, Waqas; Sihlbom, Carina; Nilsson, Jonas; Larson, Göran

    2016-10-03

    Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.

  10. Composition and structure of the pericellular environment. Physiological function and chemical composition of pericellular proteoglycan (an evolutionary view).

    PubMed

    Scott, J E

    1975-07-17

    Connective tissue cells exist in a meshwork of insoluble fibres, the interstices of which are filled with soluble, high molecular mass, anionic material of a predominantly carbohydrate nature. The interactions of fibres with the interfibrillar material are central to the discussion of connective tissue physiology. As with all soluble polymers, the interfibrillar polyanion tends to "swell' and the tangled mass of chains offers considerable resistance to penetration by the large insoluble fibres. The consequent pressure to "inflate' the fibrous network is important in giving elasticity to cartilage, transparency to cornea, etc. Branched structures (of proteoglycans) and straight-chain forms (of hyaluronate) are compared for their ability to fulfil these functions. Apart from their physical ("non-specific') roles proteoglycans and glycosaminoglycans are able to interact physicochemically with, for example, collagen in ways which show considerable specificity, and which presumably are important in the laying down of the fibrous network as well as in maintaining its mechanical integrity. It is proposed that the role played by radiation, particularly as mediated via the hydrated electron (eaq) was dominant in the pre- and post-biotic evolution of pericellular environments.

  11. Proteoglycan-based diversification of disease outcome in head and neck cancer patients identifies NG2/CSPG4 and syndecan-2 as unique relapse and overall survival predicting factors.

    PubMed

    Farnedi, Anna; Rossi, Silvia; Bertani, Nicoletta; Gulli, Mariolina; Silini, Enrico Maria; Mucignat, Maria Teresa; Poli, Tito; Sesenna, Enrico; Lanfranco, Davide; Montebugnoli, Lucio; Leonardi, Elisa; Marchetti, Claudio; Cocchi, Renato; Ambrosini-Spaltro, Andrea; Foschini, Maria Pia; Perris, Roberto

    2015-05-03

    Tumour relapse is recognized to be the prime fatal burden in patients affected by head and neck squamous cell carcinoma (HNSCC), but no discrete molecular trait has yet been identified to make reliable early predictions of tumour recurrence. Expression of cell surface proteoglycans (PGs) is frequently altered in carcinomas and several of them are gradually emerging as key prognostic factors. A PG expression analysis at both mRNA and protein level, was pursued on primary lesions derived from 173 HNSCC patients from whom full clinical history and 2 years post-surgical follow-up was accessible. Gene and protein expression data were correlated with clinical traits and previously proposed tumour relapse markers to stratify high-risk patient subgroups. HNSCC lesions were indeed found to exhibit a widely aberrant PG expression pattern characterized by a variable expression of all PGs and a characteristic de novo transcription/translation of GPC2, GPC5 and NG2/CSPG4 respectively in 36%, 72% and 71% on 119 cases. Importantly, expression of NG2/CSPG4, on neoplastic cells and in the intralesional stroma (Hazard Ratio [HR], 6.76, p = 0.017) was strongly associated with loco-regional relapse, whereas stromal enrichment of SDC2 (HR, 7.652, p = 0.007) was independently tied to lymphnodal infiltration and disease-related death. Conversely, down-regulated SDC1 transcript (HR, 0.232, p = 0.013) uniquely correlated with formation of distant metastases. Altered expression of PGs significantly correlated with the above disease outcomes when either considered alone or in association with well-established predictors of poor prognosis (i.e. T classification, previous occurrence of precancerous lesions and lymphnodal metastasis). Combined alteration of all three PGs was found to be a reliable predictor of shorter survival. An unprecedented PG-based prognostic portrait is unveiled that incisively diversifies disease course in HNSCC patients beyond the currently known clinical and molecular biomarkers.

  12. Human Metapneumovirus (HMPV) Binding and Infection Are Mediated by Interactions between the HMPV Fusion Protein and Heparan Sulfate

    PubMed Central

    Chang, Andres; Masante, Cyril; Buchholz, Ursula J.

    2012-01-01

    Human metapneumovirus (HMPV) is a major worldwide respiratory pathogen that causes acute upper and lower respiratory tract disease. The mechanism by which this virus recognizes and gains access to its target cell is still largely unknown. In this study, we addressed the initial steps in virus binding and infection and found that the first binding partner for HMPV is heparan sulfate (HS). While wild-type CHO-K1 cells are permissive to HMPV infection, mutant cell lines lacking the ability to synthesize glycosaminoglycans (GAGs), specifically, heparan sulfate proteoglycans (HSPGs), were resistant to binding and infection by HMPV. The permissiveness to HMPV infection was also abolished when CHO-K1 cells were treated with heparinases. Importantly, using recombinant HMPV lacking both the G and small hydrophobic (SH) proteins, we report that this first virus-cell binding interaction is driven primarily by the fusion protein (HMPV F) and that this interaction is needed to establish a productive infection. Finally, HMPV binding to cells did not require β1 integrin expression, and RGD-mediated interactions were not essential in promoting HMPV F-mediated cell-to-cell membrane fusion. Cells lacking β1 integrin, however, were less permissive to HMPV infection, indicating that while β1 integrins play an important role in promoting HMPV infection, the interaction between integrins and HMPV occurs after the initial binding of HMPV F to heparan sulfate proteoglycans. PMID:22238303

  13. Quantification of idiopathic pulmonary fibrosis using computed tomography and histology.

    PubMed

    Coxson, H O; Hogg, J C; Mayo, J R; Behzad, H; Whittall, K P; Schwartz, D A; Hartley, P G; Galvin, J R; Wilson, J S; Hunninghake, G W

    1997-05-01

    We used computed tomography (CT) and histologic analysis to quantify lung structure in idiopathic pulmonary fibrosis (IPF). CT scans were obtained from IPF and control patients and lung volumes were estimated from measurements of voxel size, and X-ray attenuation values of each voxel. Quantitative estimates of lung structure were obtained from biopsies obtained from diseased and normal CT regions using stereologic methods. CT density was used to calculate the proportion of tissue and air, and this value was used to correct the biopsy specimens to the level of inflation during the CT scan. The data show that IPF is associated with a reduction in airspace volume with no change in tissue volume or weight compared with control lungs. Lung surface area decreased two-thirds (p < 0.001) and mean parenchymal thickness increased tenfold (p < 0.001). An exudate of fluid and cells was present in the airspace of the diseased lung regions and the number of inflammatory cells, collagen, and proteoglycans was increased per 100 g of tissue in IPF. We conclude that IPF reorganized lung tissue content causing a loss of airspace and surface area without increasing the total lung tissue.

  14. LDL receptor-related protein mediates cell-surface clustering and hepatic sequestration of chylomicron remnants in LDLR-deficient mice.

    PubMed

    Yu, K C; Chen, W; Cooper, A D

    2001-06-01

    It has been proposed that in the liver, chylomicron remnants (lipoproteins carrying dietary lipid) may be sequestered before being internalized by hepatocytes. To study this, chylomicron remnants labeled with a fluorescent dye were perfused into isolated livers of LDL receptor-deficient (LDLR-deficient) mice (Ldlr(-/-)) and examined by confocal microscopy. In contrast to livers from normal mice, there was clustering of the chylomicron remnants on the cell surface in the space of DISSE: These remnant clusters colocalized with clusters of LDLR-related protein (LRP) and could be eliminated by low concentrations of receptor-associated protein, an inhibitor of LRP. When competed with ligands of heparan sulfate proteoglycans (HSPGs), the remnant clusters still appeared but were fewer in number, although syndecans (membrane HSPGs) colocalized with the remnant clusters. This suggests that the clustering of remnants is not dependent on syndecans but that the syndecans may modify the binding of remnants. These results establish that sequestration is a novel process, the clustering of remnants in the space of DISSE: The clustering involves remnants binding to the LRP, and this may be stabilized by binding with syndecans, eventually followed by endocytosis.

  15. Visualization of predentine matrix components and endocytic structures in rat incisor odontoblasts with tannic acid.

    PubMed

    Goldberg, M; Septier, D

    1989-12-01

    Rat incisor odontoblasts and predentine fixed with tannic acid-glutaraldehyde-osmium tetroxide (Tago) were compared with those obtained by prior incubation in tannic acid-Ringer before conventional fixation with glutaraldehyde-osmium-tetroxide (Tari) The Tago method allowed visualization of complex glycoconjugates along the plasma membrane, in the pericellular spaces and in the intercellular predentine matrix. The non-collagenous proteins, proteoglycans and lipids were seen as granules and thin filaments located between the collagen fibers and at their surface. The collagen fibers themselves were also stained. The Tari method which was used to visualize exocytosis, mainly revealed endocytosis in the form of large intracellular vacuoles containing tannic acid and stained proteoglycans. It is suggested that tannic acid-Ringer incubation prior to fixation increases the endocytosis of the matrix components, which acculumates in these large vesicles.

  16. If walls could talk

    NASA Technical Reports Server (NTRS)

    Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.

  17. Inhibition of integrative cartilage repair by proteoglycan 4 in synovial fluid.

    PubMed

    Englert, Carsten; McGowan, Kevin B; Klein, Travis J; Giurea, Alexander; Schumacher, Barbara L; Sah, Robert L

    2005-04-01

    To determine the effects of the articular cartilage surface, as well as synovial fluid (SF) and its components, specifically proteoglycan 4 (PRG4) and hyaluronic acid (HA), on integrative cartilage repair in vitro. Blocks of calf articular cartilage were harvested, some with the articular surface intact and others without. Some of the latter types of blocks were pretreated with trypsin, and then with bovine serum albumin, SF, PRG4, or HA. Immunolocalization of PRG4 on cartilage surfaces was performed after treatment. Pairs of similarly treated cartilage blocks were incubated in partial apposition for 2 weeks in medium supplemented with serum and (3)H-proline. Following culture, mechanical integration between apposed cartilage blocks was assessed by measuring adhesive strength, and protein biosynthesis and deposition were determined by incorporated (3)H-proline. Samples with articular surfaces in apposition exhibited little integrative repair compared with samples with cut surfaces in apposition. PRG4 was immunolocalized at the articular cartilage surface, but not in deeper, cut surfaces (without treatment). Cartilage samples treated with trypsin and then with SF or PRG4 exhibited an inhibition of integrative repair and positive immunostaining for PRG4 at treated surfaces compared with normal cut cartilage samples, while samples treated with HA exhibited neither inhibited integrative repair nor PRG4 at the tissue surfaces. Deposition of newly synthesized protein was relatively similar under conditions in which integration differed significantly. These results support the concept that PRG4 in SF, which normally contributes to cartilage lubrication, can inhibit integrative cartilage repair. This has the desirable effect of preventing fusion of apposing surfaces of articulating cartilage, but has the undesirable effect of inhibiting integrative repair.

  18. Ultra-high field diffusion tensor imaging of articular cartilage correlated with histology and scanning electron microscopy.

    PubMed

    Raya, José G; Arnoldi, Andreas P; Weber, Daniel L; Filidoro, Lucianna; Dietrich, Olaf; Adam-Neumair, Silvia; Mützel, Elisabeth; Melkus, Gerd; Putz, Reinhard; Reiser, Maximilian F; Jakob, Peter M; Glaser, Christian

    2011-08-01

    To investigate the relationship of the different diffusion tensor imaging (DTI) parameters (ADC, FA, and first eigenvector (EV)) to the constituents (proteoglycans and collagen), the zonal arrangement of the collagen network, and mechanical loading of articular cartilage. DTI of eight cartilage-on-bone samples of healthy human patellar cartilage was performed at 17.6 T. Three samples were additionally imaged under indentation loading. After DTI, samples underwent biomechanical testing, safranin-O staining for semiquantitative proteoglycan estimation, and scanning electron microscopy (SEM) for depicting collagen architecture. From the articular surface to the bone-cartilage interface, ADC continuously decreased and FA increased. Cartilage zonal heights calculated from EVs strongly correlated with SEM-derived zonal heights (P < 0.01, r (2)=0.87). Compression reduced ADC in the superficial 30% of cartilage and increased FA in the superficial 5% of cartilage. Reorientation of the EVs indicative of collagen fiber reorientation under the indenter was observed. No significant correlation was found between ADC, FA, and compressive stiffness. Correlating ADC and FA with proteoglycan and collagen content suggests that diffusion is dominated by different depth-dependent mechanisms within cartilage. Knowledge of the spatial distribution of the DTI parameters and their variation contributes to form a database for future analysis of defective cartilage.

  19. Concentration determination of collagen and proteoglycan in bovine nasal cartilage by Fourier transform infrared imaging and PLS

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexi; Xiao, Zhi-Yan; Yin, Jianhua; Xia, Yang

    2014-09-01

    Fourier transform infrared imaging (FTIRI) combined with chemometrics can be used to detect the structure of bio-macromolecule, measure the concentrations of some components, and so on. In this study, FTIRI with Partial Least-Squares (PLS) regression was applied to study the concentration of two main components in bovine nasal cartilage (BNC), collagen and proteoglycan. An infrared spectrum library was built by mixing the collagen and chondroitin 6-sulfate (main of proteoglycan) at different ratios. Some pretreatments are needed for building PLS model. FTIR images were collected from BNC sections at 6.25μm and 25μm pixel size. The spectra extracted from BNC-FTIR images were imported into the PLS regression program to predict the concentrations of collagen and proteoglycan. These PLS-determined concentrations are agreed with the result in our previous work and biochemical analytical results. The prediction shows that the concentrations of collagen and proteoglycan in BNC are comparative on the whole. However, the concentration of proteoglycan is a litter higher than that of collagen, to some extent.

  20. Different patterns of collagen-proteoglycan interaction: a scanning electron microscopy and atomic force microscopy study.

    PubMed

    Raspanti, M; Congiu, T; Alessandrini, A; Gobbi, P; Ruggeri, A

    2000-01-01

    The extracellular matrix of unfixed, unstained rat corneal stroma, visualized with high-resolution scanning electron microscopy and atomic force microscopy after minimal preliminary treatment, appears composed of straight, parallel, uniform collagen fibrils regularly spaced by a three-dimensional, irregular network of thin, delicate proteoglycan filaments. Rat tail tendon, observed under identical conditions, appears instead made of heterogeneous, closely packed fibrils interwoven with orthogonal proteoglycan filaments. Pre-treatment with cupromeronic blue just thickens the filaments without affecting their spatial layout. Digestion with chondroitinase ABC rids the tendon matrix of all its interconnecting filaments while the corneal stroma architecture remains virtually unaffected, its fibrils always being separated by an evident interfibrillar spacing which is never observed in tendon. Our observations indicate that matrix proteoglycans are responsible for both the highly regular interfibrillar spacing which is distinctive of corneal stroma, and the strong interfibrillar binding observed in tendon. These opposite interaction patterns appear to be distinctive of different proteoglycan species. The molecular details of proteoglycan interactions are still incompletely understood and are the subject of ongoing research.

  1. Distorted secretory granule composition in mast cells with multiple protease deficiency.

    PubMed

    Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar

    2013-10-01

    Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.

  2. Differential expression of syndecan isoforms during mouse incisor amelogenesis.

    PubMed

    Muto, Taro; Miyoshi, Keiko; Munesue, Seiichi; Nakada, Hiroshi; Okayama, Minoru; Matsuo, Takashi; Noma, Takafumi

    2007-08-01

    Syndecans are transmembranous heparan sulfate proteoglycans (HSPGs) with covalently attached glycosaminoglycan side-chains located on the cell surface. The mammalian syndecan family is composed of four types of syndecans (syndecan-1 to -4). Syndecans interact with the intracellular cytoskeleton through the cytoplasmic domains of their core proteins and membrane proteins, extracellular enzymes, growth factors, and matrix components, through their heparan-sulfate chains, to regulate developmental processes.Here, as a first step to assess the possible roles of syndecan proteins in amelogenesis, we examined the expression patterns of all syndecan isoforms in continuously growing mouse incisors, in which we can overview major differentiation stages of amelogenesis at a glance. Understanding the expression domain of each syndecan isoform during specific developmental stages seems useful for investigating their physiological roles in amelogenesis. Immunohistochemical analysis of syndecan core proteins in the lower incisors from postnatal day 1 mice revealed spatially and temporally specific expression patterns, with syndecan-1 expressed in undifferentiated epithelial and mesenchymal cells, and syndecan-2, -3, and -4 in more differentiated cells. These findings suggest that each syndecan isoform functions distinctly during the amelogenesis of the incisors of mice.

  3. An affinity adsorption media that mimics heparan sulfate proteoglycans for the treatment of drug-resistant bacteremia

    NASA Astrophysics Data System (ADS)

    McCrea, Keith R.; Ward, Robert S.

    2016-06-01

    Removal of several drug-resistant bacteria from blood by affinity adsorption onto a heparin-functional media is reported. Heparin is a chemical analogue of heparan sulfate (HS) proteoglycans, found on transmembrane proteins of endothelial cells. Many blood-borne human pathogens, including bacteria, viruses, parasites, and fungi have been reported to target HS as an initial step in their pathogenesis. Here, we demonstrate the binding and removal of Methicillin-resistant Staphylococcus aureus (MRSA), Extended-Spectrum Betalactamase Klebsiella pneumoniae (ESBL), and two Carbapenem-resistant Enterobacteriaceae (both CRE Escherichia coli and CRE K. pneumoniae) using 300 μm polyethylene beads surface modified with end-point-attached heparin. Depending on the specific bacteria, the amount removed ranged between 39% (ESBL) and 99.9% (CRE). The total amount of bacteria adsorbed ranged between 2.8 × 105 and 8.6 × 105 colony forming units (CFU) per gram of adsorption media. Based on a polymicrobial challenge which showed no competitive binding, MRSA and CRE apparently utilize different binding sequences on the immobilized heparin ligand. Since the total circulating bacterial load during bacteremia seldom exceeds 5 × 105 CFUs, it appears possible to significantly reduce bacterial concentration in infected patients by multi-pass recirculation of their blood through a small extracorporeal affinity filter containing the heparin-functional adsorption media. This 'dialysis-like therapy' is expected to improve patient outcomes and reduce the cost of care, particularly when there are no anti-infective drugs available to treat the infection.

  4. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, Thomas F.; Chapman, Michael S., E-mail: chapmami@ohsu.edu

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites ofmore » AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.« less

  5. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, Thomas F.; Chapman, Michael S.

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites ofmore » AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.« less

  6. Local induction of acetylcholine receptor clustering in myotube cultures using microfluidic application of agrin.

    PubMed

    Tourovskaia, Anna; Kosar, T Fettah; Folch, Albert

    2006-03-15

    During neuromuscular synaptogenesis, the exchange of spatially localized signals between nerve and muscle initiates the coordinated focal accumulation of the acetylcholine (ACh) release machinery and the ACh receptors (AChRs). One of the key first steps is the release of the proteoglycan agrin focalized at the axon tip, which induces the clustering of AChRs on the postsynaptic membrane at the neuromuscular junction. The lack of a suitable method for focal application of agrin in myotube cultures has limited the majority of in vitro studies to the application of agrin baths. We used a microfluidic device and surface microengineering to focally stimulate muscle cells with agrin at a small portion of their membrane and at a time and position chosen by the user. The device is used to verify the hypothesis that focal application of agrin to the muscle cell membrane induces local aggregation of AChRs in differentiated C2C12 myotubes.

  7. Distinct Secondary Structures of the Leucine-Rich Repeat Proteoglycans Decorin and Biglycan: Glycosylation-Dependent Conformational Stability

    NASA Technical Reports Server (NTRS)

    Krishnan, Priya; Hocking, Anne M.; Scholtz, J. Martin; Pace, C. Nick; Holik, Kimberly K.; McQuillan, David J.

    1998-01-01

    Biglycan and decorin, closely related small leucine-rich repeat proteoglycans, have been overexpressed in eukaryotic cers and two major glycoforms isolated under native conditions: a proteoglycan substituted with glycosaminoglycan chains; and a core protein form secreted devoid of glycosaminoglycans. A comparative biophysical study of these glycoforms has revealed that the overall secondary structures of biglycan and decorin are different. Far-UV Circular Dichroism (CD) spectroscopy of decorin and biglycan proteoglycans indicates that, although they are predominantly Beta-sheet, biglycan has a significantly higher content of alpha-helical structure. Decorin proteoglycan and core protein are very similar, whereas the biglycan core protein exhibits closer similarity to the decorin glycoforms than to. the biglycan proteoglycan form. However, enzymatic removal of the chondroitin sulfate chains from biglycan proteoglycan does not induce a shift to the core protein structure, suggesting that the fmal form is influenced by polysaccharide addition only during biosynthesis. Fluorescence emission spectroscopy demonstrated that the single tryptophan residue, which is at a conserved position at the C-terminal domain of both biglycan and decorin, is found in similar microenvironments. This indicates that at least in this specific domain, the different glycoforms do exhibit apparent conservation of structure. Exposure of decorin and biglycan to 10 M urea resulted in an increase in fluorescent intensity, which indicates that the emission from tryptophan in the native state is quenched. Comparison of urea-induced protein unfolding curves provided further evidence that decorin and biglycan assume different structures in solution. Decorin proteoglycan and core protein unfold in a manner similar to a classic two-state model, in which there is a steep transition to an unfolded state between 1-2 M urea. The biglycan core protein also shows a similar steep transition. However, biglycan proteoglycan shows a broad unfolding transition between 1-6 M urea, probably indicating the presence of stable unfolding intermediates.

  8. EDTA-insoluble, calcium-binding proteoglycan in bovine bone

    NASA Technical Reports Server (NTRS)

    Hashimoto, Y.; Lester, G. E.; Caterson, B.; Yamauchi, M.

    1995-01-01

    A calcium ion precipitable, trypsin-generated proteoglycan fragment has been isolated from the demineralized, EDTA-insoluble matrices of bone. The demineralized matrix was completely digested with trypsin, increasing concentrations of CaCl2 were added to the supernatant, and the resulting precipitates were analyzed. The amount of precipitate gradually increased with higher concentrations of calcium and was reversibly solubilized by EDTA. After molecular sieve and anion exchange chromatography, a proteoglycan-containing peak was obtained. Immunochemical analysis showed that this peak contained chondroitin 4-sulfate and possibly keratan sulfate. Amino acid analysis showed that this proteoglycan contained high amounts of aspartic acid/asparagine (Asx), serine (Ser), glutamic acid/glutamine (Glx), proline (Pro), and glycine (Gly); however, it contained little leucine (Leu) which suggests that it is not a member of the leucine-rich small proteoglycan family. In addition, significant amounts of phosphoserine (P-Ser) and hydroxyproline (Hyp) were identified in hydrolysates of this fraction. A single band (M(r) 59 kDa) was obtained on SDS-PAGE that stained with Stains-all but not with Coomassie Brilliant Blue R-250. If bone powder was trypsinized prior to demineralization, this proteoglycan-containing fraction was not liberated. Collectively, these results indicate that a proteoglycan occurs in the demineralized matrix that is precipitated with CaCl2 and is closely associated with both mineral and collagen matrices. Such a molecule might facilitate the structural network for the induction of mineralization in bone.

  9. Contaminants in commercial preparations of ‘purified’ small leucine-rich proteoglycans may distort mechanistic studies

    PubMed Central

    Brown, Sharon J.; Fuller, Heidi R.; Jones, Philip; Caterson, Bruce; Shirran, Sally L.; Botting, Catherine H.

    2016-01-01

    The present study reports the perplexing results that came about because of seriously impure commercially available reagents. Commercial reagents and chemicals are routinely ordered by scientists and expected to have been rigorously assessed for their purity. Unfortunately, we found this assumption to be risky. Extensive work was carried out within our laboratory using commercially sourced preparations of the small leucine-rich proteoglycans (SLRPs), decorin and biglycan, to investigate their influence on nerve cell growth. Unusual results compelled us to analyse the composition and purity of both preparations of these proteoglycans (PGs) using both mass spectrometry (MS) and Western blotting, with and without various enzymatic deglycosylations. Commercial ‘decorin’ and ‘biglycan’ were found to contain a mixture of PGs including not only both decorin and biglycan but also fibromodulin and aggrecan. The unexpected effects of ‘decorin’ and ‘biglycan’ on nerve cell growth could be explained by these impurities. Decorin and biglycan contain either chondroitin or dermatan sulfate glycosaminoglycan (GAG) chains whereas fibromodulin only contains keratan sulfate and the large (>2500 kDa), highly glycosylated aggrecan contains both keratan and chondroitin sulfate. The different structure, molecular weight and composition of these impurities significantly affected our work and any conclusions that could be made. These findings beg the question as to whether scientists need to verify the purity of each commercially obtained reagent used in their experiments. The implications of these findings are vast, since the effects of these impurities may already have led to inaccurate conclusions and reports in the literature with concomitant loss of researchers’ funds and time. PMID:27994047

  10. Syndecan-2 is upregulated in colorectal cancer cells through interactions with extracellular matrix produced by stromal fibroblasts.

    PubMed

    Vicente, Carolina Meloni; Ricci, Ritchelli; Nader, Helena Bonciani; Toma, Leny

    2013-05-25

    The extracellular matrix (ECM) influences the structure, viability and functions of cells and tissues. Recent evidence indicates that tumor cells and stromal cells interact through direct cell-cell contact, the production of ECM components and the secretion of growth factors. Syndecans are a family of transmembrane heparan sulfate proteoglycans that are involved in cell adhesion, motility, proliferation and differentiation. Syndecan-2 has been found to be highly expressed in colorectal cancer cell lines and appears to be critical for cancer cell behavior. We have examined the effect of stromal fibroblast-produced ECM on the production of proteoglycans by colorectal cancer cell lines. Our results showed that in a highly metastatic colorectal cancer cell line, HCT-116, syndecan-2 expression is enhanced by fibroblast ECM, while the expression of other syndecans decreased. Of the various components of the stromal ECM, fibronectin was the most important in stimulating the increase in syndecan-2 expression. The co-localization of syndecan-2 and fibronectin suggests that these two molecules are involved in the adhesion of HCT-116 cells to the ECM. Additionally, we demonstrated an increase in the expression of integrins alpha-2 and beta-1, in addition to an increase in the expression of phospho-FAK in the presence of fibroblast ECM. Furthermore, blocking syndecan-2 with a specific antibody resulted in a decrease in cell adhesion, migration, and organization of actin filaments. Overall, these results show that interactions between cancer cells and stromal ECM proteins induce significant changes in the behavior of cancer cells. In particular, a shift from the expression of anti-tumorigenic syndecans to the tumorigenic syndecan-2 may have implications in the migratory behavior of highly metastatic tumor cells.

  11. Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined Malaria Proteins

    DTIC Science & Technology

    2016-08-01

    clearance and infect placental cells, thereby causing pregnancy - associated malaria outbreaks in epidemic regions of the world. Prior to this...recognition and activity. Nat. Chem. Biol. 2, 467–473. Holtan, S.G., Creedon, D.J., Haluska, P., and Markovic, S.N. (2009). Cancer and pregnancy : parallels...falciparum involved in pregnancy -associated malaria. Mol. Microbiol. 49, 179–191. Salanti, A., Dahlbäck, M., Turner, L., Nielsen, M.A., Barfod, L

  12. Vocal fold proteoglycans and their influence on biomechanics.

    PubMed

    Gray, S D; Titze, I R; Chan, R; Hammond, T H

    1999-06-01

    To examine the interstitial proteins of the vocal fold and their influence on the biomechanical properties of that tissue. Anatomic study of the lamina propria of human cadaveric vocal folds combined with some viscosity testing. Identification of proteoglycans is performed with histochemical staining. Quantitative analysis is performed using an image analysis system. A rheometer is used for viscosity testing. Three-dimensional rendering program is used for the computer images. Proteoglycans play an important role in tissue biomechanics. Hyaluronic acid is a key molecule that affects viscosity. The proteoglycans of the lamina propria have important biological and biomechanical effects. The role of hyaluronic acid in determining tissue viscosity is emphasized. Viscosity, its effect on phonatory threshold pressure and energy expended due to phonation is discussed. Proteoglycans, particularly hyaluronic acid, play important roles in determining biomechanical properties of tissue oscillation. Future research will likely make these proteins of important therapeutic interest.

  13. The Investigation of ADAMTS16 in Insulin-Induced Human Chondrosarcoma Cells.

    PubMed

    Cakmak, Ozlem; Comertoglu, Ismail; Firat, Ridvan; Erdemli, Haci Kemal; Kursunlu, S Fatih; Akyol, Sumeyya; Ugurcu, Veli; Altuntas, Aynur; Adam, Bahattin; Demircan, Kadir

    2015-08-01

    A disintegrin-like metalloproteinase with thrombospondin motifs (ADAMTS) is a group of proteins that have enzymatic activity secreted by cells to the outside extracellular matrix. Insulin induces proteoglycan biosynthesis in chondrosarcoma chondrocytes. The purpose of the present in vitro study is to assess the time course effects of insulin on ADAMTS16 expression in OUMS-27 (human chondrosarcoma) cell line to examine whether insulin regulates ADAMTS16 expression as well as proteoglycan biosynthesis with multifaceted properties or not. Chondrosarcoma cells were cultured in Dulbecco's modified Eagle's medium having either 10 μg/mL insulin or not. While the experiment was going on, the medium containing insulin had been changed every other day. Cells were harvested at 1st, 3rd, 7th, and 11th days; subsequently, RNA and proteins were isolated in every experimental group according to their time interval. RNA expression of ADAMTS was estimated by quantitative real-time polymerase chain reaction (qRT-PCR) by using primers. Immunoreactive protein levels were encountered by the western blot protein detection technique by using proper anti-ADAMTS16 antibodies. ADAMTS16 mRNA expression level of chondrosarcoma cells was found to be insignificantly decreased in chondrosarcoma cells induced by insulin detected by the qRT-PCR instrument. On the other hand, there was a gradual decrease in immune-reactant ADAMTS16 protein amount by the time course in insulin-treated cell groups when compared with control cells. It has been suggested that insulin might possibly regulate ADAMTS16 levels/activities in OUMS-27 chondrosarcoma cells taking a role in extracellular matrix turnover.

  14. Lacritin and Other New Proteins of the Lacrimal Functional Unit

    PubMed Central

    McKown, Robert L.; Wang, Ningning; Raab, Ronald W.; Karnati, Roy; Zhang, Yinghui; Williams, Patricia B.; Laurie, Gordon W.

    2009-01-01

    The lacrimal functional unit (LFU) is defined by the 2007 International Dry Eye WorkShop as ‘an integrated system comprising the lacrimal glands, ocular surface (cornea, conjunctiva and meibomian glands) and lids, and the sensory and motor nerves that connect them’. The LFU maintains a healthy ocular surface primarily through a properly functioning tear film that provides protection, lubrication, and an environment for corneal epithelial cell renewal. LFU cells express thousands of proteins. Over two hundred new LFU proteins have been discovered in the last decade. Lacritin is a new LFU-specific growth factor in human tears that flows through ducts to target corneal epithelial cells on the ocular surface. When applied topically in rabbits, lacritin appears to increase the volume of basal tear secretion. Lacritin is one of only a handful of tear proteins preliminarily reported to be downregulated in blepharitis and in two dry eye syndromes. Computational analysis predicts an ordered C-terminal domain that binds the corneal epithelial cell surface proteoglycan syndecan-1 (SDC1) and is required for lacritin’s low nanomolar mitogenic activity. The lacritin binding site on the N-terminus of SDC1 is exposed by heparanase. Heparanase is constitutively expressed by the corneal epithelium and appears to be a normal constituent of tears. Binding triggers rapid signaling to downstream NFAT and mTOR. A wealth of other new proteins, originally designated as hypothetical when first identified by genomic sequencing, are expressed by the human LFU including: ALS2CL, ARHGEF19, KIAA1109, PLXNA1, POLG, WIPI1 and ZMIZ2. Their demonstrated or implied roles in human genetic disease or basic cellular functions are fuel for new investigation. Addressing topical areas in ocular surface physiology with new LFU proteins may reveal interesting new biological mechanisms and help get to the heart of ocular surface dysfunction. PMID:18840430

  15. OLIgo Mass Profiling (OLIMP) of Extracellular Polysaccharides

    PubMed Central

    Günl, Markus; Gille, Sascha; Pauly, Markus

    2010-01-01

    The direct contact of cells to the environment is mediated in many organisms by an extracellular matrix. One common aspect of extracellular matrices is that they contain complex sugar moieties in form of glycoproteins, proteoglycans, and/or polysaccharides. Examples include the extracellular matrix of humans and animal cells consisting mainly of fibrillar proteins and proteoglycans or the polysaccharide based cell walls of plants and fungi, and the proteoglycan/glycolipid based cell walls of bacteria. All these glycostructures play vital roles in cell-to-cell and cell-to-environment communication and signalling. An extraordinary complex example of an extracellular matrix is present in the walls of higher plant cells. Their wall is made almost entirely of sugars, up to 75% dry weight, and consists of the most abundant biopolymers present on this planet. Therefore, research is conducted how to utilize these materials best as a carbon-neutral renewable resource to replace petrochemicals derived from fossil fuel. The main challenge for fuel conversion remains the recalcitrance of walls to enzymatic or chemical degradation due to the unique glycostructures present in this unique biocomposite. Here, we present a method for the rapid and sensitive analysis of plant cell wall glycostructures. This method OLIgo Mass Profiling (OLIMP) is based the enzymatic release of oligosaccharides from wall materials facilitating specific glycosylhydrolases and subsequent analysis of the solubilized oligosaccharide mixtures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)1 (Figure 1). OLIMP requires walls of only 5000 cells for a complete analysis, can be performed on the tissue itself2, and is amenable to high-throughput analyses3. While the absolute amount of the solubilized oligosaccharides cannot be determined by OLIMP the relative abundance of the various oligosaccharide ions can be delineated from the mass spectra giving insights about the substitution-pattern of the native polysaccharide present in the wall. OLIMP can be used to analyze a wide variety of wall polymers, limited only by the availability of specific enzymes4. For example, for the analysis of polymers present in the plant cell wall enzymes are available to analyse the hemicelluloses xyloglucan using a xyloglucanase5, 11, 12, 13, xylan using an endo-β-(1-4)-xylanase 6,7, or for pectic polysaccharides using a combination of a polygalacturonase and a methylesterase 8. Furthermore, using the same principles of OLIMP glycosylhydrolase and even glycosyltransferase activities can be monitored and determined 9. PMID:20567216

  16. Cell therapy: a therapeutic alternative to treat focal cartilage lesions.

    PubMed

    Gimeno, M J; Maneiro, E; Rendal, E; Ramallal, M; Sanjurjo, L; Blanco, F J

    2005-11-01

    Human mesenchymal stem cells (MSCs) are present in most of the tissue matrix, taking part in their regeneration when injury or damage occurs. The aim of this study was to investigate the presence of cells with pluripotential characteristics in synovial membranes from osteoarthritic (OA) patients and the capacity of these cells to differentiate to chondrocytes. Synovial membranes (n = 8) from OA patients were digested with collagenase. Isolated cells were cultured with DMEM, 20% FBS, and FGFb10 ng/mL. Cells from second subculture were used to carry out phenotypic characterization experiments (flow cytometry analysis with 11 monoclonal antibodies) and chondrogenic differentiation experiments(micropellet cultured in chondrogenic medium). Chondrogenic differentiation of cells was assessment by quantification of cartilage extracellular matrix components by following techniques: Safranin O, Toluidine Blue, and Alcian Blue stains to detect proteoglycans and immunohistochemistry to detect type I and II collagen. Flow cytometry analyses showed that in our population more than 90% of cells were positive for MSC markers: CD29 (95%), CD44 (90%), CD73 (95%), CD90 (98%). Cells were negative for hematopoietic markers (CD11b, CD34, and CD45). Furthermore, cells showed positive stain to multipotent markers such as CD117 (c-kit) (98%), CD166 (74%), and STRO-1 (88%) and to quiescent satellite cells like PAX-7 (35%). The micropellet analyses showed that the culture of these cells with TGFbeta-3 for 2 and 3 weeks stimulates proteoglycan and collagen type II synthesis. Both molecules are characteristic of hyaline articular cartilage. In this work, we demonstrate the presence of a cellular population with MSC characteristics in synovial tissue from OA patients. As MSC takes part in reparative processes of adult tissues, these cells could play an important role in OA pathogenesis and treatment.

  17. Changes in content and synthesis of collagen types and proteoglycans in osteoarthritis of the knee joint and comparison of quantitative analysis with Photoshop-based image analysis.

    PubMed

    Lahm, Andreas; Mrosek, Eike; Spank, Heiko; Erggelet, Christoph; Kasch, Richard; Esser, Jan; Merk, Harry

    2010-04-01

    The different cartilage layers vary in synthesis of proteoglycan and of the distinct types of collagen with the predominant collagen Type II with its associated collagens, e.g. types IX and XI, produced by normal chondrocytes. It was demonstrated that proteoglycan decreases in degenerative tissue and a switch from collagen type II to type I occurs. The aim of this study was to evaluate the correlation of real-time (RT)-PCR and Photoshop-based image analysis in detecting such lesions and find new aspects about their distribution. We performed immunohistochemistry and histology with cartilage tissue samples from 20 patients suffering from osteoarthritis compared with 20 healthy biopsies. Furthermore, we quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorimetrically. Using Adobe Photoshop the digitized images of histology and immunohistochemistry stains of collagen type I and II were stored on an external data storage device. The area occupied by any specific colour range can be specified and compared in a relative manner directly from the histogram using the "magic wand tool" in the select similar menu. In the image grow menu gray levels or luminosity (colour) of all pixels within the selected area, including mean, median and standard deviation, etc. are depicted. Statistical Analysis was performed using the t test. With the help of immunohistochemistry, RT-PCR and quantitative RT- PCR we found that not only collagen type II, but also collagen type I is synthesized by the cells of the diseased cartilage tissue, shown by increasing amounts of collagen type I mRNA especially in the later stages of osteoarthritis. A decrease of collagen type II is visible especially in the upper fibrillated area of the advanced osteoarthritic samples, which leads to an overall decrease. Analysis of proteoglycan showed a loss of the overall content and a quite uniform staining in the different zones compared to the healthy cartilage with a classical zonal formation. Correlation analysis of the proteoglycan Photoshop measurements with the RT-PCR using Spearman correlation analysis revealed strong correlation for Safranin O and collagen type I, medium for collagen type II and glycoprotein but weak correlation between PCR aggrecan results. Photoshop-based image analysis might become a valuable supplement for well known histopathological grading systems of lesioned articular cartilage.

  18. Transcription, Translation, and Function of Lubricin, a Boundary Lubricant, at the Ocular Surface

    PubMed Central

    Schmidt, Tannin A.; Sullivan, David A.; Knop, Erich; Richards, Stephen M.; Knop, Nadja; Liu, Shaohui; Sahin, Afsun; Darabad, Raheleh Rahimi; Morrison, Sheila; Kam, Wendy R.; Sullivan, Benjamin D.

    2013-01-01

    Importance Lubricin may be an important barrier to the development of corneal and conjunctival epitheliopathies that may occur in dry eye disease and contact lens wear. Objective To test the hypotheses that lubricin (ie, proteoglycan 4 [PRG4]), a boundary lubricant, is produced by ocular surface epithelia and acts to protect the cornea and conjunctiva against significant shear forces generated during an eyelid blink and that lubricin deficiency increases shear stress on the ocular surface and promotes corneal damage. Design, Setting, and Participants Human, porcine, and mouse tissues and cells were processed for molecular biological, immunohistochemical, and tribological studies, and wild-type and PRG4 knockout mice were evaluated for corneal damage. Results Our findings demonstrate that lubricin is transcribed and translated by corneal and conjunctival epithelial cells. Lubricin messenger RNA is also present in lacrimal and meibomian glands, as well as in a number of other tissues. Absence of lubricin in PRG4 knockout mice is associated with a significant increase in corneal fluorescein staining. Our studies also show that lubricin functions as an effective friction-lowering boundary lubricant at the human cornea-eyelid interface. This effect is specific and cannot be duplicated by the use of hyaluronate or bovine serum albumin solutions. Conclusions and Relevance Our results show that lubricin is transcribed, translated, and expressed by ocular surface epithelia. Moreover, our findings demonstrate that lubricin presence significantly reduces friction between the cornea and conjunctiva and that lubricin deficiency may play a role in promoting corneal damage. PMID:23599181

  19. Transcription, translation, and function of lubricin, a boundary lubricant, at the ocular surface.

    PubMed

    Schmidt, Tannin A; Sullivan, David A; Knop, Erich; Richards, Stephen M; Knop, Nadja; Liu, Shaohui; Sahin, Afsun; Darabad, Raheleh Rahimi; Morrison, Sheila; Kam, Wendy R; Sullivan, Benjamin D

    2013-06-01

    Lubricin may be an important barrier to the development of corneal and conjunctival epitheliopathies that may occur in dry eye disease and contact lens wear. To test the hypotheses that lubricin (ie, proteoglycan 4 [PRG4 ]), a boundary lubricant, is produced by ocular surface epithelia and acts to protect the cornea and conjunctiva against significant shear forces generated during an eyelid blink and that lubricin deficiency increases shear stress on the ocular surface and promotes corneal damage. Human, porcine, and mouse tissues and cells were processed for molecular biological, immunohistochemical, and tribological studies, and wild-type and PRG4 knockout mice were evaluated for corneal damage. Our findings demonstrate that lubricin is transcribed and translated by corneal and conjunctival epithelial cells. Lubricin messenger RNA is also present in lacrimal and meibomian glands, as well as in a number of other tissues. Absence of lubricin in PRG4 knockout mice is associated with a significant increase in corneal fluorescein staining. Our studies also show that lubricin functions as an effective friction-lowering boundary lubricant at the human cornea-eyelid interface. This effect is specific and cannot be duplicated by the use of hyaluronate or bovine serum albumin solutions. Our results show that lubricin is transcribed, translated, and expressed by ocular surface epithelia. Moreover, our findings demonstrate that lubricin presence significantly reduces friction between the cornea and conjunctiva and that lubricin deficiency may play a role in promoting corneal damage.

  20. Single cell RNA sequencing of stem cell-derived retinal ganglion cells.

    PubMed

    Daniszewski, Maciej; Senabouth, Anne; Nguyen, Quan H; Crombie, Duncan E; Lukowski, Samuel W; Kulkarni, Tejal; Sluch, Valentin M; Jabbari, Jafar S; Chamling, Xitiz; Zack, Donald J; Pébay, Alice; Powell, Joseph E; Hewitt, Alex W

    2018-02-13

    We used single cell sequencing technology to characterize the transcriptomes of 1,174 human embryonic stem cell-derived retinal ganglion cells (RGCs) at the single cell level. The human embryonic stem cell line BRN3B-mCherry (A81-H7), was differentiated to RGCs using a guided differentiation approach. Cells were harvested at day 36 and prepared for single cell RNA sequencing. Our data indicates the presence of three distinct subpopulations of cells, with various degrees of maturity. One cluster of 288 cells showed increased expression of genes involved in axon guidance together with semaphorin interactions, cell-extracellular matrix interactions and ECM proteoglycans, suggestive of a more mature RGC phenotype.

  1. Analyses of chondrogenic induction of adipose mesenchymal stem cells by combined co-stimulation mediated by adenoviral gene transfer

    PubMed Central

    2013-01-01

    Introduction Adipose-derived stem cells (ASCs) have the potential to differentiate into cartilage under stimulation with some reported growth and transcriptional factors, which may constitute an alternative for cartilage replacement approaches. In this study, we analyzed the in vitro chondrogenesis of ASCs transduced with adenoviral vectors encoding insulin-like growth factor-1 (IGF-1), transforming growth factor beta-1 (TGF-β1), fibroblast growth factor-2 (FGF-2), and sex-determining region Y-box 9 (SOX9) either alone or in combinations. Methods Aggregate cultures of characterized ovine ASCs were transduced with 100 multiplicity of infections of Ad.IGF-1, Ad.TGF-β1, Ad.FGF-2, and Ad.SOX9 alone or in combination. These were harvested at various time points for detection of cartilage-specific genes expression by quantitative real-time PCR or after 14 and 28 days for histologic and biochemical analyses detecting proteoglycans, collagens (II, I and X), and total sulfated glycosaminoglycan and collagen content, respectively. Results Expression analyses showed that co-expression of IGF-1 and FGF-2 resulted in higher significant expression levels of aggrecan, biglycan, cartilage matrix, proteoglycan, and collagen II (all P ≤0.001 at 28 days). Aggregates co-transduced with Ad.IGF-1/Ad.FGF-2 showed a selective expression of proteoglycans and collagen II, with limited expression of collagens I and × demonstrated by histological analyses, and had significantly greater glycosaminoglycan and collagen production than the positive control (P ≤0.001). Western blot analyses for this combination also demonstrated increased expression of collagen II, while expression of collagens I and × was undetectable and limited, respectively. Conclusion Combined overexpression of IGF-1/FGF-2 within ASCs enhances their chondrogenic differentiation inducing the expression of chondrogenic markers, suggesting that this combination is more beneficial than the other factors tested for the development of cell-based therapies for cartilage repair. PMID:23899094

  2. Proteoglycan 4 regulates macrophage function without altering atherosclerotic lesion formation in a murine bone marrow-specific deletion model.

    PubMed

    Nahon, Joya E; Hoekstra, Menno; Havik, Stefan R; Van Santbrink, Peter J; Dallinga-Thie, Geesje M; Kuivenhoven, Jan-Albert; Geerling, Janine J; Van Eck, Miranda

    2018-05-05

    Proteoglycan 4 (Prg4) has a high structural similarity with the established atherosclerosis-modulating proteoglycan versican, but its role in atherogenesis is still unknown. Therefore, the impact of Prg4 deficiency on macrophage function in vitro and atherosclerosis susceptibility in vivo was investigated. The presence and localization of Prg4 was studied in atherosclerotic lesions. Furthermore, the effect of Prg4 deficiency on macrophage foam cell formation, cholesterol efflux and lipopolysaccharide (LPS) response was determined. Finally, susceptibility for atherosclerotic lesion formation was investigated in bone marrow-specific Prg4 knockout (KO) mice. Prg4 mRNA expression was induced 91-fold (p<0.001) in murine initial atherosclerotic lesions and Prg4 protein co-localized with human lesional macrophages. Murine Prg4 KO macrophages showed increased foam cell formation (+2.1-fold, p<0.01). In parallel, the expression of the cholesterol efflux genes ATP-binding cassette transporter A1 and scavenger receptor type B1 was lower (-35%, p<0.05;-40%, p<0.05) in Prg4 KO macrophages. This translated into an impaired cholesterol efflux to high-density lipoprotein (-13%, p<0.001) and apolipoprotein A1 (-8%, p<0.05). Furthermore, Prg4 KO macrophages showed an impaired LPS-induced rise in TNFα secretion as compared to wild-type controls (-31%, p<0.001), indicating a reduced inflammatory response. Combined, these pro- and anti-atherogenic effects did not translate into a significant difference in atherosclerotic lesion formation upon bone marrow-specific deletion of Prg4 in low-density lipoprotein receptor KO mice. Prg4 is present in macrophages in both murine and human atherosclerotic lesions and critically influences macrophage function, but deletion of Prg4 in bone marrow-derived cells does not affect atherosclerotic lesion development. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Proteoglycomics: Recent Progress and Future Challenges

    PubMed Central

    Ly, Mellisa; Laremore, Tatiana N.

    2010-01-01

    Abstract Proteoglycomics is a systematic study of structure, expression, and function of proteoglycans, a posttranslationally modified subset of a proteome. Although relying on the established technologies of proteomics and glycomics, proteoglycomics research requires unique approaches for elucidating structure–function relationships of both proteoglycan components, glycosaminoglycan chain, and core protein. This review discusses our current understanding of structure and function of proteoglycans, major players in the development, normal physiology, and disease. A brief outline of the proteoglycomic sample preparation and analysis is provided along with examples of several recent proteoglycomic studies. Unique challenges in the characterization of glycosaminoglycan component of proteoglycans are discussed, with emphasis on the many analytical tools used and the types of information they provide. PMID:20450439

  4. Biomimetic Proteoglycan Interactions with Type I Collagen Investigated via 2D and 3D TEM

    NASA Astrophysics Data System (ADS)

    Moorehead, Carli

    Collagen is one of the leading components in extracellular matrix (ECM), providing durability, structural integrity, and functionality for many tissues. Regulation of collagen fibrillogenesis and degradation is important in the treatment of a number of diseases from orthopedic injuries to genetic deficiencies. Recently, novel, biocompatible, semi-synthetic biomimetic proteoglycans (BPGs) were developed, which consist of an enzymatically resistant synthetic polymer core and natural chondroitin sulfate bristles. It was demonstrated that BPGs affect type I collagen fibrillogenesis in vitro, as reflected by their impact delaying the kinetic formation of gels similar to native PGs. This indicates that the morphology of collagen scaffolds as well as endogenous ECM could also be modulated by these proteoglycan mimics. However, the imaging modality used previously, reflectance confocal microscopy, did not yield the resolution necessary to spatially localize BPGs within the collagen network or investigate the effect of BPGs on the quality of collagen fibrils produced in an in vitro fibrillogenesis model which is important for understanding the method of interaction. Consequently, a histological technique, electron tomography, was adapted and utilized to 3D image the nano-scale structures within this simplified tissue model. BPGs were found to aid in lateral growth and enhance fibril banding periodicity resulting in structures more closely resembling those in tissue, in addition to attaching to the collagen surface despite the lack of a protein core.

  5. Inhibitory effects of polyphenol punicalagin on type-II collagen degradation in vitro and inflammation in vivo.

    PubMed

    Jean-Gilles, Dinorah; Li, Liya; Vaidyanathan, V G; King, Roberta; Cho, Bongsup; Worthen, David R; Chichester, Clinton O; Seeram, Navindra P

    2013-09-25

    Cartilage destruction is a crucial process in arthritis and is characterized by the degradation of cartilage proteins, proteoglycans, and type II collagen (CII), which are embedded within the extracellular matrix. While proteoglycan loss can be reversed, the degradation of CII is irreversible and has been correlated with an over-expression and over-activation of matrix metalloproteinases (MMPs). Among the various MMPs, the collagenase MMP-13 possesses the greatest catalytic activity for CII degradation. Here we show that the pomegranate-derived polyphenols, punicalagin (PA) and ellagic acid (EA), inhibit MMP-13-mediated degradation of CII in vitro. Surface plasmon resonance studies and molecular docking simulations suggested multiple binding interactions of PA and EA with CII. The effects of PA on bovine cartilage degradation (stimulated with IL-1β) were investigated by assaying proteoglycan and CII release into cartilage culture media. PA inhibited the degradation of both proteins in a concentration-dependent manner. Finally, the anti-inflammatory effects of PA (daily IP delivery at 10 and 50mg/kg for 14days) were tested in an adjuvant-induced arthritis rat model. Disease development was assessed by daily measurements of body weight and paw volume (using the water displacement method). PA had no effect on disease development at the lower dose but inhibited paw volume (P<0.05) at the higher dose. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells.

    PubMed

    Jiang, Ai-Ping; Jiang, Jin-Feng; Wei, Ji-Fu; Guo, Ming-Gao; Qin, Yan; Guo, Qian-Qian; Ma, Li; Liu, Bao-Chi; Wang, Xiaolei; Veazey, Ronald S; Ding, Yong-Bing; Wang, Jian-Hua

    2015-12-30

    The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4(+) T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4(+) T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans.

    PubMed

    van der Voort, R; Keehnen, R M; Beuling, E A; Spaargaren, M; Pals, S T

    2000-10-16

    Recently, biochemical, cell biological, and genetic studies have converged to reveal that integral membrane heparan sulfate proteoglycans (HSPGs) are critical regulators of growth and differentiation of epithelial and connective tissues. As a large number of cytokines involved in lymphoid tissue homeostasis or inflammation contain potential HS-binding domains, HSPGs presumably also play important roles in the regulation of the immune response. In this report, we explored the expression, regulation, and function of HSPGs on B lymphocytes. We demonstrate that activation of the B cell antigen receptor (BCR) and/or CD40 induces a strong transient expression of HSPGs on human tonsillar B cells. By means of these HSPGs, the activated B cells can bind hepatocyte growth factor (HGF), a cytokine that regulates integrin-mediated B cell adhesion and migration. This interaction with HGF is highly selective since the HSPGs did not bind the chemokine stromal cell-derived factor (SDF)-1 alpha, even though the affinities of HGF and SDF-1alpha for heparin are similar. On the activated B cells, we observed induction of a specific HSPG isoform of CD44 (CD44-HS), but not of other HSPGs such as syndecans or glypican-1. Interestingly, the expression of CD44-HS on B cells strongly promotes HGF-induced signaling, resulting in an HS-dependent enhanced phosphorylation of Met, the receptor tyrosine kinase for HGF, as well as downstream signaling molecules including Grb2-associated binder 1 (Gab1) and Akt/protein kinase B (PKB). Our results demonstrate that the BCR and CD40 control the expression of HSPGs, specifically CD44-HS. These HSPGs act as functional coreceptors that selectively promote cytokine signaling in B cells, suggesting a dynamic role for HSPGs in antigen-specific B cell differentiation.

  8. Characterization of the interactions of type XII collagen with two small proteoglycans from fetal bovine tendon, decorin and fibromodulin.

    PubMed

    Font, B; Eichenberger, D; Rosenberg, L M; van der Rest, M

    1996-11-01

    In addition to the major collagens, such as type I or type II, connective tissues contain a number of less abundant collagens and proteoglycans, whose association contributes to the different properties of the tissues. Type XII and type XIV collagens have been described in soft connective tissues, and type XIV collagen has been shown to interact specifically with decorin through its glycosaminoglycan chain (Font et al., J. Biol. Chem. 268, 25015-25018, 1993). Interactions between these collagens and the small proteoglycans have been characterized further by studying the binding of type XII collagen to decorin by solid phase assays. Our results show a saturable binding of the proteoglycan through its glycosaminoglycan chain to type XII collagen, which does not seem to involve the large non-collagenous NC3 domain of the molecule. This interaction is strongly inhibited by heparin. Furthermore, we report that another small proteoglycan, fibromodulin, isolated from tendon under non-denaturing conditions, is able to bind to type XII collagen. This interaction has been characterized and, unlike that observed with decorin, type XII collagen-fibromodulin interaction seems to take place with the core protein of the proteoglycan. In addition, we report that type XII-type I collagen interactions are not necessarily mediated by decorin as previously suggested.

  9. Impaired proteoglycan glycosylation, elevated TGF-β signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica

    PubMed Central

    Chan, Wing Lee; Steiner, Magdalena; Egerer, Johannes; Mizumoto, Shuji; Pestka, Jan M.; Zhang, Haikuo; Khayal, Layal Abo; Ott, Claus-Eric; Kolanczyk, Mateusz; Schinke, Thorsten; Paganini, Chiara; Rossi, Antonio; Sugahara, Kazuyuki; Amling, Michael; Knaus, Petra; Chan, Danny; Mundlos, Stefan

    2018-01-01

    Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. GORAB, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the GorabNull full knockout, Gorab was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only GorabPrx1 and GorabRunx2 mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of GorabNull mutants and in bone of GorabPrx1 mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from GorabNull mutants. In bone from GorabPrx1 mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured GORAB-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-β in GorabPrx1 bone tissue leading to enhanced downstream signalling, which was reproduced in GORAB-deficient fibroblasts. Our data suggest that the loss of Gorab primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment. PMID:29561836

  10. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.

    PubMed

    Salmon, Andrew H J; Satchell, Simon C

    2012-03-01

    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function/dysfunction, such as mechanotransduction, leukocyte-endothelial interactions and the development of atherosclerosis, indicate that alterations in the endothelial glycocalyx may also be playing a role in the dysfunction of other organs observed in these disease states. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. A Histopathological Scheme for the Quantitative Scoring of Intervertebral Disc Degeneration and the Therapeutic Utility of Adult Mesenchymal Stem Cells for Intervertebral Disc Regeneration

    PubMed Central

    Shu, Cindy C.; Smith, Margaret M.; Smith, Susan M.; Dart, Andrew J.; Little, Christopher B.; Melrose, James

    2017-01-01

    The purpose of this study was to develop a quantitative histopathological scoring scheme to evaluate disc degeneration and regeneration using an ovine annular lesion model of experimental disc degeneration. Toluidine blue and Haematoxylin and Eosin (H&E) staining were used to evaluate cellular morphology: (i) disc structure/lesion morphology; (ii) proteoglycan depletion; (iii) cellular morphology; (iv) blood vessel in-growth; (v) cell influx into lesion; and (vi) cystic degeneration/chondroid metaplasia. Three study groups were examined: 5 × 5 mm lesion; 6 × 20 mm lesion; and 6 × 20 mm lesion plus mesenchymal stem cell (MSC) treatment. Lumbar intervertebral discs (IVDs) were scored under categories (i–vi) to provide a cumulative score, which underwent statistical analysis using STATA software. Focal proteoglycan depletion was associated with 5 × 5 mm annular rim lesions, bifurcations, annular delamellation, concentric and radial annular tears and an early influx of blood vessels and cells around remodeling lesions but the inner lesion did not heal. Similar features in 6 × 20 mm lesions occurred over a 3–6-month post operative period. MSCs induced a strong recovery in discal pathology with a reduction in cumulative histopathology degeneracy score from 15.2 to 2.7 (p = 0.001) over a three-month recovery period but no recovery in carrier injected discs. PMID:28498326

  12. A Histopathological Scheme for the Quantitative Scoring of Intervertebral Disc Degeneration and the Therapeutic Utility of Adult Mesenchymal Stem Cells for Intervertebral Disc Regeneration.

    PubMed

    Shu, Cindy C; Smith, Margaret M; Smith, Susan M; Dart, Andrew J; Little, Christopher B; Melrose, James

    2017-05-12

    The purpose of this study was to develop a quantitative histopathological scoring scheme to evaluate disc degeneration and regeneration using an ovine annular lesion model of experimental disc degeneration. Toluidine blue and Haematoxylin and Eosin (H&E) staining were used to evaluate cellular morphology: (i) disc structure/lesion morphology; (ii) proteoglycan depletion; (iii) cellular morphology; (iv) blood vessel in-growth; (v) cell influx into lesion; and (vi) cystic degeneration/chondroid metaplasia. Three study groups were examined: 5 × 5 mm lesion; 6 × 20 mm lesion; and 6 × 20 mm lesion plus mesenchymal stem cell (MSC) treatment. Lumbar intervertebral discs (IVDs) were scored under categories (i-vi) to provide a cumulative score, which underwent statistical analysis using STATA software. Focal proteoglycan depletion was associated with 5 × 5 mm annular rim lesions, bifurcations, annular delamellation, concentric and radial annular tears and an early influx of blood vessels and cells around remodeling lesions but the inner lesion did not heal. Similar features in 6 × 20 mm lesions occurred over a 3-6-month post operative period. MSCs induced a strong recovery in discal pathology with a reduction in cumulative histopathology degeneracy score from 15.2 to 2.7 ( p = 0.001) over a three-month recovery period but no recovery in carrier injected discs.

  13. Proportion of collagen type II in the extracellular matrix promotes the differentiation of human adipose-derived mesenchymal stem cells into nucleus pulposus cells.

    PubMed

    Tao, Yiqing; Zhou, Xiaopeng; Liu, Dongyu; Li, Hao; Liang, Chengzhen; Li, Fangcai; Chen, Qixin

    2016-01-01

    During degeneration process, the catabolism of collagen type II and anabolism of collagen type I in nucleus pulposus (NP) may influence the bioactivity of transplanted cells. Human adipose-derived mesenchymal stem cells (hADMSCs) were cultured as a micromass or in a series of gradual proportion hydrogels of a mix of collagen types I and II. Cell proliferation and cytotoxicity were detected using CCK-8 and LDH assays respectively. The expression of differentiation-related genes and proteins, including SOX9, aggrecan, collagen type I, and collagen type II, was examined using RT-qPCR and Western blotting. Novel phenotypic genes were also detected by RT-qPCR and western blotting. Alcian blue and dimethylmethylene blue assays were used to investigate sulfate proteoglycan expression, and PI3K/AKT, MAPK/ERK, and Smad signaling pathways were examined by Western blotting. The results showed collagen hydrogels have good biocompatibility, and cell proliferation increased after collagen type II treatment. Expressions of SOX9, aggrecan, and collagen type II were increased in a collagen type II dependent manner. Sulfate proteoglycan synthesis increased in proportion to collagen type II concentration. Only hADMSCs highly expressed NP cell marker KRT19 in collagen type II culture. Additionally, phosphorylated Smad3, which is associated with phosphorylated ERK, was increased after collagen type II-stimulation. The concentration and type of collagen affect hADMSC differentiation into NP cells. Collagen type II significantly ameliorates hADMSC differentiation into NP cells and promotes extracellular matrix synthesis. Therefore, anabolism of collagen type I and catabolism of type II may attenuate the differentiation and biosynthesis of transplanted stem cells. © 2016 International Union of Biochemistry and Molecular Biology.

  14. Cellular and molecular pathology of HTS: basis for treatment.

    PubMed

    Armour, Alexis; Scott, Paul G; Tredget, Edward E

    2007-01-01

    Hypertrophic scar and keloids are fibroproliferative disorders of the skin which occur often unpredictably, following trauma and inflammation that compromise cosmesis and function and commonly recur following surgical attempts for improvement. Despite decades of research in these fibrotic conditions, current non-surgical methods of treatment are slow, inconvenient and often only partially effective. Fibroblasts from these conditions are activated to produce extracellular matrix proteins such as collagen I and III, proteoglycans such as versican and biglycan and growth factors, including transforming growth factor-beta and insulin like growth factor I. However, more consistently these cells produce less remodeling enzymes including collagenase and other matrix metalloproteinases, as well as the small proteoglycan decorin which is important for normal collagen fibrillogenesis. Recently, the systemic response to injury appears to influence the local healing process whereby increases in Th2 and possibly Th3 cytokines such as IL-2, IL-4 and IL-10 and TGF-beta are present in the circulating lymphocytes in these fibrotic conditions. Finally, unique bone marrow derived cells including mesenchymal and endothelial stem cells as well as fibrocytes appear to traffic into healing wounds and influence the healing tissue. On this background, clinicians are faced with patients who require treatment and the pathophysiologic basis as currently understood is reviewed for a number of emerging modalities.

  15. Pleiotrophin, a multifunctional cytokine and growth factor, induces leukocyte responses through the integrin Mac-1.

    PubMed

    Shen, Di; Podolnikova, Nataly P; Yakubenko, Valentin P; Ardell, Christopher L; Balabiyev, Arnat; Ugarova, Tatiana P; Wang, Xu

    2017-11-17

    Pleiotrophin (PTN) is a multifunctional, cationic, glycosaminoglycan-binding cytokine and growth factor involved in numerous physiological and pathological processes, including tissue repair and inflammation-related diseases. PTN has been shown to promote leukocyte responses by inducing their migration and expression of inflammatory cytokines. However, the mechanisms through which PTN mediates these responses remain unclear. Here, we identified the integrin Mac-1 (αMβ2, CD11b/CD18) as the receptor mediating macrophage adhesion and migration to PTN. We also found that expression of Mac-1 on the surface of human embryonic kidney (HEK) 293 cells induced their adhesion and migration to PTN. Accordingly, PTN promoted Mac-1-dependent cell spreading and initiated intracellular signaling manifested in phosphorylation of Erk1/2. While binding to PTN, Mac-1 on Mac-1-expressing HEK293 cells appears to cooperate with cell-surface proteoglycans because both anti-Mac-1 function-blocking mAb and heparin were required to block adhesion. Moreover, biolayer interferometry and NMR indicated a direct interaction between the α M I domain, the major ligand-binding region of Mac-1, and PTN. Using peptide libraries, we found that in PTN the α M I domain bound sequences enriched in basic and hydrophobic residues, indicating that PTN conforms to the general principle of ligand-recognition specificity of the α M I domain toward cationic proteins/peptides. Finally, using recombinant PTN-derived fragments, we show that PTN contains two distinct Mac-1-binding sites in each of its constitutive domains. Collectively, these results identify PTN as a ligand for the integrin Mac-1 on the surface of leukocytes and suggest that this interaction may play a role in inflammatory responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Differentiation of EL4 lymphoma cells by tumoral environment is associated with inappropriate expression of the large chondroitin sulfate proteoglycan PG-M and the tumor-associated antigen HTgp-175.

    PubMed

    Rottiers, P; Verfaillie, T; Contreras, R; Revets, H; Desmedt, M; Dooms, H; Fiers, W; Grooten, J

    1998-11-09

    Progression to malignancy of transformed cells involves complex genetic alterations and aberrant gene expression patterns. While aberrant gene expression is often caused by alterations in individual genes, the contribution of the tumoral environment to the triggering of this gene expression is less well established. The stable but heterogeneous expression in cultured EL4/13 cells of a novel tumor-associated antigen, designated as HTgp-175, was chosen for the investigation of gene expression during tumor formation. Homogeneously HTgp-175-negative EL4/13 cells, isolated by cell sorting or obtained by subcloning, acquired HTgp-175 expression as a result of tumor formation. The tumorigenicity of HTgp-175-negative vs. HTgp-175-positive EL4 variants was identical, indicating that induction but not selection accounted for the phenotypic switch from HTgp-175-negative to HTgp-175-positive. Although mutagenesis experiments showed that the protein was not essential for tumor establishment, tumor-derived cells showed increased malignancy, linking HTgp-175 expression with genetic changes accompanying tumor progression. This novel gene expression was not an isolated event, since it was accompanied by ectopic expression of the large chondroitin sulfate proteoglycan PG-M and of normal differentiation antigens. We conclude that signals derived from the tumoral microenvironment contribute significantly to the aberrant gene expression pattern of malignant cells, apparently by fortuitous activation of differentiation processes and cause expression of novel differentiation antigens as well as of inappropriate tumor-associated and ectopic antigens.

  17. Dally Proteoglycan Mediates the Autonomous and Nonautonomous Effects on Tissue Growth Caused by Activation of the PI3K and TOR Pathways

    PubMed Central

    Ferreira, Ana; Milán, Marco

    2015-01-01

    How cells acquiring mutations in tumor suppressor genes outcompete neighboring wild-type cells is poorly understood. The phosphatidylinositol 3-kinase (PI3K)–phosphatase with tensin homology (PTEN) and tuberous sclerosis complex (TSC)-target of rapamycin (TOR) pathways are frequently activated in human cancer, and this activation is often causative of tumorigenesis. We utilized the Gal4-UAS system in Drosophila imaginal primordia, highly proliferative and growing tissues, to analyze the impact of restricted activation of these pathways on neighboring wild-type cell populations. Activation of these pathways leads to an autonomous induction of tissue overgrowth and to a remarkable nonautonomous reduction in growth and proliferation rates of adjacent cell populations. This nonautonomous response occurs independently of where these pathways are activated, is functional all throughout development, takes place across compartments, and is distinct from cell competition. The observed autonomous and nonautonomous effects on tissue growth rely on the up-regulation of the proteoglycan Dally, a major element involved in modulating the spreading, stability, and activity of the growth promoting Decapentaplegic (Dpp)/transforming growth factor β(TGF-β) signaling molecule. Our findings indicate that a reduction in the amount of available growth factors contributes to the outcompetition of wild-type cells by overgrowing cell populations. During normal development, the PI3K/PTEN and TSC/TOR pathways play a major role in sensing nutrient availability and modulating the final size of any developing organ. We present evidence that Dally also contributes to integrating nutrient sensing and organ scaling, the fitting of pattern to size. PMID:26313758

  18. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage

    NASA Astrophysics Data System (ADS)

    Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.

    2016-04-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

  19. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage.

    PubMed

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M

    2016-04-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

  20. Small Leucine-Rich Proteoglycans in Renal Inflammation: Two Sides of the Coin.

    PubMed

    Nastase, Madalina V; Janicova, Andrea; Roedig, Heiko; Hsieh, Louise Tzung-Harn; Wygrecka, Malgorzata; Schaefer, Liliana

    2018-04-01

    It is now well-established that members of the small leucine-rich proteoglycan (SLRP) family act in their soluble form, released proteolytically from the extracellular matrix (ECM), as danger-associated molecular patterns (DAMPs). By interacting with Toll-like receptors (TLRs) and the inflammasome, the two SLRPs, biglycan and decorin, autonomously trigger sterile inflammation. Recent data indicate that these SLRPs, besides their conventional role as pro-inflammatory DAMPs, additionally trigger anti-inflammatory signaling pathways to tightly control inflammation. This is brought about by selective employment of TLRs, their co-receptors, various adaptor molecules, and through crosstalk between SLRP-, reactive oxygen species (ROS)-, and sphingolipid-signaling. In this review, the complexity of SLRP signaling in immune and kidney resident cells and its relevance for renal inflammation is discussed. We propose that the dichotomy in SLRP signaling (pro- and anti-inflammatory) allows for fine-tuning the inflammatory response, which is decisive for the outcome of inflammatory kidney diseases.

  1. Microstructural Heterogeneity in Native and Engineered Fibrocartilage Directs Micromechanics and Mechanobiology

    PubMed Central

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M

    2015-01-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994

  2. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations).

    PubMed

    Tada, Shigeru; Tarbell, John M

    2002-02-01

    We describe a three-dimensional numerical simulation of interstitial flow through the medial layer of an artery accounting for the complex entrance condition associated with fenestral pores in the internal elastic lamina (IEL) to investigate the fluid mechanical environment around the smooth muscle cells (SMCs) right beneath the IEL. The IEL was modeled as an impermeable barrier to water flow except for the fenestral pores, which were assumed to be uniformly distributed over the IEL. The medial layer was modeled as a heterogeneous medium composed of a periodic array of cylindrical SMCs embedded in a continuous porous medium representing the interstitial proteoglycan and collagen matrix. Depending on the distance between the IEL bottom surface and the upstream end of the proximal layer of SMCs, the local shear stress on SMCs right beneath the fenestral pore could be more than 10 times higher than that on the cells far removed from the IEL under the conditions that the fenestral pore diameter and area fraction of pores were kept constant at 1.4 microm and 0.05, respectively. Thus these proximal SMCs may experience shear stress levels that are even higher than endothelial cells exposed to normal blood flow (order of 10 dyn/cm(2)). Furthermore, entrance flow through fenestral pores alters considerably the interstitial flow field in the medial layer over a spatial length scale of the order of the fenestral pore diameter. Thus the spatial gradient of shear stress on the most superficial SMC is noticeably higher than computed for endothelial cell surfaces.

  3. Rod outer segment-associated N-acetylgalactosaminylphosphotransferase.

    PubMed

    Sweatt, A J; Balsamo, J; Lilien, J

    1995-01-01

    To determine the exact location of a cell surface glycosyltransferase (N-acetylgalactosaminylphosphotransferase, (GalNAcPTase) immunochemically identified in mammalian rod outer segments (ROS), to determine whether anti-GalNAcPTase antibody recognizes retinal molecules that possess transferase activity and to characterize ROS transferase enzyme activity and acceptors. The GalNAcPTase is known to be associated with the adhesion molecule N-cadherin in embryonic avian retinas and with E-cadherin in mammalian pancreatic islet cells. Purified, fixed ROS were reacted with anti-chick GalNAcPTase antibody followed by secondary antibody conjugated to colloidal gold and were examined by electron microscopy. Fractions of retinal and ROS proteins enriched in the transferase were obtained through batch adsorption on Sepharose, separated by gel electrophoresis, transferred to nitrocellulose, and either reacted with anti-GalNAcPTase antibody or assayed for transferase activity. Interphotoreceptor matrix (IPM) was examined for the presence of immunoreactive GalNAcPTase by gel electrophoresis and immunoblot. The kinetics and endogenous acceptors of the cow ROS transferase were characterized. ROS are specifically labeled by anti-GalNAcPTase antibody at the cell surface. The immunogold label was associated with the cell surface and with flocculent material adherent to the cell surface. In addition, soluble and particulate fractions of the IPM showed GalNAcPTase-like immunoreactivity. The transferase appears as single immunoreactive band at or near 220 kd. Transferase enzyme activity was present at this position on Western transfers of retinal and ROS proteins. In whole ROS, transferase activity was directed toward endogenous acceptors of very high molecular mass. The GalNAcPTase is localized on ROS in association with the cell surface and with components of the IPM. The molecule recognized by the anti-GalNAcPTase antibody possesses transferase activity toward itself and a few other proteins, but mostly toward very large molecules that may be IPM proteoglycans. It is not yet known whether the enzyme of the adult retina specifically transfers sugar or sugar-phosphate groups to its acceptors. It is proposed that the ROS GalNAcPTase is involved in the modulation of adhesive phenomena between or within photoreceptors or between photoreceptors and the interphotoreceptor matrix.

  4. The involvement of heparan sulfate proteoglycans in stem cell differentiation and in malignant glioma

    NASA Astrophysics Data System (ADS)

    Kundu, Soumi; Xiong, Anqi; Forsberg-Nilsson, Karin

    2016-04-01

    Heparan sulfate (HS) proteoglycans (HSPG) are major components of the extracellular matrix. They interact with a plethora of macromolecules that are of physiological importance. The pattern of sulfation of the HS chain determines the specificity of these interactions. The enzymes that synthesize and degrade HS are thus key regulators of processes ranging from embryonic development to tissue homeostasis and tumor development. Formation of the nervous system is also critically dependent on appropriate HSPGs as shown by several studies on the role of HS in neural induction from embryonic stem cells. High-grade glioma is the most common primary malignant brain tumor among adults, and the prognosis is poor. Neural and glioma stem cells share several traits, including sustained proliferation and highly efficient migration in the brain. There are also similarities between the neurogenic niche where adult neural stem cells reside and the tumorigenic niche, including their interactions with components of the extracellular matrix (ECM). The levels of many of these components, for example HSPGs and enzymes involved in the biosynthesis and modification of HS are attenuated in gliomas. In this paper, HS regulation of pathways involved in neural differentiation and how these may be of importance for brain development are discussed. The literature suggesting that modifications of HS could regulate glioma growth and invasion is reviewed. Targeting the invasiveness of glioma cells by modulating HS may improve upon present therapeutic options, which only marginally enhance the survival of glioma patients.

  5. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans.

    PubMed

    Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y

    2017-01-01

    The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.

  6. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1

    PubMed Central

    Mao, Yang; Resende, Mafalda; Daugaard, Mads; Riis Kristensen, Anders; Damm, Peter; G. Theander, Thor; R. Hansson, Stefan; Salanti, Ali

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. PMID:27556547

  7. XanoMatrix surfaces as scaffolds for mesenchymal stem cell culture and growth

    PubMed Central

    Bhardwaj, Garima; Webster, Thomas J

    2016-01-01

    Stem cells are being widely investigated for a wide variety of applications in tissue engineering due to their ability to differentiate into a number of cells such as neurons, osteoblasts, and fibroblasts. This ability of stem cells to differentiate into different types of cells is greatly based on mechanical and chemical cues received from their three-dimensional environments. All organs are formed by a number of cells linked together via an extracellular matrix (ECM). The ECM is a complex network of proteins and carbohydrates, which occupies intercellular spaces and regulates cellular activity by controlling cell adhesion, migration, proliferation, and differentiation. The ECM is composed of two main types of macromolecules, namely, polysaccharide glycosaminoglycans, which are covalently attached to proteins in the form of proteoglycans and fibrous proteins belonging to two functional groups, structural (collagen and elastin) and adhesive (fibronectin, laminin, vitronectin, etc). Tissue engineering is a multidisciplinary field that aims to develop biomimetic scaffolds that emulate properties of the ECM to help repair or regenerate diseased or damaged tissue. This study introduces one of these matrices, XanoMatrix, as an optimal scaffold for tissue engineering applications, in particular, for stem cell research, based on its composition, nanofibrous structure, and porosity. Results of this study suggest that XanoMatrix scaffolds are promising for stem cell tissue engineering applications and as improved cell culture inserts for studying stem cell functions (compared to traditional Corning and Falcon cell culture plates) and, thus, should be further studied. PMID:27354795

  8. NG2 expression in glioblastoma identifies an actively proliferating population with an aggressive molecular signature

    PubMed Central

    Al-Mayhani, M. Talal F.; Grenfell, Richard; Narita, Masashi; Piccirillo, Sara; Kenney-Herbert, Emma; Fawcett, James W.; Collins, V. Peter; Ichimura, Koichi; Watts, Colin

    2011-01-01

    Glioblastoma multiforme (GBM) is the most common type of primary brain tumor and a highly malignant and heterogeneous cancer. Current conventional therapies fail to eradicate or curb GBM cell growth. Hence, exploring the cellular and molecular basis of GBM cell growth is vital to develop novel therapeutic approaches. Neuroglia (NG)-2 is a transmembrane proteoglycan expressed by NG2+ progenitors and is strongly linked to cell proliferation in the normal brain. By using NG2 as a biomarker we identify a GBM cell population (GBM NG2+ cells) with robust proliferative, clonogenic, and tumorigenic capacity. We show that a significant proportion (mean 83%) of cells proliferating in the tumor mass express NG2 and that over 50% of GBM NG2+ cells are proliferating. Compared with the GBM NG2− cells from the same tumor, the GBM of NG2+ cells overexpress genes associated with aggressive tumorigenicity, including overexpression of Mitosis and Cell Cycling Module genes (e.g., MELK, CDC, MCM, E2F), which have been previously shown to correlate with poor survival in GBM. We also show that the coexpression pattern of NG2 with other glial progenitor markers in GBM does not recapitulate that described in the normal brain. The expression of NG2 by such an aggressive and actively cycling GBM population combined with its location on the cell surface identifies this cell population as a potential therapeutic target in a subset of patients with GBM. PMID:21798846

  9. Heparanase confers a growth advantage to differentiating murine embryonic stem cells, and enhances oligodendrocyte formation.

    PubMed

    Xiong, Anqi; Kundu, Soumi; Forsberg, Maud; Xiong, Yuyuan; Bergström, Tobias; Paavilainen, Tanja; Kjellén, Lena; Li, Jin-Ping; Forsberg-Nilsson, Karin

    2017-10-01

    Heparan sulfate proteoglycans (HSPGs), ubiquitous components of mammalian cells, play important roles in development and homeostasis. These molecules are located primarily on the cell surface and in the pericellular matrix, where they interact with a multitude of macromolecules, including many growth factors. Manipulation of the enzymes involved in biosynthesis and modification of HSPG structures alters the properties of stem cells. Here, we focus on the involvement of heparanase (HPSE), the sole endo-glucuronidase capable of cleaving of HS, in differentiation of embryonic stem cells into the cells of the neural lineage. Embryonic stem (ES) cells overexpressing HPSE (Hpse-Tg) proliferated more rapidly than WT ES cells in culture and formed larger teratomas in vivo. In addition, differentiating Hpse-Tg ES cells also had a higher growth rate, and overexpression of HPSE in NSPCs enhanced Erk and Akt phosphorylation. Employing a two-step, monolayer differentiation, we observed an increase in HPSE as wild-type (WT) ES cells differentiated into neural stem and progenitor cells followed by down-regulation of HPSE as these NSPCs differentiated into mature cells of the neural lineage. Furthermore, NSPCs overexpressing HPSE gave rise to more oligodendrocytes than WT cultures, with a concomitant reduction in the number of neurons. Our present findings emphasize the importance of HS, in neural differentiation and suggest that by regulating the availability of growth factors and, or other macromolecules, HPSE promotes differentiation into oligodendrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Structure of Serum Amyloid A Suggests a Mechanism for Selective Lipoprotein Binding and Functions: SAA as a Hub in Macromolecular Interaction Networks

    PubMed Central

    Frame, Nicholas M.; Gursky, Olga

    2016-01-01

    Serum amyloid A is a major acute-phase plasma protein that modulates innate immunity and cholesterol homeostasis. We combine sequence analysis with x-ray crystal structures to postulate that SAA acts as an intrinsically disordered hub mediating interactions among proteins, lipids and proteoglycans. A structural model of lipoprotein-bound SAA monomer is proposed wherein two α-helices from the N-domain form a concave hydrophobic surface that binds lipoproteins. A C-domain, connected to the N-domain via a flexible linker, binds polar/charged ligands including cell receptors, bridging them with lipoproteins and re-routing cholesterol transport. Our model is supported by the SAA cleavage in the inter-domain linker to generate the 1–76 fragment deposited in reactive amyloidosis. This model sheds new light on functions of this enigmatic protein. PMID:26918388

  11. NG2/CSPG4-collagen type VI interplays putatively involved in the microenvironmental control of tumour engraftment and local expansion.

    PubMed

    Cattaruzza, Sabrina; Nicolosi, Pier Andrea; Braghetta, Paola; Pazzaglia, Laura; Benassi, Maria Serena; Picci, Piero; Lacrima, Katia; Zanocco, Daniela; Rizzo, Erika; Stallcup, William B; Colombatti, Alfonso; Perris, Roberto

    2013-06-01

    In soft-tissue sarcoma patients, enhanced expression of NG2/CSPG4 proteoglycan in pre-surgical primary tumours predicts post-surgical metastasis formation and thereby stratifies patients into disease-free survivors and patients destined to succumb to the disease. Both primary and secondary sarcoma lesions also up-regulate collagen type VI, a putative extracellular matrix ligand of NG2, and this matrix alteration potentiates the prognostic impact of NG2. Enhanced constitutive levels of the proteoglycan in isolated sarcoma cells closely correlate with a superior engraftment capability and local growth in xenogenic settings. This apparent NG2-associated malignancy was also corroborated by the diverse tumorigenic behaviour in vitro and in vivo of immunoselected NG2-expressing and NG2-deficient cell subsets, by RNAi-mediated knock down of endogenous NG2, and by ectopic transduction of full-length or deletion constructs of NG2. Cells with modified expression of NG2 diverged in their interaction with purified Col VI, matrices supplemented with Col VI, and cell-free matrices isolated from wild-type and Col VI null fibroblasts. The combined use of dominant-negative NG2 mutant cells and purified domain fragments of the collagen allowed us to pinpoint the reciprocal binding sites within the two molecules and to assert the importance of this molecular interaction in the control of sarcoma cell adhesion and motility. The NG2-mediated binding to Col VI triggered activation of convergent cell survival- and cell adhesion/migration-promoting signal transduction pathways, implicating PI-3K as a common denominator. Thus, the findings point to an NG2-Col VI interplay as putatively involved in the regulation of the cancer cell-host microenvironment interactions sustaining sarcoma progression.

  12. Merging colloidal nanoplasmonics and surface plasmon resonance spectroscopy for enhanced profiling of multiple myeloma-derived exosomes.

    PubMed

    Di Noto, Giuseppe; Bugatti, Antonella; Zendrini, Andrea; Mazzoldi, Elena Laura; Montanelli, Alessandro; Caimi, Luigi; Rusnati, Marco; Ricotta, Doris; Bergese, Paolo

    2016-03-15

    A novel approach for sorting exosomes from multiple myeloma (MM), monoclonal gammopathy of undetermined significance (MGUS) and healthy individuals is presented. The method is based on the combination of colloidal gold nanoplasmonics and surface plasmon resonance (SPR) biosensing and probes distinctive colloidal properties of MM-derived exosomes, such as molar concentration and cell membrane binding preferences. It allowed to discover that MM patients produce about four folds more exosomes than MGUS and healthy individuals. In addition, it showed that among the analyzed exosomes, only the MM-derived ones bind heparin - a structural analog of heparan sulfate proteoglycans known to mediate exosome endocytosis - with an apparent dissociation constant (Kd) equal to about 1 nM, indicating a high affinity binding. This plasmonic method complements the classical biochemical profiling approach to exosomes, expanding the MM biomarker panel and adding biosensors to the toolbox to diagnose MM. It may find applications for other diseases and has wider interest for fundamental and translational research involving exosomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Elevated CXCL1 expression in gp130-deficient endothelial cells impairs neutrophil migration in mice

    PubMed Central

    Yao, Longbiao; Yago, Tadayuki; Shao, Bojing; Liu, Zhenghui; Silasi-Mansat, Robert; Setiadi, Hendra; Lupu, Florea

    2013-01-01

    Neutrophils emigrate from venules to sites of infection or injury in response to chemotactic gradients. How these gradients form is not well understood. Some IL-6 family cytokines stimulate endothelial cells to express adhesion molecules and chemokines that recruit leukocytes. Receptors for these cytokines share the signaling subunit gp130. We studied knockout mice lacking gp130 in endothelial cells. Unexpectedly, gp130-deficient endothelial cells constitutively expressed more CXCL1 in vivo and in vitro, and even more upon stimulation with tumor necrosis factor-α. Mobilization of this increased CXCL1 from intracellular stores to the venular surface triggered β2 integrin–dependent arrest of neutrophils rolling on selectins but impaired intraluminal crawling and transendothelial migration. Superfusing CXCL1 over venules promoted neutrophil migration only after intravenously injecting mAb to CXCL1 to diminish its intravascular function or heparinase to release CXCL1 from endothelial proteoglycans. Remarkably, mice lacking gp130 in endothelial cells had impaired histamine-induced venular permeability, which was restored by injecting anti–P-selectin mAb to prevent neutrophil rolling and arrest. Thus, excessive CXCL1 expression in gp130-deficient endothelial cells augments neutrophil adhesion but hinders migration, most likely by disrupting chemotactic gradients. Our data define a role for endothelial cell gp130 in regulating integrin-dependent adhesion and de-adhesion of neutrophils during inflammation. PMID:24081661

  14. The cachectic mediator proteolysis inducing factor activates NF-kappaB and STAT3 in human Kupffer cells and monocytes.

    PubMed

    Watchorn, Tammy M; Dowidar, Nabil; Dejong, Cornelis H C; Waddell, Ian D; Garden, O James; Ross, James A

    2005-10-01

    A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells, the resident macrophages of the liver, and in monocytes, resulting in the production of pro-inflammatory cytokines. Normal liver tissue was obtained from patients undergoing partial hepatectomy and Kupffer cells were isolated. Monocytes were isolated from peripheral blood. Following exposure to native PIF, pro-inflammatory cytokine production from Kupffer cells and monocytes was measured and the NF-kappaB and STAT3 transcriptional pathways were investigated using electrophoretic mobility shift assays. We demonstrate that PIF is able to activate the transcription factor NF-kappaB and NF-kappaB-inducible genes in human Kupffer cells, and in monocytes, resulting in the production of pro-inflammatory cytokines such as TNF-alpha, IL-8 and IL-6. PIF enhances the expression of the cell surface molecules LFA-1 and CD14 on macrophages. PIF also activates the transcription factor STAT3 in Kupffer cells. The pro-inflammatory effects of PIF, mediated via NF-kappaB and STAT3, are important in macrophage behaviour and may contribute to the inflammatory pro-cachectic process in the liver.

  15. Nature of the interaction of chondroitin 4-sulphate and chondroitin sulphate–proteoglycan with collagen

    PubMed Central

    Öbrink, Björn; Wasteson, Åke

    1971-01-01

    The electrostatic interaction of chondroitin sulphate and the chondroitin sulphate–proteoglycan with collagen was studied by chromatography of the glycosaminoglycan and the proteoglycan on a collagen gel. The observed binding between the macromolecules increased with decreasing pH and ionic strength, and was significant under physiological conditions. A study of the interaction between chondroitin sulphate and a preparation of soluble collagen, with a partition-equilibrium technique, afforded similar results. PMID:4256063

  16. Targeting Common but Complex Proteoglycans on Breast Cancer Cells and Stem Cells Using Evolutionary Refined Malaria Proteins

    DTIC Science & Technology

    2017-10-01

    heart of C57BL/6 mice resulted in aggressive bone metastasis with an overall penetrance of 50%–60% 1(Fig. 7J). The bone metastases invaded into...metastases, while all control-treated mice died with metastatic disease (p = 0.0196) 1(Fig. 7L). Indeed, the VAR2CSA drug conjugate-treatment 6...CS- conjugated and 15 have been directly associated with human malignant disease (Table S5). To investigate the inter-tumor diversity in expression

  17. Embryonic lung morphogenesis in organ culture: experimental evidence for a proteoglycan function in the extracellular matrix

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Bassett, K. E.; Spooner, B. S. Jr

    1993-01-01

    The lung rudiment, isolated from mid-gestation (11 day) mouse embryos, can undergo morphogenesis in organ culture. Observation of living rudiments, in culture, reveals both growth and ongoing bronchiolar branching activity. To detect proteoglycan (PG) biosynthesis, and deposition in the extracellular matrix, rudiments were metabolically labeled with radioactive sulfate, then fixed, embedded, sectioned and processed for autoradiography. The sulfated glycosaminoglycan (GAG) types, composing the carbohydrate component of the proteoglycans, were evaluated by selective GAG degradative approaches that showed chondroitin sulfate PG principally associated with the interstitial matrix, and heparan sulfate PG principally associated with the basement membrane. Experiments using the proteoglycan biosynthesis disrupter, beta-xyloside, suggest that when chondroitin sulfate PG deposition into the ECM is perturbed, branching morphogenesis is compromised.

  18. Early in situ changes in chondrocyte biomechanical responses due to a partial meniscectomy in the lateral compartment of the mature rabbit knee joint.

    PubMed

    Fick, J M; P Ronkainen, A; Madden, R; Sawatsky, A; Tiitu, V; Herzog, W; Korhonen, R K

    2016-12-08

    We determined the biomechanical responses of chondrocytes to indentation at specific locations within the superficial zone of cartilage (i.e. patellar, femoral groove, femoral condylar and tibial plateau sites) taken from female New Zealand white rabbits three days after a partial meniscectomy in the lateral compartment of a knee joint. Confocal laser scanning microscopy combined with a custom indentation system was utilized to image chondrocyte responses at sites taken from ten contralateral and experimental knee joints. Cell volume, height, width and depth changes, global, local axial and transverse strains and Young׳s moduli were determined. Histological assessment was performed and proteoglycan content from the superficial zone of each site was determined. Relative to contralateral group cells, patellar, femoral groove and lateral femoral condyle cells in the experimental group underwent greater volume decreases (p < 0.05), due to smaller lateral expansions (with greater decreases in cell height only for the lateral femoral condyle cells; p < 0.05) whereas medial femoral and medial tibial plateau cells underwent smaller volume decreases (p < 0.05), due to less deformation in cell height (p < 0.05). Proteoglycan content was reduced in the patellar (p > 0.05), femoral groove, medial femoral condyle and medial tibial plateau experimental sites (p < 0.05). The findings suggest: (i) cell biomechanical responses to cartilage loading in the rabbit knee joint can become altered as early as 3 days after a partial meniscectomy, (ii) are site-specific, and (iii) occur before alterations in tissue mechanics or changes detectable with histology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis.

    PubMed

    Ryan, G R; Dai, X M; Dominguez, M G; Tong, W; Chuan, F; Chisholm, O; Russell, R G; Pollard, J W; Stanley, E R

    2001-07-01

    Colony-stimulating factor 1 (CSF-1) regulates the survival, proliferation, and differentiation of mononuclear phagocytes. It is expressed as a secreted glycoprotein or proteoglycan found in the circulation or as a biologically active cell-surface glycoprotein. To investigate tissue CSF-1 regulation, CSF-1-null Csf1(op)/Csf1(op) mice expressing transgenes encoding the full-length membrane-spanning CSF-1 precursor driven by 3.13 kilobases of the mouse CSF-1 promoter and first intron were characterized. Transgene expression corrected the gross osteopetrotic, neurologic, weight, tooth, and reproductive defects of Csf1(op)/Csf1(op) mice. Detailed analysis of one transgenic line revealed that circulating CSF-1, tissue macrophage numbers, hematopoietic tissue cellularity, and hematopoietic parameters were normalized. Tissue CSF-1 levels were normal except for elevations in 4 secretory tissues. Skin fibroblasts from the transgenic mice secreted normal amounts of CSF-1 but also expressed some cell-surface CSF-1. Also, lacZ driven by the same promoter/first intron revealed beta-galactosidase expression in hematopoietic, reproductive, and other tissue locations proximal to CSF-1 cellular targets, consistent with local regulation by CSF-1 at these sites. These studies indicate that the 3.13-kilobase promoter/first intron confers essentially normal CSF-1 expression. They also pinpoint new cellular sites of CSF-1 expression, including ovarian granulosa cells, mammary ductal epithelium, testicular Leydig cells, serous acinar cells of salivary gland, Paneth cells of the small intestine, as well as local sites in several other tissues.

  20. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders.

    PubMed

    Farach-Carson, Mary C; Warren, Curtis R; Harrington, Daniel A; Carson, Daniel D

    2014-02-01

    The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders. © 2013.

  1. Border Patrol: Insights into the Unique Role of Perlecan/Heparan Sulfate Proteoglycan2 at Cell and Tissue Borders

    PubMed Central

    Farach-Carson, Mary C.; Warren, Curtis R.; Harrington, Daniel A.; Carson, Daniel D.

    2013-01-01

    The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550M years) extracellular matrix molecules. In vertebrates, perlecan’s five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders. PMID:24001398

  2. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro

    NASA Technical Reports Server (NTRS)

    Long, C. J.; Roth, M. R.; Tasheva, E. S.; Funderburgh, M.; Smit, R.; Conrad, G. W.; Funderburgh, J. L.

    2000-01-01

    Keratocytes of the corneal stroma produce a specialized extracellular matrix responsible for corneal transparency. Corneal keratan sulfate proteoglycans (KSPG) are unique products of keratocytes that are down-regulated in corneal wounds and in vitro. This study used cultures of primary bovine keratocytes to define factors affecting KSPG expression in vitro. KSPG metabolically labeled with [(35)S]sulfate decreased during the initial 2-4 days of culture in quiescent cultures with low serum concentrations (0.1%). Addition of fetal bovine serum, fibroblast growth factor-2 (FGF-2), transforming growth factor beta, or platelet derived growth factor all stimulated cell division, but only FGF-2 stimulated KSPG secretion. Combined with serum, FGF-2 also prevented serum-induced KSPG down-regulation. KSPG secretion was lost during serial subculture with or without FGF-2. Expression of KSPG core proteins (lumican, mimecan, and keratocan) was stimulated by FGF-2, and steady state mRNA pools for these proteins, particularly keratocan, were significantly increased by FGF-2 treatment. KSPG expression therefore is supported by exogenous FGF-2 and eliminated by subculture of the cells in presence of serum. FGF-2 stimulates KSPG core protein expression primarily through an increase in mRNA pools.

  3. The conserved transmembrane proteoglycan Perdido/Kon-tiki is essential for myofibrillogenesis and sarcomeric structure in Drosophila

    PubMed Central

    Pérez-Moreno, Juan J.; Bischoff, Marcus; Martín-Bermudo, Maria D.; Estrada, Beatriz

    2014-01-01

    ABSTRACT Muscle differentiation requires the assembly of high-order structures called myofibrils, composed of sarcomeres. Even though the molecular organization of sarcomeres is well known, the mechanisms underlying myofibrillogenesis are poorly understood. It has been proposed that integrin-dependent adhesion nucleates myofibrils at the periphery of the muscle cell to sustain sarcomere assembly. Here, we report a role for the gene perdido (perd, also known as kon-tiki, a transmembrane chondroitin proteoglycan) in myofibrillogenesis. Expression of perd RNAi in muscles, prior to adult myogenesis, can induce misorientation and detachment of Drosophila adult abdominal muscles. In comparison to controls, perd-depleted muscles contain fewer myofibrils, which are localized at the cell periphery. These myofibrils are detached from each other and display a defective sarcomeric structure. Our results demonstrate that the extracellular matrix receptor Perd has a specific role in the assembly of myofibrils and in sarcomeric organization. We suggest that Perd acts downstream or in parallel to integrins to enable the connection of nascent myofibrils to the Z-bands. Our work identifies the Drosophila adult abdominal muscles as a model to investigate in vivo the mechanisms behind myofibrillogenesis. PMID:24794494

  4. The role of the NG2 proteoglycan in OPC and CNS network function.

    PubMed

    Sakry, Dominik; Trotter, Jacqueline

    2016-05-01

    In the normal mammalian CNS, the NG2 proteoglycan is expressed by oligodendrocyte precursor cells (OPC) but not by any other neural cell-type. NG2 is a type-1 membrane protein, exerting multiple roles in the CNS including intracellular signaling within the OPC, with effects on migration, cytoskeleton interaction and target gene regulation. It has been recently shown that the extracellular region of NG2, in addition to an adhesive function, acts as a soluble ECM component with the capacity to alter defined neuronal network properties. This region of NG2 is thus endowed with neuromodulatory properties. In order to generate biologically active fragments yielding these properties, the sequential cleavage of the NG2 protein by α- and γ-secretases occurs. The basal level of constitutive cleavage is stimulated by neuronal network activity. This processing leads to 4 major NG2 fragments which all have been associated with distinct biological functions. Here we summarize these functions, focusing on recent discoveries and their implications for the CNS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Defining the Pathway for Tat-mediated Delivery of β-Glucuronidase in Cultured Cells and MPS VII Mice

    PubMed Central

    Orii, Koji O.; Grubb, Jeffrey H.; Vogler, Carole; Levy, Beth; Tan, Yun; Markova, Kamelia; Davidson, Beverly L.; Mao, Q.; Orii, Tadao; Kondo, Naomi; Sly, William S.

    2008-01-01

    We used recombinant forms of human β-glucuronidase (GUS) purified from secretions from stably transfected CHO cells to compare the native enzyme to a GUS-Tat C-terminal fusion protein containing the 11-amino-acid HIV Tat protein transduction domain for: (1) susceptibility to endocytosis by cultured cells, (2) rate of clearance following intravenous infusion, and (3) tissue distribution and effectiveness in clearing lysosomal storage following infusion in the MPS VII mouse. We found: (1) Native GUS was more efficiently taken up by cultured human fibroblasts and its endocytosis was exclusively mediated by the M6P receptor. The GUS-Tat fusion protein showed only 30-50% as much M6P-receptor-mediated uptake, but also was taken up by adsorptive endocytosis through binding of the positively charged Tat peptide to cell surface proteoglycans. (2) GUS-Tat was less rapidly cleared from the circulation in the rat (t1/2 = 13 min vs 7 min). (3) Delivery to most tissues of the MPS VII mouse was similar, but GUS-Tat was more efficiently delivered to kidney. Histology showed that GUS-Tat more efficiently reduced storage in renal tubules, retina, and bone. These studies demonstrate that Tat modification can extend the range of tissues corrected by infused enzyme. PMID:16043103

  6. Glypican1 identifies cancer exosomes and facilitates early detection of cancer

    PubMed Central

    Melo, Sonia A.; Luecke, Linda B.; Kahlert, Christoph; Fernandez, Agustin F.; Gammon, Seth T.; Kaye, Judith; LeBleu, Valerie S.; Mittendorf, Elizabeth A.; Weitz, Juergen; Rahbari, Nuh; Reissfelder, Christoph; Pilarsky, Christian; Fraga, Mario F.; Piwnica-Worms, David; Kalluri, Raghu

    2016-01-01

    Summary Exosomes are lipid bilayer-enclosed extracellular vesicles (EVs) that contain proteins and nucleic acids. They are secreted by all cells and circulate in the blood. Specific detection and isolation of cancer cell-derived exosomes in circulation is currently lacking. Using mass spectrometry analyses, we identified a cell surface proteoglycan, glypican-1 (GPC1), specifically enriched on cancer cell-derived exosomes. GPC1+ circulating exosomes (crExos) were monitored and isolated using flow cytometry from the serum of cancer patients and mice with cancer. GPC1+ crExos were detected in the serum of patients with pancreas cancer with absolute specificity and sensitivity, distinguishing healthy subjects and patients with a benign pancreas disease from patients with early and late stage pancreas cancer. Levels of GPC1+ crExos correlate with tumor burden and survival in patients pre- and post-surgical tumor resection. GPC1+ crExos from patients and from mice with spontaneous pancreas tumors driven by oncogenic KRAS contained RNA with specific KRAS mutation, and it emerges as a reliable biomarker for the detection of PanIN lesions despite negative signal by MRI in mice. GPC1+ crExos may serve as a potential non-invasive diagnostic and screening tool to detect early stages of pancreas cancer to facilitate possible curative surgical therapy. PMID:26106858

  7. [Stimulation of maturing and terminal differentiation by concanavalin A in rabbit permanent chondrocyte cultures].

    PubMed

    Yan, W Q; Yang, T S; Hou, L Z; Susuki, F; Kato, Y

    1994-12-01

    The effect of concanavalin A (Con A) on maturing and terminal differentiation in permanent chondrocyte cultures were examined. Chondrocytes isolated from permanent cartilage were seeded at low density and grown in MEM medium containing 10% fetal bovine serum, 50 micrograms/ml of ascorbic acid and antibiotics, at 37 degrees C under 50% CO2 in air. At 0.3% of low serum concentration, addition of Con A to the culture medium increased by 3- to 4-fold the incorporation of [35S] sulfate into large chondroitin sulfate proteoglycan that characteristically found in cartilage. Chemical analysis showed a 4-fold increase in the accumulation of macromolecular containing hexuronic acid in Con A-maintained cultures. The effect of Con A on [35S]sulfate incorporation into proteoglycan was greater than that of various growth factor or hormones. Brief exposure of the permanent chondrocytes to Con A (5 micrograms/ml) for 24 hours and subsequent incubation in its absence for 5-10 days resulted in 10- to 100-fold increase in alkaline phosphatase and binding of 1.25 (OH)2 vitamin D3 to cells. Treatment with Con A also resulted in 10- to 20-fold increase in calcium content and 45Ca incorporation into insoluble material. Methyl-D-mannopyranoside reversed the effect of Con A on [35S]sulfate incorporation into proteoglycan and alkaline phosphatase activity. Since other lectins, such as wheat germ agglutinin, lentil lectin, phytohemagglutinin, Ulex europeasu agglutinin and garden pea lectin had been tested to have little effect on [35S]sulfate incorporation into proteoglycans and induction of alkaline phosphatase activity, the Con A action on chondrocytes seems specific. These results indicate that Con A is a potent modulator of differentiation of chondrocytes, which induces the onset on a maturing and a terminal differentiation in chondrocytes, leading to extensive calcification of the extracellular matrix.

  8. Vimentin Modulates Infectious Internalization of Human Papillomavirus 16 Pseudovirions.

    PubMed

    Schäfer, Georgia; Graham, Lisa M; Lang, Dirk M; Blumenthal, Melissa J; Bergant Marušič, Martina; Katz, Arieh A

    2017-08-15

    Human papillomavirus (HPV) infection is the most common viral infection of the reproductive tract, with virtually all cases of cervical cancer being attributable to infection by oncogenic HPVs. However, the exact mechanism and receptors used by HPV to infect epithelial cells are controversial. The current entry model suggests that HPV initially attaches to heparan sulfate proteoglycans (HSPGs) at the cell surface, followed by conformational changes, cleavage by furin convertase, and subsequent transfer of the virus to an as-yet-unidentified high-affinity receptor. In line with this model, we established an in vitro infection system using the HSPG-deficient cell line pgsD677 together with HPV16 pseudovirions (HPV16-PsVs). While pgsD677 cells were nonpermissive for untreated HPV16-PsVs, furin cleavage of the particles led to a substantial increase in infection. Biochemical pulldown assays followed by mass spectrometry analysis showed that furin-precleaved HPV16-PsVs specifically interacted with surface-expressed vimentin on pgsD677 cells. We further demonstrated that both furin-precleaved and uncleaved HPV16-PsVs colocalized with surface-expressed vimentin on pgsD677, HeLa, HaCaT, and NIKS cells, while binding of incoming viral particles to soluble vimentin protein before infection led to a substantial decrease in viral uptake. Interestingly, decreasing cell surface vimentin by small interfering RNA (siRNA) knockdown in HeLa and NIKS cells significantly increased HPV16-PsV infectious internalization, while overexpression of vimentin had the opposite effect. The identification of vimentin as an HPV restriction factor enhances our understanding of the initial steps of HPV-host interaction and may lay the basis for the design of novel antiviral drugs preventing HPV internalization into epithelial cells. IMPORTANCE Despite HPV being a highly prevalent sexually transmitted virus causing significant disease burden worldwide, particularly cancer of the cervix, cell surface events preceding oncogenic HPV internalization are poorly understood. We herein describe the identification of surface-expressed vimentin as a novel molecule not previously implicated in the infectious internalization of HPV16. Contrary to our expectations, vimentin was found to act not as a receptor but rather as a restriction factor dampening the initial steps of HPV16 infection. These results importantly contribute to our current understanding of the molecular events during the infectious internalization of HPV16 and open a new direction in the development of alternative drugs to prevent HPV infection. Copyright © 2017 Schäfer et al.

  9. The effect of nutritional status and myogenic satellite cell age on turkey satellite cell proliferation, differentiation, and expression of myogenic transcriptional regulatory factors and heparan sulfate proteoglycans syndecan-4 and glypican-1.

    PubMed

    Harthan, Laura B; McFarland, Douglas C; Velleman, Sandra G

    2014-01-01

    Posthatch satellite cell mitotic activity is a critical component of muscle development and growth. Satellite cells are myogenic stem cells that can be induced by nutrition to follow other cellular developmental pathways, and whose mitotic activity declines with age. The objective of the current study was to determine the effect of restricting protein synthesis on the proliferation and differentiation, expression of myogenic transcriptional regulatory factors myogenic determination factor 1, myogenin, and myogenic regulatory factor 4, and expression of the heparan sulfate proteoglycans syndecan-4 and glypican-1 in satellite cells isolated from 1-d-, 7-wk-, and 16-wk-old turkey pectoralis major muscle (1 d, 7 wk, and 16 wk cells, respectively) by using variable concentrations of Met and Cys. Four Met concentrations-30 (control), 7.5, 3, or 0 mg/L with 3.2 mg/L of Cys per 1 mg/L of Met-were used for culture of satellite cells to determine the effect of nutrition and age on satellite cell behavior during proliferation and differentiation. Proliferation was reduced by lower Met and Cys concentrations in all ages at 96 h of proliferation. Differentiation was increased in the 1 d Met-restricted cells, whereas the 7 wk cells treated with 3 mg/L of Met had decreased differentiation. Reduced Met and Cys levels from the control did not significantly affect the 16 wk cells at 72 h of differentiation. However, medium with no Met or Cys suppressed differentiation at all ages. The expression of myogenic determination factor 1, myogenin, myogenic regulatory factor 4, syndecan-4, and glypican-1 was differentially affected by age and Met or Cys treatment. These data demonstrate the age-specific manner in which turkey pectoralis major muscle satellite cells respond to nutritional availability and the importance of defining optimal nutrition to maximize satellite cell proliferation and differentiation for subsequent muscle mass accretion.

  10. Collagen-Proteoglycan Relationships in Epiphyseal Cartilage

    PubMed Central

    Eisenstein, Reuben; Larsson, Sven-Erik; Sorgente, Nino; Kuettner, Klaus E.

    1973-01-01

    Columnar and hypertrophic zones of calf scapular cartilage were studied before and after extraction with 3 M guanidinium chloride (GuCl) and digestion with enzymes which degrade various components of the extracellular matrix. Morphologic and chemical analysis suggests that there are at least two anatomic pools of proteoglycan in this tissue. One, which resides between collagen fibrils, is extractable with GuCl. Another appears attached to collagen by strong bonds and is apparently not extractable with GuCl. This type of collagen-proteoglycan relationship is possibly restricted to epiphyseal cartilage. The morphology of the lacuna is different in the columnar and hypertrophic zones. Proteoglycans in the distal hypertrophic zone are less resistant to GuCl extraction. ImagesFig 9Fig 10Fig 11Fig 1Fig 2Fig 3Fig 4Fig 5Fig 6Fig 7Fig 8 PMID:4357177

  11. Evaluation of the effect of antiarthritic drugs on the secretion of proteoglycans by lapine chondrocytes using a novel assay procedure.

    PubMed Central

    Collier, S; Ghosh, P

    1989-01-01

    A new method is described for separating free 35SO4-- from 35SO4 labelled proteoglycans synthesised by rabbit articular chondrocytes cultured in the presence of excess 35SO4--. The procedure uses the low solubility product of barium sulphate to remove, by precipitation, free 35SO4-- from culture medium. Optimum recovery of 35SO4 labelled proteoglycans was achieved after papain digestion to release 35SO4-glycosaminoglycans, and addition of chondroitin sulphate before the precipitation step. Using this assay, we studied the effect of six drugs-indomethacin, diclofenac, sodium pentosan polysulphate, glycosaminoglycan polysulphate ester, tiaprofenic acid, and ketoprofen-on the secretion into the medium of labelled proteoglycans by lapine chondrocytes. The six drugs were tested at 0.1, 1, 10, 50, and 100 micrograms/ml over four consecutive 48 hour culture periods. A consistent concentration-response pattern was found for the four non-steroidal anti-inflammatory drugs (NSAIDs) studied. Generally they inhibited proteoglycan secretion at 50 and 100 micrograms/ml but had no effect at lower concentrations. Inhibition of secretion was strongest with indomethacin and diclofenac at 50 and 100 micrograms/ml. In contrast with the NSAIDs studied, the two sulphated polysaccharides (sodium pentosan polysulphate and glycosaminoglycan polysulphate ester) at low concentrations increased proteoglycan secretion by chondrocytes, with maximal stimulation occurring at 1 microgram/ml. Sodium pentosan polysulphate, but not glycosaminoglycan polysulphate ester, showed inhibitory activity at 50 and 100 micrograms/ml. PMID:2471470

  12. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc.

    PubMed

    Mwale, F; Roughley, P; Antoniou, J

    2004-12-15

    Tissue engineering of intervertebral discs (IVD) using mesenchymal stem cells (MSCs) induced to differentiate into a disc-cell phenotype has been considered as an alternative treatment for disc degeneration. However, since there is no unique marker characteristic of discs and since hyaline cartilage and immature nucleus pulposus (NP) possess similar macromolecules in their extracellular matrix, it is currently difficult to recognize MSC conversion to a disc cell. This study was performed to compare the proteoglycan to collagen ratio (measured as GAG to hydroxyproline ratio) in the NP of normal disc to that of the hyaline cartilage of the endplate within the same group of individuals and test the hypothesis that this ratio can be used for in vivo studies to distinguish between a normal NP and hyaline cartilage phenotype. Whole human lumbar spine specimens from fresh cadavers, ranging in age from 12 weeks to 79 years, were used to harvest the IVDs and adjacent endplates. The GAG to hydroxyproline ratio within the NP of young adults is approximately 27:1, whereas the ratio within the hyaline cartilage endplate of the same aged individuals is about 2:1. The production of an extracellular matrix with a high proteoglycan to collagen ratio can be used in vivo to distinguish NP cells from chondrocytes, and could help in identifying a NP-like phenotype in vivo as opposed to a chondrocyte when MSCs are induced to differentiate for tissue engineering of a disc.

  13. Occurrence and structural characterization of versican-like proteoglycan in human vitreous.

    PubMed

    Theocharis, Achilleas D; Papageorgakopoulou, Nickoletta; Feretis, Elias; Theocharis, Dimitrios A

    2002-12-01

    Human vitreous gel is a special type of extracellular matrix, in which interpenetrating networks of collagen fibrils and hyaluronan are found. In this study, we report that apart from significant amounts of collagen, hyaluronan and sialylated glycoproteins, it was found that the human vitreous gel also contained low amounts of versican-like proteoglycan. The concentration of versican-like proteoglycan in the whole vitreous is 0.06 mg protein/ml of vitreous gel and represents a small percentage (about 5%) of the total protein content. The versican-like proteoglycan has a molecular mass of 380 kDa, as estimated by gel chromatography. Its core protein is substituted by chondroitin sulphate side chains (average molecular weight 37 kDa), in which 6-sulphated disaccharides predominated. According to the physicochemical data, the number of chondroitin sulphate chains is likely to be 5-7 per molecule. These proteoglycan monomers form large aggregates with endogenous hyaluronan. Versican, which is able to bind lectins via its C-terminal region, may bridge or interconnect various constituents of the extracellular matrix via its terminal domains in order to stabilize large supramolecular complexes at the vitreous, contributing towards the integrity and specific properties of the tissue.

  14. In Vitro Expression of the Extracellular Matrix Components Aggrecan, Collagen Types I and II by Articular Cartilage-Derived Chondrocytes.

    PubMed

    Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M

    2017-02-01

    The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells. © 2016 Blackwell Verlag GmbH.

  15. Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium.

    PubMed

    Wagner, Diane R; Lindsey, Derek P; Li, Kelvin W; Tummala, Padmaja; Chandran, Sheena E; Smith, R Lane; Longaker, Michael T; Carter, Dennis R; Beaupre, Gary S

    2008-05-01

    This study demonstrated the chondrogenic effect of hydrostatic pressure on human bone marrow stromal cells (MSCs) cultured in a mixed medium containing osteogenic and chondrogenic factors. MSCs seeded in type I collagen sponges were exposed to 1 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for 4 h per day for 10 days, or remained in identical culture conditions but without exposure to pressure. Afterwards, we compared the proteoglycan content of loaded and control cell/scaffold constructs with Alcian blue staining. We also used real-time PCR to evaluate the change in mRNA expression of selected genes associated with chondrogenic and osteogenic differentiation (aggrecan, type I collagen, type II collagen, Runx2 (Cbfa-1), Sox9, and TGF-beta1). With the hydrostatic pressure loading regime, proteoglycan staining increased markedly. Correspondingly, the mRNA expression of chondrogenic genes such as aggrecan, type II collagen, and Sox9 increased significantly. We also saw a significant increase in the mRNA expression of type I collagen, but no change in the expression of Runx2 or TGF-beta1 mRNA. This study demonstrated that hydrostatic pressure enhanced differentiation of MSCs in the presence of multipotent differentiation factors in vitro, and suggests the critical role that this loading regime may play during cartilage development and regeneration in vivo.

  16. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    PubMed

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.

  17. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake

    PubMed Central

    Lamichhane, Surya P; Arya, Neha; Ojha, Nirdesh; Kohler, Esther; Shastri, V Prasad

    2015-01-01

    The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP)-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG) production is altered in many diseases (or pathologies), NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA) NPs in the range of 100–150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549) cells, human pulmonary microvascular endothelial cells (HPMEC), and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100–600 μg/mL) by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%–65% in comparison to that of unmodified PLGA. Interestingly, the uptake of chondroitin sulfate NPs was the highest in both cell systems with 40%–60% higher uptake when compared with that of PLGA, and this represented an almost twofold difference over heparin-modified NPs. These findings suggest that GAG modification can be explored as means of changing the uptake behavior of PLGA NPs and these NP systems have potential in cancer therapy. PMID:25632234

  18. Heparin Oligosaccharides as Potential Therapeutic Agents in Senile Dementia

    PubMed Central

    Ma, Qing; Cornelli, Umberto; Hanin, Israel; Jeske, Walter P.; Linhardt, Robert J.; Walenga, Jeanine M.; Fareed, Jawed; Lee, John M.

    2014-01-01

    Heparin is a glycosaminoglycan mixture currently used in prophylaxis and treatment of thrombosis. Heparin possesses non-anticoagulant properties, including modulation of various proteases, interactions with fibroblast growth factors, and anti-inflammatory actions. Senile dementia of Alzheimer’s type is accompanied by inflammatory responses contributing to irreversible changes in neuronal viability and brain function. Vascular factors are also involved in the pathogenesis of senile dementia. Inflammation, endogenous proteoglycans, and assembly of senile plagues and neurofibrillary tangles contribute directly and indirectly to further neuronal damage. Neuron salvage can be achieved by anti-inflammation and the competitive inhibition of proteoglycans accumulation. The complexity of the pathology of senile dementia provides numerous potential targets for therapeutic interventions designed to modulate inflammation and proteoglycan assembly. Heparin and related oligosaccharides are known to exhibit anti-inflammatory effects as well as inhibitory effects on proteoglycan assembly and may prove useful as neuroprotective agents. PMID:17504153

  19. Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region.

    PubMed Central

    Scott, J E; Orford, C R

    1981-01-01

    Rat tail tendon was stained with a cationic phthalocyanin dye, Cupromeronic Blue, in a 'critical-electrolyte-concentration' method [Scott (1980) Biochem. J. 187, 887-891] specifically to demonstrate proteoglycan by electron microscopy. Hyaluronidase digestion in the presence of proteinase inhibitors corroborated the results. Collagen was stained with uranyl acetate and/or phosphotungstic acid to demonstrate the banding pattern a-e in the D period. Proteoglycan was distributed about the collagen fibrils in an orthogonal array, the transverse elements of which were located almost exclusively at the d band, in the gap zone. The proteoglycan may inhibit (1) fibril radial growth by accretion of collagen molecules or fibril fusion, through interference with cross-linking, and (2) calcification by occupying the holes in the gap region later to be filled with hydroxyapatite. Images PLATE 1 PMID:7317031

  20. Structural and functional characterization of the interaction between cyclophilin B and a heparin-derived oligosaccharide.

    PubMed

    Hanoulle, Xavier; Melchior, Aurélie; Sibille, Nathalie; Parent, Benjamin; Denys, Agnès; Wieruszeski, Jean-Michel; Horvath, Dragos; Allain, Fabrice; Lippens, Guy; Landrieu, Isabelle

    2007-11-23

    The chemotaxis and integrin-mediated adhesion of T lymphocytes triggered by secreted cyclophilin B (CypB) depend on interactions with both cell surface heparan sulfate proteoglycans (HSPG) and the extracellular domain of the CD147 membrane receptor. Here, we use NMR spectroscopy to characterize the interaction of CypB with heparin-derived oligosaccharides. Chemical shift perturbation experiments allowed the precise definition of the heparan sulfate (HS) binding site of CypB. The N-terminal extremity of CypB, which contains a consensus sequence for heparin-binding proteins was modeled on the basis of our experimental NMR data. Because the HS binding site extends toward the CypB catalytic pocket, we measured its peptidyl-prolyl cis-trans isomerase (PPIase) activity in the absence or presence of a HS oligosaccharide toward a CD147-derived peptide. We report the first direct evidence that CypB is enzymatically active on CD147, as it is able to accelerate the cis/trans isomerization of the Asp(179)-Pro(180) bond in a CD147-derived peptide. However, HS binding has no significant influence on this PPIase activity. We thus conclude that the glycanic moiety of HSPG serves as anchor for CypB at the cell surface, and that the signal could be transduced by CypB via its PPIase activity toward CD147.

  1. Heparan Sulfate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells.

    PubMed

    Okolicsanyi, Rachel K; Oikari, Lotta E; Yu, Chieh; Griffiths, Lyn R; Haupt, Larisa M

    2018-01-01

    Background: Due to their relative ease of isolation and their high ex vivo and in vitro expansive potential, human mesenchymal stem cells (hMSCs) are an attractive candidate for therapeutic applications in the treatment of brain injury and neurological diseases. Heparan sulfate proteoglycans (HSPGs) are a family of ubiquitous proteins involved in a number of vital cellular processes including proliferation and stem cell lineage differentiation. Methods: Following the determination that hMSCs maintain neural potential throughout extended in vitro expansion, we examined the role of HSPGs in mediating the neural potential of hMSCs. hMSCs cultured in basal conditions (undifferentiated monolayer cultures) were found to co-express neural markers and HSPGs throughout expansion with modulation of the in vitro niche through the addition of exogenous HS influencing cellular HSPG and neural marker expression. Results: Conversion of hMSCs into hMSC Induced Neurospheres (hMSC IN) identified distinctly localized HSPG staining within the spheres along with altered gene expression of HSPG core protein and biosynthetic enzymes when compared to undifferentiated hMSCs. Conclusion: Comparison of markers of pluripotency, neural self-renewal and neural lineage specification between hMSC IN, hMSC and human neural stem cell (hNSC H9) cultures suggest that in vitro generated hMSC IN may represent an intermediary neurogenic cell type, similar to a common neural progenitor cell. In addition, this data demonstrates HSPGs and their biosynthesis machinery, are associated with hMSC IN formation. The identification of specific HSPGs driving hMSC lineage-specification will likely provide new markers to allow better use of hMSCs in therapeutic applications and improve our understanding of human neurogenesis.

  2. Final Report for Award DE-FG02-09ER64721

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    somerville, chris

    The original goal of this award was to develop a proteoglycan “chip” containing suitable oligosaccharides that could be used as substrates for glycosyltransferases involved in synthesis or proteoglycans in higher plant cell walls. We had previously developed a suite of cloned enzymes that could be used to cleave most of the relevant glycosidic linkages in plant cell walls. The next step, supported by the previous award and this award, was to produce a series of transgenic plants in which synthetic proteins were introduced that contained each of the known sequence motifs that induce prolyl hydroxylation, and subsequent glycosylation. This workmore » was completed and published in Estevez et al (2006). We then engaged on a series of experiments to define the properties of the prolyl hydroxylases that convert certain prolyl resides to hydroxyproline for subsequent glycosylation. This proved to be a challenging goal that required recruitment of an international team of complementary skills and several additional years or research. However, the effort was successful and has been published in Science recenty (Velasquez et al., 2011). In the course of this project, the postdoc supported by the award (Jose Estevez) was asked to provide technical assistance to a colleague at Stanford because of his expertise in marine polysaccharides. This led to the important discovery that marine algae have compounds that could be classified as lignin (Martone et al., 2009). Publications supported by the award Estévez, J.M., Kieliszewski, M.J., Khitrov, N., Somerville, C. (2006) Characterization of synthetic hydroxyproline-rich proteoglycans with AGP- and extensin-motifs in Arabidopsis. Plant Physiol., 142,458-470 Martone, P.T., Estevez, J.M., Lu, F., Ruel, K., Ralph, J., Denny, M.W., Somerville, C.R. (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol., 19, 169-175 Velasquez, S.M., M. Ricardi, M.M., Dorosz, J.G., Fernandez, P.V., Nadra, A.D., Pol-Fachin, L., Egelund, J., Gille, S., Harholt, J., Ciancia, M., Verli, H., Pauly, M., Bacic, A., Olsen, C.E., r Ulvskov, P., Petersen, B.L., Somerville, C., Iusem, N.D. & Estevez, J.M. (2011) O-glycosylated cell wall proteins are essential in root hair growth. Science 332,1401-1403« less

  3. Glycan antagonists and inhibitors: a fount for drug discovery.

    PubMed

    Brown, Jillian R; Crawford, Brett E; Esko, Jeffrey D

    2007-01-01

    Glycans, the carbohydrate chains of glycoproteins, proteoglycans, and glycolipids, represent a relatively unexploited area for drug development compared with other macromolecules. This review describes the major classes of glycans synthesized by animal cells, their mode of assembly, and available inhibitors for blocking their biosynthesis and function. Many of these agents have proven useful for studying the biological activities of glycans in isolated cells, during embryological development, and in physiology. Some are being used to develop drugs for treating metabolic disorders, cancer, and infection, suggesting that glycans are excellent targets for future drug development.

  4. Single Quantum Dot Tracking Reveals that an Individual Multivalent HIV-1 Tat Protein Transduction Domain Can Activate Machinery for Lateral Transport and Endocytosis

    PubMed Central

    Roy, Chandra Nath; Promjunyakul, Warunya; Hatakeyama, Hiroyasu; Gonda, Kohsuke; Imamura, Junji; Vasudevanpillai, Biju; Ohuchi, Noriaki; Kanzaki, Makoto; Higuchi, Hideo; Kaku, Mitsuo

    2013-01-01

    The mechanisms underlying the cellular entry of the HIV-1 Tat protein transduction domain (TatP) and the molecular information necessary to improve the transduction efficiency of TatP remain unclear due to the technical limitations for direct visualization of TatP's behavior in cells. Using confocal microscopy, total internal reflection fluorescence microscopy, and four-dimensional microscopy, we developed a single-molecule tracking assay for TatP labeled with quantum dots (QDs) to examine the kinetics of TatP initially and immediately before, at the beginning of, and immediately after entry into living cells. We report that even when the number of multivalent TatP (mTatP)-QDs bound to a cell was low, each single mTatP-QD first locally induced the cell's lateral transport machinery to move the mTatP-QD toward the center of the cell body upon cross-linking of heparan sulfate proteoglycans. The centripetal and lateral movements were linked to the integrity and flow of actomyosin and microtubules. Individual mTatP underwent lipid raft-mediated temporal confinement, followed by complete immobilization, which ultimately led to endocytotic internalization. However, bivalent TatP did not sufficiently promote either cell surface movement or internalization. Together, these findings provide clues regarding the mechanisms of TatP cell entry and indicate that increasing the valence of TatP on nanoparticles allows them to behave as cargo delivery nanomachines. PMID:23732912

  5. Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy.

    PubMed

    Bagley, Rebecca G; Weber, William; Rouleau, Cecile; Teicher, Beverly A

    2005-11-01

    Tumor vasculature is irregular, abnormal, and essential for tumor growth. Pericytes and endothelial precursor cells (EPC) contribute to the formation of blood vessels under angiogenic conditions. As primary cells in culture, pericytes and EPC share many properties such as tube/network formation and response to kinase inhibitors selective for angiogenic pathways. Expression of cell surface proteins including platelet-derived growth factor receptor, vascular cell adhesion molecule, intercellular adhesion molecule, CD105, desmin, and neural growth proteoglycan 2 was similar between pericytes and EPC, whereas expression of P1H12 and lymphocyte function-associated antigen-1 clearly differentiates the cell types. Further distinction was observed in the molecular profiles for expression of angiogenic genes. Pericytes or EPC enhanced the invasion of MDA-MB-231 breast cancer cells in a coculture assay system. The s.c. coinjection of live pericytes or EPC along with MDA-MB-231 cells resulted in an increased rate of tumor growth compared with coinjection of irradiated pericytes or EPC. Microvessel density analysis indicated there was no difference in MDA-MB-231 tumors with or without EPC or pericytes. However, immunohistochemical staining of vasculature suggested that EPC and pericytes may stabilize or normalize vasculature rather than initiate vasculogenesis. In addition, tumors arising from the coinjection of EPC and cancer cells were more likely to develop lymphatic vessels. These results support the notion that pericytes and EPC contribute to malignancy and that these cell types can be useful as cell-based models for tumor vascular development and selection of agents that may provide therapeutic benefit.

  6. Oncofetal Chondroitin Sulfate Glycosaminoglycans Are Key Players in Integrin Signaling and Tumor Cell Motility.

    PubMed

    Clausen, Thomas Mandel; Pereira, Marina Ayres; Al Nakouzi, Nader; Oo, Htoo Zarni; Agerbæk, Mette Ø; Lee, Sherry; Ørum-Madsen, Maj Sofie; Kristensen, Anders Riis; El-Naggar, Amal; Grandgenett, Paul M; Grem, Jean L; Hollingsworth, Michael A; Holst, Peter J; Theander, Thor; Sorensen, Poul H; Daugaard, Mads; Salanti, Ali

    2016-12-01

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion, and anchorage-independent growth of tumor cells in vitro Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. The cancer-specific expression of ofCS aids in metastatic phenotypes and is a candidate target for therapy. Mol Cancer Res; 14(12); 1288-99. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seomun, Young; Joo, Choun-Ki

    Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins {alpha}2 and {beta}1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin {beta}1 were completely blocked. These data provide evidence thatmore » lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.« less

  8. Age-related changes in the proteoglycans of human skin. Specific cleavage of decorin to yield a major catabolic fragment in adult skin.

    PubMed

    Carrino, David A; Onnerfjord, Patrik; Sandy, John D; Cs-Szabo, Gabriella; Scott, Paul G; Sorrell, J Michael; Heinegård, Dick; Caplan, Arnold I

    2003-05-09

    Dramatic changes occur in skin as a function of age, including changes in morphology, physiology, and mechanical properties. Changes in extracellular matrix molecules also occur, and these changes likely contribute to the overall age-related changes in the physical properties of skin. The major proteoglycans detected in extracts of human skin are decorin and versican. In addition, adult human skin contains a truncated form of decorin, whereas fetal skin contains virtually undetectable levels of this truncated decorin. Analysis of this molecule, herein referred to as decorunt, indicates that it is a catabolic fragment of decorin rather than a splice variant. With antibody probes to the core protein, decorunt is found to lack the carboxyl-terminal portion of decorin. Further analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry shows that the carboxyl terminus of decorunt is at Phe(170) of decorin. This result indicates that decorunt represents the amino-terminal 43% of the mature decorin molecule. Such a structure is inconsistent with alternative splicing of decorin and suggests that decorunt is a catabolic fragment of decorin. A neoepitope antiserum, anti-VRKVTF, was generated against the carboxyl terminus of decorunt. This antiserum does not recognize intact decorin in any skin proteoglycan sample tested on immunoblots but recognizes every sample of decorunt tested. The results with anti-VRKVTF confirm the identification of the carboxyl terminus of decorunt. Analysis of collagen binding by surface plasmon resonance indicates that the affinity of decorunt for type I collagen is 100-fold less than that of decorin. This observation correlates with the structural analysis of decorunt, in that it lacks regions of decorin previously shown to be important for interaction with type I collagen. The detection of a catabolic fragment of decorin suggests the existence of a specific catabolic pathway for this proteoglycan. Because of the capacity of decorin to influence collagen fibrillogenesis, catabolism of decorin may have important functional implications with respect to the dermal collagen network.

  9. Elevated levels of ferrimagnetic metals in foodchains supporting the Guam cluster of neurodegeneration: do metal nucleated crystal contaminants [corrected] evoke magnetic fields that initiate the progressive pathogenesis of neurodegeneration?

    PubMed

    Purdey, Mark

    2004-01-01

    Elevated levels of aluminium (Al), strontium (Sr), barium (Ba), iron (Fe), manganese (Mn) cations - combined with deficiencies of magnesium (Mg)/calcium (Ca) - have been observed in the foodchains that traditionally support the Chamorro populations affected by high incidence clusters of Alzheimer (AD), Parkinson-like (PD), motor neurone diseases and multiple sclerosis on the island of Guam. Soils drawn from the cluster region demonstrated an excessive fivefold increase in 'magnetic susceptibility' readings in relation to soils from disease free adjoining regions. A multifactorial aetiological hypothesis is proposed that pivots upon the combined exposure to high levels of natural/industrial sources of ferrimagnetic/ferroelectric compounds incorporating Al, Fe, Mn, Sr, Ba (e.g., via yam/seafood consumption or exposure to world war 2 (WW2) munitions) and to low levels of Mg/Ca in all S. Pacific locations where these clusters of neurodegenerative disease have simultaneously erupted. Once gut/blood brain barrier permeability is impaired, the increased uptake of Al, Fe, Sr, Ba, or Mn into the Mg/Ca depleted brain leads to rogue metal substitutions at the Mg/Ca vacated binding domains on various enzyme/proteoglycan groups, causing a broad ranging disruption in Mg/Ca dependent systems - such as the glutamine synthetase which prevents the accumulation of neurotoxic glutamate. The rogue metals chelate sulphate, disrupting sulphated-proteoglycan mediated inhibition of crystal proliferation, as well as its regulation of the Fibroblast growth factor receptor complex which disturbs the molecular conformation of those receptors and their regulation of transphosphorylation between intracellular kinase domains; ultimately collapsing proteoglycan mediated cell-cell signalling pathways which maintain the growth and structural integrity of the neuronal networks. The depression of Mg/Ca dependent systems in conjunction with the progressive ferrimagnetisation of the CNS due to an overload of rogue ferroelectric/ferrimagnetic metal contaminants, enables 'seeding' of metal-protein crystalline arrays that can proliferate in the proteoglycan depleted brain. The resulting magnetic field emissions initiate a free radical mediated progressive pathogenesis of neurodegeneration. The co-clustering of these various types of disease in select geographical pockets around the world suggests that all of these conditions share a common early life exposure to ferromagnetic metal nucleating agents in their multifactorial aetiology. Factors such as individual genetics, the species of metal involved, etc., dictate which specific class of disease will emerge as a delayed neurotoxic response to these environmental insults.

  10. Examination of Neisseria Gonorrhoeae Opacity Protein Expression During Experimental Murine Genital Tract Infection

    DTIC Science & Technology

    2005-01-01

    These alterations abolished Opa-dependent invasion. Also, cells deficient in proteoglycan synthesis were resistant to gonococcal invasion...volunteers. Gonococcal mutants deficient in production of pilin (40), RecA (40), or IgA1 protease (106) were not attenuated in this model. Interestingly...proliferative or high estrogen phase of the menstrual cycle. Endocervical cultures from these same patients taken during the luteal or high progesterone

  11. Hyaluronate-binding proteins of murine brain.

    PubMed

    Marks, M S; Chi-Rosso, G; Toole, B P

    1990-01-01

    The distribution of hyaluronate-binding activity was determined in the soluble and membrane fractions derived from adult mouse brain by sonication in low-ionic-strength buffer. Approximately 60% of the total activity was recovered in the soluble fraction and 33% in membrane fractions. In both cases, the hyaluronate-binding activities were found to be of high affinity (KD = 10(-9) M), specific for hyaluronate, and glycoprotein in nature. Most of the hyaluronate-binding activity from the soluble fraction chromatographed in the void volume of Sepharose CL-4B and CL-6B. Approximately 50% of this activity was highly negatively charged, eluting from diethylaminoethyl (DEAE)-cellulose in 0.5 M NaCl, and contained chondroitin sulfate chains. This latter material also reacted with antibodies raised against cartilage link protein and the core protein of cartilage proteoglycan. Thus, the binding and physical characteristics of this hyaluronate-binding activity are consistent with those of a chondroitin sulfate proteoglycan aggregate similar to that found in cartilage. A 500-fold purification of this proteoglycan-like, hyaluronate-binding material was achieved by wheat germ agglutinin affinity chromatography, molecular sieve chromatography on Sepharose CL-6B, and ion exchange chromatography on DEAE-cellulose. Another class of hyaluronate-binding material (25-50% of that recovered) eluted from DEAE with 0.24 M NaCl; this material had the properties of a complex glycoprotein, did not contain chondroitin sulfate, and did not react with the antibodies against cartilage link protein and proteoglycan. Thus, adult mouse brain contains at least three different forms of hyaluronate-binding macromolecules. Two of these have properties similar to the link protein and proteoglycan of cartilage proteoglycan aggregates; the third is distinguishable from these entities.

  12. Rapid assays for lectin toxicity and binding changes that reflect altered glycosylation in mammalian cells.

    PubMed

    Stanley, Pamela; Sundaram, Subha

    2014-06-03

    Glycosylation engineering is used to generate glycoproteins, glycolipids, or proteoglycans with a more defined complement of glycans on their glycoconjugates. For example, a mammalian cell glycosylation mutant lacking a specific glycosyltransferase generates glycoproteins, and/or glycolipids, and/or proteoglycans with truncated glycans missing the sugar transferred by that glycosyltransferase, as well as those sugars that would be added subsequently. In some cases, an alternative glycosyltransferase may then use the truncated glycans as acceptors, thereby generating a new or different glycan subset in the mutant cell. Another type of glycosylation mutant arises from gain-of-function mutations that, for example, activate a silent glycosyltransferase gene. In this case, glycoconjugates will have glycans with additional sugar(s) that are more elaborate than the glycans of wild type cells. Mutations in other genes that affect glycosylation, such as nucleotide sugar synthases or transporters, will alter the glycan complement in more general ways that usually affect several types of glycoconjugates. There are now many strategies for generating a precise mutation in a glycosylation gene in a mammalian cell. Large-volume cultures of mammalian cells may also generate spontaneous mutants in glycosylation pathways. This article will focus on how to rapidly characterize mammalian cells with an altered glycosylation activity. The key reagents for the protocols described are plant lectins that bind mammalian glycans with varying avidities, depending on the specific structure of those glycans. Cells with altered glycosylation generally become resistant or hypersensitive to lectin toxicity, and have reduced or increased lectin or antibody binding. Here we describe rapid assays to compare the cytotoxicity of lectins in a lectin resistance test, and the binding of lectins or antibodies by flow cytometry in a glycan-binding assay. Based on these tests, glycosylation changes expressed by a cell can be revealed, and glycosylation mutants classified into phenotypic groups that may reflect a loss-of-function or gain-of-function mutation in a specific gene involved in glycan synthesis. Copyright © 2014 John Wiley & Sons, Inc.

  13. Distribution of syndecan-1 protein in developing mouse teeth

    PubMed Central

    Filatova, Anna; Pagella, Pierfrancesco; Mitsiadis, Thimios A.

    2014-01-01

    Syndecan-1 is a cell surface proteoglycan involved in the regulation of various biological processes such as proliferation, migration, condensation and differentiation of cells, intercellular communication, and morphogenesis. The extracellular domain of syndecan-1 can bind to extracellular matrix components and signaling molecules, while its intracellular domain interacts with cytoskeletal proteins, thus allowing the transfer of information about extracellular environment changes into the cell that consequently affect cellular behavior. Although previous studies have shown syndecan-1 expression during precise stages of tooth development, there is no equivalent study regrouping the expression patterns of syndecan-1 during all stages of odontogenesis. Here we examined the distribution of syndecan-1 protein in embryonic and post-natal developing mouse molars and incisors. Syndecan-1 distribution in mesenchymal tissues such as dental papilla and dental follicle was correlated with proliferating events and its expression was often linked to stem cell niche territories. Syndecan-1 was also expressed in mesenchymal cells that will differentiate into the dentin producing odontoblasts, but not in differentiated functional odontoblasts. In the epithelium, syndecan-1 was detected in all cell layers, by the exception of differentiated ameloblasts that form the enamel. Furthermore, syndecan-1 was expressed in osteoblast precursors and osteoclasts of the alveolar bone that surrounds the developing tooth germs. Taken together these results show the dynamic nature of syndecan-1 expression during odontogenesis and suggest its implication in various processes of tooth development and homeostasis. PMID:25642191

  14. Biphasic Role of Chondroitin Sulfate in Cardiac Differentiation of Embryonic Stem Cells through Inhibition of Wnt/β-Catenin Signaling

    PubMed Central

    Prinz, Robert D.; Willis, Catherine M.; van Kuppevelt, Toin H.; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury. PMID:24667694

  15. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    PubMed

    Prinz, Robert D; Willis, Catherine M; van Kuppevelt, Toin H; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  16. Creating an Animal Model of Tendinopathy by Inducing Chondrogenic Differentiation with Kartogenin.

    PubMed

    Yuan, Ting; Zhang, Jianying; Zhao, Guangyi; Zhou, Yiqin; Zhang, Chang-Qing; Wang, James H-C

    2016-01-01

    Previous animal studies have shown that long term rat treadmill running induces over-use tendinopathy, which manifests as proteoglycan accumulation and chondrocytes-like cells within the affected tendons. Creating this animal model of tendinopathy by long term treadmill running is however time-consuming, costly and may vary among animals. In this study, we used a new approach to develop an animal model of tendinopathy using kartogenin (KGN), a bio-compound that can stimulate endogenous stem/progenitor cells to differentiate into chondrocytes. KGN-beads were fabricated and implanted into rat Achilles tendons. Five weeks after implantation, chondrocytes and proteoglycan accumulation were found at the KGN implanted site. Vascularity as well as disorganization in collagen fibers were also present in the same site along with increased expression of the chondrocyte specific marker, collagen type II (Col. II). In vitro studies confirmed that KGN was released continuously from KGN-alginate in vivo beads and induced chondrogenic differentiation of tendon stem/progenitor cells (TSCs) suggesting that chondrogenesis after KGN-bead implantation into the rat tendons is likely due to the aberrant differentiation of TSCs into chondrocytes. Taken together, our results showed that KGN-alginate beads can be used to create a rat model of tendinopathy, which, at least in part, reproduces the features of over-use tendinopathy model created by long term treadmill running. This model is mechanistic (stem cell differentiation), highly reproducible and precise in creating localized tendinopathic lesions. It is expected that this model will be useful to evaluate the effects of various topical treatments such as NSAIDs and platelet-rich plasma (PRP) for the treatment of tendinopathy.

  17. Glycosaminoglycan Chain of Dentin Sialoprotein Proteoglycan

    PubMed Central

    Zhu, Q.; Sun, Y.; Prasad, M.; Wang, X.; Yamoah, A.K.; Li, Y.; Feng, J.; Qin, C.

    2010-01-01

    Dentin sialophosphoprotein (DSPP) is processed into dentin sialoprotein (DSP) and dentin phosphoprotein. A molecular variant of rat DSP, referred to as “HMW-DSP”, has been speculated to be a proteoglycan form of DSP. To determine if HMW-DSP is the proteoglycan form of DSP and to identify the glycosaminoglycan side-chain attachment site(s), we further characterized HMW-DSP. Chondroitinase ABC treatment reduced the migration rate for portions of rat HMW-DSP to the level of DSP. Disaccharide analysis showed that rat HMW-DSP contains glycosaminoglycan chains made of chondroitin-4-sulfate and has an average of 31-32 disaccharides/mol. These observations confirmed that HMW-DSP is the proteoglycan form of DSP (renamed “DSP-PG”). Edman degradation and mass spectrometric analyses of tryptic peptides from rat DSP-PG, along with substitution analyses of candidate Ser residues in mouse DSPP, confirmed that 2 glycosaminoglycan chains are attached to Ser241 and Ser253 in the rat, or Ser242 and Ser254 in the mouse DSPP sequence. PMID:20400719

  18. Glycosaminoglycan chain of dentin sialoprotein proteoglycan.

    PubMed

    Zhu, Q; Sun, Y; Prasad, M; Wang, X; Yamoah, A K; Li, Y; Feng, J; Qin, C

    2010-08-01

    Dentin sialophosphoprotein (DSPP) is processed into dentin sialoprotein (DSP) and dentin phosphoprotein. A molecular variant of rat DSP, referred to as "HMW-DSP", has been speculated to be a proteoglycan form of DSP. To determine if HMW-DSP is the proteoglycan form of DSP and to identify the glycosaminoglycan side-chain attachment site(s), we further characterized HMW-DSP. Chondroitinase ABC treatment reduced the migration rate for portions of rat HMW-DSP to the level of DSP. Disaccharide analysis showed that rat HMW-DSP contains glycosaminoglycan chains made of chondroitin-4-sulfate and has an average of 31-32 disaccharides/mol. These observations confirmed that HMW-DSP is the proteoglycan form of DSP (renamed "DSP-PG"). Edman degradation and mass spectrometric analyses of tryptic peptides from rat DSP-PG, along with substitution analyses of candidate Ser residues in mouse DSPP, confirmed that 2 glycosaminoglycan chains are attached to Ser(241) and Ser(253) in the rat, or Ser(242) and Ser(254) in the mouse DSPP sequence.

  19. Expression of the chondroitin sulphate proteoglycan molecular complex in six human melanoma xenograft lines studied by flow cytometry and immunohistochemistry.

    PubMed

    Nagelhus, T A; Rofstad, E K

    1993-06-01

    The expression of the chondroitin sulphate proteoglycan (CSP) molecular complex in six human melanoma xenograft lines (BEX-t, COX-t, HUX-t, ROX-t, SAX-t, WIX-t) was studied by flow cytometry and immunohistochemistry using the monoclonal antibodies 9.2.27, ME31.3, G7A5, and NKI.M6. The two methods and the four antibodies gave consistent results. The six melanoma lines could be divided into three distinct groups of two lines each; expression was high in the HUX-t and ROX-t lines and intermediate in the BEX-t and SAX-t lines, whereas the COX-t and WIX-t lines were negative. The mean number of epitopes per cell for 9.2.27 was approximately twice as high as for ME31.3, G7A5, and NKI.M6 and was estimated to range from 0.8 +/- 0.1 x 10(5) to 1.9 +/- 0.2 x 10(5) in the positive xenograft lines. The expression of the CSP complex was heterogeneous. The immunofluorescence histograms measured by flow cytometry were therefore broad for all tumour lines. A significant fraction of the HUX-t cells was negative or weakly stained. These cells appeared as clear negative patches in the immunohistochemical preparations. Moreover, most morphologically intact tumour cells adjacent to necrotic areas did not show significant expression of the CSP complex, irrespective of tumour line. These cells were probably hypoxic and thus resistant to radiation therapy. The expression of the CSP complex in the xenograft lines was similar to that reported for melanoma in man.

  20. Heparan Sulfate in Perlecan Promotes Mouse Atherosclerosis: Roles in Lipid Permeability, Lipid Retention, and Smooth Muscle Cell Proliferation

    PubMed Central

    Tran-Lundmark, Karin; Tran, Phan-Kiet; Paulsson-Berne, Gabrielle; Fridén, Vincent; Soininen, Raija; Tryggvason, Karl; Wight, Thomas N; Kinsella, Michael G; Borén, Jan; Hedin, Ulf

    2009-01-01

    Heparan sulfate (HS) has been proposed to be anti-atherogenic through inhibition of lipoprotein retention, inflammation, and smooth muscle cell proliferation. Perlecan is the predominant HS proteoglycan in the artery wall. Here, we investigated the role of perlecan HS chains using apoE null (ApoE0) mice that were cross-bred with mice expressing HS-deficient perlecan (Hspg2Δ3/Δ3). Morphometry of cross-sections from aortic roots and en face preparations of whole aortas revealed a significant decrease in lesion formation in ApoE0/Hspg2Δ3/Δ3 mice at both 15 and 33 weeks. In vitro, binding of labeled mouse triglyceride-rich lipoproteins and human LDL to total extracellular matrix, as well as to purified proteoglycans, prepared from ApoE0/Hspg2Δ3/Δ3 smooth muscle cells was reduced. In vivo, at 20 min influx of human 125I-LDL or mouse triglyceride-rich lipoproteins into the aortic wall was increased in ApoE0/Hspg2Δ3/Δ3 mice compared to ApoE0 mice. However, at 72 hours accumulation of 125I-LDL was similar in ApoE0/Hspg2Δ3/Δ3 and ApoE0 mice. Immunohistochemistry of lesions from ApoE0/Hspg2Δ3/Δ3 mice showed decreased staining for apoB and increased smooth muscle α-actin content, whereas accumulation of CD68-positive inflammatory cells was unchanged. We conclude that the perlecan HS chains are pro-atherogenic in mice, possibly through increased lipoprotein retention, altered vascular permeability, or other mechanisms. The ability of HS to inhibit smooth muscle cell growth may also influence development as well as instability of lesions. PMID:18596265

  1. Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation.

    PubMed

    Tran-Lundmark, Karin; Tran, Phan-Kiet; Paulsson-Berne, Gabrielle; Fridén, Vincent; Soininen, Raija; Tryggvason, Karl; Wight, Thomas N; Kinsella, Michael G; Borén, Jan; Hedin, Ulf

    2008-07-03

    Heparan sulfate (HS) has been proposed to be antiatherogenic through inhibition of lipoprotein retention, inflammation, and smooth muscle cell proliferation. Perlecan is the predominant HS proteoglycan in the artery wall. Here, we investigated the role of perlecan HS chains using apoE null (ApoE0) mice that were cross-bred with mice expressing HS-deficient perlecan (Hspg2(Delta3/Delta3)). Morphometry of cross-sections from aortic roots and en face preparations of whole aortas revealed a significant decrease in lesion formation in ApoE0/Hspg2(Delta3/Delta3) mice at both 15 and 33 weeks. In vitro, binding of labeled mouse triglyceride-rich lipoproteins and human LDL to total extracellular matrix, as well as to purified proteoglycans, prepared from ApoE0/Hspg2(Delta3/Delta3) smooth muscle cells was reduced. In vivo, at 20 minutes influx of human (125)I-LDL or mouse triglyceride-rich lipoproteins into the aortic wall was increased in ApoE0/Hspg2(Delta3/Delta3) mice compared to ApoE0 mice. However, at 72 hours accumulation of (125)I-LDL was similar in ApoE0/Hspg2(Delta3/Delta3) and ApoE0 mice. Immunohistochemistry of lesions from ApoE0/Hspg2(Delta3/Delta3) mice showed decreased staining for apoB and increased smooth muscle alpha-actin content, whereas accumulation of CD68-positive inflammatory cells was unchanged. We conclude that the perlecan HS chains are proatherogenic in mice, possibly through increased lipoprotein retention, altered vascular permeability, or other mechanisms. The ability of HS to inhibit smooth muscle cell growth may also influence development as well as instability of lesions.

  2. Anti-chondroitin sulfate proteoglycan 4-specific antibodies modify the effects of vemurafenib on melanoma cells differentially in normoxia and hypoxia

    PubMed Central

    PUCCIARELLI, DANIELA; LENGGER, NINA; TAKACOVA, MARTINA; CSADEROVA, LUCIA; BARTOSOVA, MARIA; BREITENEDER, HEIMO; PASTOREKOVA, SILVIA; HAFNER, CHRISTINE

    2015-01-01

    Chondroitin sulfate proteoglycan 4 (CSPG4), a highly immunogenic melanoma tumor antigen, is a potential target for antibody-based immunotherapy. The mechanism by which CSPG4 affects melanoma progression is only partly understood, in particular the involvement of other receptor tyrosine kinases and the tumor microenvironment. We have previously reported on a mimotope-based vaccine against CSPG4 in a human melanoma xenograft model that resulted in reduction of tumor growth. Herein we describe the influence of hypoxia on the response to polyclonal anti-CSPG4-antibodies induced by this vaccine in combination with the BRAF inhibitor vemurafenib to enhance therapeutic efficacy by simultaneously targeting multiple signaling pathways. Melanoma cells were treated with polyclonal anti-CSPG4-antibodies and vemurafenib. Proliferation, migration and invasion were evaluated in a real-time setting in the impedance-based x-CELLigence® system. Western blotting and quantitative PCR arrays were used to determine protein and mRNA expression of hypoxia inducible factor 1α (HIF1α), carbonic anhydrase IX (CAIX) and signaling pathway proteins. A melanoma xenograft model was used to detect HIF1α and CAIX expression in vivo. Hypoxia enhanced the antiproliferative response to vemurafenib. The migration and invasion capacities of vemurafenib-treated melanoma cells were increased, in spite of vemurafenib-decreased expression of HIF1α and CAIX. Polyclonal anti-CSPG4-antibodies reduced the Transwell migration of vemurafenib-treated, BRAF V600E-mutant and CSPG4-expressing melanoma cells in hypoxia. This was associated with the downregulation of phosphorylated AKT, a kinase contributing to tumor cell migration. Our results highlight CSPG4 as a potential target for modulating treatment resistance to vemurafenib induced by the hypoxic microenvironment. PMID:25997619

  3. Anti-chondroitin sulfate proteoglycan 4-specific antibodies modify the effects of vemurafenib on melanoma cells differentially in normoxia and hypoxia.

    PubMed

    Pucciarelli, Daniela; Lengger, Nina; Takacova, Martina; Csaderova, Lucia; Bartosova, Maria; Breiteneder, Heimo; Pastorekova, Silvia; Hafner, Christine

    2015-07-01

    Chondroitin sulfate proteoglycan 4 (CSPG4), a highly immunogenic melanoma tumor antigen, is a potential target for antibody-based immunotherapy. The mechanism by which CSPG4 affects melanoma progression is only partly understood, in particular the involvement of other receptor tyrosine kinases and the tumor microenvironment. We have previously reported on a mimotope-based vaccine against CSPG4 in a human melanoma xenograft model that resulted in reduction of tumor growth. Herein we describe the influence of hypoxia on the response to polyclonal anti-CSPG4-antibodies induced by this vaccine in combination with the BRAF inhibitor vemurafenib to enhance therapeutic efficacy by simultaneously targeting multiple signaling pathways. Melanoma cells were treated with polyclonal anti-CSPG4-antibodies and vemurafenib. Proliferation, migration and invasion were evaluated in a real-time setting in the impedance-based x-CELLigence® system. Western blotting and quantitative PCR arrays were used to determine protein and mRNA expression of hypoxia inducible factor 1α (HIF1α), carbonic anhydrase IX (CAIX) and signaling pathway proteins. A melanoma xenograft model was used to detect HIF1α and CAIX expression in vivo. Hypoxia enhanced the antiproliferative response to vemurafenib. The migration and invasion capacities of vemurafenib-treated melanoma cells were increased, in spite of vemurafenib-decreased expression of HIF1α and CAIX. Polyclonal anti-CSPG4-antibodies reduced the Transwell migration of vemurafenib-treated, BRAF V600E-mutant and CSPG4-expressing melanoma cells in hypoxia. This was associated with the downregulation of phosphorylated AKT, a kinase contributing to tumor cell migration. Our results highlight CSPG4 as a potential target for modulating treatment resistance to vemurafenib induced by the hypoxic microenvironment.

  4. Effects of holmium:YAG laser on equine articular cartilage and subchondral bone adjacent to traumatic lesions

    NASA Astrophysics Data System (ADS)

    Collier, Michael A.; Haugland, L. Mark; Bellamy, Janine; Johnson, Lanny L.; Rohrer, Michael D.; Walls, Robert C.; Bartels, Kenneth E.

    1994-09-01

    The effects of Ho:YAG laser energy on articular cartilage and subchondral bone adjacent to traumatically created cartilage lesions in a continuous weight-bearing model were investigated. The 2.1 micrometers wavelength was delivered in hand-controlled contact and near-contact hard tissue arthroscopic surgery in a saline medium. Bilateral arthroscopy was performed on normal antebrachiocarpal and intercarpal joints of four adult horses. One-hundred twenty traumatic lesions were created on three weight-bearing articular surfaces with a knife, curette, or a motorized burr. Depths of the lesions were partial and full thickness. Configurations of the lesions were lacerations, scrapes, and craters. Left limbs were used as controls. Right limb lesions were treated with various intensities of laser energy. Animals were sacrificed at intervals of 1, 3, and 8 weeks. Gross microscopic anatomy was documented, and tissue sections were subjected to blind review by a pathologist. Mankin grading for cellularity and proteoglycan content was used to qualitatively evaluate cartilage response. Cartilage adjacent to all lesions exposed to laser energy had better cellularity and proteoglycan content than corresponding controls by Mankin grading.

  5. Syndecan-1 regulates adipogenesis: new insights in dedifferentiated liposarcoma tumorigenesis.

    PubMed

    Zaragosi, Laure-Emmanuelle; Dadone, Bérengère; Michiels, Jean-François; Marty, Marion; Pedeutour, Florence; Dani, Christian; Bianchini, Laurence

    2015-01-01

    Syndecan-1 (SDC1/CD138) is one of the main cell surface proteoglycans and is involved in crucial biological processes. Only a few studies have analyzed the role of SDC1 in mesenchymal tumor pathogenesis. In particular, its involvement in adipose tissue tumors has never been investigated. Dedifferentiated liposarcoma, one of the most frequent types of malignant adipose tumors, has a high potential of recurrence and metastastic evolution. Classical chemotherapy is inefficient in metastatic dedifferentiated liposarcoma and novel biological markers are needed for improving its treatment. In this study, we have analyzed the expression of SDC1 in well-differentiated/dedifferentiated liposarcomas and showed that SDC1 is highly overexpressed in dedifferentiated liposarcoma compared with normal adipose tissue and lipomas. Silencing of SDC1 in liposarcoma cells impaired cell viability and proliferation. Using the human multipotent adipose-derived stem cell model of human adipogenesis, we showed that SDC1 promotes proliferation of undifferentiated adipocyte progenitors and inhibits their adipogenic differentiation. Altogether, our results support the hypothesis that SDC1 might be involved in liposarcomagenesis. It might play a prominent role in the dedifferentiation process occurring when well-differentiated liposarcoma progress to dedifferentiated liposarcoma. Targeting SDC1 in these tumors might provide a novel therapeutic strategy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype mediated by distinct P. falciparum erythrocyte membrane protein 1 domains.

    PubMed

    Adams, Yvonne; Kuhnrae, Pongsak; Higgins, Matthew K; Ghumra, Ashfaq; Rowe, J Alexandra

    2014-03-01

    Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (<10 μg/ml of total IgG). Surface plasmon resonance experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 μM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.

  7. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries.

    PubMed

    Billings, Paul C; Pacifici, Maurizio

    2015-01-01

    Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.

  8. Syndecan defines precise spindle orientation by modulating Wnt signaling in C. elegans.

    PubMed

    Dejima, Katsufumi; Kang, Sukryool; Mitani, Shohei; Cosman, Pamela C; Chisholm, Andrew D

    2014-11-01

    Wnt signals orient mitotic spindles in development, but it remains unclear how Wnt signaling is spatially controlled to achieve precise spindle orientation. Here, we show that C. elegans syndecan (SDN-1) is required for precise orientation of a mitotic spindle in response to a Wnt cue. We find that SDN-1 is the predominant heparan sulfate (HS) proteoglycan in the early C. elegans embryo, and that loss of HS biosynthesis or of the SDN-1 core protein results in misorientation of the spindle of the ABar blastomere. The ABar and EMS spindles both reorient in response to Wnt signals, but only ABar spindle reorientation is dependent on a new cell contact and on HS and SDN-1. SDN-1 transiently accumulates on the ABar surface as it contacts C, and is required for local concentration of Dishevelled (MIG-5) in the ABar cortex adjacent to C. These findings establish a new role for syndecan in Wnt-dependent spindle orientation. © 2014. Published by The Company of Biologists Ltd.

  9. Proliferative activity of elastin-like-peptides depends on charge and phase transition.

    PubMed

    Yuan, Yuan; Koria, Piyush

    2016-03-01

    Elastin-like-peptides (ELPs) are stimulus-responsive protein-based polymers and are attractive biomaterials due to their biocompatibility and unique properties. This study shows that in addition to their physical properties, ELPs have biological activities that are conducive to tissue regeneration. Specifically, we found that ELPs induce fibroblast proliferation via cell surface heparan sulfate proteoglycans (HSPG). Furthermore, our data suggests that ELP based materials with differential proliferative potential can be designed by controlling the interaction of ELPs with HSPGs by incorporating either hydrophobic or positively charged residues within the ELP sequence. Fibroblast proliferation is important for granulation tissue formation which is important in chronic wounds as well as in healing of other tissues. The customizable biological activity of ELPs coupled with their unique physical properties will enable us to design novel, sustainable and cost effective therapies for different tissue regeneration applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 697-706, 2016. © 2015 Wiley Periodicals, Inc.

  10. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders

    PubMed Central

    Pantazopoulos, Harry; Berretta, Sabina

    2016-01-01

    Rapidly emerging evidence implicates perineuronal nets (PNNs) and extracellular matrix (ECM) molecules that compose or interact with PNNs, in the pathophysiology of several psychiatric disorders. Studies on schizophrenia, autism spectrum disorders, mood disorders, Alzheimer's disease, and epilepsy point to the involvement of ECM molecules such as chondroitin sulfate proteoglycans, Reelin, and matrix metalloproteases, as well as their cell surface receptors. In many of these disorders, PNN abnormalities have also been reported. In the context of the “quadripartite” synapse concept, that is, the functional unit composed of the pre- and postsynaptic terminals, glial processes, and ECM, and of the role that PNNs and ECM molecules play in regulating synaptic functions and plasticity, these findings resonate with one of the most well-replicated aspects of the pathology of psychiatric disorders, that is, synaptic abnormalities. Here we review the evidence for PNN/ECM-related pathology in these disorders, with particular emphasis on schizophrenia, and discuss the hypothesis that such pathology may significantly contribute to synaptic dysfunction. PMID:26839720

  11. Identification and expression analysis of zebrafish glypicans during embryonic development.

    PubMed

    Gupta, Mansi; Brand, Michael

    2013-01-01

    Heparan sulfate Proteoglycans (HSPG) are ubiquitous molecules with indispensable functions in various biological processes. Glypicans are a family of HSPG's, characterized by a Gpi-anchor which directs them to the cell surface and/or extracellular matrix where they regulate growth factor signaling during development and disease. We report the identification and expression pattern of glypican genes from zebrafish. The zebrafish genome contains 10 glypican homologs, as opposed to six in mammals, which are highly conserved and are phylogenetically related to the mammalian genes. Some of the fish glypicans like Gpc1a, Gpc3, Gpc4, Gpc6a and Gpc6b show conserved synteny with their mammalian cognate genes. Many glypicans are expressed during the gastrulation stage, but their expression becomes more tissue specific and defined during somitogenesis stages, particularly in the developing central nervous system. Existence of multiple glypican orthologs in fish with diverse expression pattern suggests highly specialized and/or redundant function of these genes during embryonic development.

  12. Tec-kinase-mediated phosphorylation of fibroblast growth factor 2 is essential for unconventional secretion.

    PubMed

    Ebert, Antje D; Laussmann, Mareike; Wegehingel, Sabine; Kaderali, Lars; Erfle, Holger; Reichert, Jürgen; Lechner, Johannes; Beer, Hans-Dietmar; Pepperkok, Rainer; Nickel, Walter

    2010-06-01

    Fibroblast growth factor 2 (FGF2) is a potent mitogen that is exported from cells by an endoplasmic reticulum (ER)/Golgi-independent mechanism. Unconventional secretion of FGF2 occurs by direct translocation across plasma membranes, a process that depends on the phosphoinositide phosphatidylinositol 4,5-biphosphate (PI(4,5)P(2)) at the inner leaflet as well as heparan sulfate proteoglycans at the outer leaflet of plasma membranes; however, additional core and regulatory components of the FGF2 export machinery have remained elusive. Here, using a highly effective RNAi screening approach, we discovered Tec kinase as a novel factor involved in unconventional secretion of FGF2. Tec kinase does not affect FGF2 secretion by an indirect mechanism, but rather forms a heterodimeric complex with FGF2 resulting in phosphorylation of FGF2 at tyrosine 82, a post-translational modification shown to be essential for FGF2 membrane translocation to cell surfaces. Our findings suggest a crucial role for Tec kinase in regulating FGF2 secretion under various physiological conditions and, therefore, provide a new perspective for the development of a novel class of antiangiogenic drugs targeting the formation of the FGF2/Tec complex.

  13. Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix

    PubMed Central

    Cheng, Nai-Chen; Estes, Bradley T; Young, Tai-Horng; Guilak, Farshid

    2011-01-01

    Aim To investigate the cell growth, matrix accumulation and mechanical properties of neocartilage formed by human or porcine articular chondrocytes on a porous, porcine cartilage-derived matrix (CDM) for use in cartilage tissue engineering. Materials & methods We examined the physical properties, cell infiltration and matrix accumulation in different formulations of CDM and selected a CDM made of homogenized cartilage slurry as an appropriate scaffold for long-term culture of human and porcine articular chondrocytes. Results The CDM scaffold supported growth and proliferation of both human and porcine chondrocytes. Histology and immunohistochemistry showed abundant cartilage-specific macromolecule deposition at day 28. Human chondrocytes migrated throughout the CDM, showing a relatively homogeneous distribution of new tissue accumulation, whereas porcine chondrocytes tended to form a proteoglycan-rich layer primarily on the surfaces of the scaffold. Human chondrocyte-seeded scaffolds had a significantly lower aggregate modulus and hydraulic permeability at day 28. Conclusions These data show that a scaffold derived from native porcine articular cartilage can support neocartilage formation in the absence of exogenous growth factors. The overall characteristics and properties of the constructs depend on factors such as the concentration of CDM used, the porosity of the scaffold, and the species of chondrocytes. PMID:21175289

  14. Matrix expansion and syncytial aggregation of syndecan-1+ cells underpin villous atrophy in coeliac disease.

    PubMed

    Salvestrini, Camilla; Lucas, Mark; Lionetti, Paolo; Torrente, Franco; James, Sean; Phillips, Alan D; Murch, Simon H

    2014-01-01

    We studied the expression of sulphated glycosaminoglycans (GAGs) in coeliac disease (CD) mucosa, as they are critical determinants of tissue volume, which increases in active disease. We also examined mucosal expression of IL-6, which stimulates excess GAG synthesis in disorders such as Grave's ophthalmopathy. We stained archival jejunal biopsies from 5 children with CD at diagnosis, on gluten-free diet and challenge for sulphated GAGs. We then examined duodenal biopsies from 9 children with CD compared to 9 histological normal controls, staining for sulphated GAGs, heparan sulphate proteoglycans (HSPG), short-chain HSPG (Δ-HSPG) and the proteoglycan syndecan-1 (CD138), which is expressed on epithelium and plasma cells. We confirmed findings with a second monoclonal in another 12 coeliac children. We determined mucosal IL-6 expression by immunohistochemistry and PCR in 9 further cases and controls, and used quantitative real time PCR for other Th17 pathway cytokines in an additional 10 cases and controls. In CD, HSPG expression was lost in the epithelial compartment but contrastingly maintained within an expanded lamina propria. Within the upper lamina propria, clusters of syndecan-1(+) plasma cells formed extensive syncytial sheets, comprising adherent plasma cells, lysed cells with punctate cytoplasmic staining and shed syndecan ectodomains. A dense infiltrate of IL-6(+) mononuclear cells was detected in active coeliac disease, also localised to the upper lamina propria, with significantly increased mRNA expression of IL-6 and IL-17A but not IL-23 p19. Matrix expansion, through syndecan-1(+) cell recruitment and lamina propria GAG increase, underpins villous atrophy in coeliac disease. The syndecan-1(+) cell syncytia and excess GAG production recapitulate elements of the invertebrate encapsulation reaction, itself dependent on insect transglutaminase and glutaminated early response proteins. As in other matrix expansion disorders, IL-6 is upregulated and represents a logical target for immunotherapy in patients with coeliac disease refractory to gluten-free diet.

  15. Matrix Expansion and Syncytial Aggregation of Syndecan-1+ Cells Underpin Villous Atrophy in Coeliac Disease

    PubMed Central

    Salvestrini, Camilla; Lucas, Mark; Lionetti, Paolo; Torrente, Franco; James, Sean; Phillips, Alan D.; Murch, Simon H.

    2014-01-01

    Background We studied the expression of sulphated glycosaminoglycans (GAGs) in coeliac disease (CD) mucosa, as they are critical determinants of tissue volume, which increases in active disease. We also examined mucosal expression of IL-6, which stimulates excess GAG synthesis in disorders such as Grave's ophthalmopathy. Methods We stained archival jejunal biopsies from 5 children with CD at diagnosis, on gluten-free diet and challenge for sulphated GAGs. We then examined duodenal biopsies from 9 children with CD compared to 9 histological normal controls, staining for sulphated GAGs, heparan sulphate proteoglycans (HSPG), short-chain HSPG (Δ-HSPG) and the proteoglycan syndecan-1 (CD138), which is expressed on epithelium and plasma cells. We confirmed findings with a second monoclonal in another 12 coeliac children. We determined mucosal IL-6 expression by immunohistochemistry and PCR in 9 further cases and controls, and used quantitative real time PCR for other Th17 pathway cytokines in an additional 10 cases and controls. Results In CD, HSPG expression was lost in the epithelial compartment but contrastingly maintained within an expanded lamina propria. Within the upper lamina propria, clusters of syndecan-1+ plasma cells formed extensive syncytial sheets, comprising adherent plasma cells, lysed cells with punctate cytoplasmic staining and shed syndecan ectodomains. A dense infiltrate of IL-6+ mononuclear cells was detected in active coeliac disease, also localised to the upper lamina propria, with significantly increased mRNA expression of IL-6 and IL-17A but not IL-23 p19. Conclusions Matrix expansion, through syndecan-1+ cell recruitment and lamina propria GAG increase, underpins villous atrophy in coeliac disease. The syndecan-1+ cell syncytia and excess GAG production recapitulate elements of the invertebrate encapsulation reaction, itself dependent on insect transglutaminase and glutaminated early response proteins. As in other matrix expansion disorders, IL-6 is upregulated and represents a logical target for immunotherapy in patients with coeliac disease refractory to gluten-free diet. PMID:25198673

  16. Biomimetic soluble collagen purified from bones.

    PubMed

    Ferreira, Ana Marina; Gentile, Piergiorgio; Sartori, Susanna; Pagliano, Cristina; Cabrele, Chiara; Chiono, Valeria; Ciardelli, Gianluca

    2012-11-01

    Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age-related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self-assemble into fibers. The fine control and tuning of all these features, linked to the absence of non-collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. DSE promotes aggressive glioma cell phenotypes by enhancing HB-EGF/ErbB signaling.

    PubMed

    Liao, Wen-Chieh; Liao, Chih-Kai; Tsai, You-Huan; Tseng, To-Jung; Chuang, Li-Ching; Lan, Chyn-Tair; Chang, Hung-Ming; Liu, Chiung-Hui

    2018-01-01

    Remodeling of the extracellular matrix (ECM) in the tumor microenvironment promotes glioma progression. Chondroitin sulfate (CS) proteoglycans appear in the ECM and on the cell surface, and can be catalyzed by dermatan sulfate epimerase to form chondroitin sulfate/dermatan sulfate (CS/DS) hybrid chains. Dermatan sulfate epimerase 1 (DSE) is overexpressed in many types of cancer, and CS/DS chains mediate several growth factor signals. However, the role of DSE in gliomas has never been explored. In the present study, we determined the expression of DSE in gliomas by consulting a public database and conducting immunohistochemistry on a tissue array. Our investigation revealed that DSE was upregulated in gliomas compared with normal brain tissue. Furthermore, high DSE expression was associated with advanced tumor grade and poor survival. We found high DSE expression in several glioblastoma cell lines, and DSE expression directly mediated DS chain formation in glioblastoma cells. Knockdown of DSE suppressed the proliferation, migration, and invasion of glioblastoma cells. In contrast, overexpression of DSE in GL261 cells enhanced these malignant phenotypes and in vivo tumor growth. Interestingly, we found that DSE selectively regulated heparin-binding EGF-like growth factor (HB-EGF)-induced signaling in glioblastoma cells. Inhibiting epidermal growth factor receptor (EGFR) and ErbB2 with afatinib suppressed DSE-enhanced malignant phenotypes, establishing the critical role of the ErbB pathway in regulating the effects of DSE expression. This evidence indicates that upregulation of DSE in gliomas contributes to malignant behavior in cancer cells. We provide novel insight into the significance of DS chains in ErbB signaling and glioma pathogenesis.

  18. Effect of open wedge high tibial osteotomy on the lateral compartment in sheep. Part I: Analysis of the lateral meniscus.

    PubMed

    Madry, Henning; Ziegler, Raphaela; Orth, Patrick; Goebel, Lars; Ong, Mei Fang; Kohn, Dieter; Cucchiarini, Magali; Pape, Dietrich

    2013-01-01

    To evaluate whether medial open wedge high tibial osteotomy (HTO) results in structural and biochemical changes in the lateral meniscus in adult sheep. Three experimental groups with biplanar osteotomies of the right proximal tibiae were tested: (a) closing wedge HTO resulting in 4.5° of tibial varus, (b) open wedge HTO resulting in 4.5° of tibial valgus (standard correction) and (c) open wedge HTO resulting in 9.5° of valgus (overcorrection), each of which was compared to the contralateral knees with normal limb axes. After 6 months, the lateral menisci were macroscopically and microscopically evaluated. The proteoglycan and DNA contents of the red-red and white-white zones of the anterior, middle and posterior third were determined. Semiquantitative macroscopic and microscopic grading revealed no structural differences between groups. The red-red zone of the middle third of the lateral menisci of animals that underwent overcorrection exhibited a significant 0.7-fold decrease in mean DNA contents compared with the control knee without HTO (P = 0.012). Comparative estimation of the DNA and proteoglycan contents and proteoglycan/DNA ratios of all other parts and zones of the lateral menisci did not reveal significant differences between groups. Open wedge HTO does not lead to significant macroscopic and microscopic structural changes in the lateral meniscus after 6 months in vivo. Overcorrection significantly decreases the proliferative activity of the cells in the red-red zone of the middle third in the sheep model.

  19. Forward Genetics Defines Xylt1 as a Key, Conserved Regulator of Early Chondrocyte Maturation and Skeletal Length

    PubMed Central

    Mis, Emily K.; Liem, Karel F.; Kong, Yong; Schwartz, Nancy B.; Domowicz, Miriam; Weatherbee, Scott D.

    2014-01-01

    The long bones of the vertebrate body are built by the initial formation of a cartilage template that is later replaced by mineralized bone. The proliferation and maturation of the skeletal precursor cells (chondrocytes) within the cartilage template and their replacement by bone is a highly coordinated process which, if misregulated, can lead to a number of defects including dwarfism and other skeletal deformities. This is exemplified by the fact that abnormal bone development is one of the most common types of human birth defects. Yet, many of the factors that initiate and regulate chondrocyte maturation are not known. We identified a recessive dwarf mouse mutant (pug) from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. pug mutant skeletal elements are patterned normally during development, but display a ~20% length reduction compared to wild-type embryos. We show that the pug mutation does not lead to changes in chondrocyte proliferation but instead promotes premature maturation and early ossification, which ultimately leads to disproportionate dwarfism. Using sequence capture and high-throughput sequencing, we identified a missense mutation in the Xylosyltransferase 1 (Xylt1) gene in pug mutants. Xylosyltransferases catalyze the initial step in glycosaminoglycan (GAG) chain addition to proteoglycan core proteins, and these modifications are essential for normal proteoglycan function. We show that the pug mutation disrupts Xylt1 activity and subcellular localization, leading to a reduction in GAG chains in pug mutants. The pug mutant serves as a novel model for mammalian dwarfism and identifies a key role for proteoglycan modification in the initiation of chondrocyte maturation. PMID:24161523

  20. Molecular Determinants Fundamental to Axon Regeneration after SCI

    DTIC Science & Technology

    2014-09-01

    mammalian spinal cord, axon regeneration is frustrated by inhibitors such as chondroitin sulfate proteoglycans (CSPGs) expressed by reactive astrocytes... chondroitin sulfates . Publications, Abstracts and Presentations: Publications: 1. Katerina Vajn, Jeffery A Plunkett, Alexis Tapanes...Jeffery A. Plunkett. Axonal growth of primary zebrafish brainstem neurons across inhibitory chondroitin sulfate proteoglycans. Manuscript in

  1. Atomic force microscopy of adsorbed proteoglycan mimetic nanoparticles: Toward new glycocalyx-mimetic model surfaces.

    PubMed

    Hedayati, Mohammadhasan; Kipper, Matt J

    2018-06-15

    Blood vessels present a dense, non-uniform, polysaccharide-rich layer, called the endothelial glycocalyx. The polysaccharides in the glycocalyx include polyanionic glycosaminoglycans (GAGs). This polysaccharide-rich surface has excellent and unique blood compatibility. We report new methods for preparing and characterizing dense GAG surfaces that can serve as models of the vascular endothelial glycocalyx. The GAG-rich surfaces are prepared by adsorbing heparin or chondroitin sulfate-containing polyelectrolyte complex nanoparticles (PCNs) to chitosan-hyaluronan polyelectrolyte multilayers (PEMs). The surfaces are characterized by PeakForce tapping atomic force microscopy, both in air and in aqueous pH 7.4 buffer, and by PeakForce quantitative nanomechanics (PF-QNM) mode with high spatial resolution. These new surfaces provide access to heparin-rich or chondroitin sulfate-rich coatings that mimic both composition and nanoscale structural features of the vascular endothelial glycocalyx. Copyright © 2018. Published by Elsevier Ltd.

  2. Glycosaminoglycan-Mediated Downstream Signaling of CXCL8 Binding to Endothelial Cells

    PubMed Central

    Derler, Rupert; Weber, Corinna; Strutzmann, Elisabeth; Miller, Ingrid; Kungl, Andreas

    2017-01-01

    The recruitment of leukocytes, mediated by endothelium bound chemokine gradients, is a vital process in inflammation. The highly negatively charged, unbranched polysaccharide family of glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate mediate chemokine immobilization. Specifically the binding of CXCL8 (interleukin 8) to GAGs on endothelial cell surfaces is known to regulate neutrophil recruitment. Currently, it is not clear if binding of CXCL8 to GAGs leads to endothelial downstream signaling in addition to the typical CXCR1/CXCR2 (C-X-C motif chemokine receptor 1 and 2)-mediated signaling which activates neutrophils. Here we have investigated the changes in protein expression of human microvascular endothelial cells induced by CXCL8. Tumor necrosis factor alpha (TNFα) stimulation was used to mimic an inflammatory state which allowed us to identify syndecan-4 (SDC4) as the potential proteoglycan co-receptor of CXCL8 by gene array, real-time PCR and flow cytometry experiments. Enzymatic GAG depolymerization via heparinase III and chondroitinase ABC was used to emulate the effect of glycocalyx remodeling on CXCL8-induced endothelial downstream signaling. Proteomic analyses showed changes in the expression pattern of a number of endothelial proteins such as Zyxin and Caldesmon involved in cytoskeletal organization, cell adhesion and cell mobility. These results demonstrate for the first time a potential role of GAG-mediated endothelial downstream signaling in addition to the well-known CXCL8-CXCR1/CXCR2 signaling pathways in neutrophils. PMID:29207576

  3. Decorin binds myostatin and modulates its activity to muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Takayuki; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi

    2006-02-10

    Myostatin, a member of TGF-{beta} superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-{beta} and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin andmore » decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn{sup 2+} greater than 10 {mu}M, but not in the absence of Zn{sup 2+}. Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K {sub D}) of 2.02 x 10{sup -8} M and 9.36 x 10{sup -9} M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM.« less

  4. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    PubMed

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  5. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line.

    PubMed

    Yang, Maozhou; Zhang, Liang; Stevens, Jeff; Gibson, Gary

    2014-12-01

    The Swarm rat chondrosarcoma (RCS) cell lines derived from a spontaneous neoplasm in a rat spine several decades ago have provided excellent models of chondrosarcoma tumor development. In addition the robust chondrocyte phenotype (expression of a large panel of genes identical to that seen in normal rat cartilage) and the ability to generate cell clones have facilitated their extensive use in the identification of chondrocyte proteins and genes. The clustered regularly interspersed short palindromic repeat (CRISPR) technology employing the RNA-guided nuclease Cas9 has rapidly dominated the genome engineering field as a unique and powerful gene editing tool. We have generated a stable RCS cell line (RCS Cas9) expressing the nuclease Cas9 that enables the editing of any target gene or non-coding RNA by simple transfection with a guide RNA. As proof of principle, stable cell lines with targeted ablation of aggrecan expression (Acan KO) were generated and characterized. The studies show that stable chondrocyte cell lines with targeted genome editing can be quickly generated from RCS Cas9 cells using this system. The Acan KO cell lines also provided a tool for characterizing the response of chondrocytes to aggrecan loss and the role of aggrecan in chondrosarcoma development. Loss of aggrecan expression while not affecting the chondrocyte phenotype resulted in a much firmer attachment of cells to their substrate in culture. Large changes in the expression of several genes were observed in response to the absence of the proteoglycan matrix, including those for several small leucine rich proteoglycans (SLRPs), transcription factors and membrane transporters. Acan KO cells failed to form a substantial chondrosarcoma when injected subcutaneously in nude mice consistent with previous suggestions that the glycosaminoglycan-rich matrix surrounding the chondrosarcoma protects it from destruction by the host immune system. The studies provide new understanding of aggrecan function and the RCS Cas9 cell line is expected to provide a very valuable tool for the study gene function in chondrocytes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Cytotoxic Effect on Human Myeloma Cells and Leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™

    PubMed Central

    Holien, Toril; Mirlashari, Mohammad Reza; Misund, Kristine

    2017-01-01

    Agaricus blazei Murill is an edible mushroom of the Basidiomycetes family, which has been found to contain a number of compounds with antitumor properties, such as proteoglycans and ergosterol. In the present investigation, we show that the commercial mushroom product Andosan, which contains 82.4% Agaricus blazei Murill, together with medicinal mushrooms Hericium erinaceus (14.7%) and Grifola frondosa (2.9%), has a cytotoxic effect on primary myeloma cells, other myeloma cell lines, and leukemia cell lines in vitro. Although the exact content and hence the mechanisms of action of the Andosan extract are unknown, we have found in this investigation indications of cell cycle arrest when myeloma cell lines are cultivated with Andosan. This may be one of the possible explanations for the cytotoxic effects of Andosan. PMID:29238712

  7. Cytotoxic Effect on Human Myeloma Cells and Leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™.

    PubMed

    Tangen, Jon-Magnus; Holien, Toril; Mirlashari, Mohammad Reza; Misund, Kristine; Hetland, Geir

    2017-01-01

    Agaricus blazei Murill is an edible mushroom of the Basidiomycetes family, which has been found to contain a number of compounds with antitumor properties, such as proteoglycans and ergosterol. In the present investigation, we show that the commercial mushroom product Andosan, which contains 82.4% Agaricus blazei Murill, together with medicinal mushrooms Hericium erinaceus (14.7%) and Grifola frondosa (2.9%), has a cytotoxic effect on primary myeloma cells, other myeloma cell lines, and leukemia cell lines in vitro. Although the exact content and hence the mechanisms of action of the Andosan extract are unknown, we have found in this investigation indications of cell cycle arrest when myeloma cell lines are cultivated with Andosan. This may be one of the possible explanations for the cytotoxic effects of Andosan.

  8. Eradication of melanomas by targeted elimination of a minor subset of tumor cells

    PubMed Central

    Schmidt, Patrick; Kopecky, Caroline; Hombach, Andreas; Zigrino, Paola; Mauch, Cornelia; Abken, Hinrich

    2011-01-01

    Proceeding on the assumption that all cancer cells have equal malignant capacities, current regimens in cancer therapy attempt to eradicate all malignant cells of a tumor lesion. Using in vivo targeting of tumor cell subsets, we demonstrate that selective elimination of a definite, minor tumor cell subpopulation is particularly effective in eradicating established melanoma lesions irrespective of the bulk of cancer cells. Tumor cell subsets were specifically eliminated in a tumor lesion by adoptive transfer of engineered cytotoxic T cells redirected in an antigen-restricted manner via a chimeric antigen receptor. Targeted elimination of less than 2% of the tumor cells that coexpress high molecular weight melanoma-associated antigen (HMW-MAA) (melanoma-associated chondroitin sulfate proteoglycan, MCSP) and CD20 lastingly eradicated melanoma lesions, whereas targeting of any random 10% tumor cell subset was not effective. Our data challenge the biological therapy and current drug development paradigms in the treatment of cancer. PMID:21282657

  9. Molecular targets and signaling pathways regulated by nuclear translocation of syndecan-1.

    PubMed

    Szatmári, Tünde; Mundt, Filip; Kumar-Singh, Ashish; Möbus, Lena; Ötvös, Rita; Hjerpe, Anders; Dobra, Katalin

    2017-12-08

    The cell-surface heparan sulfate proteoglycan syndecan-1 is important for tumor cell proliferation, migration, and cell cycle regulation in a broad spectrum of malignancies. Syndecan-1, however, also translocates to the cell nucleus, where it might regulate various molecular functions. We used a fibrosarcoma model to dissect the functions of syndecan-1 related to the nucleus and separate them from functions related to the cell-surface. Nuclear translocation of syndecan-1 hampered the proliferation of fibrosarcoma cells compared to the mutant lacking nuclear localization signal. The growth inhibitory effect of nuclear syndecan-1 was accompanied by significant accumulation of cells in the G0/G1 phase, which indicated a possible G1/S phase arrest. We implemented multiple, unsupervised global transcriptome and proteome profiling approaches and combined them with functional assays to disclose the molecular mechanisms that governed nuclear translocation and its related functions. We identified genes and pathways related to the nuclear compartment with network enrichment analysis of the transcriptome and proteome. The TGF-β pathway was activated by nuclear syndecan-1, and three genes were significantly altered with the deletion of nuclear localization signal: EGR-1 (early growth response 1), NEK11 (never-in-mitosis gene a-related kinase 11), and DOCK8 (dedicator of cytokinesis 8). These candidate genes were coupled to growth and cell-cycle regulation. Nuclear translocation of syndecan-1 influenced the activity of several other transcription factors, including E2F, NFκβ, and OCT-1. The transcripts and proteins affected by syndecan-1 showed a striking overlap in their corresponding biological processes. These processes were dominated by protein phosphorylation and post-translation modifications, indicative of alterations in intracellular signaling. In addition, we identified molecules involved in the known functions of syndecan-1, including extracellular matrix organization and transmembrane transport. Collectively, abrogation of nuclear translocation of syndecan-1 resulted in a set of changes clustering in distinct patterns, which highlighted the functional importance of nuclear syndecan-1 in hampering cell proliferation and the cell cycle. This study emphasizes the importance of the localization of syndecan-1 when considering its effects on tumor cell fate.

  10. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  11. Adeno-associated virus type 2 binding study on model heparan sulfate surface

    NASA Astrophysics Data System (ADS)

    Negishi, Atsuko; Liu, Jian; McCarty, Douglas; Samulski, Jude; Superfine, Richard

    2003-11-01

    Understanding the mechanisms involved in virus infections is useful in its application in areas such as gene therapy, drug development and delivery, and biosensors. In collaboration with UNC Gene Therapy Center and School of Pharmacy, we are specifically looking at the interaction between human parvovirus adeno-associated virus type 2 (AAV2), a potential viral vector, and heparan sulfate proteoglycan (HSPG), a known cell surface receptor for AAV2. Recent development in glycobiology has shown that some protein-polysaccharide binding is sugar sequence dependent. Heparan sulfate (HS) is a polysaccharide chain of sulfated iduronic/glucuronic and sulfate glucosamine residues and can be differentiated into sequence specific structures by enzymes. These enzymatic modifications, known as heparan sulfate sulfotransferase modified modifications, have been shown to change the biological nature of heparan sulfate such as specific binding to proteins and viruses. For understanding HS-assisted viral infection mechanisms, we are interested in investigating the binding affinity and stability of AAV to different HS structures. We have developed a model heparan sulfate surface in which AAV adsorption studies are done and analyzed using the atomic force microscope (AFM). In addition, a miniArray assay has been created to facilitate to this study. Adsorption studies are done in 4 white LED wells with approximately 3 mm2 reaction areas which minimize sample use and waste.

  12. Genome-wide siRNA screen reveals a new cellular partner of NK cell receptor KIR2DL4: heparan sulfate directly modulates KIR2DL4-mediated responses

    PubMed Central

    Brusilovsky, Michael; Cordoba, Moti; Rosental, Benyamin; Hershkovitz, Oren; Andrake, Mark D.; Pecherskaya, Anna; Einarson, Margret B.; Zhou, Yan; Braiman, Alex

    2013-01-01

    KIR2DL4 (CD158d) is a distinct member of the killer cell Ig-like receptor (KIR) family in human NK cells that can induce cytokine production and cytolytic activity in resting NK cells. Soluble HLA-G, normally expressed only by fetal-derived trophoblast cells, was reported to be a ligand for KIR2DL4; however, KIR2DL4 expression is not restricted to the placenta and can be found in CD56high subset of peripheral blood NK cells. We demonstrated that KIR2DL4 can interact with alternative ligand(s), expressed by cells of epithelial or fibroblast origin. A genome-wide high-throughput siRNA screen revealed that KIR2DL4 recognition of cells surface ligand(s) is directly regulated by heparan sulfate (HS) glucosamine 3-O-sulfotransferase 3B1 (HS3ST3B1). KIR2DL4 was found to directly interact with HS/heparin, and the D0-domain of KIR2DL4 was essential for this interaction. Accordingly, exogenous HS/heparin can regulate cytokine production by KIR2DL4-expressing NK cells and HEK293T cells (HEK293T-2DL4) and induces differential localization of KIR2DL4 to rab5+ and rab7+ endosomes, thus leading to down-regulation of cytokine production and degradation of the receptor. Furthermore, we showed that intimate interaction of syndecan-4 (SDC4) HS Proteo-Glycan (HSPG) and KIR2DL4 directly affects receptor endocytosis and membrane trafficking. PMID:24127555

  13. Molecular characterization and transcriptional analysis of the female-enriched chondroitin proteoglycan 2 of Toxocara canis.

    PubMed

    Ma, G X; Zhou, R Q; Hu, L; Luo, Y L; Luo, Y F; Zhu, H H

    2018-03-01

    Toxocara canis is an important but neglected zoonotic parasite, and is the causative agent of human toxocariasis. Chondroitin proteoglycans are biological macromolecules, widely distributed in extracellular matrices, with a great diversity of functions in mammals. However, there is limited information regarding chondroitin proteoglycans in nematode parasites. In the present study, a female-enriched chondroitin proteoglycan 2 gene of T. canis (Tc-cpg-2) was cloned and characterized. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure the transcription levels of Tc-cpg-2 among tissues of male and female adult worms. A 485-amino-acid (aa) polypeptide was predicted from a continuous 1458-nuleotide open reading frame and designated as TcCPG2, which contains a 21-aa signal peptide. Conserved domain searching indicated three chitin-binding peritrophin-A (CBM_14) domains in the amino acid sequence of TcCPG2. Multiple alignment with the inferred amino acid sequences of Caenorhabditis elegans and Ascaris suum showed that CBM_14 domains were well conserved among these species. Phylogenetic analysis suggested that TcCPG2 was closely related to the sequence of chondroitin proteoglycan 2 of A. suum. Interestingly, a high level of Tc-cpg-2 was detected in female germline tissues, particularly in the oviduct, suggesting potential roles of this gene in reproduction (e.g. oogenesis and embryogenesis) of adult T. canis. The functional roles of Tc-cpg-2 in reproduction and development in this parasite and related parasitic nematodes warrant further functional studies.

  14. C4St-1 and Chondroitin Sulfate in Stromal Control of wht Signaling in Breast Cancer

    DTIC Science & Technology

    2012-02-01

    Molecules of the tumor microenvironment play a critical role in tumor progression 1-4. The proteoglycan chondroitin sulfate , and chondroitin ...its role in breast cancer progression are not well understood. We investigated a novel chondroitin sulfate -based mechanism of tumor-stromal...cancer cells through the establishment of a microenvironment enriched in CS-E, a chondroitin sulfate product of C4ST-1. For this, we wanted to firstly

  15. Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.

    PubMed

    Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara

    2012-12-01

    Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.

  16. FInal Report for Award DE-FG02-06ER64291

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHris Somerville

    2011-12-06

    The original goal of this award was to develop a proteoglycan 'chip' containing suitable oligosaccharides that could be used as substrates for glycosyltransferases involved in synthesis or proteoglycans in higher plant cell walls. We had previously developed a suite of cloned enzymes that could be used to cleave most of the relevant glycosidic linkages in plant cell walls. The next step, supported by the previous award and this award, was to produce a series of transgenic plants in which synthetic proteins were introduced that contained each of the known sequence motifs that induce prolyl hydroxylation, and subsequent glycosylation. This workmore » was completed and published in Estevez et al (2006). We then engaged on a series of experiments to define the properties of the prolyl hydroxylases that convert certain prolyl resides to hydroxyproline for subsequent glycosylation. This proved to be a challenging goal that required recruitment of an international team of complementary skills and several additional years of research. However, the effort was successful and has been published in Science recently (Velasquez et al., 2011). In the course of this project, the postdoc supported by the award (Jose Estevez) was asked to provide technical assistance to a colleague at Stanford because of his expertise in marine polysaccharides. This led to the important discovery that marine algae have compounds that could be classified as lignin (Martone et al., 2009).« less

  17. Kon-tiki enhances PS2 integrin adhesion and localizes its ligand, Thrombospondin, in the myotendinous junction.

    PubMed

    Pérez-Moreno, Juan J; Espina-Zambrano, Agueda G; García-Calderón, Clara B; Estrada, Beatriz

    2017-03-01

    Cell-extracellular-matrix adhesion is mediated by cell receptors, mainly integrins and transmembrane proteoglycans, which can functionally interact. How these receptors are regulated and coordinated is largely unknown. We show that the conserved transmembrane Drosophila proteoglycan Kon-tiki (Kon, also known as Perdido) interacts with the αPS2βPS integrin (αPS2 is encoded by inflated and βPS by myospheroid ) to mediate muscle-tendon adhesion. kon and inflated double mutant embryos show a synergistic increase in muscle detachment. Furthermore, Kon modulates αPS2βPS signaling at the muscle attachment, since phosphorylated Fak is reduced in kon mutants. This reduction in integrin signaling can be rescued by the expression of a truncated Kon protein containing its transmembrane and extracellular domains, suggesting that these domains are sufficient to mediate this signaling. We show that these domains are sufficient to properly localize the αPS2βPS ligand, Thrombospondin, to the muscle attachment, and to partially rescue Kon-dependent muscle-tendon adhesion. We propose that Kon can engage in a protein complex with αPS2βPS and enhance integrin-mediated signaling and adhesion by recruiting its ligand, which would increase integrin-binding affinity to the extracellular matrix, resulting in the consolidation of the myotendinous junction. © 2017. Published by The Company of Biologists Ltd.

  18. Biosynthesis of small proteoglycan II (decorin) by chondrocytes and evidence for a procore protein.

    PubMed

    Sawhney, R S; Hering, T M; Sandell, L J

    1991-05-15

    We have studied the biosynthesis of cartilage dermatan sulfate proteoglycan II (DS-PGII) (decorin) using in vitro translation of mRNA to determine the size of the primary gene product and by radiolabeling the protein in the presence of tunicamycin to inhibit the addition of Asn-linked oligosaccharides. Pulse-chase experiments were performed to examine post-translational processing and secretion. Inhibitors of oligosaccharide processing were used to determine whether DS-PGII molecules containing partially processed oligosaccharides could become proteoglycans and be secreted. Cell-free translation of sucrose gradient-fractionated RNA and subsequent immunoprecipitation of the core protein confirmed that the functional translated mRNA is in the size range of the two mRNA species observed by hybridization of chondrocyte RNA with a bone PGII cloned probe and that the translation product is a single protein with an apparent molecular mass of 42 kDa. Digestion of the intact proteoglycan (average molecular mass = 103 kDa) with chondroitinase ABC or AC results in an approximately 48-49-kDa product. Chondrocytes treated with tunicamycin to inhibit Asn-linked oligosaccharide addition synthesize and secrete a glycosaminoglycan (GAG)-substituted proteoglycan (average molecular mass = 86 kDa), yielding a 42-kDa core protein after chondroitinase ABC digestion, showing that Asn-linked oligosaccharides are not required for the addition of GAG chains or secretion. Following a short pulse (10 min) of [3H]leucine, three glycosylated forms of the DS-PGII core protein were observed, one of which is likely to be the precursor form of PGII predicted by the implied protein sequence of both bovine and human cDNA clones. Following the apparent cleavage of the propeptide, GAG-substituted intracellular core protein is detectable. Susceptibility to endoglycosidase H indicates that approximately one-third of the secreted core protein contains exclusively complex-type Asn-linked oligosaccharides and approximately two-thirds contain high mannose as well as complex-type oligosaccharides. Secreted DS-PGII appears to be fully substituted with three Asn-linked oligosaccharide chains. Inhibitors of oligosaccharide processing, however, permitted secretion of GAG-substituted DS-PGII that was fully (three chains) or incompletely (one or two chains) substituted with partially processed Asn-linked carbohydrate chains. By comparison of chondrocyte DS-PGII with fibroblast DS-PGII, we conclude that the addition and processing of Asn-linked carbohydrate chains are directed by the amino acid sequence of the core protein. The results reported here also suggest that the addition of xylose, the initial step in GAG chain synthesis, occurs early in biosynthesis and is determined by the primary amino acid sequence of the core protein.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Differential role of EGF and BFGF in human GBM-TIC proliferation: relationship to EGFR-tyrosine kinase inhibitor sensibility.

    PubMed

    Bajetto, A; Porcile, C; Pattarozzi, A; Scotti, L; Aceto, A; Daga, A; Barbieri, F; Florio, T

    2013-01-01

    Glioblastoma multiforme (GBM) is among the most devastating human tumors being rapidly fatal despite aggressive surgery, radiation and chemotherapies. It is characterized by extensive dissemination of tumor cells within the brain that hinders complete surgical resection. GBM tumor initiating-cells (TICs) are a rare subpopulation of cells responsible for tumor development, growth, invasiveness and recurrence after chemotherapy. TICs from human GBM can be selected in vitro using the same conditions permissive for the growth of normal neural cells, of which share some features including marker expression, self-renewal capacity, long-term proliferation, and ability to differentiate into neuronal and glial cells. EGFR overexpression and its constitutive activation is one of the most important signaling alteration identified in GBM, and its pharmacological targeting represents an attractive therapeutic goal. We previously demonstrated that human GBM TICs have different sensitivity to the EGFR kinase inhibitors erlotinib and gefitinib, depending on the differential modulation of downstream signaling cascades. In this work we investigated the mechanisms of resistance to erlotinib in two human GBM TIC cultures, analyzing EGF and bFGF individual contribution to proliferation, clonogenicity, and migration. We demonstrated the presence of a small cell subpopulation whose proliferation is supported by EGF and a larger one mainly dependent on bFGF. Thus, insensitivity to EGFR kinase inhibitors as far as TIC proliferation results from a predominant FGFR activation that hides the inhibitory effects induced on EGFR signaling. Conversely, EGF and bFGF induced cell migration with similar efficacy. In addition, unlike neural stem/progenitors cells, the removal of chondroitin sulphate proteoglycans from cell surface was unable to discern EGF- and bFGF-dependent subpopulations in GBM TICs.

  20. Conditioning of native substrates by chondroitin sulfate proteoglycans during cardiac mesenchymal cell migration

    PubMed Central

    1986-01-01

    It is generally proposed that embryonic mesenchymal cells use sulfated macromolecules during in situ migration. Attempts to resolve the molecular mechanisms for this hypothesis using planar substrates have been met with limited success. In the present study, we provide evidence that the functional significance of certain sulfated macromolecules during mesenchyme migration required the presence of the endogenous migratory template; i.e., native collagen fibrils. Using three-dimensional collagen gel lattices and whole embryo culture procedures to produce metabolically labeled sulfated macromolecules in embryonic chick cardiac tissue, we show that these molecules were primarily proteoglycan (PG) in nature and that their distribution was class specific; i.e., heparan sulfate PG, the minor labeled component (15%), remained pericellular while chondroitin sulfate (CS) PG, the predominately labeled PG (85%), was associated with collagen fibrils as "trails" of 50-60-nm particles when viewed by scanning electron microscopy. Progressive "conditioning" of collagen with CS-PG inhibited the capacity of the template to support subsequent cell migration. Lastly, metabolically labeled, PG-derived CS chains were compared with respect to degree of sulfation in either the C-6 or C-4 position by chromatographic separation of chondroitinase AC digestion products. Results from temporal and regional comparisons of in situ-labeled PGs indicated a positive correlation between the presence of mesenchyme and an enrichment of disaccharide-4S relative to that from regions lacking mesenchyme (i.e., principally myocardial tissue). The suggestion of a mesenchyme-specific CS-PG was substantiated by similarly examining the PGs synthesized solely by cardiac mesenchymal cells migrating within hydrated collagen lattice in culture. These data were incorporated into a model of "substratum conditioning" which provides a molecular mechanism by which secretion of mesenchyme-specific CS-PGs not only provides for directed and sustained cell movement, but ultimately inhibits migration of the cell population as a whole. PMID:3782305

  1. Decreasing the metastatic potential in cancers--targeting the heparan sulfate proteoglycans.

    PubMed

    Fjeldstad, K; Kolset, S O

    2005-09-01

    The heterogeneity of proteoglycans (PG)s contributes to their functional diversity. Many functions depend on their ability to bind and modulate the activity of components of the extracellular matrix (ECM). The ability of PGs to interact with other molecules, such as growth factors, is largely determined by the fine structure of the glycosaminoglycan (GAG) chains. Tumorigenesis is associated with changes in the PG synthesis. Heparan sulfate (HS) PGs are involved in several aspects of cancer biology including tumor progression, angiogenesis, and metastasis. PGs can have both tumor promoting and tumor suppressing activities depending on the protein core, the GAG attached, molecules they associate with, localization, the tumor subtype, stages, and degree of tumor differentiation. Perlecan is an angiogenic factor involved in tumor invasiveness. The C-terminal domain V of perlecan, named endorepellin, has however been shown to inhibit angiogenesis. Another angiogenic factor is endostatin, the COOH-terminal domain of the part-time PG collagen XVIII. Glypicans and syndecans may promote local cancer cell growth in some cancer tissues, but inhibit tissue invasion and metastasis in others. The GAG hyaluronan (HA) promotes cancer growth by providing a loose matrix for migrating tumor cells and mediates adhesion of cancer cells. HSPG degrading enzymes like heparanase, heparitinase, and other enzymes such as hyaluronidase and MMP are also important in tumor metastasis. Several different treatment strategies that target PGs have been developed. They have the potential to be effective in reducing tumor growth and inhibit the formation of metastases. PGs are also valuable tumor markers in several cancers.

  2. The Effects of Glucosamine Sulfate on Intervertebral Disc Annulus Fibrosus Cells in Vitro

    PubMed Central

    Sowa, Gwendolyn; Coelho, J. Paulo; Jacobs, Lloydine; Komperda, Kasey; Sherry, Nora; Vo, Nam; Preuss, Harry; Balk, Judith; Kang, Jame

    2014-01-01

    Background context Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection. Purpose The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading. Study Design Controlled in vitro laboratory setting Methods Intervertebral disc cells isolated from the rabbit annulus fibrosus were exposed to glucosamine sulfate in the presence and absence of interleukin-1beta and tensile strain. Outcome measures included gene expression, measurement of total glycosaminoglycans, new proteoglycan synthesis, prostaglandin E2 production, and matrix metalloproteinase activity. The study was funded by NIH/NCCAM and the authors have no conflicts of interest. Results Under conditions of inflammatory stimulation alone, glucosamine demonstrated a dose dependent effect in decreasing inflammatory and catabolic mediators and increasing anabolic genes. However, under conditions of mechanical stimulation, although inflammatory gene expression was decreased, PGE2 was not. In addition, MMP-3 gene expression was increased and aggrecan expression decreased, both of which would have a detrimental effect on matrix homeostasis. Consistent with this, measurement of total glycosaminoglycans and new proteoglycan synthesis demonstrated detrimental effects of glucosamine under all conditions tested. Conclusions These results may in part help to explain the conflicting reports of efficacy, as there is biological plausibility for a therapeutic effect under conditions of predominate inflammation, but not under conditions where mechanical loading is present or in which matrix synthesis is needed. PMID:24361347

  3. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo.

    PubMed

    Chou, A I; Akintoye, S O; Nicoll, S B

    2009-10-01

    Intervertebral disc (IVD) degeneration is a major health concern in the United States. Replacement of the nucleus pulposus (NP) with injectable biomaterials represents a potential treatment strategy for IVD degeneration. The objective of this study was to characterize the extracellular matrix (ECM) assembly and functional properties of NP cell-encapsulated, photo-crosslinked alginate hydrogels in comparison to ionically crosslinked alginate constructs. Methacrylated alginate was synthesized by esterification of hydroxyl groups with methacrylic anhydride. Bovine NP cells were encapsulated in alginate hydrogels by ionic crosslinking using CaCl(2) or through photo-crosslinking upon exposure to long-wave UV light in the presence of a photoinitiator. The hydrogels were evaluated in vitro by gross and histological analysis and in vivo using a murine subcutaneous pouch model. In vivo samples were analyzed for gene expression, ECM localization and accumulation, and equilibrium mechanical properties. Ionically crosslinked hydrogels exhibited inferior proteoglycan accumulation in vitro and were unable to maintain structural integrity in vivo. In further studies, photo-crosslinked alginate hydrogels were implanted for up to 8 weeks to examine NP tissue formation. Photo-crosslinked hydrogels displayed temporal increases in gene expression and assembly of type II collagen and proteoglycans. Additionally, hydrogels remained intact over the duration of the study and the equilibrium Young's modulus increased from 1.24+/-0.09 kPa to 4.31+/-1.39 kPa, indicating the formation of functional matrix with properties comparable to those of the native NP. These findings support the use of photo-crosslinked alginate hydrogels as biomaterial scaffolds for NP replacement.

  4. Mesenchymal Stromal/stem Cell-derived Extracellular Vesicles Promote Human Cartilage Regeneration In Vitro

    PubMed Central

    Vonk, Lucienne A.; van Dooremalen, Sanne F. J.; Liv, Nalan; Klumperman, Judith; Coffer, Paul J.; Saris, Daniël B.F.; Lorenowicz, Magdalena J.

    2018-01-01

    Osteoarthritis (OA) is a rheumatic disease leading to chronic pain and disability with no effective treatment available. Recently, allogeneic human mesenchymal stromal/stem cells (MSC) entered clinical trials as a novel therapy for OA. Increasing evidence suggests that therapeutic efficacy of MSC depends on paracrine signalling. Here we investigated the role of extracellular vesicles (EVs) secreted by human bone marrow derived MSC (BMMSC) in human OA cartilage repair. Methods: To test the effect of BMMSC-EVs on OA cartilage inflammation, TNF-alpha-stimulated OA chondrocyte monolayer cultures were treated with BMMSC-EVs and pro-inflammatory gene expression was measured by qRT-PCR after 48 h. To assess the impact of BMMSC-EVs on cartilage regeneration, BMMSC-EVs were added to the regeneration cultures of human OA chondrocytes, which were analyzed after 4 weeks for glycosaminoglycan content by 1,9-dimethylmethylene blue (DMMB) assay. Furthermore, paraffin sections of the regenerated tissue were stained for proteoglycans (safranin-O) and type II collagen (immunostaining). Results: We show that BMMSC-EVs inhibit the adverse effects of inflammatory mediators on cartilage homeostasis. When co-cultured with OA chondrocytes, BMMSC-EVs abrogated the TNF-alpha-mediated upregulation of COX2 and pro-inflammatory interleukins and inhibited TNF-alpha-induced collagenase activity. BMMSC-EVs also promoted cartilage regeneration in vitro. Addition of BMMSC-EVs to cultures of chondrocytes isolated from OA patients stimulated production of proteoglycans and type II collagen by these cells. Conclusion: Our data demonstrate that BMMSC-EVs can be important mediators of cartilage repair and hold great promise as a novel therapeutic for cartilage regeneration and osteoarthritis. PMID:29463990

  5. Synthesis and Characterization of a Chondroitin Sulfate Based Hybrid Bio/Synthetic Biomimetic Aggrecan Macromolecule

    NASA Astrophysics Data System (ADS)

    Sarkar, Sumona

    Lower back pain resulting from intervertebral disc degeneration is one of the leading musculoskeletal disorders confronting our health system. In order to mechanically stabilize the disc early in the degenerative cascade and prevent the need for spinal fusion surgeries, we have proposed the development of a hybrid-bio/synthetic biomimetic proteoglycan macromolecule for injection into the disc in the early stages of degeneration. The goal of this thesis was to incorporate natural chondroitin sulfate (CS) chains into bottle brush polymer synthesis strategies for the fabrication of CS-macromolecules which mimic the proteoglycan structure and function while resisting enzymatic degradation. Both the "grafting-to" and "grafting-through" techniques of bottle brush synthesis were explored. CS was immobilized via a terminal primary amine onto a model polymeric backbone (polyacrylic acid) for investigation of the "grafting-to" strategy and an epoxy-amine step-growth polymerization technique was utilized for the "grafting-through" synthesis of CS-macromolecules with polyethylene glycol backbone segments. Incorporation of a synthetic polymeric backbone at the terminal amine of CS was confirmed via biochemical assays, 1H-NMR and FTIR spectroscopy, and CS-macromolecule size was demonstrated to be higher than that of natural CS via gel permeation chromatography, transmission electron microscopy and viscosity measurements. Further analysis of CS-macromolecule functionality indicated maintenance of natural CS properties such as high fixed charge density, high osmotic potential and low cytotoxicity with nucleus pulposus cells. These studies are the first attempt at the incorporation of natural CS into biomimetic bottle brush structures. CS-macromolecules synthesized via the methods developed in these studies may be utilized in the treatment and prevention of debilitating back pain as well as act as mimetics for other proteoglycans implicated in cartilage, heart valve, and nervous system tissue function.

  6. Forward genetics defines Xylt1 as a key, conserved regulator of early chondrocyte maturation and skeletal length.

    PubMed

    Mis, Emily K; Liem, Karel F; Kong, Yong; Schwartz, Nancy B; Domowicz, Miriam; Weatherbee, Scott D

    2014-01-01

    The long bones of the vertebrate body are built by the initial formation of a cartilage template that is later replaced by mineralized bone. The proliferation and maturation of the skeletal precursor cells (chondrocytes) within the cartilage template and their replacement by bone is a highly coordinated process which, if misregulated, can lead to a number of defects including dwarfism and other skeletal deformities. This is exemplified by the fact that abnormal bone development is one of the most common types of human birth defects. Yet, many of the factors that initiate and regulate chondrocyte maturation are not known. We identified a recessive dwarf mouse mutant (pug) from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. pug mutant skeletal elements are patterned normally during development, but display a ~20% length reduction compared to wild-type embryos. We show that the pug mutation does not lead to changes in chondrocyte proliferation but instead promotes premature maturation and early ossification, which ultimately leads to disproportionate dwarfism. Using sequence capture and high-throughput sequencing, we identified a missense mutation in the Xylosyltransferase 1 (Xylt1) gene in pug mutants. Xylosyltransferases catalyze the initial step in glycosaminoglycan (GAG) chain addition to proteoglycan core proteins, and these modifications are essential for normal proteoglycan function. We show that the pug mutation disrupts Xylt1 activity and subcellular localization, leading to a reduction in GAG chains in pug mutants. The pug mutant serves as a novel model for mammalian dwarfism and identifies a key role for proteoglycan modification in the initiation of chondrocyte maturation. © 2013 Published by Elsevier Inc.

  7. Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A)

    PubMed Central

    Iida, Joji; Wilhelmson, Krista L.; Ng, Janet; Lee, Peter; Morrison, Charlotte; Tam, Eric; Overall, Christopher M.; McCarthy, James B.

    2007-01-01

    We previously reported that CS (chondroitin sulfate) GAG (glycosaminoglycan), expressed on MCSP (melanoma-specific CS proteoglycan), is important for regulating MT3-MMP [membrane-type 3 MMP (matrix metalloproteinase)]-mediated human melanoma invasion and gelatinolytic activity in vitro. In the present study, we sought to determine if CS can directly enhance MT3-MMP-mediated activation of pro-MMP-2. Co-immunoprecipitation studies suggest that MCSP forms a complex with MT3-MMP and MMP-2 on melanoma cell surface. When melanoma cells were treated with βDX (p-nitro-β-D-xylopyranoside) to inhibit coupling of CS on the core protein, both active form and proform of MMP-2 were no longer co-immunoprecipitated with either MCSP or MT3-MMP, suggesting a model in which CS directly binds to MMP-2 and presents the gelatinase to MT3-MMP to be activated. By using recombinant proteins, we determined that MT3-MMP directly activates pro-MMP-2 and that this activation requires the interaction of the C-terminal domain of pro-MMP-2 with MT3-MMP. Activation of pro-MMP-2 by suboptimal concentrations of MT3-MMP is also significantly enhanced in the presence of excess C4S (chondroitin 4-sulfate), whereas C6S (chondroitin 6-sulfate) or low-molecular-mass hyaluronan was ineffective. Affinity chromatography studies using CS isolated from aggrecan indicate that the catalytic domain of MT3-MMP and the C-terminal domain of MMP-2 directly bind to the GAG. Thus the direct binding of pro-MMP-2 with CS through the C-domain would present the catalytic domain of pro-MMP-2 to MT3-MMP, which facilitates the generation of the active form of MMP-2. These results suggest that C4S, which is expressed on tumour cell surface, can function to bind to pro-MMP-2 and facilitate its activation by MT3-MMP-expressing tumour cells to enhance invasion and metastasis. PMID:17217338

  8. Endocan and the respiratory system: a review.

    PubMed

    Kechagia, Maria; Papassotiriou, Ioannis; Gourgoulianis, Konstantinos I

    2016-01-01

    Endocan, formerly called endothelial cell-specific molecule 1, is an endothelial cell-associated proteoglycan that is preferentially expressed by renal and pulmonary endothelium. It is upregulated by proangiogenic molecules as well as by pro-inflammatory cytokines, and since it reflects endothelial activation and dysfunction, it is regarded as a novel tissue and blood-based relevant biomarker. As such, it is increasingly being researched and evaluated in a wide spectrum of healthy and disease pathophysiological processes. Here, we review the present scientific knowledge on endocan, with emphasis on the evidence that underlines its possible clinical value as a prognostic marker in several malignant, inflammatory and obstructive disorders of the respiratory system.

  9. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation.

    PubMed

    von Hundelshausen, Philipp; Agten, Stijn M; Eckardt, Veit; Blanchet, Xavier; Schmitt, Martin M; Ippel, Hans; Neideck, Carlos; Bidzhekov, Kiril; Leberzammer, Julian; Wichapong, Kanin; Faussner, Alexander; Drechsler, Maik; Grommes, Jochen; van Geffen, Johanna P; Li, He; Ortega-Gomez, Almudena; Megens, Remco T A; Naumann, Ronald; Dijkgraaf, Ingrid; Nicolaes, Gerry A F; Döring, Yvonne; Soehnlein, Oliver; Lutgens, Esther; Heemskerk, Johan W M; Koenen, Rory R; Mayo, Kevin H; Hackeng, Tilman M; Weber, Christian

    2017-04-05

    Chemokines orchestrate leukocyte trafficking and function in health and disease. Heterophilic interactions between chemokines in a given microenvironment may amplify, inhibit, or modulate their activity; however, a systematic evaluation of the chemokine interactome has not been performed. We used immunoligand blotting and surface plasmon resonance to obtain a comprehensive map of chemokine-chemokine interactions and to confirm their specificity. Structure-function analyses revealed that chemokine activity can be enhanced by CC-type heterodimers but inhibited by CXC-type heterodimers. Functional synergism was achieved through receptor heteromerization induced by CCL5-CCL17 or receptor retention at the cell surface via auxiliary proteoglycan binding of CCL5-CXCL4. In contrast, inhibitory activity relied on conformational changes (in CXCL12), affecting receptor signaling. Obligate CC-type heterodimers showed high efficacy and potency and drove acute lung injury and atherosclerosis, processes abrogated by specific CCL5-derived peptide inhibitors or knock-in of an interaction-deficient CXCL4 variant. Atheroprotective effects of CCL17 deficiency were phenocopied by a CCL5-derived peptide disrupting CCL5-CCL17 heterodimers, whereas a CCL5 α-helix peptide mimicked inhibitory effects on CXCL12-driven platelet aggregation. Thus, formation of specific chemokine heterodimers differentially dictates functional activity and can be exploited for therapeutic targeting. Copyright © 2017, American Association for the Advancement of Science.

  10. Intrinsic protective mechanisms of the neuron-glia network against glioma invasion.

    PubMed

    Iwadate, Yasuo; Fukuda, Kazumasa; Matsutani, Tomoo; Saeki, Naokatsu

    2016-04-01

    Gliomas arising in the brain parenchyma infiltrate into the surrounding brain and break down established complex neuron-glia networks. However, mounting evidence suggests that initially the network microenvironment of the adult central nervous system (CNS) is innately non-permissive to glioma cell invasion. The main players are inhibitory molecules in CNS myelin, as well as proteoglycans associated with astrocytes. Neural stem cells, and neurons themselves, possess inhibitory functions against neighboring tumor cells. These mechanisms have evolved to protect the established neuron-glia network, which is necessary for brain function. Greater insight into the interaction between glioma cells and the surrounding neuron-glia network is crucial for developing new therapies for treating these devastating tumors while preserving the important and complex neural functions of patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Soybean-fragmented proteoglycans against skin aging.

    PubMed

    Barba, Clara; Alonso, Cristina; Sánchez, Isabel; Suñer, Elisa; Sáez-Martín, L C; Coderch, Luisa

    2017-08-01

    The majority of age-dependent skin changes happen in the dermis layer inducing changes in skin collagen and in the proteoglycans. The main aim of this work is to study the efficacy of a Proteum serum, containing soybean-fragmented proteoglycans, against skin aging. In vitro tests were performed to evaluate the Proteum serum ability on activating the production of collagen and proteoglycans. An in vivo long-term study was performed to determine the efficacy of the Proteum serum when applied on skin. Protection of healthy skin against detergent-induced dermatitis and the antioxidant properties of the applied Proteum serum were also studied. The in vitro tests demonstrated that the Proteum serum was able to elevate the production of molecules which are essential for supporting the dermal extracellular matrix organization. These results were correlated by the in vivo measurements where a clear trend on improving the measured skin parameters due to the Proteum serum application was found. A beneficial effect of the Proteum serum was demonstrated with an improvement in the skin roughness and a reinforcement of the skin barrier function. Moreover, a significant protector effect on human stratum corneum against lipids peroxides (LPO) was demonstrated.

  12. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes.

    PubMed

    Masuda, Isao; Koike, Masato; Nakashima, Shohei; Mizutani, Yu; Ozawa, Yusuke; Watanabe, Kenji; Sawada, Yoko; Sugiyama, Hiroshi; Sugimoto, Atsushi; Nojiri, Hidetoshi; Sashihara, Koichi; Yokote, Koutaro; Shimizu, Takahiko

    2018-05-08

    Apples are well known to have various benefits for the human body. Procyanidins are a class of polyphenols found in apples that have demonstrated effects on the circulatory system and skeletal organs. Osteoarthritis (OA) is a locomotive syndrome that is histologically characterized by cartilage degeneration associated with the impairment of proteoglycan homeostasis in chondrocytes. However, no useful therapy for cartilage degeneration has been developed to date. In the present study, we detected beneficial effects of apple polyphenols or their procyanidins on cartilage homeostasis. An in vitro assay revealed that apple polyphenols increased the activities of mitochondrial dehydrogenases associated with an increased copy number of mitochondrial DNA as well as the gene expression of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), suggesting the promotion of PGC-1α-mediated mitochondrial biogenesis. Apple  procyanidins also enhanced proteoglycan biosynthesis with aggrecan upregulation in primary chondrocytes. Of note, oral treatment with apple procyanidins prevented articular cartilage degradation in OA model mice induced by mitochondrial dysfunction in chondrocytes. Our findings suggest that apple procyanidins are promising food components that inhibit OA progression by promoting mitochondrial biogenesis and proteoglycan homeostasis in chondrocytes.

  13. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation.

    PubMed

    Rees, Martin D; Pattison, David I; Davies, Michael J

    2005-10-01

    Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and produce superoxide radicals and H2O2 via an oxidative burst. MPO uses H2O2 and Cl- to form HOCl, the physiological mixture of hypochlorous acid and its anion present at pH 7.4. As MPO binds to glycosaminoglycans, oxidation of extracellular matrix and cell surfaces by HOCl may be localized to these materials. However, the reactions of HOCl with glycosaminoglycans are poorly characterized. The GlcNAc (N-acetylglucosamine), GlcNSO3 (glucosamine-N-sulphate) and GlcNH2 [(N-unsubstituted) glucosamine] residues of heparan sulphate are potential targets for HOCl. It is shown here that HOCl reacts with each of these residues to generate N-chloro derivatives, and the absolute rate constants for these reactions have been determined. Reaction at GlcNH2 residues yields chloramines and, subsequently, dichloramines with markedly slower rates, k2 approximately 3.1x10(5) and 9 M(-1) x s(-1) (at 37 degrees C) respectively. Reaction at GlcNSO3 and GlcNAc residues yields N-chlorosulphonamides and chloramides with k2 approximately 0.05 and 0.01 M(-1) x s(-1) (at 37 degrees C) respectively. The corresponding monosaccharides display a similar pattern of reactivity. Decay of the polymer-derived chloramines, N-chlorosulphonamides and chloramides is slow at 37 degrees C and does not result in major structural changes. In contrast, dichloramine decay is rapid at 37 degrees C and results in fragmentation of the polymer backbone. Computational modelling of the reaction of HOCl with heparan sulphate proteoglycans (glypican-1 and perlecan) predicts that the GlcNH2 residues of heparan sulphate are major sites of attack. These results suggest that HOCl may be an important mediator of damage to glycosaminoglycans and proteoglycans at inflammatory foci.

  14. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation

    PubMed Central

    Rees, Martin D.; Pattison, David I.; Davies, Michael J.

    2005-01-01

    Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and produce superoxide radicals and H2O2 via an oxidative burst. MPO uses H2O2 and Cl− to form HOCl, the physiological mixture of hypochlorous acid and its anion present at pH 7.4. As MPO binds to glycosaminoglycans, oxidation of extracellular matrix and cell surfaces by HOCl may be localized to these materials. However, the reactions of HOCl with glycosaminoglycans are poorly characterized. The GlcNAc (N-acetylglucosamine), GlcNSO3 (glucosamine-N-sulphate) and GlcNH2 [(N-unsubstituted) glucosamine] residues of heparan sulphate are potential targets for HOCl. It is shown here that HOCl reacts with each of these residues to generate N-chloro derivatives, and the absolute rate constants for these reactions have been determined. Reaction at GlcNH2 residues yields chloramines and, subsequently, dichloramines with markedly slower rates, k2∼3.1×105 and 9 M−1·s−1 (at 37 °C) respectively. Reaction at GlcNSO3 and GlcNAc residues yields N-chlorosulphonamides and chloramides with k2∼0.05 and 0.01 M−1·s−1 (at 37 °C) respectively. The corresponding monosaccharides display a similar pattern of reactivity. Decay of the polymer-derived chloramines, N-chlorosulphonamides and chloramides is slow at 37 °C and does not result in major structural changes. In contrast, dichloramine decay is rapid at 37 °C and results in fragmentation of the polymer backbone. Computational modelling of the reaction of HOCl with heparan sulphate proteoglycans (glypican-1 and perlecan) predicts that the GlcNH2 residues of heparan sulphate are major sites of attack. These results suggest that HOCl may be an important mediator of damage to glycosaminoglycans and proteoglycans at inflammatory foci. PMID:15932347

  15. Arabinogalactan proteins occur in the free-living cyanobacterium genus Nostoc and in plant-Nostoc symbioses.

    PubMed

    Jackson, Owen; Taylor, Oliver; Adams, David G; Knox, J Paul

    2012-10-01

    Arabinogalactan proteins (AGP) are a diverse family of proteoglycans associated with the cell surfaces of plants. AGP have been implicated in a wide variety of plant cell processes, including signaling in symbioses. This study investigates the existence of putative AGP in free-living cyanobacterial cultures of the nitrogen-fixing, filamentous cyanobacteria Nostoc punctiforme and Nostoc sp. strain LBG1 and at the symbiotic interface in the symbioses between Nostoc spp. and two host plants, the angiosperm Gunnera manicata (in which the cyanobacterium is intracellular) and the liverwort Blasia pusilla (in which the cyanobacterium is extracellular). Enzyme-linked immunosorbent assay, immunoblotting, and immunofluorescence analyses demonstrated that three AGP glycan epitopes (recognized by monoclonal antibodies LM14, MAC207, and LM2) are present in free-living Nostoc cyanobacterial species. The same three AGP glycan epitopes are present at the Gunnera-Nostoc symbiotic interface and the LM2 epitope is detected during the establishment of the Blasia-Nostoc symbiosis. Bioinformatic analysis of the N. punctiforme genome identified five putative AGP core proteins that are representative of AGP classes found in plants. These results suggest a possible involvement of AGP in cyanobacterial-plant symbioses and are also suggestive of a cyanobacterial origin of AGP.

  16. Serum-free culture of rat proximal tubule cells with enhanced function on chitosan.

    PubMed

    Chang, Shao-Hsuan; Chiang, I-Ni; Chen, Yi-Hsin; Young, Tai-Horng

    2013-11-01

    The proximal tubule performs a variety of important renal functions and is the major site for nutrient reabsorption. The purpose of this study is to culture rat renal proximal tubule cells (PTCs) on chitosan without serum to maintain a transcellular pathway to transport water and ions effectively without loss of highly differentiated cell function. The effect of chitosan, which is structurally similar to glycosaminoglycans, in the absence of serum on the primary cultured PTCs was compared that of collagen with or without serum. Two days after seeding, more tubule fragments and higher PTC viability were observed on chitosan than on collagen with or without serum. Proliferation marker Ki-67 immunostaining and phosphorylated extracellular-regulated kinase (ERK) expression results displayed similar proliferation capability of PTCs established on chitosan without serum and collagen with 2% fetal bovine serum after 4 days of incubation. When grown to confluence, PTCs formed a monolayer with well-organized tight junctions and formation of domes on chitosan without serum. Moreover, evaluation of the transepithelial electrical resistance showed that both chitosan and serum were involved in the modification of water and ion transport in confluent cells. By showing the direct suppression of PTC growth and dome formation treated with heparinase, we demonstrated that the interaction between cell surface heparin sulfate proteoglycan and chitosan played an important role in PTC proliferation and differentiation. A successful primary culture of PTCs has now been produced on chitosan in serum-free culture condition, which offers potential applications for chitosan in renal tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma

    PubMed Central

    Li, Nan; Fu, Haiying; Hewitt, Stephen M.; Dimitrov, Dimiter S.

    2017-01-01

    Neuroblastoma is a childhood cancer that is fatal in almost half of patients despite intense multimodality treatment. This cancer is derived from neuroendocrine tissue located in the sympathetic nervous system. Glypican-2 (GPC2) is a cell surface heparan sulfate proteoglycan that is important for neuronal cell adhesion and neurite outgrowth. In this study, we find that GPC2 protein is highly expressed in about half of neuroblastoma cases and that high GPC2 expression correlates with poor overall survival compared with patients with low GPC2 expression. We demonstrate that silencing of GPC2 by CRISPR-Cas9 or siRNA results in the inhibition of neuroblastoma tumor cell growth. GPC2 silencing inactivates Wnt/β-catenin signaling and reduces the expression of the target gene N-Myc, an oncogenic driver of neuroblastoma tumorigenesis. We have isolated human single-domain antibodies specific for GPC2 by phage display technology and found that the single-domain antibodies can inhibit active β-catenin signaling by disrupting the interaction of GPC2 and Wnt3a. To explore GPC2 as a potential target in neuroblastoma, we have developed two forms of antibody therapeutics, immunotoxins and chimeric antigen receptor (CAR) T cells. Immunotoxin treatment was demonstrated to inhibit neuroblastoma growth in mice. CAR T cells targeting GPC2 eliminated tumors in a disseminated neuroblastoma mouse model where tumor metastasis had spread to multiple clinically relevant sites, including spine, skull, legs, and pelvis. This study suggests GPC2 as a promising therapeutic target in neuroblastoma. PMID:28739923

  18. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma.

    PubMed

    Li, Nan; Fu, Haiying; Hewitt, Stephen M; Dimitrov, Dimiter S; Ho, Mitchell

    2017-08-08

    Neuroblastoma is a childhood cancer that is fatal in almost half of patients despite intense multimodality treatment. This cancer is derived from neuroendocrine tissue located in the sympathetic nervous system. Glypican-2 (GPC2) is a cell surface heparan sulfate proteoglycan that is important for neuronal cell adhesion and neurite outgrowth. In this study, we find that GPC2 protein is highly expressed in about half of neuroblastoma cases and that high GPC2 expression correlates with poor overall survival compared with patients with low GPC2 expression. We demonstrate that silencing of GPC2 by CRISPR-Cas9 or siRNA results in the inhibition of neuroblastoma tumor cell growth. GPC2 silencing inactivates Wnt/β-catenin signaling and reduces the expression of the target gene N-Myc, an oncogenic driver of neuroblastoma tumorigenesis. We have isolated human single-domain antibodies specific for GPC2 by phage display technology and found that the single-domain antibodies can inhibit active β-catenin signaling by disrupting the interaction of GPC2 and Wnt3a. To explore GPC2 as a potential target in neuroblastoma, we have developed two forms of antibody therapeutics, immunotoxins and chimeric antigen receptor (CAR) T cells. Immunotoxin treatment was demonstrated to inhibit neuroblastoma growth in mice. CAR T cells targeting GPC2 eliminated tumors in a disseminated neuroblastoma mouse model where tumor metastasis had spread to multiple clinically relevant sites, including spine, skull, legs, and pelvis. This study suggests GPC2 as a promising therapeutic target in neuroblastoma.

  19. Antiangiogenic activity of semisynthetic biotechnological heparins: low-molecular-weight-sulfated Escherichia coli K5 polysaccharide derivatives as fibroblast growth factor antagonists.

    PubMed

    Presta, Marco; Oreste, Pasqua; Zoppetti, Giorgio; Belleri, Mirella; Tanghetti, Elena; Leali, Daria; Urbinati, Chiara; Bugatti, Antonella; Ronca, Roberto; Nicoli, Stefania; Moroni, Emanuela; Stabile, Helena; Camozzi, Maura; Hernandez, German Andrés; Mitola, Stefania; Dell'Era, Patrizia; Rusnati, Marco; Ribatti, Domenico

    2005-01-01

    Low-molecular-weight heparin (LMWH) exerts antitumor activity in clinical trials. The K5 polysaccharide from Escherichia coli has the same structure as the heparin precursor. Chemical and enzymatic modifications of K5 polysaccharide lead to the production of biotechnological heparin-like compounds. We investigated the fibroblast growth factor-2 (FGF2) antagonist and antiangiogenic activity of a series of LMW N,O-sulfated K5 derivatives. Surface plasmon resonance analysis showed that LMW-K5 derivatives bind FGF2, thus inhibiting its interaction with heparin immobilized to a BIAcore sensor chip. Interaction of FGF2 with tyrosine-kinase receptors (FGFRs), heparan sulfate proteoglycans (HSPGs), and alpha(v)beta3 integrin is required for biological response in endothelial cells. Similar to LMWH, LMW-K5 derivatives abrogate the formation of HSPG/FGF2/FGFR ternary complexes by preventing FGF2-mediated attachment of FGFR1-overexpressing cells to HSPG-bearing cells and inhibit FGF2-mediated endothelial cell proliferation. However, LMW-K5 derivatives, but not LMWH, also inhibit FGF2/alpha(v)beta3 integrin interaction and consequent FGF2-mediated endothelial cell sprouting in vitro and angiogenesis in vivo in the chick embryo chorioallantoic membrane. LMW N,O-sulfated K5 derivatives affect both HSPG/FGF2/FGFR and FGF2/alpha(v)beta3 interactions and are endowed with FGF2 antagonist and antiangiogenic activity. These compounds may provide the basis for the design of novel LMW heparin-like angiostatic compounds.

  20. The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence

    PubMed Central

    López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M. Isabel G.

    2013-01-01

    With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity. PMID:24416097

  1. Goblet Cells and Mucus Types in the Digestive Intestine and Respiratory Intestine in Bronze Corydoras (Callichthyidae: Teleostei).

    PubMed

    Leknes, I L

    2015-10-01

    The structure and histochemical properties of the intestine in bronze corydoras (Corydoras aeneus), a stomach-containing teleost, are described, with emphasis on goblet cells and mucin types. The proximal intestine displayed a normal structure for teleosts, whereas the distal intestine was wide, translucent, thin-walled, richly vascularized and constantly filled with air, suggesting an important respiratory role. Goblet cells were common throughout the entire intestine and displayed a variable, but mainly faint metachromatic colour after toluidine blue. They were moderately coloured by alcian blue at both pH 2.5 and 0.2 and displayed no colour after periodic acid followed by Schiff's solution (PAS), but a distinct purple-brown colour after high iron diamine followed by alcian blue (pH 2.5). Together, these results suggest that the mucin in the intestine goblet cells consists mainly of sulphated proteoglycans. Further, the results from the present lectin and neuraminidase tests suggest that these mucins contain much N-acetylglucoseamines and some N-acetylgalactosamines and sialic acid, but seem to lack glucose and mannose. They also contain some galactose-N-acetylgalactosamines sequences, normally hidden by sialic acid. The distinct brush border and mucus layer on the epithelial cells in the respiratory intestine may indicate some digestive roles, such as absorption of water, ions and simple carbohydrates. As sulphated proteoglycans are tough and attract much water, this mucus may play important roles in the protection against mechanical and chemical damages and in the defence against micro-organisms throughout the entire intestine, but in the respiratory intestine it may impede significantly the oxygen uptake. However, as this part of the intestine usually contains no digesta, but is completely filled with air, frequently renewed by dry air from the atmosphere, and the main function of the mucus may be to protect the respiratory epithelium against a destroying and dangerous desiccation. © 2014 Blackwell Verlag GmbH.

  2. Additionally sulfated xylomannan sulfates from Scinaia hatei and their antiviral activities.

    PubMed

    Ray, Sayani; Pujol, Carlos A; Damonte, Elsa B; Ray, Bimalendu

    2015-10-20

    Herpes simplex viruses (HSVs) display affinity for cell-surface heparan sulfate proteoglycans with biological relevance in virus entry. This study demonstrates the potential of chemically engineered sulfated xylomannans from Scinaia hatei as antiHSV drug candidate. Particularly, a dimethylformamide -SO3/pyridine based procedure has been employed for the generation of anionic polysaccharides. This one-step procedure has the power of providing a spectrum of xylomannans with varying molecular masses (<12-74kDa), sulfate content (1-50%) and glycosyl composition. Especially, the sulfated xylomannans S1F1 and S2F1 possessed altered activity against HSV-1 and HSV-2 compared to the parental compound (F1) and that too in the absence of drug-induced cytotoxicity. Regarding methodological facet, the directive decoration of hydroxyl functionality with sulfate group plus changes in the molecular mass and sugar composition during isolation by the used reagent opens a door for the production of new molecular entity with altered biological activity from other natural sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Amino acid sequence surrounding the chondroitin sulfate attachment site of thrombomodulin regulates chondroitin polymerization.

    PubMed

    Izumikawa, Tomomi; Kitagawa, Hiroshi

    2015-05-01

    Thrombomodulin (TM) is a cell-surface glycoprotein and a critical mediator of endothelial anticoagulant function. TM exists as both a chondroitin sulfate (CS) proteoglycan (PG) form and a non-PG form lacking a CS chain (α-TM); therefore, TM can be described as a part-time PG. Previously, we reported that α-TM bears an immature, truncated linkage tetrasaccharide structure (GlcAβ1-3Galβ1-3Galβ1-4Xyl). However, the biosynthetic mechanism to generate part-time PGs remains unclear. In this study, we used several mutants to demonstrate that the amino acid sequence surrounding the CS attachment site influences the efficiency of chondroitin polymerization. In particular, the presence of acidic residues surrounding the CS attachment site was indispensable for the elongation of CS. In addition, mutants defective in CS elongation did not exhibit anti-coagulant activity, as in the case with α-TM. Together, these data support a model for CS chain assembly in which specific core protein determinants are recognized by a key biosynthetic enzyme involved in chondroitin polymerization. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Over forty years of bladder cancer glycobiology: Where do glycans stand facing precision oncology?

    PubMed Central

    Azevedo, Rita; Peixoto, Andreia; Gaiteiro, Cristiana; Fernandes, Elisabete; Neves, Manuel; Lima, Luís; Santos, Lúcio Lara; Ferreira, José Alexandre

    2017-01-01

    The high molecular heterogeneity of bladder tumours is responsible for significant variations in disease course, as well as elevated recurrence and progression rates, thereby hampering the introduction of more effective targeted therapeutics. The implementation of precision oncology settings supported by robust molecular models for individualization of patient management is warranted. This effort requires a comprehensive integration of large sets of panomics data that is yet to be fully achieved. Contributing to this goal, over 40 years of bladder cancer glycobiology have disclosed a plethora of cancer-specific glycans and glycoconjugates (glycoproteins, glycolipids, proteoglycans) accompanying disease progressions and dissemination. This review comprehensively addresses the main structural findings in the field and consequent biological and clinical implications. Given the cell surface and secreted nature of these molecules, we further discuss their potential for non-invasive detection and therapeutic development. Moreover, we highlight novel mass-spectrometry-based high-throughput analytical and bioinformatics tools to interrogate the glycome in the postgenomic era. Ultimately, we outline a roadmap to guide future developments in glycomics envisaging clinical implementation. PMID:29207682

  5. Proteoglycan 4: A Dynamic Regulator of Skeletogenesis and Parathyroid Hormone Skeletal Anabolism

    PubMed Central

    Novince, Chad M; Michalski, Megan N; Koh, Amy J; Sinder, Benjamin P; Entezami, Payam; Eber, Matthew R; Pettway, Glenda J; Rosol, Thomas J; Wronski, Thomas J; Kozloff, Ken M; McCauley, Laurie K

    2014-01-01

    Proteoglycan 4 (Prg4), known for its lubricating and protective actions in joints, is a strong candidate regulator of skeletal homeostasis and parathyroid hormone (PTH) anabolism. Prg4 is a PTH-responsive gene in bone and liver. Prg4 null mutant mice were used to investigate the impact of proteoglycan 4 on skeletal development, remodeling, and PTH anabolic actions. Young Prg4 mutant and wild-type mice were administered intermittent PTH(1–34) or vehicle daily from 4 to 21 days. Young Prg4 mutant mice had decreased growth plate hypertrophic zones, trabecular bone, and serum bone formation markers versus wild-type mice, but responded with a similar anabolic response to PTH. Adult Prg4 mutant and wild-type mice were administered intermittent PTH(1–34) or vehicle daily from 16 to 22 weeks. Adult Prg4 mutant mice had decreased trabecular and cortical bone, and blunted PTH-mediated increases in bone mass. Joint range of motion and animal mobility were lower in adult Prg4 mutant versus wild-type mice. Adult Prg4 mutant mice had decreased marrow and liver fibroblast growth factor 2 (FGF-2) mRNA and reduced serum FGF-2, which were normalized by PTH. A single dose of PTH decreased the PTH/PTHrP receptor (PPR), and increased Prg4 and FGF-2 to a similar extent in liver and bone. Proteoglycan 4 supports endochondral bone formation and the attainment of peak trabecular bone mass, and appears to support skeletal homeostasis indirectly by protecting joint function. Bone- and liver-derived FGF-2 likely regulate proteoglycan 4 actions supporting trabeculae formation. Blunted PTH anabolic responses in adult Prg4 mutant mice are associated with altered biomechanical impact secondary to joint failure. PMID:21932346

  6. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules.

    PubMed Central

    Tal-Singer, R; Peng, C; Ponce De Leon, M; Abrams, W R; Banfield, B W; Tufaro, F; Cohen, G H; Eisenberg, R J

    1995-01-01

    The entry of herpes simplex virus (HSV) into mammalian cells is a multistep process beginning with an attachment step involving glycoproteins gC and gB. A second step requires the interaction of glycoprotein gD with a cell surface molecule. We explored the interaction between gC and the cell surface by using purified proteins in the absence of detergent. Truncated forms of gC and gD, gC1(457t), gC2(426t), and gD1(306t), lacking the transmembrane and carboxyl regions were expressed in the baculovirus system. We studied the ability of these proteins to bind to mammalian cells, to bind to immobilized heparin, to block HSV type 1 (HSV-1) attachment to cells, and to inhibit plaque formation by HSV-1. Each of these gC proteins bound to conformation-dependent monoclonal antibodies and to human complement component C3b, indicating that they maintained the same conformation of gC proteins expressed in mammalian cells. Biotinylated gC1(457t) and gC2(426t) each bind to several cell lines. Binding was inhibited by an excess of unlabeled gC but not by gD, indicating specificity. The attachment of gC to cells involves primarily heparan sulfate proteoglycans, since heparitinase treatment of cells reduced gC binding by 50% but had no effect on gD binding. Moreover, binding of gC to two heparan sulfate-deficient L-cell lines, gro2C and sog9, both of which are mostly resistant to HSV infection, was markedly reduced. Purified gD1 (306t), however, bound equally well to the two mutant cell lines. In contrast, saturating amounts of gC1(457t) interfered with HSV-1 attachment to cells but failed to block plaque formation, suggesting a role for gC in attachment but not penetration. A mutant form of gC lacking residues 33 to 123, gC1(delta 33-123t), expressed in the baculovirus system, bound significantly less well to cells than did gC1(457t) and competed poorly with biotinylated gC1(457t) for binding. These results suggest that residues 33 to 123 are important for gC attachment to cells. In contrast, both the mutant and wild-type forms of gC bound to immobilized heparin, indicating that binding of these proteins to the cell surface involves more than a simple interaction with heparin. To determine that the contribution of the N-terminal region of gC is important for HSV attachment, we compared several properties of a mutant HSV-1 which contains gC lacking amino acids 33 to 123 to those of its parental virus, which contains full-length gC. The mutant bound less well to cells than the parental virus but exhibited normal growth properties.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7769707

  7. Accumulation of neurocan, a brain chondroitin sulfate proteoglycan, in association with the retinal vasculature in RCS rats.

    PubMed

    Zhang, Yiqin; Rauch, Uwe; Perez, Maria-Thereza R

    2003-03-01

    To examine whether and how the retinal distribution of the chondroitin sulfate proteoglycan neurocan is affected after photoreceptor cell loss and whether it correlates with the multiple secondary cellular changes that accompany the photoreceptor degeneration. Retinas from normal rats (Sprague-Dawley; postnatal days [P]0-P70), RCS rats with dystrophic retinas (P0-P300), RCS-rdy(+) congenic rats with nondystrophic retinas (P0-202), and rhodopsin mutant rats, P23H (P0-P257) and S334ter (P0-P220), were processed for immunohistochemistry using a polyclonal antibody to rat neurocan. The overall distribution of neurocan was similar in all retinas examined. Neurocan immunostaining was detected over the nerve fiber layer, the plexiform layers, the photoreceptor outer segments region, and the ciliary epithelium. With age, labeling throughout the plexiform layers decreased continuously. In RCS rats however, conspicuous labeling was also seen in association with retinal vessels, from P15 onward. Accumulation of neurocan in association with the retinal vasculature does not correlate with photoreceptor cell loss, because it was not observed in the rhodopsin mutant rats. During the earliest stages of the disease, accumulation of debris in the subretinal space in RCS rats may be sufficient per se to initiate a cascade of metabolic changes that result in accumulation of neurocan. With time, the neurocan accumulated perivascularly may, by interaction with other matrix molecules, modulate at least some of the vascular alterations observed in this animal model.

  8. Topographic variation in redifferentiation capacity of chondrocytes in the adult human knee joint.

    PubMed

    Stenhamre, H; Slynarski, K; Petrén, C; Tallheden, T; Lindahl, A

    2008-11-01

    The aim of this study was to investigate the topographic variation in matrix production and cell density in the adult human knee joint. Additionally, we have examined the redifferentiation potential of chondrocytes expanded in vitro from the different locations. Full thickness cartilage-bone biopsies were harvested from seven separate anatomical locations of healthy knee joints from deceased adult human donors. Chondrocytes were isolated, expanded in vitro and redifferentiated in a pellet mass culture. Biochemical analysis of total collagen, proteoglycans and cellular content as well as histology and immunohistochemistry were performed on biopsies and pellets. In the biochemical analysis of the biopsies, we found lower proteoglycan to collagen (GAG/HP) ratio in the non-weight bearing (NWB) areas compared to the weight bearing (WB) areas. The chondrocytes harvested from different locations in femur showed a significantly better attachment and proliferation ability as well as good post-expansion chondrogenic capacity in pellet mass culture compared with the cells harvested from tibia. These results demonstrate that there are differences in extra cellular content within the adult human knee in respect to GAG/HP ratio. Additionally, the data show that clear differences between chondrocytes harvested from femur and tibia from healthy human knee joints exist and that the differences are not completely abolished during the process of de- and redifferentiation. These findings emphasize the importance of the understanding of topographic variation in articular cartilage biology when approaching new cartilage repair strategies.

  9. Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function

    PubMed Central

    Fu, Bingmei M.; Tarbell, John M.

    2014-01-01

    The endothelial cells (ECs) lining every blood vessel wall are constantly exposed to the mechanical forces generated by blood flow. The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system. To ensure proper EC mechano-sensing and transduction, there are a variety of mechano-sensors and transducers that have been identified on the EC surface, intra- and trans-EC membrane and within the EC cytoskeleton. Among them, the most recent candidate is the endothelial surface glycocalyx (ESG), which is a matrix-like thin layer covering the luminal surface of the EC. It consists of various proteoglycans, glycosaminoglycans, and plasma proteins, and is close to other prominent EC mechano-sensors and transducers. The ESG thickness was found to be in the order of 0.1–1 μm by different visualization techniques and in different types of vessels. Detailed analysis on the electron microscopy (EM) images of the microvascular ESG revealed a quasi-periodic substructure with the ESG fiber diameter of 10–12 and 20 nm spacing between adjacent fibers. Atomic force microscopy and optical tweezers were applied to investigate the mechanical properties of the ESG on the cultured EC monolayers and in solutions. Enzymatic degradation of specific ESG glycosaminoglycan components was used to directly elucidate the role of the ESG in EC mechano-sensing and transduction by measuring the shear-induced productions of nitric oxide and prostacyclin, two characteristic responses of the ECs to the flow. The unique location, composition, and structure of the ESG determine its role in EC mechano-sensing and transduction. PMID:23401243

  10. Transplantation of transduced chondrocytes protects articular cartilage from interleukin 1-induced extracellular matrix degradation.

    PubMed Central

    Baragi, V M; Renkiewicz, R R; Jordan, H; Bonadio, J; Hartman, J W; Roessler, B J

    1995-01-01

    Gene therapy used in the context of delivering a therapeutic gene(s) to chondrocytes offers a new approach for treating chondrocyte-mediated cartilage degradation associated with various human arthropathies including osteoarthritis. In this study, gene delivery to human osteoarthritis chondrocytes in monolayer culture was demonstrated using two adenoviral vectors (Ad.CMVlacZ and Ad.RSVntlacZ) carrying the Escherichia coli beta-galactosidase marker gene, and a third vector (Ad.RSV hIL-1ra) containing the cDNA for human interleukin-1 receptor antagonist. At an moi of 10(3) plaque-forming units/chondrocyte, > 90% of the infected cells stained positive for E. coli beta-galactosidase activity, indicating a high efficiency of transduction. Genetically modified chondrocytes were then transplanted onto the articular surface of osteoarthritic cartilage organ cultures with and without the underlying subchondral bone. Both in situ staining of the cartilage organ cultures for E. coli beta-galactosidase activity and examination by scanning electron microscopy indicated that the transplanted chondrocytes adhered and integrated into the articular surface and continued to express transgenic protein. Chondrocytes transduced with Ad.RSV hIL-1ra and seeded onto the surface of osteoarthritic cartilage secreted high levels of biologically active IL-1 receptor antagonist. The Ad.RSV hIL-1ra-treated cartilage samples were resistant to IL1-induced proteoglycan degradation over 10 d of sustained organ culture. These data demonstrate that transplantation of transduced chondrocytes onto the articular surface protects cartilage from IL-1-induced extracellular matrix degradation. Images PMID:7593634

  11. Inhibition of Human Metapneumovirus Binding to Heparan Sulfate Blocks Infection in Human Lung Cells and Airway Tissues

    PubMed Central

    Klimyte, Edita M.; Smith, Stacy E.; Oreste, Pasqua; Lembo, David

    2016-01-01

    ABSTRACT Human metapneumovirus (HMPV), a recently discovered paramyxovirus, infects nearly 100% of the world population and causes severe respiratory disease in infants, the elderly, and immunocompromised patients. We previously showed that HMPV binds heparan sulfate proteoglycans (HSPGs) and that HMPV binding requires only the viral fusion (F) protein. To characterize the features of this interaction critical for HMPV binding and the role of this interaction in infection in relevant models, we utilized sulfated polysaccharides, heparan sulfate mimetics, and occluding compounds. Iota-carrageenan demonstrated potent anti-HMPV activity by inhibiting binding to lung cells mediated by the F protein. Furthermore, analysis of a minilibrary of variably sulfated derivatives of Escherichia coli K5 polysaccharide mimicking the HS structure revealed that the highly O-sulfated K5 polysaccharides inhibited HMPV infection, identifying a potential feature of HS critical for HMPV binding. The peptide dendrimer SB105-A10, which binds HS, reduced binding and infection in an F-dependent manner, suggesting that occlusion of HS at the target cell surface is sufficient to prevent infection. HMPV infection was also inhibited by these compounds during apical infection of polarized airway tissues, suggesting that these interactions take place during HMPV infection in a physiologically relevant model. These results reveal key features of the interaction between HMPV and HS, supporting the hypothesis that apical HS in the airway serves as a binding factor during infection, and HS modulating compounds may serve as a platform for potential antiviral development. IMPORTANCE Human metapneumovirus (HMPV) is a paramyxovirus that causes respiratory disease worldwide. It has been previously shown that HMPV requires binding to heparan sulfate on the surfaces of target cells for attachment and infection. In this study, we characterize the key features of this binding interaction using heparan sulfate mimetics, identify an important sulfate modification, and demonstrate that these interactions occur at the apical surface of polarized airway tissues. These findings provide insights into the initial binding step of HMPV infection that has potential for antiviral development. PMID:27489270

  12. Hybrid pig versus Gottingen minipig-derived cartilage and chondrocytes show pig line-dependent differences.

    PubMed

    Müller, Claudia; Marzahn, Ulrike; Kohl, Benjamin; El Sayed, Karym; Lohan, Anke; Meier, Carola; Ertel, Wolfgang; Schulze-Tanzil, Gundula

    2013-11-01

    Minipigs are widely used as a large animal model for cartilage repair. However, many in vitro studies are based on porcine chondrocytes derived from abundantly available premature hybrid pigs. It remains unclear whether pig line-dependent differences exist which could limit the comparability between in vitro and in vivo results using either hybrid or miniature pig articular chondrocytes. Porcine knee joint femoral cartilage was isolated from 3- to 5-month-old hybrid pigs and Göttingen minipigs. Cartilage from both pig lines was analysed for thickness, zonality, cell content, size and proteoglycan deposition. Cultured articular chondrocytes from both pig lines were investigated for gene and/or protein expression of cartilage-specific proteins such as type II collagen, aggrecan, the chondrogenic transcription factor Sox9, non-specific type I collagen and the cell-matrix receptor β1-integrin. Cartilage was significantly thinner in the miniature pig compared to the hybrid pig, but the differences between the medial and lateral femur condyles did not reach a significant level. Knee joint cartilage zone formation started only in the minipig, whereas cellularity and cell diameters were comparable in both pig lines. Blood vessels could be detected in the hybrid pig but not the minipig cartilage. Sulphated proteoglycan deposition was more pronounced in cartilage zones II-IV of both pig lines. Minipig chondrocytes expressed type II and I collagen, Sox9 and β1-integrin at a higher level than hybrid pig chondrocytes. These distinct line-dependent differences should be considered when using hybrid pig-derived chondrocytes for tissue engineering and Göttingen minipigs as a large animal model.

  13. Regulation of Hedgehog Signalling Inside and Outside the Cell

    PubMed Central

    Ramsbottom, Simon A.; Pownall, Mary E.

    2016-01-01

    The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction. PMID:27547735

  14. Asymmetry-defective oligodendrocyte progenitors are glioma precursors

    PubMed Central

    Sugiarto, Sista; Persson, Anders I.; Munoz, Elena Gonzalez; Waldhuber, Markus; Lamagna, Chrystelle; Andor, Noemi; Hanecker, Patrizia; Ayers-Ringler, Jennifer; Phillips, Joanna; Siu, Jason; Lim, Daniel; Vandenberg, Scott; Stallcup, William; Berger, Mitchel S.; Bergers, Gabriele; Weiss, William A.; Petritsch, Claudia

    2012-01-01

    Summary Postnatal oligodendrocyte progenitor cells (OPC) self-renew, generate mature oligodendrocytes, and are a cellular origin of oligodendrogliomas. We show that the proteoglycan NG2 segregates asymmetrically during mitosis to generate OPC cells of distinct fate. NG2 is required for asymmetric segregation of EGFR to the NG2+ progeny, which consequently activates EGFR and undergoes EGF-dependent proliferation and self-renewal. In contrast, the NG2− progeny differentiates. In a mouse model, decreased NG2 asymmetry coincides with premalignant, abnormal self-renewal rather than differentiation and with tumor-initiating potential. Asymmetric division of human NG2+ cells is prevalent in non-neoplastic tissue but is decreased in oligodendrogliomas. Regulators of asymmetric cell division are misexpressed in low-grade oligodendrogliomas. Our results identify loss of asymmetric division associated with the neoplastic transformation of OPC. PMID:21907924

  15. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells.

    PubMed

    Jones, Kathryn S; Petrow-Sadowski, Cari; Huang, Ying K; Bertolette, Daniel C; Ruscetti, Francis W

    2008-04-01

    Cell-free human T-lymphotropic virus type 1 (HTLV-1) virions are poorly infectious in vitro for their primary target cells, CD4(+) T cells. Here, we show that HTLV-1 can efficiently infect myeloid and plasmacytoid dendritic cells (DCs). Moreover, DCs exposed to HTLV-1, both before and after being productively infected, can rapidly, efficiently and reproducibly transfer virus to autologous primary CD4(+) T cells. This DC-mediated transfer of HTLV-1 involves heparan sulfate proteoglycans and neuropilin-1 and results in long-term productive infection and interleukin-2-independent transformation of the CD4(+) T cells. These studies, along with observations of HTLV-1-infected DCs in the peripheral blood of infected individuals, indicate that DCs have a central role in HTLV-1 transmission, dissemination and persistence in vivo. In addition to altering the current paradigm concerning how HTLV-1 transmission occurs, these studies suggest that impairment of DC function after HTLV-1 infection plays a part in pathogenesis.

  16. Metabolism of native and naturally occurring multiple modified low density lipoprotein in smooth muscle cells of human aortic intima.

    PubMed

    Tertov, V V; Orekhov, A N

    1997-01-01

    The subfraction of low density lipoprotein (LDL) with low sialic acid content that caused accumulation of cholesterol esters in human aortic smooth muscle cells has been found in the blood of coronary atherosclerosis patients. It was demonstrated that this subfraction consists of LDL with small size, high electronegative charge, reduced lipid content, altered tertiary structure of apolipoprotein B, etc. LDL of this subfraction is naturally occurring multiple-modified LDL (nomLDL). In this study we compared the binding, uptake and proteolytic degradation of native LDL and nomLDL by smooth muscle cells cultured from human grossly normal intima, fatty streaks, and atherosclerotic plaques. Uptake of nomLDL by normal and atherosclerotic cells was 3.5- and 6-fold, respectively, higher than uptake of native LDL. Increased uptake of nomLDL was due to increased binding of this LDL by intimal smooth muscle cells. The enhanced binding is explained by the interaction of nomLDL with cellular receptors other than LDL-receptor. Modified LDL interacted with the scavenger receptor, asialoglycoprotein receptor, and also with cell surface proteoglycans. Rates of degradation of nomLDL were 1.5- and 5-fold lower than degradation of native LDL by normal and atherosclerotic cells, respectively. A low rate of nomLDL degradation was also demonstrated in homogenates of intimal cells. Activities of lysosomal proteinases of atherosclerotic cells were decreased compared with normal cells. Pepstatin A, a cathepsin D inhibitor, completely inhibited lipoprotein degradation, while serine, thiol, or metallo-proteinase inhibitors had partial effect. This fact reveals that cathepsin D is involved in initial stages of apoB degradation by intimal smooth muscle cells. Obtained data show that increased uptake and decreased lysosomal degradation of nomLDL may be the main cause of LDL accumulation in human aortic smooth muscle cells, leading to foam cell formation.

  17. Glypican-1-antibody-conjugated Gd–Au nanoclusters for FI/MRI dual-modal targeted detection of pancreatic cancer

    PubMed Central

    Zhu, Huanhuan; Le, Wenjun; Cui, Shaobin; Chen, Xin; Li, Wei; Zhang, Fulei; Huang, Yong; Sh, Donglu; Cui, Zheng; Shao, Chengwei; Chen, Bingdi

    2018-01-01

    Introduction Pancreatic cancer (PC) has a poor prognosis with high mortality, due to the lack of effective early diagnostic and prognostic tools. Materials and methods In order to target and diagnose PC, we developed a dual-modal imaging probe using Glypican-1 (GPC-1) antibody conjugated with Gd–Au nanoclusters (NCs; Gd-Au-NC-GPC-1). GPC-1 is a type of cell surface heparan sulfate proteoglycan, which is often highly expressed in PC. The probe was successfully prepared with a hydrodynamic diameter ranging from 13.5 to 24.4 nm. Results Spectral characteristics showed absorption at 280 nm and prominent emission at 650 nm. Confocal microscopic imaging showed effective detection of GPC-1 highly expressed PC cells by Gd-Au-NC-GPC-1, which was consistent with flow cytometry results. In vitro relaxivity characterization demonstrated that the r1 value of the probe was 17.722 s−1 mM−1 Gd, which was almost 4 times higher compared with that of Gd-diethylenetriaminepentacetate (DTPA; r1 value =4.6 s−1 mM−1 Gd). Gd-Au-NC-GPC-1 exhibited similar magnetic resonance (MR) signals when compared to Gd-DTPA even at lower Gd concentrations. Much higher MR signals were registered in PC cells (COLO-357) compared with normal cells (293T). Furthermore, Gd-Au-NC-GPC-1 could effectively detect PC cells in vivo by dual-modal fluorescence imaging/magnetic resonance imaging (FI/MRI) at 30 minutes postinjection. In addition, Gd-Au-NC-GPC-1 did not show significant biotoxicity to normal cells at tested concentrations both in vitro and in vivo. Conclusion Gd-Au-NC-GPC-1 has demonstrated to be a promising dual-modal FI/MRI contrast agent for targeted diagnosis of PC. PMID:29750031

  18. Glypican-1-antibody-conjugated Gd-Au nanoclusters for FI/MRI dual-modal targeted detection of pancreatic cancer.

    PubMed

    Huang, Xin; Fan, Chengqi; Zhu, Huanhuan; Le, Wenjun; Cui, Shaobin; Chen, Xin; Li, Wei; Zhang, Fulei; Huang, Yong; Sh, Donglu; Cui, Zheng; Shao, Chengwei; Chen, Bingdi

    2018-01-01

    Pancreatic cancer (PC) has a poor prognosis with high mortality, due to the lack of effective early diagnostic and prognostic tools. In order to target and diagnose PC, we developed a dual-modal imaging probe using Glypican-1 (GPC-1) antibody conjugated with Gd-Au nanoclusters (NCs; Gd-Au-NC-GPC-1). GPC-1 is a type of cell surface heparan sulfate proteoglycan, which is often highly expressed in PC. The probe was successfully prepared with a hydrodynamic diameter ranging from 13.5 to 24.4 nm. Spectral characteristics showed absorption at 280 nm and prominent emission at 650 nm. Confocal microscopic imaging showed effective detection of GPC-1 highly expressed PC cells by Gd-Au-NC-GPC-1, which was consistent with flow cytometry results. In vitro relaxivity characterization demonstrated that the r1 value of the probe was 17.722 s -1 mM -1 Gd, which was almost 4 times higher compared with that of Gd-diethylenetriaminepentacetate (DTPA; r1 value =4.6 s -1 mM -1 Gd). Gd-Au-NC-GPC-1 exhibited similar magnetic resonance (MR) signals when compared to Gd-DTPA even at lower Gd concentrations. Much higher MR signals were registered in PC cells (COLO-357) compared with normal cells (293T). Furthermore, Gd-Au-NC-GPC-1 could effectively detect PC cells in vivo by dual-modal fluorescence imaging/magnetic resonance imaging (FI/MRI) at 30 minutes postinjection. In addition, Gd-Au-NC-GPC-1 did not show significant biotoxicity to normal cells at tested concentrations both in vitro and in vivo. Gd-Au-NC-GPC-1 has demonstrated to be a promising dual-modal FI/MRI contrast agent for targeted diagnosis of PC.

  19. Evolution of plant cell wall: Arabinogalactan-proteins from three moss genera show structural differences compared to seed plants.

    PubMed

    Bartels, Desirée; Baumann, Alexander; Maeder, Malte; Geske, Thomas; Heise, Esther Marie; von Schwartzenberg, Klaus; Classen, Birgit

    2017-05-01

    Arabinogalactan-proteins (AGPs) are important proteoglycans of plant cell walls. They seem to be present in most, if not all seed plants, but their occurrence and structure in bryophytes is widely unknown and actually the focus of AGP research. With regard to evolution of plant cell wall, we isolated AGPs from the three mosses Sphagnum sp., Physcomitrella patens and Polytrichastrum formosum. The moss AGPs show structural characteristics common for AGPs of seed plants, but also unique features, especially 3-O-methyl-rhamnose (trivial name acofriose) as terminal monosaccharide not found in arabinogalactan-proteins of angiosperms and 1,2,3-linked galactose as branching point never found in arabinogalactan-proteins before. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. C/EBPβ LIP augments cell death by inducing osteoglycin.

    PubMed

    Wassermann-Dozorets, Rina; Rubinstein, Menachem

    2017-04-06

    Many types of tumor cell are devoid of the extracellular matrix proteoglycan osteoglycin (Ogn), but its role in tumor biology is poorly studied. Here we show that RNAi of Ogn attenuates stress-triggered cell death, whereas its overexpression increases cell death. We found that the transcription factor C/EBPβ regulates the expression of Ogn. C/EBPβ is expressed as a full-length, active form (LAP) and as a truncated, dominant-negative form (LIP), and the LIP/LAP ratio is positively correlated with the extent of cell death under stress. For example, we reported that drug-resistant tumor cells lack LIP altogether, and its supplementation abolished their resistance to chemotherapy and to endoplasmic reticulum (ER) stress. Here we further show that elevated LIP/LAP ratio robustly increased Ogn expression and cell death under stress by modulating the mitogen-activated protein kinase/activator protein 1 pathway (MAPK/AP-1). Our findings suggest that LIP deficiency renders tumor cell resistant to ER stress by preventing the induction of Ogn.

  1. A Better Way to Excise Inhibitory Molecules (CSPGs) from a Spinal Cord Injury Scar to Promote Regeneration

    DTIC Science & Technology

    2012-10-01

    chondroitin sulfate proteoglycans (CSPGs) are elevated in the glial scar and are a major...also  blocks  neural  regeneration.  Inhibitory   chondroitin   sulfate  proteoglycans  (CSPGs)  are  elevated  in  the... chondroitin   sulfate ,  keratan   sulfate ,  and  N-­‐linked  oligosaccharides  (Figure  3).  We  have   observed

  2. Chondroitin sulphate-mediated fusion of brain neural folds in rat embryos.

    PubMed

    Alonso, M I; Moro, J A; Martín, C; de la Mano, A; Carnicero, E; Martínez-Alvarez, C; Navarro, N; Cordero, J; Gato, A

    2009-01-01

    Previous studies have demonstrated that during neural fold fusion in different species, an apical extracellular material rich in glycoconjugates is involved. However, the composition and the biological role of this material remain undetermined. In this paper, we show that this extracellular matrix in rat increases notably prior to contact between the neural folds, suggesting the dynamic behaviour of the secretory process. Immunostaining has allowed us to demonstrate that this extracellular matrix contains chondroitin sulphate proteoglycan (CSPG), with a spatio-temporal distribution pattern, suggesting a direct relationship with the process of adhesion. The degree of CSPG involvement in cephalic neural fold fusion in rat embryos was determined by treatment with specific glycosidases.In vitro rat embryo culture and microinjection techniques were employed to carry out selective digestion, with chondroitinase AC, of the CSPG on the apical surface of the neural folds; this was done immediately prior to the bonding of the cephalic neural folds. In all the treated embryos, cephalic defects of neural fold fusion could be detected. These results show that CSPG plays an important role in the fusion of the cephalic neural folds in rat embryos, which implies that this proteoglycan could be involved in cellular recognition and adhesion. (c) 2008 S. Karger AG, Basel.

  3. The Evolving Field of Human Papillomavirus Receptor Research: a Review of Binding and Entry

    PubMed Central

    Raff, Adam B.; Woodham, Andrew W.; Raff, Laura M.; Skeate, Joseph G.; Yan, Lisa; Da Silva, Diane M.; Schelhaas, Mario

    2013-01-01

    Human papillomaviruses (HPVs) infect epithelia and can lead to the development of lesions, some of which have malignant potential. HPV type 16 (HPV16) is the most oncogenic genotype and causes various types of cancer, including cervical, anal, and head and neck cancers. However, despite significant research, our understanding of the mechanism by which HPV16 binds to and enters host cells remains fragmented. Over several decades, many HPV receptors and entry pathways have been described. This review puts those studies into context and offers a model of HPV16 binding and entry as a framework for future research. Our model suggests that HPV16 binds to heparin sulfate proteoglycans (HSPGs) on either the epithelial cell surface or basement membrane through interactions with the L1 major capsid protein. Growth factor receptors may also become activated through HSPG/growth factor/HPV16 complexes that initiate signaling cascades during early virion-host cell interactions. After binding to HSPGs, the virion undergoes conformational changes, leading to isomerization by cyclophilin B and proprotein convertase-mediated L2 minor capsid protein cleavage that increases L2 N terminus exposure. Along with binding to HSPGs, HPV16 binds to α6 integrins, which initiate further intracellular signaling events. Following these primary binding events, HPV16 binds to a newly identified L2-specific receptor, the annexin A2 heterotetramer. Subsequently, clathrin-, caveolin-, lipid raft-, flotillin-, cholesterol-, and dynamin-independent endocytosis of HPV16 occurs. PMID:23536685

  4. Inflammation-induced synthesis of proteoheparan sulfate: a novel acute-phase reactant in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djovkar, A.; Gressner, A.M.

    1987-03-01

    The synthesis of proteoheparan sulfate in hepatocytes is positively regulated under acute-phase conditions produced either by turpentine or deep back incision. In both cases the incorporation of (/sup 35/S)sulfate and (/sup 14/C)glucosamine is doubled during a 4-h incubation period if compared with control rat hepatocytes. Neither the fractional secretion rate of heparan sulfate into the medium (less than 0.1 of cell-associated glycosaminoglycans) nor the composition of newly formed proteoglycans in hepatocytes are affected during acute phase reaction.

  5. Investigation of viral vectors using atomic force microscopy and microfluidic devices

    NASA Astrophysics Data System (ADS)

    Negishi, Atsuko

    Researchers are modifying viruses into gene delivery vehicles in hope to cure diseases such as muscular dystrophy, hemophilia and cancer. Significant progress has been made toward this end, but further development and success of viral vectors depend on a deeper understanding of viral structure and physiology. Recent advances in microscopy have allowed new approaches to studying viruses that complement existing methodologies. Presented in this dissertation are novel viral studies using the atomic force microscope (AFM), a microscope that provides topographic information at the nanometer scale. As well microfluidic channels were used to study the effect of fluid flow properties on infection. A number of viruses are currently under study as potential vectors. We focus our studies on the adenovirus (Ad) and the adeno-associated virus (AAV) which have numerous attractive properties as vectors. The AFM is used to probe first, the structural aspects of the Ad and second, the virus-receptor interactions between AAV and its cell surface receptor, heparan sulfate proteoglycan (HSPG). The AFM was capable of imaging the capsid facets of intact Ad and DNA strands released from disrupted Ad capsids. In addition, we found that the stability of the capsid depended on the surface chemistry. An AFM-based binding assay was developed to study the binding between AAV and HSPG. The advantage of using the AFM for this purpose is its ability to simultaneously provide structural and quantitative information at the single molecule level. We measured a binding constant of 3.4 +/- 0.3 nM which is consistent with published reports. Microfluidic devices were used to study the dependence of fluid flow on infection. Cells were cultured in microfluidic channels and exposed to AAV vectors at various shear stresses. We found that a lower percentage of the cells were infected at higher shear stress. We also found that fluid forces can indirectly play a role in viral infection by influencing the cell state. A significantly lower percentage of cells that were treated with shear stress prior to vector exposure were infected compared to cells which were not exposed to shear stress.

  6. Characteristics of Mitochondrial Transformation into Human Cells

    PubMed Central

    Kesner, E. E.; Saada-Reich, A.; Lorberboum-Galski, H.

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process. PMID:27184109

  7. Engineering hydrogels as extracellular matrix mimics

    PubMed Central

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun

    2010-01-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine. PMID:20394538

  8. Streptococcal Serum Opacity Factor Increases Hepatocyte Uptake of Human Plasma High Density Lipoprotein-Cholesterol1

    PubMed Central

    Gillard, Baiba K.; Rosales, Corina; Pillai, Biju K.; Lin, Hu Yu; Courtney, Harry S.; Pownall, Henry J.

    2010-01-01

    Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM), that contains the cholesterol esters (CE) of up to ~400,000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. [3H]CE uptake by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was respectively 2.4 and 4.5 times faster than from control HDL. CERM-[3H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[3H]CE uptake by both receptors. RAP and heparin inhibit CERM-[3H]CE but not HDL-[3H]CE uptake thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase hepatic disposal of plasma cholesterol in a way that is therapeutically useful. PMID:20879789

  9. Inhibition of hair follicle growth by a laminin-1 G-domain peptide, RKRLQVQLSIRT, in an organ culture of isolated vibrissa rudiment.

    PubMed

    Hayashi, Kazuhiro; Mochizuki, Mayumi; Nomizu, Motoyoshi; Uchinuma, Eijyu; Yamashina, Shohei; Kadoya, Yuichi

    2002-04-01

    We established a serum-free organ culture system of isolated single vibrissa rudiments taken from embryonic day 13 mice. This system allowed us to test more than 30 laminin-derived cell adhesive peptides to determine their roles on the growth and differentiation of vibrissa hair follicles. We found that the RKRLQVQLSIRT sequence (designated AG-73), which mapped to the LG-4 module of the laminin-alpha1 chain carboxyl-terminal G domain, perturbed the growth of hair follicles in vitro. AG-73 is one of the cell-binding peptides identified from more than 600 systematically synthesized 12 amino acid peptides covering the whole amino acid sequence of the laminin-alpha1, -beta1, and -gamma1 chains, by cell adhesion assay. Other cell-adhesive laminin peptides and a control scrambled peptide, LQQRRSVLRTKI, however, failed to show any significant effects on the growth of hair follicles. The AG-73 peptide binds to syndecan-1, a transmembrane heparan-sulfate proteoglycan. Syndecan-1 was expressed in both the mesenchymal condensation and the epithelial hair peg of developing vibrissa, suggesting that AG-73 binding to the cell surface syndecan-1 perturbed the epithelial-mesenchymal interactions of developing vibrissa. The formation of hair bulbs was aberrant in the explants treated with AG-73. In addition, impaired basement membrane formation, an abnormal cytoplasmic bleb formation, and an unusual basal formation of actin bundles were noted in the AG-73-treated-hair matrix epithelium, indicating that AG-73 binding perturbs various steps of epithelial morphogenesis, including the basement membrane remodeling. We also found a region-specific loss of the laminin-alpha1 chain in the basement membrane at the distal region of the invading hair follicle epithelium, indicating that laminins play a part in hair morphogenesis.

  10. Characterization of the surface and interfacial properties of the lamina splendens

    NASA Astrophysics Data System (ADS)

    Rexwinkle, Joe T.; Hunt, Heather K.; Pfeiffer, Ferris M.

    2017-06-01

    Joint disease affects approximately 52.5 million patients in the United States alone, costing 80.8 billion USD in direct healthcare costs. The development of treatment programs for joint disease and trauma requires accurate assessment of articular cartilage degradation. The articular cartilage is the interfacial tissue between articulating surfaces, such as bones, and acts as low-friction interfaces. Damage to the lamina splendens, which is the articular cartilage's topmost layer, is an early indicator of joint degradation caused by injury or disease. By gaining comprehensive knowledge on the lamina splendens, particularly its structure and interfacial properties, researchers could enhance the accuracy of human and animal biomechanical models, as well as develop appropriate biomimetic materials for replacing damaged articular cartilage, thereby leading to rational treatment programs for joint disease and injury. Previous studies that utilize light, electron, and force microscopy techniques have found that the lamina splendens is composed of collagen fibers oriented parallel to the cartilage surface and encased in a proteoglycan matrix. Such orientation maximizes wear resistance and proteoglycan retention while promoting the passage of nutrients and synovial fluid. Although the structure of the lamina splendens has been explored in the literature, the low-friction interface of this tissue remains only partially characterized. Various functional models are currently available for the interface, such as pure boundary lubrication, thin films exuded under pressure, and sheets of trapped proteins. Recent studies suggest that each of these lubrication models has certain advantages over one another. Further research is needed to fully model the interface of this tissue. In this review, we summarize the methods for characterizing the lamina splendens and the results of each method. This paper aims to serve as a resource for existing studies to date and a roadmap of the investigations needed to gain further insight into the lamina splendens and the progression of joint disease.

  11. Loss of the Endothelial Glycocalyx Links Albuminuria and Vascular Dysfunction

    PubMed Central

    Ferguson, Joanne K.; Burford, James L.; Gevorgyan, Haykanush; Nakano, Daisuke; Harper, Steven J.; Bates, David O.; Peti-Peterdi, Janos

    2012-01-01

    Patients with albuminuria and CKD frequently have vascular dysfunction but the underlying mechanisms remain unclear. Because the endothelial surface layer, a meshwork of surface-bound and loosely adherent glycosaminoglycans and proteoglycans, modulates vascular function, its loss could contribute to both renal and systemic vascular dysfunction in proteinuric CKD. Using Munich-Wistar-Fromter (MWF) rats as a model of spontaneous albuminuric CKD, multiphoton fluorescence imaging and single-vessel physiology measurements revealed that old MWF rats exhibited widespread loss of the endothelial surface layer in parallel with defects in microvascular permeability to both water and albumin, in both continuous mesenteric microvessels and fenestrated glomerular microvessels. In contrast to young MWF rats, enzymatic disruption of the endothelial surface layer in old MWF rats resulted in neither additional loss of the layer nor additional changes in permeability. Intravenous injection of wheat germ agglutinin lectin and its adsorption onto the endothelial surface layer significantly improved glomerular albumin permeability. Taken together, these results suggest that widespread loss of the endothelial surface layer links albuminuric kidney disease with systemic vascular dysfunction, providing a potential therapeutic target for proteinuric kidney disease. PMID:22797190

  12. Translocation and Endocytosis for Cell-penetrating Peptide Internalization

    PubMed Central

    Jiao, Chen-Yu; Delaroche, Diane; Burlina, Fabienne; Alves, Isabel D.; Chassaing, Gérard; Sagan, Sandrine

    2009-01-01

    Cell-penetrating peptides (CPPs) share the property of cellular internalization. The question of how these peptides reach the cytoplasm of cells is still widely debated. Herein, we have used a mass spectrometry-based method that enables quantification of internalized and membrane-bound peptides. Internalization of the most used CPP was studied at 37 °C (endocytosis and translocation) and 4 °C (translocation) in wild type and proteoglycan-deficient Chinese hamster ovary cells. Both translocation and endocytosis are internalization pathways used by CPP. The choice of one pathway versus the other depends on the peptide sequence (not the number of positive changes), the extracellular peptide concentration, and the membrane components. There is no relationship between the high affinity of these peptides for the cell membrane and their internalization efficacy. Translocation occurs at low extracellular peptide concentration, whereas endocytosis, a saturable and cooperative phenomenon, is activated at higher concentrations. Translocation operates in a narrow time window, which implies a specific lipid/peptide co-import in cells. PMID:19833724

  13. Design and use of an artificial capillary in the study of metastatic cell adhesion

    NASA Astrophysics Data System (ADS)

    Rafi, Adam; Peramo, Antonio; Boren, Rebecca; Heim, August; Matthews, William G.

    2006-03-01

    To improve the quality of life of patients with cancer, treatments will need to both minimize existing tumors and reduce the metastasis of cancer cells. The effectiveness of potential treatments on existing tumors can be directly probed, but anti-metastasis treatments are difficult to quantify. Therefore, a detailed understanding of the metastatic process is required for drug design. Details of the metastatic deposition of tumor cells in the circulatory system are not well understood. We are investigating the binding of tumor cells to an artificial endothelium. The model system allows for control over molecular composition at the interface, presenting the proteoglycans (PGs) found in the glycocalyx to tumor cells under shear flow conditions. Whether rolling or static adhesion is preferred, as well as what mechanical properties of the interaction between the cells and the PGs are important is to be determined. The outcomes of these experiments will help guide the search for pharmaceuticals that can disrupt the metastatic process at the endothelial adhesion step.

  14. Disturbed Laminar Blood Flow Vastly Augments Lipoprotein Retention in the Artery Wall: A Key Mechanism Distinguishing Susceptible From Resistant Sites.

    PubMed

    Steffensen, Lasse Bach; Mortensen, Martin Bødtker; Kjolby, Mads; Hagensen, Mette Kallestrup; Oxvig, Claus; Bentzon, Jacob Fog

    2015-09-01

    Atherosclerosis develops initially at branch points and in areas of high vessel curvature. Moreover, experiments in hypercholesterolemic mice have shown that the introduction of disturbed flow in straight, atherosclerosis-resistant arterial segments turns them highly atherosclerosis susceptible. Several biomechanical mechanisms have been proposed, but none has been demonstrated. In the present study, we examined whether a causal link exists between disturbed laminar flow and the ability of the arterial wall to retain lipoproteins. Lipoprotein retention was detected at natural predilection sites of the murine thoracic aorta 18 hours after infusion of fluorescently labeled low-density lipoprotein. To test for causality between blood flow and the ability of these areas to retain lipoproteins, we manipulated blood flow in the straight segment of the common carotid artery using a constrictive collar. Disturbed laminar flow did not affect low-density lipoprotein influx, but increased the ability of the artery wall to bind low-density lipoprotein. Concordantly, disturbed laminar flow led to differential expression of genes associated with phenotypic modulation of vascular smooth muscle cells, increased expression of proteoglycan core proteins associated with lipoprotein retention, and of enzymes responsible for chondroitin sulfate glycosaminoglycan synthesis and sulfation. Blood flow regulates genes associated with vascular smooth muscle cell phenotypic modulation, as well as the expression and post-translational modification of lipoprotein-binding proteoglycan core proteins, and the introduction of disturbed laminar flow vastly augments the ability of a previously resistant, straight arterial segment to retain lipoproteins. © 2015 American Heart Association, Inc.

  15. Decorin modulates matrix mineralization in vitro

    NASA Technical Reports Server (NTRS)

    Mochida, Yoshiyuki; Duarte, Wagner R.; Tanzawa, Hideki; Paschalis, Eleftherios P.; Yamauchi, Mitsuo

    2003-01-01

    Decorin (DCN), a member of small leucine-rich proteoglycans, is known to modulate collagen fibrillogenesis. In order to investigate the potential roles of DCN in collagen matrix mineralization, several stable osteoblastic cell clones expressing higher (sense-DCN, S-DCN) and lower (antisense-DCN, As-DCN) levels of DCN were generated and the mineralized nodules formed by these clones were characterized. In comparison with control cells, the onset of mineralization by S-DCN clones was significantly delayed; whereas it was markedly accelerated and the number of mineralized nodules was significantly increased in As-DCN clones. The timing of mineralization was inversely correlated with the level of DCN synthesis. In these clones, the patterns of cell proliferation and differentiation appeared unaffected. These results suggest that DCN may act as an inhibitor of collagen matrix mineralization, thus modulating the timing of matrix mineralization.

  16. The Role(s) of Heparan Sulfate Proteoglycan(s) in the wnt-1 Signaling Pathway

    DTIC Science & Technology

    1998-08-01

    First , the sequence of the cDNA, when compared to the genomic site of insertion of the P-element, revealed that the P-element is inserted 686 bp...stages 8 to 13 (Yoffe et al. 1995). We first examined whether ectopic expression of Wgts effectively restores the naked cuticle as it does in wg and...by Kjell~n and Lindahl, 1991) . HS/heparin N-deacetylase/N-sulfotransferase catalyzes N-deacetylation and N-sulfation that is the first and key step

  17. Structural and in vivo mechanical characterization of canine patellar cartilage: a closed chondromalacia patellae model.

    PubMed

    LaBerge, M; Audet, J; Drouin, G; Rivard, C H

    1993-01-01

    The purpose of this project was to study the relationship between the structure of the patellar cartilage and its response to static compressive loading with a closed chondromalacia patellae model. An animal model was used to induce degeneration of the patella that was monitored quantitatively and qualitatively as a function of time. Ten adult mongrel dogs had their left patellofemoral groove replaced by a customized metallic implant covered with a thin film of polyethylene for periods of 3 months (five dogs) and 6 months (five dogs). An indenter was designed to perform mechanical indentation testing on the patellar cartilage in situ. The animals were anesthetized and the response of patellar cartilage to a static compressive load of 4.5 MPa was monitored for 20 min and its relaxation after load removal for 20 min. Indentation tests were performed every 3 months of the implantation period. At the end of the implantation period, the patellae were processed for histology, and sections were stained with Safranin-O indicative of the proteoglycans content. Macroscopically, no apparent degeneration or fibrillation of the patellar surfaces was observed after 3 or 6 months of implantation. However, the patellar surface showed a change in coloration after 6 months. A 17 +/- 3% and 37 +/- 8% deformation of the cartilage were calculated for the 3-month and 6-month specimens, respectively. Histologically, a progressive loss of proteoglycans was observed in the matrix as a function of implantation time. These results indicated that an increase in cartilage compliance is associated with an intrinsic remodeling of the cartilage matrix and that these changes might occur without external signs of degeneration and can be quantified.

  18. Murine T cell activation is regulated by surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warford, Jordan, E-mail: jordan.warford@dal.ca; Doucette, Carolyn D., E-mail: carolyn.doucette@dal.ca; Hoskin, David W., E-mail: d.w.hoskin@dal.ca

    2014-01-10

    Highlights: •Surfen is the first inhibitor of glycosaminoglycan function to be studied in murine T cells. •Surfen reduces T cell proliferation stimulated in vitro and in vivo. •Surfen reduces CD25 expression in T cells activated in vivo but not in vitro. •Surfen increases T cell proliferation when T cell receptor activation is bypassed. •Surfen’s effects are blocked by co-administration of heparin sulfate. -- Abstract: Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide) binds to glycosaminoglycans (GAGs) and has been shown to influence their function, and the function of proteoglycans (complexes of GAGs linked to a core protein). T cells synthesize, secrete and express GAGs and proteoglycansmore » which are involved in several aspects of T cell function. However, there are as yet no studies on the effect of GAG-binding agents such as surfen on T cell function. In this study, surfen was found to influence murine T cell activation. Doses between 2.5 and 20 μM produced a graduated reduction in the proliferation of T cells activated with anti-CD3/CD28 antibody-coated T cell expander beads. Surfen (20 mg/kg) was also administered to mice treated with anti-CD3 antibody to activate T cells in vivo. Lymphocytes from surfen-treated mice also showed reduced proliferation and lymph node cell counts were reduced. Surfen reduced labeling with a cell viability marker (7-ADD) but to a much lower extent than its effect on proliferation. Surfen also reduced CD25 (the α-subunit of the interleukin (IL)-2 receptor) expression with no effect on CD69 expression in T cells treated in vivo but not in vitro. When receptor activation was bypassed by treating T cells in vitro with phorbyl myristate acetate (10 ng/ml) and ionomycin (100 ng/ml), surfen treatment either increased proliferation (10 μM) or had no effect (2.5, 5 and 20 μM). In vitro treatment of T cells with surfen had no effect on IL-2 or interferon-γ synthesis and did not alter proliferation of the IL-2 dependent cell line CTLL-2. The effect of surfen was antagonized dose-dependently by co-treatment with heparin sulfate. We conclude that surfen inhibits T cell proliferation in vitro and in vivo. When T cell receptor-driven activation is bypassed surfen had a neutral or stimulatory effect on T cell proliferation. The results imply that endogenous GAGs and proteoglycans play a complex role in promoting or inhibiting different aspects of T cell activation.« less

  19. Perlecan, a heparan sulfate proteoglycan, regulates systemic metabolism with dynamic changes in adipose tissue and skeletal muscle.

    PubMed

    Yamashita, Yuri; Nakada, Satoshi; Yoshihara, Toshinori; Nara, Takeshi; Furuya, Norihiko; Miida, Takashi; Hattori, Nobutaka; Arikawa-Hirasawa, Eri

    2018-05-17

    Perlecan (HSPG2), a heparan sulfate proteoglycan, is a component of basement membranes and participates in a variety of biological activities. Here, we show physiological roles of perlecan in both obesity and the onset of metabolic syndrome. The perinatal lethality-rescued perlecan knockout (Hspg2 -/- -Tg) mice showed a smaller mass and cell size of white adipose tissues than control (WT-Tg) mice. Abnormal lipid deposition, such as fatty liver, was not detected in the Hspg2 -/- -Tg mice, and those mice also consumed more fat as an energy source, likely due to their activated fatty acid oxidation. In addition, the Hspg2 -/- -Tg mice demonstrated increased insulin sensitivity. Molecular analysis revealed the significantly relatively increased amount of the muscle fiber type IIA (X) isoform and a larger quantity of mitochondria in the skeletal muscle of Hspg2 -/- -Tg mice. Furthermore, the perlecan-deficient skeletal muscle also had elevated levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) protein. PGC1α expression is activated by exercise, and induces mitochondrial biosynthesis. Thus, perlecan may act as a mechano-regulator of catabolism of both lipids and glucose by shifting the muscle fiber composition to oxidative fibers. Our data suggest that downregulation of perlecan is a promising strategy to control metabolic syndrome.

  20. Lumican as a multivalent effector in wound healing.

    PubMed

    Karamanou, Konstantina; Perrot, Gwenn; Maquart, Francois-Xavier; Brézillon, Stéphane

    2018-03-01

    Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing. Copyright © 2018. Published by Elsevier B.V.

  1. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells

    PubMed Central

    2014-01-01

    Background The development of immunotherapy has led to significant progress in the treatment of metastatic cancer, including the development of genetic engineering technologies that redirect lymphocytes to recognize and target a wide variety of tumor antigens. Chimeric antigen receptors (CARs) are hybrid proteins combining antibody recognition domains linked to T cell signaling elements. Clinical trials of CAR-transduced peripheral blood lymphocytes (PBL) have induced remission of both solid organ and hematologic malignancies. Chondroitin sulfate proteoglycan 4 (CSPG4) is a promising target antigen that is overexpressed in multiple cancer histologies including melanoma, triple-negative breast cancer, glioblastoma, mesothelioma and sarcoma. Methods CSPG4 expression in cancer cell lines was assayed using flow cytometry (FACS) and reverse-transcription PCR (RT-PCR). Immunohistochemistry was utilized to assay resected melanomas and normal human tissues (n = 30) for CSPG4 expression and a reverse-phase protein array comprising 94 normal tissue samples was also interrogated for CSPG4 expression. CARs were successfully constructed from multiple murine antibodies (225.28S, TP41.2, 149.53) using second generation (CD28.CD3ζ) signaling domains. CAR sequences were cloned into a gamma-retroviral vector with subsequent successful production of retroviral supernatant and PBL transduction. CAR efficacy was assayed by cytokine release and cytolysis following coculture with target cell lines. Additionally, glioblastoma stem cells were generated from resected human tumors, and CSPG4 expression was determined by RT-PCR and FACS. Results Immunohistochemistry demonstrated prominent CSPG4 expression in melanoma tumors, but failed to demonstrate expression in any of the 30 normal human tissues studied. Two of 94 normal tissue protein lysates were positive by protein array. CAR constructs demonstrated cytokine secretion and cytolytic function after co-culture with tumor cell lines from multiple different histologies, including melanoma, breast cancer, mesothelioma, glioblastoma and osteosarcoma. Furthermore, we report for the first time that CSPG4 is expressed on glioblastoma cancer stem cells (GSC) and demonstrate that anti-CSPG4 CAR-transduced T cells recognize and kill these GSC. Conclusions The functionality of multiple different CARs, with the widespread expression of CSPG4 on multiple malignancies, suggests that CSPG4 may be an attractive candidate tumor antigen for CAR-based immunotherapies using appropriate technology to limit possible off-tumor toxicity. PMID:25197555

  2. Gas-Phase Analysis of the Complex of Fibroblast GrowthFactor 1 with Heparan Sulfate: A Traveling Wave Ion Mobility Spectrometry (TWIMS) and Molecular Modeling Study

    NASA Astrophysics Data System (ADS)

    Zhao, Yuejie; Singh, Arunima; Xu, Yongmei; Zong, Chengli; Zhang, Fuming; Boons, Geert-Jan; Liu, Jian; Linhardt, Robert J.; Woods, Robert J.; Amster, I. Jonathan

    2017-01-01

    Fibroblast growth factors (FGFs) regulate several cellular developmental processes by interacting with cell surface heparan proteoglycans and transmembrane cell surface receptors (FGFR). The interaction of FGF with heparan sulfate (HS) is known to induce protein oligomerization, increase the affinity of FGF towards its receptor FGFR, promoting the formation of the HS-FGF-FGFR signaling complex. Although the role of HS in the signaling pathways is well recognized, the details of FGF oligomerization and formation of the ternary signaling complex are still not clear, with several conflicting models proposed in literature. Here, we examine the effect of size and sulfation pattern of HS upon FGF1 oligomerization, binding stoichiometry and conformational stability, through a combination of ion mobility (IM) and theoretical modeling approaches. Ion mobility-mass spectrometry (IMMS) of FGF1 in the presence of several HS fragments ranging from tetrasaccharide (dp4) to dodecasaccharide (dp12) in length was performed. A comparison of the binding stoichiometry of variably sulfated dp4 HS to FGF1 confirmed the significance of the previously known high-affinity binding motif in FGF1 dimerization, and demonstrated that certain tetrasaccharide-length fragments are also capable of inducing dimerization of FGF1. The degree of oligomerization was found to increase in the presence of dp12 HS, and a general lack of specificity for longer HS was observed. Additionally, collision cross-sections (CCSs) of several FGF1-HS complexes were calculated, and were found to be in close agreement with experimental results. Based on the (CCSs) a number of plausible binding modes of 2:1 and 3:1 FGF1-HS are proposed.

  3. Drosophila Glypicans Regulate Follicle Stem Cell Maintenance and Niche Competition.

    PubMed

    Su, Tsu-Yi; Nakato, Eriko; Choi, Pui Yee; Nakato, Hiroshi

    2018-04-09

    Adult stem cells reside in specialized microenvironments, called niches, which provide signals for stem cells to maintain their undifferentiated and self-renewing state. To maintain stem cell quality, several types of stem cells are known to be regularly replaced by progenitor cells through niche competition. However, the cellular and molecular bases for stem cell competition for niche occupancy are largely unknown. Here, we show that two Drosophila members of the glypican family of heparan sulfate proteoglycans (HSPGs), Dally and Dally-like (Dlp), differentially regulate follicle stem cell (FSC) maintenance and FSC competitiveness for niche occupancy. Lineage analyses of glypican mutant FSC clones showed that dally is essential for normal FSC maintenance. In contrast, dlp is a hyper-competitive mutation: dlp mutant FSC progenitors often eventually occupy the entire epithelial sheet. RNAi knockdown experiments showed that Dally and Dlp play both partially redundant and distinct roles in regulating Jak/Stat, Wg and Hh signaling in FSCs. The Drosophila FSC system offers a powerful genetic model to study the mechanisms by which HSPGs exert specific functions in stem cell replacement and competition. Copyright © 2018, Genetics.

  4. Polymerized laminin-332 matrix supports rapid and tight adhesion of keratinocytes, suppressing cell migration.

    PubMed

    Kariya, Yoshinobu; Sato, Hiroki; Katou, Naoko; Kariya, Yukiko; Miyazaki, Kaoru

    2012-01-01

    Laminin-332 (α3ß3γ2) (Lm332) supports the stable anchoring of basal keratinocytes to the epidermal basement membrane, while it functions as a motility factor for wound healing and cancer invasion. To understand these contrasting activities of Lm332, we investigated Lm332 matrices deposited by normal human keratinocytes and other Lm332-expressing cell lines. All types of the cells efficiently deposited Lm332 on the culture plates in specific patterns. On the contrary, laminins containing laminin ß1 and/or γ1 chains, such as Lm511 and Lm311, were not deposited on the culture plates even if secreted into culture medium. The Lm332 deposition was not inhibited by function-blocking antibodies to the α3 and α6 integrins but was inhibited by sodium selenate, suggesting that sulfated glycosaminoglycans on cell surface, e.g. heparan sulfate proteoglycans, might be involved in the process. HEK293 cells overexpressing exogenous Lm332 (Lm332-HEK) almost exclusively deposited Lm332 on the plates. The deposited Lm332 matrix showed a mesh-like network structure as analyzed by electron microscopy, suggesting that Lm332 was highly polymerized. When biological activity was analyzed, the Lm332 matrix rather suppressed the migration of keratinocytes as compared with purified Lm332, which highly promoted the cell migration. The Lm332 matrix supported adhesion of keratinocytes much more strongly and stably than purified Lm332. Integrin α3ß1 bound to the Lm332 matrix at a three times higher level than purified Lm332. Normal keratinocytes prominently showed integrin α6ß4-containing, hemidesmosome-like structures on the Lm332 matrix but not on the purified one. These results indicate that the polymerized Lm332 matrix supports stable cell adhesion by interacting with both integrin α6ß4 and α3ß1, whereas unassembled soluble Lm332 supports cell migration.

  5. Decorin and biglycan of normal and pathologic human corneas

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Hevelone, N. D.; Roth, M. R.; Funderburgh, M. L.; Rodrigues, M. R.; Nirankari, V. S.; Conrad, G. W.

    1998-01-01

    PURPOSE: Corneas with scars and certain chronic pathologic conditions contain highly sulfated dermatan sulfate, but little is known of the core proteins that carry these atypical glycosaminoglycans. In this study the proteoglycan proteins attached to dermatan sulfate in normal and pathologic human corneas were examined to identify primary genes involved in the pathobiology of corneal scarring. METHODS: Proteoglycans from human corneas with chronic edema, bullous keratopathy, and keratoconus and from normal corneas were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), quantitative immunoblotting, and immunohistology with peptide antibodies to decorin and biglycan. RESULTS: Proteoglycans from pathologic corneas exhibit increased size heterogeneity and binding of the cationic dye alcian blue compared with those in normal corneas. Decorin and biglycan extracted from normal and diseased corneas exhibited similar molecular size distribution patterns. In approximately half of the pathologic corneas, the level of biglycan was elevated an average of seven times above normal, and decorin was elevated approximately three times above normal. The increases were associated with highly charged molecular forms of decorin and biglycan, indicating modification of the proteins with dermatan sulfate chains of increased sulfation. Immunostaining of corneal sections showed an abnormal stromal localization of biglycan in pathologic corneas. CONCLUSIONS: The increased dermatan sulfate associated with chronic corneal pathologic conditions results from stromal accumulation of decorin and particularly of biglycan in the affected corneas. These proteins bear dermatan sulfate chains with increased sulfation compared with normal stromal proteoglycans.

  6. Do changing toll-like receptor profiles in different layers and grades of osteoarthritis cartilage reflect disease severity?

    PubMed

    Barreto, Gonçalo; Sillat, Tarvo; Soininen, Antti; Ylinen, Pekka; Salem, Abdelhakim; Konttinen, Yrjö T; Al-Samadi, Ahmed; Nordström, Dan C E

    2013-05-01

    Cartilage degeneration in osteoarthritis (OA) leads to release of potential danger signals. The aim of our study was to profile OA cartilage for the Toll-like receptor (TLR) danger signal receptors. Osteochondral cylinders from total knee replacements were graded using OA Research Society International score and stained for proteoglycans, collagenase-cleaved type II collagen, and TLR 1-10, which were analyzed histomorphometrically. Grade 1 OA lesions contained 22%-55% TLR 1-9-positive cells in the surface zone, depending on the TLR type. In Grade 2 TLR, immunoreactivity was 60%-100% (p < 0.01) and it was even higher in Grades 3 and 4 (p < 0.01 vs Grade 1). TLR-positive cells in Grade 1 middle zone were low, 0-19.9%, but were 5.1%-32.7% in Grade 2 (p < 0.01) and 34%-83% in Grades 3-4 samples (p < 0.001). TLR values in Grade 5 were low (14.3%-28.7%; p < 0.001). In Grades 3-4 OA, cartilage matrix stained strongly for TLR. In Grade 1, COL2-3/4M was restricted to chondrocytes, but was increasingly seen in matrix upon progress of OA to Grade 4, and then declined. Cells in the gliding surface zone are fully equipped with TLR in mild OA. Their proportion increases and extends to the middle or even the deep zone, reflecting OA progression. COL2A-3/4M staining suggests Endo180-mediated intake for intralysosomal degradation by cathepsins in Grade 1, but in higher grades this chondrocyte-mediated clearance fails and the matrix demonstrates extensive collagenase-induced damage. Detached and/or partially degraded matrix components can then act as endogenous danger signals (damage-associated molecular patterns or DAMP) and stimulate increasingly TLR-equipped chondrocytes to inflammation. At the peak inflammatory response, soluble TLR may exert negative feedback, explaining in part the low TLR levels in Grade 5 OA.

  7. Infrapatellar fat pad-derived stem cells maintain their chondrogenic capacity in disease and can be used to engineer cartilaginous grafts of clinically relevant dimensions.

    PubMed

    Liu, Yurong; Buckley, Conor Timothy; Almeida, Henrique V; Mulhall, Kevin J; Kelly, Daniel John

    2014-11-01

    A therapy for regenerating large cartilaginous lesions within the articular surface of osteoarthritic joints remains elusive. While tissue engineering strategies such as matrix-assisted autologous chondrocyte implantation can be used in the repair of focal cartilage defects, extending such approaches to the treatment of osteoarthritis will require a number of scientific and technical challenges to be overcome. These include the identification of an abundant source of chondroprogenitor cells that maintain their chondrogenic capacity in disease, as well as the development of novel approaches to engineer scalable cartilaginous grafts that could be used to resurface large areas of damaged joints. In this study, it is first demonstrated that infrapatellar fat pad-derived stem cells (FPSCs) isolated from osteoarthritic (OA) donors possess a comparable chondrogenic capacity to FPSCs isolated from patients undergoing ligament reconstruction. In a further validation of their functionality, we also demonstrate that FPSCs from OA donors respond to the application of physiological levels of cyclic hydrostatic pressure by increasing aggrecan gene expression and the production of sulfated glycosaminoglycans. We next explored whether cartilaginous grafts could be engineered with diseased human FPSCs using a self-assembly or scaffold-free approach. After examining a range of culture conditions, it was found that continuous supplementation with both transforming growth factor-β3 (TGF-β3) and bone morphogenic protein-6 (BMP-6) promoted the development of tissues rich in proteoglycans and type II collagen. The final phase of the study sought to scale-up this approach to engineer cartilaginous grafts of clinically relevant dimensions (≥2 cm in diameter) by assembling FPSCs onto electrospun PLLA fiber membranes. Over 6 weeks in culture, it was possible to generate robust, flexible cartilage-like grafts of scale, opening up the possibility that tissues engineered using FPSCs derived from OA patients could potentially be used to resurface large areas of joint surfaces damaged by trauma or disease.

  8. Infrapatellar Fat Pad-Derived Stem Cells Maintain Their Chondrogenic Capacity in Disease and Can be Used to Engineer Cartilaginous Grafts of Clinically Relevant Dimensions

    PubMed Central

    Liu, Yurong; Buckley, Conor Timothy; Almeida, Henrique V.; Mulhall, Kevin J.

    2014-01-01

    A therapy for regenerating large cartilaginous lesions within the articular surface of osteoarthritic joints remains elusive. While tissue engineering strategies such as matrix-assisted autologous chondrocyte implantation can be used in the repair of focal cartilage defects, extending such approaches to the treatment of osteoarthritis will require a number of scientific and technical challenges to be overcome. These include the identification of an abundant source of chondroprogenitor cells that maintain their chondrogenic capacity in disease, as well as the development of novel approaches to engineer scalable cartilaginous grafts that could be used to resurface large areas of damaged joints. In this study, it is first demonstrated that infrapatellar fat pad-derived stem cells (FPSCs) isolated from osteoarthritic (OA) donors possess a comparable chondrogenic capacity to FPSCs isolated from patients undergoing ligament reconstruction. In a further validation of their functionality, we also demonstrate that FPSCs from OA donors respond to the application of physiological levels of cyclic hydrostatic pressure by increasing aggrecan gene expression and the production of sulfated glycosaminoglycans. We next explored whether cartilaginous grafts could be engineered with diseased human FPSCs using a self-assembly or scaffold-free approach. After examining a range of culture conditions, it was found that continuous supplementation with both transforming growth factor-β3 (TGF-β3) and bone morphogenic protein-6 (BMP-6) promoted the development of tissues rich in proteoglycans and type II collagen. The final phase of the study sought to scale-up this approach to engineer cartilaginous grafts of clinically relevant dimensions (≥2 cm in diameter) by assembling FPSCs onto electrospun PLLA fiber membranes. Over 6 weeks in culture, it was possible to generate robust, flexible cartilage-like grafts of scale, opening up the possibility that tissues engineered using FPSCs derived from OA patients could potentially be used to resurface large areas of joint surfaces damaged by trauma or disease. PMID:24785365

  9. The amphoteric effect on friction between the bovine cartilage/cartilage surfaces under slightly sheared hydration lubrication mode.

    PubMed

    Pawlak, Zenon; Gadomski, Adam; Sojka, Michal; Urbaniak, Wieslaw; Bełdowski, Piotr

    2016-10-01

    The amphoteric effect on the friction between the bovine cartilage/cartilage contacts has been found to be highly sensitive to the pH of an aqueous solution. The cartilage surface was characterized using a combination of the pH, wettability, as well as the interfacial energy and friction coefficient testing methods to support lamellar-repulsive mechanism of hydration lubrication. It has been confirmed experimentally that phospholipidic multi-bilayers are essentially described as lamellar frictionless lubricants protecting the surface of the joints against wear. At the hydrophilicity limit, the low friction would then be due to (a) lamellar slippage of bilayers and (b) a short-range (nanometer-scale) repulsion between the interfaces of negatively charged (PO4(-)) cartilage surfaces, and in addition, contribution of the extracellular matrix (ECM) collagen fibers, hyaluronate, proteoglycans aggregates (PGs), glycoprotein termed lubricin and finally, lamellar PLs phases. In this paper we demonstrate experimentally that the pH sensitivity of cartilage to friction provides a novel concept in joint lubrication on charged surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Decorin-Mediated Inhibition of Human Trophoblast Cells Proliferation, Migration, and Invasion and Promotion of Apoptosis In Vitro

    PubMed Central

    Zou, Yanfen; Yu, Xiang; Lu, Jing; Jiang, Ziyan; Zuo, Qing; Fan, Mingsong; Huang, Shiyun

    2015-01-01

    Preeclampsia (PE) is a unique complication of pregnancy, the pathogenesis of which has been generally accepted to be associated with the dysfunctions of extravillous trophoblast (EVT) including proliferation, apoptosis, and migration and invasion. Decorin (DCN) has been proved to be a decidua-derived TGF-binding proteoglycan, which negatively regulates proliferation, migration, and invasiveness of human extravillous trophoblast cells. In this study, we identified a higher expression level of decorin in severe PE placentas by both real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). And an inhibitory effect of decorin on proliferation, migration, and invasion and an enhanced effect on apoptosis in trophoblast cells HTR-8/SVneo and JEG-3 were validated in vitro. Also the modulations of decorin on trophoblast cells' metastasis and invasion functions were detected through regulating the matrix metalloproteinases (MMP2 and MMP9). Thus, we suggested that the contribution of decorin to the modulation of trophoblast cells might have implications for the pathogenesis of preeclampsia. PMID:26357650

  11. Dental stem cells: a future asset of ocular cell therapy.

    PubMed

    Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Singhal, Shweta; Goh, Bee-Tin; Mehta, Jodhbir S

    2015-11-10

    Regenerative medicine using patient's own stem cells (SCs) to repair dysfunctional tissues is an attractive approach to complement surgical and pharmacological treatments for aging and degenerative disorders. Recently, dental SCs have drawn much attention owing to their accessibility, plasticity and applicability for regenerative use not only for dental, but also other body tissues. In ophthalmology, there has been increasing interest to differentiate dental pulp SC and periodontal ligament SC (PDLSC) towards ocular lineage. Both can commit to retinal fate expressing eye field transcription factors and generate rhodopsin-positive photoreceptor-like cells. This proposes a novel therapeutic alternative for retinal degeneration diseases. Moreover, as PDLSC shares similar cranial neural crest origin and proteoglycan secretion with corneal stromal keratoctyes and corneal endothelial cells, this offers the possibility of differentiating PDLSC to these corneal cell types. The advance could lead to a shift in the medical management of corneal opacities and endothelial disorders from highly invasive corneal transplantation using limited donor tissue to cell therapy utilizing autologous cells. This article provides an overview of dental SC research and the perspective of utilizing dental SCs for ocular regenerative medicine.

  12. Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum.

    PubMed

    Ishii, Maki; Maeda, Nobuaki

    2008-08-01

    Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl 2-O-sulfotransferase (UST), and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), in the mouse postnatal cerebellum. These sulfotransferases are responsible for the biosynthesis of oversulfated structures in CS chains such as B, D, and E units, which constitute the binding sites for various heparin-binding proteins. Real-time reverse transcription-polymerase chain reaction analysis indicated that the expression of UST increased remarkably during cerebellar development. The amounts of B and D units, which are generated by UST activity, in the cerebellar CS chains also increased during development. In contrast, the expression of GalNAc4S-6ST and its biosynthetic product, E unit, decreased during postnatal development. In situ hybridization experiments revealed the levels of UST and GalNAc4S-6ST mRNAs to correlate inversely in many cells including Purkinje cells, granule cells in the external granular layer, and inhibitory interneurons. In these neurons, the expression of UST increased and that of GalNAc4S-6ST decreased during development and/or maturation. D4ST was also expressed by many neurons, but its expression was not simply correlated with development, which might contribute to the diversification of CS structures expressed by distinct neurons. These results suggest that the CS structures of various cerebellar neurons change during development and such changes of CS are involved in the regulation of various signaling pathways.

  13. New Insight of Common Regulatory Pathways in Human Trabecular Meshwork Cells in Response to Dexamethasone and Prednisolone Using an Integrated Quantitative Proteomics: SWATH and MRM-HR Mass Spectrometry.

    PubMed

    Shan, Sze Wan; Do, Chi Wai; Lam, Thomas Chuen; Kong, Ricky Pak Wing; Li, King Kit; Chun, Ka Man; Stamer, William Daniel; To, Chi Ho

    2017-10-06

    The molecular pathophysiology of corticosteroid-induced ocular hypertension (CIH) is not well understood. To determine the biological mechanisms of CIH, this study investigated protein expression profiles of human trabecular meshwork (hTM) cells in response to dexamethasone and prednisolone treatment. Both discovery-based sequential windowed data independent acquisition of the total high-resolution mass spectra (SWATH-MS) and targeted based high resolution multiple reaction monitoring (MRM-HR) confirmation were applied using a hybrid quadrupole-time-of-flight mass spectrometer. A comprehensive list of 1759 proteins (1% FDR) was generated from the hTM. Quantitative proteomics revealed 20 differentially expressed proteins (p-value ≤ 0.05 and fold-change ≥ 1.5 or ≤ 0.67) commonly induced by prednisolone and dexamethasone, both at 300 nM. These included connective tissue growth factor (CTGF) and thrombospondin-1 (THBS1), two proteins previously implicated in ocular hypertension, glaucoma, and the transforming growth factor-β pathway. Their gene expressions in response to corticosteroids were further confirmed using reverse-transcription polymerase chain reaction. Together with other novel proteins identified in the data sets, additional pathways implicated by these regulated proteins were the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, integrin cell surface interaction, extracellular matrix (ECM) proteoglycans, and ECM-receptor interaction. Our results indicated that an integrated platform of SWATH-MS and MRM-HR allows high throughput identification and confirmation of novel and known corticosteroid-regulated proteins in trabecular meshwork cells, demonstrating the power of this technique in extending the current understanding of the pathogenesis of CIH.

  14. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics.

    PubMed

    Taniguchi, Naoyuki; Kizuka, Yasuhiko

    2015-01-01

    Glycosylation is catalyzed by various glycosyltransferase enzymes which are mostly located in the Golgi apparatus in cells. These enzymes glycosylate various complex carbohydrates such as glycoproteins, glycolipids, and proteoglycans. The enzyme activity of glycosyltransferases and their gene expression are altered in various pathophysiological situations including cancer. Furthermore, the activity of glycosyltransferases is controlled by various factors such as the levels of nucleotide sugars, acceptor substrates, nucleotide sugar transporters, chaperons, and endogenous lectin in cancer cells. The glycosylation results in various functional changes of glycoproteins including cell surface receptors and adhesion molecules such as E-cadherin and integrins. These changes confer the unique characteristic phenotypes associated with cancer cells. Therefore, glycans play key roles in cancer progression and treatment. This review focuses on glycan structures, their biosynthetic glycosyltransferases, and their genes in relation to their biological significance and involvement in cancer, especially cancer biomarkers, epithelial-mesenchymal transition, cancer progression and metastasis, and therapeutics. Major N-glycan branching structures which are directly related to cancer are β1,6-GlcNAc branching, bisecting GlcNAc, and core fucose. These structures are enzymatic products of glycosyltransferases, GnT-V, GnT-III, and Fut8, respectively. The genes encoding these enzymes are designated as MGAT5 (Mgat5), MGAT3 (Mgat3), and FUT8 (Fut8) in humans (mice in parenthesis), respectively. GnT-V is highly associated with cancer metastasis, whereas GnT-III is associated with cancer suppression. Fut8 is involved in expression of cancer biomarker as well as in the treatment of cancer. In addition to these enzymes, GnT-IV and GnT-IX (GnT-Vb) will be also discussed in relation to cancer. © 2015 Elsevier Inc. All rights reserved.

  15. Increased levels of fucosyltransferase IX and carbohydrate Lewis(x) adhesion determinant in human NT2N neurons.

    PubMed

    Brito, Catarina; Escrevente, Cristina; Reis, Celso A; Lee, Virginia M-Y; Trojanowski, John Q; Costa, Júlia

    2007-05-01

    The expression of the fucosylated carbohydrate Lewis(x) (Le(x)) determinant (Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc-R) has been found in glycoproteins, proteoglycans, and glycolipids from the nervous system. Evidence suggests its association with cell-cell recognition, neurite outgrowth, and neuronal migration during central nervous system development. In the present work, we detected increased levels of Le(x) in differentiated human NT2N neurons cultured in vitro. To identify which fucosyltransferase (FUT) synthesized the Le(x) in NT2N neurons, RT-PCR, FUT substrate specificity and Western blot analysis were carried out. Strong activity toward acceptors Galbeta4GlcNAc-O-R and Fucalpha2Galbeta4GlcNAc-O-R [R = -(CH(2))(3)NHCO(CH(2))(5)NH-biotin], together with strong FUT9 detection by Western blot and presence of transcripts showed that FUT9 was the enzyme associated with Le(x) biosynthesis in NT2N neurons. Le(x) was detected at the plasma membrane of NT2N neurons, in lysosomes marked with lysosomal-associated membrane protein 1 (LAMP-1), and it was found for the first time to colocalize with the tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) that defines the TI-VAMP exocytic compartment that is involved in neurite outgrowth. Furthermore, incubation with anti-Le(x) monoclonal antibody L5 led to impaired adhesion of NT2N neurons to the surface matrix and inhibited neurite initiation. In conclusion, FUT9 and its product Le(x) are detected specifically in human NT2N neurons and our results indicate that they underlie cell differentiation, cell adhesion, and initiation of neurite outgrowth in those neurons. (c) 2007 Wiley-Liss, Inc.

  16. Osteophyte formation and matrix mineralization in a TMJ osteoarthritis mouse model are associated with ectopic hedgehog signaling

    PubMed Central

    Bechtold, Till E.; Saunders, Cheri; Decker, Rebekah S.; Um, Hyo-Bin; Cottingham, Naiga; Salhab, Imad; Kurio, Naito; Billings, Paul C.; Pacifici, Maurizio; Nah, Hyun-Duck; Koyama, Eiki

    2016-01-01

    The temporomandibular joint (TMJ) is a diarthrodial joint that relies on lubricants for frictionless movement and long-term function. It remains unclear what temporal and causal relationships may exist between compromised lubrication and onset and progression of TMJ disease. Here we report that Proteoglycan 4 (Prg4)-null TMJs exhibit irreversible osteoarthritis-like changes over time and are linked to formation of ectopic mineralized tissues and osteophytes in articular disc, mandibular condyle and glenoid fossa. In the presumptive layer of mutant glenoid fossa’s articulating surface, numerous chondrogenic cells and/or chondrocytes emerged ectopically within the type I collagen-expressing cell population, underwent endochondral bone formation accompanied by enhanced Ihh expression, became entrapped into temporal bone mineralized matrix, and thereby elicited excessive chondroid bone formation. As the osteophytes grew, the roof of the glenoid fossa/eminence became significantly thicker and flatter, resulting in loss of its characteristic concave shape for accommodation of condyle and disc. Concurrently, the condyles became flatter and larger and exhibited ectopic bone along their neck, likely supporting the enlarged condylar heads. Articular discs lost their concave configuration, and ectopic cartilage developed and articulated with osteophytes. In glenoid fossa cells in culture, hedgehog signaling stimulated chondrocyte maturation and mineralization including alkaline phosphatase, while treatment with hedgehog inhibitor HhAntag prevented such maturation process. In sum, our data indicate that Prg4 is needed for TMJ integrity and long-term postnatal function. In its absence, progenitor cells near presumptive articular layer and disc undergo ectopic chondrogenesis and generate ectopic cartilage, possibly driven by aberrant activation of Hh signaling. The data suggest also that the Prg4-null mice represent a useful model to study TMJ osteoarthritis-like degeneration and clarify its pathogenesis. PMID:26945615

  17. Expression of agrin, dystroglycan, and utrophin in normal renal tissue and in experimental glomerulopathies.

    PubMed

    Raats, C J; van den Born, J; Bakker, M A; Oppers-Walgreen, B; Pisa, B J; Dijkman, H B; Assmann, K J; Berden, J H

    2000-05-01

    The dystrophin-glycoprotein complex, which comprises alpha- and beta-dystroglycan, sarcoglycans, and utrophin/dystrophin, links the cytoskeleton to agrin and laminin in the basal lamina in muscle and epithelial cells. Recently, agrin was identified as a major heparan sulfate proteoglycan in the glomerular basement membrane. In the present study, we found mRNA expression for agrin, dystroglycan, and utrophin in kidney cortex, isolated glomeruli, and cultured podocytes and mesangial cells. In immunofluorescence, agrin was found in the glomerular basement membrane. The antibodies against alpha- and beta-dystroglycan and utrophin revealed a granular podocyte-like staining pattern along the glomerular capillary wall. With immunoelectron microscopy, agrin was found in the glomerular basement membrane, dystroglycan was diffusely found over the entire cell surface of the podocytes, and utrophin was localized in the cytoplasm of the podocyte foot processes. In adriamycin nephropathy, a decrease in the glomerular capillary wall staining for dystroglycan was observed probably secondary to the extensive fusion of foot processes. Immunoelectron microscopy showed a different distribution pattern as compared to the normal kidney, with segmentally enhanced expression of dystroglycan at the basal side of the extensively fused podocyte foot processes. In passive Heymann nephritis we observed no changes in the staining intensity and distribution of the dystrophin-glycoprotein complex by immunofluorescence and immunoelectron microscopy. From these data, we conclude that agrin, dystroglycan, and utrophin are present in the glomerular capillary wall and their ultrastructural localization supports the concept that these molecules are involved in linking the podocyte cytoskeleton to the glomerular basement membrane.

  18. Expression of Agrin, Dystroglycan, and Utrophin in Normal Renal Tissue and in Experimental Glomerulopathies

    PubMed Central

    Raats, C. J. Ilse; van den Born, Jacob; Bakker, Marinka A. H.; Oppers-Walgreen, Birgitte; Pisa, Brenda J. M.; Dijkman, Henry B. P. M.; Assmann, Karel J. M.; Berden, Jo H. M.

    2000-01-01

    The dystrophin-glycoprotein complex, which comprises α- and β-dystroglycan, sarcoglycans, and utrophin/dystrophin, links the cytoskeleton to agrin and laminin in the basal lamina in muscle and epithelial cells. Recently, agrin was identified as a major heparan sulfate proteoglycan in the glomerular basement membrane. In the present study, we found mRNA expression for agrin, dystroglycan, and utrophin in kidney cortex, isolated glomeruli, and cultured podocytes and mesangial cells. In immunofluorescence, agrin was found in the glomerular basement membrane. The antibodies against α- and β-dystroglycan and utrophin revealed a granular podocyte-like staining pattern along the glomerular capillary wall. With immunoelectron microscopy, agrin was found in the glomerular basement membrane, dystroglycan was diffusely found over the entire cell surface of the podocytes, and utrophin was localized in the cytoplasm of the podocyte foot processes. In adriamycin nephropathy, a decrease in the glomerular capillary wall staining for dystroglycan was observed probably secondary to the extensive fusion of foot processes. Immunoelectron microscopy showed a different distribution pattern as compared to the normal kidney, with segmentally enhanced expression of dystroglycan at the basal side of the extensively fused podocyte foot processes. In passive Heymann nephritis we observed no changes in the staining intensity and distribution of the dystrophin-glycoprotein complex by immunofluorescence and immunoelectron microscopy. From these data, we conclude that agrin, dystroglycan, and utrophin are present in the glomerular capillary wall and their ultrastructural localization supports the concept that these molecules are involved in linking the podocyte cytoskeleton to the glomerular basement membrane. PMID:10793086

  19. Receptor-mediated transcytosis of cyclophilin B through the blood-brain barrier.

    PubMed

    Carpentier, M; Descamps, L; Allain, F; Denys, A; Durieux, S; Fenart, L; Kieda, C; Cecchelli, R; Spik, G

    1999-07-01

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein mainly located in intracellular vesicles and secreted in biological fluids. In previous works, we demonstrated that CyPB interacts with T lymphocytes and enhances in vitro cellular incorporation and activity of CsA. In addition to its immunosuppressive activity, CsA is able to promote regeneration of damaged peripheral nerves. However, the crossing of the drug from plasma to neural tissue is restricted by the relative impermeability of the blood-brain barrier. To know whether CyPB might also participate in the delivery of CsA into the brain, we have analyzed the interactions of CyPB with brain capillary endothelial cells. First, we demonstrated that CyPB binds to two types of binding sites present at the surface of capillary endothelial cells from various species of tissues. The first type of binding sites (K(D) = 300 nM; number of sites = 3 x 10(6)) is related to interactions with negatively charged compounds such as proteoglycans. The second type of binding sites, approximately 50,000 per cell, exhibits a higher affinity for CyPB (K(D) = 15 nM) and is involved in an endocytosis process, indicating it might correspond to a functional receptor. Finally, the use of an in vitro model of blood-brain barrier allowed us to demonstrate that CyPB is transcytosed by a receptor-mediated pathway (flux = 16.5 fmol/cm2/h). In these conditions, CyPB did not significantly modify the passage of CsA, indicating that it is unlikely to provide a pathway for CsA brain delivery.

  20. Enhanced targeting of triple-negative breast carcinoma and malignant melanoma by photochemical internalization of CSPG4-targeting immunotoxins.

    PubMed

    Eng, M S; Kaur, J; Prasmickaite, L; Engesæter, B Ø; Weyergang, A; Skarpen, E; Berg, K; Rosenblum, M G; Mælandsmo, G M; Høgset, A; Ferrone, S; Selbo, P K

    2018-05-16

    Triple-negative breast cancer (TNBC) and malignant melanoma are highly aggressive cancers that widely express the cell surface chondroitin sulfate proteoglycan 4 (CSPG4/NG2). CSPG4 plays an important role in tumor cell growth and survival and promotes chemo- and radiotherapy resistance, suggesting that CSPG4 is an attractive target in cancer therapy. In the present work, we applied the drug delivery technology photochemical internalization (PCI) in combination with the novel CSPG4-targeting immunotoxin 225.28-saporin as an efficient and specific strategy to kill aggressive TNBC and amelanotic melanoma cells. Light-activation of the clinically relevant photosensitizer TPCS2a (fimaporfin) and 225.28-saporin was found to act in a synergistic manner, and was superior to both PCI of saporin and PCI-no-drug (TPCS2a + light only) in three TNBC cell lines (MDA-MB-231, MDA-MB-435 and SUM149) and two BRAFV600E mutated malignant melanoma cell lines (Melmet 1 and Melmet 5). The cytotoxic effect was highly dependent on the light dose and expression of CSPG4 since no enhanced cytotoxicity of PCI of 225.28-saporin compared to PCI of saporin was observed in the CSPG4-negative MCF-7 cells. The PCI of a smaller, and clinically relevant CSPG4-targeting toxin (scFvMEL-rGel) validated the CSPG4-targeting concept in vitro and induced a strong inhibition of tumor growth in the amelanotic melanoma xenograft A-375 model. In conclusion, the combination of the drug delivery technology PCI and CSPG4-targeting immunotoxins is an efficient, specific and light-controlled strategy for the elimination of aggressive cells of TNBC and malignant melanoma origin. This study lays the foundation for further preclinical evaluation of PCI in combination with CSPG4-targeting.

  1. Some further effects of prednisolone and triamcinolone hexacetonide on experimental arthritis in rabbits.

    PubMed

    Hunneyball, I M

    1981-11-01

    Prolonged treatment of rabbits with an established bilaterally symmetrical experimental arthritis with prednisolone (0.5 mg/kg day) reduced both the swelling and the histopathological changes in the arthritic joints whereas short-term treatment suppressed only the swelling. Such prolonged treatment also suppressed both the humoral and cell-mediated immune responses measured systemically in these animals and the cell-mediated immune responsiveness of the synovium determined by lymphokine production by cultured explants. The results suggested that the suppressive effect of the drug on the arthritis was related to the inhibition of cell-mediated immune responsiveness. Prednisolone treatment also had deleterious effect on cartilage proteoglycan metabolism determined both histologically and biochemically. Intra-articular administration of triamcinolone hexacetonide (three injections of 2 mg per joint at fortnightly intervals) also reduced the swelling and histopathological changes, although there was no effect on circulating antibody levels.

  2. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, D.; Oborn, C.J.; Li, M.L.

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appearedmore » to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.« less

  3. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration.

    PubMed

    Lee, Christopher Sd; Burnsed, Olivia A; Raghuram, Vineeth; Kalisvaart, Jonathan; Boyan, Barbara D; Schwartz, Zvi

    2012-08-24

    Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration. Therefore, the aim of this study was to determine the effects ASC-secreted factors have in repairing chondral defects. ASCs isolated from male Sprague Dawley rats were cultured in monolayer or alginate microbeads supplemented with growth (GM) or chondrogenic medium (CM). Subsequent co-culture, conditioned media, and in vivo cartilage defect studies were performed. ASC monolayers and microbeads cultured in CM had decreased FGF-2 gene expression and VEGF-A secretion compared to ASCs cultured in GM. Chondrocytes co-cultured with GM-cultured ASCs for 7 days had decreased mRNAs for col2, comp, and runx2. Chondrocytes treated for 12 or 24 hours with conditioned medium from GM-cultured ASCs had reduced sox9, acan, and col2 mRNAs; reduced proliferation and proteoglycan synthesis; and increased apoptosis. ASC-conditioned medium also increased endothelial cell tube lengthening whereas conditioned medium from CM-cultured ASCs had no effect. Treating ASCs with CM reduced or abolished these deleterious effects while adding a neutralizing antibody for VEGF-A eliminated ASC-conditioned medium induced chondrocyte apoptosis and restored proteoglycan synthesis. FGF-2 also mitigated the deleterious effects VEGF-A had on chondrocyte apoptosis and phenotype. When GM-grown ASC pellets were implanted in 1 mm non-critical hyaline cartilage defects in vivo, cartilage regeneration was inhibited as evaluated by radiographic and equilibrium partitioning of an ionic contrast agent via microCT imaging. Histology revealed that defects with GM-cultured ASCs had no tissue ingrowth from the edges of the defect whereas empty defects and defects with CM-grown ASCs had similar amounts of neocartilage formation. ASCs must be treated to reduce the secretion of VEGF-A and other factors that inhibit cartilage regeneration, which can significantly influence how ASCs are used for repairing hyaline cartilage.

  4. Effects of Doxycycline on Mesenchymal Stem Cell Chondrogenesis and Cartilage Repair

    PubMed Central

    Friel, Nicole A.; Chu, Constance R.

    2017-01-01

    Objective Strategies to improve cartilage repair tissue quality after bone marrow cell-based procedures may reduce later development of osteoarthritis. Doxycycline is inexpensive, well-tolerated, and has been shown to reduce matrix-metalloproteinases (MMP) and osteoarthritis progression. This study tests the hypotheses that doxycycline reduces MMP, enhances chondrogenesis of human bone marrow-derived mesenchymal stem cells (hMSC), and improves in vivo cartilage repair. Design Ninety hMSC pellets were cultured in chondrogenic media with either 0-, 1- or 2-μg/mL doxycycline. Pellets were evaluated with stereomicroscopy, proteoglycan assay, qRT-PCR, and histology. Osteochondral defects (OCD) were created in the trochlear grooves of 24-Sprague-Dawley rats treated with/without oral doxycycline. Rats were sacrificed at 12-weeks and repair tissues were examined grossly and histologically. Results hMSC pellets with 1-μg/mL (p=0.014) and 2-μg/mL (p=0.002) doxycycline had larger areas than pellets without doxycycline. hMSC pellets with 2-μg/mL doxycycline showed reduced mmp-13 mRNA (p=0.010) and protein at 21-days. Proteoglycan, DNA contents, and mRNA expressions of chondrogenic genes were similar (p>0.05). For the in vivo study, while the histological scores were similar between the two groups (p=0.116), the gross scores of the OCD repair tissues in doxycycline-treated rats were higher at 12-weeks (p=0.017), reflective of improved repair quality. The doxycycline-treated repairs also showed lower MMP-13 protein (p=0.029). Conclusions This study shows that doxycycline improves hMSC chondrogenesis and decreases MMP-13 in pellet cultures and within rat OCDs. Doxycycline exerted no negative effect on multiple measures of chondrogenesis and cartilage repair. These data support potential use of doxycycline to improve cartilage repair to delay the onset of osteoarthritis. PMID:23186943

  5. A new in vivo animal model to create intervertebral disc degeneration characterized by MRI, radiography, CT/discogram, biochemistry, and histology.

    PubMed

    Zhou, HaoWei; Hou, ShuXun; Shang, WeiLin; Wu, WenWen; Cheng, Yao; Mei, Fang; Peng, BaoGan

    2007-04-15

    A new in vivo sheep model was developed that produced disc degeneration through the injection of 5-bromodeoxyuridine (BrdU) into the intervertebral disc. This process was studied using magnetic resonance imaging (MRI), radiography, CT/discogram, histology, and biochemistry. To develop a sheep model of intervertebral disc degeneration that more faithfully mimics the pathologic hallmarks of human intervertebral disc degeneration. Recent studies have shown age-related alterations in proteoglycan structure and organization in human intervertebral discs. An animal model that involves the use of age-related changes in disc cells can be beneficial over other more invasive degenerative models that involves directly damaging the matrix of disc tissue. Twelve sheep were injected with BrdU or vehicle (phosphate-buffered saline) into the central region of separate lumbar discs. Intact discs were used as controls. At the 2-, 6-, 10-, and 14-week time points, discs underwent MRI, radiography, histology, and biochemical analyses. A CT/discogram study was performed at the 14-week time point. MRI demonstrated a progressive loss of T2-weighted signal intensity at BrdU-injected discs over the 14-week study period. Radiograph findings included osteophyte and disc space narrowing formed by 10 weeks post-BrdU treatment. CT discography demonstrated internal disc disruption in several BrdU-treated discs at the 14-week time point. Histology showed a progressive loss of the normal architecture and cell density of discs from the 2-week time point to the 14-week time point. A progressive loss of cell proliferation capacity, water content, and proteoglycans was also documented. BrdU injection into the central region of sheep discs resulted in degeneration of intervertebral discs. This progressive, degenerative process was confirmed using MRI, histology, and by observing changes in biochemistry. Degeneration occurred in a manner that was similar to that observed in human disc degeneration.

  6. Targeting Heparan Sulfate Proteoglycans and their Modifying Enzymes to Enhance Anticancer Chemotherapy Efficacy and Overcome Drug Resistance.

    PubMed

    Lanzi, Cinzia; Zaffaroni, Nadia; Cassinelli, Giuliana

    2017-01-01

    Targeting heparan sulfate proteoglycans (HSPGs) and enzymes involved in heparan sulfate (HS) chain editing is emerging as a new anticancer strategy. The involvement of HSPGs in tumor cell signaling, inflammation, angiogenesis and metastasis indicates that agents able to inhibit aberrant HSPG functions can potentially act as multitarget drugs affecting both tumor cell growth and the supportive boost provided by the microenvironment. Moreover, accumulating evidence supports that an altered expression or function of HSPGs, or of the complex enzyme system regulating their activities, can also depress the tumor response to anticancer treatments in several tumor types. Thereby, targeting HSPGs or HSPG modifying enzymes appears an appealing approach to enhance chemotherapy efficacy. A great deal of effort from academia and industry has led to the development of agents mimicking HS, and/or inhibiting HSPG modifying enzymes. Inhibitors of Sulf-2, an endosulfatase that edits the HS sulfation pattern, and inhibitors of heparanase, the endoglycosidase that produces functional HS fragments, appear particularly promising. In fact, a Sulf-2 inhibitor (OKN-007), and two heparanase inhibitors/HS mimics (roneparstat, PG545) are currently under early clinical investigation. In this review, we summarized preclinical studies in experimental tumor models of the main chemical classes of Sulf-2 and heparanase inhibitors. We described examples of different mechanisms through which heparanase and HSPGs, often in cooperation, may impact tumor sensitivity to various antitumor agents. Finally, we reported a few preclinical studies showing increased antitumor efficacy obtained with the use of candidate clinical HS mimics in combination regimens. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. The Location-Specific Role of Proteoglycans in the Flexor Carpi Ulnaris Tendon

    PubMed Central

    Buckley, Mark R.; Huffman, George R.; Iozzo, Renato V.; Birk, David E.; Soslowsky, Louis J.

    2015-01-01

    Tendons like the flexor carpi ulnaris (FCU) that contain region-specific distributions of proteoglycans (PGs) as a result of the heterogeneous, multi-axial loads they are subjected to in vivo provide valuable models for understanding structure-function relationships in connective tissues. However, the contributions of specific PGs to FCU tendon mechanical properties are unknown. Therefore, the objective of this study was to determine how the location-dependent, viscoelastic mechanical properties of the FCU tendon are impacted individually by PG-associated glycosaminoglycans (GAGs) and by two small leucine-rich proteoglycans (SLRPs), biglycan and decorin. Full length FCU tendons from biglycan- and decorin-null mice were compared to wild type mice to evaluate the effects of specific SLRPs, while chondroitinase ABC digestion of isolated specimens removed from the tendon midsubstance was used to determine how chontroitin/dermatan sulfate (CS/DS) GAGs impact mechanics in mature FCU tendons. A novel combined genetic knockout/ digestion technique also was employed to compare SLRP-null and wild-type tendons in the absence of CS/DS GAGs that may impact properties in the mature state. In all genotypes, mechanical properties in the FCU tendon midsubstance were not affected by GAG digestion. Full-length tendons exhibited complex, multi-axial deformation under tension that may be associated with their in vivo loading environment. Mechanical properties were adversely affected by the absence of biglycan, and a decreased modulus localized in the center of the tendon was measured. These results help elucidate the role that local alterations in proteoglycan levels may play in processes that adversely impact tendon functionality including injury and pathology. PMID:23941206

  8. Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm.

    PubMed

    Volknandt, W; Zimmermann, H

    1986-11-01

    Cholinergic synaptic vesicles were isolated from the electric organs of the electric eel (Electrophorus electricus) and the electric catfish (Malapterurus electricus) as well as from the diaphragm of the rat by density gradient centrifugation followed by column chromatography on Sephacryl-1000. This was verified by both biochemical and electron microscopic criteria. Differences in size between synaptic vesicles from the various tissue sources were reflected by their elution pattern from the Sephacryl column. Specific activities of acetylcholine (ACh; in nmol/mg of protein) of chromatography-purified vesicle fractions were 36 (electric eel), 2 (electric catfish), and 1 (rat diaphragm). Synaptic vesicles from all three sources contained ATP in addition to ACh (molar ratios of ACh/ATP, 9-12) as well as binding activity for an antibody raised against Torpedo cholinergic synaptic vesicle proteoglycan. Synaptic vesicles from rat diaphragm contained binding activity for the monoclonal antibody asv 48 raised against a rat brain 65-kilodalton synaptic vesicle protein. Antibody asv 48 binding was absent from electric eel and electric catfish synaptic vesicles. These antibody binding results, which were obtained by a dot blot assay on isolated vesicles, directly correspond to the immunocytochemical results demonstrating fluorescein isothiocyanate staining in the respective nerve terminals. Our results imply that ACh, ATP, and proteoglycan are common molecular constituents of motor nerve terminal-derived synaptic vesicles from Torpedo to rat. In addition to ACh, both ATP and proteoglycan may play a specific role in the process of cholinergic signal transmission.

  9. Sequence, molecular properties, and chromosomal mapping of mouse lumican

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Hevelone, N. D.; Stech, M. E.; Justice, M. J.; Liu, C. Y.; Kao, W. W.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    PURPOSE. Lumican is a major proteoglycan of vertebrate cornea. This study characterizes mouse lumican, its molecular form, cDNA sequence, and chromosomal localization. METHODS. Lumican sequence was determined from cDNA clones selected from a mouse corneal cDNA expression library using a bovine lumican cDNA probe. Tissue expression and size of lumican mRNA were determined using Northern hybridization. Glycosidase digestion followed by Western blot analysis provided characterization of molecular properties of purified mouse corneal lumican. Chromosomal mapping of the lumican gene (Lcn) used Southern hybridization of a panel of genomic DNAs from an interspecific murine backcross. RESULTS. Mouse lumican is a 338-amino acid protein with high-sequence identity to bovine and chicken lumican proteins. The N-terminus of the lumican protein contains consensus sequences for tyrosine sulfation. A 1.9-kb lumican mRNA is present in cornea and several other tissues. Antibody against bovine lumican reacted with recombinant mouse lumican expressed in Escherichia coli and also detected high molecular weight proteoglycans in extracts of mouse cornea. Keratanase digestion of corneal proteoglycans released lumican protein, demonstrating the presence of sulfated keratan sulfate chains on mouse corneal lumican in vivo. The lumican gene (Lcn) was mapped to the distal region of mouse chromosome 10. The Lcn map site is in the region of a previously identified developmental mutant, eye blebs, affecting corneal morphology. CONCLUSIONS. This study demonstrates sulfated keratan sulfate proteoglycan in mouse cornea and describes the tools (antibodies and cDNA) necessary to investigate the functional role of this important corneal molecule using naturally occurring and induced mutants of the murine lumican gene.

  10. Anti-diabetic effects of Ganoderma lucidum.

    PubMed

    Ma, Haou-Tzong; Hsieh, Jung-Feng; Chen, Shui-Tein

    2015-06-01

    Ganoderma lucidum is a white rot fungus widely used as a tonic for the promotion of longevity and health. Extracts of G. lucidum have been recognized as an alternative adjuvant treatment for diabetes. Among the many biologically active constituents of G. lucidum, polysaccharides, proteoglycans, proteins and triterpenoids have been shown to have hypoglycemic effects. G. lucidum polysaccharides have been reported to have hypoglycemic activity by increasing plasma insulin levels and decreasing plasma sugar levels in mice. Protein tyrosine phosphatase 1B is a promising therapeutic target in diabetes, and G. lucidum proteoglycan can inhibit this enzyme in vitro. Moreover, G. lucidum triterpenoids were shown to have inhibitory activity on aldose reductase and α-glucosidase that can suppress postprandial hyperglycemia. In addition, a protein Ling Zhi-8 extracted from G. lucidum significantly decreased lymphocyte infiltration and increased the antibody detection of insulin in diabetic mice. This review summarizes most of the research about the hypoglycemic action effects of polysaccharides, proteoglycans, proteins and tritrerpenoids from G. lucidum as a guide for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. p27 Nuclear localization and growth arrest caused by perlecan knockdown in human endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Katsuya; Oka, Kiyomasa; Matsumoto, Kunio

    2010-02-12

    Perlecan, a secreted heparan sulfate proteoglycan, is a major component of the vascular basement membrane and participates in angiogenesis. Here, we used small interference RNA-mediated knockdown of perlecan expression to investigate the regulatory function of perlecan in the growth of human vascular endothelial cells. Basic fibroblast growth factor (bFGF)-induced ERK phosphorylation and cyclin D1 expression were unchanged by perlecan deficiency in endothelial cells; however, perlecan deficiency inhibited the Rb protein phosphorylation and DNA synthesis induced by bFGF. By contrast to cytoplasmic localization of the cyclin-dependent kinase inhibitor p27 in control endothelial cells, p27 was localized in the nucleus and itsmore » expression increased in perlecan-deficient cells, which suggests that p27 mediates inhibition of Rb phosphorylation. In addition to the well-characterized function of perlecan as a co-receptor for heparin-binding growth factors such as bFGF, our results suggest that perlecan plays an indispensible role in endothelial cell proliferation and acts through a mechanism that involves subcellular localization of p27.« less

  12. Differential Activation of Acid Sphingomyelinase and Ceramide Release Determines Invasiveness of Neisseria meningitidis into Brain Endothelial Cells

    PubMed Central

    Simonis, Alexander; Hebling, Sabrina; Gulbins, Erich; Schneider-Schaulies, Sibylle; Schubert-Unkmeir, Alexandra

    2014-01-01

    The interaction with brain endothelial cells is central to the pathogenicity of Neisseria meningitidis infections. Here, we show that N. meningitidis causes transient activation of acid sphingomyelinase (ASM) followed by ceramide release in brain endothelial cells. In response to N. meningitidis infection, ASM and ceramide are displayed at the outer leaflet of the cell membrane and condense into large membrane platforms which also concentrate the ErbB2 receptor. The outer membrane protein Opc and phosphatidylcholine-specific phospholipase C that is activated upon binding of the pathogen to heparan sulfate proteoglycans, are required for N. meningitidis-mediated ASM activation. Pharmacologic or genetic ablation of ASM abrogated meningococcal internalization without affecting bacterial adherence. In accordance, the restricted invasiveness of a defined set of pathogenic isolates of the ST-11/ST-8 clonal complex into brain endothelial cells directly correlated with their restricted ability to induce ASM and ceramide release. In conclusion, ASM activation and ceramide release are essential for internalization of Opc-expressing meningococci into brain endothelial cells, and this segregates with invasiveness of N. meningitidis strains. PMID:24945304

  13. Synthetic Xylosides: Probing the Glycosaminoglycan Biosynthetic Machinery for Biomedical Applications.

    PubMed

    Chua, Jie Shi; Kuberan, Balagurunathan

    2017-11-21

    Glycosaminoglycans (GAGs) are polysaccharides ubiquitously found on cell surfaces and in the extracellular matrix (ECM). They regulate numerous cellular signaling events involved in many developmental and pathophysiological processes. GAGs are composed of complex sequences of repeating disaccharide units, each of which can carry many different modifications. The tremendous structural variations account for their ability to bind many proteins and thus, for their numerous functions. Although the sequence of GAG biosynthetic events and the enzymes involved mostly were deduced a decade ago, the emergence of tissue or cell specific GAGs from a nontemplate driven process remains an enigma. Current knowledge favors the hypothesis that macromolecular assemblies of GAG biosynthetic enzymes termed "GAGOSOMEs" coordinate polymerization and fine structural modifications in the Golgi apparatus. Distinct GAG structures arise from the differential channeling of substrates through the Golgi apparatus to various GAGOSOMEs. As GAGs perform multiple regulatory roles, it is of great interest to develop molecular strategies to selectively interfere with GAG biosynthesis for therapeutic applications. In this Account, we assess our present knowledge on GAG biosynthesis, the manipulation of GAG biosynthesis using synthetic xylosides, and the unrealized potential of these xylosides in various biomedical applications. Synthetic xylosides are small molecules consisting of a xylose attached to an aglycone group, and they compete with endogenous proteins for precursors and biosynthetic enzymes to assemble GAGs. This competition reduces endogenous proteoglycan-bound GAGs while increasing xyloside-bound free GAGs, mostly chondroitin sulfate (CS) and less heparan sulfate (HS), resulting in a variety of biological consequences. To date, hundreds of xylosides have been published and the importance of the aglycone group in determining the structure of the primed GAG chains is well established. However, the structure-activity relationship has long been cryptic. Nonetheless, xylosides have been designed to increase HS priming, modified to inhibit endogenous GAG production without priming, and engineered to be more biologically relevant. Synthetic xylosides hold great promise in many biomedical applications and as therapeutics. They are small, orally bioavailable, easily excreted, and utilize the host cell biosynthetic machinery to assemble GAGs that are likely nonimmunogenic. Various xylosides have been shown, in different biological systems, to have anticoagulant effects, selectively kill tumor cells, abrogate angiogenic and metastatic pathways, promote angiogenesis and neuronal growth, and affect embryonic development. However, most of these studies utilized the commercially available one or two β-D-xylosides and focused on the impact of endogenous proteoglycan-bound GAG inhibition on biological activity. Nevertheless, the manipulation of cell behavior as a result of stabilizing growth factor signaling with xyloside-primed GAGs is also reckonable but underexplored. Recent advances in the use of molecular modeling and docking simulations to understand the structure-activity relationships of xylosides have opened up the possibility of a more rational aglycone design to achieve a desirable biological outcome through selective priming and inhibitory activities. We envision these advances will encourage more researchers to explore these fascinating xylosides, harness the GAG biosynthetic machinery for a wider range of biomedical applications, and accelerate the successful transition of xyloside-based therapeutics from bench to bedside.

  14. Theoretical modeling of heating and structure alterations in cartilage under laser radiation with regard to water evaporation and diffusion dominance

    NASA Astrophysics Data System (ADS)

    Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian

    1998-05-01

    We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.

  15. Sensing inhomogeneous mechanical properties of human corneal Descemet's membrane with AFM nano-indentation.

    PubMed

    Di Mundo, Rosa; Recchia, Giuseppina; Parekh, Mohit; Ruzza, Alessandro; Ferrari, Stefano; Carbone, Giuseppe

    2017-10-01

    The paper describes a highly space-resolved characterization of the surface mechanical properties of the posterior human corneal layer (Descemet's membrane). This has been accomplished with Atomic Force Microscopy (AFM) nano-indentation by using a probe with a sharp tip geometry. Results indicate that the contact with this biological tissue in liquid occurs with no (or very low) adhesion. More importantly, under the same operating conditions, a broad distribution of penetration depth can be measured on different x-y positions of the tissue surface, indicating a high inhomogeneity of surface stiffness, not yet clearly reported in the literature. An important contribution to such inhomogeneity should be ascribed to the discontinuous nature of the collagen/proteoglycans fibers matrix tissue, as can be imaged by AFM when the tissue is semi-dry. Using classical contact mechanics calculations adapted to the specific geometry of the tetrahedral tip it has been found that the elastic modulus E of the material in the very proximity of the surface ranges from 0.23 to 2.6 kPa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Doxycycline and its quaternary ammonium derivative for adjuvant therapies of chondrosarcoma.

    PubMed

    Miladi, Imen; Vivier, Magali; Dauplat, Marie-Mélanie; Chatard, Morgane; Besse, Sophie; Vidal, Aurélien; Chassain, Karine; Jean, Betty; Forestier, Christiane; Chezal, Jean-Michel; Rédini, Francoise; Degoul, Francoise; Miot-Noirault, Elisabeth

    2017-09-01

    This study was conducted during the development of innovative treatment targeting the microenvironment of chondrosarcoma. In this context, MMP inhibitors were conjugated with a quaternary ammonium (QA) function as a targeting ligand to proteoglycans of chondrosarcoma extracellular matrix. Here we report the proof of concept of this strategy applied to the MMP13 inhibitor, doxycycline (Dox). A quaternary ammonium derivative of the MMP13 inhibitor doxycycline (QA-Dox) was synthesized, and its anticancer activity was evaluated in the Swarm rat chondrosarcoma (SRC) model compared with the parent drug doxycycline, in vitro and in vivo. In vivo, dox and QA-Dox efficiency was assessed at equimolar doses according to a q4dx4 schedule by monitoring tumour volume by MRI and PG-targeted scintigraphy. Molecular mechanism (MMP13 expression, proteoglycan level) and histology studies were performed on tumours. The link of QA targeting function to Dox maintained the MMP13 inhibitory activity in vitro. Interestingly, the bacteriostatic activity was lost. SRC cells incubated with both drugs were blocked in S and G2 M phases. Tumour growth inhibition (confirmed by histology) was observed for both Dox and QA-Dox. Undesirable blood effects (leukocyte decrease) were reduced when Dox was targeted to tumour tissue using the QA function. In the SRC model, the MMP13 inhibitor Dox and its QA derivative are promising as adjuvant therapies for chondrosarcoma management.

  17. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane.

    PubMed

    Groffen, A J; Ruegg, M A; Dijkman, H; van de Velden, T J; Buskens, C A; van den Born, J; Assmann, K J; Monnens, L A; Veerkamp, J H; van den Heuvel, L P

    1998-01-01

    Agrin is a heparan sulfate proteoglycan (HSPG) that is highly concentrated in the synaptic basal lamina at the neuromuscular junction (NMJ). Agrin-like immunoreactivity is also detected outside the NMJ. Here we show that agrin is a major HSPG component of the human glomerular basement membrane (GBM). This is in addition to perlecan, a previously characterized HSPG of basement membranes. Antibodies against agrin and against an unidentified GBM HSPG produced a strong staining of the GBM and the NMJ, different from that observed with anti-perlecan antibodies. In addition, anti-agrin antisera recognized purified GBM HSPG and competed with an anti-GBM HSPG monoclonal antibody in ELISA. Furthermore, both antibodies recognized a molecule that migrated in SDS-PAGE as a smear and had a molecular mass of approximately 200-210 kD after deglycosylation. In immunoelectron microscopy, agrin showed a linear distribution along the GBM and was present throughout the width of the GBM. This was again different from perlecan, which was exclusively present on the endothelial side of the GBM and was distributed in a nonlinear manner. Quantitative ELISA showed that, compared with perlecan, the agrin-like GBM HSPG showed a sixfold higher molarity in crude glomerular extract. These results show that agrin is a major component of the GBM, indicating that it may play a role in renal ultrafiltration and cell matrix interaction. (J Histochem Cytochem 46:19-27, 1998)

  18. Non-Enzymatic Decomposition of Collagen Fibers by a Biglycan Antibody and a Plausible Mechanism for Rheumatoid Arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipova, Olga; Orgel, Joseph P.R.O.

    Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory and destructive joint disorder that affects tens of millions of people worldwide. Normal healthy joints maintain a balance between the synthesis of extracellular matrix (ECM) molecules and the proteolytic degradation of damaged ones. In the case of RA, this balance is shifted toward matrix destruction due to increased production of cleavage enzymes and the presence of (autoimmune) immunoglobulins resulting from an inflammation induced immune response. Herein we demonstrate that a polyclonal antibody against the proteoglycan biglycan (BG) causes tissue destruction that may be analogous to that of RA affected tissues. The effectmore » of the antibody is more potent than harsh chemical and/or enzymatic treatments designed to mimic arthritis-like fibril de-polymerization. In RA cases, the immune response to inflammation causes synovial fibroblasts, monocytes and macrophages to produce cytokines and secrete matrix remodeling enzymes, whereas B cells are stimulated to produce immunoglobulins. The specific antigen that causes the RA immune response has not yet been identified, although possible candidates have been proposed, including collagen types I and II, and proteoglycans (PG's) such as biglycan. We speculate that the initiation of RA associated tissue destruction in vivo may involve a similar non-enzymatic decomposition of collagen fibrils via the immunoglobulins themselves that we observe here ex vivo.« less

  19. Disruption of ERBB2IP is not associated with dystrophic epidermolysis bullosa in both father and son carrying a balanced 5;13 translocation.

    PubMed

    Stefanova, Margarita; Zemke, Katrin; Dimitrov, Boyan; Has, Christina; Kern, Johannes S; Bruckner-Tuderman, Leena; Kutsche, Kerstin

    2005-10-01

    Mutations in the type VII collagen gene (COL7A1) cause autosomal recessive and autosomal dominant inherited dystrophic epidermolysis bullosa (DEB). We report a family with three individuals who present blistering, scarring, hypo- and hyperpigmentation, and nail dystrophy suggestive for DEB. Whereas father and son carry a 5;13 translocation, the daughter shows a normal karyotype. Segregation analysis revealed that all affected family members inherited the same COL7A1 allele. Mutation analysis disclosed a heterozygous missense mutation, c.6227G > A (p.G2076D), in COL7A1 in all affected individuals. Delineation of the translocation breakpoints showed that the ERBB2IP (erbb2 interacting protein or Erbin) gene is disrupted in 5q13.1 and GPC6 in 13q32. GPC6 encodes glypican 6 belonging to a family of cell surface heparan sulfate proteoglycans. The binding partners of Erbin, BP230 (BPAG1) and the integrin beta4 subunit, both involved in hemidesmosome (HD) function, and the presence of Erbin in HD suggested that it plays a role in establishment and maintenance of cell-basement membrane adhesions. However, loss of function of one ERBB2IP copy or expression of a putative novel ERBB2IP fusion protein did not apparently modulate the DEB phenotype in both translocation patients. Nonetheless, one cannot yet exclude that ERBB2IP is a candidate for human blistering disorders such as epidermolysis bullosa.

  20. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and a Sulfated Glycan Chain.

    PubMed

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-12-02

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.

  1. Agrin Signalling Contributes to Cell Activation and Is Overexpressed in T Lymphocytes from Lupus Patients1

    PubMed Central

    Jury, Elizabeth C.; Eldridge, Jillian; Isenberg, David A.; Kabouridis, Panagiotis S.

    2008-01-01

    It is shown in this study that the heparan sulfate proteoglycan agrin is overexpressed in T cells isolated from patients with the autoimmune disease systemic lupus erythematosus (SLE). Freshly isolated CD4+ and CD8+ subpopulations both exhibited higher expression over healthy controls, which however, gradually declined when cells were cultured in vitro. Agrin expression was induced following in vitro activation of cells via their Ag receptor, or after treatment with IFN-α, a cytokine shown to be pathogenic in lupus. Furthermore, serum from SLE patients with active disease was able to induce agrin expression when added to T cells from healthy donors, an increase that was partially blocked by neutralizing anti-IFN-α Abs. Cross-linking agrin with mAbs resulted in rapid reorganization of the actin cytoskeleton, activation of the ERK MAPK cascade, and augmentation of anti-CD3-induced proliferation and IL-10 production, indicating that agrin is a functional receptor in T cells. These results demonstrate that agrin expression in human T cells is regulated by cell activation and IFN-α, and may have an important function during cell activation with potential implications for autoimmunity. PMID:18025246

  2. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling

    PubMed Central

    Baljinnyam, Erdene; Umemura, Masanari; Chuang, Christine; De Lorenzo, Mariana S; Iwatsubo, Mizuka; Chen, Suzie; Goydos, James S; Ishikawa, Yoshihiro; Whitelock, John M; Iwatsubo, Kousaku

    2014-01-01

    Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2-mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM-induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N-sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2-mediated cell–cell communication. PMID:24725364

  3. Heparanase expression in periapical granulomas and radicular cysts.

    PubMed

    Elad, S; Sherman, Y; Palmon, A; Vlodavsky, I; Or, R

    2013-01-01

    Heparanase is an endo-β-D-glucuronidase enzyme which degrades heparan sulfate glycosaminoglycan side chains of proteoglycans in the extracellular matrix and in basement membranes. The aim of this study was to evaluate the expression of heparanase in periapical granulomas (PGs) and radicular cysts (RCs). Immunohistochemistry was used to assess heparanase expression in PGs and RCs. Parameters including stain intensity, location and cell type were used to characterize heparanase expression in the periapical lesions. Ordered categories (from weak to strong) were used to compare the level of heparanase staining in the PG and RC groups. Both epithelial cells and inflammatory cells were positive for heparanase. The relative staining of the epithelial cells was strong, whereas the relative staining of the inflammatory cells was weak. Significant differences in immunohistochemical staining of epithelial cells were observed between RCs and PGs (p = 0.002). The relative expression of heparanase in epithelial cells in RCs was strong. In PGs, lesions with few or no epithelial cells, heparanase was predominantly expressed weakly by inflammatory cells. PGs and RCs have the same infectious origin. Therefore, the different cellular sources of heparanase in these periapical lesions may imply that this enzyme has specific pathogenetic functions in RCs and PGs.

  4. Fibromodulin reprogrammed cells: A novel cell source for bone regeneration.

    PubMed

    Li, Chen-Shuang; Yang, Pu; Ting, Kang; Aghaloo, Tara; Lee, Soonchul; Zhang, Yulong; Khalilinejad, Kambiz; Murphy, Maxwell C; Pan, Hsin Chuan; Zhang, Xinli; Wu, Benjamin; Zhou, Yan-Heng; Zhao, Zhihe; Zheng, Zhong; Soo, Chia

    2016-03-01

    Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However, currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability, painful and invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence, engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together, we have provided an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. Therefore, FReP cells present a high potential for cellular and gene therapy products for bone regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fibromodulin Reprogrammed Cells: A Novel Cell Source for Bone Regeneration

    PubMed Central

    Li, Chen-Shuang; Yang, Pu; Ting, Kang; Aghaloo, Tara; Lee, Soonchul; Zhang, Yulong; Khalilinejad, Kambiz; Murphy, Maxwell C.; Pan, Hsin Chuan; Zhang, Xinli; Wu, Benjamin; Zhou, Yan-Heng; Zhao, Zhihe; Zheng, Zhong; Soo, Chia

    2016-01-01

    Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However, currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability, painful and invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the ‘molecular blueprint’ of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence, engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together, we have provided an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. Therefore, FReP cells present a high potential for cellular and gene therapy products for bone regeneration. PMID:26774565

  6. Enhancement of matrix production and cell proliferation in human annulus cells under bioreactor culture.

    PubMed

    Yang, Xinlin; Wang, Daidong; Hao, Jianrong; Gong, Meiqing; Arlet, Vincent; Balian, Gary; Shen, Francis H; Li, Xudong Joshua

    2011-06-01

    Tissue engineering is a promising approach for treatment of disc degeneration. Herein, we evaluated effects of rotating bioreactor culture on the extracellular matrix production and proliferation of human annulus fibrosus (AF) cells. AF cells were embedded into alginate beads, and then cultured up to 3 weeks in a rotating wall vessel bioreactor or a static vessel. By real-time reverse transcription-polymerase chain reaction, expression of aggrecan, collagen type I and type II, and collagen prolyl 4-hydroxylase II was remarkably elevated, whereas expression of matrix metalloproteinase 3 and a disintegrin and metalloproteinase with thrombospondin motifs 5 was significantly decreased under bioreactor. Biochemical analysis revealed that the levels of the whole cell-associated proteoglycan and collagen were approximately five- and twofolds in rotating bioreactor, respectively, compared to those in static culture. Moreover, AF cell proliferation was augmented in rotating bioreactor. DNA contents were threefolds higher in rotating bioreactor than that in static culture. Expression of the proliferating cell nuclear antigen was robustly enhanced in rotating bioreactor as early as 1 week. Our findings suggested that rotating bioreactor culture would be an effective technique for expansion of human annulus cells for tissue engineering driven treatment of disc degeneration.

  7. The study of optical properties and proteoglycan content of tendons by PS-OCT

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Rupani, Asha; Weightman, Alan; Wimpenny, Ian; Bagnaninchi, Pierre; Ahearne, Mark

    2011-03-01

    Tendons are load-bearing collagenous tissues consisting mainly of type I collagen and various proteoglycans (PGs) including decorin and versican. It is widely accepted that highly orientated collagen fibers in tendons a play critical role for transferring tensile stress and demonstrate birefringent optical properties. However, the influence that proteoglycans have on the optical properties of tendons is yet to be fully elucidated. Tendinopathy (defined as a syndrome of tendon pain, tenderness and swelling that affects the normal function of the tissue) is a common disease associated with sporting injuries or degeneration. PG's are the essential components of the tendon extracellular matrix; changes in their quantities and compositions have been associated with tendinopathy. In this study, polarization sensitive optical coherence tomography (PS-OCT) has been used to reveal the relationship between proteoglycan content/location and birefringent properties of tendons. Tendons dissected from freshly slaughtered chickens were imaged at regular intervals by PS-OCT and polarizing light microscope during the extraction of PGs or glycosaminoglycans using established protocols (guanidine hydrochloride (GuHCl) or proteinase K solution). The macroscopic and microscopic time lapsed images are complimentary; mutually demonstrating that there was a higher concentration of PG's in the outer sheath region than in the fascicles; and the integrity of the sheath affected extraction process and the OCT birefringence bands. Extraction of PGs using GuHCl disturbed the organization of local collagen bundles, which corresponded to a reduction in the frequency of birefringence bands and the band width by PS-OCT. The feature of OCT penetration depth helped us to define the heterogeneous distribution of PG's in tendon, which was complimented by polarizing light microscopy. The results provide new insight of tendon structure and also demonstrate a great potential for using PS-OCT as a diagnostic tool to examine tendon pathology.

  8. Growth factor expression in cartilage wound healing: temporal and spatial immunolocalization in a rabbit auricular cartilage wound model.

    PubMed

    Bos, P K; van Osch, G J; Frenz, D A; Verhaar, J A; Verwoerd-Verhoef, H L

    2001-05-01

    The ability of cartilage to regenerate following injury is limited, potentially leading to osteoarthritis. Integrative cartilage repair, necessary for durable restoration of cartilage lesions, can be regarded as a wound healing process. Little is known about the effects of growth factors regulating acute cartilage wound healing in vivo. In this study the temporal expression patterns of growth factors and proteoglycan content in cartilage wound edges in vivo were studied. Cartilage wounds were created in rabbit ear cartilage using a 6 mm biopsy punch. Specimens were subsequently harvested 1, 3, 7, 14 and 28 days after surgery. Paraffin sections were thionin stained to visualize proteoglycan loss and replacement. Immunohistochemical staining of TGFbeta1, TGFbeta3, IGF-1, IGF-II and FGF-2 was used to define growth factor expression at the cartilage wound sites. Almost no effect of cartilage wounding was observed one day after surgery. A decrease of proteoglycan content, with a maximal loss at day 7, and a subsequent restoration was observed at the wound edges. Growth factor expression increased simultaneously. Maximal immunostaining for IGF1, IGFII, FGF2 and TGF-beta3 was observed at day 7, followed by a gradual decrease. Increased expression of TGFbeta1 lasted from day 3 until day 14. We have demonstrated the ability of chondrocytes to increase growth factor expression and to restore the rapid decrease in proteoglycan content in the initial phase following acute wounding. A temporal increase in intracellular growth factor expression suggests an autocrine and/or paracrine metabolic stimulation, which can be regarded a sign of chondrocytes repair capacity. Copyright 2001 OsteoArthritis Research Society International.

  9. In vivo contribution of amino acid sulfur to cartilage proteoglycan sulfation

    PubMed Central

    Pecora, Fabio; Gualeni, Benedetta; Forlino, Antonella; Superti-Furga, Andrea; Tenni, Ruggero; Cetta, Giuseppe; Rossi, Antonio

    2006-01-01

    Cytoplasmic sulfate for sulfation reactions may be derived either from extracellular fluids or from catabolism of sulfur-containing amino acids and other thiols. In vitro studies have pointed out the potential relevance of sulfur-containing amino acids as sources for sulfation when extracellular sulfate concentration is low or when its transport is impaired such as in DTDST [DTD (diastrophic dysplasia) sulfate transporter] chondrodysplasias. In the present study, we have considered the contribution of cysteine and cysteine derivatives to in vivo macromolecular sulfation of cartilage by using the mouse model of DTD we have recently generated [Forlino, Piazza, Tiveron, Della Torre, Tatangelo, Bonafe, Gualeni, Romano, Pecora, Superti-Furga et al. (2005) Hum. Mol. Genet. 14, 859–871]. By intraperitoneal injection of [35S]cysteine in wild-type and mutant mice and determination of the specific activity of the chondroitin 4-sulfated disaccharide in cartilage, we demonstrated that the pathway by which sulfate is recruited from the intracellular oxidation of thiols is active in vivo. To check whether cysteine derivatives play a role, sulfation of cartilage proteoglycans was measured after treatment for 1 week of newborn mutant and wild-type mice with hypodermic NAC (N-acetyl-L-cysteine). The relative amount of sulfated disaccharides increased in mutant mice treated with NAC compared with the placebo group, indicating an increase in proteoglycan sulfation due to NAC catabolism, although pharmacokinetic studies demonstrated that the drug was rapidly removed from the bloodstream. In conclusion, cysteine contribution to cartilage proteoglycan sulfation in vivo is minimal under physiological conditions even if extracellular sulfate availability is low; however, the contribution of thiols to sulfation becomes significant by increasing their plasma concentration. PMID:16719839

  10. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization.

    PubMed

    Sawyer, Andrew J; Kyriakides, Themis R

    2016-02-01

    Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of disulfide bonding and multimerization on proteoglycan 4's cartilage boundary lubricating ability and adsorption.

    PubMed

    Abubacker, Saleem; Ponjevic, Dragana; Ham, Hyun O; Messersmith, Phillip B; Matyas, John R; Schmidt, Tannin A

    2016-01-01

    The objectives of this study were to assess the cartilage boundary lubricating ability of (1) nonreduced (NR) disulfide-bonded proteoglycan 4 (PRG4) multimers versus PRG4 monomers and (2) NR versus reduced and alkylated (R/A) PRG4 monomers and to assess (3) the ability of NR PRG4 multimers versus monomers to adsorb to an articular cartilage surface. PRG4 was separated into two preparations, PRG4 multimer enriched (PRG4Multi+) and PRG4 multimer deficient (PRG4Multi-), using size exclusion chromatography (SEC) and characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The cartilage boundary lubricating ability of PRG4Multi+ and PRG4Multi- was compared at a physiological concentration (450 μg/mL) and assessed over a range of concentrations (45, 150, and 450 μg/mL). R/A and NR PRG4Multi- were evaluated at 450 μg/mL. Immunohistochemistry with anti-PRG4 antibody 4D6 was performed to visualize the adsorption of PRG4 preparations to the surface of articular cartilage explants. Separation into enriched populations of PRG4Multi+ and PRG4Multi- was achieved using SEC and was confirmed by SDS-PAGE. PRG4Multi+ and PRG4Multi- both functioned as effective friction-reducing cartilage boundary lubricants at 450 μg/mL, with PRG4Multi+ being more effective than PRG4Multi-. PRG4Multi+ lubricated in a dose-dependent manner, however, PRG4Multi- did not. R/A PRG4Multi- lubricated similar to NR PRG4Multi-. PRG4-containing solutions showed 4D6 immunoreactivity at the articular surface; the immunoreactive intensity of PRG4Multi+ appeared to be similar to SF, whereas PRG4Multi- appeared to have less intensity. These results demonstrate that the intermolecular disulfide-bonded multimeric structure of PRG4 is important for its ability to adsorb to a cartilage surface and function as a boundary lubricant. These findings contribute to a greater understanding of the molecular basis of cartilage boundary lubrication of PRG4. Elucidating the PRG4 structure-lubrication function relationship will further contribute to the understanding of PRG4's role in diarthrodial joint homeostasis and disease.

  12. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics.

    PubMed

    Buschmann, M D; Grodzinsky, A J

    1995-05-01

    Measured values of the swelling pressure of charged proteoglycans (PG) in solution (Williams RPW, and Comper WD; Biophysical Chemistry 36:223, 1990) and the ionic strength dependence of the equilibrium modulus of PG-rich articular cartilage (Eisenberg SR, and Grodzinsky AJ; J Orthop Res 3: 148, 1985) are compared to the predictions of two models. Each model is a representation of electrostatic forces arising from charge present on spatially fixed macromolecules and spatially mobile micro-ions. The first is a macroscopic continuum model based on Donnan equilibrium that includes no molecular-level structure and assumes that the electrical potential is spatially invariant within the polyelectrolyte medium (i.e. zero electric field). The second model is based on a microstructural, molecular-level solution of the Poisson-Boltzmann (PB) equation within a unit cell containing a charged glycosaminoglycan (GAG) molecule and its surrounding atmosphere of mobile ions. This latter approach accounts for the space-varying electrical potential and electrical field between the GAG constituents of the PG. In computations involving no adjustable parameters, the PB-cell model agrees with the measured pressure of PG solutions to within experimental error (10%), whereas the ideal Donnan model overestimates the pressure by up to 3-fold. In computations involving one adjustable parameter for each model, the PB-cell model predicts the ionic strength dependence of the equilibrium modulus of articular cartilage. Near physiological ionic strength, the Donnan model overpredicts the modulus data by 2-fold, but the two models coincide for low ionic strengths (C0 < 0.025M) where the spatially invariant Donnan potential is a closer approximation to the PB potential distribution. The PB-cell model result indicates that electrostatic forces between adjacent GAGs predominate in determining the swelling pressure of PG in the concentration range found in articular cartilage (20-80 mg/ml). The PB-cell model is also consistent with data (Eisenberg and Grodzinsky, 1985, Lai WM, Hou JS, and Mow VC; J Biomech Eng 113: 245, 1991) showing that these electrostatic forces account for approximately 1/2 (290kPa) the equilibrium modulus of cartilage at physiological ionic strength while absolute swelling pressures may be as low as approximately 25-100kPa. This important property of electrostatic repulsion between GAGs that are highly charged but spaced a few Debye lengths apart allows cartilage to resist compression (high modulus) without generating excessive intratissue swelling pressures.

  13. Human Mesenchymal Stem Cells Pretreated with Interleukin-1β and Stimulated with Bone Morphogenetic Growth Factor-3 Enhance Chondrogenesis.

    PubMed

    Hingert, Daphne; Barreto Henriksson, Helena; Brisby, Helena

    2018-05-01

    Low back pain is one of the most common ailments in western countries afflicting more than 80% of the population, and the main cause is considered to be degeneration of intervertebral discs. Interleukin-1β (IL-1β) is a vital inflammatory cytokine found in abundance in degenerated disc environment, whereas bone morphogenetic growth factor-3 (BMP-3) is believed to promote chondrogenesis through transforming growth factor-beta (TGF-β) pathway. The aim was to study the effects of BMP-3, IL-1β, and combination (pretreatment with IL-1β) on human mesenchymal stem cells (hMSCs) encapsulated in PuraMatrix™ hydrogel (Phg) especially in the absence of TGF-β in order to investigate the proliferation and differentiation ability of hMSCs over 28-day period. One hundred microliters of hMSCs' cell suspension was encapsulated between two layers of 100 μL hydrogels forming a sandwich-like structure. The encapsulated hMSCs were cultured in two sets of media, chondrogenic (C) and nonchondrogenic (nC) media, along with addition of BMP-3 (10 ng/mL) and IL-1β (10 ng/mL). To study the combined effects of BMP-3 and IL-1β, the encapsulated hMSCs were first pretreated with relevant media containing IL-1β for 24 h, and then the media was replaced by media containing BMP-3 for the remaining experimental time period. IL-1β pretreatment was carried out in both C and nC media. The samples were collected at day 7, 14, and 28. Proliferation and differentiation of hMSCs into chondrocyte-like cells were observed in all samples. Proteoglycan accumulation was observed in pretreatment samples in C media. The protein and gene expression of Sox-9 and COL2A1, respectively, showed the occurrence of chondrogenesis in all samples. High cell viability, proliferation, and differentiation were achieved in this in vitro model confirming that BMP-3 alone in the absence of TGF-β could drive hMSCs into chondrogenic lineage. Pretreatment with IL-1β followed by BMP-3 stimulation resulted in high proteoglycan accumulation compared to stimulation with growth factors or cytokine alone. This suggests that pretreatment with a pro-inflammatory cytokine before driving them into a chondrogenic lineage might be of importance also in vivo.

  14. Extracellular matrix components expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix.

    PubMed

    Felemban, Majed; Dorgau, Birthe; Hunt, Nicola Claire; Hallam, Dean; Zerti, Darin; Bauer, Roman; Ding, Yuchun; Collin, Joseph; Steel, David; Krasnogor, Natalio; Al-Aama, Jumana; Lindsay, Susan; Mellough, Carla; Lako, Majlinda

    2018-05-17

    The extracellular matrix (ECM) plays an important role in numerous processes including cellular proliferation, differentiation, migration, maturation, adhesion guidance and axonal growth. To date, there has been no detailed analysis of the ECM distribution during retinal ontogenesis in humans and the functional importance of many ECM components is poorly understood. In this study, the expression of key ECM components in adult mouse and monkey retina, developing and adult human retina and retinal organoids derived from human pluripotent stem cells was studied. Our data indicate that basement membrane ECMs (Fibronectin and Collagen IV) were expressed in Bruch's membrane and the inner limiting membrane of the developing human retina, whilst the hyalectins (Versican and Brevican), cluster of differentiation 44 (CD44), photoreceptor-specific ECMs Interphotoreceptor Matrix Proteoglycan 1 (IMPG1) and Interphotoreceptor Matrix Proteoglycan 2 (IMPG2) were detected in the developing interphotoreceptor matrix (IPM). The expression of IMPG1, Versican and Brevican in the developing IPM was conserved between human developing retina and human pluripotent stem cell-derived retinal organoids. Blocking the action of CD44 and IMPG1 in pluripotent stem cell derived retinal organoids affected the development of photoreceptors, their inner/outer segments and connecting cilia and disrupted IPM formation, with IMPG1 having an earlier and more significant impact. Together, our data suggest an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation during human retinogenesis. The expression and the role of many extracellular matrix (ECM) components during human retinal development is not fully understood. In this study, expression of key ECM components (Collagen IV, Fibronectin, Brevican, Versican, IMPG1 and IMPG2) was investigated during human retinal ontogenesis. Collagen IV and Fibronectin were expressed in Bruch's membrane; whereas Brevican, Versican, IMPG1 & IMPG2 in the developing interphotoreceptor matrix (IPM). Retinal organoids were successfully generated from pluripotent stem cells. The expression of ECM components was examined in the retinal organoids and found to recapitulate human retinal development in vivo. Using functional blocking experiments, we were able to highlight an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation. Copyright © 2018 Acta Materialia Inc. All rights reserved.

  15. Characterization of an Ex vivo Femoral Head Model Assessed by Markers of Bone and Cartilage Turnover

    PubMed Central

    Madsen, Suzi Hoegh; Goettrup, Anne Sofie; Thomsen, Gedske; Christensen, Søren Tvorup; Schultz, Nikolaj; Henriksen, Kim; Bay-Jensen, Anne-Christine; Karsdal, Morten Asser

    2011-01-01

    Objective: The pathophysiology of osteoarthritis involves the whole joint and is characterized by cartilage degradation and altered subchondral bone turnover. At present, there is a need for biological models that allow investigation of the interactions between the key cellular players in bone/cartilage: osteoblasts, osteoclasts, and chondrocytes. Methods: Femoral heads from 3-, 6-, 9-, and 12-week-old female mice were isolated and cultured for 10 days in serum-free media in the absence or presence of IGF-I (100 nM) (anabolic stimulation) or OSM (10 ng/mL) + TNF-α (20 ng/mL) (catabolic stimulation). Histology on femoral heads before and after culture was performed, and the growth plate size was examined to evaluate the effects on cell metabolism. The conditioned medium was examined for biochemical markers of bone and cartilage degradation/formation. Results: Each age group represented a unique system regarding the interest of bone or cartilage metabolism. Stimulation over 10 days with OSM + TNF-α resulted in depletion of proteoglycans from the cartilage surface in all ages. Furthermore, OSM + TNF-α decreased growth plate size, whereas IGF-I increased the size. Measurements from the conditioned media showed that OSM + TNF-α increased the number of osteoclasts by approximately 80% and induced bone and cartilage degradation by approximately 1200% and approximately 2600%, respectively. Stimulation with IGF-I decreased the osteoclast number and increased cartilage formation by approximately 30%. Conclusion: Biochemical markers and histology together showed that the catabolic stimulation induced degradation and the anabolic stimulation induced formation in the femoral heads. We propose that we have established an explant whole-tissue model for investigating cell-cell interactions, reflecting parts of the processes in the pathogenesis of joint degenerative diseases. PMID:26069585

  16. Betaglycan expression is transcriptionally up-regulated during skeletal muscle differentiation. Cloning of murine betaglycan gene promoter and its modulation by MyoD, retinoic acid, and transforming growth factor-beta.

    PubMed

    Lopez-Casillas, Fernando; Riquelme, Cecilia; Perez-Kato, Yoshiaki; Ponce-Castaneda, M Veronica; Osses, Nelson; Esparza-Lopez, Jose; Gonzalez-Nunez, Gerardo; Cabello-Verrugio, Claudio; Mendoza, Valentin; Troncoso, Victor; Brandan, Enrique

    2003-01-03

    Betaglycan is a membrane-anchored proteoglycan co-receptor that binds transforming growth factor beta (TGF-beta) via its core protein and basic fibroblast growth factor through its glycosaminoglycan chains. In this study we evaluated the expression of betaglycan during the C(2)C(12) skeletal muscle differentiation. Betaglycan expression, as determined by Northern and Western blot, was up-regulated during the conversion of myoblasts to myotubes. The mouse betaglycan gene promoter was cloned, and its sequence showed putative binding sites for SP1, Smad3, Smad4, muscle regulatory factor elements such as MyoD and MEF2, and retinoic acid receptor. Transcriptional activity of the mouse betaglycan promoter reporter was also up-regulated in differentiating C(2)C(12) cells. We found that MyoD, but not myogenin, stimulated this transcriptional activity even in the presence of high serum. Betaglycan promoter activity was increased by RA and inhibited by the three isoforms of TGF-beta. On the other hand, basic fibroblast growth factor, BMP-2, and hepatocyte growth factor/scatter factor, which are inhibitors of myogenesis, had little effect. In myotubes, up-regulated betaglycan was also detectable by TGF-beta affinity labeling and immunofluorescence microscopy studies. The latter indicated that betaglycan was localized both on the cell surface and in the ECM. Forced expression of betaglycan in C(2)C(12) myoblasts increases their responsiveness to TGF-beta2, suggesting that it performs a TGF-beta presentation function in this cell lineage. These results indicate that betaglycan expression is up-regulated during myogenesis and that MyoD and RA modulate its expression by a mechanism that is independent of myogenin.

  17. Allelic variation of the Lyme disease spirochete adhesin DbpA influences spirochetal binding to decorin, dermatan sulfate, and mammalian cells.

    PubMed

    Benoit, Vivian M; Fischer, Joshua R; Lin, Yi-Pin; Parveen, Nikhat; Leong, John M

    2011-09-01

    After transmission by an infected tick, the Lyme disease spirochete, Borrelia burgdorferi sensu lato, colonizes the mammalian skin and may disseminate systemically. The three major species of Lyme disease spirochete--B. burgdorferi sensu stricto, B. garinii, and B. afzelii--are associated with different chronic disease manifestations. Colonization is likely promoted by the ability to bind to target tissues, and Lyme disease spirochetes utilize multiple adhesive molecules to interact with diverse mammalian components. The allelic variable surface lipoprotein decorin binding protein A (DbpA) promotes bacterial binding to the proteoglycan decorin and to the glycosaminoglycan (GAG) dermatan sulfate. To assess allelic variation of DbpA in GAG-, decorin-, and cell-binding activities, we expressed dbpA alleles derived from diverse Lyme disease spirochetes in B. burgdorferi strain B314, a noninfectious and nonadherent strain that lacks dbpA. Each DbpA allele conferred upon B. burgdorferi strain B314 the ability to bind to cultured kidney epithelial (but not glial or endothelial) cells, as well as to purified decorin and dermatan sulfate. Nevertheless, allelic variation of DbpA was associated with dramatic differences in substrate binding activity. In most cases, decorin and dermatan sulfate binding correlated well, but DbpA of B. afzelii strain VS461 promoted differential binding to decorin and dermatan sulfate, indicating that the two activities are separable. DbpA from a clone of B. burgdorferi strain N40 that can cause disseminated infection in mice displayed relatively low adhesive activity, indicating that robust DbpA-mediated adhesive activity is not required for spread in the mammalian host.

  18. The heparin/heparan sulfate sequence that interacts with cyclophilin B contains a 3-O-sulfated N-unsubstituted glucosamine residue.

    PubMed

    Vanpouille, Christophe; Deligny, Audrey; Delehedde, Maryse; Denys, Agnès; Melchior, Aurélie; Liénard, Xavier; Lyon, Malcolm; Mazurier, Joël; Fernig, David G; Allain, Fabrice

    2007-08-17

    Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.

  19. Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus transformed 3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turley, E.A.; Moore, D.; Hayden, L.J.

    1987-06-02

    A hyaluronic acid binding fraction was purified from the supernatant media of both 3T3 and murine sarcoma virus (MSV) transformed 3T3 cultures by hyaluronate and immunoaffinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved the hyaluronate affinity-purified fraction into three major protein bands of estimated molecular weight (M/sub r,e/) 70K, 66K, and 56K which contained hyaluronate binding activity and which were termed hyaluronate binding proteins (HABP). Hyaluronate affinity chromatography combined with immunoaffinity chromatography, using antibody directed against the larger HABP, allowed a 20-fold purification of HABP. Fractions isolated from 3T3 supernatant medium also contained additional binding molecules in the molecular weightmore » range of 20K. This material was present in vanishingly small amounts and was not detected with a silver stain or with (/sup 35/S)methionine label. The three protein species isolated by hyaluronate affinity chromatography (M/sub r,e/ 70K, 66K, and 56K) were related to one another since they shared antigenic determinants and exhibited similar pI values. In isocratic conditions, HABP occurred as aggregates of up to 580 kilodaltons. Their glycoprotein nature was indicated by their incorporation of /sup 3/H-sugars. Enzyme-linked immunoadsorbent assay showed they were antigenically distinct from other hyaluronate binding proteins such as fibronectin, cartilage link protein, and the hyaluronate binding region of chondroitin sulfate proteoglycan. The results are discussed with regard both to the functional significance of hyaluronate-cell surface interactions in transformed as well as normal cells and to the relationship of HABP to other reported hyaluronate binding proteins.« less

  20. Role of Chondroitin Sulfate (CS) Modification in the Regulation of Protein-tyrosine Phosphatase Receptor Type Z (PTPRZ) Activity: PLEIOTROPHIN-PTPRZ-A SIGNALING IS INVOLVED IN OLIGODENDROCYTE DIFFERENTIATION.

    PubMed

    Kuboyama, Kazuya; Fujikawa, Akihiro; Suzuki, Ryoko; Tanga, Naomi; Noda, Masaharu

    2016-08-26

    Protein-tyrosine phosphatase receptor type Z (PTPRZ) is predominantly expressed in the developing brain as a CS proteoglycan. PTPRZ has long (PTPRZ-A) and short type (PTPRZ-B) receptor forms by alternative splicing. The extracellular CS moiety of PTPRZ is required for high-affinity binding to inhibitory ligands, such as pleiotrophin (PTN), midkine, and interleukin-34; however, its functional significance in regulating PTPRZ activity remains obscure. We herein found that protein expression of CS-modified PTPRZ-A began earlier, peaking at approximately postnatal days 5-10 (P5-P10), and then that of PTN peaked at P10 at the developmental stage corresponding to myelination onset in the mouse brain. Ptn-deficient mice consistently showed a later onset of the expression of myelin basic protein, a major component of the myelin sheath, than wild-type mice. Upon ligand application, PTPRZ-A/B in cultured oligodendrocyte precursor cells exhibited punctate localization on the cell surface instead of diffuse distribution, causing the inactivation of PTPRZ and oligodendrocyte differentiation. The same effect was observed with the removal of CS chains with chondroitinase ABC but not polyclonal antibodies against the extracellular domain of PTPRZ. These results indicate that the negatively charged CS moiety prevents PTPRZ from spontaneously clustering and that the positively charged ligand PTN induces PTPRZ clustering, potentially by neutralizing electrostatic repulsion between CS chains. Taken altogether, these data indicate that PTN-PTPRZ-A signaling controls the timing of oligodendrocyte precursor cell differentiation in vivo, in which the CS moiety of PTPRZ receptors maintains them in a monomeric active state until its ligand binding. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Effects of Microgravity on Quail Eye Development

    NASA Technical Reports Server (NTRS)

    Conrad, Gary W.

    1996-01-01

    During embryonic development, the most exposed tissue of the eye, the cornea, becomes differentially bulged outward because of constant intraocular pressure (IOP). The component cells of the cornea secrete a unique, paracrystalline extracellular matrix (the stroma) composed of orthogonal plies of collagen fibrils and proteoglycans. The cornea remains avascular, becomes transparent, and becomes more densely innervated than any other region on the surface of the body. Corneas from chicken embryos that flew on STS-47 contain many more cellular processes in the outermost region of the stroma (Bowman's Layer) than any corresponding region of control corneas. These processes appear to be cross-sections of cytoplasmic extensions of cells and are found in that region of Bowman's Layer immediately beneath the basal lamina of the corneal epithelium. Here, we propose to compare corneas of quail that flew in space on Mir-1 with those of ground controls to determine if the same unusual cellular processes are seen as in the space-flown chicken corneas. In the central regions of such space-flown corneas, the processes appear to be either portions of basal epithelial cells whose pseudopodial extensions have migrated down through their own basal lamina into the stroma, or corneal nerves that have innervated the corneal stroma in an unusual manner. Eyeballs of embryos fixed on Mir-1, control embryos fixed at KSC and clinostated embryos fixed at KSU, will provide corneas for this study. Electron microscopy will be used to assess the distribution of the cellular processes in Bowman's Layer in the central region of each cornea. Attempts also will be made to determine the relative glycosaminoglycan distributions in the corneal stromas by indirect immunofluorscence and to record whole-mount staining patterns of the corneal nerves.

  2. Syndecan-4 shedding impairs macrovascular angiogenesis in diabetes mellitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ran; Xie, Jun; Wu, Han

    Purpose: Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan cell surface receptor that modulates cell proliferation, migration, mechanotransduction, and endocytosis. The extracellular domain of synd4 sheds heavily in acute inflammation, but the shedding of synd4 in chronic inflammation, such as diabetes mellitus (DM), is still undefined. We investigated the alterations of synd4 endothelial expression in DM and the influence of impaired synd4 signaling on angiogenesis in human umbilical vein endothelial cells (HUVECs), diabetic rats, synd4 null mice, and db/db mice. Material and methods: HUVECs were incubated with advanced glycation end products (AGEs). Western blot analysis was used to determine synd4more » protein expression and ELISA was used to detect soluble synd4 fragments. The concentration of synd4 in the aortic endothelia of diabetic rats was detected by immunohistochemical staining. Aortic ring assays were performed to study the process of angiogenesis in the diabetic rats and in synd4 null and db/db mice. Recombinant adenoviruses containing the synd4 gene or null were constructed to enhance synd4 aortic expression in db/db mice. Results: Western blot analysis showed decreased expression of the synd4 extracellular domain in HUVECs, and ELISA detected increased soluble fragments of synd4 in the media. Synd4 endothelial expression in the aortas of diabetic rats was decreased. Aortic ring assay indicated impaired angiogenesis in synd4 null and db/db mice, which was partially reversed by synd4 overexpression in db/db mice. Conclusion: Synd4 shedding from vascular endothelial cells played an important role in the diabetes-related impairment of angiogenesis. -- Highlights: •Synd4 shedding from endothelial cells is accelerated under the stimulation of AGEs. •Extracellular domain of synd4 is diminished in the endothelium of DM rats. •Aortic rings of synd4 null mice showed impaired angiogenesis. •Overexpression of synd4 partly rescues macrovascular angiogenesis in db/db mice.« less

  3. Low Piconewton Towing of CNS Axons against Diffusing and Surface-Bound Repellents Requires the Inhibition of Motor Protein-Associated Pathways

    NASA Astrophysics Data System (ADS)

    Kilinc, Devrim; Blasiak, Agata; O'Mahony, James J.; Lee, Gil U.

    2014-11-01

    Growth cones, dynamic structures at axon tips, integrate chemical and physical stimuli and translate them into coordinated axon behaviour, e.g., elongation or turning. External force application to growth cones directs and enhances axon elongation in vitro; however, direct mechanical stimulation is rarely combined with chemotactic stimulation. We describe a microfluidic device that exposes isolated cortical axons to gradients of diffusing and substrate-bound molecules, and permits the simultaneous application of piconewton (pN) forces to multiple individual growth cones via magnetic tweezers. Axons treated with Y-27632, a RhoA kinase inhibitor, were successfully towed against Semaphorin 3A gradients, which repel untreated axons, with less than 12 pN acting on a small number of neural cell adhesion molecules. Treatment with Y-27632 or monastrol, a kinesin-5 inhibitor, promoted axon towing on substrates coated with chondroitin sulfate proteoglycans, potent axon repellents. Thus, modulating key molecular pathways that regulate contractile stress generation in axons counteracts the effects of repellent molecules and promotes tension-induced growth. The demonstration of parallel towing of axons towards inhibitory environments with minute forces suggests that mechanochemical stimulation may be a promising therapeutic approach for the repair of the damaged central nervous system, where regenerating axons face repellent factors over-expressed in the glial scar.

  4. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  5. Distribution of type VI collagen in association with osteoblast lineages in the groove of Ranvier during rat postnatal development.

    PubMed

    Kohara, Yukihiro; Soeta, Satoshi; Izu, Yayoi; Arai, Kiyotaka; Amasaki, Hajime

    2016-11-01

    In the groove of Ranvier (GOR), osteoblast lineages form bone bark, which develops into endosteal cortical bone. This ossification process is thought to be regulated by the microenvironment in the GOR. Type VI collagen (Col VI), an extracellular matrix (ECM) protein found in the periosteum/perichondrium, mediates osteoblast differentiation via the cell-surface receptor neural/glial antigen 2 (NG2) chondroitin sulfate proteoglycan. In order to clarify the function of Col VI during osteoblast differentiation in the GOR, in the present study, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the rat tibia proximal end during postnatal growing periods by immunohistochemistry. Our data revealed that Col VI accumulated in the ECM of the GOR middle layer and that Col VI accumulation was reduced and disappeared in the inner and middle lower regions. Runt-related transcription factor 2-immunoreactive pre-osteoblasts expressed NG2 in Col VI-immunopositive areas. However, Osterix-immunoreactive mature osteoblasts were only found in the Col VI-immunonegative area. These findings indicate that Col VI provided a characteristic microenvironment in the GOR and that NG2-Col VI interactions may regulate the differentiation of osteoblast lineages prior to terminal maturation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Reelin Promotes Neuronal Orientation and Dendritogenesis during Preplate Splitting

    PubMed Central

    Nichols, Anna J.

    2010-01-01

    The secreted ligand Reelin is thought to regulate the translocation and positioning of prospective layer 6 (L6) neurons into the preplate, a plexus of neurons overlying the ventricular zone. We examined wild type and Reelin-deficient cortices and found that L6 neurons were equivalently positioned beneath the pia during the period of preplate splitting and initial cortical plate (CP) formation. The absence of detectable L6 ectopia in “reeler” cortices at this developmental time point indicates that Reelin-signaling might not regulate L6 neuron migration or gross positioning during preplate splitting. To explore the acute response of L6 neurons to Reelin, subpial injections of Reelin were made into Reelin-deficient explants. Reelin injection caused L6 neurons to orient their nuclei and polarize their Golgi toward the pia while initiating exuberant dendritic (MAP2+) outgrowth within 4 h. This rapid Reelin-dependent neuronal orientation and alignment created CP-like histology without any significant change in the mean position of the population of L6 neurons. Conversely, subplate cells and chondroitin sulfate proteoglycan immunoreactivity were found at significantly deeper positions from the pial surface after injection, suggesting that Reelin partially rescues preplate splitting within 4 h. Thus, Reelin has a direct role in promoting rapid morphological differentation and orientation of L6 neurons during preplate splitting. PMID:20064940

  7. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    NASA Astrophysics Data System (ADS)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  8. Osteoarthritis and rheumatoid arthritis pannus have similar qualitative metabolic characteristics and pro-inflammatory cytokine response.

    PubMed

    Furuzawa-Carballeda, J; Macip-Rodríguez, P M; Cabral, A R

    2008-01-01

    Pannus in osteoarthritis (OA) has only recently been characterized. Little is known, however, regarding the behavior of OA pannus in vitro compared to rheumatoid arthritis (RA) pannus. The purpose of our study was to compare OA with RA pannus. Pannus and synovial tissue co-cultures from 5 patients with OA and 5 patients with RA obtained during arthroplasty were studied. Pannus was defined as the microscopic invasive granulation tissue covering the articular surface. Tissues were cultured for 7 days and stained with Alcian Blue technique. Interleukin-1beta (IL-1beta), IL-8, IL-10, IL-12, tumor necrosis factor-alpha (TNF-alpha), and interferon gamma (IFN-gamma) were also determined in supernatants by ELISA. Cartilage oligomeric matrix protein (COMP), type II collagen, TNF-alpha, IL-10 and Ki-67 expression were also detected by immunohistochemistry. All patients had vascular or fibrous pannus. Synovial proliferation, inflammatory infiltrates and a decrease of extracellular matrix proteins were observed in all tissue samples. Chondrocyte proliferation was lower in OA than RA cartilage. OA synovial tissue expressed lower levels of proteoglycans than RA synoyium. Type II collagen levels were lower in OA than in RA cartilage. Significantly higher levels of IL-1beta were found in the supernatants of RA pannus compared to OA pannus (p<0.05). High but similar levels of TNF-alpha, IL-8 and TIMP-1 were detected in OA and RA pannus supernatants. IL-10, IL-12 and IFN-gamma were undetectable. RA and OA pannus had similar pro-inflammatory and anti-inflammatory cytokine profile expression. OA cartilage, synovial tissue and pannus had lower production of proteoglycans, type II collagen and IL-1beta. It remains to be elucidated why OA pannus invades the cartilage surface but does not cause the marginal erosions typically seen in RA.

  9. Interaction of electromagnetic fields with chondrocytes in gel culture

    NASA Astrophysics Data System (ADS)

    Grodzinsky, Alan J.; Buschmann, Michael D.; Gluzband, Yehezkiel A.

    1992-01-01

    The specific objectives of this research period were: (1) to quantify the effect of applied electric fields on chondrocyte metabolism, using a range of stimulation frequencies and amplitudes; (2) to compare the chondrocyte biosynthetic response to applied fields at early times in agarose gel culture before an extracellular matrix has accumulated and at later times after significant deposition of matrix around and between the cells; and (3) to begin to interpret the biosynthetic response to applied fields in terms of models of physical mechanisms. The results of these studies suggest that electric fields applied to chondrocytes in agarose can modulate the synthesis of proteoglycans and protein constituents. Biosynthesis may be inhibited or stimulated depending on the amplitude of the applied current density. In addition, the presence of extracellular matrix may enhance the ability of normal chondrocytes and cells in intact cartilage to respond to electric fields, although the presence of matrix was not required for the stimulatory response to be observed with Swarm rat chondrosarcoma cells.

  10. The Caenorhabditis elegans Ephrin EFN-4 Functions Non-cell Autonomously with Heparan Sulfate Proteoglycans to Promote Axon Outgrowth and Branching

    PubMed Central

    Schwieterman, Alicia A.; Steves, Alyse N.; Yee, Vivian; Donelson, Cory J.; Bentley, Melissa R.; Santorella, Elise M.; Mehlenbacher, Taylor V.; Pital, Aaron; Howard, Austin M.; Wilson, Melissa R.; Ereddia, Danielle E.; Effrein, Kelsie S.; McMurry, Jonathan L.; Ackley, Brian D.; Chisholm, Andrew D.; Hudson, Martin L.

    2016-01-01

    The Eph receptors and their cognate ephrin ligands play key roles in many aspects of nervous system development. These interactions typically occur within an individual tissue type, serving either to guide axons to their terminal targets or to define boundaries between the rhombomeres of the hindbrain. We have identified a novel role for the Caenorhabditis elegans ephrin EFN-4 in promoting primary neurite outgrowth in AIY interneurons and D-class motor neurons. Rescue experiments reveal that EFN-4 functions non-cell autonomously in the epidermis to promote primary neurite outgrowth. We also find that EFN-4 plays a role in promoting ectopic axon branching in a C. elegans model of X-linked Kallmann syndrome. In this context, EFN-4 functions non-cell autonomously in the body-wall muscle and in parallel with HS modification genes and HSPG core proteins. This is the first report of an epidermal ephrin providing a developmental cue to the nervous system. PMID:26645816

  11. Expression of Glycosaminoglycan Epitopes During Zebrafish Skeletogenesis

    PubMed Central

    Hayes, Anthony J; Mitchell, Ruth E; Bashford, Andrew; Reynolds, Scott; Caterson, Bruce; Hammond, Chrissy L

    2013-01-01

    Background: The zebrafish is an important developmental model. Surprisingly, there are few studies that describe the glycosaminoglycan composition of its extracellular matrix during skeletogenesis. Glycosaminoglycans on proteoglycans contribute to the material properties of musculo skeletal connective tissues, and are important in regulating signalling events during morphogenesis. Sulfation motifs within the chain structure of glycosaminoglycans on cell-associated and extracellular matrix proteoglycans allow them to bind and regulate the sequestration/presentation of bioactive signalling molecules important in musculo-skeletal development. Results: We describe the spatio-temporal expression of different glycosaminoglycan moieties during zebrafish skeletogenesis with antibodies recognising (1) native sulfation motifs within chondroitin and keratan sulfate chains, and (2) enzyme-generated neoepitope sequences within the chain structure of chondroitin sulfate (i.e., 0-, 4-, and 6-sulfated isoforms) and heparan sulfate glycosaminoglycans. We show that all the glycosaminoglycan moieties investigated are expressed within the developing skeletal tissues of larval zebrafish. However, subtle changes in their patterns of spatio-temporal expression over the period examined suggest that their expression is tightly and dynamically controlled during development. Conclusions: The subtle differences observed in the domains of expression between different glycosaminoglycan moieties suggest differences in their functional roles during establishment of the primitive analogues of the skeleton. Developmental Dynamics 242:778–789, 2013. © 2013 Wiley Periodicals, Inc. Key Findings The developing zebrafish skeleton expresses many different glycosaminoglycan modifications. Multiple different glycosaminoglycan epitopes are dynamically expressed in the craniofacial skeleton. Expression of chondroitin sulfate moieties are dynamically expressed in the vertebral column and precede mineralisation. PMID:23576310

  12. A Functional Variant of SMAD4 Enhances Thoracic Aortic Aneurysm and Dissection Risk through Promoting Smooth Muscle Cell Apoptosis and Proteoglycan Degradation.

    PubMed

    Wang, Ying; Huang, Hao-Yue; Bian, Guang-Liang; Yu, Yun-Sheng; Ye, Wen-Xue; Hua, Fei; Chen, Yi-Huan; Shen, Zhen-Ya

    2017-07-01

    Recent studies indicate important roles for SMAD4 in SMCs proliferation, extracellular matrix maintenance, and blood vessel remodeling. However, the genetic effects of SMAD4 in the pathogenesis of thoracic aortic aneurysm and dissection (TAAD) are still largely unknown. Here we identified a functional variant of SMAD4 which might be involved in the pathological progression of TAAD. Five tagging SNPs of SMAD4 were genotyped in 202 TAAD cases and 400 controls using MALDI-TOF. rs12455792 CT or TT variant genotypes was associated with an significantly elevated TAAD risk (adjusted OR=1.58, 95%CI=1.09-2.30) under a dominant genetic model. It was located in the 5'UTR and predicted to influence transcription activity and RNA folding of SMAD4. In luciferase reporter assay, rs12455792 T allele markedly decreased luciferase activities. Accordingly, SMAD4 expression in tissues was lower in patients with CT or TT genotypes, compared with CC. Movat's pentachrome showed that rs12455792 T allele enhanced SMCs loss and fibers accumulation. With angiotensin II induction, rate of Apoptotic SMCs was significantly higher while SMAD4 silenced. Moreover, rs12455792 T allele also increased Versican degradation via ADAMTS-4. In conclusion, this variant might promote SMCs apoptosis and proteoglycans degradation, and further facilitate the progress of TAAD. Our findings identified rs12455792 as a predictor for progression of vascular media pathological changes related thoracic aortic disorders. Copyright © 2017. Published by Elsevier B.V.

  13. Expression of small leucine-rich extracellular matrix proteoglycans biglycan and lumican reveals oral lichen planus malignant potential.

    PubMed

    Lončar-Brzak, Božana; Klobučar, Marko; Veliki-Dalić, Irena; Sabol, Ivan; Kraljević Pavelić, Sandra; Krušlin, Božo; Mravak-Stipetić, Marinka

    2018-03-01

    The aim of this study was to examine molecular alterations on the protein level in lesions of oral lichen planus (OLP), oral squamous cell carcinoma (OSCC) and healthy mucosa. Global protein profiling methods based on liquid chromatography coupled to mass spectrometry (LC-MS) were used, with a special emphasis on evaluation of deregulated extracellular matrix molecules expression, as well as on analyses of IG2F and IGFR2 expression in healthy mucosa, OLP and OSCC tissues by comparative semi-quantitative immunohistochemistry. Mass spectrometry-based proteomics profiling of healthy mucosa, OLP and OSCC tissues (and accompanied histologically unaltered tissues, respectively) identified 55 extracellular matrix proteins. Twenty among identified proteins were common to all groups of samples. Expression of small leucine-rich extracellular matrix proteoglycans lumican and biglycan was found both in OSCC and OLP and they were validated by Western blot analysis as putative biomarkers. A significant increase (p < 0.05) of biglycan expression in OLP-AT group was determined in comparison with OLP-T group, while lumican showed significant up-regulation (p < 0.05) in OLP-T and OSCC-T groups vs. adjacent and control tissue groups. Biglycan expression was only determined in OSCC-AT group. Immunohistochemical analysis of IGF2 and IG2FR expression revealed no significant difference among groups of samples. Biglycan and lumican were identified as important pathogenesis biomarkers of OLP that point to its malignant potential.

  14. Behavior of sea urchin primary mesenchyme cells in artificial extracellular matrices.

    PubMed

    Katow, H

    1986-02-01

    The primary mesenchyme cells (PMCs) were separated from the mesenchyme blastulae of Pseudocentrotus depressus using differential adhesiveness of these cells to plastic Petri dishes. These cells were incubated in various artificial extracellular matrices (ECMs) including horse serum plasma fibronectin, mouse EHS sarcoma laminin, mouse EHS sarcoma type IV collagen, and porcine skin dermatan sulfate. The cell behavior was monitored by a time-lapse videomicrograph and analysed with a microcomputer. The ultrastructure of the artificial ECM was examined by transmission electron microscopy (TEM), while the ultrastructure of the PMCs was examined by scanning electron microscopy (SEM). The PMCs did not migrate in type IV collagen gel, laminin or dermatan sulfate matrix either with or without collagen gel, whereas PMCs in the matrix which was composed of fibronectin and collagen gel migrated considerably. However, the most active and extensive PMC migration was seen in the matrix which contained dermatan sulfate in addition to fibronectin and collagen gel. This PMC migration involved an increase not only of migration speed but also of proportion of migration-promoted cells. These results support the hypothesis that the mechanism of PMC migration involves fibronectin, collagen and sulfated proteoglycans which contain dermatan sulfate.

  15. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T-lymphocytes

    PubMed Central

    Caruana, Ignazio; Savoldo, Barbara; Hoyos, Valentina; Weber, Gerrit; Liu, Hao; Kim, Eugene S.; Ittmann, Michael M.; Marchetti, Dario; Dotti, Gianpietro

    2015-01-01

    Adoptive transfer of chimeric antigen receptor (CAR)-redirected T lymphocytes (CAR-T cells) has had less striking effects in solid tumors1–3 than in lymphoid malignancies4, 5. Although active tumor-mediated immunosuppression may play a role in limiting efficacy6, functional changes in T lymphocytes following their ex vivo manipulation may also account for cultured CAR-T cells’ reduced ability to penetrate stroma-rich solid tumors. We therefore studied the capacity of human in vitro-cultured CAR-T cells to degrade components of the extracellular matrix (ECM). In contrast to freshly isolated T lymphocytes, we found that in vitro-cultured T lymphocytes lack expression of the enzyme heparanase (HPSE) that degrades heparan sulphate proteoglycans, which are main components of ECM. We found that HPSE mRNA is down regulated in in vitro-expanded T cells, which may be a consequence of p53 binding to the HPSE gene promoter. We therefore engineered CAR-T cells to express HPSE and showed improved capacity to degrade ECM, which promoted tumor T-cell infiltration and antitumor activity. Employing this strategy may enhance the activity of CAR-T cells in individuals with stroma-rich solid tumors. PMID:25849134

  16. Link Protein N-Terminal Peptide as a Potential Stimulating Factor for Stem Cell-Based Cartilage Regeneration

    PubMed Central

    Xiong, Zekang; Lin, Hui; Zhao, Lei; Li, Zhiliang; Wang, Zhe; Peggrem, Shaun; Xia, Zhidao

    2018-01-01

    Background Link protein N-terminal peptide (LPP) in extracellular matrix (ECM) of cartilage could induce synthesis of proteoglycans and collagen type II in cartilaginous cells. Cartilage stem/progenitor cells (CSPCs), the endogenous stem cells in cartilage, are important in cartilage degeneration and regeneration. We hypothesized that LPP could be a stimulator for stem cell-based cartilage regeneration by affecting biological behaviors of CSPC. Methods CSPCs were isolated from rat knee cartilage. We evaluated the promoting effect of LPP on proliferation, migration, and chondrogenic differentiation of CSPCs. The chondrogenic differentiation-related genes and proteins were quantitated. Three-dimensional culture of CSPC was conducted in the presence of TGF-β3 or LPP, and the harvested pellets were analyzed to assess the function of LPP on cartilage regeneration. Results LPP stimulated the proliferation of CSPC and accelerated the site-directional migration. Higher expression of SOX9, collagen II, and aggrecan were demonstrated in CSPCs treated with LPP. The pellets treated with LPP showed more distinct characteristics of chondroid differentiation than those with TGF-β3. Conclusion LPP showed application prospect in cartilage regeneration medicine by stimulating proliferation, migration, and chondrogenic differentiation of cartilage stem/progenitor cells. PMID:29531532

  17. Effects of recombinant human extracellular-superoxide dismutase type C on myocardial infarct size in pigs.

    PubMed

    Hatori, N; Sjöquist, P O; Marklund, S L; Rydén, L

    1992-09-01

    The efficacy of human extracellular-superoxide dismutase type C (EC-SOD C) to limit infarct size after ischemia and reperfusion was explored and compared to that of EC-SOD C combined with catalase (CAT) and to that of CAT alone. EC-SOD C binds to heparan sulphate proteoglycan on the cell surfaces. Thirty-two pigs were subjected to 45 min of myocardial ischemia followed by 4 h of reperfusion. Control pigs (group A; n = 8) received 300 mL of saline into the great cardiac vein during a 30-min period started 5 min prior to reperfusion; pigs in group B (EC-SOD C; n = 8) got 16.6 mg of EC-SOD C; pigs in group C (EC-SOD C + CAT; n = 8) got 16.6 mg of EC-SOD C together with 150 mg of CAT. Pigs in group D (CAT; n = 8) received 150 mg of CAT. In groups B, C, and D, the drug was dissolved in saline and infused into the great cardiac. Infarct size expressed as percent of area at risk was smaller in groups B (14.5 +/- 16.7%) and C (40.8 +/- 13.3%) than in groups A (78.8 +/- 8.6%) and D (67.2 +/- 18.6%; p less than .05). Creatine kinase (CK) activity in ischemic myocardium was higher in groups B (1740 +/- 548 U/g) and C (1729 +/- 358 U/g) than in groups A (1184 +/- 237 U/g) and D (1251 +/- 434 U/g; p less than .05). There was an inverse relation (r = -.83) between infarct size and CK content. The EC-SOD C infusions resulted in only minimal increases in plasma SOD activities. In conclusion, the presence of SOD on the cell surfaces is of importance in the prevention of reperfusion injury rather than circulating SOD.

  18. Solute Transport in the Bone Lacunar-Canalicular System (LCS).

    PubMed

    Wang, Liyun

    2018-02-01

    Solute transport in the lacunar-canalicular system (LCS) plays important roles in osteocyte metabolism and cell-cell signaling. This review will summarize recent studies that establish pericellular matrix (PCM), discovered inside the LCS, as a crucial regulator of solute transport in bone. Utilizing confocal imaging and mathematical modeling, recent studies successfully quantified molecular diffusion and convection in the LCS as well as the size-dependent sieving effects of the PCM, leading to the quantification of the effective PCM fiber spacing (10 to 17 nm) in murine adult bones. Perlecan/HSPG2, a large linear proteoglycan, was identified to be an essential PCM component. The PCM-filled LCS is bone's chromatographic column, where fluid/solute transport to and from the osteocytes is regulated. The chemical composition, deposition rate, and turnover rate of the osteocyte PCM should be further defined to better understand osteocyte physiology and bone metabolism.

  19. The mechanobiology of mitral valve function, degeneration, and repair

    PubMed Central

    Richards, Jennifer M.; Farrar, Emily J.; Kornreich, Bruce G.; Moïse, N. Sydney; Butcher, Jonathan T.

    2013-01-01

    In degenerative valve disease, the highly organized mitral valve leaflet matrix stratification is progressively destroyed and replaced with proteoglycan rich, mechanically inadequate tissue. This is driven by the actions of originally quiescent valve interstitial cells that become active contractile and migratory myofibroblasts. While treatment for myxomatous mitral valve disease in humans ranges from repair to total replacement, therapies in dogs focus on treating the consequences of the resulting mitral regurgitation. The fundamental gap in our understanding is how the resident valve cells respond to altered mechanical signals to drive tissue remodeling. Despite the pathological similarities and high clinical occurrence, surprisingly little mechanistic insight has been gleaned from the dog. This review presents what is known about mitral valve mechanobiology from clinical, in vivo, and in vitro data. There are a number of experimental strategies already available to pursue this significant opportunity, but success requires the collaboration between veterinary clinicians, scientists, and engineers. PMID:22366572

  20. Heparanase-2 and syndecan-1 in colon cancer: the ugly ducklings or the beautiful swans?

    PubMed

    Giordano, Ricardo José

    2008-08-01

    Syndecan expression, or the lack thereof by tumor cells, has been associated with poor prognosis in several types of cancer, including colorectal cancer. Syndecan is a heparan sulfate proteoglycan involved in tumor adhesion, invasion, and metastasis. In addition, the expression of the enzyme heparanase by cancer cells correlates with malignant transformation and metastasis. Given the prominent role of syndecan and heparanase in physiological and pathological processes, they are promising molecular targets in the development of diagnostic methods and drugs for cancer and other diseases. A study in this issue of the European Journal of Gastroenterology & Hepatology reports the expression of syndecan-1 (Syn-1) and HPA2 in human colorectal cancer samples. These results confirm earlier observations that Syn-1 is downregulated by colorectal carcinoma cells but raise questions about its prognostic value. This study is also the first report on the upregulation of HPA2 in human cancer samples. HPA2 and Syn-1 expression by colorectal cancer tumor cells and the possible implications in disease progression are discussed.

  1. Supra-organization and optical anisotropies of the extracellular matrix in the amniotic membrane and limbal stroma before and after explant culture

    PubMed Central

    Valdetaro, Gisele P.; Aldrovani, Marcela; Padua, Ivan R. M.; Cristovam, Priscila C.; Gomes, José A. P.; Laus, José L.

    2016-01-01

    In this research we evaluated the supramolecular organizations and the optical anisotropical properties of the de-epithelialized human amniotic membrane and rabbit limbal stroma, before and after explant culture. Birefringence, monochromatic light spectral absorption and linear dichroism of the main extracellular matrix biopolymers, that is, the fibrillar collagens and proteoglycans, were investigated by polarized light microscopy combined with image analysis. Our results demonstrated that the culture procedure–induced stimuli altered the supra-organizational characteristics (in terms of collagens/proteoglycans spatial orientation and ordered-aggregational state) of the amniotic and limbal extracellular matrix, which led to changes in optical anisotropical properties. PMID:28018719

  2. Developmental alcohol exposure leads to a persistent change on astrocyte secretome

    PubMed Central

    Trindade, P; Hampton, B; Manhães, AC; Medina, AE

    2016-01-01

    Fetal alcohol spectrum disorder (FASD) is the most common cause of mental disabilities in the western world. It has been quite established that acute alcohol exposure can dramatically affect astrocyte function. Because the effects of early alcohol exposure on cell physiology can persist into adulthood, we tested the hypothesis that ethanol exposure in ferrets during a period equivalent to the last months of human gestation leads to persistent changes in astrocyte secretome in vitro. Animals were treated with ethanol (3.5g/kg) or saline between post-natal day (P)10-30. At P31, astrocyte cultures were made and cells were submitted to stable isotope labeling by amino acids (SILAC). 24h-conditioned media of cells obtained from ethanol- or saline-treated animals (ET-CM or SAL-CM) were collected and analyzed by quantitative mass spectrometry in tandem with liquid chromatography. Here we show that 65 out of 280 quantifiable proteins displayed significant differences comparing ET-CM to SAL-CM. Among the 59 proteins that were found to be reduced in ET-CM we observed components of the extracellular matrix such as Laminin subunits α2, α4, β1, β2 and γ1 and the proteoglycans Biglycan, Heparin Sulfate Proteoglycan 2 and Lumican. Proteins with trophic function such as Insulin-Like Growth Factor Binding Protein 4, Pigment Epithelium-Derived Factor and Clusterin as well as proteins involved on modulation of proteolysis such as TIMP-1 and PAI-1 were also reduced. In contrast, pro-synaptogeneic proteins like Thrombospondin-1, Hevin as well as the modulator of extracelular matrix expression, Angiotensinogen, were found increased in ET-CM. The analysis of interactome maps through Ingenuity Pathway Analysis demonstrated that the Amyloid beta A4 protein precursor (APP), which was found reduced in ET-CM, was previously shown to interact with ten other proteins that exhibited significant changes in the ET-CM. Taken together our results strongly suggest that early exposure to teratogens such as alcohol may lead to an enduring change in astrocyte secretome. PMID:26801685

  3. Platelet-Rich Plasma Preparation Types Show Impact on Chondrogenic Differentiation, Migration, and Proliferation of Human Subchondral Mesenchymal Progenitor Cells.

    PubMed

    Kreuz, Peter Cornelius; Krüger, Jan Philipp; Metzlaff, Sebastian; Freymann, Undine; Endres, Michaela; Pruss, Axel; Petersen, Wolf; Kaps, Christian

    2015-10-01

    To evaluate the chondrogenic potential of platelet concentrates on human subchondral mesenchymal progenitor cells (MPCs) as assessed by histomorphometric analysis of proteoglycans and type II collagen. Furthermore, the migratory and proliferative effect of platelet concentrates were assessed. Platelet-rich plasma (PRP) was prepared using preparation kits (Autologous Conditioned Plasma [ACP] Kit [Arthrex, Naples, FL]; Regen ACR-C Kit [Regen Lab, Le Mont-Sur-Lausanne, Switzerland]; and Dr.PRP Kit [Rmedica, Seoul, Republic of Korea]) by apheresis (PRP-A) and by centrifugation (PRP-C). In contrast to clinical application, freeze-and-thaw cycles were subsequently performed to activate platelets and to prevent medium coagulation by residual fibrinogen in vitro. MPCs were harvested from the cortico-spongious bone of femoral heads. Chondrogenic differentiation of MPCs was induced in high-density pellet cultures and evaluated by histochemical staining of typical cartilage matrix components. Migration of MPCs was assessed using a chemotaxis assay, and proliferation activity was measured by DNA content. MPCs cultured in the presence of 5% ACP, Regen, or Dr.PRP formed fibrous tissue, whereas MPCs stimulated with 5% PRP-A or PRP-C developed compact and dense cartilaginous tissue rich in type II collagen and proteoglycans. All platelet concentrates significantly (ACP, P = .00041; Regen, P = .00029; Dr.PRP, P = .00051; PRP-A, P < .0001; and PRP-C, P < .0001) stimulated migration of MPCs. All platelet concentrates but one (Dr.PRP, P = .63) showed a proliferative effect on MPCs, as shown by significant increases (ACP, P = .027; Regen, P = .0029; PRP-A, P = .00021; and PRP-C, P = .00069) in DNA content. Platelet concentrates obtained by different preparation methods exhibit different potentials to stimulate chondrogenic differentiation, migration, and proliferation of MPCs. Platelet concentrates obtained by commercially available preparation kits failed to induce chondrogenic differentiation of MPCs, whereas highly standardized PRP preparations did induce such differentiation. These findings suggest differing outcomes with PRP treatment in stem cell-based cartilage repair. Our findings may help to explain the variability of results in studies examining the use of PRP clinically. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection.

    PubMed

    Riblett, Amber M; Blomen, Vincent A; Jae, Lucas T; Altamura, Louis A; Doms, Robert W; Brummelkamp, Thijn R; Wojcechowskyj, Jason A

    2016-02-01

    Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics throughout the African continent, and infection of humans can lead to a lethal hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to identify host factors required for RVFV infection. This screen identified a suite of enzymes involved in glycosaminoglycan (GAG) biogenesis and transport, including several components of the cis-oligomeric Golgi (COG) complex, one of the central components of Golgi complex trafficking. In addition, disruption of PTAR1 led to RVFV resistance as well as reduced heparan sulfate surface levels, consistent with recent observations that PTAR1-deficient cells exhibit altered Golgi complex morphology and glycosylation defects. A variety of biochemical and genetic approaches were utilized to show that both pathogenic and attenuated RVFV strains require GAGs for efficient infection on some, but not all, cell types, with the block to infection being at the level of virion attachment. Examination of other members of the Bunyaviridae family for GAG-dependent infection suggested that the interaction with GAGs is not universal among bunyaviruses, indicating that these viruses, as well as RVFV on certain cell types, employ additional unidentified virion attachment factors and/or receptors. Rift Valley fever virus (RVFV) is an emerging pathogen that can cause severe disease in humans and animals. Epizootics among livestock populations lead to high mortality rates and can be economically devastating. Human epidemics of Rift Valley fever, often initiated by contact with infected animals, are characterized by a febrile disease that sometimes leads to encephalitis or hemorrhagic fever. The global burden of the pathogen is increasing because it has recently disseminated beyond Africa, which is of particular concern because the virus can be transmitted by widely distributed mosquito species. There are no FDA-licensed vaccines or antiviral agents with activity against RVFV, and details of its life cycle and interaction with host cells are not well characterized. We used the power of genetic screening in human cells and found that RVFV utilizes glycosaminoglycans to attach to host cells. This furthers our understanding of the virus and informs the development of antiviral therapeutics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Cyclophilins facilitate dissociation of the human papillomavirus type 16 capsid protein L1 from the L2/DNA complex following virus entry.

    PubMed

    Bienkowska-Haba, Malgorzata; Williams, Carlyn; Kim, Seong Man; Garcea, Robert L; Sapp, Martin

    2012-09-01

    Human papillomaviruses (HPV) are composed of the major and minor capsid proteins, L1 and L2, that encapsidate a chromatinized, circular double-stranded DNA genome. At the outset of infection, the interaction of HPV type 16 (HPV16) (pseudo)virions with heparan sulfate proteoglycans triggers a conformational change in L2 that is facilitated by the host cell chaperone cyclophilin B (CyPB). This conformational change results in exposure of the L2 N terminus, which is required for infectious internalization. Following internalization, L2 facilitates egress of the viral genome from acidified endosomes, and the L2/DNA complex accumulates at PML nuclear bodies. We recently described a mutant virus that bypasses the requirement for cell surface CyPB but remains sensitive to cyclosporine for infection, indicating an additional role for CyP following endocytic uptake of virions. We now report that the L1 protein dissociates from the L2/DNA complex following infectious internalization. Inhibition and small interfering RNA (siRNA)-mediated knockdown of CyPs blocked dissociation of L1 from the L2/DNA complex. In vitro, purified CyPs facilitated the dissociation of L1 pentamers from recombinant HPV11 L1/L2 complexes in a pH-dependent manner. Furthermore, CyPs released L1 capsomeres from partially disassembled HPV16 pseudovirions at slightly acidic pH. Taken together, these data suggest that CyPs mediate the dissociation of HPV L1 and L2 capsid proteins following acidification of endocytic vesicles.

  6. Cyclophilins Facilitate Dissociation of the Human Papillomavirus Type 16 Capsid Protein L1 from the L2/DNA Complex following Virus Entry

    PubMed Central

    Bienkowska-Haba, Malgorzata; Williams, Carlyn; Kim, Seong Man; Garcea, Robert L.

    2012-01-01

    Human papillomaviruses (HPV) are composed of the major and minor capsid proteins, L1 and L2, that encapsidate a chromatinized, circular double-stranded DNA genome. At the outset of infection, the interaction of HPV type 16 (HPV16) (pseudo)virions with heparan sulfate proteoglycans triggers a conformational change in L2 that is facilitated by the host cell chaperone cyclophilin B (CyPB). This conformational change results in exposure of the L2 N terminus, which is required for infectious internalization. Following internalization, L2 facilitates egress of the viral genome from acidified endosomes, and the L2/DNA complex accumulates at PML nuclear bodies. We recently described a mutant virus that bypasses the requirement for cell surface CyPB but remains sensitive to cyclosporine for infection, indicating an additional role for CyP following endocytic uptake of virions. We now report that the L1 protein dissociates from the L2/DNA complex following infectious internalization. Inhibition and small interfering RNA (siRNA)-mediated knockdown of CyPs blocked dissociation of L1 from the L2/DNA complex. In vitro, purified CyPs facilitated the dissociation of L1 pentamers from recombinant HPV11 L1/L2 complexes in a pH-dependent manner. Furthermore, CyPs released L1 capsomeres from partially disassembled HPV16 pseudovirions at slightly acidic pH. Taken together, these data suggest that CyPs mediate the dissociation of HPV L1 and L2 capsid proteins following acidification of endocytic vesicles. PMID:22761365

  7. Cell growth and migration under octenidine-antiseptic treatment.

    PubMed

    Jenull, S; Hojdar, K; Laggner, H; Velimirov, B; Zemann, N; Huettinger, M

    2015-06-01

    The toxicity of octenidine antiseptics in cultured cells contrasts their good tolerability in tissue. This phenomenon prompted us to examine which cell culture conditions allow survival and proliferation and to investigate a possible modulation of toxicity by the extracellular matrix proteoglycan chondroitin sulfate. We tested fibroblasts and MCF7 cells for growth using the MTT test, and assessed wound healing potency with a laceration assay. Expression levels of the genes involved in controlling wound healing were assessed with RT-PCR. A 24 hour exposure to the octenidine-based solution was found incompatible with cell growth. When octenidine solution (0.5-0.5mg/l) was coated on dishes, growth was profoundly reduced after 24 hours, however there was no cytotoxic effect at 0.012 mg/l. Interestingly, when dishes were first coated with chondroitin sulfate the cytotoxicity of octenidine-based solution was modulated. Cell migration was not inhibited by octenidine-based solution treatment (2 minutes; 15 mg/l). No significant changes in gene expression levels in response to the octenidine-based solution treatment were detected. In cell culture conditions application of the octenidine-based solution without toxicity can be observed, comparable to the minimal application required to give full bactericidal effect. Alteration of toxicity by interaction with chondroitin sulfate in cell culture suggests a similar function for extraceullar matrix in intact tissue.

  8. Macro and micro rate zonal analytical centrifugation of polydisperse and slowly diffusing sedimenting systems in isovolumetric density gradients. Application to cartilage proteoglycans.

    PubMed

    Müller, F J; Pezon, C F; Pita, J C

    1989-06-13

    A method to study the polydispersity of zonally sedimenting and slowly diffusing macromolecules or particles in isokinetic or isovolumetric density gradients is presented. First, a brief theory is given for predicting the zonal profile after a "triangular" (or "inverse") zone is centrifuged. This type of zone is essential to preserve hydrodynamic stability of the very slowly diffusing polydisperse solutes. It is proven, both by semitheoretical considerations and by computer calculations, that the resulting concentration profile of macrosolute is almost identical with that obtainable with a rectangular zone coextensive with the triangular one and carrying the same total mass. Next, practical procedures are described for the convectionless layering of very small triangular zones (50 microL or less). The linearity and stability of the zones are experimentally tested and verified. Finally, the method is applied to cartilage proteoglycan preparations that included either the monomeric molecules only or both the monomeric and the aggregated ones. The zonal results are compared with those obtained by using conventional boundary sedimentation. The two sets of results are seen to coincide fairly well, thus proving that the present technique can add to preparative zonal centrifugation the analytical precision of boundary sedimentation. A multimodal polydisperse system is suggested to describe the aggregated proteoglycan macromolecules.

  9. Quantitative Assessment of Ultrastructure and Light Scatter in Mouse Corneal Debridement Wounds

    PubMed Central

    Boote, Craig; Du, Yiqin; Morgan, Sian; Harris, Jonathan; Kamma-Lorger, Christina S.; Hayes, Sally; Lathrop, Kira L.; Roh, Danny S.; Burrow, Michael K.; Hiller, Jennifer; Terrill, Nicholas J.; Funderburgh, James L.; Meek, Keith M.

    2012-01-01

    Purpose. The mouse has become an important wound healing model with which to study corneal fibrosis, a frequent complication of refractive surgery. The aim of the current study was to quantify changes in stromal ultrastructure and light scatter that characterize fibrosis in mouse corneal debridement wounds. Methods. Epithelial debridement wounds, with and without removal of basement membrane, were produced in C57BL/6 mice. Corneal opacity was measured using optical coherence tomography, and collagen diameter and matrix order were quantified by x-ray scattering. Electron microscopy was used to visualize proteoglycans. Quantitative PCR (Q-PCR) measured mRNA transcript levels for several quiescent and fibrotic markers. Results. Epithelial debridement without basement membrane disruption produced a significant increase in matrix disorder at 8 weeks, but minimal corneal opacity. In contrast, basement membrane penetration led to increases in light scatter, matrix disorder, and collagen diameter, accompanied by the appearance of abnormally large proteoglycans in the subepithelial stroma. This group also demonstrated upregulation of several quiescent and fibrotic markers 2 to 4 weeks after wounding. Conclusions. Fibrotic corneal wound healing in mice involves extensive changes to collagen and proteoglycan ultrastructure, consistent with deposition of opaque scar tissue. Epithelial basement membrane penetration is a deciding factor determining the degree of ultrastructural changes and resulting opacity. PMID:22467580

  10. Effect of Impaction Sequence on Osteochondral Graft Damage: The Role of Repeated and Varying Loads

    PubMed Central

    Kang, Richard W.; Friel, Nicole A.; Williams, James M.; Cole, Brian J.; Wimmer, Markus A.

    2013-01-01

    Background Osteochondral autografts and allografts require mechanical force for proper graft placement into the defect site; however, impaction compromises the tissue. This study aimed to determine the effect of impaction force and number of hits to seat the graft on cartilage integrity. Hypothesis Under constant impulse conditions, higher impaction load magnitudes are more detrimental to cell viability, matrix integrity and collagen network organization and will result in proteoglycan loss and nitric oxide release. Study Design Controlled laboratory study Methods Osteochondral explants, harvested from fresh bovine trochleas, were exposed to a series of consistent impact loads delivered by a pneumatically driven device. Each plug received the same overall impulse of 7 Ns, reflecting the mean of 23 clinically inserted plugs. Impaction loads of 37.5N, 75N, 150N, and 300N were matched with 74, 37, 21, and 11 hits respectively. Following impaction, the plugs were harvested and cartilage was analyzed for cell viability, histology by safranin-o and picosirius red, and release of sulfated glycosaminoglycans and nitric oxide. Data were compared with non-impacted control. Results Impacted plugs had significantly lower cell viability than non-impacted plugs. A dose response relationship in loss of cell viability with respect to load magnitude was seen immediately and after 4 days but lost after 8 days. Histologic analysis revealed intact cartilage surface in all samples (loaded or control), with loaded samples showing alterations in birefringence. While the sulfated GAG release was similar across varying impaction loads, release of nitric oxide increased with increasing impaction magnitudes and time. Conclusions Impaction loading parameters have a direct effect on the time course of the viability of the cartilage in the graft tissue. Clinical Relevance Optimal loading parameters for surgical impaction of osteochondral grafts are those with lower load magnitudes and a greater number of hits to ensure proper fit. PMID:19915099

  11. Changes of placental syndecan-1 expression in preeclampsia and HELLP syndrome

    PubMed Central

    Szabo, Szilvia; Xu, Yi; Romero, Roberto; Fule, Tibor; Karaszi, Katalin; Bhatti, Gaurav; Varkonyi, Tibor; Varkonyi, Ildiko; Krenacs, Tibor; Dong, Zhong; Tarca, Adi L.; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.; Papp, Zoltan; Kovalszky, Ilona; Than, Nandor Gabor

    2014-01-01

    Introduction Preeclampsia is characterized by maternal systemic anti-angiogenic and pro-inflammatory states. Syndecan-1 is a cell surface proteoglycan expressed by the syncytiotrophoblast, which plays an important role in angiogenesis and resolution of inflammation. Our aim was to examine placental syndecan-1 expression in preeclampsia with or without HELLP syndrome. Methods Placentas were obtained from women in the following groups: (1) late-onset preeclampsia (n=8); (2) early-onset preeclampsia without (n=7) and (3) with HELLP syndrome (n=8); (4) preterm controls (n=5); and (5) term controls (n=9). Tissue microarrays (TMAs) were constructed from paraffin-embedded placentas. TMA slides were immunostained for syndecan-1 and evaluated using microscopy, virtual microscopy, and semi-automated image analysis. Maternal sera from patients with preeclampsia (n=49) and controls (n=32) were immunoassayed for syndecan-1. BeWo cells were treated with Forskolin or Latrunculin-B, or kept in ischemic conditions. SDC1 expression and syndecan-1 production were investigated with qRT-PCR, confocal microscopy, and immunoassays. Results Syndecan-1 was localized to the syncytiotrophoblast apical membrane in normal placentas. Syndecan-1 immunoscores were higher in late-onset preeclampsia (p=0.0001) and early-onset preeclampsia with or without HELLP syndrome (p=0.02 for both) than in controls. Maternal serum syndecan-1 concentration was lower in preeclampsia (median: 673ng/ml, interquartile range: 459-1161ng/ml) than in controls (1158ng/ml, 622-1480ng/ml). SDC1 expression and syndecan-1 immunostainings in BeWo cells and syndecan-1 concentrations in supernatants increased during cell differentiation. Disruption of the actin cytoskeleton with Latrunculin-B decreased syndecan-1 release, while ischemic conditions increased it. Conclusions Syncytiotrophoblastic syndecan-1 expression depends on the differentiation of villous trophoblasts, and trophoblastic syndecan-1 release is decreased in preeclampsia and HELLP syndrome. This phenomenon may be related to the disturbed syncytiotrophoblastic cortical actin cytoskeleton, and associated with maternal anti-angiogenic and pro-inflammatory states in these syndromes. PMID:23807541

  12. Tumor Necrosis Factor-α– and Interleukin-1β–Dependent Matrix Metalloproteinase-3 Expression in Nucleus Pulposus Cells Requires Cooperative Signaling via Syndecan 4 and Mitogen-Activated Protein Kinase–NF-κB Axis

    PubMed Central

    Wang, Xin; Wang, Hua; Yang, Hao; Li, Jun; Cai, Qiqing; Shapiro, Irving M.; Risbud, Makarand V.

    2015-01-01

    Matrix metalloproteinase-3 (MMP-3) plays an important role in intervertebral disc degeneration, a ubiquitous condition closely linked to low back pain and disability. Elevated expression of syndecan 4, a cell surface heparan sulfate proteoglycan, actively controls disc matrix catabolism. However, the relationship between MMP-3 expression and syndecan 4 in the context of inflammatory disc disease has not been clearly defined. We investigated the mechanisms by which cytokines control MMP-3 expression in rat and human nucleus pulposus cells. Cytokine treatment increased MMP-3 expression and promoter activity. Stable silencing of syndecan 4 blocked cytokine-mediated MMP-3 expression; more important, syndecan 4 did not mediate its effects through NF-κB or mitogen-activated protein kinase (MAPK) pathways. However, treatment with MAPK and NF-κB inhibitors resulted in partial blocking of the inductive effect of cytokines on MMP-3 expression. Loss-of-function studies confirmed that NF-κB, p38α/β2/γ/δ, and extracellular signal–regulated kinase (ERK) 2, but not ERK1, contributed to cytokine-dependent induction of MMP3 promoter activity. Similarly, inhibitor treatments, lentiviral short hairpin-p65, and short hairpin-IκB kinase β significantly decreased cytokine-dependent up-regulation in MMP-3 expression. Finally, we show that transforming growth factor-β can block the up-regulation of MMP-3 induced by tumor necrosis factor (TNF)-α by counteracting the NF-κB pathway and syndecan 4 expression. Taken together, our results suggest that cooperative signaling through syndecan 4 and the TNF receptor 1–MAPK–NF-κB axis is required for TNF-α–dependent expression of MMP-3 in nucleus pulposus cells. Controlling these pathways may slow the progression of intervertebral disc degeneration and matrix catabolism. PMID:25063530

  13. Aggrecan-Like Biomimetic Proteoglycans (BPGs) Composed of Natural Chondroitin Sulfate Bristles Grafted onto Poly(acrylic acid) Core for Molecular Engineering of the Extracellular Matrix.

    PubMed

    Prudnikova, K; Lightfoot Vidal, S E; Sarkar, S; Yu, T; Yucha, R W; Ganesh, N; Penn, L S; Han, L; Schauer, C L; Vresilovic, E J; Marcolongo, M S

    2018-05-10

    Biomimetic proteoglycans (BPGs) were designed to mimic the three-dimensional (3D) bottlebrush architecture of natural extracellular matrix (ECM) proteoglycans, such as aggrecan. BPGs were synthesized by grafting native chondroitin sulfate bristles onto a synthetic poly(acrylic acid) core to form BPGs at a molecular weight of approximately ∼1.6 MDa. The aggrecan mimics were characterized chemically, physically, and structurally, confirming the 3D bottlebrush architecture as well as a level of water uptake, which is greater than that of the natural proteoglycan, aggrecan. Aggrecan mimics were cytocompatible at physiological concentrations. Fluorescently labeled BPGs were injected into the nucleus pulposus of the intervertebral disc ex vivo and were retained in tissue before and after static loading and equilibrium conditioning. BPGs infiltrated the tissue, distributed and integrated with the ECM on a molecular scale, in the absence of a bolus, thus demonstrating a new molecular approach to tissue repair: molecular matrix engineering. Molecular matrix engineering may compliment or offer an acellular alternative to current regenerative medicine strategies. Aggrecan is a natural biomolecule that is essential for connective tissue hydration and mechanics. Aggrecan is composed of negatively charged chondroitin sulfate bristles attached to a protein core in a bottlebrush configuration. With age and degeneration, enzymatic degradation of aggrecan outpaces cellular synthesis resulting in a loss of this important molecule. We demonstrate a novel biomimetic molecule composed of natural chondroitin sulfate bristles grafted onto an enzymatically-resistant synthetic core. Our molecule mimics a 3D architecture and charge density of the natural aggrecan, can be delivered via a simple injection and is retained in tissue after equilibrium conditioning and loading. This novel material can serve as a platform for molecular repair, drug delivery and tissue engineering in regenerative medicine approaches. Copyright © 2018. Published by Elsevier Ltd.

  14. IL4-10 fusion protein has chondroprotective, anti-inflammatory and potentially analgesic effects in the treatment of osteoarthritis.

    PubMed

    Steen-Louws, C; Popov-Celeketic, J; Mastbergen, S C; Coeleveld, K; Hack, C E; Eijkelkamp, N; Tryfonidou, M; Spruijt, S; van Roon, J A G; Lafeber, F P J G

    2018-05-26

    Effective disease-modifying drugs for osteoarthritis (DMOAD) should preferably have chondroprotective, anti-inflammatory, and analgesic activity combined in a single molecule. We developed a fusion protein of IL4 and IL10 (IL4-10 FP), in which the biological activity of both cytokines is preserved. The present study evaluates the chondroprotective, anti-inflammatory, and analgesic activity of IL4-10 FP in in vitro and in vivo models of osteoarthritis. Human osteoarthritic cartilage tissue and synovial tissue were cultured with IL4-10 FP. Cartilage proteoglycan turnover and release of pro-inflammatory, catabolic, and pain mediators by cartilage and synovial tissue were measured. The analgesic effect of intra-articularly injected IL4-10 FP was evaluated in a canine model of osteoarthritis by force-plate analysis. IL4-10 FP increased synthesis (P = 0.018) and decreased release (P = 0.018) of proteoglycans by osteoarthritic cartilage. Release of pro-inflammatory IL6 and IL8 by cartilage and synovial tissue was reduced in the presence of IL4-10 FP (all P < 0.05). The release of MMP3 by osteoarthritic cartilage and synovial tissue was decreased (P = 0.018 and 0.028) whereas TIMP1 production was not significantly changed. Furthermore, IL4-10 FP protected cartilage against destructive properties of synovial tissue mediators shown by the increased cartilage proteoglycan synthesis (P = 0.0235) and reduced proteoglycan release (P = 0.0163). Finally, intra-articular injection of IL4-10 FP improved the deficient joint loading in dogs with experimentally induced osteoarthritis. The results of current preliminary study suggest that IL4-10 FP has DMOAD potentials since it shows chondroprotective and anti-inflammatory effects in vitro, as well as potentially analgesic effect in a canine in vivo model of osteoarthritis. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Age-related differences in human skin proteoglycans.

    PubMed

    Carrino, David A; Calabro, Anthony; Darr, Aniq B; Dours-Zimmermann, Maria T; Sandy, John D; Zimmermann, Dieter R; Sorrell, J Michael; Hascall, Vincent C; Caplan, Arnold I

    2011-02-01

    Previous work has shown that versican, decorin and a catabolic fragment of decorin, termed decorunt, are the most abundant proteoglycans in human skin. Further analysis of versican indicates that four major core protein species are present in human skin at all ages examined from fetal to adult. Two of these are identified as the V0 and V1 isoforms, with the latter predominating. The other two species are catabolic fragments of V0 and V1, which have the amino acid sequence DPEAAE as their carboxyl terminus. Although the core proteins of human skin versican show no major age-related differences, the glycosaminoglycans (GAGs) of adult skin versican are smaller in size and show differences in their sulfation pattern relative to those in fetal skin versican. In contrast to human skin versican, human skin decorin shows minimal age-related differences in its sulfation pattern, although, like versican, the GAGs of adult skin decorin are smaller than those of fetal skin decorin. Analysis of the catabolic fragments of decorin from adult skin reveals the presence of other fragments in addition to decorunt, although the core proteins of these additional decorin catabolic fragments have not been identified. Thus, versican and decorin of human skin show age-related differences, versican primarily in the size and the sulfation pattern of its GAGs and decorin in the size of its GAGs. The catabolic fragments of versican are detected at all ages examined, but appear to be in lower abundance in adult skin compared with fetal skin. In contrast, the catabolic fragments of decorin are present in adult skin, but are virtually absent from fetal skin. Taken together, these data suggest that there are age-related differences in the catabolism of proteoglycans in human skin. These age-related differences in proteoglycan patterns and catabolism may play a role in the age-related changes in the physical properties and injury response of human skin.

  16. The heparan sulfate-modifying enzyme glucuronyl C5-epimerase HSE-5 controls Caenorhabditis elegans Q neuroblast polarization during migration.

    PubMed

    Wang, Xiangming; Liu, Jianhong; Zhu, Zhiwen; Ou, Guangshuo

    2015-03-15

    Directional cell migration is fundamental for neural development, and extracellular factors are pivotal for this process. Heparan sulfate proteoglycans (HSPGs) that carry long chains of differentially modified sugar residues contribute to extracellular matrix; however, the functions of HSPG in guiding cell migration remain elusive. Here, we used the Caenorhabditis elegans mutant pool from the Million Mutation Project and isolated a mutant allele of the heparan sulfate-modifying enzyme glucuronyl C5-epimerase HSE-5. Loss-of-function of this enzyme resulted in defective Q neuroblast migration. We showed that hse-5 controlled Q cell migration in a cell non-autonomous manner. By performing live cell imaging in hse-5 mutant animals, we found that hse-5 controlled initial polarization during Q neuroblast migration. Furthermore, our genetic epistasis analysis demonstrated that lon-2 might act downstream of hse-5. Finally, rescue of the hse-5 mutant phenotype by expression of human and mouse hse-5 homologs suggested a conserved function for this gene in neural development. Taken together, our results indicated that proper HSPG modification in the extracellular matrix by HSE-5 is essential for neuroblast polarity during migration. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Regional differences of tibial and femoral cartilage in the chondrocyte gene expression, immunhistochemistry and composite in different stages of osteoarthritis.

    PubMed

    Lahm, A; Dabravolski, D; Spank, H; Merk, H; Esser, J; Kasch, R

    2017-04-01

    The function of articular cartilage as an avascular tissue is mainly served by collagen type II and proteoglycan molecules. Within this matrix homeostasis between production and breakdown of the matrix is exceptionally sensitive. The current study was conducted to identify regional differences in specific alterations in cartilage composition during the osteoarthritic process of the human knee joint. Therefor the changes in the expression of the key molecules of the extracellular matrix were measured in dependence of the anatomical side (femoral vs tibial) and associated with immunohistochemistry and quantitative measurement. 60 serial osteochondral femoral condyle and the tibial plateau samples of patients undergoing implantation of total knee endoprosthesis of areas showing mild (Group A, macroscopically ICRS grade 1b) respectively advanced (Group B, macroscopically ICRS grade 3a/3b) (30 each) osteoarthritis according to the histological-histochemical grading system (HHGS) were compared with 20 healthy biopsies with immunohistochemistry and histology. We quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorometrically. In group A slightly increased colour intensity was found for collagen II in deeper layers, suggesting a persisting but initially still intact repair process. But especially on the medial tibia plateau the initial Col II increase in gene expression is followed by a decrease leading to the lowest over all Col II expression on the medial plateau, here especially in the central part. There in late stage diseases the collagen type I expression was also more pronounced. Markedly decreased safranin O staining intensity was observed in the radial zone and less reduced intensity in the transitional zone with loss of zonal anatomy in 40% of the specimens in group A and all specimens in group B. Correlation between colorometrically analysed proteoglycan GAG content and aggrecan Real Time PCR is mainly weak. Tibial and femoral cartilage in contrast to patellar cartilage both are preferential exposed to compressive stresses, but presence of menisci affects the load distribution at the tibial side, which creates varying conditions for the different cartilage surfaces in the knee. As directly measured Poissońs ratio in tibial cartilage is higher but Younǵs modulus is lower than in femoral cartilage, different resulting feedback amplification loops interact with proceeding cartilage damage. The initial loss of aggrecan may support Matrix metalloproteinases (Mmps) in the access to the collagen network and the considerably differing mechanical properties at both joint surfaces result in varying increased synthesis and release of matrix degrading enzymes. The present study has identified a selection of events which reflect the response of cartilage structure and composite, chondrocytes itself and their productivity to changes in mechanical stress depending on the anatomical site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Matrix detachment and proteasomal inhibitors diminish Sulf-2 expression in breast cancer cell lines and mouse xenografts

    PubMed Central

    Khurana, Ashwani; Jung-Beom, Deok; He, Xiaoping; Kim, Sung-Hoon; Busby, Robert C.; Lorenzon, Laura; Villa, Massimo; Baldi, Alfonso; Molina, Julian; Goetz, Matthew P.; Shridhar, Viji

    2013-01-01

    Sulfatase 2 (Sulf-2) has been previously shown to be upregulated in breast cancer. Sulf-2 removes sulfate moieties on heparan sulfate proteoglycans which in turn modulate heparin binding growth factor signaling. Here we report that matrix detachment resulted in decreased Sulf-2 expression in breast cancer cells and increased cleavage of poly ADP-ribose polymerase. Silencing of Sulf-2 promotes matrix detachment induced cell death in MCF10DCIS cells. In an attempt to identify Sulf-2 specific inhibitor, we found that proteasomal inhibitors such as MG132, Lactacystin and Bortezomib treatment abolished Sulf-2 expression in multiple breast cancer cell lines. Additionally, we show that Bortezomib treatment of MCF10DCIS cell xenografts in mouse mammary fat pads significantly reduced tumor size, caused massive apoptosis and more importantly reduced Sulf-2 levels in vivo. Finally, our immunohistochemistry analysis of Sulf-2 expression in cohort of patient derived breast tumors indicates that Sulf-2 is significantly upregulated in autologous metastatic lesions compared to primary tumors (p < 0.037, Pearson correlation, Chi-Square analysis). In all, our data suggest that Sulf-2 might play an important role in breast cancer progression from ductal carcinoma in situ into an invasive ductal carcinoma potentially by resisting cell death. PMID:23412907

  19. Tumor Cell Plasticity in Uveal Melanoma

    PubMed Central

    Folberg, Robert; Arbieva, Zarema; Moses, Jonas; Hayee, Amin; Sandal, Tone; Kadkol, ShriHari; Lin, Amy Y.; Valyi-Nagy, Klara; Setty, Suman; Leach, Lu; Chévez-Barrios, Patricia; Larsen, Peter; Majumdar, Dibyen; Pe’er, Jacob; Maniotis, Andrew J.

    2006-01-01

    The histological detection of laminin-rich vasculogenic mimicry patterns in human primary uveal melanomas is associated with death from metastases. We therefore hypothesized that highly invasive uveal melanoma cells forming vasculogenic mimicry patterns after exposure to a laminin-rich three-dimensional microenvironment would differentially express genes associated with invasive and metastatic behavior. However, we discovered that genes associated with differentiation (GDF15 and ATF3) and suppression of proliferation (CDKNa1/p21) were up-regulated in highly invasive uveal melanoma cells forming vasculogenic mimicry patterns, and genes associated with promotion of invasive and metastatic behavior such as CD44, CCNE2 (cyclin E2), THBS1 (thrombospondin 1), and CSPG2 (chondroitin sulfate proteoglycan; versican) were down-regulated. After forming vasculogenic mimicry patterns, uveal melanoma cells invaded only short distances, failed to replicate, and changed morphologically from the invasive epithelioid to the indolent spindle A phenotype. In human tissue samples, uveal melanoma cells within vasculogenic mimicry patterns assumed the spindle A morphology, and the expression of Ki67 was significantly reduced in adjacent melanoma cells. Thus, the generation of vasculogenic mimicry patterns is accompanied by dampening of the invasive and metastatic uveal melanoma genotype and phenotype and underscores the plasticity of these cells in response to cues from the microenvironment. PMID:17003493

  20. Proteoglycans as potential biomarkers in odontogenic tumors

    PubMed Central

    Gómez-Herrera, Zaira; Molina-Frechero, Nelly; Damián-Matsumura, Pablo; Bologna-Molina, Ronell

    2018-01-01

    Proteoglycans (PGs) are essential for normal cellular development; however, alterations of their concentrations can promote tumor growth. To date, a limited number of studies report the presence of PGs in odontogenic tumors (OTs); therefore, the main purpose of this work is to gather the information published on the study of PGs. The search reported 26 articles referring to the presence of different PGs in distinct OTs from 1999 to May 2017. PGs seem to play an important role during OTs’ development as they are involved in several tumor processes; however, the number of reports on the study of these molecules is low. Thus, more studies are necessary in order to gain a better understanding of the underlying pathophysiology of OTs. PMID:29731564

Top