Sample records for cell surface reorganization

  1. Regulation of MT1-MMP and MMP-2 by leptin in cardiac fibroblasts involves Rho/ROCK-dependent actin cytoskeletal reorganization and leads to enhanced cell migration.

    PubMed

    Schram, Kristin; Ganguly, Riya; No, Eun Kyung; Fang, Xiangping; Thong, Farah S L; Sweeney, Gary

    2011-05-01

    Altered leptin action has been implicated in the pathophysiology of heart failure in obesity, a hallmark of which is extracellular matrix remodeling. Here, we characterize the direct influence of leptin on matrix metalloproteinase (MMP) activity in primary adult rat cardiac fibroblasts and focus on elucidating the molecular mechanisms responsible. Leptin increased expression and cell surface localization of membrane type 1 (MT1)-MMP, measured by cell surface biotinylation assay and antibody-based colorimetric detection of an exofacial epitope in intact cells. Coimmunoprecipitation analysis showed that leptin also induced the formation of a cluster of differentiation 44/MT1-MMP complex. Qualitative analysis using rhodamine-conjugated phalloidin immunofluorescence indicated that leptin stimulated actin cytoskeletal reorganization and enhanced stress fiber formation. Hence, we analyzed activation of Ras homolog gene family (Rho), member A GTPase activity and found a rapid increase in response to leptin that corresponded with increased phosphorylation of cofilin. Quantitative analysis of cytoskeleton reorganization upon separation of globular and filamentous actin by differential centrifugation confirmed the significant increase in filamentous to globular actin ratio in response to leptin, which was prevented by pharmacological inhibition of Rho (C3 transferase) or its downstream effector kinase Rho-associated coiled-coil-forming protein kinase (ROCK) (Y-27632). Inhibition of Rho or ROCK also attenuated leptin-stimulated increases in cell surface MT1-MMP content. Pro-MMP-2 is a known MT1-MMP substrate, and we observed that enhanced cell surface MT1-MMP in response to leptin resulted in enhanced extracellular activation of pro-MMP-2 measured by gelatin zymography, which was again attenuated by inhibition of Rho or ROCK. Using wound scratch assays, we observed enhanced cell migration, but not proliferation, measured by 5-bromo2'-deoxy-uridine incorporation, in response to leptin, again via a Rho-dependent signaling mechanism. Our results suggest that leptin regulates myocardial matrix remodeling by regulating the cell surface localization of MT1-MMP in adult cardiac fibroblasts via Rho/ROCK-dependent actin cytoskeleton reorganization. Subsequent pro-MMP-2 activation then contributes to stimulation of cell migration.

  2. Shear Stress Induced Reorganization of the Keratin Intermediate Filament Network Requires Phosphorylation by Protein Kinase C ζ

    PubMed Central

    Sivaramakrishnan, Sivaraj; Schneider, Jaime L.; Sitikov, Albert; Goldman, Robert D.

    2009-01-01

    Keratin intermediate filaments (KIFs) form a fibrous polymer network that helps epithelial cells withstand external mechanical forces. Recently, we established a correlation between the structure of the KIF network and its local mechanical properties in alveolar epithelial cells. Shear stress applied across the cell surface resulted in the structural remodeling of KIF and a substantial increase in the elastic modulus of the network. This study examines the mechanosignaling that regulates the structural remodeling of the KIF network. We report that the shear stress–mediated remodeling of the KIF network is facilitated by a twofold increase in the dynamic exchange rate of KIF subunits, which is regulated in a PKC ζ and 14-3-3–dependent manner. PKC ζ phosphorylates K18pSer33, and this is required for the structural reorganization because the KIF network in A549 cells transfected with a dominant negative PKC ζ, or expressing the K18Ser33Ala mutation, is unchanged. Blocking the shear stress–mediated reorganization results in reduced cellular viability and increased apoptotic levels. These data suggest that shear stress mediates the phosphorylation of K18pSer33, which is required for the reorganization of the KIF network, resulting in changes in mechanical properties of the cell that help maintain the integrity of alveolar epithelial cells. PMID:19357195

  3. A Molecular Smart Surface for Spatio-Temporal Studies of Cell Mobility

    PubMed Central

    Lee, Eun-ju; Luo, Wei; Chan, Eugene W. L.; Yousaf, Muhammad N.

    2015-01-01

    Active migration in both healthy and malignant cells requires the integration of information derived from soluble signaling molecules with positional information gained from interactions with the extracellular matrix and with other cells. How a cell responds and moves involves complex signaling cascades that guide the directional functions of the cytoskeleton as well as the synthesis and release of proteases that facilitate movement through tissues. The biochemical events of the signaling cascades occur in a spatially and temporally coordinated manner then dynamically shape the cytoskeleton in specific subcellular regions. Therefore, cell migration and invasion involve a precise but constantly changing subcellular nano-architecture. A multidisciplinary effort that combines new surface chemistry and cell biological tools is required to understand the reorganization of cytoskeleton triggered by complex signaling during migration. Here we generate a class of model substrates that modulate the dynamic environment for a variety of cell adhesion and migration experiments. In particular, we use these dynamic substrates to probe in real-time how the interplay between the population of cells, the initial pattern geometry, ligand density, ligand affinity and integrin composition affects cell migration and growth. Whole genome microarray analysis indicates that several classes of genes ranging from signal transduction to cytoskeletal reorganization are differentially regulated depending on the nature of the surface conditions. PMID:26030281

  4. Drying induced upright sliding and reorganization of carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Li, Qingwen; DePaula, Raymond; Zhang, Xiefei; Zheng, Lianxi; Arendt, Paul N.; Mueller, Fred M.; Zhu, Y. T.; Tu, Yi

    2006-09-01

    Driven by capillary force, wet carbon nanotube (CNT) arrays have been found to reorganize into cellular structures upon drying. During the reorganization process, individual CNTs are firmly attached to the substrate and have to lie down on the substrate at cell bottoms, forming closed cells. Here we demonstrate that by modifying catalyst structures, the adhesion of CNTs to the substrate can be weakened. Upon drying such CNT arrays, CNTs may slide away from their original sites on the surface and self-assemble into cellular patterns with bottoms open. It is also found that the sliding distance of CNTs increases with array height, and drying millimetre tall arrays leads to the sliding of CNTs over a few hundred micrometres and the eventual self-assembly into discrete islands. By introducing regular vacancies in CNT arrays, CNTs may be manipulated into different patterns.

  5. EMMPRIN Regulates Cytoskeleton Reorganization and Cell Adhesion in Prostate Cancer

    PubMed Central

    Zhu, Haining; Zhao, Jun; Zhu, Beibei; Collazo, Joanne; Gal, Jozsef; Shi, Ping; Liu, Li; Ström, Anna-Lena; Lu, Xiaoning; McCann, Richard O.; Toborek, Michal; Kyprianou, Natasha

    2011-01-01

    Background Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. Methods In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) vs. malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. Results EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. Conclusions Our results suggest that EMMPRIN regulates cell adhesion, invasion and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis. PMID:21563192

  6. EMMPRIN regulates cytoskeleton reorganization and cell adhesion in prostate cancer.

    PubMed

    Zhu, Haining; Zhao, Jun; Zhu, Beibei; Collazo, Joanne; Gal, Jozsef; Shi, Ping; Liu, Li; Ström, Anna-Lena; Lu, Xiaoning; McCann, Richard O; Toborek, Michal; Kyprianou, Natasha

    2012-01-01

    Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) versus malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression, or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. Our results suggest that EMMPRIN regulates cell adhesion, invasion, and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis. Copyright © 2011 Wiley Periodicals, Inc.

  7. Protein Disulfide Isomerase Directly Interacts with β-Actin Cys374 and Regulates Cytoskeleton Reorganization*

    PubMed Central

    Sobierajska, Katarzyna; Skurzynski, Szymon; Stasiak, Marta; Kryczka, Jakub; Cierniewski, Czeslaw S.; Swiatkowska, Maria

    2014-01-01

    Recent studies support the role of cysteine oxidation in actin cytoskeleton reorganization during cell adhesion. The aim of this study was to explain whether protein disulfide isomerase (PDI) is responsible for the thiol-disulfide rearrangement in the β-actin molecule of adhering cells. First, we showed that PDI forms a disulfide-bonded complex with β-actin with a molecular mass of 110 kDa. Specific interaction of both proteins was demonstrated by a solid phase binding assay, surface plasmon resonance analysis, and immunoprecipitation experiments. Second, using confocal microscopy, we found that both proteins colocalized when spreading MEG-01 cells on fibronectin. Colocalization of PDI and β-actin could be abolished by the membrane-permeable sulfhydryl blocker, N-ethylmaleimide, by the RGD peptide, and by anti-αIIbβ3 antibodies. Consequently, down-regulation of PDI expression by antisense oligonucleotides impaired the spreading of cells and initiated reorganization of the cytoskeleton. Third, because of transfection experiments followed by immunoprecipitation and confocal analysis, we provided evidence that PDI binds to the β-actin Cys374 thiol. Formation of the β-actin-PDI complex was mediated by integrin-dependent signaling in response to the adhesion of cells to the extracellular matrix. Our data suggest that PDI is released from subcellular compartments to the cytosol and translocated toward the periphery of the cell, where it forms a disulfide bond with β-actin when MEG-01 cells adhere via the αIIbβ3 integrin to fibronectin. Thus, PDI appears to regulate cytoskeletal reorganization by the thiol-disulfide exchange in β-actin via a redox-dependent mechanism. PMID:24415753

  8. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane

    PubMed Central

    Paparelli, Laura; Corthout, Nikky; Wakefield, Devin L.; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-01-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951

  9. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.

    PubMed

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-13

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. © 2014 The Authors.

  10. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis

    PubMed Central

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-01

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. PMID:25476450

  11. Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion.

    PubMed

    Yamazaki, Daisuke; Oikawa, Tsukasa; Takenawa, Tadaomi

    2007-01-01

    During cadherin-dependent cell-cell adhesion, the actin cytoskeleton undergoes dynamic reorganization in epithelial cells. Rho-family small GTPases, which regulate actin dynamics, play pivotal roles in cadherin-dependent cell-cell adhesion; however, the precise molecular mechanisms that underlie cell-cell adhesion formation remain unclear. Here we show that Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE)-mediated reorganization of actin, downstream of Rac plays an important role in normal development of cadherin-dependent cell-cell adhesions in MDCK cells. Rac-induced development of cadherin-dependent adhesions required WAVE2-dependent actin reorganization. The process of cell-cell adhesion is divided into three steps: formation of new cell-cell contacts, stabilization of these new contacts and junction maturation. WAVE1 and WAVE2 were expressed in MDCK cells. The functions of WAVE1 and WAVE2 were redundant in this system but WAVE2 appeared to play a more significant role. During the first step, WAVE2-dependent lamellipodial protrusions facilitated formation of cell-cell contacts. During the second step, WAVE2 recruited actin filaments to new cell-cell contacts and stabilized newly formed cadherin clusters. During the third step, WAVE2-dependent actin reorganization was required for organization and maintenance of mature cell-cell adhesions. Thus, Rac-WAVE-dependent actin reorganization is not only involved in formation of cell-cell adhesions but is also required for their maintenance.

  12. Rotational reorganization of doped cholesteric liquid crystalline films.

    PubMed

    Eelkema, Rienk; Pollard, Michael M; Katsonis, Nathalie; Vicario, Javier; Broer, Dirk J; Feringa, Ben L

    2006-11-08

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric pitch. The direction of this reorganization is correlated to the sign of the change in helical twisting power of the dopant. The rotational reorganization of the liquid crystalline film was used to rotate microscopic objects 4 orders of magnitude larger than the bistable dopants in the film, which shows that molecular motors and switches can perform work. The surface of the doped cholesteric liquid crystalline films was found to possess a regular surface relief, whose periodicity coincides with typical cholesteric polygonal line textures. These surface features originate from the cholesteric superstructure in the liquid crystalline film, which in turn is the result of the presence of the chiral dopant. As such, the presence of the dopant is expressed in these distinct surface structures. A possible mechanism at the origin of the rotational reorganization of liquid crystalline films and the cholesteric surface relief is discussed.

  13. CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells.

    PubMed

    Ziegler, Sabrina; Weiss, Esther; Schmitt, Anna-Lena; Schlegel, Jan; Burgert, Anne; Terpitz, Ulrich; Sauer, Markus; Moretta, Lorenzo; Sivori, Simona; Leonhardt, Ines; Kurzai, Oliver; Einsele, Hermann; Loeffler, Juergen

    2017-07-21

    Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.

  14. Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy

    PubMed Central

    1991-01-01

    A recently introduced extension of video-enhanced light microscopy, called Nanovid microscopy, documents the dynamic reorganization of individual cell surface components on living cells. 40-microns colloidal gold probes coupled to different types of poly-L-lysine label negative cell surface components of PTK2 cells. Evidence is provided that they bind to negative sialic acid residues of glycoproteins, probably through nonspecific electrostatic interactions. The gold probes, coupled to short poly-L-lysine molecules (4 kD) displayed Brownian motion, with a diffusion coefficient in the range 0.1-0.2 micron2/s. A diffusion coefficient in the 0.1 micron2/s range was also observed with 40-nm gold probes coupled to an antibody against the lipid-linked Thy-1 antigen on 3T3 fibroblasts. Diffusion of these probes is largely confined to apparent microdomains of 1-2 microns in size. On the other hand, the gold probes, coupled to long poly-L-lysine molecules (240 kD) molecules and bound to the leading lamella, were driven rearward, toward the boundary between lamelloplasm and perinuclear cytoplasm at a velocity of 0.5-1 micron/min by a directed ATP-dependent mechanism. This uniform motion was inhibited by cytochalasin, suggesting actin microfilament involvement. A similar behavior on MO cells was observed when the antibody-labeled gold served as a marker for the PGP-1 (GP-80) antigen. These results show that Nanovid microscopy, offering the possibility to observe the motion of individual specific cell surface components, provides a new and powerful tool to study the dynamic reorganization of the cell membrane during locomotion and in other biological contexts as well. PMID:1670778

  15. Measurement uncertainty evaluation of cellular spheroids surface tension in compressing tests using Young-Laplace equation

    NASA Astrophysics Data System (ADS)

    Beatrici, Anderson; Santos Baptista, Leandra; Mauro Granjeiro, José

    2018-03-01

    Regenerative Medicine comprises the Biotechnology, Tissue Engineering and Biometrology for stem cell therapy. Starting from stem cells extracted from the patient, autologous implant, these cells are cultured and differentiated into other tissues, for example, articular cartilage. These cells are reorganized into microspheres (cell spheroids). Such tissue units are recombined into functional tissues constructs that can be implanted in the injured region for regeneration. It is necessary the biomechanical characterization of these constructed to determine if their properties are similar to native tissue. In this study was carried out the modeling of the calculation of uncertainty of the surface tension of cellular spheroids with the use of the Young-Laplace equation. We obtained relative uncertainties about 10%.

  16. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation.

    PubMed

    Nolz, Jeffrey C; Gomez, Timothy S; Zhu, Peimin; Li, Shuixing; Medeiros, Ricardo B; Shimizu, Yoji; Burkhardt, Janis K; Freedman, Bruce D; Billadeau, Daniel D

    2006-01-10

    The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and beta-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCgamma1 activation and IP(3)-mediated store release. These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation.

  17. A molecular Debye-Hückel approach to the reorganization energy of electron transfer reactions in an electric cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Tiejun; Department of Chemistry, Iowa State University, Ames, Iowa 50011; Song, Xueyu

    2014-10-07

    Electron transfer near an electrode immersed in ionic fluids is studied using the linear response approximation, namely, mean value of the vertical energy gap can be used to evaluate the reorganization energy, and hence any linear response model that can treat Coulomb interactions successfully can be used for the reorganization energy calculation. Specifically, a molecular Debye-Hückel theory is used to calculate the reorganization energy of electron transfer reactions in an electric cell. Applications to electron transfer near an electrode in molten salts show that the reorganization energies from our molecular Debye-Hückel theory agree well with the results from MD simulations.

  18. Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography.

    PubMed

    Li, Guangwen; Song, Yanyan; Shi, Mengqi; Du, Yuanhong; Wang, Wei; Zhang, Yumei

    2017-02-01

    Micro/nano-textured titanium surface topography promotes osteoblast differentiation and the Wnt/β-catenin signaling pathway. However, the response of rat bone mesenchymal stem cells (MSCs) to micro/nano-textured topography, and the underlying mechanisms of its effects, are not well understood. We hypothesized that cell division cycle 42 protein (Cdc42), a key member of the Rho GTPases family, may regulate rat MSCs morphology and osteogenic differentiation by micro/nano-textured topography, and that crosstalk between Cdc42 and Wnt/β-catenin is the underlying mechanism. To confirm the hypothesis, we first tested rat MSCs' morphology, cytoskeleton, and osteogenic differentiation on micro/nano-textured topography. We then examined the cells' Wnt pathway and Cdc42 signaling activity. The results show that micro/nano-textured topography enhances MSCs' osteogenic differentiation. In addition, the cells' morphology and cytoskeletal reorganization were dramatically different on smooth surfaces and micropitted/nanotubular topography. Ligands of the canonical Wnt pathway, as well as accumulation of β-catenin in the nucleus, were up-regulated by micro/nano-textured topography. Cdc42 protein expression was markedly increased under these conditions; conversely, Cdc42 silencing significantly depressed the enhancement of MSCs osteogenic differentiation by micro/nano-textured topography. Moreover, Cdc42si attenuated p-GSK3β activation and resulted in β-catenin cytoplasmic degradation on the micro/nano-textured topography. Our results indicate that Cdc42 is a key modulator of rat MSCs morphology and cytoskeletal reorganization, and that crosstalk between Cdc42 and Wnt/β-catenin signaling though GSK3β regulates MSCs osteogenic differentiation by implant topographical cues. Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials. However, the response of bone mesenchymal stem cells (MSCs) to the micro/nano-textured topography and the underlying mechanisms are not well understood. This study shows that the micropitted/nanotubular hierarchical topography produced by etching and anodic oxidation treatment drives fusiform cell morphology, cytoskeletal reorganization as well as better MSCs osteogenic differentiation. The cross-talk between Cdc42 pathway and Wnt/β-catenin pathway though GSK3β modulates the osteoinductive effect of the micro/nano-textured topography on MSCs. This finding sheds light on a novel mechanism involved in micro/nano-textured surface-mediated MSCs osteogenic differentiation and is a major step in the development of new surface modifications aiming to accelerate and enhance the process of osseointegration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface.

    PubMed

    Cha, Kyoung Je; Kong, Sun-Young; Lee, Ji Soo; Kim, Hyung Woo; Shin, Jae-Yeon; La, Moonwoo; Han, Byung Woo; Kim, Dong Sung; Kim, Hyun-Jung

    2017-10-12

    Recently, the importance of surface nanotopography in the determination of stem cell fate and behavior has been revealed. In the current study, we generated polystyrene cell-culture dishes with an omnidirectional nanopore arrayed surface (ONAS) (diameter: 200 nm, depth: 500 nm, center-to-center distance: 500 nm) and investigated the effects of nanotopography on rat neural stem cells (NSCs). NSCs cultured on ONAS proliferated better than those on the flat surface when cell density was low and showed less spontaneous differentiation during proliferation in the presence of mitogens. Interestingly, NSCs cultured on ONAS at clonal density demonstrated a propensity to generate neurospheres, whereas those on the flat surface migrated out, proliferated as individuals, and spread out to attach to the surface. However, the differential patterns of proliferation were cell density-dependent since the distinct phenomena were lost when cell density was increased. ONAS modulated cytoskeletal reorganization and inhibited formation of focal adhesion, which is generally observed in NSCs grown on flat surfaces. ONAS appeared to reinforce NSC-NSC interaction, restricted individual cell migration and prohibited NSC attachment to the nanopore surface. These data demonstrate that ONAS maintains NSCs as undifferentiated while retaining multipotency and is a better topography for culturing low density NSCs.

  20. The WAVE2 Complex Regulates Actin Cytoskeletal Reorganization and CRAC-Mediated Calcium Entry during T Cell Activation

    PubMed Central

    Nolz, Jeffrey C.; Gomez, Timothy S.; Zhu, Peimin; Li, Shuixing; Medeiros, Ricardo B.; Shimizu, Yoji; Burkhardt, Janis K.; Freedman, Bruce D.; Billadeau, Daniel D.

    2007-01-01

    Summary Background The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. Results By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and β-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCγ1 activation and IP3-mediated store release. Conclusions These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation. PMID:16401421

  1. Nuclear Import of β-Dystroglycan Is Facilitated by Ezrin-Mediated Cytoskeleton Reorganization

    PubMed Central

    Vásquez-Limeta, Alejandra; Wagstaff, Kylie M.; Ortega, Arturo; Crouch, Dorothy H.; Jans, David A.; Cisneros, Bulmaro

    2014-01-01

    The β-dystroglycan (β-DG) protein has the ability to target to multiple sites in eukaryotic cells, being a member of diverse protein assemblies including the transmembranal dystrophin-associated complex, and a nuclear envelope-localised complex that contains emerin and lamins A/C and B1. We noted that the importin α2/β1-recognised nuclear localization signal (NLS) of β-DG is also a binding site for the cytoskeletal-interacting protein ezrin, and set out to determine whether ezrin binding might modulate β-DG nuclear translocation for the first time. Unexpectedly, we found that ezrin enhances rather than inhibits β-DG nuclear translocation in C2C12 myoblasts. Both overexpression of a phosphomimetic activated ezrin variant (Ez-T567D) and activation of endogenous ezrin through stimulation of the Rho pathway resulted in both formation of actin-rich surface protrusions and significantly increased nuclear translocation of β-DG as shown by quantitative microscopy and subcellular fractionation/Western analysis. In contrast, overexpression of a nonphosphorylatable inactive ezrin variant (Ez-T567A) or inhibition of Rho signaling, decreased nuclear translocation of β-DG concomitant with a lack of cell surface protrusions. Further, a role for the actin cytoskeleton in ezrin enhancement of β-DG nuclear translocation was implicated by the observation that an ezrin variant lacking its actin-binding domain failed to enhance nuclear translocation of β-DG, while disruption of the actin cytoskeleton led to a reduction in β-DG nuclear localization. Finally, we show that ezrin-mediated cytoskeletal reorganization enhances nuclear translocation of the cytoplasmic but not the transmembranal fraction of β-DG. This is the first study showing that cytoskeleton reorganization can modulate nuclear translocation of β-DG, with the implication that β-DG can respond to cytoskeleton-driven changes in cell morphology by translocating from the cytoplasm to the nucleus to orchestrate nuclear processes in response to the functional requirements of the cell. PMID:24599031

  2. Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells.

    PubMed

    Klingner, Christoph; Cherian, Anoop V; Fels, Johannes; Diesinger, Philipp M; Aufschnaiter, Roland; Maghelli, Nicola; Keil, Thomas; Beck, Gisela; Tolić-Nørrelykke, Iva M; Bathe, Mark; Wedlich-Soldner, Roland

    2014-10-13

    Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin-Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization. © 2014 Klingner et al.

  3. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva.

    PubMed

    Krishnan, Sitaraman; Wang, Nick; Ober, Christopher K; Finlay, John A; Callow, Maureen E; Callow, James A; Hexemer, Alexander; Sohn, Karen E; Kramer, Edward J; Fischer, Daniel A

    2006-05-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates.

  4. Nanotextured titanium surfaces stimulate spreading, migration, and growth of rat mast cells.

    PubMed

    Marcatti Amarú Maximiano, William; Marino Mazucato, Vivian; Tambasco de Oliveira, Paulo; Célia Jamur, Maria; Oliver, Constance

    2017-08-01

    Titanium is a biomaterial widely used in dental and orthopedic implants. Since tissue-implant interactions occur at the nanoscale level, nanotextured titanium surfaces may affect cellular activity and modulate the tissue response that occurs at the tissue-implant interface. Therefore, the characterization of diverse cell types in response to titanium surfaces with nanotopography is important for the rational design of implants. Mast cells are multifunctional cells of the immune system that release a range of chemical mediators involved in the inflammatory response that occurs at the tissue-implant interface. Therefore, the aim of this study was to investigate the effects of the nanotopography of titanium surfaces on the physiology of mast cells. The results show that the nanotopography of titanium surfaces promoted the spreading of mast cells, which was accompanied by the reorganization of the cytoskeleton. Also, the nanotopography of titanium surfaces enhanced cell migration and cell growth, but did not alter the number of adherent cells in first hours of culture or affect focal adhesions and mediator release. Thus, the results show that nanotopography of titanium surfaces can affect mast cell physiology, and represents an improved strategy for the rational production of surfaces that stimulate tissue integration with the titanium implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2150-2161, 2017. © 2017 Wiley Periodicals, Inc.

  5. Microtubule array reorientation in response to hormones does not involve changes in microtubule nucleation modes at the periclinal cell surface

    PubMed Central

    Atkinson, Samantha; Kirik, Angela; Kirik, Viktor

    2014-01-01

    Aligned microtubule arrays spatially organize cell division, trafficking, and determine the direction of cell expansion in plant cells. In response to changes in environmental and developmental signals, cells reorganize their microtubule arrays into new configurations. Here, we tested the role of microtubule nucleation during hormone-induced microtubule array reorientation. We have found that in the process of microtubule array reorientation the ratios between branching, parallel, and de-novo nucleations remained constant, suggesting that the microtubule reorientation mechanism does not involve changes in nucleation modes. In the ton2/fass mutant, which has reduced microtubule branching nucleation frequency and decreased nucleation activity of the γ-tubulin complexes, microtubule arrays were able to reorient. Presented data suggest that reorientation of microtubules into transverse arrays in response to hormones does not involve changes in microtubule nucleation at the periclinal cell surface PMID:25135522

  6. Optimization of Particle-in-Cell Codes on RISC Processors

    NASA Technical Reports Server (NTRS)

    Decyk, Viktor K.; Karmesin, Steve Roy; Boer, Aeint de; Liewer, Paulette C.

    1996-01-01

    General strategies are developed to optimize particle-cell-codes written in Fortran for RISC processors which are commonly used on massively parallel computers. These strategies include data reorganization to improve cache utilization and code reorganization to improve efficiency of arithmetic pipelines.

  7. Quantitative measures to reveal coordinated cytoskeleton-nucleus reorganization during in vitro invasion of cancer cells

    NASA Astrophysics Data System (ADS)

    Dvir, Liron; Nissim, Ronen; Alvarez-Elizondo, Martha B.; Weihs, Daphne

    2015-04-01

    Metastasis formation is a major cause of mortality in cancer patients and includes tumor cell relocation to distant organs. A metastatic cell invades through other cells and extracellular matrix by biochemical attachment and mechanical force application. Force is used to move on or through a 2- or 3-dimensional (3D) environment, respectively, or to penetrate a 2D substrate. We have previously shown that even when a gel substrate is impenetrable, metastatic breast cancer cells can still indent it by applying force. Cells typically apply force through the acto-myosin network, which is mechanically connected to the nucleus. We develop a 3D image-analysis to reveal relative locations of the cell elements, and show that as cells apply force to the gel, a coordinated process occurs that involves cytoskeletal remodeling and repositioning of the nucleus. Our approach shows that the actin and microtubules reorganize in the cell, bringing the actin to the leading edge of the cell. In parallel, the nucleus is transported behind the actin, likely by the cytoskeleton, into the indentation dimple formed in the gel. The nucleus volume below the gel surface correlates with indentation depth, when metastatic breast cancer cells indent gels deeply. However, the nucleus always remains above the gel in benign cells, even when small indentations are observed. Determining mechanical processes during metastatic cell invasion can reveal how cells disseminate in the body and can uncover targets for diagnosis and treatment.

  8. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    PubMed

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  9. Fast-Moving Bacteria Self-Organize into Active Two-Dimensional Crystals of Rotating Cells

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander P.; Wu, Xiao-Lun; Libchaber, Albert

    2015-04-01

    We investigate a new form of collective dynamics displayed by Thiovulum majus, one of the fastest-swimming bacteria known. Cells spontaneously organize on a surface into a visually striking two-dimensional hexagonal lattice of rotating cells. As each constituent cell rotates its flagella, it creates a tornadolike flow that pulls neighboring cells towards and around it. As cells rotate against their neighbors, they exert forces on one another, causing the crystal to rotate and cells to reorganize. We show how these dynamics arise from hydrodynamic and steric interactions between cells. We derive the equations of motion for a crystal, show that this model explains several aspects of the observed dynamics, and discuss the stability of these active crystals.

  10. Highly Dynamic Host Actin Reorganization around Developing Plasmodium Inside Hepatocytes

    PubMed Central

    Gomes-Santos, Carina S. S.; Itoe, Maurice A.; Afonso, Cristina; Henriques, Ricardo; Gardner, Rui; Sepúlveda, Nuno; Simões, Pedro D.; Raquel, Helena; Almeida, António Paulo; Moita, Luis F.; Frischknecht, Friedrich; Mota, Maria M.

    2012-01-01

    Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver. PMID:22238609

  11. Profound re-organization of cell surface proteome in equine retinal pigment epithelial cells in response to in vitro culturing.

    PubMed

    Szober, Christoph M; Hauck, Stefanie M; Euler, Kerstin N; Fröhlich, Kristina J H; Alge-Priglinger, Claudia; Ueffing, Marius; Deeg, Cornelia A

    2012-10-31

    The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses' vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.

  12. Controllable Surface Reorganization Engineering on Cobalt Phosphide Nanowire Arrays for Efficient Alkaline Hydrogen Evolution Reaction.

    PubMed

    Xu, Kun; Cheng, Han; Lv, Haifeng; Wang, Jingyu; Liu, Linqi; Liu, Si; Wu, Xiaojun; Chu, Wangsheng; Wu, Changzheng; Xie, Yi

    2018-01-01

    Developing highly efficient hydrogen evolution reaction (HER) catalysts in alkaline media is considered significant and valuable for water splitting. Herein, it is demonstrated that surface reorganization engineering by oxygen plasma engraving on electocatalysts successfully realizes a dramatically enhanced alkaline HER activity. Taking CoP nanowire arrays grown on carbon cloth (denoted as CoP NWs/CC) as an example, the oxygen plasma engraving can trigger moderate CoO x species formation on the surface of the CoP NWs/CC, which is visually verified by the X-ray absorption fine structure, high-resolution transmission electron microscopy, and energy-dispersive spectrometer (EDS) mapping. Benefiting from the moderate CoO x species formed on the surface, which can promote the water dissociation in alkaline HER, the surface reorganization of the CoP NWs/CC realizes almost fourfold enhanced alkaline HER activity and a 180 mV decreased overpotential at 100 mA cm -2 , compared with the pristine ones. More interestingly, this surface reorganization strategy by oxygen plasma engraving can also be effective to other electrocatalysts such as free-standing CoP, Co 4 N, O-CoSe 2 , and C-CoSe 2 nanowires, which verifies the universality of the strategy. This work thus opens up new avenues for designing alkaline HER electrocatalysts based on oxygen plasma engraving. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Induction of lateral lumens through disruption of a monoleucine-based basolateral-sorting motif in betacellulin

    PubMed Central

    Singh, Bhuminder; Bogatcheva, Galina; Starchenko, Alina; Sinnaeve, Justine; Lapierre, Lynne A.; Williams, Janice A.; Goldenring, James R.; Coffey, Robert J.

    2015-01-01

    ABSTRACT Directed delivery of EGF receptor (EGFR) ligands to the apical or basolateral surface is a crucial regulatory step in the initiation of EGFR signaling in polarized epithelial cells. Herein, we show that the EGFR ligand betacellulin (BTC) is preferentially sorted to the basolateral surface of polarized MDCK cells. By using sequential truncations and site-directed mutagenesis within the BTC cytoplasmic domain, combined with selective cell-surface biotinylation and immunofluorescence, we have uncovered a monoleucine-based basolateral-sorting motif (EExxxL, specifically 156EEMETL161). Disruption of this sorting motif led to equivalent apical and basolateral localization of BTC. Unlike other EGFR ligands, BTC mistrafficking induced formation of lateral lumens in polarized MDCK cells, and this process was significantly attenuated by inhibition of EGFR. Additionally, expression of a cancer-associated somatic BTC mutation (E156K) led to BTC mistrafficking and induced lateral lumens in MDCK cells. Overexpression of BTC, especially mistrafficking forms, increased the growth of MDCK cells. These results uncover a unique role for BTC mistrafficking in promoting epithelial reorganization. PMID:26272915

  14. Remodeling of nuclear architecture by the thiodioxoxpiperazine metabolite chaetocin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illner, Doris; Zinner, Roman; Handtke, Violet

    2010-06-10

    Extensive changes of higher order chromatin arrangements can be observed during prometaphase, terminal cell differentiation and cellular senescence. Experimental systems where major reorganization of nuclear architecture can be induced under defined conditions, may help to better understand the functional implications of such changes. Here, we report on profound chromatin reorganization in fibroblast nuclei by chaetocin, a thiodioxopiperazine metabolite. Chaetocin induces strong condensation of chromosome territories separated by a wide interchromatin space largely void of DNA. Cell viability is maintained irrespective of this peculiar chromatin phenotype. Cell cycle markers, histone signatures, and tests for cellular senescence and for oxidative stress indicatemore » that chaetocin induced chromatin condensation/clustering (CICC) represents a distinct entity among nuclear phenotypes associated with condensed chromatin. The territorial organization of entire chromosomes is maintained in CICC nuclei; however, the conventional nuclear architecture harboring gene-dense chromatin in the nuclear interior and gene-poor chromatin at the nuclear periphery is lost. Instead gene-dense and transcriptionally active chromatin is shifted to the periphery of individual condensed chromosome territories where nascent RNA becomes highly enriched around their outer surface. This chromatin reorganization makes CICC nuclei an attractive model system to study this border zone as a distinct compartment for transcription. Induction of CICC is fully inhibited by thiol-dependent antioxidants, but is not related to the production of reactive oxygen species. Our results suggest that chaetocin functionally impairs the thioredoxin (Trx) system, which is essential for deoxynucleotide synthesis, but in addition involved in a wide range of cellular functions. The mechanisms involved in CICC formation remain to be fully explored.« less

  15. Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo

    PubMed Central

    1986-01-01

    The reorganization of the microtubular meshwork was studied in intact Haemanthus endosperm cells and cell fragments (cytoplasts). This higher plant tissue is devoid of a known microtubule organizating organelle. Observations on living cells were correlated with microtubule arrangements visualized with the immunogold method. In small fragments, reorganization did not proceed. In medium and large sized fragments, microtubular converging centers formed first. Then these converging centers reorganized into either closed bushy microtubular spiral or chromosome-free cytoplasmic spindles/phragmoplasts. Therefore, the final shape of organized microtubular structures, including spindle shaped, was determined by the initial size of the cell fragments and could be achieved without chromosomes or centrioles. Converging centers elongate due to the formation of additional structures resembling microtubular fir trees. These structures were observed at the pole of the microtubular converging center in anucleate fragments, accessory phragmoplasts in nucleated cells, and in the polar region of the mitotic spindle during anaphase. Therefore, during anaphase pronounced assembly of new microtubules occurs at the polar region of acentriolar spindles. Moreover, statistical analysis demonstrated that during the first two-thirds of anaphase, when chromosomes move with an approximately constant speed, kinetochore fibers shorten, while the length of the kinetochore fiber complex remains constant due to the simultaneous elongation of their integral parts (microtubular fir trees). The half-spindle shortens only during the last one-third of anaphase. These data contradict the presently prevailing view that chromosome-to-pole movements in acentriolar spindles of higher plants are concurrent with the shortening of the half-spindle, the self- reorganizing property of higher plant microtubules (tubulin) in vivo. It may be specific for cells without centrosomes and may be superimposed also on other microtubule-related processes. PMID:3941154

  16. The role of the tunneling matrix element and nuclear reorganization in the design of quantum-dot cellular automata molecules

    NASA Astrophysics Data System (ADS)

    Henry, Jackson; Blair, Enrique P.

    2018-02-01

    Mixed-valence molecules provide an implementation for a high-speed, energy-efficient paradigm for classical computing known as quantum-dot cellular automata (QCA). The primitive device in QCA is a cell, a structure with multiple quantum dots and a few mobile charges. A single mixed-valence molecule can function as a cell, with redox centers providing quantum dots. The charge configuration of a molecule encodes binary information, and device switching occurs via intramolecular electron transfer between dots. Arrays of molecular cells adsorbed onto a substrate form QCA logic. Individual cells in the array are coupled locally via the electrostatic electric field. This device networking enables general-purpose computing. Here, a quantum model of a two-dot molecule is built in which the two-state electronic system is coupled to the dominant nuclear vibrational mode via a reorganization energy. This model is used to explore the effects of the electronic inter-dot tunneling (coupling) matrix element and the reorganization energy on device switching. A semi-classical reduction of the model also is made to investigate the competition between field-driven device switching and the electron-vibrational self-trapping. A strong electron-vibrational coupling (high reorganization energy) gives rise to self-trapping, which inhibits the molecule's ability to switch. Nonetheless, there remains an expansive area in the tunneling-reorganization phase space where molecules can support adequate tunneling. Thus, the relationship between the tunneling matrix element and the reorganization energy affords significant leeway in the design of molecules viable for QCA applications.

  17. Nucleation of rotating crystals by Thiovulum majus bacteria

    NASA Astrophysics Data System (ADS)

    Petroff, A. P.; Libchaber, A.

    2018-01-01

    Thiovulum majus self-organize on glass surfaces into active two-dimensional crystals of rotating cells. Unlike classical crystals, these bacterial crystallites continuously rotate and reorganize as the power of rotating cells is dissipated by the surrounding flow. In this article, we describe the earliest stage of crystallization, the attraction of two bacteria into a hydrodynamically-bound dimer. This process occurs in three steps. First a free-swimming cell collides with the wall and becomes hydrodynamically bound to the two-dimensional surface. We present a simple model to understand how viscous forces localize cells near the chamber walls. Next, the cell diffuses over the surface for an average of 63+/- 6 s before escaping to the bulk fluid. The diffusion coefficient {D}{{eff}}=7.98 +/- 0.1 μ {{{m}}}2 {{{s}}}-1 of these 8.5 μ {{m}} diameter cells corresponds to a temperature of (4.16+/- 0.05)× {10}4 K, and thus cannot be explained by equilibrium fluctuations. Finally, two cells coalesce into a rotating dimer when the convergent flow created by each cell overwhelms their active Brownian motion. This occurs when cells diffuse to within a distance of 13.3 ± 0.2 μm of each other.

  18. Dynamics of Surface Reorganization of Poly(methyl methacrylate) in Contact with Water

    NASA Astrophysics Data System (ADS)

    Horinouchi, Ayanobu; Atarashi, Hironori; Fujii, Yoshihisa; Tanaka, Keiji

    2013-03-01

    New tools for tailor-made diagnostics, such as DNA arrays and tips for micro-total-analysis systems, are generally made from polymers. In these applications, the polymer surface is in contact with a water phase. However, despite the importance of detailed knowledge of the fundamental interactions of polymer interfaces with liquids, such studies are very limited. As an initial benchmark for designing and constructing specialized biomedical surfaces containing polymer, aggregation states and dynamics of chains at the water interface should be systematically examined. We here apply time-resolved contact angle measurement to study the dynamics of the surface reorganization of poly(methyl methacrylate) (PMMA) in contact with water. By doing the measurements at various temperatures, it is possible to discuss the surface dynamics of PMMA based on the apparent activation energy. Also, sum-frequency generation spectroscopy revealed that the surface reorganization involves the conformational changes in the main chain part as well as the side chains. Hence, the dynamics observed here may reflect the segmental motion at the outermost region of the PMMA film, in which water plays as a plasticizer.

  19. Functional analysis of cellulose and xyloglucan in the walls of stomatal guard cells of Arabidopsis thaliana

    DOE PAGES

    Rui, Yue; Anderson, Charles T.

    2016-01-04

    Here, stomatal guard cells are pairs of specialized epidermal cells that control water and CO 2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis ( Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measuredmore » the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3 je5 mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface.« less

  20. Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis1[OPEN

    PubMed Central

    Rui, Yue; Anderson, Charles T.

    2016-01-01

    Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3je5 mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface. PMID:26729799

  1. Structural centrosome aberrations sensitize polarized epithelia to basal cell extrusion.

    PubMed

    Ganier, Olivier; Schnerch, Dominik; Nigg, Erich A

    2018-06-01

    Centrosome aberrations disrupt tissue architecture and may confer invasive properties to cancer cells. Here we show that structural centrosome aberrations, induced by overexpression of either Ninein-like protein (NLP) or CEP131/AZI1, sensitize polarized mammalian epithelia to basal cell extrusion. While unperturbed epithelia typically dispose of damaged cells through apical dissemination into luminal cavities, certain oncogenic mutations cause a switch in directionality towards basal cell extrusion, raising the potential for metastatic cell dissemination. Here we report that NLP-induced centrosome aberrations trigger the preferential extrusion of damaged cells towards the basal surface of epithelial monolayers. This switch in directionality from apical to basal dissemination coincides with a profound reorganization of the microtubule cytoskeleton, which in turn prevents the contractile ring repositioning that is required to support extrusion towards the apical surface. While the basal extrusion of cells harbouring NLP-induced centrosome aberrations requires exogenously induced cell damage, structural centrosome aberrations induced by excess CEP131 trigger the spontaneous dissemination of dying cells towards the basal surface from MDCK cysts. Thus, similar to oncogenic mutations, structural centrosome aberrations can favour basal extrusion of damaged cells from polarized epithelia. Assuming that additional mutations may promote cell survival, this process could sensitize epithelia to disseminate potentially metastatic cells. © 2018 The Authors.

  2. Ion Movements in Cell Injury

    PubMed Central

    Saladino, Andrew J.; Hawkins, Hal K.; Trump, Benjamin F.

    1971-01-01

    The effects of a cationic detergent, cetyl pyridinium chloride (CPC), on toad bladder epithelium were studied by means of electrophysiologic and sodium-flux measurements, chemical analysis, time-lapse phase-contrast cinemicrography and electron microscopy. At 10-5 M, CPC caused a rapid loss of net sodium transport as reflected by the short-circuit current (SCC) but except for striking prominence of the glycocalyx, this dose caused no ultrastructural changes for at least 18 hours. Only a moderate decrease in resistance and increase in passive sodium flux were noted. At 10-4 M, CPC caused a transient 1 to 2-minute increase in the bladder's rate of oxygen consumption followed by a decrease, and a rapid decline in SCC, followed a few minute later by a decrease in resistance accompanied by a greatly increased passive leak to sodium. A sequence of ultrastructural changes typical of other forms of lethal cell injury progressed to extensive cellular disruption by 1 hour after treatment with 10-4 M CPC. In addition, unusual surface membrane changes were observed, consisting of extensive formation of vesicles and myelin figures at the cell surface. A significant fraction of the bladder's cholesterol content appeared in the incubation medium after 10-4 M CPC treatment. With 10-3 M CPC, a similar pattern of cellular degeneration proceeded much more rapidly, and in addition, the cellular remains reorganized into complex lamellar arrays resembling phospholipid crystalloids. The results are interpreted as indicating that in addition to inhibiting net sodium transport, CPC lethally injures cells by interfering with the function of the surface membrane as a permeability barrier, and in addition, leads to a drastic structural reorganization of membrane constituents. ImagesFig 9Fig 10Fig 1Fig 2Fig 11Fig 12Fig 13Fig 5Fig 6Fig 7Fig 8Fig 14Fig 15Fig 16Fig 3Fig 4 PMID:4946878

  3. Calcium-responsive contractility during fertilization in sea urchin eggs.

    PubMed

    Stack, Christianna; Lucero, Amy J; Shuster, Charles B

    2006-04-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins, there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both before and after fertilization and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed by and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. (c) 2006 Wiley-Liss, Inc.

  4. Calcium-Responsive Contractility During Fertilization in Sea Urchin Eggs

    PubMed Central

    Stack, Christianna; Lucero, Amy J.; Shuster, Charles B.

    2008-01-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both prior to- and following fertilization, and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed- and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs, but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. PMID:16470603

  5. Organization and mobility of CD11b/CD18 and targeting of superoxide on the surface of degranulated human neutrophils.

    PubMed

    Mukherjee, G; Rasmusson, B; Linner, J G; Quinn, M T; Parkos, C A; Magnusson, K E; Jesaitis, A J

    1998-09-01

    A monoclonal IgM, specifically recognizing both CD11b and CD18 of human neutrophils, was used to examine the organization and mobility of CD11b/CD18 in the plasma membrane of human neutrophils degranulated by dihydrocytochalasin B (dhCB) treatment and fMet-Leu-Phe (fMLF) stimulation. Subcellular fractionation analysis of untreated or dhCB-treated control neutrophils indicated that 20% of CD11b/CD18 cosedimented with plasma membrane and the remainder with specific granules. In contrast, fMLF stimulation of dhCB-treated cells caused a major reorganization of CD11b/CD18, in which 60-70% of CD11b/CD18 sedimented in dense plasma membrane fractions that were also enriched in superoxide-generating NADPH oxidase activity. Similarly pretreated neutrophils were fixed, immunogold labeled, and examined by scanning electron microscopy. Immunogold particles were distributed uniformly over the symmetrically ruffled surface of unstimulated neutrophils. On dhCB-treated cells, immunogold was mostly uniformly distributed on a smooth membrane with a small percentage of particles lining up into linear arrays. After fMLF + dhCB stimulation, CD11b/CD18 gold label was more abundant on the cell surface and formed large aggregates on polarized membrane protrusions. However, when cells were adhered to an albumin-coated quartz surface and stimulated with fMLF in the presence of dhCB, immunogold was excluded on the articulated and rounded cell body but concentrated on the periphery of adherent lamellae. Fluorescence photobleaching recovery indicated that in unstimulated cells 38 +/- 3% of CD11b/CD18 was mobile (R) with a diffusion constant D of 3.1 +/- 0.3 x 10(-10) cm2/s. Treatment with dhCB raised R and D 24 and 74%, respectively. Stimulation using 1 microM fMLF with dhCB lowered D and R to near control levels. Since NADPH oxidase and CD11b/CD18 cosediment in high-density plasma membrane domains after fMLF + dhCB stimulation, we speculate that a stimulus-induced reorganization of CD11b/CD18 and NADPH oxidase to common membrane domains may occur in fMLF + dhCB-degranulated neutrophils. Copyright 1998 Academic Press.

  6. Directed assembly of gold nanowires on silicon via reorganization and simultaneous fusion of randomly distributed gold nanoparticles.

    PubMed

    Reinhardt, Hendrik M; Bücker, Kerstin; Hampp, Norbert A

    2015-05-04

    Laser-induced reorganization and simultaneous fusion of nanoparticles is introduced as a versatile concept for pattern formation on surfaces. The process takes advantage of a phenomenon called laser-induced periodic surface structures (LIPSS) which originates from periodically alternating photonic fringe patterns in the near-field of solids. Associated photonic fringe patterns are shown to reorganize randomly distributed gold nanoparticles on a silicon wafer into periodic gold nanostructures. Concomitant melting due to optical heating facilitates the formation of continuous structures such as periodic gold nanowire arrays. Generated patterns can be converted into secondary structures using directed assembly or self-organization. This includes for example the rotation of gold nanowire arrays by arbitrary angles or their fragmentation into arrays of aligned gold nanoparticles.

  7. Investigation of cell cycle-associated structural reorganization in nucleolar FC/DFCs from mouse MFC cells by electron microscopy.

    PubMed

    Chen, Lingling; Jiao, Yang; Guan, Xin; Li, Xiliang; Feng, Yunpeng; Jiao, Mingda

    2018-05-01

    Nucleolus structure alters as the cell cycle is progressing. It is established in telophase, maintained throughout the entire interphase and disassembled in metaphase. Fibrillar centers (FCs), dense fibrillar components (DFCs) and granular components (GCs) are essential nucleolar organizations where rRNA transcription and processing and ribosome assembly take place. Hitherto, little is known about the cell cycle-dependent reorganization of these structures. In this study, we followed the nucleolus structure during the cell cycle by electron microscopy (EM). We found the nucleolus experienced multiple rounds of structural reorganization within a single cell cycle: (1) when nucleoli are formed during the transition from late M to G1 phase, FCs, DFCs and GCs are constructed, leading to the establishment of tripartite nucleolus; (2) as FC/DFCs are disrupted at mid-G1, tripartite nucleolus is gradually changed into a bipartite organization; (3) at late G1, the reassembly of FC/DFCs results in a structural transition from bipartite nucleolus towards tripartite nucleolus; (4) as cells enter S phase, FC/DFCs are disassembled again and tripartite nucleolus is thus changed into a bipartite organization. Of note, FC/DFCs were not observed until late S phase; (5) FC/DFCs experience structural disruption and restoration during G2 and (6) when cells are at mitotic stage, FC/DFCs disappear before nucleolus structure is disassembled. These results also suggest that bipartite nucleolus can exist in higher eukaryotes at certain period of the cell cycle. As structures are the fundamental basis of diverse cell activities, unveiling the structural reorganization of nucleolar FCs and DFCs may bring insights into the spatial-temporal compartmentalization of relevant cellular functions.

  8. Reversible structural alterations of undifferentiated and differentiated human neuroblastoma cells induced by phorbol ester.

    PubMed Central

    Tint, I S; Bonder, E M; Feder, H H; Reboulleau, C P; Vasiliev, J M; Gelfand, I M

    1992-01-01

    Morphological alterations in the structure of undifferentiated and morphologically differentiated human neuroblastoma cells induced by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were examined by video microscopy and immunomorphology. In undifferentiated cells, PMA induced the formation of motile actin-rich lamellas and of stable cylindrical processes rich in microtubules. Formation of stable processes resulted either from the collapse of lamellas or the movement of the cell body away from the base of a process. In differentiated cells, PMA induced the rapid extension of small lamellas and subsequent formation of short-lived elongated processes from the lateral edges of neurites. Additionally, growth cones exhibited enhanced modulation in shape after PMA treatment. These reversible reorganizations were similar to the actinoplast-tubuloplast transformations exhibited by PMA-treated fibroblasts. We suggest that actinoplast-tubuloplast reorganizations play essential roles in morphogenesis where stable cytoplasmic extensions are induced by external stimuli. In particular, PMA-induced reorganizations of neural cells in culture may be a model for morphological modulations that occur in nerve tissue. Images PMID:1518842

  9. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea.

    PubMed

    Huang, Lin-Chien; Thorne, Peter R; Housley, Gary D; Montgomery, Johanna M

    2007-08-01

    The adult mammalian cochlea receives dual afferent innervation: the inner sensory hair cells are innervated exclusively by type I spiral ganglion neurons (SGN), whereas the sensory outer hair cells are innervated by type II SGN. We have characterized the spatiotemporal reorganization of the dual afferent innervation pattern as it is established in the developing mouse cochlea. This reorganization occurs during the first postnatal week just before the onset of hearing. Our data reveal three distinct phases in the development of the afferent innervation of the organ of Corti: (1) neurite growth and extension of both classes of afferents to all hair cells (E18-P0); (2) neurite refinement, with formation of the outer spiral bundles innervating outer hair cells (P0-P3); (3) neurite retraction and synaptic pruning to eliminate type I SGN innervation of outer hair cells, while retaining their innervation of inner hair cells (P3-P6). The characterization of this developmental innervation pattern was made possible by the finding that tetramethylrhodamine-conjugated dextran (TMRD) specifically labeled type I SGN. Peripherin and choline-acetyltransferase immunofluorescence confirmed the type II and efferent innervation patterns, respectively, and verified the specificity of the type I SGN neurites labeled by TMRD. These findings define the precise spatiotemporal neurite reorganization of the two afferent nerve fiber populations in the cochlea, which is crucial for auditory neurotransmission. This reorganization also establishes the cochlea as a model system for studying CNS synapse development, plasticity and elimination.

  10. Imaging and reconstruction of cell cortex structures near the cell surface

    NASA Astrophysics Data System (ADS)

    Jin, Luhong; Zhou, Xiaoxu; Xiu, Peng; Luo, Wei; Huang, Yujia; Yu, Feng; Kuang, Cuifang; Sun, Yonghong; Liu, Xu; Xu, Yingke

    2017-11-01

    Total internal reflection fluorescence microscopy (TIRFM) provides high optical sectioning capability and superb signal-to-noise ratio for imaging of cell cortex structures. The development of multi-angle (MA)-TIRFM permits high axial resolution imaging and reconstruction of cellular structures near the cell surface. Cytoskeleton is composed of a network of filaments, which are important for maintenance of cell function. The high-resolution imaging and quantitative analysis of filament organization would contribute to our understanding of cytoskeleton regulation in cell. Here, we used a custom-developed MA-TIRFM setup, together with stochastic photobleaching and single molecule localization method, to enhance the lateral resolution of TIRFM imaging to about 100 nm. In addition, we proposed novel methods to perform filament segmentation and 3D reconstruction from MA-TIRFM images. Furthermore, we applied these methods to study the 3D localization of cortical actin and microtubule structures in U373 cancer cells. Our results showed that cortical actins localize ∼ 27 nm closer to the plasma membrane when compared with microtubules. We found that treatment of cells with chemotherapy drugs nocodazole and cytochalasin B disassembles cytoskeletal network and induces the reorganization of filaments towards the cell periphery. In summary, this study provides feasible approaches for 3D imaging and analyzing cell surface distribution of cytoskeletal network. Our established microscopy platform and image analysis toolkits would facilitate the study of cytoskeletal network in cells.

  11. Organization of supercoil domains and their reorganization by transcription

    PubMed Central

    Deng, Shuang; Stein, Richard A.; Higgins, N. Patrick

    2006-01-01

    Summary During a normal cell cycle, chromosomes are exposed to many biochemical reactions that require specific types of DNA movement. Separation forces move replicated chromosomes into separate sister cell compartments during cell division, and the contemporaneous acts of DNA replication, RNA transcription and cotranscriptional translation of membrane proteins cause specific regions of DNA to twist, writhe and expand or contract. Recent experiments indicate that a dynamic and stochastic mechanism creates supercoil DNA domains soon after DNA replication. Domain structure is subsequently reorganized by RNA transcription. Examples of transcription-dependent chromosome remodelling are also emerging from eukaryotic cell systems. PMID:16135220

  12. Substrate Topography Induces a Crossover from 2D to 3D Behavior in Fibroblast Migration

    PubMed Central

    Ghibaudo, Marion; Trichet, Léa; Le Digabel, Jimmy; Richert, Alain; Hersen, Pascal; Ladoux, Benoît

    2009-01-01

    Abstract In a three-dimensional environment, cells migrate through complex topographical features. Using microstructured substrates, we investigate the role of substrate topography in cell adhesion and migration. To do so, fibroblasts are plated on chemically identical substrates composed of microfabricated pillars. When the dimensions of the pillars (i.e., the diameter, length, and spacing) are varied, migrating cells encounter alternating flat and rough surfaces that depend on the spacing between the pillars. Consequently, we show that substrate topography affects cell shape and migration by modifying cell-to-substrate interactions. Cells on micropillar substrates exhibit more elongated and branched shapes with fewer actin stress fibers compared with cells on flat surfaces. By analyzing the migration paths in various environments, we observe different mechanisms of cell migration, including a persistent type of migration, that depend on the organization of the topographical features. These responses can be attributed to a spatial reorganization of the actin cytoskeleton due to physical constraints and a preferential formation of focal adhesions on the micropillars, with an increased lifetime compared to that observed on flat surfaces. By changing myosin II activity, we show that actomyosin contractility is essential in the cellular response to micron-scale topographic signals. Finally, the analysis of cell movements at the frontier between flat and micropillar substrates shows that cell transmigration through the micropillar substrates depends on the spacing between the pillars. PMID:19580774

  13. The Changeable Nervous System: Studies On Neuroplasticity In Cerebellar Cultures

    PubMed Central

    Seil, Fredrick J.

    2014-01-01

    Circuit reorganization after injury was studied in a cerebellar culture model. When cerebellar cultures derived from newborn mice were exposed at explantation to a preparation of cytosine arabinoside that destroyed granule cells and oligodendrocytes and compromised astrocytes, Purkinje cells surviving in greater than usual numbers were unensheathed by astrocytic processes and received twice the control number of inhibitory axosomatic synapses. Purkinje cell axon collaterals sprouted and many of their terminals formed heterotypical synapses with other Purkinje cell dendritic spines. The resulting circuit reorganization preserved inhibition in the cerebellar cortex. Following this reorganization, replacement of the missing granule cells and glia was followed by a restitution of the normal circuitry. Most of these developmental and reconstructive changes were not dependent on neuronal activity, the major exception being inhibitory synaptogenesis. The full complement of inhibitory synapses did not develop in the absence of neuronal activity, which could be mitigated by application of exogenous TrkB receptor ligands. Inhibitory synaptogenesis could also be promoted by activity-induced release of endogenous TrkB receptor ligands or by antibody activation of the TrkB receptor. PMID:24933693

  14. CA1 cell activity sequences emerge after reorganization of network correlation structure during associative learning

    PubMed Central

    Modi, Mehrab N; Dhawale, Ashesh K; Bhalla, Upinder S

    2014-01-01

    Animals can learn causal relationships between pairs of stimuli separated in time and this ability depends on the hippocampus. Such learning is believed to emerge from alterations in network connectivity, but large-scale connectivity is difficult to measure directly, especially during learning. Here, we show that area CA1 cells converge to time-locked firing sequences that bridge the two stimuli paired during training, and this phenomenon is coupled to a reorganization of network correlations. Using two-photon calcium imaging of mouse hippocampal neurons we find that co-time-tuned neurons exhibit enhanced spontaneous activity correlations that increase just prior to learning. While time-tuned cells are not spatially organized, spontaneously correlated cells do fall into distinct spatial clusters that change as a result of learning. We propose that the spatial re-organization of correlation clusters reflects global network connectivity changes that are responsible for the emergence of the sequentially-timed activity of cell-groups underlying the learned behavior. DOI: http://dx.doi.org/10.7554/eLife.01982.001 PMID:24668171

  15. Surface properties of functional polymer systems

    NASA Astrophysics Data System (ADS)

    Wong, Derek

    Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was confined to the top 2--3 nm of the surface. Contact angle results showed also that the reorganization process proceeded as a function of (time) 1/2, indicating that it is likely diffusion controlled. The magnitudes of the activation energies determined from the experimental data according to the Arhenius equation, suggest that the process is possibly correlated with known bulk beta and gamma relaxations in the polymer.

  16. A new application of the phase-field method for understanding the mechanisms of nuclear architecture reorganization.

    PubMed

    Lee, S Seirin; Tashiro, S; Awazu, A; Kobayashi, R

    2017-01-01

    Specific features of nuclear architecture are important for the functional organization of the nucleus, and chromatin consists of two forms, heterochromatin and euchromatin. Conventional nuclear architecture is observed when heterochromatin is enriched at nuclear periphery, and it represents the primary structure in the majority of eukaryotic cells, including the rod cells of diurnal mammals. In contrast to this, inverted nuclear architecture is observed when the heterochromatin is distributed at the center of the nucleus, which occurs in the rod cells of nocturnal mammals. The inverted architecture found in the rod cells of the adult mouse is formed through the reorganization of conventional architecture during terminal differentiation. Although a previous experimental approach has demonstrated the relationship between these two nuclear architecture types at the molecular level, the mechanisms underlying long-range reorganization processes remain unknown. The details of nuclear structures and their spatial and temporal dynamics remain to be elucidated. Therefore, a comprehensive approach, using mathematical modeling, is required, in order to address these questions. Here, we propose a new mathematical approach to the understanding of nuclear architecture dynamics using the phase-field method. We successfully recreated the process of nuclear architecture reorganization, and showed that it is robustly induced by physical features, independent of a specific genotype. Our study demonstrates the potential of phase-field method application in the life science fields.

  17. T Lymphocyte Activation Threshold and Membrane Reorganization Perturbations in Unique Culture Model

    NASA Technical Reports Server (NTRS)

    Adams, C. L.; Sams, C. F.

    2000-01-01

    Quantitative activation thresholds and cellular membrane reorganization are mechanisms by which resting T cells modulate their response to activating stimuli. Here we demonstrate perturbations of these cellular processes in a unique culture system that non-invasively inhibits T lymphocyte activation. During clinorotation, the T cell activation threshold is increased 5-fold. This increased threshold involves a mechanism independent of TCR triggering. Recruitment of lipid rafts to the activation site is impaired during clinorotation but does occur with increased stimulation. This study describes a situation in which an individual cell senses a change in its physical environment and alters its cell biological behavior.

  18. Chirality in microbial biofilms is mediated by close interactions between the cell surface and the substratum

    PubMed Central

    Jauffred, Liselotte; Munk Vejborg, Rebecca; Korolev, Kirill S; Brown, Stanley; Oddershede, Lene B

    2017-01-01

    From microbial biofilms to human migrations, spatial competition is central to the evolutionary history of many species. The boundary between expanding populations is the focal point of competition for space and resources and is of particular interest in ecology. For all Escherichia coli strains studied here, these boundaries move in a counterclockwise direction even when the competing strains have the same fitness. We find that chiral growth of bacterial colonies is strongly suppressed by the expression of extracellular features such as adhesive structures and pili. Experiments with other microbial species show that chiral growth is found in other bacteria and exclude cell wall biosynthesis and anisotropic shape as the primary causes of chirality. Instead, intimate contact with the substratum is necessary for chirality. Our results demonstrate that through a handful of surface molecules cells can fundamentally reorganize their migration patterns, which might affect intra- and interspecific competitions through colony morphology or other mechanisms. PMID:28362723

  19. Top-down approach for nanophase reconstruction in bulk heterojunction solar cells.

    PubMed

    Kong, Jaemin; Hwang, In-Wook; Lee, Kwanghee

    2014-09-01

    "Top-Down" nanophase reconstruction via a post-additive soaking process is first presented with various BHJ binary composites. By simply rinsing as-cast BHJ films with a solvent mixture containing a few traces of a nanophase-control reagent such as 1,8-diiodooctane, oversized fullerene-rich clusters (>100 nm in dia-meter) in the BHJ film are instataneously disassembled and entirely reorganized into finely intermixed donor/acceptor nanophases (ca. 10 nm) with a 3D compositional homogeneity, without surface segregation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Epithelial Markers aSMA, Krt14, and Krt19 Unveil Elements of Murine Lacrimal Gland Morphogenesis and Maturation.

    PubMed

    Kuony, Alison; Michon, Frederic

    2017-01-01

    As an element of the lacrimal apparatus, the lacrimal gland (LG) produces the aqueous part of the tear film, which protects the eye surface. Therefore, a defective LG can lead to serious eyesight impairment. Up to now, little is known about LG morphogenesis and subsequent maturation. In this study, we delineated elements of the cellular and molecular events involved in LG formation by using three epithelial markers, namely aSMA, Krt14, and Krt19. While aSMA marked a restricted epithelial population of the terminal end buds (TEBs) in the forming LG, Krt14 was found in the whole embryonic LG epithelial basal cell layer. Interestingly, Krt19 specifically labeled the presumptive ductal domain and subsequently, the luminal cell layer. By combining these markers, the Fucci reporter mouse strain and genetic fate mapping of the Krt14 + population, we demonstrated that LG epithelium expansion is fuelled by a patterned cell proliferation, and to a lesser extent by epithelial reorganization and possible mesenchymal-to-epithelial transition. We pointed out that this epithelial reorganization, which is associated with apoptosis, regulated the lumen formation. Finally, we showed that the inhibition of Notch signaling prevented the ductal identity from setting, and led to a LG covered by ectopic TEBs. Taken together our results bring a deeper understanding on LG morphogenesis, epithelial domain identity, and organ expansion.

  1. Epithelial Markers aSMA, Krt14, and Krt19 Unveil Elements of Murine Lacrimal Gland Morphogenesis and Maturation

    PubMed Central

    Kuony, Alison; Michon, Frederic

    2017-01-01

    As an element of the lacrimal apparatus, the lacrimal gland (LG) produces the aqueous part of the tear film, which protects the eye surface. Therefore, a defective LG can lead to serious eyesight impairment. Up to now, little is known about LG morphogenesis and subsequent maturation. In this study, we delineated elements of the cellular and molecular events involved in LG formation by using three epithelial markers, namely aSMA, Krt14, and Krt19. While aSMA marked a restricted epithelial population of the terminal end buds (TEBs) in the forming LG, Krt14 was found in the whole embryonic LG epithelial basal cell layer. Interestingly, Krt19 specifically labeled the presumptive ductal domain and subsequently, the luminal cell layer. By combining these markers, the Fucci reporter mouse strain and genetic fate mapping of the Krt14+ population, we demonstrated that LG epithelium expansion is fuelled by a patterned cell proliferation, and to a lesser extent by epithelial reorganization and possible mesenchymal-to-epithelial transition. We pointed out that this epithelial reorganization, which is associated with apoptosis, regulated the lumen formation. Finally, we showed that the inhibition of Notch signaling prevented the ductal identity from setting, and led to a LG covered by ectopic TEBs. Taken together our results bring a deeper understanding on LG morphogenesis, epithelial domain identity, and organ expansion. PMID:29033846

  2. Symmetrization in jellyfish: reorganization to regain function, and not lost parts.

    PubMed

    Abrams, Michael J; Goentoro, Lea

    2016-02-01

    We recently reported a previously unidentified strategy of self-repair in the moon jellyfish Aurelia aurita. Rather than regenerating lost parts, juvenile Aurelia reorganize remaining parts to regain essential body symmetry. This process that we called symmetrization is rapid and frequent, and is not driven by cell proliferation or cell death. Instead, the swimming machinery generates mechanical forces that drive symmetrization. We found evidence for symmetrization across three other species of jellyfish (Chrysaora pacifica, Mastigias sp., and Cotylorhiza tuberculata). We propose reorganization to regain function without recovery of initial morphology as a potentially broad class of self-repair strategy beyond radially symmetrical animals, and discuss the implications of this finding on the evolution of self-repair strategies in animals. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  3. Mesenchymal stem cells cultured on magnetic nanowire substrates

    NASA Astrophysics Data System (ADS)

    Perez, Jose E.; Ravasi, Timothy; Kosel, Jürgen

    2017-02-01

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing hMSCs differentiation.

  4. Finding a Vulnerable Spot in HIV’s Armor by Investigating the Structure of HIV | Center for Cancer Research

    Cancer.gov

    The Human Immunodeficiency Virus (HIV) infects and eventually kills CD4-expressing T cells, which are essential for the immune system to function appropriately. Loss of significant numbers of T cells leads to Acquired Immunodeficiency Syndrome (AIDS), a disease that kills over two million people around the world every year. HIV infection depends on two proteins expressed on the virus surface: gp41, which sits in the virus membrane, and gp120, which sits on top of gp41. Three copies, or trimers, of each gp41/gp120 pair make up the envelope glycoprotein, Env. Env coats the virus surface and interacts with its receptor, CD4, and a co-receptor, either CCR5 or CXCR4, on the T cell. Binding to the receptors is thought to cause a structural reorganization of Env, which exposes a fusion peptide that inserts into the T cell membrane and actually forces the virus and host membranes together, initiating an infection. However, the structural details of this process are lacking.

  5. The role of heparins and nano-heparins as therapeutic tool in breast cancer.

    PubMed

    Afratis, Nikos A; Karamanou, Konstantina; Piperigkou, Zoi; Vynios, Demitrios H; Theocharis, Achilleas D

    2017-06-01

    Glycosaminoglycans are integral part of the dynamic extracellular matrix (ECM) network that control crucial biochemical and biomechanical signals required for tissue morphogenesis, differentiation, homeostasis and cancer development. Breast cancer cells communicate with stromal ones to modulate ECM mainly through release of soluble effectors during cancer progression. The intracellular cross-talk between cell surface receptors and estrogen receptors is important for the regulation of breast cancer cell properties and production of ECM molecules. In turn, reorganized ECM-cell surface interface modulates signaling cascades, which regulate almost all aspects of breast cell behavior. Heparan sulfate chains present on cell surface and matrix proteoglycans are involved in regulation of breast cancer functions since they are capable of binding numerous matrix molecules, growth factors and inflammatory mediators thus modulating their signaling. In addition to its anticoagulant activity, there is accumulating evidence highlighting various anticancer activities of heparin and nano-heparin derivatives in numerous types of cancer. Importantly, heparin derivatives significantly reduce breast cancer cell proliferation and metastasis in vitro and in vivo models as well as regulates the expression profile of major ECM macromolecules, providing strong evidence for therapeutic targeting. Nano-formulations of the glycosaminoglycan heparin are possibly novel tools for targeting tumor microenvironment. In this review, the role of heparan sulfate/heparin and its nano-formulations in breast cancer biology are presented and discussed in terms of future pharmacological targeting.

  6. Dynamics of γ-tubulin cytoskeleton in HL-60 leukemia cells undergoing differentiation and apoptosis by all-trans retinoic acid.

    PubMed

    Shariftabrizi, Ahmad; Ahmadian, Shahin; Pazhang, Yaghub

    2012-02-01

    Microtubules are important components of the cell cytoskeleton, participating in protein localization and cell signaling. The capacity of leukemia cells to re-organize their microtubules is considered an integral part of differentiation in these cells in order to become mature granulocytes through treatment with all-trans retinoic acid (ATRA), an established drug for treating acute promyelocytic leukemia. In this study we examined γ-, α- and acetylated-α-tubulin content, their patterns of distribution in the cytoplasm, and the potency of centrosomes in re-organizing microtubules in different stages of ATRA-induced differentiation and apoptosis of the HL-60 cell line. The γ-tubulin content was dramatically increased following differentiation of HL-60 cells, and was then decreased after apoptosis. We also found that γ-tubulin had a diffuse, cytoplasmic pattern following apoptosis compared to the focal, centrosomal accumulation of γ-tubulin in differentiated cells. Differentiated cells had the ability to re-organize their microtubule network following nocodazole challenge testing, whereas undifferentiated cells did not show a similar ability. α-tubulin was more regularly organized in differentiated cells, and did not reveal any specific pattern of polymerization in apoptotic cells. Acetylated-α-tubulin generally followed the same organization patterns after differentiation, as that which occurred for α-tubulin. Our data is suggestive of a centrosomal and organized nucleation pattern of microtubules in HL-60 cells following differentiation, possibly mediated through up-regulation of γ-tubulin.

  7. Dynamic Reorganization of the Cytoskeleton during Apoptosis: The Two Coffins Hypothesis.

    PubMed

    Povea-Cabello, Suleva; Oropesa-Ávila, Manuel; de la Cruz-Ojeda, Patricia; Villanueva-Paz, Marina; de la Mata, Mario; Suárez-Rivero, Juan Miguel; Álvarez-Córdoba, Mónica; Villalón-García, Irene; Cotán, David; Ybot-González, Patricia; Sánchez-Alcázar, José A

    2017-11-11

    During apoptosis, cells undergo characteristic morphological changes in which the cytoskeleton plays an active role. The cytoskeleton rearrangements have been mainly attributed to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent results have shown that microtubules are reorganized during the execution phase of apoptosis forming an apoptotic microtubule network (AMN). Evidence suggests that AMN is required to maintain plasma membrane integrity and cell morphology during the execution phase of apoptosis. The new "two coffins" hypothesis proposes that both AMN and apoptotic cells can adopt two morphological patterns, round or irregular, which result from different cytoskeleton kinetic reorganization during the execution phase of apoptosis induced by genotoxic agents. In addition, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocyte responses. These findings suggest that knowing the type of apoptosis may be important to predict how fast apoptotic cells undergo secondary necrosis and the subsequent immune response. From a pathological point of view, round-shaped apoptosis can be seen as a physiological and controlled type of apoptosis, while irregular-shaped apoptosis can be considered as a pathological type of cell death closer to necrosis.

  8. Dynamic Reorganization of the Cytoskeleton during Apoptosis: The Two Coffins Hypothesis

    PubMed Central

    Povea-Cabello, Suleva; Oropesa-Ávila, Manuel; de la Cruz-Ojeda, Patricia; Villanueva-Paz, Marina; de la Mata, Mario; Álvarez-Córdoba, Mónica; Villalón-García, Irene; Cotán, David; Ybot-González, Patricia

    2017-01-01

    During apoptosis, cells undergo characteristic morphological changes in which the cytoskeleton plays an active role. The cytoskeleton rearrangements have been mainly attributed to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent results have shown that microtubules are reorganized during the execution phase of apoptosis forming an apoptotic microtubule network (AMN). Evidence suggests that AMN is required to maintain plasma membrane integrity and cell morphology during the execution phase of apoptosis. The new “two coffins” hypothesis proposes that both AMN and apoptotic cells can adopt two morphological patterns, round or irregular, which result from different cytoskeleton kinetic reorganization during the execution phase of apoptosis induced by genotoxic agents. In addition, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocyte responses. These findings suggest that knowing the type of apoptosis may be important to predict how fast apoptotic cells undergo secondary necrosis and the subsequent immune response. From a pathological point of view, round-shaped apoptosis can be seen as a physiological and controlled type of apoptosis, while irregular-shaped apoptosis can be considered as a pathological type of cell death closer to necrosis. PMID:29137119

  9. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Arnal, L.; Longo, G.; Stupar, P.; Castez, M. F.; Cattelan, N.; Salvarezza, R. C.; Yantorno, O. M.; Kasas, S.; Vela, M. E.

    2015-10-01

    Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04644k

  10. Reorganization of the nuclear lamina and cytoskeleton in adipogenesis.

    PubMed

    Verstraeten, Valerie L R M; Renes, Johan; Ramaekers, Frans C S; Kamps, Miriam; Kuijpers, Helma J; Verheyen, Fons; Wabitsch, Martin; Steijlen, Peter M; van Steensel, Maurice A M; Broers, Jos L V

    2011-03-01

    A thorough understanding of fat cell biology is necessary to counter the epidemic of obesity. Although molecular pathways governing adipogenesis are well delineated, the structure of the nuclear lamina and nuclear-cytoskeleton junction in this process are not. The identification of the 'linker of nucleus and cytoskeleton' (LINC) complex made us consider a role for the nuclear lamina in adipose conversion. We herein focused on the structure of the nuclear lamina and its coupling to the vimentin network, which forms a cage-like structure surrounding individual lipid droplets in mature adipocytes. Analysis of a mouse and human model system for fat cell differentiation showed fragmentation of the nuclear lamina and subsequent loss of lamins A, C, B1 and emerin at the nuclear rim, which coincides with reorganization of the nesprin-3/plectin/vimentin complex into a network lining lipid droplets. Upon 18 days of fat cell differentiation, the fraction of adipocytes expressing lamins A, C and B1 at the nuclear rim increased, though overall lamin A/C protein levels were low. Lamin B2 remained at the nuclear rim throughout fat cell differentiation. Light and electron microscopy of a subcutaneous adipose tissue specimen showed striking indentations of the nucleus by lipid droplets, suggestive for an increased plasticity of the nucleus due to profound reorganization of the cellular infrastructure. This dynamic reorganization of the nuclear lamina in adipogenesis is an important finding that may open up new venues for research in and treatment of obesity and nuclear lamina-associated lipodystrophy.

  11. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells

    PubMed Central

    Taverna, Elena; Mora-Bermúdez, Felipe; Strzyz, Paulina J.; Florio, Marta; Icha, Jaroslav; Haffner, Christiane; Norden, Caren; Wilsch-Bräuninger, Michaela; Huttner, Wieland B.

    2016-01-01

    Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change. PMID:26879757

  12. Soybean agglutinin binding to corneal endothelial cell surfaces disrupts in situ monolayer integrity and actin organization and interferes with wound repair.

    PubMed

    Gordon, Sheldon R; Wood, Meredith

    2009-03-01

    Rat corneal endothelium demonstrates cell-surface soybean agglutinin (SBA) binding during organ-culture or injury. When organ-cultured in medium containing SBA, the endothelial monolayer is disrupted because of cell-cell and cell-matrix alterations. SBA binding disorganizes the circumferential microfilament bundles (CMBs), an effect that is partially prevented by phallacidin preincubation. This disruption is reversible if tissues are returned to standard culture medium. Serum heightens SBA binding, whereas puromycin prevents it. Neither actinomycin D nor alpha-amanitin inhibits SBA binding, suggesting that SBA-binding protein(s) may be post-transcriptionally regulated. During injury-induced cell migration in the presence of SBA, cellular processes are blunted and fail to extend significantly outward. By 72 h post-injury, cells of SBA-treated tissues repopulate the wound but demonstrate little association with neighboring cells. Cells migrating in the presence of N-acetylgalactosamine appear normal but also fail to reassociate with other cells in the jury zone. Immunofluorescent staining for ZO-1 reveals punctuate patterns in cells of control tissues, whereas neither SBA- nor N-acetylgalactosamine-treated tissues exhibit ZO-1 staining. Terminal N-acetylgalactosamine removal fails to affect cell morphology, actin organization, or migration but prevents lectin binding. Our results suggest that SBA binding reflects the synthesis of a stress-induced protein(s) that may play a role in reestablishing cell-cell relationships during monolayer reorganization following injury.

  13. Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis

    DOE PAGES

    Boenisch, Marike Johanne; Broz, Karen Lisa; Purvine, Samuel Owen; ...

    2017-03-13

    Eukaryotic cells routinely compartmentalize metabolic pathways to particular organelles for biosynthetic purposes. Relatively few studies have addressed the cellular localization of pathways for secondary metabolites synthesis. In this study, the phytopathogenic fungus Fusarium graminearum reorganized its endoplasmic reticulum (ER) when triggered to produce mycotoxins, both in vitro and in planta. Fluorescence tagged biosynthetic proteins were found to co-localize with the modified ER as confirmed by co-fluorescence and co-purification with known ER proteins. Microscopy, cell sorting, and proteomics were applied in this FICUS collaborative effort.

  14. The steroidal Na+/K+ ATPase inhibitor 3-[(R)-3-pyrrolidinyl]oxime derivative (3-R-POD) induces potent pro-apoptotic responses in colonic tumor cells.

    PubMed

    Alkahtani, Saad Hussin

    2014-06-01

    Recently, potent anticancer actions of the steroidal Na(+)/K(+) ATPase inhibitor 3-[(R)-3-pyrrolidinyl]oxime derivative 3 (3-R-POD) have been reported for multiple cell lines, including prostate and lung cancer cells. In the present study, the anticancer action of 3-R-POD was addressed in colonic tumor cells. Treatment of Caco2 colonic tumor cells with increasing concentrations of 3-R-POD induced potent, dose-dependent inhibition of cell growth as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the APOpercentage apoptosis assay revealed significant pro-apoptotic responses, suggesting that the anticancer activity of this steroidal Na(+)/K(+) ATPase inhibitor in colonic tumors takes places mainly through the induction of strong pro-apoptotic effects. Focussing on the molecular mechanism that may regulate these interactions, 3-R-POD was shown to induce significant early actin re-organization and late Protein Kinase B (AKT) de-phosphorylation. Finally, the 3-R-POD-induced inhibition of cell growth and early actin reorganization in colonic cancer cells remained unchanged when cells were pre-treated with pertussis toxin, thus excluding possible interactions of this inhibitor with G-coupled receptors. These results indicate that 3-R-POD induces potent pro-apoptotic responses in colonic tumor cells governed by actin re-organization and inhibition of AKT pro-survival signaling. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Lithium-induced developmental anomalies in the spirotrich ciliate Stylonychia lemnae (Ciliophora, Hypotrichida).

    PubMed

    Makhija, Seema; Gupta, Renu; Toteja, Ravi

    2015-08-01

    Lithium is known to have profound biological effects of varying intensity in different life forms. In the present investigation, the effect of lithium was studied on the spirotrich ciliate Stylonychia lemnae. Lithium treatment brings about quantitative changes in the patterning of ciliary structures in S. lemnae. The dorsal surface of the affected cells develops supernumerary ciliary kineties due to excessive proliferation of the kinetosomes. The ventral surface on the other hand develops fewer than normal cirri formed from reduced numbers of ciliary primordia. The adoral zone of membranelles (AZM) fails to remodel properly as, in certain segments, membranelles become disarranged and misaligned. Lithium-induced changes are transitory as the normal pattern is restored during recovery after the cells are shifted to normal medium, suggesting non-genic regulation of cortical pattern. Lithium also affects the process of cell proliferation as the number of cells undergoing division is negligible as compared to reorganizing cells. The results point to the extremely complex and heterogeneous organization of the cellular cortex (plasma membrane and cytoskeleton) which is capable of exerting autonomous control over the phenotype and cortical pattern. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells.

    PubMed

    Trache, Andreea; Meininger, Gerald A

    2005-01-01

    A novel hybrid imaging system is constructed integrating atomic force microscopy (AFM) with a combination of optical imaging techniques that offer high spatial resolution. The main application of this instrument (the NanoFluor microscope) is the study of mechanotransduction with an emphasis on extracellular matrix-integrin-cytoskeletal interactions and their role in the cellular responses to changes in external chemical and mechanical factors. The AFM allows the quantitative assessment of cytoskeletal changes, binding probability, adhesion forces, and micromechanical properties of the cells, while the optical imaging applications allow thin sectioning of the cell body at the coverslip-cell interface, permitting the study of focal adhesions using total internal reflection fluorescence (TIRF) and internal reflection microscopy (IRM). Combined AFM-optical imaging experiments show that mechanical stimulation at the apical surface of cells induces a force-generating cytoskeletal response, resulting in focal contact reorganization on the basal surface that can be monitored in real time. The NanoFluor system is also equipped with a novel mechanically aligned dual camera acquisition system for synthesized Forster resonance energy transfer (FRET). The integrated NanoFluor microscope system is described, including its characteristics, applications, and limitations.

  17. Amyloid-β peptide on sialyl-Lewis(X)-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface.

    PubMed

    Askarova, Sholpan; Sun, Zhe; Sun, Grace Y; Meininger, Gerald A; Lee, James C-M

    2013-01-01

    Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewis(x) (sLe(x)) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLe(x) and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf ), and produced a bimodal population of Fmtf , suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf . In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.

  18. Amyloid-β Peptide on Sialyl-LewisX-Selectin-Mediated Membrane Tether Mechanics at the Cerebral Endothelial Cell Surface

    PubMed Central

    Askarova, Sholpan; Sun, Zhe; Sun, Grace Y.; Meininger, Gerald A.; Lee, James C-M.

    2013-01-01

    Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewisx (sLex) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB. PMID:23593361

  19. Cell proliferation and apoptosis in gill filaments of the lucinid Codakia orbiculata (Montagu, 1808) (Mollusca: Bivalvia) during bacterial decolonization and recolonization.

    PubMed

    Elisabeth, Nathalie H; Gustave, Sylvie D D; Gros, Olivier

    2012-08-01

    The shallow-water bivalve Codakia orbiculata which harbors gill-endosymbiotic sulfur-oxidizing γ-proteobacteria can lose and acquire its endosymbionts throughout its life. Long-term starvation and recolonization experiments led to changes in the organization of cells in the lateral zone of gill filaments. This plasticity is linked to the presence or absence of gill-endosymbionts. Herein, we propose that this reorganization can be explained by three hypotheses: (a) a variation in the number of bacteriocytes and granule cells due to proliferation or apoptosis processes, (b) a variation of the volume of these two cell types without modification in the number, and (c) a combination of both number and cell volume variation. To test these hypotheses, we analyzed cell reorganization in terms of proliferation and apoptosis in adults submitted to starvation and returned to the field using catalyzed reporter deposition fluorescence in situ hybridization, immunohistochemistry, and structural analyses. We observed that cell and tissue reorganization in gills filaments is due to a variation in cell relative abundance that maybe associated with a variation in cell apparent volume and depends on the environment. In fact, bacteriocytes mostly multiply in freshly collected and newly recolonized individuals, and excess bacteriocytes are eliminated in later recolonization stages. We highlight that host tissue regeneration in gill filaments of this symbiotic bivalve can occur by both replication of existing cells and division of undifferentiated cells localized in tissular bridges, which might be a tissue-specific multipotent stem cell zone. Copyright © 2012 Wiley Periodicals, Inc.

  20. New Autonomous Motors of Metal-Organic Framework (MOF) Powered by Reorganization of Self-Assembled Peptides at interfaces

    PubMed Central

    Ikezoe, Yasuhiro; Washino, Gosuke; Uemura, Takashi; Kitagawa, Susumu; Matsui, Hiroshi

    2012-01-01

    There have developed a variety of microsystems that harness energy and convert it to mechanical motion. Here we developed new autonomous biochemical motors by integrating metal-organic framework (MOF) and self-assembling peptides. MOF is applied as an energy-storing cell that assembles peptides inside nanoscale pores of the coordination framework. The robust assembling nature of peptides enables reconfiguring their assemblies at the water-MOF interface, which is converted to fuel energy. Re-organization of hydrophobic peptides could create the large surface tension gradient around the MOF and it efficiently powers the translation motion of MOF. As a comparison, the velocity of normalized by volume for the DPA-MOF particle is faster and the kinetic energy per the unit mass of fuel is more than twice as large as the one for previous gel motor systems. This demonstration opens the new application of MOF and reconfigurable molecular self-assembly and it may evolve into the smart autonomous motor that mimic bacteria to swim and harvest target chemicals by integrating recognition units. PMID:23104155

  1. Teloplasm formation in a leech, Helobdella triserialis, is a microtubule-dependent process.

    PubMed

    Astrow, S H; Holton, B; Weisblat, D A

    1989-10-01

    Fertilized eggs of the leech Helobdella triserialis undergo a cytoplasmic reorganization which generates domains of nonyolky cytoplasm, called teloplasm, at the animal and vegetal poles. The segregation of teloplasm to one cell of the eight-cell embryo is responsible for a unique developmental fate of that cell, i.e., to give rise to segmental ectoderm and mesoderm. We have studied the cytoplasmic movements that generate teloplasm using time-lapse video microscopy; the formation and migration of rings of nonyolky cytoplasm were visualized using transmitted light, while the movements of mitochondria into these rings were monitored with epifluorescence after labeling embryos with rhodamine 123, a fluorescent mitochondrial dye. To examine the likelihood that cytoskeletal elements play a role in the mechanism of teloplasm formation in Helobdella, we examined the distribution of microtubules and microfilaments during the first cell cycle by indirect immunofluorescence and rhodamine-phalloidin labeling, respectively. The cortex of the early embryo contained a network of microtubules many of which were oriented parallel to the cell surface. As teloplasm formation ensued, microtubule networks became concentrated in the animal and the vegetal cortex relative to the equatorial cortex. More extensive microtubule arrays were found within the rings of teloplasm. Actin filaments appeared in the form of narrow rings in the cortex, but these varied apparently randomly from embryo to embryo in terms of number, size, and position. The role of microtubules and microfilaments in teloplasm formation was tested using depolymerizing agents. Teloplasm formation was blocked by microtubule inhibitors, but not by microfilament inhibitors. These results differ significantly from those obtained in embryos of the oligochaete Tubifex hattai, suggesting that the presumably homologous cytoplasmic reorganizations seen in these two annelids have different cytoskeletal dependencies.

  2. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin

    PubMed Central

    2017-01-01

    Abstract Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others. PMID:29085896

  3. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin.

    PubMed

    Butler, Corwin R; Boychuk, Jeffery A; Smith, Bret N

    2017-01-01

    Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others.

  4. Effect of therapeutic concentration of lithium on live HEK293 cells; increase of Na+/K+-ATPase, change of overall protein composition and alteration of surface layer of plasma membrane.

    PubMed

    Vosahlikova, Miroslava; Ujcikova, Hana; Chernyavskiy, Oleksandr; Brejchova, Jana; Roubalova, Lenka; Alda, Martin; Svoboda, Petr

    2017-05-01

    The effect of long-term exposure of live cells to lithium cations (Li) was studied in HEK293 cells cultivated in the presence of 1mM LiCl for 7 or 21days. The alteration of Na + /K + -ATPase level, protein composition and biophysical state of plasma membrane was determined with the aim to characterize the physiological state of Li-treated cells. Na + /K + -ATPase level was determined by [ 3 H]ouabain binding and immunoblot assays. Overall protein composition was determined by 2D electrophoresis followed by proteomic analysis by MALDI-TOF MS/MS and LFQ. Li interaction with plasma membrane was characterized by fluorescent probes DPH, TMA-DPH and Laurdan. Na + /K + -ATPase was increased in plasma membranes isolated from cells exposed to Li. Identification of Li-altered proteins by 2D electrophoresis, MALDI-TOF MS/MS and LFQ suggests a change of energy metabolism in mitochondria and cytosol and alteration of cell homeostasis of calcium. Measurement of Laurdan generalized polarization indicated a significant alteration of surface layer of isolated plasma membranes prepared from both types of Li-treated cells. Prolonged exposure of HEK293 cells to 1mM LiCl results in up-regulation of Na + /K + -ATPase expression, reorganization of overall cellular metabolism and alteration of the surface layer/polar head-group region of isolated plasma membranes. Our findings demonstrate adaptation of live HEK293 cell metabolism to prolonged exposure to therapeutic concentration of Li manifested as up-regulation of Na + /K + -ATPase expression, alteration of protein composition and change of the surface layer of plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Keratocyte density 3 months, 15 months, and 3 years after corneal surface ablation with mitomycin C.

    PubMed

    de Benito-Llopis, Laura; Cañadas, Pilar; Drake, Pilar; Hernández-Verdejo, José Luis; Teus, Miguel A

    2012-01-01

    To study the effects of surface ablation with mitomycin C (MMC) on keratocyte population. Prospective, nonrandomized, interventional, comparative case series. Thirty two eyes treated with surface ablation with 0.02% MMC were compared with nontreated eyes at Vissum Santa Hortensia, Madrid, Spain. Keratocyte density was measured with the Heidelberg Retina Tomograph II (Rostock Cornea Module) 3, 15, and 36 to 42 months after the surgery in the anterior, mid, and posterior stroma, and compared with control eyes. Three months postoperatively, we found a lower stromal bed density compared to controls (16 993 ± 8001 vs 29 660 ± 5904 cells/mm(3), P = .0001), while there was a significantly higher cell density in the mid (30 783 ± 9300 vs 18 505 ± 1996 cells/mm(3), P = .0001) and deep stroma (30 268 ± 8321 vs 18 438 ± 2139 cells/mm(3), P = .0001). Three years after the surgery, the cellularity in the stromal bed had not significantly changed from the 3-month follow-up, but the density in the mid (18 889 ± 3474 cells/mm(3)) and posterior stroma (18 992 ± 3402 cells/mm(3)) had decreased to show no difference from controls. The mean cell density between the anterior, mid, and posterior stroma was not significantly different from controls 15 months and 3 years after the surgery. Our study suggests that there is a reorganization of the stromal cell population soon after surface ablation with MMC, with a decrease in the stromal bed compensated initially with an increase in the mid and posterior stroma. Corneal cellularity tends to normalize over time, and 3 years postoperatively the mean cell density throughout the cornea seems to maintain normal values. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. A nonmonotonic dependence of standard rate constant on reorganization energy for heterogeneous electron transfer processes on electrode surface

    NASA Astrophysics Data System (ADS)

    Xu, Weilin; Li, Songtao; Zhou, Xiaochun; Xing, Wei; Huang, Mingyou; Lu, Tianhong; Liu, Changpeng

    2006-05-01

    In the present work a nonmonotonic dependence of standard rate constant (k0) on reorganization energy (λ) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k0 on λ is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of λ, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the λ dependence of k0 for Process I is monotonic thoroughly, while for Process II on electrode surface the λ dependence of k0 could show a nonmonotonicity.

  7. Hyperpolarization of the plasma membrane potential provokes reorganization of the actin cytoskeleton and increases the stability of adherens junctions in bovine corneal endothelial cells in culture.

    PubMed

    Nin, Verónica; Hernández, Julio A; Chifflet, Silvia

    2009-12-01

    In previous works we showed that the depolarization of the plasma membrane potential (PMP) determines a reorganization of the cytoskeleton of diverse epithelia in culture, consisting mainly of a reallocation of peripheral actin toward the cell center, ultimately provoking intercellular disruption. In view of this evidence, we explored in this study the possible effects of membrane potential hyperpolarization on the cytoskeletal organization and adherens junction (AJ) morphology and the stability of confluent bovine corneal endothelial cells in culture. For this purpose, hyperpolarization was achieved by substitution of extracellular sodium by nondiffusible cations or via the incorporation of valinomycin to the control solution. Actin compactness at the cell periphery was assessed by quantitative analysis of fluorescence microscopy images. The stability of the AJ was challenged by calcium deprivation or temperature decrease. Our results showed that plasma membrane hyperpolarization provokes a compaction of AJ-associated actin filaments toward the plasma membrane and an increase in the stability of the AJs. We also observed that the hyperpolarizing procedures determined similar modifications in the actin cytoskeleton of endothelial cells in whole bovine corneas. Together with our previous work, the results of this study contribute to the idea that modifications in the PMP of nonexcitable cells participate in cellular adaptive responses involving reorganization of cytoskeletal components. (c) 2009 Wiley-Liss, Inc.

  8. Emergent behavior of cells on microfabricated soft polymeric substrates

    NASA Astrophysics Data System (ADS)

    Anand, Sandeep Venkit

    In recent years, cell based bio-actuators like cardiomyocytes and skeletal muscle cells have emerged as popular choices for powering biological machines consisting of soft polymeric scaffolds at the micro and macro scales. This is owing to their unique ability to generate spontaneous, synchronous contractions either autonomously or under externally applied fields. Most of the biological machine designs reported in literature use single cells or cell clusters conjugated with biocompatible soft polymers like polydimethylsiloxane (PDMS) and hydrogels to produce some form of locomotion by converting chemical energy of the cells to mechanical energy. The mode of locomotion may vary, but the fundamental mechanism that these biological machines exploit to achieve locomotion stems from cell substrate interactions leading to large deformations of the substrates (relative to the cell size). However, the effect of such large scale, dynamic deformation of the substrates on the cellular and cluster level organization of the cells remains elusive. This dissertation tries to explore the emergent behavior of cells on different types of micro-scale deformable, soft polymeric substrates. In the first part of the dissertation, contractile dynamics of primary cardiomyocyte clusters is studied by culturing them on deformable thin polymeric films. The cell clusters beat and generate sufficient forces to deform the substrates out of plane. Over time, the clusters reorient their force dipoles along the direction of maximum compliance. This suggests that the cells are capable of sensing substrate deformations through a mechanosensitive feedback mechanism and dynamically reorganizing themselves. Results are further validated through finite element analysis. The development, characterization and quantification of a novel 1D/2D like polymeric platform for cell culture is presented in the second part. The platform consists of a 2D surface anchoring a long (few millimeters) narrow filament (1D) with a single cell scale (micro scale) cross section. We plate C2C12 cells on the platform and characterize their migration, proliferation, and differentiation patterns in contrast to 2D culture. We find that the cells land on the 2D surface, and then migrate to the filament only when the 2D surface has become nearly confluent. Individual and isolated cells randomly approaching the filament always retract away towards the 2D surface. Once on the filament, their differentiation to myotubes is expedited compared to that on 2D substrate. The myotubes generate periodic twitching forces that deform the filament producing more than 17 um displacement at the tip. Such flagellar motion can be used to develop autonomous micro scale bio-bots. Finally, the design and fabrication of a polymeric micro-pillar based force sensor capable of measuring cellular focal-adhesion forces under externally applied stretch is discussed. The force sensor consists of arrays of uniformly spaced PDMS micro-pillars of 1-2 um diameter and 2-3 um spacing on a macroscale PDMS substrate. The tips of the micro-pillars are selectively patterned with fluorescently labeled ECM proteins using micro-contact printing to promote cell adhesion while simultaneously acting as markers for strain measurements. Cells adhere and spread on top of the pillars causing them to deform. When stretched, the cells reorganize their internal structure and modulate their traction forces in response to the applied stretch. The dynamically varying cellular forces in response to the stretch are computed by measuring the cell induced displacements estimated by isolating the displacements caused by the applied stretch from the net displacements of the tips.

  9. From network structure to network reorganization: implications for adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Schneider-Mizell, Casey M.; Parent, Jack M.; Ben-Jacob, Eshel; Zochowski, Michal R.; Sander, Leonard M.

    2010-12-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.

  10. A molecularly based theory for electron transfer reorganization energy.

    PubMed

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  11. A Reorganized GABAergic Circuit in a Model of Epilepsy: Evidence from Optogenetic Labeling and Stimulation of Somatostatin Interneurons

    PubMed Central

    Peng, Zechun; Zhang, Nianhui; Wei, Weizheng; Huang, Christine S.; Cetina, Yliana; Otis, Thomas S.

    2013-01-01

    Axonal sprouting of excitatory neurons is frequently observed in temporal lobe epilepsy, but the extent to which inhibitory interneurons undergo similar axonal reorganization remains unclear. The goal of this study was to determine whether somatostatin (SOM)-expressing neurons in stratum (s.) oriens of the hippocampus exhibit axonal sprouting beyond their normal territory and innervate granule cells of the dentate gyrus in a pilocarpine model of epilepsy. To obtain selective labeling of SOM-expressing neurons in s. oriens, a Cre recombinase-dependent construct for channelrhodopsin2 fused to enhanced yellow fluorescent protein (ChR2-eYFP) was virally delivered to this region in SOM-Cre mice. In control mice, labeled axons were restricted primarily to s. lacunosum-moleculare. However, in pilocarpine-treated animals, a rich plexus of ChR2-eYFP-labeled fibers and boutons extended into the dentate molecular layer. Electron microscopy with immunogold labeling demonstrated labeled axon terminals that formed symmetric synapses on dendritic profiles in this region, consistent with innervation of granule cells. Patterned illumination of ChR2-labeled fibers in s. lacunosum-moleculare of CA1 and the dentate molecular layer elicited GABAergic inhibitory responses in dentate granule cells in pilocarpine-treated mice but not in controls. Similar optical stimulation in the dentate hilus evoked no significant responses in granule cells of either group of mice. These findings indicate that under pathological conditions, SOM/GABAergic neurons can undergo substantial axonal reorganization beyond their normal territory and establish aberrant synaptic connections. Such reorganized circuitry could contribute to functional deficits in inhibition in epilepsy, despite the presence of numerous GABAergic terminals in the region. PMID:24005292

  12. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation

    PubMed Central

    Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.; Colin-York, Huw; Clausen, Mathias P.; Felce, James H.; Galiani, Silvia; Erlenkämper, Christoph; Santos, Ana M.; Heddleston, John M.; Pedroza-Pacheco, Isabela; Waithe, Dominic; de la Serna, Jorge Bernardino; Lagerholm, B. Christoffer; Liu, Tsung-li; Chew, Teng-Leong; Betzig, Eric; Davis, Simon J.; Eggeling, Christian

    2017-01-01

    T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions. PMID:28691087

  13. Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing Protein

    PubMed Central

    Pivot-Pajot, Christophe; Caron, Cécile; Govin, Jérôme; Vion, Alexandre; Rousseaux, Sophie; Khochbin, Saadi

    2003-01-01

    The association between histone acetylation and replacement observed during spermatogenesis prompted us to consider the testis as a source for potential factors capable of remodelling acetylated chromatin. A systematic search of data banks for open reading frames encoding testis-specific bromodomain-containing proteins focused our attention on BRDT, a testis-specific protein of unknown function containing two bromodomains. BRDT specifically binds hyperacetylated histone H4 tail depending on the integrity of both bromodomains. Moreover, in somatic cells, the ectopic expression of BRDT triggered a dramatic reorganization of the chromatin only after induction of histone hyperacetylation by trichostatin A (TSA). We then defined critical domains of BRDT involved in its activity. Both bromodomains of BRDT, as well as flanking regions, were found indispensable for its histone acetylation-dependent remodelling activity. Interestingly, we also observed that recombinant BRDT was capable of inducing reorganization of the chromatin of isolated nuclei in vitro only when the nuclei were from TSA-treated cells. This assay also allowed us to show that the action of BRDT was ATP independent, suggesting a structural role for the protein in the remodelling of acetylated chromatin. This is the first demonstration of a large-scale reorganization of acetylated chromatin induced by a specific factor. PMID:12861021

  14. A nonmonotonic dependence of standard rate constant on reorganization energy for heterogeneous electron transfer processes on electrode surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Weilin; Li Songtao; Zhou Xiaochun

    2006-05-07

    In the present work a nonmonotonic dependence of standard rate constant (k{sup 0}) on reorganization energy ({lambda}) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k{sup 0} on {lambda} is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of {lambda}, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the {lambda} dependence of k{sup 0} for Process Imore » is monotonic thoroughly, while for Process II on electrode surface the {lambda} dependence of k{sup 0} could show a nonmonotonicity.« less

  15. p53 R175H hydrophobic patch and H-bond reorganization observed by MD simulation.

    PubMed

    Thayer, Kelly M; Quinn, Taylor R

    2016-03-01

    Molecular dynamics simulations probe the origins of aberrant functionality of R175H p53, which normally prevent tumorigenesis. This hotspot mutation exhibits loss of its essential zinc cofactor, aggregation, and activation of gain of function promoters, characteristics contributing to the loss of normal p53 activity. This study provided molecular level insight into the reorganization of the hydrogen bonding network and the formation of a hydrophobic patch on the surface of the protein. The hydrogen bonding network globally redistributes at the expense of the stability of the β-sandwich structure, and surface residues reorganize to expose a 250 Å(2) hydrophobic patch of residues covering approximately 2% of the solvent accessible surface. These changes could both stabilize the protein in the conformation exposing the patch to solvent to mediate the reported aggregation, and cause a destabilization in the area associated with DNA binding residues to affect the specificity. The development of the patch prior to loss of zinc indicates that stabilizing the patch quickly may prevent zinc loss. Considerations for rational design of small molecule therapeutics in light of the structural insight has been discussed and it suggest the positive ring around the hydrophobic patch and conserved residues may constitute a druggable site. © 2015 Wiley Periodicals, Inc.

  16. The ceramide-enriched trans-Golgi compartments reorganize together with other parts of the Golgi apparatus in response to ATP-depletion.

    PubMed

    Meisslitzer-Ruppitsch, Claudia; Röhrl, Clemens; Ranftler, Carmen; Neumüller, Josef; Vetterlein, Monika; Ellinger, Adolf; Pavelka, Margit

    2011-02-01

    In this study, the ceramide-enriched trans-Golgi compartments representing sites of synthesis of sphingomyelin and higher organized lipids were visualized in control and ATP-depleted hepatoma and endothelial cells using internalization of BODIPY-ceramide and the diaminobenzidine photooxidation method for combined light-electron microscopical exploration. Metabolic stress induced by lowering the cellular ATP-levels leads to reorganizations of the Golgi apparatus and the appearance of tubulo-glomerular bodies and networks. The results obtained with three different protocols, in which BODIPY-ceramide either was applied prior to, concomitantly with, or after ATP-depletion, revealed that the ceramide-enriched compartments reorganize together with other parts of the Golgi apparatus under these conditions. They were found closely associated with and integrated in the tubulo-glomerular bodies formed in response to ATP-depletion. This is in line with the changes of the staining patterns obtained with the Helix pomatia lectin and the GM130 and TGN46 immuno-reactions occurring in response to ATP-depletion and is confirmed by 3D electron tomography. The 3D reconstructions underlined the glomerular character of the reorganized Golgi apparatus and demonstrated continuities of ceramide positive and negative parts. Most interestingly, BODIPY-ceramide becomes concentrated in compartments of the tubulo-glomerular Golgi bodies, even though the reorganization took place before BODIPY-ceramide administration. This indicates maintained functionalities although the regular Golgi stack organization is abolished; the results provide novel insights into Golgi structure-function relationships, which might be relevant for cells affected by metabolic stress.

  17. The Role of Endogenous Neurogenesis in Functional Recovery and Motor Map Reorganization Induced by Rehabilitative Therapy after Stroke in Rats.

    PubMed

    Shiromoto, Takashi; Okabe, Naohiko; Lu, Feng; Maruyama-Nakamura, Emi; Himi, Naoyuki; Narita, Kazuhiko; Yagita, Yoshiki; Kimura, Kazumi; Miyamoto, Osamu

    2017-02-01

    Endogenous neurogenesis is associated with functional recovery after stroke, but the roles it plays in such recovery processes are unknown. This study aims to clarify the roles of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke by using a rat model of cerebral ischemia (CI). Ischemia was induced via photothrombosis in the caudal forelimb area of the rat cortex. First, we examined the effect of rehabilitative therapy on functional recovery and motor map reorganization, using the skilled forelimb reaching test and intracortical microstimulation. Next, using the same approaches, we examined how motor map reorganization changed when endogenous neurogenesis after stroke was inhibited by cytosine-β-d-arabinofuranoside (Ara-C). Rehabilitative therapy for 4 weeks after the induction of stroke significantly improved functional recovery and expanded the rostral forelimb area (RFA). Intraventricular Ara-C administration for 4-10 days after stroke significantly suppressed endogenous neurogenesis compared to vehicle, but did not appear to influence non-neural cells (e.g., microglia, astrocytes, and vascular endothelial cells). Suppressing endogenous neurogenesis via Ara-C administration significantly inhibited (~50% less than vehicle) functional recovery and RFA expansion (~33% of vehicle) induced by rehabilitative therapy after CI. After CI, inhibition of endogenous neurogenesis suppressed both the functional and anatomical markers of rehabilitative therapy. These results suggest that endogenous neurogenesis contributes to functional recovery after CI related to rehabilitative therapy, possibly through its promotion of motor map reorganization, although other additional roles cannot be ruled out. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  18. Calibrated mitotic oscillator drives motile ciliogenesis.

    PubMed

    Al Jord, Adel; Shihavuddin, Asm; Servignat d'Aout, Raphaël; Faucourt, Marion; Genovesio, Auguste; Karaiskou, Anthi; Sobczak-Thépot, Joëlle; Spassky, Nathalie; Meunier, Alice

    2017-11-10

    Cell division and differentiation depend on massive and rapid organelle remodeling. The mitotic oscillator, centered on the cyclin-dependent kinase 1-anaphase-promoting complex/cyclosome (CDK1-APC/C) axis, spatiotemporally coordinates this reorganization in dividing cells. Here we discovered that nondividing cells could also implement this mitotic clocklike regulatory circuit to orchestrate subcellular reorganization associated with differentiation. We probed centriole amplification in differentiating mouse-brain multiciliated cells. These postmitotic progenitors fine-tuned mitotic oscillator activity to drive the orderly progression of centriole production, maturation, and motile ciliation while avoiding the mitosis commitment threshold. Insufficient CDK1 activity hindered differentiation, whereas excessive activity accelerated differentiation yet drove postmitotic progenitors into mitosis. Thus, postmitotic cells can redeploy and calibrate the mitotic oscillator to uncouple cytoplasmic from nuclear dynamics for organelle remodeling associated with differentiation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Kidney protection against ischemia/reperfusion injury by myofibrillogenesis regulator-1.

    PubMed

    Wang, Xiaoreng; Tao, Tianqi; Ding, Rui; Song, Dandan; Liu, Mi; Xie, Yuansheng; Liu, Xiuhua

    2014-01-01

    Ischemia/reperfusion (I/R) injury is characterized by cytoskeletal reorganization and loss of polarity in proximal tubule epithelial cells. Previously, we showed that myofibrillogenesis regulator (MR)-1 promoted actin organization in cardiomyocytes. MR-1 is also expressed in the kidney. In this study, we investigated MR-1 expression in acute renal failure induced by I/R in Sprague-Dawley rats. We determined the MR-1 expression and the ratio of fibrous actin (F-actin) to globular actin (G-actin). HK-2 cells were treated with or without hypoxia/reoxygenation (H/R), and MR-1 levels were increased by adenoviral overexpression or silenced by RNA interference. I/R and H/R resulted in cellular injury and decreases of MR-1, the F-/G-actin ratio, and myosin light chain (MLC)-2. MR-1 overexpression attenuated H/R-induced cell injury and loss of surface membrane polarity of actin. MR-1 overexpression also increased the expression and phosphorylation of MLC-2 and MLC kinase, which were decreased in MR-1-silenced and H/R-treated cells. Together, these data show that MR-1 promoted actin polarity on the membrane surface and protected HK-2 cells from H/R injury. The mechanism might involve the rapid organization of F-actin through the upregulation and phosphorylation of MLC-2.

  20. An Iron-Regulated Autolysin Remodels the Cell Wall To Facilitate Heme Acquisition in Staphylococcus lugdunensis

    PubMed Central

    Farrand, Allison J.; Haley, Kathryn P.; Lareau, Nichole M.; Heilbronner, Simon; McLean, John A.; Foster, Timothy

    2015-01-01

    Bacteria alter their cell surface in response to changing environments, including those encountered upon invasion of a host during infection. One alteration that occurs in several Gram-positive pathogens is the presentation of cell wall-anchored components of the iron-regulated surface determinant (Isd) system, which extracts heme from host hemoglobin to fulfill the bacterial requirement for iron. Staphylococcus lugdunensis, an opportunistic pathogen that causes infective endocarditis, encodes an Isd system. Unique among the known Isd systems, S. lugdunensis contains a gene encoding a putative autolysin located adjacent to the Isd operon. To elucidate the function of this putative autolysin, here named IsdP, we investigated its contribution to Isd protein localization and hemoglobin-dependent iron acquisition. S. lugdunensis IsdP was found to be iron regulated and cotranscribed with the Isd operon. IsdP is a specialized peptidoglycan hydrolase that cleaves the stem peptide and pentaglycine crossbridge of the cell wall and alters processing and anchoring of a major Isd system component, IsdC. Perturbation of IsdC localization due to isdP inactivation results in a hemoglobin utilization growth defect. These studies establish IsdP as an autolysin that functions in heme acquisition and describe a role for IsdP in cell wall reorganization to accommodate nutrient uptake systems during infection. PMID:26123800

  1. Action of insulin on the surface morphology of hepatocytes: role of phosphatidylinositol 3-kinase in insulin-induced shape change of microvilli.

    PubMed

    Lange, K; Brandt, U; Gartzke, J; Bergmann, J

    1998-02-25

    In previous studies we have shown that the insulin-responding glucose transporter isoform of 3T3-L1 adipocytes, GluT4, is almost completely located on microvilli. Furthermore, insulin caused the integration of these microvilli into the plasma membrane, suggesting that insulin-induced stimulation of glucose uptake may be due to the destruction of the cytoskeletal diffusion barrier formed by the actin filament bundle of the microvillar shaft regions [Lange et al. (1990) FEBS Lett. 261, 459-463; Lange et al. (1990) FEBS Lett. 276, 39-41]. Similar shape changes in microvilli were observed when the transport rates of adipocytes were modulated by glucose feeding or starvation. Here we demonstrate that the action of insulin on the surface morphology of hepatocytes is identical to that on 3T3L1 adipocytes; small and narrow microvilli on the surface of unstimulated hepatocytes were rapidly shortened and dilated on top of large domed surface areas. The aspect and mechanism of this effect are closely related to "membrane ruffling" induced by insulin and other growth factors. Pretreatment of hepatocytes with the PI 3-kinase inhibitor wortmannin (100 nM), which completely prevents transport stimulation by insulin in adipocytes and other cell types, also inhibited insulin-induced shape changes in microvilli on the hepatocyte surface. In contrast, vasopressin-induced microvillar shape changes in hepatocytes [Lange et al. (1997) Exp. Cell Res. 234, 486-497] were insensitive to wortmannin pretreatment. These findings indicate that PI 3-kinase products are necessary for stimulation of submembrane microfilament dynamics and that cytoskeletal reorganization is critically involved in insulin stimulation of transport processes. The mechanism of the insulin-induced cytoskeletal reorganization can be explained on the basis of the recent finding of Lu et al. [Biochemistry 35(1996) 14027-14034] that PI 3-kinase products exhibit much higher affinity for the profilin-actin complex than the primary products, PIP and PIP2. Thus, activated PI 3-kinase may direct a flux of profilin-actin complexes to the membrane locations of activated insulin receptors, where, due to the release of actin monomers after binding of profilactin to PI(3,4)P2 and PI(3,4,5)P3, massive actin polymerization is initiated. As a consequence, PI 3-kinase activation initiates a vectorial reorganization of the cellular actin system to membrane sites neighboring activated insulin receptors, giving rise to local membrane stress as visualized by extensive surface deformations and shortening of microvilli. In addition, extensive high-affinity binding of F-actin-barbed endcapping proteins enhances the cytoplasmic concentration of rapidly polymerizing filament ends. Consequently, the actin monomer concentration is lowered and the (cytoplasmic) pointed ends of the microvillar shaft bundle depolymerize and become shorter. The observations presented strengthen the previously postulated diffusion-barrier concept of glucose- and ion-uptake regulation and provide a mechanistic basis for explaining the action of insulin and other growth factors on transport processes across the plasma membrane.

  2. Reorganization of lipid domain distribution in giant unilamellar vesicles upon immobilization with different membrane tethers.

    PubMed

    Sarmento, M J; Prieto, M; Fernandes, Fábio

    2012-11-01

    Characterization of phase coexistence in biologically relevant lipid mixtures is often carried out through confocal microscopy of giant unilamellar lipid vesicles (GUVs), loaded with fluorescent membrane probes. This last analysis is generally limited to the vesicle hemisphere further away from the coverslip, in order to avoid artifacts induced by the interaction with the solid surface, and immobilization of vesicles is in many cases required in order to carry out intensity, lifetime or single-molecule based microscopy. This is generally achieved through the use of membrane tethers adhering to a coverslip surface. Here, we aimed to determine whether GUV immobilization through membrane tethers induces changes in lipid domain distribution within liposomes displaying coexistence of lipid lamellar phases. Confocal imaging and a Förster resonance energy transfer (FRET) methodology showed that biotinylated phospholipids present significantly different membrane phase partition behavior upon protein binding, depending on the presence or absence of a linker between the lipid headgroup and the biotinyl moiety. Membrane phases enriched in a membrane tether displayed in some cases a dramatically increased affinity for the immobilization surface, effectively driving sorting of lipid domains to the adherent membrane area, and in some cases complete sequestering of a lipid phase to the interaction surface was observed. On the light of these results, we conclude that tethering of lipid membranes to protein surfaces has the potential to drastically reorganize the distribution of lipid domains, and this reorganization is solely dictated by the partition properties of the protein-tether complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Matrilysin (Matrix Metalloproteinase-7) Mediates E-Cadherin Ectodomain Shedding in Injured Lung Epithelium

    PubMed Central

    McGuire, John K.; Li, Qinglang; Parks, William C.

    2003-01-01

    Matrilysin (matrix metalloproteinase-7) is highly expressed in lungs of patients with pulmonary fibrosis and other conditions associated with airway and alveolar injury. Although matrilysin is required for closure of epithelial wounds ex vivo, the mechanism of its action in repair is unknown. We demonstrate that matrilysin mediates shedding of E-cadherin ectodomain from injured lung epithelium both in vitro and in vivo. In alveolar-like epithelial cells, transfection of activated matrilysin resulted in shedding of E-cadherin and accelerated cell migration. In vivo, matrilysin co-localized with E-cadherin at the basolateral surfaces of migrating tracheal epithelium, and the reorganization of cell-cell junctions seen in wild-type injured tissue was absent in matrilysin-null samples. E-cadherin ectodomain was shed into the bronchoalveolar lavage fluid of bleomycin-injured wild-type mice, but was not shed in matrilysin-null mice. These findings identify E-cadherin as a novel substrate for matrilysin and indicate that shedding of E-cadherin ectodomain is required for epithelial repair. PMID:12759241

  4. Patterned Cell Alignment in Response to Macroscale Curvature

    NASA Astrophysics Data System (ADS)

    Bade, Nathan; Kamien, Randall; Assoian, Richard; Stebe, Kathleen

    The formation of spatial behavior patterns in tissues is a long-standing problem in biology. Decades of research have focused on understanding how biochemical signaling and morphogen gradients establish cell patterns during development and tissue morphogenesis. Here, we show that geometry and physical cues can drive organization and pattern formation. We find that mouse embryonic fibroblasts and human vascular smooth muscle cells sense curvature differently when in monolayers than when isolated on surfaces with various amounts of Gaussian curvature. While the long, apical stress fibers within these cells align in the direction of minimum curvature on cylindrical substrates, a subpopulation of stress fibers beneath the nucleus aligns in the circumferential direction and is bent maximally. We find dramatic reorganization of the actin cytoskeleton upon activation of RhoA, which is associated with increased contractility of the fibers. Thus, stress fiber alignment is likely a result of a complex balance between energy penalties associated with stress fiber bending, contractility, and the dynamics of F-actin assembly.

  5. Constitutional Dynamics of Metal-Organic Motifs on a Au(111) Surface.

    PubMed

    Kong, Huihui; Zhang, Chi; Xie, Lei; Wang, Likun; Xu, Wei

    2016-06-13

    Constitutional dynamic chemistry (CDC), including both dynamic covalent chemistry and dynamic noncovalent chemistry, relies on reversible formation and breakage of bonds to achieve continuous changes in constitution by reorganization of components. In this regard, CDC is considered to be an efficient and appealing strategy for selective fabrication of surface nanostructures by virtue of dynamic diversity. Although constitutional dynamics of monolayered structures has been recently demonstrated at liquid/solid interfaces, most of molecular reorganization/reaction processes were thought to be irreversible under ultrahigh vacuum (UHV) conditions where CDC is therefore a challenge to be achieved. Here, we have successfully constructed a system that presents constitutional dynamics on a solid surface based on dynamic coordination chemistry, in which selective formation of metal-organic motifs is achieved under UHV conditions. The key to making this reversible switching successful is the molecule-substrate interaction as revealed by DFT calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Atomic force microscopy observation of lipopolysaccharide-induced cardiomyocyte cytoskeleton reorganization.

    PubMed

    Wang, Liqun; Chen, Tangting; Zhou, Xiang; Huang, Qiaobing; Jin, Chunhua

    2013-08-01

    We applied atomic force microscopy (AFM) to observe lipopolysaccharide (LPS)-induced intracellular cytoskeleton reorganization in primary cardiomyocytes from neonatal mouse. The nonionic detergent Triton X-100 was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized by AFM. Using three-dimensional technique of AFM, we were able to quantify the changes of cytoskeleton by the "density" and total "volume" of the cytoskeleton fibers. Compared to the control group, the density of cytoskeleton was remarkably decreased and the volume of cytoskeleton was significantly increased after LPS treatment, which suggests that LPS may induce the cytoskeleton reorganization and change the cardiomyocyte morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Membrane rafts in host-pathogen interactions.

    PubMed

    Riethmüller, Joachim; Riehle, Andrea; Grassmé, Heike; Gulbins, Erich

    2006-12-01

    Central elements in the infection of mammalian cells with viral, bacterial and parasitic pathogens include the adhesion of the pathogen to surface receptors of the cell, recruitment of additional receptor proteins to the infection-site, a re-organization of the membrane and, in particular, the intracellular signalosome. Internalization of the pathogen results in the formation of a phagosome that is supposed to fuse with lysosomes to form phagolysosomes, which serve the degradation of the pathogen, an event actively prevented by some pathogens. In summary, these changes in the infected cell permit pathogens to trigger apoptosis (for instance of macrophages paralysing the initial immune response), to invade the cell and/or to survive in the cell, but they also serve the mammalian cell to defeat the infection, for instance by activation of transcription factors and the release of cytokines. Distinct membrane domains in the plasma membrane and intracellular vesicles that are mainly composed of sphingolipids and cholesterol or enriched with the sphingolipid ceramide, are critically involved in all of these events occurring during the infection. These membrane structures are therefore very attractive targets for novel drugs to interfere with bacterial, viral and parasitic infections.

  8. Elevated GnRH receptor expression plus GnRH agonist treatment inhibits the growth of a subset of papillomavirus 18-immortalized human prostate cells.

    PubMed

    Morgan, Kevin; Stavrou, Emmanouil; Leighton, Samuel P; Miller, Nicola; Sellar, Robin; Millar, Robert P

    2011-06-15

    Human metastatic prostate cancer cell growth can be inhibited by GnRH analogs but effects on virus-immortalized prostate cells have not been investigated. Virus-immortalized prostate cells were stably transfected with rat GnRH receptor cDNA and levels of GnRH binding were correlated with GnRH effects on signaling, cell cycle, growth, exosome production, and apoptosis. High levels of cell surface GnRH receptor occurred in transfected papillomavirus-immortalized WPE-1-NB26 epithelial cells but not in non-tumourigenic RWPE-1, myoepithelial WPMY-1 cells, or SV40-immortalized PNT1A. Endogenous cell surface GnRH receptor was undetectable in non-transfected cells or cancer cell lines LNCaP, PC3, and DU145. GnRH receptor levels correlated with induction of inositol phosphates, elevation of intracellular Ca(2+) , cytoskeletal actin reorganization, modulation of ERK activation and cell growth-inhibition with GnRH agonists. Hoechst 33342 DNA staining-cell sorting indicated accumulation of cells in G2 following agonist treatment. Release of exosomes from transfected WPE-1-NB26 was unaffected by agonists, unlike induction observed in HEK293([SCL60]) cells. Increased PARP cleavage and apoptotic body production were undetectable during growth-inhibition in WPE-1-NB26 cells, contrasting with HEK293([SCL60]) . EGF receptor activation inhibited GnRH-induced ERK activation in WPE-1-NB26 but growth-inhibition was not rescued by EGF or PKC inhibitor Ro320432. Growth of cells expressing low levels of GnRH receptor was not affected by agonists. Engineered high-level GnRH receptor activation inhibits growth of a subset of papillomavirus-immortalized prostate cells. Elucidating mechanisms leading to clone-specific differences in cell surface GnRH receptor levels is a valuable next step in developing strategies to exploit prostate cell anti-proliferation using GnRH agonists. Copyright © 2010 Wiley-Liss, Inc.

  9. Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis.

    PubMed

    Boenisch, Marike Johanne; Broz, Karen Lisa; Purvine, Samuel Owen; Chrisler, William Byron; Nicora, Carrie Diana; Connolly, Lanelle Reine; Freitag, Michael; Baker, Scott Edward; Kistler, Harold Corby

    2017-03-13

    Compartmentalization of metabolic pathways to particular organelles is a hallmark of eukaryotic cells. Knowledge of the development of organelles and attendant pathways under different metabolic states has been advanced by live cell imaging and organelle specific analysis. Nevertheless, relatively few studies have addressed the cellular localization of pathways for synthesis of fungal secondary metabolites, despite their importance as bioactive compounds with significance to medicine and agriculture. When triggered to produce sesquiterpene (trichothecene) mycotoxins, the endoplasmic reticulum (ER) of the phytopathogenic fungus Fusarium graminearum is reorganized both in vitro and in planta. Trichothecene biosynthetic enzymes accumulate in organized smooth ER with pronounced expansion at perinuclear- and peripheral positions. Fluorescence tagged trichothecene biosynthetic proteins co-localize with the modified ER as confirmed by co-fluorescence and co-purification with known ER proteins. We hypothesize that changes to the fungal ER represent a conserved process in specialized eukaryotic cells such as in mammalian hepatocytes and B-cells.

  10. Estrogens Induce Rapid Cytoskeleton Re-Organization in Human Dermal Fibroblasts via the Non-Classical Receptor GPR30

    PubMed Central

    Carnesecchi, Julie; Malbouyres, Marilyne; de Mets, Richard; Balland, Martial; Beauchef, Gallic; Vié, Katell; Chamot, Christophe; Lionnet, Claire; Ruggiero, Florence; Vanacker, Jean-Marc

    2015-01-01

    The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17β-estradiol (E2) addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation. PMID:25781607

  11. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30.

    PubMed

    Carnesecchi, Julie; Malbouyres, Marilyne; de Mets, Richard; Balland, Martial; Beauchef, Gallic; Vié, Katell; Chamot, Christophe; Lionnet, Claire; Ruggiero, Florence; Vanacker, Jean-Marc

    2015-01-01

    The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17β-estradiol (E2) addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation.

  12. Spermatodesm reorganization in the spermatophore and in the spermatheca of the bushcricket Tylopsis liliifolia (Fabricius) (Orthoptera, Tettigoniidae).

    PubMed

    Viscuso, Renata; Vitale, Danilo G M

    2015-05-01

    Spermatozoa of Tettigoniidae are usually transferred to the female by means of a spermatophore which is also the site of feather-shaped spermatodesm formation. These spermatodesms are then transferred to a spermatheca, composed of a spermathecal duct and of a seminal receptacle, involved in storing spermatozoa. In order to extend the knowledge about sperm transfer and spermatodesms reorganization in the Tettigoniidae, a morpho-structural investigation was carried out on spermatophore and spermatheca of Tylopsis liliifolia and on the reorganization of the gametes from the spermatophore. Our results show that the spermatodesms undergo disorganization in the spermatophore; unlike other Tettigoniidae, however, feather-shaped spermatodesms are never found. The epithelium of the spermatheca consists of two cell types, the cuticle-forming and the gland cells, with secretory features. The gland cells, absent in the distal tract of the seminal receptacle, release their secretion in a "reservoir" where an efferent duct opens. In the distal tract of the spermathecal duct, adjacent epithelial cells show diversified ultrastructural characteristics whose probable role is discussed. A particular feature of T. liliifolia is the genesis of the feather-shaped spermatodesms in the seminal receptacle. This feature and the peculiar organization of the feather-shaped spermatodesm are a possible autapomorphy of T. liliifolia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Running reorganizes the circuitry of one-week-old adult-born hippocampal neurons.

    PubMed

    Sah, Nirnath; Peterson, Benjamin D; Lubejko, Susan T; Vivar, Carmen; van Praag, Henriette

    2017-09-07

    Adult hippocampal neurogenesis is an important form of structural and functional plasticity in the mature mammalian brain. The existing consensus is that GABA regulates the initial integration of adult-born neurons, similar to neuronal development during embryogenesis. Surprisingly, virus-based anatomical tracing revealed that very young, one-week-old, new granule cells in male C57Bl/6 mice receive input not only from GABAergic interneurons, but also from multiple glutamatergic cell types, including mature dentate granule cells, area CA1-3 pyramidal cells and mossy cells. Consistently, patch-clamp recordings from retrovirally labeled new granule cells at 7-8 days post retroviral injection (dpi) show that these cells respond to NMDA application with tonic currents, and that both electrical and optogenetic stimulation can evoke NMDA-mediated synaptic responses. Furthermore, new dentate granule cell number, morphology and excitatory synaptic inputs at 7 dpi are modified by voluntary wheel running. Overall, glutamatergic and GABAergic innervation of newly born neurons in the adult hippocampus develops concurrently, and excitatory input is reorganized by exercise.

  14. Biomimetic approaches for engineered organ chips and skin electronics for in vitro diagnostics

    NASA Astrophysics Data System (ADS)

    Suh, Kahp-Yang; Pang, Changhyun; Jang, Kyung-Jin; Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do-Hyun; Kim, Deok-Ho

    2012-10-01

    Two kinds of biomimetic systems including engineered organ chip and flexible electronic sensor are presented. First, in vivo, renal tubular epithelial cells are exposed to luminal fluid shear stress (FSS) and a transepithelial osmotic gradient. In this study, we used a simple collecting-duct-on-a-chip to investigate the role of an altered luminal microenvironment in the translocation of aquaporin-2 (AQP2) and the reorganization of actin cytoskeleton (F-actin) in primary cultured inner medullary collecting duct (IMCD) cells of rat kidney. We demonstrate that several factors (i.e., luminal FSS, hormonal stimulation, transepithelial osmotic gradient) collectively exert a profound effect on the AQP2 trafficking in the collecting ducts, which is associated with actin cytoskeletal reorganization. Furthermore, with this kidney-mimicking chip, renal toxicity of cisplatin was tested under static and fluidic conditions, suggesting the physiological relevancy of fluidic environment compared to static culture. Second, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface.

  15. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction.

    PubMed

    Cohen, Daniel J; Gloerich, Martijn; Nelson, W James

    2016-12-20

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.

  16. Cytoskeleton reorganization/disorganization is a key feature of induced inaccessibility for defence to successive pathogen attacks.

    PubMed

    Moral, Juan; Montilla-Bascón, Gracia; Canales, Francisco J; Rubiales, Diego; Prats, Elena

    2017-06-01

    In this work, we investigated the involvement of the long-term dynamics of cytoskeletal reorganization on the induced inaccessibility phenomenon by which cells that successfully defend against a previous fungal attack become highly resistant to subsequent attacks. This was performed on pea through double inoculation experiments using inappropriate (Blumeria graminis f. sp. avenae, Bga) and appropriate (Erysiphe pisi, Ep) powdery mildew fungi. Pea leaves previously inoculated with Bga showed a significant reduction of later Ep infection relative to leaves inoculated only with Ep, indicating that cells had developed induced inaccessibility. This reduction in Ep infection was higher when the time interval between Bga and Ep inoculation ranged between 18 and 24 h, although increased penetration resistance in co-infected cells was observed even with time intervals of 24 days between inoculations. Interestingly, this increase in resistance to Ep following successful defence to the inappropriate Bga was associated with an increase in actin microfilament density that reached a maximum at 18-24 h after Bga inoculation and very slowly decreased afterwards. The putative role of cytoskeleton reorganization/disorganization leading to inaccessibility is supported by the suppression of the induced resistance mediated by specific actin (cytochalasin D, latrunculin B) or general protein (cycloheximide) inhibitors. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABA(A) receptor subunits.

    PubMed

    Zepeda, Angelica; Sengpiel, Frank; Guagnelli, Miguel Angel; Vaca, Luis; Arias, Clorinda

    2004-02-25

    Reorganization of cortical representations after focal visual cortex lesions has been documented. It has been suggested that functional reorganization may rely on cellular mechanisms involving modifications in the excitatory/inhibitory neurotransmission balance and on morphological changes of neurons peripheral to the lesion. We explored functional reorganization of cortical retinotopic maps after a focal ischemic lesion in primary visual cortex of kittens using optical imaging of intrinsic signals. After 1, 2, and 5 weeks postlesion (wPL), we addressed whether functional reorganization correlated in time with changes in the expression of MAP-2, GAP-43, GFAP, GABA(A) receptor subunit alpha1 (GABA(A)alpha1), subunit 1 of the NMDA receptor (NMDAR1), and in neurotransmitter levels at the border of the lesion. Our results show that: (1) retinotopic maps reorganize with time after an ischemic lesion; (2) MAP-2 levels increase gradually from 1wPL to 5wPL; (3) MAP-2 upregulation is associated with an increase in dendritic-like structures surrounding the lesion and a decrease in GFAP-positive cells; (4) GAP-43 levels reach the highest point at 2wPL; (5) NMDAR1 and glutamate contents increase in parallel from 1wPL to 5wPL; (6) GABA(A)alpha1 levels increase from 1wPL to 2wPL but do not change after this time point; and (7) GABA contents remain low from 1wPL to 5wPL. This is a comprehensive study showing for the first time that functional reorganization correlates in time with dendritic sprouting and with changes in the excitatory/inhibitory neurotransmission systems previously proposed to participate in cortical remodeling and suggests mechanisms by which plasticity of cortical representations may occur.

  18. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  19. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling

    PubMed Central

    Ray, Poulomi; Chapman, Susan C.

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis. PMID:26237312

  20. Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salaita, Khalid; Nair, Pradeep M; Petit, Rebecca S

    2009-09-09

    Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, clustering, and subsequent lateral transport within this junction were observed. EphA2 transport can be blocked by physical barriers nanofabricated onto the underlying substrate. This physical reorganization of EphA2 alters the cellular response to ephrin-A1, as observed by changes in cytoskeleton morphology and recruitment of a disintegrin and metalloprotease 10. Quantitativemore » analysis of receptor-ligand spatial organization across a library of 26 mammary epithelial cell lines reveals characteristic differences that strongly correlate with invasion potential. These observations reveal a mechanism for spatio-mechanical regulation of EphA2 signaling pathways.« less

  1. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  2. PATHOLOGICAL SPROUTING OF ADULT NOCICEPTORS IN CHRONIC PROSTATE CANCER-INDUCED BONE PAIN

    PubMed Central

    Jimenez-Andrade, Juan M.; Bloom, Aaron P.; Stake, James I.; Mantyh, William G.; Taylor, Reid N.; Freeman, Katie T.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2012-01-01

    Pain frequently accompanies cancer. What remains unclear is why this pain frequently becomes more severe and difficult to control with disease progression. Here we test the hypothesis that with disease progression, sensory nerve fibers that innervate the tumor-bearing tissue undergo a pathological sprouting and reorganization, which in other non-malignant pathologies has been shown to generate and maintain chronic pain. Injection of canine prostate cancer cells into mouse bone induces a remarkable sprouting of calcitonin gene related peptide (CGRP+) and neurofilament 200 kDa (NF200+) sensory nerve fibers. Nearly all sensory nerve fibers that undergo sprouting also co-express tropomyosin receptor kinase A (TrkA+). This ectopic sprouting occurs in sensory nerve fibers that are in close proximity to colonies of prostate cancer cells, tumor-associated stromal cells and newly formed woven bone, which together form sclerotic lesions that closely mirror the osteoblastic bone lesions induced by metastatic prostate tumors in humans. Preventive treatment with an antibody that sequesters nerve growth factor (NGF), administered when the pain and bone remodeling were first observed, blocks this ectopic sprouting and attenuates cancer pain. Interestingly, RT-PCR analysis indicated that the prostate cancer cells themselves do not express detectable levels of mRNA coding for NGF. This suggests that the tumor-associated stromal cells express and release NGF, which drives the pathological reorganization of nearby TrkA+ sensory nerve fibers. Therapies that prevent this reorganization of sensory nerve fibers may provide insight into the evolving mechanisms that drive cancer pain and lead to more effective control of this chronic pain state. PMID:21048122

  3. Reorganization of the ER during mycotoxin production in Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    Subcellular compartmentalization of metabolic pathways to particular organelles is a hallmark of eukaryotic cells, critical for their function. Understanding the developmental dynamics of organelles and attendant pathways under different metabolic states has been advanced by live cell imaging and or...

  4. Interplay between Short- and Long-Term Plasticity in Cell-Assembly Formation

    PubMed Central

    Hiratani, Naoki; Fukai, Tomoki

    2014-01-01

    Various hippocampal and neocortical synapses of mammalian brain show both short-term plasticity and long-term plasticity, which are considered to underlie learning and memory by the brain. According to Hebb’s postulate, synaptic plasticity encodes memory traces of past experiences into cell assemblies in cortical circuits. However, it remains unclear how the various forms of long-term and short-term synaptic plasticity cooperatively create and reorganize such cell assemblies. Here, we investigate the mechanism in which the three forms of synaptic plasticity known in cortical circuits, i.e., spike-timing-dependent plasticity (STDP), short-term depression (STD) and homeostatic plasticity, cooperatively generate, retain and reorganize cell assemblies in a recurrent neuronal network model. We show that multiple cell assemblies generated by external stimuli can survive noisy spontaneous network activity for an adequate range of the strength of STD. Furthermore, our model predicts that a symmetric temporal window of STDP, such as observed in dopaminergic modulations on hippocampal neurons, is crucial for the retention and integration of multiple cell assemblies. These results may have implications for the understanding of cortical memory processes. PMID:25007209

  5. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction

    PubMed Central

    Cohen, Daniel J.; Gloerich, Martijn; Nelson, W. James

    2016-01-01

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell–cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin–mediated cell–cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell–cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue–material interfaces. PMID:27930308

  6. From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks.

    PubMed

    Kuhn, Pierre; Forget, Aurélien; Su, Dangsheng; Thomas, Arne; Antonietti, Markus

    2008-10-08

    High surface area organic materials featuring both micro- and mesopores were synthesized under ionothermal conditions via the formation of polyaryltriazine networks. While the polytrimerization of nitriles in zinc chloride at 400 degrees C produces microporous polymers, higher reaction temperatures induce the formation of additional spherical mesopores with a narrow dispersity. The nitrogen-rich carbonaceous polymer materials thus obtained present surface areas and porosities up to 3300 m(2) g(-1) and 2.4 cm(3) g(-1), respectively. The key point of this synthesis relies on the occurrence of several high temperature polymerization reactions, where irreversible carbonization reactions coupled with the reversible trimerization of nitriles allow the reorganization of the dynamic triazine network. The ZnCl2 molten salt fulfills the requirement of a high temperature solvent, but is also required as catalyst. Thus, this dynamic polymerization system provides not only highly micro- and mesoporous materials, but also allows controlling the pore structure in amorphous organic materials.

  7. Myotonic dystrophy protein kinase (DMPK) induces actin cytoskeletal reorganization and apoptotic-like blebbing in lens cells

    NASA Technical Reports Server (NTRS)

    Jin, S.; Shimizu, M.; Balasubramanyam, A.; Epstein, H. F.

    2000-01-01

    DMPK, the product of the DM locus, is a member of the same family of serine-threonine protein kinases as the Rho-associated enzymes. In DM, membrane inclusions accumulate in lens fiber cells producing cataracts. Overexpression of DMPK in cultured lens epithelial cells led to apoptotic-like blebbing of the plasma membrane and reorganization of the actin cytoskeleton. Enzymatically active DMPK was necessary for both effects; inactive mutant DMPK protein did not produce either effect. Active RhoA but not constitutive GDP-state mutant protein produced similar effects as DMPK. The similar actions of DMPK and RhoA suggest that they may function in the same regulatory network. The observed effects of DMPK may be relevant to the removal of membrane organelles during normal lens differentiation and the retention of intracellular membranes in DM lenses. Copyright 2000 Wiley-Liss, Inc.

  8. Hsp90 binds microtubules and is involved in the reorganization of the microtubular network in angiosperms.

    PubMed

    Krtková, Jana; Zimmermann, Aleksandra; Schwarzerová, Kateřina; Nick, Peter

    2012-09-15

    Microtubules (MTs) are essential for many processes in plant cells. MT-associated proteins (MAPs) influence MT polymerization dynamics and enable them to perform their functions. The molecular chaperone Hsp90 has been shown to associate with MTs in animal and plant cells. However, the role of Hsp90-MT binding in plants has not yet been investigated. Here, we show that Hsp90 associates with cortical MTs in tobacco cells and decorates MTs in the phragmoplast. Further, we show that tobacco Hsp90_MT binds directly to polymerized MTs in vitro. The inhibition of Hsp90 by geldanamycin (GDA) severely impairs MT re-assembly after cold-induced de-polymerization. Our results indicate that the plant Hsp90 interaction with MTs plays a key role in cellular events, where MT re-organization is needed. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Coherent Timescales and Mechanical Structure of Multicellular Aggregates.

    PubMed

    Yu, Miao; Mahtabfar, Aria; Beelen, Paul; Demiryurek, Yasir; Shreiber, David I; Zahn, Jeffrey D; Foty, Ramsey A; Liu, Liping; Lin, Hao

    2018-06-05

    Multicellular aggregates are an excellent model system to explore the role of tissue biomechanics in specifying multicellular reorganization during embryonic developments and malignant invasion. Tissue-like spheroids, when subjected to a compressive force, are known to exhibit liquid-like behaviors at long timescales (hours), largely because of cell rearrangements that serve to effectively dissipate the applied stress. At short timescales (seconds to minutes), before cell rearrangement, the mechanical behavior is strikingly different. The current work uses shape relaxation to investigate the structural characteristics of aggregates and discovers two coherent timescales: one on the order of seconds, the other tens of seconds. These timescales are universal, conserved across a variety of tested species, and persist despite great differences in other properties such as tissue surface tension and adhesion. A precise mathematical theory is used to correlate the timescales with mechanical properties and reveals that aggregates have a relatively strong envelope and an unusually "soft" interior (weak bulk elastic modulus). This characteristic is peculiar, considering that both layers consist of identical units (cells), but is consistent with the fact that this structure can engender both structural integrity and the flexibility required for remodeling. In addition, tissue surface tension, elastic modulus, and viscosity are proportional to each other. Considering that these tissue-level properties intrinsically derive from cellular-level properties, the proportionalities imply precise coregulation of the latter and in particular of the tension on the cell-medium and cell-cell interfaces. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Clusters of circulating tumor cells traverse capillary-sized vessels

    PubMed Central

    Au, Sam H.; Storey, Brian D.; Moore, John C.; Tang, Qin; Chen, Yeng-Long; Javaid, Sarah; Sarioglu, A. Fatih; Sullivan, Ryan; Madden, Marissa W.; O’Keefe, Ryan; Haber, Daniel A.; Maheswaran, Shyamala; Langenau, David M.; Stott, Shannon L.; Toner, Mehmet

    2016-01-01

    Multicellular aggregates of circulating tumor cells (CTC clusters) are potent initiators of distant organ metastasis. However, it is currently assumed that CTC clusters are too large to pass through narrow vessels to reach these organs. Here, we present evidence that challenges this assumption through the use of microfluidic devices designed to mimic human capillary constrictions and CTC clusters obtained from patient and cancer cell origins. Over 90% of clusters containing up to 20 cells successfully traversed 5- to 10-μm constrictions even in whole blood. Clusters rapidly and reversibly reorganized into single-file chain-like geometries that substantially reduced their hydrodynamic resistances. Xenotransplantation of human CTC clusters into zebrafish showed similar reorganization and transit through capillary-sized vessels in vivo. Preliminary experiments demonstrated that clusters could be disrupted during transit using drugs that affected cellular interaction energies. These findings suggest that CTC clusters may contribute a greater role to tumor dissemination than previously believed and may point to strategies for combating CTC cluster-initiated metastasis. PMID:27091969

  11. Functional recovery of the dentate gyrus after a focal lesion is accompanied by structural reorganization in the adult rat.

    PubMed

    Zepeda, Angélica; Aguilar-Arredondo, Andrea; Michel, Gabriela; Ramos-Languren, Laura Elisa; Escobar, Martha L; Arias, Clorinda

    2013-03-01

    The adult brain is highly plastic and tends to undergo substantial reorganization after injury to compensate for the lesion effects. It has been shown that such reorganization mainly relies on anatomical and biochemical modifications of the remaining cells which give rise to a network rewiring without reinstating the original morphology of the damaged region. However, few studies have analyzed the neurorepair potential of a neurogenic structure. Thus, the aim of this work was to analyze if the DG could restore its original morphology after a lesion and to establish if the structural reorganization is accompanied by behavioral and electrophysiological recovery. Using a subepileptogenic injection of kainic acid (KA), we induced a focal lesion in the DG and assessed in time (1) the loss and recovery of dependent and non dependent DG cognitive functions, (2) the anatomical reorganization of the DG using a stereological probe and immunohistochemical markers for different neuronal maturation stages and, (3) synaptic plasticity as assessed through the induction of in vivo long-term potentiation (LTP) in the mossy fiber pathway (CA3-DG). Our results show that a DG focal lesion with KA leads to a well delimited region of neuronal loss, disorganization of the structure, the loss of associated mnemonic functions and the impairment to elicit LTP. However, behavioral and synaptic plasticity expression occurs in a time dependent fashion and occurs along the morphological restoration of the DG. These results provide novel information on neural plasticity events associated to functional reorganization after damage.

  12. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders.

    PubMed

    Reinhard, Sarah M; Razak, Khaleel; Ethell, Iryna M

    2015-01-01

    The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called 'critical periods.' MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer's disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders.

  13. A correlative and quantitative imaging approach enabling characterization of primary cell-cell communication: Case of human CD4+ T cell-macrophage immunological synapses.

    PubMed

    Kasprowicz, Richard; Rand, Emma; O'Toole, Peter J; Signoret, Nathalie

    2018-05-22

    Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4 + T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4 + T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells.

  14. Cytoskeleton in Mast Cell Signaling

    PubMed Central

    Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda

    2012-01-01

    Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling. PMID:22654883

  15. F-actin clustering and cell dysmotility induced by the pathological W148R missense mutation of filamin B at the actin-binding domain.

    PubMed

    Zhao, Yongtong; Shapiro, Sandor S; Eto, Masumi

    2016-01-01

    Filamin B (FLNB) is a dimeric actin-binding protein that orchestrates the reorganization of the actin cytoskeleton. Congenital mutations of FLNB at the actin-binding domain (ABD) are known to cause abnormalities of skeletal development, such as atelosteogenesis types I and III and Larsen's syndrome, although the underlying mechanisms are poorly understood. Here, using fluorescence microscopy, we characterized the reorganization of the actin cytoskeleton in cells expressing each of six pathological FLNB mutants that have been linked to skeletal abnormalities. The subfractionation assay showed a greater accumulation of the FLNB ABD mutants W148R and E227K than the wild-type protein to the cytoskeleton. Ectopic expression of FLNB-W148R and, to a lesser extent, FLNB-E227K induced prominent F-actin accumulations and the consequent rearrangement of focal adhesions, myosin II, and septin filaments and results in a delayed directional migration of the cells. The W148R protein-induced cytoskeletal rearrangement was partially attenuated by the inhibition of myosin II, p21-activated protein kinase, or Rho-associated protein kinase. The expression of a single-head ABD fragment with the mutations partially mimicked the rearrangement induced by the dimer. The F-actin clustering through the interaction with the mutant FLNB ABD may limit the cytoskeletal reorganization, preventing normal skeletal development. Copyright © 2016 the American Physiological Society.

  16. Impact of Tumor Cell Cytoskeleton Organization on Invasiveness and Migration: A Microchannel-Based Approach

    PubMed Central

    Rolli, Claudio G.; Seufferlein, Thomas; Kemkemer, Ralf; Spatz, Joachim P.

    2010-01-01

    Cell migration is a fundamental feature of the interaction of cells with their surrounding. The cell's stiffness and ability to deform itself are two major characteristics that rule migration behavior especially in three-dimensional tissue. We simulate this situation making use of a micro-fabricated migration chip to test the active invasive behavior of pancreatic cancer cells (Panc-1) into narrow channels. At a channel width of 7 µm cell migration through the channels was significantly impeded due to size exclusion. A striking increase in cell invasiveness was observed once the cells were treated with the bioactive lipid sphingosylphosphorylcholine (SPC) that leads to a reorganization of the cell's keratin network, an enhancement of the cell's deformability, and also an increase in the cell's migration speed on flat surfaces. The migration speed of the highly deformed cells inside the channels was three times higher than of cells on flat substrates but was not affected upon SPC treatment. Cells inside the channels migrated predominantly by smooth sliding while maintaining constant cell length. In contrast, cells on adhesion mediating narrow lines moved in a stepwise way, characterized by fluctuations in cell length. Taken together, with our migration chip we demonstrate that the dimensionality of the environment strongly affects the migration phenotype and we suggest that the spatial cytoskeletal keratin organization correlates with the tumor cell's invasive potential. PMID:20090950

  17. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction

    PubMed Central

    Terriza, Antonia; Vilches-Pérez, José I.; González-Caballero, Juan L.; de la Orden, Emilio; Yubero, Francisco; Barranco, Angel; Gonzalez-Elipe, Agustín R.; Vilches, José; Salido, Mercedes

    2014-01-01

    New biomaterials for Guided Bone Regeneration (GBR), both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB®) HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide) (PLGA) membrane foil functionalized by a very thin film (around 15 nm) of TiO2 (i.e., TiO2/PLGA membranes), designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors. PMID:28788538

  18. Effect of the LHCII pigment-protein complex aggregation on photovoltaic properties of sensitized TiO2 solar cells.

    PubMed

    Yang, Yiqun; Jankowiak, Ryszard; Lin, Chen; Pawlak, Krzysztof; Reus, Michael; Holzwarth, Alfred R; Li, Jun

    2014-10-14

    A modified dye-sensitized solar cell consisting of a thin TiO2 barrier layer sensitized with natural trimeric light-harvesting complex II (LHCII) from spinach was used as a biomimetic model to study the effects of LHCII aggregation on the photovoltaic properties. The aggregation of individual trimers induced molecular reorganization, which dramatically increased the photocurrent. The morphology of small- and large-size LHCII aggregates deposited on a surface was confirmed by atomic force microscopy. Enhanced LHCII immobilization was accomplished via electrostatic interaction with amine-functionalized photoanodes. The photocurrent responses of the assembled solar cells under illumination at three characteristic wavelength bands in the UV-Vis absorption spectra of LHCII solutions confirmed that a significant photocurrent was generated by LHCII photosensitizers. The enhanced photocurrent by large aggregated LHCII is shown to correlate with the quenching in the far-red fluorescence deriving from chlorophyll-chlorophyll charge transfer states that are effectively coupled with the TiO2 surface and thus inject electrons into the TiO2 conduction band. The large aggregated LHCII with more chlorophyll-chlorophyll charge transfer states is a much better sensitizer since it injects electrons more efficiently into the conduction band of TiO2 than the small aggregated LHCII mostly consisting of unquenched chlorophyll excited state. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days.

  19. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishibuchi, Ikuno; Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima; Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima

    2014-07-15

    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP)more » analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA damage response at a very early stage, via the damaged chromatin reorganization required for RAD51 focus formation.« less

  20. Impaired hippocampal place cell dynamics in a mouse model of the 22q11.2 deletion

    PubMed Central

    Zaremba, Jeffrey D; Diamantopoulou, Anastasia; Danielson, Nathan B; Grosmark, Andres D; Kaifosh, Patrick W; Bowler, John C; Liao, Zhenrui; Sparks, Fraser T; Gogos, Joseph A; Losonczy, Attila

    2018-01-01

    Hippocampal place cells represent the cellular substrate of episodic memory. Place cell ensembles reorganize to support learning but must also maintain stable representations to facilitate memory recall. Despite extensive research, the learning-related role of place cell dynamics in health and disease remains elusive. Using chronic two-photon Ca2+ imaging in hippocampal area CA1 of wild-type and Df(16)A+/− mice, an animal model of 22q11.2 deletion syndrome, one of the most common genetic risk factors for cognitive dysfunction and schizophrenia, we found that goal-oriented learning in wild-type mice was supported by stable spatial maps and robust remapping of place fields toward the goal location. Df(16)A+/− mice showed a significant learning deficit accompanied by reduced spatial map stability and the absence of goal-directed place cell reorganization. These results expand our understanding of the hippocampal ensemble dynamics supporting cognitive flexibility and demonstrate their importance in a model of 22q11.2-associated cognitive dysfunction. PMID:28869582

  1. Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia.

    PubMed

    Gold, David A; Nakanishi, Nagayasu; Hensley, Nicholai M; Hartenstein, Volker; Jacobs, David K

    2016-11-01

    The moon jellyfish Aurelia exhibits a dramatic reorganization of tissue during its metamorphosis from planula larva to polyp. There are currently two competing hypotheses regarding the fate of embryonic germ layers during this metamorphosis. In one scenario, the original endoderm undergoes apoptosis and is replaced by a secondary endoderm derived from ectodermal cells. In the second scenario, both ectoderm and endoderm remain intact through development. In this study, we performed a pulse-chase experiment to trace the fate of larval ectodermal cells. We observed that prior to metamorphosis, ectodermal cells that proliferated early in larval development concentrate at the future oral end of the polyp. During metamorphosis, these cells migrate into the endoderm, extending all the way to the aboral portion of the gut. We therefore reject the hypothesis that larval endoderm remains intact during metamorphosis and provide additional support for the "secondary gastrulation" hypothesis. Aurelia appears to offer the first and only described case where a cnidarian derives its endoderm twice during normal development, adding to a growing body of evidence that germ layers can be dramatically reorganized in cnidarian life cycles.

  2. Progressive Transverse Microtubule Array Organization in Hormone-Induced Arabidopsis Hypocotyl Cells[W

    PubMed Central

    Vineyard, Laura; Elliott, Andrew; Dhingra, Sonia; Lucas, Jessica R.; Shaw, Sidney L.

    2013-01-01

    The acentriolar cortical microtubule arrays in dark-grown hypocotyl cells organize into a transverse coaligned pattern that is critical for axial plant growth. In light-grown Arabidopsis thaliana seedlings, the cortical array on the outer (periclinal) cell face creates a variety of array patterns with a significant bias (>3:1) for microtubules polymerizing edge-ward and into the side (anticlinal) faces of the cell. To study the mechanisms required for creating the transverse coalignment, we developed a dual-hormone protocol that synchronously induces ∼80% of the light-grown hypocotyl cells to form transverse arrays over a 2-h period. Repatterning occurred in two phases, beginning with an initial 30 to 40% decrease in polymerizing plus ends prior to visible changes in the array pattern. Transverse organization initiated at the cell’s midzone by 45 min after induction and progressed bidirectionally toward the apical and basal ends of the cell. Reorganization corrected the edge-ward bias in polymerization and proceeded without transiting through an obligate intermediate pattern. Quantitative comparisons of uninduced and induced microtubule arrays showed a limited deconstruction of the initial periclinal array followed by a progressive array reorganization to transverse coordinated between the anticlinal and periclinal cell faces. PMID:23444330

  3. Experimental Induction of Genome Chaos.

    PubMed

    Ye, Christine J; Liu, Guo; Heng, Henry H

    2018-01-01

    Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including "chromothripsis," "chromoplexy," and "structural mutations." To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.

  4. Functional Reorganization of Promyelocytic Leukemia Nuclear Bodies during BK Virus Infection

    PubMed Central

    Jiang, Mengxi; Entezami, Pouya; Gamez, Monica; Stamminger, Thomas; Imperiale, Michael J.

    2011-01-01

    BK virus (BKV) is the causative agent for polyomavirus-associated nephropathy, a severe disease found in renal transplant patients due to reactivation of a persistent BKV infection. BKV replication relies on the interactions of BKV with many nuclear components, and subnuclear structures such as promyelocytic leukemia nuclear bodies (PML-NBs) are known to play regulatory roles during a number of DNA virus infections. In this study, we investigated the relationship between PML-NBs and BKV during infection of primary human renal proximal tubule epithelial (RPTE) cells. While the levels of the major PML-NB protein components remained unchanged, BKV infection of RPTE cells resulted in dramatic alterations in both the number and the size of PML-NBs. Furthermore, two normally constitutive components of PML-NBs, Sp100 and hDaxx, became dispersed from PML-NBs. To define the viral factors responsible for this reorganization, we examined the cellular localization of the BKV large tumor antigen (TAg) and viral DNA. TAg colocalized with PML-NBs during early infection, while a number of BKV chromosomes were adjacent to PML-NBs during late infection. We demonstrated that TAg alone was not sufficient to reorganize PML-NBs and that active viral DNA replication is required. Knockdown of PML protein did not dramatically affect BKV growth in culture. BKV infection, however, was able to rescue the growth of an ICP0-null herpes simplex virus 1 mutant whose growth defect was partially due to its inability to disrupt PML-NBs. We hypothesize that the antiviral functions of PML-NBs are inactivated through reorganization during normal BKV infection. PMID:21304169

  5. Wnt5a Evokes Cortical Axon Outgrowth and Repulsive Guidance by Tau Mediated Reorganization of Dynamic Microtubules

    PubMed Central

    Li, Li; Fothergill, Thomas; Hutchins, B Ian; Dent, Erik W; Kali, Katherine

    2014-01-01

    Wnt5a guides cortical axons in vivo by repulsion and in vitro evokes cortical axon outgrowth and repulsion by calcium signaling pathways. Here we examined the role of microtubule (MT) reorganization and dynamics in mediating effects of Wnt5a. Inhibiting MT dynamics with nocodazole and taxol abolished Wnt5a evoked axon outgrowth and repulsion of cultured hamster cortical neurons. EGFP-EB3 labeled dynamic MTs visualized in live cell imaging revealed that growth cone MTs align with the nascent axon. Wnt5a increased axon outgrowth by reorganization of dynamic MTs from a splayed to a bundled array oriented in the direction of axon extension, and Wnt5a gradients induced asymmetric redistribution of dynamic MTs toward the far side of the growth cone. Wnt5a gradients also evoked calcium transients that were highest on the far side of the growth cone. Calcium signaling and the reorganization of dynamic MTs could be linked by tau, a MT associated protein that stabilizes MTs. Tau is phosphorylated at the Ser 262 MT binding site by CaMKII, and is required for Wnt5a induced axon outgrowth and repulsive turning. Phosphorylation of tau at Ser262 is known to detach tau from MTs to increase their dynamics. Using transfection with tau constructs mutated at Ser262, we found that this site is required for the growth and guidance effects of Wnt5a by mediating reorganization of dynamic MTs in cortical growth cones. Moreover, CaMKII inhibition also prevents MT reorganization required for Wnt5a induced axon outgrowth, thus linking Wnt/calcium signaling to tau mediated MT reorganization during growth cone behaviors. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.Develop Neurobiol 74: 797–817, 2014 PMID:23818454

  6. [Structural plasticity associated with drugs addiction].

    PubMed

    Zhu, Jie; Cao, Guo-fen; Dang, Yong-hui; Chen, Teng

    2011-12-01

    An essential feature of drug addiction is that an individual continues to use drug despite the threat of severely adverse physical or psychosocial consequences. Persistent changes in behavior and psychological function that occur as a function of drugs of abuse are thought to be due to the reorganization of synaptic connections (structural plasticity) in relevant brain circuits (especially the brains reward circuits). In this paper we summarized evidence that, indeed, exposure to amphetamine, cocaine, nicotine or morphine produced persistent changes in the structure of dendrites and dendritic spines on cells in relevant brain regions. We also approached the potential molecular mechanisms of these changes. It is suggested that structural plasticity associated with exposure to drugs of abuse reflects a reorganization of patterns of synaptic connectivity in these neural systems, a reorganization that alters their operation, thus contributing to some of the persistent sequela associated with drug use-including addiction.

  7. The 13 million year Cenozoic pulse of the Earth

    NASA Astrophysics Data System (ADS)

    Chen, Jiasheng; Kravchinsky, Vadim A.; Liu, Xiuming

    2015-12-01

    The geomagnetic polarity reversal rate changes radically from very low to extremely high. Such process indicates fundamental changes in the Earth's core reorganization and core-mantle boundary heat flow fluctuations. However, we still do not know how critical such changes are to surface geology and climate processes. Our analysis of the geomagnetic reversal frequency, oxygen isotope record, and tectonic plate subduction rate, which are indicators of the changes in the heat flux at the core mantle boundary, climate and plate tectonic activity, shows that all these changes indicate similar rhythms on million years' timescale in the Cenozoic Era occurring with the common fundamental periodicity of ∼13 Myr during most of the time. The periodicity is disrupted only during the last 20 Myr. Such periodic behavior suggests that large scale climate and tectonic changes at the Earth's surface are closely connected with the million year timescale cyclical reorganization of the Earth's interior.

  8. Structural reorganization of the interleukin-7 signaling complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, Craig A.; Holland, Paul J.; Zhao, Peng

    2012-06-29

    We report here an unliganded receptor structure in the common gamma-chain ({gamma}{sub c}) family of receptors and cytokines. The crystal structure of the unliganded form of the interleukin-7 alpha receptor (IL-7R{alpha}) extracellular domain (ECD) at 2.15 {angstrom} resolution reveals a homodimer forming an 'X' geometry looking down onto the cell surface with the C termini of the two chains separated by 110 {angstrom} and the dimer interface comprising residues critical for IL-7 binding. Further biophysical studies indicate a weak association of the IL-7R{alpha} ECDs but a stronger association between the {gamma}{sub c}/IL-7R{alpha} ECDs, similar to previous studies of the full-lengthmore » receptors on CD4{sup +} T cells. Based on these and previous results, we propose a molecular mechanism detailing the progression from the inactive IL-7R{alpha} homodimer and IL-7R{alpha}-{gamma}{sub c} heterodimer to the active IL-7-IL-7R{alpha}-{gamma}{sub c} ternary complex whereby the two receptors undergo at least a 90{sup o} rotation away from the cell surface, moving the C termini of IL-7R{alpha} and {gamma}{sub c} from a distance of 110 {angstrom} to less than 30 {angstrom} at the cell surface. This molecular mechanism can be used to explain recently discovered IL-7- and {gamma}{sub c}-independent gain-of-function mutations in IL-7R{alpha} from B- and T-cell acute lymphoblastic leukemia patients. The mechanism may also be applicable to other {gamma}{sub c} receptors that form inactive homodimers and heterodimers independent of their cytokines.« less

  9. Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD

    NASA Technical Reports Server (NTRS)

    Granger, C. L.; Cyr, R. J.

    2000-01-01

    Microtubule organization plays an important role in plant morphogenesis; however, little is known about how microtubule arrays transit from one organized state to another. The use of a genetically incorporated fluorescent marker would allow long-term observation of microtubule behavior in living cells. Here, we have characterized a Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell line that had been stably transformed with a gfp-mbd construct previously demonstrated to label microtubules (J. Marc et al., 1998, Plant Cell 10: 1927-1939). Fluorescence levels were low, but interphase and mitotic microtubule arrays, as well as the transitions between these arrays, could be observed in individual gfp-mbd-transformed cells. By comparing several attributes of transformed and untransformed cells it was concluded that the transgenic cells are not adversely affected by low-level expression of the transgene and that these cells will serve as a useful and accurate model system for observing microtubule reorganization in vivo. Indeed, some initial observations were made that are consistent with the involvement of motor proteins in the transition between the spindle and phragmoplast arrays. Our observations also support the role of the perinuclear region in nucleating microtubules at the end of cell division with a progressive shift of these microtubules and/or nucleating activity to the cortex to form the interphase cortical array.

  10. Apico-basal forces exerted by apoptotic cells drive epithelium folding.

    PubMed

    Monier, Bruno; Gettings, Melanie; Gay, Guillaume; Mangeat, Thomas; Schott, Sonia; Guarner, Ana; Suzanne, Magali

    2015-02-12

    Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.

  11. Quantification of idiopathic pulmonary fibrosis using computed tomography and histology.

    PubMed

    Coxson, H O; Hogg, J C; Mayo, J R; Behzad, H; Whittall, K P; Schwartz, D A; Hartley, P G; Galvin, J R; Wilson, J S; Hunninghake, G W

    1997-05-01

    We used computed tomography (CT) and histologic analysis to quantify lung structure in idiopathic pulmonary fibrosis (IPF). CT scans were obtained from IPF and control patients and lung volumes were estimated from measurements of voxel size, and X-ray attenuation values of each voxel. Quantitative estimates of lung structure were obtained from biopsies obtained from diseased and normal CT regions using stereologic methods. CT density was used to calculate the proportion of tissue and air, and this value was used to correct the biopsy specimens to the level of inflation during the CT scan. The data show that IPF is associated with a reduction in airspace volume with no change in tissue volume or weight compared with control lungs. Lung surface area decreased two-thirds (p < 0.001) and mean parenchymal thickness increased tenfold (p < 0.001). An exudate of fluid and cells was present in the airspace of the diseased lung regions and the number of inflammatory cells, collagen, and proteoglycans was increased per 100 g of tissue in IPF. We conclude that IPF reorganized lung tissue content causing a loss of airspace and surface area without increasing the total lung tissue.

  12. The Role of IKKβ in Venezuelan Equine Encephalitis Virus Infection

    PubMed Central

    Amaya, Moushimi; Voss, Kelsey; Sampey, Gavin; Senina, Svetlana; de la Fuente, Cynthia; Mueller, Claudius; Calvert, Valerie; Kehn-Hall, Kylene; Carpenter, Calvin; Kashanchi, Fatah; Bailey, Charles; Mogelsvang, Soren; Petricoin, Emanuel; Narayanan, Aarthi

    2014-01-01

    Venezuelan equine encephalitis virus (VEEV) belongs to the genus Alphavirus, family Togaviridae. VEEV infection is characterized by extensive inflammation and studies from other laboratories implicated an involvement of the NF-κB cascade in the in vivo pathology. Initial studies indicated that at early time points of VEEV infection, the NF-κB complex was activated in cells infected with the TC-83 strain of VEEV. One upstream kinase that contributes to the phosphorylation of p65 is the IKKβ component of the IKK complex. Our previous studies with Rift valley fever virus, which exhibited early activation of the NF-κB cascade in infected cells, had indicated that the IKKβ component underwent macromolecular reorganization to form a novel low molecular weight form unique to infected cells. This prompted us to investigate if the IKK complex undergoes a comparable macromolecular reorganization in VEEV infection. Size-fractionated VEEV infected cell extracts indicated a macromolecular reorganization of IKKβ in VEEV infected cells that resulted in formation of lower molecular weight complexes. Well-documented inhibitors of IKKβ function, BAY-11-7082, BAY-11-7085 and IKK2 compound IV, were employed to determine whether IKKβ function was required for the production of infectious progeny virus. A decrease in infectious viral particles and viral RNA copies was observed with inhibitor treatment in the attenuated and virulent strains of VEEV infection. In order to further validate the requirement of IKKβ for VEEV replication, we over-expressed IKKβ in cells and observed an increase in viral titers. In contrast, studies carried out using IKKβ−/− cells demonstrated a decrease in VEEV replication. In vivo studies demonstrated that inhibitor treatment of TC-83 infected mice increased their survival. Finally, proteomics studies have revealed that IKKβ may interact with the viral protein nsP3. In conclusion, our studies have revealed that the host IKKβ protein may be critically involved in VEEV replication. PMID:24586253

  13. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    PubMed

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Curcumin inhibits cellular condensation and alters microfilament organization during chondrogenic differentiation of limb bud mesenchymal cells.

    PubMed

    Kim, Dong Kyun; Kim, Song Ja; Kang, Shin Sung; Jin, Eun Jung

    2009-09-30

    Curcumin is a well known natural polyphenol product isolated from the rhizome of the plant Curcuma longa, anti-inflammatory agent for arthritis by inhibiting synthesis of inflammatory prostaglandins. However, the mechanisms by which curcumin regulates the functions of chondroprogenitor, such as proliferation, precartilage condensation, cytoskeletal organization or overall chondrogenic behavior, are largely unknown. In the present report, we investigated the effects and signaling mechanism of curcumin on the regulation of chondrogenesis. Treating chick limb bud mesenchymal cells with curcumin suppressed chondrogenesis by stimulating apoptotic cell death. It also inhibited reorganization of the actin cytoskeleton into a cortical pattern concomitant with rounding of chondrogenic competent cells and down-regulation of integrin beta1 and focal adhesion kinase (FAK) phosphorylation. Curcumin suppressed the phosphorylation of Akt leading to Akt inactivation. Activation of Akt by introducing a myristoylated, constitutively active form of Akt reversed the inhibitory actions of curcumin during chondrogenesis. In summary, for the first time, we describe biological properties of curcumin during chondrogenic differentiation of chick limb bud mesenchymal cells. Curcumin suppressed chondrogenesis by stimulating apoptotic cell death and down-regulating integrin-mediated reorganization of actin cytoskeleton via modulation of Akt signaling.

  15. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Jianjun; Wang Jianji; Stell, George

    2006-10-28

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying themore » solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.« less

  16. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury

    NASA Astrophysics Data System (ADS)

    Coburn, Luke; Lopez, Hender; Schouwenaar, Irin-Maya; Yap, Alpha S.; Lobaskin, Vladimir; Gomez, Guillermo A.

    2018-03-01

    Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.

  17. Earth science: Making a mountain out of a plateau

    NASA Astrophysics Data System (ADS)

    Sinclair, Hugh

    2017-02-01

    A theory proposed in 2015 suggested that relatively flat surfaces in mountain ranges were formed by the reorganization of river networks. A fresh analysis rebuts this idea, reigniting discussion of a long-standing problem in Earth science.

  18. Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread

    PubMed Central

    El Najjar, Farah; Cifuentes-Muñoz, Nicolás; Zhu, Haining; Buchholz, Ursula J.; Moncman, Carole L.; Dutch, Rebecca Ellis

    2016-01-01

    Paramyxovirus spread generally involves assembly of individual viral particles which then infect target cells. We show that infection of human bronchial airway cells with human metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant respiratory disease, results in formation of intercellular extensions and extensive networks of branched cell-associated filaments. Formation of these structures is dependent on actin, but not microtubule, polymerization. Interestingly, using a co-culture assay we show that conditions which block regular infection by HMPV particles, including addition of neutralizing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from infected to new target cells. In contrast, inhibition of actin polymerization or alterations to Rho GTPase signaling pathways significantly decreased cell-to-cell spread. Furthermore, viral proteins and viral RNA were detected in intercellular extensions, suggesting direct transfer of viral genetic material to new target cells. While roles for paramyxovirus matrix and fusion proteins in membrane deformation have been previously demonstrated, we show that the HMPV phosphoprotein extensively co-localized with actin and induced formation of cellular extensions when transiently expressed, supporting a new model in which a paramyxovirus phosphoprotein is a key player in assembly and spread. Our results reveal a novel mechanism for HMPV direct cell-to-cell spread and provide insights into dissemination of respiratory viruses. PMID:27683250

  19. Metastatic potential of lung squamous cell carcinoma associated with HSPC300 through its interaction with WAVE2.

    PubMed

    Cai, Xiongwei; Xiao, Ting; James, Sharon Y; Da, Jiping; Lin, Dongmei; Liu, Yu; Zheng, Yang; Zou, Shuangmei; Di, Xuebing; Guo, Suping; Han, Naijun; Lu, Yong-Jie; Cheng, Shujun; Gao, Yanning; Zhang, Kaitai

    2009-09-01

    The small protein, HSPC300 (haematopoietic stem/progenitor cell protein 300), is associated with reorganization of actin filaments and cell movement, but its activity has not been reported in human cancer cells. Here, we investigated the association of HSPC300 expression with clinical features of lung squamous cell carcinoma. High levels of HSPC300 protein were detected in 84.1% of tumour samples, and in 30.8% of adjacent morphologically normal tissues. The number of primary tumours with elevated HSPC300 levels was significantly higher in primary tumours with lymph node metastases as opposed to those without, and also in tumours from patients with more advanced disease. HSPC300 modulates the morphology and motility of cells, as siRNA knockdown caused the reorganization of actin filaments, decreased the formation of pseudopodia, and inhibited the migration of a lung cancer cell line. We further showed that HSPC300 interacted with the WAVE2 protein, and HSPC300 silencing resulted in the degradation of WAVE2 in vitro. HSPC300 and WAVE2 were co-expressed in approximately 85.7% of primary tumours with lymph node metastases. We hypothesize that HSPC300 is associated with metastatic potential of lung squamous cell carcinoma through its interaction with WAVE2.

  20. Vitronectin as a Micromanager of Cell Response in Material-Driven Fibronectin Nanonetworks.

    PubMed

    Cantini, Marco; Gomide, Karina; Moulisova, Vladimira; González-García, Cristina; Salmerón-Sánchez, Manuel

    2017-09-01

    Surface functionalization strategies of synthetic materials for regenerative medicine applications comprise the development of microenvironments that recapitulate the physical and biochemical cues of physiological extracellular matrices. In this context, material-driven fibronectin (FN) nanonetworks obtained from the adsorption of the protein on poly(ethyl acrylate) provide a robust system to control cell behavior, particularly to enhance differentiation. This study aims at augmenting the complexity of these fibrillar matrices by introducing vitronectin, a lower-molecular-weight multifunctional glycoprotein and main adhesive component of serum. A cooperative effect during co-adsorption of the proteins is observed, as the addition of vitronectin leads to increased fibronectin adsorption, improved fibril formation, and enhanced vitronectin exposure. The mobility of the protein at the material interface increases, and this, in turn, facilitates the reorganization of the adsorbed FN by cells. Furthermore, the interplay between interface mobility and engagement of vitronectin receptors controls the level of cell fusion and the degree of cell differentiation. Ultimately, this work reveals that substrate-induced protein interfaces resulting from the cooperative adsorption of fibronectin and vitronectin fine-tune cell behavior, as vitronectin micromanages the local properties of the microenvironment and consequently short-term cell response to the protein interface and higher order cellular functions such as differentiation.

  1. Protein electron transfer: Dynamics and statistics

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2013-07-01

    Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.

  2. Protein electron transfer: Dynamics and statistics.

    PubMed

    Matyushov, Dmitry V

    2013-07-14

    Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.

  3. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Fatayer, Shadi; Schuler, Bruno; Steurer, Wolfram; Scivetti, Ivan; Repp, Jascha; Gross, Leo; Persson, Mats; Meyer, Gerhard

    2018-05-01

    Intermolecular single-electron transfer on electrically insulating films is a key process in molecular electronics1-4 and an important example of a redox reaction5,6. Electron-transfer rates in molecular systems depend on a few fundamental parameters, such as interadsorbate distance, temperature and, in particular, the Marcus reorganization energy7. This crucial parameter is the energy gain that results from the distortion of the equilibrium nuclear geometry in the molecule and its environment on charging8,9. The substrate, especially ionic films10, can have an important influence on the reorganization energy11,12. Reorganization energies are measured in electrochemistry13 as well as with optical14,15 and photoemission spectroscopies16,17, but not at the single-molecule limit and nor on insulating surfaces. Atomic force microscopy (AFM), with single-charge sensitivity18-22, atomic-scale spatial resolution20 and operable on insulating films, overcomes these challenges. Here, we investigate redox reactions of single naphthalocyanine (NPc) molecules on multilayered NaCl films. Employing the atomic force microscope as an ultralow current meter allows us to measure the differential conductance related to transitions between two charge states in both directions. Thereby, the reorganization energy of NPc on NaCl is determined as (0.8 ± 0.2) eV, and density functional theory (DFT) calculations provide the atomistic picture of the nuclear relaxations on charging. Our approach presents a route to perform tunnelling spectroscopy of single adsorbates on insulating substrates and provides insight into single-electron intermolecular transport.

  4. Pre-neurodegeneration of mitral cells in the pcd mutant mouse is associated with DNA damage, transcriptional repression, and reorganization of nuclear speckles and Cajal bodies.

    PubMed

    Valero, Jorge; Berciano, Maria T; Weruaga, Eduardo; Lafarga, Miguel; Alonso, José R

    2006-11-01

    DNA damage and impairment of its repair underlie several neurodegenerative diseases. The Purkinje cell degeneration (pcd) mutation causes the loss of Nna1 expression and is associated with a selective and progressive degeneration of specific neuronal populations, including mitral cells in the olfactory bulb. Using an in situ transcription assay, molecular markers for both nuclear compartments and components of the DNA damage/repair pathway, and ultrastructural analysis, here we demonstrate that the pcd mutation induces the formation of DNA damage/repair foci in mitral cells. Furthermore, this effect is associated with transcriptional inhibition, heterochromatinization, nucleolar segregation and the reorganization of nuclear speckles of splicing factors and Cajal bodies. The most significant cytoplasmic alteration observed was a partial replacement of rough endoplasmic reticulum cisternae by a larger amount of free ribosomes, while other organelles were structurally preserved. The tools employed in this work may be of use for the early detection of predegenerative processes in neurodegenerative disorders and for validating rescue strategies.

  5. Crystal structures of Bbp from Staphylococcus aureus reveal the ligand binding mechanism with Fibrinogen α.

    PubMed

    Zhang, Xinyue; Wu, Meng; Zhuo, Wei; Gu, Jinke; Zhang, Sensen; Ge, Jingpeng; Yang, Maojun

    2015-10-01

    Bone sialoprotein-binding protein (Bbp), a MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family protein expressed on the surface of Staphylococcus aureus (S. aureus), mediates adherence to fibrinogen α (Fg α), a component in the extracellular matrix of the host cell and is important for infection and pathogenesis. In this study, we solved the crystal structures of apo-Bbp(273-598) and Bbp(273-598)-Fg α(561-575) complex at a resolution of 2.03 Å and 1.45 Å, respectively. Apo-Bbp(273-598) contained the ligand binding region N2 and N3 domains, both of which followed a DE variant IgG fold characterized by an additional D1 strand in N2 domain and D1' and D2' strands in N3 domain. The peptide mapped to the Fg α(561-575) bond to Bbp(273-598) on the open groove between the N2 and N3 domains. Strikingly, the disordered C-terminus in the apo-form reorganized into a highly-ordered loop and a β-strand G'' covering the ligand upon ligand binding. Bbp(Ala298-Gly301) in the N2 domain of the Bbp(273-598)-Fg α(561-575) complex, which is a loop in the apo-form, formed a short α-helix to interact tightly with the peptide. In addition, Bbp(Ser547-Gln561) in the N3 domain moved toward the binding groove to make contact directly with the peptide, while Bbp(Asp338-Gly355) and Bbp(Thr365-Tyr387) in N2 domain shifted their configurations to stabilize the reorganized C-terminus mainly through strong hydrogen bonds. Altogether, our results revealed the molecular basis for Bbp-ligand interaction and advanced our understanding of S. aureus infection process.

  6. Converting a Staphylococcus aureus toxin into effective cyclic pseudopeptide antibiotics.

    PubMed

    Solecki, Olivia; Mosbah, Amor; Baudy Floc'h, Michèle; Felden, Brice

    2015-03-19

    Staphylococcus aureus produces peptide toxins that it uses to respond to environmental cues. We previously characterized PepA1, a peptide toxin from S. aureus, that induces lytic cell death of both bacterial and host cells. That led us to suggest that PepA1 has an antibacterial activity. Here, we demonstrate that exogenously provided PepA1 has activity against both Gram-positive and Gram-negative bacteria. We also see that PepA1 is significantly hemolytic, thus limiting its use as an antibacterial agent. To overcome these limitations, we converted PepA1 into nonhemolytic derivatives. Our most promising derivative is a cyclic heptapseudopeptide with inconsequential toxicity to human cells, enhanced stability in human sera, and sharp antibacterial activity. Mechanistically, linear and helical PepA1 derivatives form pores at the bacterial and erythrocyte surfaces, while the cyclic peptide induces bacterial envelope reorganization, with insignificant action on the erythrocytes. Our work demonstrates that bacterial toxins might be an attractive starting point for antibacterial drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Engineered Ferritin for Magnetogenetic Manipulation of Proteins and Organelles Inside Living Cells.

    PubMed

    Liße, Domenik; Monzel, Cornelia; Vicario, Chiara; Manzi, John; Maurin, Isabelle; Coppey, Mathieu; Piehler, Jacob; Dahan, Maxime

    2017-11-01

    Magnetogenetics is emerging as a novel approach for remote-controlled manipulation of cellular functions in tissues and organisms with high spatial and temporal resolution. A critical, still challenging issue for these techniques is to conjugate target proteins with magnetic probes that can satisfy multiple colloidal and biofunctional constraints. Here, semisynthetic magnetic nanoparticles are tailored based on human ferritin coupled to monomeric enhanced green fluorescent protein (mEGFP) for magnetic manipulation of proteins inside living cells. This study demonstrates efficient delivery, intracellular stealth properties, and rapid subcellular targeting of those magnetic nanoparticles via GFP-nanobody interactions. By means of magnetic field gradients, rapid spatial reorganization in the cytosol of proteins captured to the nanoparticle surface is achieved. Moreover, exploiting efficient nanoparticle targeting to intracellular membranes, remote-controlled arrest of mitochondrial dynamics using magnetic fields is demonstrated. The studies establish subcellular control of proteins and organelles with unprecedented spatial and temporal resolution, thus opening new prospects for magnetogenetic applications in fundamental cell biology and nanomedicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Probing cluster surface morphology by cryo spectroscopy of N2 on cationic nickel clusters

    NASA Astrophysics Data System (ADS)

    Dillinger, Sebastian; Mohrbach, Jennifer; Niedner-Schatteburg, Gereon

    2017-11-01

    We present the cryogenic (26 K) IR spectra of selected [Nin(N2)m]+ (n = 5-20, m = 1 - mmax), which strongly reveal n- and m-dependent features in the N2 stretching region, in conjunction with density functional theory modeling of some of these findings. The observed spectral features allow us to refine the kinetic classification [cf. J. Mohrbach, S. Dillinger, and G. Niedner-Schatteburg, J. Chem. Phys. 147, 184304 (2017)] and to define four classes of structure related surface adsorption behavior: Class (1) of Ni6+, Ni13+, and Ni19+ are highly symmetrical clusters with all smooth surfaces of equally coordinated Ni atoms that entertain stepwise N2 adsorption up to stoichiometric N2:Nisurface saturation. Class (2) of Ni12+ and Ni18+ are highly symmetrical clusters minus one. Their relaxed smooth surfaces reorganize by enhanced N2 uptake toward some low coordinated Ni surface atoms with double N2 occupation. Class (3) of Ni5+ and Ni7+ through Ni11+ are small clusters of rough surfaces with low coordinated Ni surface atoms, and some reveal semi-internal Ni atoms of high next-neighbor coordination. Surface reorganization upon N2 uptake turns rough into rough surface by Ni atom migration and turns octahedral based structures into pentagonal bipyramidal structures. Class (4) of Ni14+ through Ni17+ and Ni20+ are large clusters with rough and smooth surface areas. They possess smooth icosahedral surfaces with some proximate capping atom(s) on one hemisphere of the icosahedron with the other one largely unaffected.

  9. Optimization of differentiation time of mesenchymal-stem-cell to tenocyte under a cyclic stretching with a microgrooved culture membrane and selected measurement cells.

    PubMed

    Morita, Yasuyuki; Yamashita, Takahiro; Toku, Toku; Ju, Yang

    2018-01-01

    There is a need for efficient stem cell-to-tenocyte differentiation techniques for tendon tissue engineering. More than 1 week is required for tenogenic differentiation with chemical stimuli, including co-culturing. Research has begun to examine the utility of mechanical stimuli, which reduces the differentiation time to several days. However, the precise length of time required to differentiate human bone marrow-derived mesenchymal stem cells (hBMSCs) into tenocytes has not been clarified. Understanding the precise time required is important for future tissue engineering projects. Therefore, in this study, a method was developed to more precisely determine the length of time required to differentiate hBMSCs into tenocytes with cyclic stretching stimulus. First, it had to be determined how stretching stimulation affected the cells. Microgrooved culture membranes were used to suppress cell orientation behavior. Then, only cells oriented parallel to the microgrooves were selected and evaluated for protein synthesis levels for differentiation. The results revealed that growing cells on the microgrooved membrane and selecting optimally-oriented cells for measurement improved the accuracy of the differentiation evaluation, and that hBMSCs differentiated into tenocytes in approximately 10 h. The differentiation time corresponded to the time required for cellular cytoskeleton reorganization and cellular morphology alterations. This suggests that cells, when subjected to mechanical stimulus, secrete mRNAs and proteins for both cytoskeleton reorganization and differentiation.

  10. Volumetric and infrared measurements on amorphous ice structure

    NASA Astrophysics Data System (ADS)

    Manca, C.; Martin, C.; Roubin, P.

    2004-05-01

    We have simultaneously used adsorption isotherm volumetry and Fourier transform infrared spectroscopy in order to take the investigations on amorphous ice structure a step further, especially concerning porosity and annealing-induced modifications. We have studied surface reorganization during annealing and found that the number of surface sites decreases before crystallization, their relative ratios being different for amorphous and crystalline ice. We also present results confirming that ice can have a large specific surface area and nevertheless be non-microporous.

  11. Bitter tastant quinine modulates glucagon-like peptide-1 exocytosis from clonal GLUTag enteroendocrine L cells via actin reorganization.

    PubMed

    Harada, Kazuki; Sakaguchi, Hidekazu; Sada, Shoko; Ishida, Rika; Hayasaka, Yuki; Tsuboi, Takashi

    2018-06-07

    Enteroendocrine L cells in the gastrointestinal tract secrete glucagon-like peptide-1 (GLP-1), which plays an important role in glucose homeostasis. Here we investigated the effect of bitter tastant quinine on GLP-1 secretion using clonal GLUTag mouse enteroendocrine L cells. We found that GLUTag cells expressed putative quinine receptors at mRNA levels. Although application of quinine resulted in an increase of intracellular Ca 2+ levels, which was mediated by Ca 2+ release from the endoplasmic reticulum and Ca 2+ influx through voltage-sensitive Ca 2+ channels, quinine had little effect on GLP-1 secretion. Total internal reflection fluorescence microscopy and immunocytochemistry revealed that GLP-1-containing vesicles remained unfused with the plasma membrane and facilitated actin polymerization beneath the plasma membrane after application of quinine, respectively. Interestingly, application of forskolin together with quinine induced GLP-1 exocytosis from the cells. These results suggest that quinine does not induce GLP-1 secretion because it facilitates Ca 2+ increase and actin reorganization but not cAMP increase, and both Ca 2+ and cAMP are essential for GLP-1 secretion. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. 76 FR 23255 - Federal Motor Vehicle Safety Standards; Lamps, Reflective Devices, and Associated Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... plate holders so that the plane surface of a license plate in the holder would be within 15[deg] of perpendicular to the plane surface on which the vehicle stands. Paragraph S5.1.1 of the pre-reorganized version...). Among other requirements, SAE Standard J587 states in paragraph 6.1 that ``the angle between the plane...

  13. Analysis of Septin Reorganization at Cytokinesis Using Polarized Fluorescence Microscopy

    PubMed Central

    McQuilken, Molly; Jentzsch, Maximilian S.; Verma, Amitabh; Mehta, Shalin B.; Oldenbourg, Rudolf; Gladfelter, Amy S.

    2017-01-01

    Septins are conserved filament-forming proteins that act in diverse cellular processes. They closely associate with membranes and, in some systems, components of the cytoskeleton. It is not well understood how filaments assemble into higher-order structures in vivo or how they are remodeled throughout the cell cycle. In the budding yeast S. cerevisiae, septins are found through most of the cell cycle in an hourglass organization at the mother-bud neck until cytokinesis when the collar splits into two rings that disassemble prior to the next cell cycle. Experiments using polarized fluorescence microscopy have suggested that septins are arranged in ordered, paired filaments in the hourglass and undergo a coordinated 90° reorientation during splitting at cytokinesis. This apparent reorganization could be due to two orthogonal populations of filaments disassembling and reassembling or being preferentially retained at cytokinesis. In support of this idea, we report a decrease in septin concentration at the mother-bud neck during cytokinesis consistent with other reports and the timing of the decrease depends on known septin regulators including the Gin4 kinase. We took a candidate-based approach to examine what factors control reorientation during splitting and used polarized fluorescence microscopy to screen mutant yeast strains deficient in septin interacting proteins. Using this method, we have linked known septin regulators to different aspects of the assembly, stability, and reorganization of septin assemblies. The data support that ring splitting requires Gin4 activity and an anillin-like protein Bud4, and normal accumulation of septins at the ring requires phosphorylation of Shs1. We found distinct regulatory requirements for septin organization in the hourglass compared to split rings. We propose that septin subpopulations can vary in their localization and assembly/disassembly behavior in a cell-cycle dependent manner at cytokinesis. PMID:28516085

  14. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders

    PubMed Central

    Reinhard, Sarah M.; Razak, Khaleel; Ethell, Iryna M.

    2015-01-01

    The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called ‘critical periods.’ MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer’s disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders. PMID:26283917

  15. An Apical MRCK-driven Morphogenetic Pathway Controls Epithelial Polarity

    PubMed Central

    Zihni, Ceniz; Vlassaks, Evi; Terry, Stephen; Carlton, Jeremy; Leung, Thomas King Chor; Olson, Michael; Pichaud, Franck; Balda, Maria Susana; Matter, Karl

    2017-01-01

    Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown. Here we show that the Cdc42 effector MRCK activates Myosin-II at the apical pole to segregate aPKC-Par6 from junctional Par3, defining the apical domain. Apically polarized MRCK-activated actomyosin contractility is reinforced by cooperation with aPKC-Par6 downregulating antagonistic RhoA-driven junctional actomyosin contractility, and drives polarization of cytosolic brush border determinants and apical morphogenesis. MRCK-activated polarized actomyosin contractility is required for apical differentiation and morphogenesis in vertebrate epithelia and Drosophila photoreceptors. Our results identify an apical origin of actomyosin-driven morphogenesis that couples cytoskeletal reorganization to PAR polarity signalling. PMID:28825699

  16. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7.

    PubMed

    Noordstra, Ivar; Liu, Qingyang; Nijenhuis, Wilco; Hua, Shasha; Jiang, Kai; Baars, Matthijs; Remmelzwaal, Sanne; Martin, Maud; Kapitein, Lukas C; Akhmanova, Anna

    2016-11-15

    The microtubule cytoskeleton regulates cell polarity by spatially organizing membrane trafficking and signaling processes. In epithelial cells, microtubules form parallel arrays aligned along the apico-basal axis, and recent work has demonstrated that the members of CAMSAP/Patronin family control apical tethering of microtubule minus ends. Here, we show that in mammalian intestinal epithelial cells, the spectraplakin ACF7 (also known as MACF1) specifically binds to CAMSAP3 and is required for the apical localization of CAMSAP3-decorated microtubule minus ends. Loss of ACF7 but not of CAMSAP3 or its homolog CAMSAP2 affected the formation of polarized epithelial cysts in three-dimensional cultures. In short-term epithelial polarization assays, knockout of CAMSAP3, but not of CAMSAP2, caused microtubule re-organization into a more radial centrosomal array, redistribution of Rab11-positive (also known as Rab11A) endosomes from the apical cell surface to the pericentrosomal region and inhibition of actin brush border formation at the apical side of the cell. We conclude that ACF7 is an important regulator of apico-basal polarity in mammalian intestinal cells and that a radial centrosome-centered microtubule organization can act as an inhibitor of epithelial polarity. © 2016. Published by The Company of Biologists Ltd.

  17. Dynamics of myosin II organization into contractile networks and fibers at the medial cell cortex

    NASA Astrophysics Data System (ADS)

    Nie, Wei

    The cellular morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of non-muscle myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin (which disrupts actomyosin stress fibers). Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared to studies by other groups. This analysis suggested the following processes: myosin minifilament assembly and disassembly; aligning and contraction; myosin filament stabilization upon increasing contractile tension. Numerical simulations that include those processes capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. We discuss methods to monitor myosin reorganization using non-linear imaging methods.

  18. Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes.

    PubMed Central

    Teissié, J; Ramos, C

    1998-01-01

    Electric field pulses have been reported to induce long-lived permeabilization and fusogenicity on cell membranes. The two membrane property alterations are under the control of the field strength, the pulse duration, and the number of pulses. Experiments on mammalian cells pulsed by square wave form pulses and then brought into contact randomly through centrifugation revealed an even stronger analogy between the two processes. Permeabilization was known to affect well-defined regions of the cell surface. Fusion can be obtained only when permeabilized surfaces on the two partners were brought into contact. Permeabilization was under the control of the pulse duration and of the number of pulses. A similar relationship was observed as far as fusion is concerned. But a critical level of local permeabilization must be present for fusion to take place when contacts are created. The same conclusions are obtained from previous experiments on ghosts subjected to exponentially decaying field pulses and then brought into contact by dielectrophoresis. These observations are in agreement with a model of membrane fusion in which the merging of local random defects occurs when the two membranes are brought into contact. The local defects are considered part of the structural membrane reorganization induced by the external field. Their density is dependent on the pulse duration and number of pulses. They support the long-lived permeabilization. Their number must be very large to support the occurrence of membrane fusion. PMID:9545050

  19. Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes.

    PubMed

    Teissié, J; Ramos, C

    1998-04-01

    Electric field pulses have been reported to induce long-lived permeabilization and fusogenicity on cell membranes. The two membrane property alterations are under the control of the field strength, the pulse duration, and the number of pulses. Experiments on mammalian cells pulsed by square wave form pulses and then brought into contact randomly through centrifugation revealed an even stronger analogy between the two processes. Permeabilization was known to affect well-defined regions of the cell surface. Fusion can be obtained only when permeabilized surfaces on the two partners were brought into contact. Permeabilization was under the control of the pulse duration and of the number of pulses. A similar relationship was observed as far as fusion is concerned. But a critical level of local permeabilization must be present for fusion to take place when contacts are created. The same conclusions are obtained from previous experiments on ghosts subjected to exponentially decaying field pulses and then brought into contact by dielectrophoresis. These observations are in agreement with a model of membrane fusion in which the merging of local random defects occurs when the two membranes are brought into contact. The local defects are considered part of the structural membrane reorganization induced by the external field. Their density is dependent on the pulse duration and number of pulses. They support the long-lived permeabilization. Their number must be very large to support the occurrence of membrane fusion.

  20. Three-dimensional analysis of nuclear heterochromatin distribution during early development in the rabbit.

    PubMed

    Bonnet-Garnier, Amélie; Kiêu, Kiên; Aguirre-Lavin, Tiphaine; Tar, Krisztina; Flores, Pierre; Liu, Zichuan; Peynot, Nathalie; Chebrout, Martine; Dinnyés, András; Duranthon, Véronique; Beaujean, Nathalie

    2018-04-18

    Changes to the spatial organization of specific chromatin domains such as constitutive heterochromatin have been studied extensively in somatic cells. During early embryonic development, drastic epigenetic reprogramming of both the maternal and paternal genomes, followed by chromatin remodeling at the time of embryonic genome activation (EGA), have been observed in the mouse. Very few studies have been performed in other mammalian species (human, bovine, or rabbit) and the data are far from complete. During this work, we studied the three-dimensional organization of pericentromeric regions during the preimplantation period in the rabbit using specific techniques (3D-FISH) and tools (semi-automated image analysis). We observed that the pericentromeric regions (identified with specific probes for Rsat I and Rsat II genomic sequences) changed their shapes (from pearl necklaces to clusters), their nuclear localizations (from central to peripheral), as from the 4-cell stage. This reorganization goes along with histone modification changes and reduced amount of interactions with nucleolar precursor body surface. Altogether, our results suggest that the 4-cell stage may be a crucial window for events necessary before major EGA, which occurs during the 8-cell stage in the rabbit.

  1. Microvillar Ca++ signaling: a new view of an old problem.

    PubMed

    Lange, K

    1999-07-01

    Proceeding from the recent finding that the main components of the Ca++ signal pathway are located in small membrane protrusions on the surface of differentiated cells, called microvilli, a novel concept of cellular Ca++ signaling was developed. The main features of this concept can be summarized as follows: Microvilli are formed on the cell surface of differentiating or resting cells from exocytic membrane domains, growing out from the cell surface by elongation of an internal bundle of actin filaments. The microvillar tip membranes contain all functional important proteins synthesized such as ion channels and transporters for energy-providing substrates and structural components, which are, in rapidly growing undifferentiated cells, distributed over the whole cell surface by lateral diffusion. The microvillar shaft structure, a bundle of actin filaments, forms a dense cytoskeletal matrix tightly covered by the microvillar lipid membrane and represents an effective diffusion barrier separating the microvillar tip compartment (entrance compartment) from the cytoplasm. This diffusion barrier prevents the passage of low molecular components such as Ca++ glucose and other relevant substrates from the entrance compartment into the cytoplasm. The effectiveness of the actin-based diffusion barrier is modulated by various signal pathways and effectors, most importantly, by the actin-depolymerizing/reorganizing activity of the phospholipase C (PLC)-coupled Ca++ signaling. Moreover, the microvillar bundle of actin filaments plays a dual role in Ca++ signaling. It combines the function of a diffusion barrier, preventing Ca++ influx into the resting cell, with that of a high-affinity, ATP-dependent, and IP3-sensitive Ca++ store. Activation of Ca++ signaling via PLC-coupled receptors simultaneously empties Ca++ stores and activates the influx of external Ca++. The presented concept of Ca++ signaling is compatible with all established data on Ca++ signaling. Properties of Ca++ signaling, that could not be reconciled with the basic principles of the current hypothesis, are intrinsic properties of the new concept. Quantal Ca++ release, Ca(++)-induced Ca++ release (CICR), the coupling phenomen between the filling state of the Ca++ store and the activity of the Ca++ influx pathway, as well as the various yet unexplained complex kinetics of Ca++ uptake and release can be explained on a common mechanistic basis.

  2. Regulation of plant cells, cell walls and development by mechanical signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyerowitz, Elliot M.

    2016-06-14

    The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts – to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization ofmore » the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.« less

  3. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function.

    PubMed

    Orange, Jordan S; Roy-Ghanta, Sumita; Mace, Emily M; Maru, Saumya; Rak, Gregory D; Sanborn, Keri B; Fasth, Anders; Saltzman, Rushani; Paisley, Allison; Monaco-Shawver, Linda; Banerjee, Pinaki P; Pandey, Rahul

    2011-04-01

    Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.

  4. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function

    PubMed Central

    Orange, Jordan S.; Roy-Ghanta, Sumita; Mace, Emily M.; Maru, Saumya; Rak, Gregory D.; Sanborn, Keri B.; Fasth, Anders; Saltzman, Rushani; Paisley, Allison; Monaco-Shawver, Linda; Banerjee, Pinaki P.; Pandey, Rahul

    2011-01-01

    Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function. PMID:21383498

  5. Higher Levels of Organization in the Interphase Nucleus of Cycling and Differentiated Cells

    PubMed Central

    Leitch, Andrew R.

    2000-01-01

    The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized. PMID:10704477

  6. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    NASA Astrophysics Data System (ADS)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian Pacific Congress on Computational Mechanics, July 2010, iopscience.iop.org/1757-899X/10/1/012012. [4] G. Morra, P. Chatelain, P. Tackley and P. Koumoutzakos, 2007, Large scale three-dimensional boundary element simulation of subduction, in Proceeding International Conference on Computational Science - Part III, LNCS 4489, pp. 1122-1129. Interaction between two subducting slabs.

  7. Cell vertices as independent actors during cell intercalation in epithelial morphogenesis

    NASA Astrophysics Data System (ADS)

    Loerke, Dinah

    Epithelial sheets form the lining of organ surfaces and body cavities, and it is now appreciated that these sheets are dynamic structures that can undergo significant reorganizing events, e.g. during wound healing or morphogenesis. One of the key morphogenetic mechanisms that is utilized during development is tissue elongation, which is driven by oriented cell intercalation. In the Drosophila embryonic epithelium, this occurs through the contraction of vertical T1 interfaces and the subsequent resolution of horizontal T3 interfaces (analogous to so-called T1 transitions in soap foams), where the symmetry breaking behaviors are created by a system of planar polarity of actomyosin and adhesion complexes within the cell layer. The dominant physical model for this process posits that the anisotropy of line tension directs T1 contraction. However, this model is inconsistent with the in vivo observation that cell vertices of T1 interfaces lack physical coupling, and instead show independent movements. Thus, we propose that a more useful explanation of intercalary behaviors will be possible through a description of the radially-directed and adhesion-coupled force events that lead to vertex movements and produce subsequent dependent changes in interface lengths. This work is supported by NIH R15 GM117463-01 and by a Research Corporation for Science Advancement (RCSA) Cottrell Scholar Award.

  8. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes.

    PubMed

    Liu, Yuexian; Li, Wei; Lao, Fang; Liu, Ying; Wang, Liming; Bai, Ru; Zhao, Yuliang; Chen, Chunying

    2011-11-01

    The fate of nanomaterials with different sizes and charges in mitotic cells is of great importance but seldom explored. Herein we investigate the intracellular fate of negatively charged carboxylated polystyrene (COOH-PS) and positively charged amino-modified polystyrene (NH(2)-PS) nanoparticles of three different diameters (50, 100 and 500 nm) on cancer HeLa cells and normal NIH 3T3 cells during the cell cycles. The results showed that all the fluorescent PS nanoparticles differing in size and/or charge did not interact with chromosome reorganization and cytoskeleton assembly during the mitotic process in live cells. They neither disturbed chromosome reorganization nor affected the cytoskeleton reassembly in both normal and cancer cells. However, NH(2)-PS at the size of 50 nm caused G1 phase delay and a decrease of cyclin (D, E) expression, respectively. Moreover, NH(2)-PS displayed higher cellular toxicity and NH(2)-PS of 50 nm disturbed the integrity of cell membranes. Both cationic and anionic PS nanoparticles had a more pronounced effect on normal NIH 3T3 cells than cancer HeLa cell. Our research provides insight into the dynamic fate, intracellular behavior, and the effects of nanoparticles on spindle and chromosomes during cell division, which will enable the optimization of design and selection of much safer nanoparticles for lower risk to human health and widely medical applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Association of Paramecium bursaria Chlorella viruses with Paramecium bursaria cells: ultrastructural studies.

    PubMed

    Yashchenko, Varvara V; Gavrilova, Olga V; Rautian, Maria S; Jakobsen, Kjetill S

    2012-05-01

    Paramecium bursaria Chlorella viruses were observed by applying transmission electron microscopy in the native symbiotic system Paramecium bursaria (Ciliophora, Oligohymenophorea) and the green algae Chlorella (Chlorellaceae, Trebouxiophyceae). Virus particles were abundant and localized in the ciliary pits of the cortex and in the buccal cavity of P. bursaria. This was shown for two types of the symbiotic systems associated with two types of Chlorella viruses - Pbi or NC64A. A novel quantitative stereological approach was applied to test whether virus particles were distributed randomly on the Paramecium surface or preferentially occupied certain zones. The ability of the virus to form an association with the ciliate was investigated experimentally; virus particles were mixed with P. bursaria or with symbiont-free species P. caudatum. Our results confirmed that in the freshwater ecosystems two types of P. bursaria -Chlorella symbiotic systems exist, those without Chlorella viruses and those associated with a large amount of the viruses. The fate of Chlorella virus particles at the Paramecium surface was determined based on obtained statistical data and taking into account ciliate feeding currents and cortical reorganization during cell division. A life cycle of the viruses in the complete symbiotic system is proposed. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Prostate cancer cells specifically reorganize epithelial cell-fibroblast communication through proteoglycan and junction pathways.

    PubMed

    Suhovskih, Anastasia V; Kashuba, Vladimir I; Klein, George; Grigorieva, Elvira V

    2017-01-02

    Microenvironment and stromal fibroblasts are able to inhibit tumor cell proliferation both through secreted signaling molecules and direct cell-cell interactions but molecular mechanisms of these effects remain unclear. In this study, we investigated a role of cell-cell contact-related molecules (protein ECM components, proteoglycans (PGs) and junction-related molecules) in intercellular communications between the human TERT immortalized fibroblasts (BjTERT fibroblasts) and normal (PNT2) or cancer (LNCaP, PC3, DU145) prostate epithelial cells. It was shown that BjTERT-PNT2 cell coculture resulted in significant decrease of both BjTERT and PNT2 proliferation rates and reorganization of transcriptional activity of cell-cell contact-related genes in both cell types. Immunocytochemical staining revealed redistribution of DCN and LUM in PNT2 cells and significant increase of SDC1 at the intercellular contact zones between BjTERT and PNT2 cells, suggesting active involvement of the PGs in cell-cell contacts and contact inhibition of cell proliferation. Unlike to PNT2 cells, PC3 cells did not respond to BjTERT in terms of PGs expression, moderately increased transcriptional activity of junctions-related genes (especially tight junction) and failed to establish PC3-BjTERT contacts. At the same time, PC3 cells significantly down-regulated junctions-related genes (especially focal adhesions and adherens junctions) in BjTERT fibroblasts resulting in visible preference for homotypic PC3-PC3 over heterotypic PC3-BjTERT contacts and autonomous growth of PC3 clones. Taken together, the results demonstrate that an instructing role of fibroblasts to normal prostate epithelial cells is revoked by cancer cells through deregulation of proteoglycans and junction molecules expression and overall disorganization of fibroblast-cancer cell communication.

  11. Self-repairing symmetry in jellyfish through mechanically driven reorganization

    PubMed Central

    Abrams, Michael J.; Basinger, Ty; Yuan, William; Guo, Chin-Lin; Goentoro, Lea

    2015-01-01

    What happens when an animal is injured and loses important structures? Some animals simply heal the wound, whereas others are able to regenerate lost parts. In this study, we report a previously unidentified strategy of self-repair, where moon jellyfish respond to injuries by reorganizing existing parts, and rebuilding essential body symmetry, without regenerating what is lost. Specifically, in response to arm amputation, the young jellyfish of Aurelia aurita rearrange their remaining arms, recenter their manubria, and rebuild their muscular networks, all completed within 12 hours to 4 days. We call this process symmetrization. We find that symmetrization is not driven by external cues, cell proliferation, cell death, and proceeded even when foreign arms were grafted on. Instead, we find that forces generated by the muscular network are essential. Inhibiting pulsation using muscle relaxants completely, and reversibly, blocked symmetrization. Furthermore, we observed that decreasing pulse frequency using muscle relaxants slowed symmetrization, whereas increasing pulse frequency by lowering the magnesium concentration in seawater accelerated symmetrization. A mathematical model that describes the compressive forces from the muscle contraction, within the context of the elastic response from the mesoglea and the ephyra geometry, can recapitulate the recovery of global symmetry. Thus, self-repair in Aurelia proceeds through the reorganization of existing parts, and is driven by forces generated by its own propulsion machinery. We find evidence for symmetrization across species of jellyfish (Chrysaora pacifica, Mastigias sp., and Cotylorhiza tuberculata). PMID:26080418

  12. Finding the Maximum Surface Area in Education

    ERIC Educational Resources Information Center

    Hawkins, David

    1975-01-01

    Curriculum reconstruction for maximum accessibility increases rate of student learning. Reorganization should be accomplished by one genuinely involved and personally committed to the subject matter. Teachers, insightful and aware of similarities and diversities of the learner, can create an environment which draws children to it, satisfying their…

  13. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements.

    PubMed

    Buxa, Stefanie V; Degola, Francesca; Polizzotto, Rachele; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; di Toppi, Luigi Sanità; van Bel, Aart J E; Musetti, Rita

    2015-01-01

    Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by 'Candidatus Phytoplasma solani,' the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes.

  14. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements

    PubMed Central

    Buxa, Stefanie V.; Degola, Francesca; Polizzotto, Rachele; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; di Toppi, Luigi Sanità; van Bel, Aart J. E.; Musetti, Rita

    2015-01-01

    Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by ‘Candidatus Phytoplasma solani,’ the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes. PMID:26347766

  15. Isolation and characterization of the hemichrome-stabilized membrane protein aggregates from sickle erythrocytes. Major site of autologous antibody binding.

    PubMed

    Kannan, R; Labotka, R; Low, P S

    1988-09-25

    Because the interaction of denatured hemoglobins (i.e. hemichromes) with the red cell membrane has been associated with several abnormalities commonly observed in hemichrome-containing erythrocytes, we have undertaken to isolate and characterize the hemichrome-rich membrane protein aggregates from sickle cells. The aggregates were isolated by two procedures: one at low ionic strength by centrifugation of detergent-solubilized spectrin-depleted inside-out vesicles, and the other at physiological ionic strength by detergent solubilization of whole cells followed by cytoskeletal disruption and centrifugation. The extensively washed aggregates obtained by both methods yielded similar results. These insoluble complexes were found to be highly cross-linked by predominantly intermolecular disulfide bonds; however, other nonreducible covalent linkages were also observed. Both in the presence and absence of reducing agents, the aggregate disintegrated when the hemichromes were removed by high ionic strength, suggesting that the aggregate depended heavily on the cohesive properties of the hemichromes for stability. Protein assays demonstrated that the aggregates comprised approximately 1.3% of the total membrane protein, roughly two-thirds of which appeared to be globin chains. Other major components identified in the aggregate were band 3, ankyrin, bands 4.1, 4.9, and 5, glycophorins A and B, and autologous IgG. Quantitative analysis of the IgG content demonstrated that three-fourths of the surface-bound IgG on washed sickle cells was clustered at these aggregate sites, representing an enrichment of approximately 250-fold over nonaggregated regions of the membrane. Since clustered cell surface IgG is thought to trigger removal of erythrocytes from circulation, the hemichrome-induced membrane reorganization at these aggregate sites may be an important cause of the greatly shortened life span of sickle cells.

  16. Developmental distribution of CaM kinase II in the antennal lobe of the sphinx moth Manduca sexta.

    PubMed

    Lohr, Christian; Bergstein, Sandra; Hirnet, Daniela

    2007-01-01

    The antennal lobe (primary olfactory center of insects) is completely reorganized during metamorphosis. This reorganization is accompanied by changing patterns of calcium signaling in neurons and glial cells. In the present study, we investigated the developmental distribution of a major calcium-dependent protein, viz., calcium/calmodulin-dependent protein kinase II (CaM kinase II), in the antennal lobe of the sphinx moth Manduca sexta by using a monoclonal antibody. During synaptogenesis (developmental stages 6-10), we found a redistribution of CaM kinase II immunoreactivity, from a homogeneous distribution in the immature neuropil to an accumulation in the neuropil of the glomeruli. CaM kinase II immunoreactivity was less intense in olfactory receptor axons of the antennal nerve and antennal lobe glial cells. Western blot analysis revealed a growing content of CaM kinase II in antennal lobe tissue throughout metamorphosis. Injection of the CaM kinase inhibitor KN-93 into pupae resulted in a reduced number of antennal lobe glial cells migrating into the neuropil to form borders around glomeruli. The results suggest that CaM kinase II is involved in glial cell migration.

  17. Methylation of PLCD1 and adenovirus-mediated PLCD1 overexpression elicits a gene therapy effect on human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Haixi; Department of Endocrine and breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016; Wang, Na

    Our previous study showed that PLCD1 significantly decreases cell proliferation and affects cell cycle progression in breast cancer cells. In the present study, we aimed to investigate its functional and molecular mechanisms, and whether or not can become a new target for gene therapies. We found reduced PLCD1 protein expression in breast tumor tissues compared with paired surgical margin tissues. PLCD1 promoter CpG methylation was detected in 55 of 96 (57%) primary breast tumors, but not in surgical-margin tissues and normal breast tissues. Ectopic expression of PLCD1 inhibited breast tumor cell proliferation in vivo by inducing apoptosis and suppressed tumormore » cell migration by regulating cytoskeletal reorganization proteins including RhoA and phospho-cofilin. Furthermore, we found that PLCD1 induced p53 accumulation, increased p27 and p21 protein levels, and cleaved PARP. Finally, we constructed an adenoviral vector expressing PLCD1 (AdH5-PLCD1), which exhibited strong cytotoxicity in breast cancer cells. Our findings provide insights into the development of PLCD1 gene therapies for breast cancer and perhaps, other human cancers. - Highlights: • PLCD1 is downregulated via hypermethylation in breast cancer. • PLCD1 suppressed cell migration by regulating cytoskeletal reorganization proteins. • Adenovirus AdHu5-PLCD1 may be a novel therapeutic option for breast cancer.« less

  18. Contrast-enhanced ultrasound measurement of pancreatic blood flow dynamics predicts type 1 diabetes progression in preclinical models.

    PubMed

    St Clair, Joshua R; Ramirez, David; Passman, Samantha; Benninger, Richard K P

    2018-05-01

    In type 1 diabetes (T1D), immune-cell infiltration into the islets of Langerhans (insulitis) and β-cell decline occurs many years before diabetes clinically presents. Non-invasively detecting insulitis and β-cell decline would allow the diagnosis of eventual diabetes, and provide a means to monitor therapeutic intervention. However, there is a lack of validated clinical approaches for specifically and non-invasively imaging disease progression leading to T1D. Islets have a denser microvasculature that reorganizes during diabetes. Here we apply contrast-enhanced ultrasound measurements of pancreatic blood-flow dynamics to non-invasively and predictively assess disease progression in T1D pre-clinical models. STZ-treated mice, NOD mice, and adoptive-transfer mice demonstrate altered islet blood-flow dynamics prior to diabetes onset, consistent with islet microvasculature reorganization. These assessments predict both time to diabetes onset and future responders to antiCD4-mediated disease prevention. Thus contrast-enhanced ultrasound measurements of pancreas blood-flow dynamics may provide a clinically deployable predictive marker for disease progression in pre-symptomatic T1D and therapeutic reversal.

  19. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface.

    PubMed

    Vincent, J P; Oster, G F; Gerhart, J C

    1986-02-01

    Specification of the amphibian dorso-ventral axis takes place in the period between fertilization and first cleavage when the gray crescent forms. In the course of gray crescent formation, the egg reorganizes its periphery by a movement for which two descriptions have been given. According to the "rotation hypothesis," which was originated and supported for Rana eggs, the entire egg cortex rotates by an arc of 30 degrees relative to the stationary subcortical cytoplasm, leaving the crescent as a zone of altered coloration. The "contraction hypothesis" on the other hand, which was proposed for Xenopus and Rana eggs, asserts that there is a cortical contraction focused at the sperm entry point that leads to stretching of the opposite equatorial zone at which the crescent appears. We have reinvestigated the case of Xenopus eggs by imprinting one kind of fluorescent dye pattern (Nile blue) onto the subcortical cytoplasm and another kind (fluorescein-lectin) onto the egg surface. When the egg surface is held fixed by embedding the egg in gelatin, two major movements of the subcortical cytoplasm are observable. First, starting at time 0.3 (30% of the time between fertilization and first cleavage), the animal hemisphere subcortical cytoplasm converges toward a point, while the vegetal hemisphere is quiescent. This convergence continues with decreasing strength until approximately 0.8 of the first cell cycle. Second, at 0.45, an overall rotation of the animal and vegetal subcortical cytoplasm commences, superimposed on the animal hemisphere convergence. By 0.8-0.9 the rotation is complete, having accomplished a 30 degrees displacement of the subcortical cytoplasm relative to the surface. This rotation reliably locates the future dorsal midline of the embryo at the meridian on which the displacement of the subcortical cytoplasm is greatest in a vegetal direction. In normal unembedded eggs, when the egg surface is free to move, it rotates 30 degrees relative to the subcortical cytoplasm, which remains stationary in a position of gravitational equilibrium. Although both a convergence and rotation occur in the Xenopus egg, we give evidence that the rotation, not the convergence (perhaps equated with contraction), specifies the embryo's prospective axis. Even though the Xenopus egg does not form a classical gray crescent, due to its particular pigment distribution, the reorganization process which specifies the future embryonic axis resembles that of the Rana egg.

  20. 25 CFR 81.3 - Group eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR TRIBAL GOVERNMENT TRIBAL REORGANIZATION UNDER A FEDERAL... the Indian Reorganization Act, or is otherwise precluded by law, may be reorganized under a Federal Statute. Tribes wishing to reorganize or a reorganized tribe seeking to amend its constitution and bylaws...

  1. Androgen Control of Cell Proliferation and Cytoskeletal Reorganization in Human Fibrosarcoma Cells

    PubMed Central

    Chauhan, Sanjay; Kunz, Susan; Davis, Kelli; Roberts, Jordan; Martin, Greg; Demetriou, Manolis C.; Sroka, Thomas C.; Cress, Anne E.; Miesfeld, Roger L.

    2009-01-01

    We recently generated an HT-1080-derived cell line called HT-AR1 that responds to dihydrotestosterone (DHT) treatment by undergoing cell growth arrest in association with cytoskeletal reorganization and induction of neuroendocrine-like cell differentiation. In this report, we show that DHT induces a dose-dependent increase in G0/G1 growth-arrested cells using physiological levels of hormone. The arrested cells increase in cell size and contain a dramatic redistribution of desmoplakin, keratin 5, and chromogranin A proteins. DHT-induced cytoskeletal changes were also apparent from time lapse video microscopy that showed that androgen treatment resulted in the rapid appearance of neuronal-like membrane extensions. Expression profiling analysis using RNA isolated from DHT-treated HT-AR1 cells revealed that androgen receptor activation leads to the coordinate expression of numerous cell signaling genes including RhoB, PTGF-β, caveolin-2, Egr-1, myosin 1B, and EHM2. Because RhoB has been shown to have a role in tumor suppression and neuronal differentiation in other cell types, we investigated RhoB signaling functions in the HT-AR1 steroid response. We found that steroid induction of RhoB was DHT-specific and that newly synthesized RhoB protein was post-translationally modified and localized to endocytic vesicles. Moreover, treatment with a farnesyl transferase inhibitor reduced DHT-dependent growth arrest, suggesting that prenylated RhoB might function to inhibit HT-AR1 cell proliferation. This was directly shown by transfecting HT-AR1 cells with RhoB coding sequences containing activating or dominant negative mutations. PMID:14576147

  2. BREAST CANCER-INDUCED BONE REMODELING, SKELETAL PAIN AND SPROUTING OF SENSORY NERVE FIBERS

    PubMed Central

    Bloom, Aaron P.; Jimenez-Andrade, Juan M.; Taylor, Reid N.; Castañeda-Corral, Gabriela; Kaczmarska, Magdalena J.; Freeman, Katie T.; Coughlin, Kathleen A.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2011-01-01

    Breast cancer metastasis to bone is frequently accompanied by pain. What remains unclear is why this pain tends to become more severe and difficult to control with disease progression. Here we test the hypothesis that with disease progression sensory nerve fibers that innervate the breast cancer bearing bone undergo a pathological sprouting and reorganization, which in other non-malignant pathologies has been shown to generate and maintain chronic pain. Injection of human breast cancer cells (MDA-MB-231-BO) into the femoral intramedullary space of female athymic nude mice induces sprouting of calcitonin gene-related peptide (CGRP+) sensory nerve fibers. Nearly all CGRP+ nerve fibers that undergo sprouting also co-express tropomyosin receptor kinase A (TrkA+) and growth associated protein-43 (GAP43+). This ectopic sprouting occurs in periosteal sensory nerve fibers that are in close proximity to breast cancer cells, tumor-associated stromal cells and remodeled cortical bone. Therapeutic treatment with an antibody that sequesters nerve growth factor (NGF), administered when the pain and bone remodeling were first observed, blocks this ectopic sprouting and attenuates cancer pain. The present data suggest that the breast cancer cells and tumor-associated stromal cells express and release NGF, which drives bone pain and the pathological reorganization of nearby CGRP+ / TrkA+ / GAP43+ sensory nerve fibers. PMID:21497141

  3. Mechanical remodeling of normally sized mammalian cells under a gravity vector.

    PubMed

    Zhang, Chen; Zhou, Lüwen; Zhang, Fan; Lü, Dongyuan; Li, Ning; Zheng, Lu; Xu, Yanhong; Li, Zhan; Sun, Shujin; Long, Mian

    2017-02-01

    Translocation of the dense nucleus along a gravity vector initiates mechanical remodeling of a cell, but the underlying mechanisms of cytoskeletal network and focal adhesion complex (FAC) reorganization in a mammalian cell remain unclear. We quantified the remodeling of an MC3T3-E1 cell placed in upward-, downward-, or edge-on-orientated substrate. Nucleus longitudinal translocation presents a high value in downward orientation at 24 h or in edge-on orientation at 72 h, which is consistent with orientation-dependent distribution of perinuclear actin stress fibers and vimentin cords. Redistribution of total FAC area and fractionized super mature adhesion number coordinates this dependence at short duration. This orientation-dependent remodeling is associated with nucleus flattering and lamin A/C phosphorylation. Actin depolymerization or Rho-associated protein kinase signaling inhibition abolishes the orientation dependence of nucleus translocation, whereas tubulin polymerization inhibition or vimentin disruption reserves the dependence. A biomechanical model is therefore proposed for integrating the mechanosensing of nucleus translocation with cytoskeletal remodeling and FAC reorganization induced by a gravity vector.-Zhang, C., Zhou, L., Zhang, F., Lü, D., Li, N., Zheng, L., Xu, Y., Li, Z., Sun, S., Long, M. Mechanical remodeling of normally sized mammalian cells under a gravity vector. © FASEB.

  4. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakwe, Amos M., E-mail: asakwe@mmc.edu; Koumangoye, Rainelli; Guillory, Bobby

    2011-04-01

    The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell-cell cohesion, cell adhesion/spreading onto collagenmore » type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell-cell and/or cell-ECM contacts and anchorage-independent cell proliferation.« less

  5. Neisseria gonorrhoeae infects the human endocervix by activating non-muscle myosin II-mediated epithelial exfoliation

    PubMed Central

    Yu, Qian; Lin, Brian; Qiu, Jessica; Stein, Daniel C.

    2017-01-01

    Colonization and disruption of the epithelium is a major infection mechanism of mucosal pathogens. The epithelium counteracts infection by exfoliating damaged cells while maintaining the mucosal barrier function. The sexually transmitted bacterium Neisseria gonorrhoeae (GC) infects the female reproductive tract primarily from the endocervix, causing gonorrhea. However, the mechanism by which GC overcome the mucosal barrier remains elusive. Using a new human tissue model, we demonstrate that GC can penetrate into the human endocervix by inducing the exfoliation of columnar epithelial cells. We found that GC colonization causes endocervical epithelial cells to shed. The shedding results from the disassembly of the apical junctions that seal the epithelial barrier. Apical junction disruption and epithelial exfoliation increase GC penetration into the endocervical epithelium without reducing bacterial adherence to and invasion into epithelial cells. Both epithelial exfoliation and junction disruption require the activation and accumulation of non-muscle myosin II (NMII) at the apical surface and GC adherent sites. GC inoculation activates NMII by elevating the levels of the cytoplasmic Ca2+ and NMII regulatory light chain phosphorylation. Piliation of GC promotes, but the expression of a GC opacity-associated protein variant, OpaH that binds to the host surface proteins CEACAMs, inhibits GC-induced NMII activation and reorganization and Ca2+ flux. The inhibitory effects of OpaH lead to reductions in junction disruption, epithelial exfoliation, and GC penetration. Therefore, GC phase variation can modulate infection in the human endocervix by manipulating the activity of NMII and epithelial exfoliation. PMID:28406994

  6. Peripheral mineralization of a 3D biodegradable tubular construct as a way to enhance guidance stabilization in spinal cord injury regeneration.

    PubMed

    Oliveira, A L; Sousa, E C; Silva, N A; Sousa, N; Salgado, A J; Reis, R L

    2012-11-01

    Spinal cord injuries (SCI) present a major challenge to therapeutic development due to its complexity. Combinatorial approaches using biodegradable polymers that can simultaneously provide a tissue scaffold, a cell vehicle, and a reservoir for sustained drug delivery have shown very promising results. In our previous studies we have developed a novel hybrid system consisting of starch/poly-e-caprolactone (SPCL) semi-rigid tubular porous structure, based on a rapid prototyping technology, filled by a gellan gum hydrogel concentric core for the regeneration within spinal-cord injury sites. In the present work we intend to promote enhanced osteointegration on these systems by pre-mineralizing specifically the external surfaces of the SPCL tubular structures, though a biomimetic strategy, using a sodium silicate gel as nucleating agent. The idea is to create two different cell environments to promote axonal regeneration in the interior of the constructs while inducing osteogenic activity on its external surface. By using a Teflon cylinder to isolate the interior of the scaffold, it was possible to observe the formation of a bone-like poorly crystalline carbonated apatite layer continuously formed only in the external side of the tubular structure. This biomimetic layer was able to support the adhesion of Bone Marrow Mesenchymal Stem Cells, which have gone under cytoskeleton reorganization in the first hours of culture when compared to cells cultured on uncoated scaffolds. This strategy can be a useful route for locally stimulate bone tissue regeneration and facilitating early bone ingrowth.

  7. Antiproliferative effects of cinobufacini on human hepatocellular carcinoma HepG2 cells detected by atomic force microscopy

    PubMed Central

    Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying

    2015-01-01

    AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P < 0.05). FCM analysis demonstrated cell cycle arrest at S phase induced by cinobufacini. The immunofluorescence studies of cytoskeletal and nuclear morphology showed that after cinobufacini treatment, the regular reorganization of actin filaments in HepG2 cells become chaotic, while the nuclei were not damaged seriously. Additionally, high-resolution AFM imaging revealed that cell morphology and ultrastructure changed a lot after treatment with cinobufacini. It appeared as significant shrinkage and deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718

  8. The adaptor molecule RIAM integrates signaling events critical for integrin-mediated control of immune function and cancer progression.

    PubMed

    Patsoukis, Nikolaos; Bardhan, Kankana; Weaver, Jessica D; Sari, Duygu; Torres-Gomez, Alvaro; Li, Lequn; Strauss, Laura; Lafuente, Esther M; Boussiotis, Vassiliki A

    2017-08-22

    Lymphocyte activation requires adhesion to antigen-presenting cells. This is a critical event linking innate and adaptive immunity. Lymphocyte adhesion is accomplished through LFA-1, which must be activated by a process referred to as inside-out integrin signaling. Among the few signaling molecules that have been implicated in inside-out integrin activation in hematopoietic cells are the small guanosine triphosphatase (GTPase) Rap1 and its downstream effector Rap1-interacting molecule (RIAM), a multidomain protein that defined the Mig10-RIAM-lamellipodin (MRL) class of adaptor molecules. Through its various domains, RIAM is a critical node of signal integration for activation of T cells, recruits monomeric and polymerized actin to drive actin remodeling and cytoskeletal reorganization, and promotes inside-out integrin signaling in T cells. As a regulator of inside-out integrin activation, RIAM affects multiple functions of innate and adaptive immunity. The effects of RIAM on cytoskeletal reorganization and integrin activation have implications in cell migration and trafficking of cancer cells. We provide an overview of the structure and interactions of RIAM, and we discuss the implications of RIAM functions in innate and adaptive immunity and cancer. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Specific Changes of Exocarp and Mesocarp Occurring during Softening Differently Affect Firmness in Melting (MF) and Non Melting Flesh (NMF) Fruits

    PubMed Central

    Onelli, E.; Ghiani, A.; Gentili, R.; Serra, S.; Musacchi, S.; Citterio, S.

    2015-01-01

    Melting (MF) and non melting flesh (NMF) peaches differ in their final texture and firmness. Their specific characteristics are achieved by softening process and directly dictate fruit shelf life and quality. Softening is influenced by various mechanisms including cell wall reorganization and water loss. In this work, the biomechanical properties of MF Spring Crest’s and NMF Oro A’s exocarp and mesocarp along with the amount and localization of hydroxycinnamic acids and flavonoids were investigated during fruit ripening and post-harvest. The objective was to better understand the role played by water loss and cell wall reorganization in peach softening. Results showed that in ripe Spring Crest, where both cell turgor loss and cell wall dismantling occurred, mesocarp had a little role in the fruit reaction to compression and probe penetration response was almost exclusively ascribed to the epidermis which functioned as a mechanical support to the pulp. In ripe Oro A’s fruit, where cell wall disassembly did not occur and the loss of cell turgor was observed only in mesocarp, the contribution of exocarp to fruit firmness was consistent but relatively lower than that of mesocarp, suggesting that in addition to cell turgor, the integrity of cell wall played a key role in maintaining NMF fruit firmness. The analysis of phenols suggested that permeability and firmness of epidermis were associated with the presence of flavonoids and hydroxycinnamic acids. PMID:26709823

  10. Stepwise morphological changes and cytoskeletal reorganization of human mesenchymal stem cells treated by short-time cyclic uniaxial stretch.

    PubMed

    Parandakh, Azim; Tafazzoli-Shadpour, Mohammad; Khani, Mohammad-Mehdi

    2017-06-01

    This study aimed to investigate stepwise remodeling of human mesenchymal stem cells (hMSCs) in response to cyclic stretch through rearrangement and alignment of cells and cytoskeleton regulation toward smooth muscle cell (SMC) fate in different time spans. Image analysis techniques were utilized to calculate morphological parameters. Cytoskeletal reorganization was observed by investigating F-actin filaments using immunofluorescence staining, and expression level of contractile SMC markers was followed by a quantitative polymerase chain reaction method. Applying cyclic uniaxial stretch on cultured hMSCs, utilizing a costume-made device, led to alteration in fractal dimension (FD) and cytoskeleton structure toward continuous alignment and elongation of cells by elevation of strain duration. Actin filaments became more aligned perpendicular to the axis of mechanical stretch by increasing uniaxial loading duration. At first, FD met a significant decrease in 4 h loading duration then increased significantly by further loading up to 16 h, followed by another decrease up to 1 d of uniaxial stretching. HMSCs subjected to 24 h cyclic uniaxial stretching significantly expressed early and intermediate contractile SM markers. It was hypothesized that the increase in FD after 4 h while cells continuously became more aligned and elongated was due to initiation of change in phenotype that influenced arrangement of cells. At this point, change in cell phenotype started leading to change in morphology while mechanical loading still caused cell alignment and rearrangement. Results can be helpful when optimized engineered cells are needed based on mechanical condition for functional engineered tissue and cell therapy.

  11. Aggregatibacter actinomycetemcomitans lipopolysaccharide affects human gingival fibroblast cytoskeletal organization.

    PubMed

    Gutiérrez-Venegas, Gloria; Contreras-Marmolejo, Luis Arturo; Román-Alvárez, Patricia; Barajas-Torres, Carolina

    2008-04-01

    The cytoskeleton is a dynamic structure that plays a key role in maintaining cell morphology and function. This study investigates the effect of bacterial wall lipopolysaccharide (LPS), a strong inflammatory agent, on the dynamics and organization of actin, tubulin, vimentin, and vinculin proteins in human gingival fibroblasts (HGF). A time-dependent study showed a noticeable change in actin architecture after 1.5 h of incubation with LPS (1 microg/ml) with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 24 h. When 0.01-10 microg/ml of LPS was added to human gingival fibroblast cultures, cells acquired a round, flat shape and gradually developed cytoplasmic ruffling. Lipopolysaccharides extracted from Aggregatibacter actinomycetemcomitans periodontopathogenic bacteria promoted alterations in F-actin stress fibres of human gingival cells. Normally, human gingival cells have F-actin fibres that are organized in linear distribution throughout the cells, extending along the cell's length. LPS-treated cells exhibited changes in cytoskeletal protein organization, and F-actin was reorganized by the formation of bundles underneath and parallel to the cell membrane. We also found the reorganization of the vimentin network into vimentin bundling after 1.5 h of treatment. HGF cells exhibited diffuse and granular gamma-tubulin stain. There was no change in LPS-treated HGF. However, vinculin plaques distributed in the cell body diminished after LPS treatment. We conclude that the dynamic and structured organization of cytoskeletal filaments and actin assembly in human gingival fibroblasts is altered by LPS treatment and is accompanied by a decrease in F-actin pools.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinasemore » (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.« less

  13. Biodegradable Nanotopography Combined with Neurotrophic Signals Enhances Contact Guidance and Neuronal Differentiation of Human Neural Stem Cells.

    PubMed

    Yang, Kisuk; Park, Esther; Lee, Jong Seung; Kim, Il-Sun; Hong, Kwonho; Park, Kook In; Cho, Seung-Woo; Yang, Hee Seok

    2015-10-01

    Biophysical cues provided by nanotopographical surfaces have been used as stimuli to guide neurite extension and regulate neural stem cell (NSC) differentiation. Here, we fabricated biodegradable polymer substrates with nanoscale topography for enhancing human NSC (hNSC) differentiation and guided neurite outgrowth. The substrate was constructed from biodegradable poly(lactic-co-glycolic acid) (PLGA) using solvent-assisted capillary force lithography. We found that precoating with 3,4-dihydroxy-l-phenylalanine (DOPA) facilitated the immobilization of poly-l-lysine and fibronectin on PLGA substrates via bio-inspired catechol chemistry. The DOPA-coated nanopatterned substrates directed cellular alignment along the patterned grooves by contact guidance, leading to enhanced focal adhesion, skeletal protein reorganization, and neuronal differentiation of hNSCs as indicated by highly extended neurites from cell bodies and increased expression of neuronal markers (Tuj1 and MAP2). The addition of nerve growth factor further enhanced neuronal differentiation of hNSCs, indicating a synergistic effect of biophysical and biochemical cues on NSC differentiation. These bio-inspired PLGA nanopatterned substrates could potentially be used as implantable biomaterials for improving the efficacy of hNSCs in treating neurodegenerative diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Local palmitoylation cycles define activity-regulated postsynaptic subdomains

    PubMed Central

    Fukata, Yuko; Dimitrov, Ariane; Boncompain, Gaelle; Vielemeyer, Ole

    2013-01-01

    Distinct PSD-95 clusters are primary landmarks of postsynaptic densities (PSDs), which are specialized membrane regions for synapses. However, the mechanism that defines the locations of PSD-95 clusters and whether or how they are reorganized inside individual dendritic spines remains controversial. Because palmitoylation regulates PSD-95 membrane targeting, we combined a conformation-specific recombinant antibody against palmitoylated PSD-95 with live-cell super-resolution imaging and discovered subsynaptic nanodomains composed of palmitoylated PSD-95 that serve as elementary units of the PSD. PSD-95 in nanodomains underwent continuous de/repalmitoylation cycles driven by local palmitoylating activity, ensuring the maintenance of compartmentalized PSD-95 clusters within individual spines. Plasma membrane targeting of DHHC2 palmitoyltransferase rapidly recruited PSD-95 to the plasma membrane and proved essential for postsynaptic nanodomain formation. Furthermore, changes in synaptic activity rapidly reorganized PSD-95 nano-architecture through plasma membrane–inserted DHHC2. Thus, the first genetically encoded antibody sensitive to palmitoylation reveals an instructive role of local palmitoylation machinery in creating activity-responsive PSD-95 nanodomains, contributing to the PSD (re)organization. PMID:23836932

  15. Nucleolar sub-compartments in motion during rRNA synthesis inhibition: Contraction of nucleolar condensed chromatin and gathering of fibrillar centers are concomitant

    PubMed Central

    Tchelidze, Pavel; Benassarou, Aassif; Kaplan, Hervé; O’Donohue, Marie-Françoise; Lucas, Laurent; Terryn, Christine; Rusishvili, Levan; Mosidze, Giorgi; Lalun, Nathalie

    2017-01-01

    The nucleolus produces the large polycistronic transcript (47S precursor) containing the 18S, 5.8S and 28S rRNA sequences and hosts most of the nuclear steps of pre-rRNA processing. Among numerous components it contains condensed chromatin and active rRNA genes which adopt a more accessible conformation. For this reason, it is a paradigm of chromosome territory organization. Active rRNA genes are clustered within several fibrillar centers (FCs), in which they are maintained in an open configuration by Upstream Binding Factor (UBF) molecules. Here, we used the reproducible reorganization of nucleolar components induced by the inhibition of rRNA synthesis by Actinomycin D (AMD) to address the steps of the spatiotemporal reorganization of FCs and nucleolar condensed chromatin. To reach that goal, we used two complementary approaches: i) time-lapse confocal imaging of cells expressing one or several GFP-tagged proteins (fibrillarin, UBF, histone H2B) and ii) ultrastructural identification of nucleolar components involved in the reorganization. Data obtained by time lapse confocal microscopy were analyzed through detailed 3D imaging. This allowed us to demonstrate that AMD treatment induces no fusion and no change in the relative position of the different nucleoli contained in one nucleus. In contrast, for each nucleolus, we observed step by step gathering and fusion of both FCs and nucleolar condensed chromatin. To analyze the reorganization of FCs and condensed chromatin at a higher resolution, we performed correlative light and electron microscopy electron microscopy (CLEM) imaging of the same cells. We demonstrated that threads of intranucleolar condensed chromatin are localized in a complex 3D network of vacuoles. Upon AMD treatment, these structures coalesce before migrating toward the perinucleolar condensed chromatin, to which they finally fuse. During their migration, FCs, which are all linked to ICC, are pulled by the latter to gather as caps disposed at the periphery of nucleoli. PMID:29190286

  16. The effect of enterohemorrhagic E. coli infection on the cell mechanics of host cells.

    PubMed

    Chen, Yin-Quan; Su, Pin-Tzu; Chen, Yu-Hsuan; Wei, Ming-Tzo; Huang, Chien-Hsiu; Osterday, Kathryn; del Álamo, Juan C; Syu, Wan-Jr; Chiou, Arthur

    2014-01-01

    Enterohaemorrhagic E. coli (EHEC) is a type of human pathogenic bacteria. The main virulence characteristics of EHEC include the formation of attaching and effacing lesions (A/E lesions) and the production of one or more Shiga-like toxins, which may induce human uremic complications. When EHEC infects host cells, it releases translocated intimin receptor (Tir) and effector proteins inside the host cells, inducing the rearrangement and accumulation of the F-actin cytoskeleton, a phenotype leading to the formation of pedestals in the apical cell surface, and the growth of stress fibers at the base of the cells. To examine the effect of EHEC infection on cell mechanics, we carried out a series of experiments to examine HeLa cells with and without EHEC infection to quantify the changes in (1) focal adhesion area, visualized by anti-vinculin staining; (2) the distribution and orientation of stress fibers; and (3) the intracellular viscoelasticity, via directional video particle tracking microrheology. Our results indicated that in EHEC-infected HeLa cells, the focal adhesion area increased and the actin stress fibers became thicker and more aligned. The cytoskeletal reorganization induced by EHEC infection mediated a dramatic increase in the cytoplasmic elastic shear modulus of the infected cells, and a transition in the viscoelastic behavior of the cells from viscous-like to elastic-like. These changes in mechanobiological characteristics might modulate the attachments between EHEC and the host cell to withstand exfoliation, and between the host cell and the extracellular matrix, and might also alter epithelial integrity.

  17. Dopamine Receptor Activation Reorganizes Neuronal Ensembles during Hippocampal Sharp Waves In Vitro

    PubMed Central

    Miyawaki, Takeyuki; Norimoto, Hiroaki; Ishikawa, Tomoe; Watanabe, Yusuke; Matsuki, Norio; Ikegaya, Yuji

    2014-01-01

    Hippocampal sharp wave (SW)/ripple complexes are thought to contribute to memory consolidation. Previous studies suggest that behavioral rewards facilitate SW occurrence in vivo. However, little is known about the precise mechanism underlying this enhancement. Here, we examined the effect of dopaminergic neuromodulation on spontaneously occurring SWs in acute hippocampal slices. Local field potentials were recorded from the CA1 region. A brief (1 min) treatment with dopamine led to a persistent increase in the event frequency and the magnitude of SWs. This effect lasted at least for our recording period of 45 min and did not occur in the presence of a dopamine D1/D5 receptor antagonist. Functional multineuron calcium imaging revealed that dopamine-induced SW augmentation was associated with an enriched repertoire of the firing patterns in SW events, whereas the overall tendency of individual neurons to participate in SWs and the mean number of cells participating in a single SW were maintained. Therefore, dopaminergic activation is likely to reorganize cell assemblies during SWs. PMID:25089705

  18. SCFSlimb ubiquitin ligase suppresses condensin II–mediated nuclear reorganization by degrading Cap-H2

    PubMed Central

    Buster, Daniel W.; Daniel, Scott G.; Nguyen, Huy Q.; Windler, Sarah L.; Skwarek, Lara C.; Peterson, Maureen; Roberts, Meredith; Meserve, Joy H.; Hartl, Tom; Klebba, Joseph E.; Bilder, David; Bosco, Giovanni

    2013-01-01

    Condensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase are unclear. Here, we report that condensin II is inactivated when its subunit Cap-H2 is targeted for degradation by the SCFSlimb ubiquitin ligase complex and that disruption of this process dramatically changed interphase chromatin organization. Inhibition of SCFSlimb function reorganized interphase chromosomes into dense, compact domains and disrupted homologue pairing in both cultured Drosophila cells and in vivo, but these effects were rescued by condensin II inactivation. Furthermore, Cap-H2 stabilization distorted nuclear envelopes and dispersed Cid/CENP-A on interphase chromosomes. Therefore, SCFSlimb-mediated down-regulation of condensin II is required to maintain proper organization and morphology of the interphase nucleus. PMID:23530065

  19. Progressive brain damage, synaptic reorganization and NMDA activation in a model of epileptogenic cortical dysplasia.

    PubMed

    Colciaghi, Francesca; Finardi, Adele; Nobili, Paola; Locatelli, Denise; Spigolon, Giada; Battaglia, Giorgio Stefano

    2014-01-01

    Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.

  20. Permian-Triassic thermal anomaly of the active margin of South America as a result of plate kinematics reorganization

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Jaillard, Etienne; Guillot, Stéphane; Martelat, Jean-Emmanuel; Braun, Jean

    2013-04-01

    From Permian to Triassic times, tectonic plate reorganization provoked Pangaea breakup, counterclockwise rotation of Gondwana, closing of the Paleo-Tethys Ocean and opening of the Neo-Tethys oceanic realm. Meanwhile, the switch from arc volcanism to widespread S-type magmatism along the western South American active margin around 275-265 Ma is symptomatic of the onset of a large-scale Permian-Triassic thermal anomaly (PTTA)affecting the whole margin. Here we report metamorphic and U-Pb geochronological results from the El Oro metamorphic complex in the forearc zone of southwestern Ecuador, which recorded the last step, at 230-225 Ma, of the PTTA. The change in the drift direction of Gondwana from north to east at ca. 270 Ma was related to plate reorganization and provoked the verticalization of the subducted Panthalassa slab. As the slab verticalized, strong heat advection produced a high heat flow beneath the active margin inducing the development of a huge thermal anomaly responsible for the PTTA, which lasted 30 Ma. This voluminous magmatic activity culminated at the Permian-Triassic boundary, and may have contributed to the degradation of life conditions on the Earth surface.

  1. The protease-activated receptor-2 upregulates keratinocyte phagocytosis.

    PubMed

    Sharlow, E R; Paine, C S; Babiarz, L; Eisinger, M; Shapiro, S; Seiberg, M

    2000-09-01

    The protease-activated receptor-2 (PAR-2) belongs to the family of seven transmembrane domain receptors, which are activated by the specific enzymatic cleavage of their extracellular amino termini. Synthetic peptides corresponding to the tethered ligand domain (SLIGRL in mouse, SLIGKV in human) can activate PAR-2 without the need for receptor cleavage. PAR-2 activation is involved in cell growth, differentiation and inflammatory processes, and was shown to affect melanin and melanosome ingestion by human keratinocytes. Data presented here suggest that PAR-2 activation may regulate human keratinocyte phagocytosis. PAR-2 activation by trypsin, SLIGRL or SLIGKV increased the ability of keratinocytes to ingest fluorescently labeled microspheres or E. coli K-12 bioparticles. This PAR-2 mediated increase in keratinocyte phagocytic capability correlated with an increase in actin polymerization and *-actinin reorganization, cell surface morphological changes and increased soluble protease activity. Moreover, addition of serine protease inhibitors downmodulated both the constitutive and the PAR-2 mediated increases in phagocytosis, suggesting that serine proteases mediate this functional activity in keratinocytes. PAR-2 involvement in keratinocyte phagocytosis is a novel function for this receptor.

  2. Rock geochemistry induces stress and starvation responses in the bacterial proteome.

    PubMed

    Bryce, Casey C; Le Bihan, Thierry; Martin, Sarah F; Harrison, Jesse P; Bush, Timothy; Spears, Bryan; Moore, Alanna; Leys, Natalie; Byloos, Bo; Cockell, Charles S

    2016-04-01

    Interactions between microorganisms and rocks play an important role in Earth system processes. However, little is known about the molecular capabilities microorganisms require to live in rocky environments. Using a quantitative label-free proteomics approach, we show that a model bacterium (Cupriavidus metallidurans CH34) can use volcanic rock to satisfy some elemental requirements, resulting in increased rates of cell division in both magnesium- and iron-limited media. However, the rocks also introduced multiple new stresses via chemical changes associated with pH, elemental leaching and surface adsorption of nutrients that were reflected in the proteome. For example, the loss of bioavailable phosphorus was observed and resulted in the upregulation of diverse phosphate limitation proteins, which facilitate increase phosphate uptake and scavenging within the cell. Our results revealed that despite the provision of essential elements, rock chemistry drives complex metabolic reorganization within rock-dwelling organisms, requiring tight regulation of cellular processes at the protein level. This study advances our ability to identify key microbial responses that enable life to persist in rock environments. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. The "5Rs of Reorganization": A Case Report on Service Delivery Reorganization within a Pediatric Rehabilitation Organization.

    PubMed

    Phoenix, Michelle; Rosenbaum, Peter; Watson, Denise; Camden, Chantal

    2016-01-01

    Pediatric rehabilitation centers constantly reorganize services to accommodate changes in funding, client needs, evidence-based practices, accountability requirements, theoretical models, and values. However, there are few service delivery models or descriptions of how organizations plan for change to guide organizations through this complex task. This case report presents the "5Rs of Reorganization," a novel process for planning service delivery reorganization projects in pediatric rehabilitation centers. The 5Rs include: 1. Recognize the need for change, 2. Reallocate resources for project management, 3. Review the reality of clients, service delivery, and the community, 4. Reconstruct reality, and 5. Report results. The implementation and outcomes of the "5Rs of Reorganization" process are described for one pediatric rehabilitation center to illustrate how use of this process led to effective service delivery reorganization planning. The resulting multi-component customized service delivery plan reflects high levels of stakeholder involvement. Principles of project management can be applied to support service delivery reorganization planning within pediatric rehabilitation centers using the "5Rs of Reorganization." Strong communication throughout the planning phase is key to developing and sharing a plan for service delivery reorganization. Communication can be supported through use of the 5R process.

  4. Neuron analysis of visual perception

    NASA Technical Reports Server (NTRS)

    Chow, K. L.

    1980-01-01

    The receptive fields of single cells in the visual system of cat and squirrel monkey were studied investigating the vestibular input affecting the cells, and the cell's responses during visual discrimination learning process. The receptive field characteristics of the rabbit visual system, its normal development, its abnormal development following visual deprivation, and on the structural and functional re-organization of the visual system following neo-natal and prenatal surgery were also studied. The results of each individual part of each investigation are detailed.

  5. Microcirculation and structural reorganization of the bladder mucosa in chronic cystitis under conditions of ozone therapy.

    PubMed

    Neimark, A I; Nepomnyashchikh, L M; Lushnikova, E L; Bakarev, M A; Abdullaev, N A; Sizov, K A

    2014-01-01

    Structural reorganization of the bladder mucosa in chronic cystitis and its correction by ozone therapy were studied. A relationship between the epithelial layer restructuring of different kinds (dystrophy, metaplasia, and degeneration), level of cell proliferation, and ultrastructural organization of urotheliocytes was detected. This complex of structural reactions was combined with dysregulation of tissue bloodflow in the bladder mucosa, shown by laser Doppler flowmetry. Positive structural changes were most marked in intravesical and less so in parenteral ozone therapy added to the therapeutic complex and manifested in reduction of inflammation and alteration in parallel with more intense reparative reactions. A special feature of parenteral ozone therapy was a significant improvement of microcirculation in the bladder mucosa.

  6. Effect of various commercial buffers on sperm viability and capacitation.

    PubMed

    Andrisani, Alessandra; Donà, Gabriella; Ambrosini, Guido; Bonanni, Guglielmo; Bragadin, Marcantonio; Cosmi, Erich; Clari, Giulio; Armanini, Decio; Bordin, Luciana

    2014-08-01

    A wide variety of sperm preparation protocols are currently available for assisted conception. They include density gradient separation and washing methods. Both aim at isolating and capacitating as much motile sperm as possible for subsequent oocyte fertilization. The aim of this study was to examine the effects of four commercial sperm washing buffers on sperm viability and capacitation. Semen samples from 48 healthy donors (normal values of sperm count, motility, morphology, and volume) were analyzed. After separation (density gradient 40/80%), sperm were incubated in various buffers then analysed for reactive oxygen species (ROS) production, viability, tyrosine phosphorylation (Tyr-P), cholera toxin B subunit (CTB) labeling, and the acrosome reaction (AR). The buffers affected ROS generation in various ways resulting either in rapid cell degeneration (when the amount of ROS was too high for cell survival) or the inability of the cells to maintain correct functioning (when ROS were too few). Only when the correct ROS generation curve was maintained, suitable membrane reorganization, evidenced by CTB labeling was achieved, leading to the highest percentages of both Tyr-P- and acrosome-reacted-cells. Distinguishing each particular pathological state of the sperm sample would be helpful to select the preferred buffer treatment since both ROS production and membrane reorganization can be significantly altered by commercial buffers.

  7. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.

    PubMed

    Checa, Sara; Rausch, Manuel K; Petersen, Ansgar; Kuhl, Ellen; Duda, Georg N

    2015-01-01

    Physical cues play a fundamental role in a wide range of biological processes, such as embryogenesis, wound healing, tumour invasion and connective tissue morphogenesis. Although it is well known that during these processes, cells continuously interact with the local extracellular matrix (ECM) through cell traction forces, the role of these mechanical interactions on large scale cellular and matrix organization remains largely unknown. In this study, we use a simple theoretical model to investigate cellular and matrix organization as a result of mechanical feedback signals between cells and the surrounding ECM. The model includes bi-directional coupling through cellular traction forces to deform the ECM and through matrix deformation to trigger cellular migration. In addition, we incorporate the mechanical contribution of matrix fibres and their reorganization by the cells. We show that a group of contractile cells will self-polarize at a large scale, even in homogeneous environments. In addition, our simulations mimic the experimentally observed alignment of cells in the direction of maximum stiffness and the building up of tension as a consequence of cell and fibre reorganization. Moreover, we demonstrate that cellular organization is tightly linked to the mechanical feedback loop between cells and matrix. Cells with a preference for stiff environments have a tendency to form chains, while cells with a tendency for soft environments tend to form clusters. The model presented here illustrates the potential of simple physical cues and their impact on cellular self-organization. It can be used in applications where cell-matrix interactions play a key role, such as in the design of tissue engineering scaffolds and to gain a basic understanding of pattern formation in organogenesis or tissue regeneration.

  8. Clarin-1, encoded by the Usher Syndrome III causative gene, forms a membranous microdomain: possible role of clarin-1 in organizing the actin cytoskeleton.

    PubMed

    Tian, Guilian; Zhou, Yun; Hajkova, Dagmar; Miyagi, Masaru; Dinculescu, Astra; Hauswirth, William W; Palczewski, Krzysztof; Geng, Ruishuang; Alagramam, Kumar N; Isosomppi, Juha; Sankila, Eeva-Marja; Flannery, John G; Imanishi, Yoshikazu

    2009-07-10

    Clarin-1 is the protein product encoded by the gene mutated in Usher syndrome III. Although the molecular function of clarin-1 is unknown, its primary structure predicts four transmembrane domains similar to a large family of membrane proteins that include tetraspanins. Here we investigated the role of clarin-1 by using heterologous expression and in vivo model systems. When expressed in HEK293 cells, clarin-1 localized to the plasma membrane and concentrated in low density compartments distinct from lipid rafts. Clarin-1 reorganized actin filament structures and induced lamellipodia. This actin-reorganizing function was absent in the modified protein encoded by the most prevalent North American Usher syndrome III mutation, the N48K form of clarin-1 deficient in N-linked glycosylation. Proteomics analyses revealed a number of clarin-1-interacting proteins involved in cell-cell adhesion, focal adhesions, cell migration, tight junctions, and regulation of the actin cytoskeleton. Consistent with the hypothesized role of clarin-1 in actin organization, F-actin-enriched stereocilia of auditory hair cells evidenced structural disorganization in Clrn1(-/-) mice. These observations suggest a possible role for clarin-1 in the regulation and homeostasis of actin filaments, and link clarin-1 to the interactive network of Usher syndrome gene products.

  9. The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation.

    PubMed

    Rogel, Micah R; Jaitovich, Ariel; Ridge, Karen M

    2010-02-01

    Lung injury, whether caused by hypoxic or mechanical stresses, elicits a variety of responses at the cellular level. Alveolar epithelial cells respond and adapt to such injurious stimuli by reorganizing the cellular cytoskeleton, mainly accomplished through modification of the intermediate filament (IF) network. The structural and mechanical integrity in epithelial cells is maintained through this adaptive reorganization response. Keratin, the predominant IF expressed in epithelial cells, displays highly dynamic properties in response to injury, sometimes in the form of degradation of the keratin IF network. Post-translational modification, such as phosphorylation, targets keratin proteins for degradation in these circumstances. As with other structural and regulatory proteins, turnover of keratin is regulated by the ubiquitin (Ub)-proteasome pathway. The degradation process begins with activation of Ub by the Ub-activating enzyme (E1), followed by the exchange of Ub to the Ub-conjugating enzyme (E2). E2 shuttles the Ub molecule to the substrate-specific Ub ligase (E3), which then delivers the Ub to the substrate protein, thereby targeting it for degradation. In some cases of injury and IF-related disease, aggresomes form in epithelial cells. The mechanisms that regulate aggresome formation are currently unknown, although proteasome overload may play a role. Therefore, a more complete understanding of keratin degradation--causes, mechanisms, and consequences--will allow for a greater understanding of epithelial cell biology and lung pathology alike.

  10. Spatial Reorganization of the Endoplasmic Reticulum during Mitosis Relies on Mitotic Kinase Cyclin A in the Early Drosophila Embryo

    PubMed Central

    Bergman, Zane J.; Mclaurin, Justin D.; Eritano, Anthony S.; Johnson, Brittany M.; Sims, Amanda Q.; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope. PMID:25689737

  11. Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex.

    PubMed

    Fröhlich, Flavio; Bazhenov, Maxim; Sejnowski, Terrence J

    2008-02-13

    Slow periodic EEG discharges are common in CNS disorders. The pathophysiology of this aberrant rhythmic activity is poorly understood. We used a computational model of a neocortical network with a dynamic homeostatic scaling rule to show that loss of input (partial deafferentation) can trigger network reorganization that results in pathological periodic discharges. The decrease in average firing rate in the network by deafferentation was compensated by homeostatic synaptic scaling of recurrent excitation among pyramidal cells. Synaptic scaling succeeded in recovering the network target firing rate for all degrees of deafferentation (fraction of deafferented cells), but there was a critical degree of deafferentation for pathological network reorganization. For deafferentation degrees below this value, homeostatic upregulation of recurrent excitation had minimal effect on the macroscopic network dynamics. For deafferentation above this threshold, however, a slow periodic oscillation appeared, patterns of activity were less sparse, and bursting occurred in individual neurons. Also, comparison of spike-triggered afferent and recurrent excitatory conductances revealed that information transmission was strongly impaired. These results suggest that homeostatic plasticity can lead to secondary functional impairment in case of cortical disorders associated with cell loss.

  12. Adult-specific insulin-producing neurons in Drosophila melanogaster.

    PubMed

    Ohhara, Yuya; Kobayashi, Satoru; Yamakawa-Kobayashi, Kimiko; Yamanaka, Naoki

    2018-06-01

    Holometabolous insects undergo metamorphosis to reorganize their behavioral and morphological features into adult-specific ones. In the central nervous system (CNS), some larval neurons undergo programmed cell death, whereas others go through remodeling of axonal and dendritic arbors to support functions of re-established adult organs. Although there are multiple neuropeptides that have stage-specific roles in holometabolous insects, the reorganization pattern of the entire neuropeptidergic system through metamorphosis still remains largely unclear. In this study, we conducted a mapping and lineage tracing of peptidergic neurons in the larval and adult CNS by using Drosophila genetic tools. We found that Diuretic hormone 44-producing median neurosecretory cells start expressing Insulin-like peptide 2 in the pharate adult stage. This neuronal cluster projects to the corpora cardiaca and dorsal vessel in both larval and adult stages, and also innervates an adult-specific structure in the digestive tract, the crop. We propose that the adult-specific insulin-producing cells may regulate functions of the digestive system in a stage-specific manner. Our study provides a neuroanatomical basis for understanding remodeling of the neuropeptidergic system during insect development and evolution. © 2018 Wiley Periodicals, Inc.

  13. Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ren; Nelson, Celeste M.; Muschler, John L.

    2009-06-03

    Epithelial cells, once dissociated and placed in two-dimensional (2D) cultures, rapidly lose tissue-specific functions. We showed previously that in addition to prolactin, signaling by laminin-111 was necessary to restore functional differentiation of mammary epithelia. Here, we elucidate two additional aspects of laminin-111 action. We show that in 2D cultures, the prolactin receptor is basolaterally localized and physically segregated from its apically placed ligand. Detachment of the cells exposes the receptor to ligation by prolactin leading to signal transducers and activators of transcription protein 5 (STAT5) activation, but only transiently and not sufficiently for induction of milk protein expression. We showmore » that laminin-111 reorganizes mammary cells into polarized acini, allowing both the exposure of the prolactin receptor and sustained activation of STAT5. The use of constitutively active STAT5 constructs showed that the latter is necessary and sufficient for chromatin reorganization and {beta}-casein transcription. These results underscore the crucial role of continuous laminin signaling and polarized tissue architecture in maintenance of transcription factor activation, chromatin organization, and tissue-specific gene expression.« less

  14. Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-κB signaling

    PubMed Central

    Jackson, Shawn S.; Oberley, Christopher; Hooper, Christopher P.; Grindle, Kreg; Wuerzberger-Davis, Shelly; Wolff, Jared; McCool, Kevin; Rui, Lixin; Miyamoto, Shigeki

    2014-01-01

    The NF-κB family of transcription factors regulates numerous cellular processes, including cell proliferation and survival responses. The constitutive activation of NF-κB has also emerged as an important oncogenic driver in many malignancies, such as activated B-cell like diffuse large B cell lymphoma, among others. In this study, we investigated the impact and mechanisms of action of Withaferin A, a naturally produced steroidal lactone, against both signal-inducible as well as constitutive NF-κB activities. We found that Withaferin A is a robust inhibitor of canonical and constitutive NF-κB activities, leading to apoptosis of certain lymphoma lines. In the canonical pathway induced by TNF, Withaferin A did not disrupt RIP1 polyubiquitination or NEMO-IKKβ interaction and was a poor direct IKKβ inhibitor, but prevented the formation of TNF induced NEMO foci which colocalized with TNF ligand. While GFP-NEMO efficiently formed TNF-induced foci, a GFP-NEMOY308S mutant that is defective in binding to polyubiquitin chains did not form foci. Our study reveals that Withaferin A is a novel type of IKK inhibitor which acts by disrupting NEMO reorganization into ubiquitin-based signaling structures in vivo. PMID:25304104

  15. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    PubMed

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Surface Enhanced Raman Scattering Monitoring of Chain Alignment in Freely Suspended Nanomembranes

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoyang; Lio, Wilber Y.; Tsukruk, Vladimir V.

    2005-09-01

    The molecular chain reorganization in freely standing membranes with encapsulated gold nanoparticles was studied with surface enhanced Raman scattering (SERS) in the course of their elastic deformations. The efficient SERS was enabled by optimizing the design of gold nanoparticle forming chainlike aggregates, thus creating an exceptional ability to conduct in situ monitoring. Small deformations resulted in the radial orientation of side phenyl rings of polymer backbones while larger deflections led to the polymer chains bridging adjacent nanoparticles within one-dimensional aggregates.

  17. Self-organization of multifunctional surfaces--the fingerprints of light on a complex system.

    PubMed

    Reinhardt, Hendrik; Kim, Hee-Cheol; Pietzonka, Clemens; Kruempelmann, Julia; Harbrecht, Bernd; Roling, Bernhard; Hampp, Norbert

    2013-06-25

    Nanocomposite patterns and nanotemplates are generated by a single-step bottom-up concept that introduces laser-induced periodic surface structures (LIPSS) as a tool for site-specific reaction control in multicomponent systems. Periodic intensity fluctuations of this photothermal stimulus inflict spatial-selective reorganizations, dewetting scenarios and phase segregations, thus creating regular patterns of anisotropic physicochemical properties that feature attractive optical, electrical, magnetic, and catalytic properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Episodic tectonic plate reorganizations driven by mantle convection

    NASA Astrophysics Data System (ADS)

    King, Scott D.; Lowman, Julian P.; Gable, Carl W.

    2002-10-01

    Periods of relatively uniform plate motion were interrupted several times throughout the Cenozoic and Mesozoic by rapid plate reorganization events [R. Hey, Geol. Soc. Am. Bull. 88 (1977) 1404-1420; P.A. Rona, E.S. Richardson, Earth Planet. Sci. Lett. 40 (1978) 1-11; D.C. Engebretson, A. Cox, R.G. Gordon, Geol. Soc. Am. Spec. Pap. 206 (1985); R.G. Gordon, D.M. Jurdy, J. Geophys. Res. 91 (1986) 12389-12406; D.A. Clague, G.B. Dalrymple, US Geol. Surv. Prof. Pap. 1350 (1987) 5-54; J.M. Stock, P. Molnar, Nature 325 (1987) 495-499; C. Lithgow-Bertelloni, M.A. Richards, Geophys. Res. Lett. 22 (1995) 1317-1320; M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. It has been proposed that changes in plate boundary forces are responsible for these events [M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. We present an alternative hypothesis: convection-driven plate motions are intrinsically unstable due to a buoyant instability that develops as a result of the influence of plates on an internally heated mantle. This instability, which has not been described before, is responsible for episodic reorganizations of plate motion. Numerical mantle convection experiments demonstrate that high-Rayleigh number convection with internal heating and surface plates is sufficient to induce plate reorganization events, changes in plate boundary forces, or plate geometry, are not required.

  19. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    PubMed Central

    Terriza, Antonia; Vilches-Pérez, Jose I.; de la Orden, Emilio; Yubero, Francisco; Gonzalez-Caballero, Juan L.; González-Elipe, Agustin R.; Vilches, José; Salido, Mercedes

    2014-01-01

    The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide) (PLGA) membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD), onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR). HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes. PMID:24883304

  20. RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice

    PubMed Central

    Khaibullina, Alfia; Adjei, Elena A.; Afangbedji, Nowah; Ivanov, Andrey; Kumari, Namita; Almeida, Luis E.F.; Quezado, Zenaide M.N.; Nekhai, Sergei; Jerebtsova, Marina

    2018-01-01

    Sickle cell disease patients are at increased risk of developing a chronic kidney disease. Endothelial dysfunction and inflammation associated with hemolysis lead to vasculopathy and contribute to the development of renal disease. Here we used a Townes sickle cell disease mouse model to examine renal endothelial injury. Renal disease in Townes mice was associated with glomerular hypertrophy, capillary dilation and congestion, and significant endothelial injury. We also detected substantial renal macrophage infiltration, and accumulation of macrophage stimulating protein 1 in glomerular capillary. Treatment of human cultured macrophages with hemin or red blood cell lysates significantly increased expression of macrophage membrane-associated protease that might cleave and activate circulating macrophage stimulating protein 1 precursor. Macrophage stimulating protein 1 binds to and activates RON kinase, a cell surface receptor tyrosine kinase. In cultured human renal glomerular endothelial cells, macrophage stimulating protein 1 induced RON downstream signaling, resulting in increased phosphorylation of ERK and AKT kinases, expression of Von Willebrand factor, increased cell motility, and re-organization of F-actin. Specificity of macrophage stimulating protein 1 function was confirmed by treatment with RON kinase inhibitor BMS-777607 that significantly reduced downstream signaling. Moreover, treatment of sickle cell mice with BMS-777607 significantly reduced glomerular hypertrophy, capillary dilation and congestion, and endothelial injury. Taken together, our findings demonstrated that RON kinase is involved in the induction of renal endothelial injury in sickle cell mice. Inhibition of RON kinase activation may provide a novel approach for prevention of the development of renal disease in sickle cell disease. PMID:29519868

  1. Surfactant Protein–C Chromatin-Bound Green Fluorescence Protein Reporter Mice Reveal Heterogeneity of Surfactant Protein C–Expressing Lung Cells

    PubMed Central

    Lee, Joo-Hyeon; Kim, Jonghwan; Gludish, David; Roach, Rebecca R.; Saunders, Arven H.; Barrios, Juliana; Woo, Andrew Jonghan; Chen, Huaiyong; Conner, David A.; Fujiwara, Yuko; Stripp, Barry R.

    2013-01-01

    The regeneration of alveolar epithelial cells is a critical aspect of alveolar reorganization after lung injury. Although alveolar Type II (AT2) cells have been described as progenitor cells for alveolar epithelia, more remains to be understood about how their progenitor cell properties are regulated. A nuclear, chromatin-bound green fluorescence protein reporter (H2B-GFP) was driven from the murine surfactant protein–C (SPC) promoter to generate SPC H2B-GFP transgenic mice. The SPC H2B-GFP allele allowed the FACS-based enrichment and gene expression profiling of AT2 cells. Approximately 97% of AT2 cells were GFP-labeled on Postnatal Day 1, and the percentage of GFP-labeled AT2 cells decreased to approximately 63% at Postnatal Week 8. Isolated young adult SPC H2B-GFP+ cells displayed proliferation, differentiation, and self-renewal capacity in the presence of lung fibroblasts in a Matrigel-based three-dimensional culture system. Heterogeneity within the GFP+ population was revealed, because cells with distinct alveolar and bronchiolar gene expression arose in three-dimensional cultures. CD74, a surface marker highly enriched on GFP+ cells, was identified as a positive selection marker, providing 3-fold enrichment for AT2 cells. In vivo, GFP expression was induced within other epithelial cell types during maturation of the distal lung. The utility of the SPC H2B-GFP murine model for the identification of AT2 cells was greatest in early postnatal lungs and more limited with age, when some discordance between SPC and GFP expression was observed. In adult mice, this allele may allow for the enrichment and future characterization of other SPC-expressing alveolar and bronchiolar cells, including putative stem/progenitor cell populations. PMID:23204392

  2. Metastatic Growth from Dormant Cells Induced by a Col-I Enriched Fibrotic Environment

    PubMed Central

    Barkan, Dalit; El Touny, Lara H.; Michalowski, Aleksandra M.; Smith, Jane Ann; Chu, Isabel; Davis, Anne Sally; Webster, Joshua D.; Hoover, Shelley; Simpson, R. Mark; Gauldie, Jack; Green, Jeffrey E.

    2010-01-01

    Breast cancer that recurs as metastatic disease many years after primary tumor resection and adjuvant therapy appears to arise from tumor cells that disseminated early in the course of disease but did not develop into clinically apparent lesions. These long-term surviving, disseminated tumor cells maintain a state of dormancy, but may be triggered to proliferate through largely unknown factors. We now demonstrate that the induction of fibrosis, associated with deposition of type I collagen (Col-I) in the in vivo metastatic microenvironment, induces dormant D2.0R cells to form proliferative metastatic lesions through β1-integrin signaling. In vitro studies using a 3D culture system modeling dormancy demonstrated that Col-I induces quiescent D2.0R cells to proliferate through β1-integrin activation of SRC and FAK, leading to ERK-dependent myosin light chain (MLC) phosphorylation by myosin light chain kinase (MLCK) and actin stress fiber formation. Blocking β1-integrin, Src, ERK or MLCK by shRNA or pharmacologic approaches inhibited Col-I-induced activation of this signaling cascade, cytoskeletal reorganization and proliferation. These findings demonstrate that fibrosis with type I collagen enrichment at the metastatic site may be a critical determinant of cytoskeletal reorganization in dormant tumor cells leading to their transition from dormancy to metastatic growth. Thus, inhibiting Col-I production, its interaction with β1-integrin and downstream signaling of β1-integrin may be important strategies for preventing or treating recurrent metastatic disease. PMID:20570886

  3. Engineering fibrin-based tissue constructs from myofibroblasts and application of constraints and strain to induce cell and collagen reorganization.

    PubMed

    de Jonge, Nicky; Baaijens, Frank P T; Bouten, Carlijn V C

    2013-10-28

    Collagen content and organization in developing collagenous tissues can be influenced by local tissue strains and tissue constraint. Tissue engineers aim to use these principles to create tissues with predefined collagen architectures. A full understanding of the exact underlying processes of collagen remodeling to control the final tissue architecture, however, is lacking. In particular, little is known about the (re)orientation of collagen fibers in response to changes in tissue mechanical loading conditions. We developed an in vitro model system, consisting of biaxially-constrained myofibroblast-seeded fibrin constructs, to further elucidate collagen (re)orientation in response to i) reverting biaxial to uniaxial static loading conditions and ii) cyclic uniaxial loading of the biaxially-constrained constructs before and after a change in loading direction, with use of the Flexcell FX4000T loading device. Time-lapse confocal imaging is used to visualize collagen (re)orientation in a nondestructive manner. Cell and collagen organization in the constructs can be visualized in real-time, and an internal reference system allows us to relocate cells and collagen structures for time-lapse analysis. Various aspects of the model system can be adjusted, like cell source or use of healthy and diseased cells. Additives can be used to further elucidate mechanisms underlying collagen remodeling, by for example adding MMPs or blocking integrins. Shape and size of the construct can be easily adapted to specific needs, resulting in a highly tunable model system to study cell and collagen (re)organization.

  4. Role of cortactin in dynamic actin remodeling events in gonadotrope cells.

    PubMed

    Navratil, Amy M; Dozier, Melissa G; Whitesell, Jennifer D; Clay, Colin M; Roberson, Mark S

    2014-02-01

    GnRH induces marked activation of the actin cytoskeleton in gonadotropes; however, the physiological consequences and cellular mechanisms responsible have yet to be fully elucidated. The current studies focus on the actin scaffolding protein cortactin. Using the gonadotrope-derived αT3-1 cell line, we found that cortactin is phosphorylated at Y(421), S(405), and S(418) in a time-dependent manner in response to the GnRH agonist buserelin (GnRHa). GnRHa induced translocation of cortactin to the leading edge of the plasma membrane where it colocalizes with actin and actin-related protein 3 (Arp3). Incubation of αT3-1 cells with the c-src inhibitor phosphoprotein phosphatase 1, blocked tyrosine phosphorylation of cortactin, reduced cortactin association with Arp3, and blunted actin reorganization in response to GnRHa. Additionally, we used RNA silencing strategies to knock down cortactin in αT3-1 cells. Knockdown of cortactin blocked the ability of αT3-1 cells to generate filopodia, lamellipodia, and membrane ruffles in response to GnRHa. We show that lamellipodia and filopodia are capable of LHβ mobilization in primary pituitary culture after GnRHa treatment, and disruption of these structures using jasplakinolide reduces LH secretion. Collectively, our findings suggest that after GnRHa activation, src activity leads to tyrosine phosphorylation of cortactin, which facilitates its association with Arp3 to engage the actin cytoskeleton. The reorganization of actin by cortactin potentially underlies GnRHa-induced secretory events within αT3-1 cells.

  5. Structural basis for the stabilization of the complement alternative pathway C3 convertase by properdin

    PubMed Central

    Alcorlo, Martín; Tortajada, Agustín; Rodríguez de Córdoba, Santiago; Llorca, Oscar

    2013-01-01

    Complement is an essential component of innate immunity. Its activation results in the assembly of unstable protease complexes, denominated C3/C5 convertases, leading to inflammation and lysis. Regulatory proteins inactivate C3/C5 convertases on host surfaces to avoid collateral tissue damage. On pathogen surfaces, properdin stabilizes C3/C5 convertases to efficiently fight infection. How properdin performs this function is, however, unclear. Using electron microscopy we show that the N- and C-terminal ends of adjacent monomers in properdin oligomers conform a curly vertex that holds together the AP convertase, interacting with both the C345C and vWA domains of C3b and Bb, respectively. Properdin also promotes a large displacement of the TED (thioester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains of C3b, which likely impairs C3-convertase inactivation by regulatory proteins. The combined effect of molecular cross-linking and structural reorganization increases stability of the C3 convertase and facilitates recruitment of fluid-phase C3 convertase to the cell surfaces. Our model explains how properdin mediates the assembly of stabilized C3/C5-convertase clusters, which helps to localize complement amplification to pathogen surfaces. PMID:23901101

  6. 12 CFR 575.4 - Grounds for disapproval of reorganizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... resources. Failure by a reorganizing association and any acquiree association to submit a business plan in connection with a Reorganization Notice, or submission of a business plan that projects activities that are... materially, from the business plan submitted in connection with the Reorganization Notice, unless prior...

  7. 26 CFR 54.4980B-9 - Business reorganizations and employer withdrawals from multiemployer plans.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-9 Business reorganizations and employer withdrawals from multiemployer plans. The following... multiemployer plans: Q-1: For purposes of this section, what are a business reorganization, a stock sale, and an... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Business reorganizations and employer...

  8. Formation of contractile networks and fibers in the medial cell cortex through myosin-II turnover, contraction, and stress-stabilization

    PubMed Central

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel H.; Jedlicka, Sabrina S.; Vavylonis, Dimitrios

    2015-01-01

    The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. PMID:25641802

  9. Metallic nanoparticles reduce the migration of human fibroblasts in vitro.

    PubMed

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; Dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma Dos Santos

    2017-12-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α 2 β 1 integrin (VLA-2) and the laminin receptor very late antigen 6, α 6 β 1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  10. Metallic nanoparticles reduce the migration of human fibroblasts in vitro

    NASA Astrophysics Data System (ADS)

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma dos Santos

    2017-03-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α2β1 integrin (VLA-2) and the laminin receptor very late antigen 6, α6β1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  11. Chemotactic cell trapping in controlled alternating gradient fields

    PubMed Central

    Meier, Börn; Zielinski, Alejandro; Weber, Christoph; Arcizet, Delphine; Youssef, Simon; Franosch, Thomas; Rädler, Joachim O.; Heinrich, Doris

    2011-01-01

    Directed cell migration toward spatio-temporally varying chemotactic stimuli requires rapid cytoskeletal reorganization. Numerous studies provide evidence that actin reorganization is controlled by intracellular redistribution of signaling molecules, such as the PI4,5P2/PI3,4,5P3 gradient. However, exploring underlying mechanisms is difficult and requires careful spatio-temporal control of external chemotactic stimuli. We designed a microfluidic setup to generate alternating chemotactic gradient fields for simultaneous multicell exposure, greatly facilitating statistical analysis. For a quantitative description of intracellular response dynamics, we apply alternating time sequences of spatially homogeneous concentration gradients across 300 μm, reorienting on timescales down to a few seconds. Dictyostelium discoideum amoebae respond to gradient switching rates below 0.02 Hz by readapting their migration direction. For faster switching, cellular repolarization ceases and is completely stalled at 0.1 Hz. In this “chemotactically trapped” cell state, external stimuli alternate faster than intracellular feedback is capable to respond by onset of directed migration. To investigate intracellular actin cortex rearrangement during gradient switching, we correlate migratory cell response with actin repolymerization dynamics, quantified by a fluorescence distribution moment of the GFP fusion protein LimEΔcc. We find two fundamentally different cell polarization types and we could reveal the role of PI3-Kinase for cellular repolarization. In the early aggregation phase, PI3-Kinase enhances the capability of D. discoideum cells to readjust their polarity in response to spatially alternating gradient fields, whereas in aggregation competent cells the effect of PI3-Kinase perturbation becomes less relevant. PMID:21709255

  12. Inhibition of proteolysis by cell swelling in the liver requires intact microtubular structures.

    PubMed Central

    vom Dahl, S; Stoll, B; Gerok, W; Häussinger, D

    1995-01-01

    In the perfused rat liver, proteolysis is inhibited by cell swelling in response to hypo-osmotic media, glutamine and insulin. Colchicine, an inhibitor of microtubules, did not affect cell swelling in response to these agonists. However, the antiproteolytic action of these effectors was largely blunted in the presence of colchicine or the microtubule inhibitors colcemid and taxol. On the other hand, inhibition of proteolysis by phenylalanine, asparagine or NH4Cl, i.e. compounds which exert their antiproteolytic effects by mechanisms distinct from cell swelling, was not sensitive to colchicine. Swelling-induced inhibition of proteolysis was not affected by cytochalasin B. The anti-proteolytic effect of hypo-osmotic cell swelling and insulin was largely abolished in freshly isolated rat hepatocytes; however, it reappeared upon cultivation of the hepatocytes for 6-10 h. The restoration of the sensitivity of proteolysis to cell volume changes was accompanied by a progressive reorganization of microtubule structures, as shown by immunohistochemical staining for tubulin. It is concluded that intact microtubules are required for the control of proteolysis by cell volume, but not for the control of proteolysis by phenylalanine, asparagine or NH4Cl. These findings may explain why others [Meijer, Gustafson, Luiken, Blommaart, Caro, Van Woerkom, Spronk and Boon (1993) Eur. J. Biochem. 215, 449-454] failed to detect an antiproteolytic effect of hypo-osmotic exposure of freshly isolated hepatocytes. This effect, however, which is consistently found in the intact perfused rat liver, also reappeared in isolated hepatocytes when they were allowed to reorganize their microtubular structures in culture. Images Figure 6 PMID:7772037

  13. A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading.

    PubMed

    Yamazaki, Daisuke; Fujiwara, Takashi; Suetsugu, Shiro; Takenawa, Tadaomi

    2005-05-01

    When a cell spreads and moves, reorganization of the actin cytoskeleton pushes the cell membrane, and the resulting membrane protrusions create new points of contact with the substrate and generate the locomotive force. Membrane extension and adhesion to a substrate must be tightly coordinated for effective cell movement, but little is known about the mechanisms underlying these processes. WAVEs are critical regulators of Rac-induced actin reorganization. WAVE2 is essential for formation of lamellipodial structures at the cell periphery stimulated by growth factors, but it is thought that WAVE1 is dispensable for such processes in mouse embryonic fibroblasts (MEFs). Here we show a novel function of WAVE in lamellipodial protrusions during cell spreading. During spreading on fibronectin (FN), MEFs with knockouts (KOs) of WAVE1 and WAVE2 showed different membrane dynamics, suggesting that these molecules have distinct roles in lamellipodium formation. Formation of lamellipodial structures on FN was inhibited in WAVE2 KO MEFs. In contrast, WAVE1 is not essential for extension of lamellipodial protrusions but is required for stabilization of such structures. WAVE1-deficiency decreased the density of actin filaments and increased the speed of membrane extension, causing deformation of focal complex at the tip of spreading edges. Thus, at the tip of the lamellipodial protrusion, WAVE2 generates the membrane protrusive structures containing actin filaments, and modification by WAVE1 stabilizes these structures through cell-substrate adhesion. Coordination of WAVE1 and WAVE2 activities appears to be necessary for formation of proper actin structures in stable lamellipodia.

  14. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions.

    PubMed

    Li, Suping; Shi, Quanwei; Liu, Guanglei; Zhang, Weilin; Wang, Zhicheng; Wang, Yuedan; Dai, Kesheng

    2010-05-01

    Serious thrombotic and hemorrhagic problems or even fatalities evoked by either microgravity or hypergravity occur commonly in the world. We recently reported that platelet functions are inhibited in microgravity environments and activated under high-G conditions, which reveals the pathogenesis for gravity change-related hemorrhagic and thrombotic diseases. However, the mechanisms of platelet functional variations under different gravity conditions remain unclear. In this study we show that the amount of filamin A coimmunoprecipitated with GPIbalpha was enhanced in platelets exposed to modeled microgravity and, in contrast, was reduced in 8 G-exposed platelets. Hypergravity induced actin filament formation and redistribution, whereas actin filaments were reduced in platelets treated with modeled microgravity. Furthermore, intracellular Ca2+ levels were elevated by hypergravity. Pretreatment of platelets with the cell-permeable Ca2+ chelator BAPTA-AM had no effect on cytoskeleton reorganization induced by hypergravity but significantly reduced platelet aggregation induced by ristocetin/hypergravity. Two anti-platelet agents, aspirin and tirofiban, effectively reversed the shortened tail bleeding time and reduced the death rate of mice exposed to hypergravity. Furthermore, the increased P-selectin surface expression was obviously reduced in platelets from mice treated with aspirin/hypergravity compared with those from mice treated with hypergravity alone. These data suggest that the actin cytoskeleton reorganization and intracellular Ca2+ level play key roles in the regulation of platelet functions in different gravitational environments. The results with anti-platelet agents not only further confirm the activation of platelets in vivo but also suggest a therapeutic potential for hypergravity-induced thrombotic diseases.

  15. Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus.

    PubMed

    Milbradt, Jens; Webel, Rike; Auerochs, Sabrina; Sticht, Heinrich; Marschall, Manfred

    2010-04-30

    The nucleocytoplasmic egress of viral capsids is a rate-limiting step in the replication of the human cytomegalovirus (HCMV). As reported recently, an HCMV-specific nuclear egress complex is composed of viral and cellular proteins, in particular protein kinases with the capacity to induce destabilization of the nuclear lamina. Viral protein kinase pUL97 and cellular protein kinase C (PKC) play important roles by phosphorylating several types of nuclear lamins. Using pUL97 mutants, we show that the lamin-phosphorylating activity of pUL97 is associated with a reorganization of nuclear lamin A/C. Either pUL97 or PKC has the potential to induce distinct punctate lamina-depleted areas at the periphery of the nuclear envelope, which were detectable in transiently transfected and HCMV-infected cells. Using recombinant HCMV, which produces green fluorescent protein-labeled viral capsids, the direct transition of viral capsids through these areas could be visualized. This process was sensitive to an inhibitor of pUL97/PKC activity. The pUL97-mediated phosphorylation of lamin A/C at Ser(22) generated a novel binding motif for the peptidyl-prolyl cis/trans-isomerase Pin1. In HCMV-infected fibroblasts, the physiological localization of Pin1 was altered, leading to recruitment of Pin1 to viral replication centers and to the nuclear lamina. The local increase in Pin1 peptidyl-prolyl cis/trans-isomerase activity may promote conformational modulation of lamins. Thus, we postulate a novel phosphorylation-triggered mechanism for the reorganization of the nuclear lamina in HCMV-infected cells.

  16. Novel Mode of Phosphorylation-triggered Reorganization of the Nuclear Lamina during Nuclear Egress of Human Cytomegalovirus*

    PubMed Central

    Milbradt, Jens; Webel, Rike; Auerochs, Sabrina; Sticht, Heinrich; Marschall, Manfred

    2010-01-01

    The nucleocytoplasmic egress of viral capsids is a rate-limiting step in the replication of the human cytomegalovirus (HCMV). As reported recently, an HCMV-specific nuclear egress complex is composed of viral and cellular proteins, in particular protein kinases with the capacity to induce destabilization of the nuclear lamina. Viral protein kinase pUL97 and cellular protein kinase C (PKC) play important roles by phosphorylating several types of nuclear lamins. Using pUL97 mutants, we show that the lamin-phosphorylating activity of pUL97 is associated with a reorganization of nuclear lamin A/C. Either pUL97 or PKC has the potential to induce distinct punctate lamina-depleted areas at the periphery of the nuclear envelope, which were detectable in transiently transfected and HCMV-infected cells. Using recombinant HCMV, which produces green fluorescent protein-labeled viral capsids, the direct transition of viral capsids through these areas could be visualized. This process was sensitive to an inhibitor of pUL97/PKC activity. The pUL97-mediated phosphorylation of lamin A/C at Ser22 generated a novel binding motif for the peptidyl-prolyl cis/trans-isomerase Pin1. In HCMV-infected fibroblasts, the physiological localization of Pin1 was altered, leading to recruitment of Pin1 to viral replication centers and to the nuclear lamina. The local increase in Pin1 peptidyl-prolyl cis/trans-isomerase activity may promote conformational modulation of lamins. Thus, we postulate a novel phosphorylation-triggered mechanism for the reorganization of the nuclear lamina in HCMV-infected cells. PMID:20202933

  17. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  18. 29 CFR Appendix A to Part 24 - Your Rights Under the Energy Reorganization Act

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 1 2014-07-01 2013-07-01 true Your Rights Under the Energy Reorganization Act A Appendix A... ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Pt. 24, App. A Appendix A to Part 24—Your Rights Under the Energy Reorganization Act ER18JA11.003 ...

  19. 29 CFR Appendix A to Part 24 - Your Rights Under the Energy Reorganization Act

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false Your Rights Under the Energy Reorganization Act A Appendix... ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Pt. 24, App. A Appendix A to Part 24—Your Rights Under the Energy Reorganization Act ER18JA11.003 ...

  20. Integrating transcriptomics and proteomics to show that tanshinone IIA suppresses cell growth by blocking glucose metabolism in gastric cancer cells.

    PubMed

    Lin, Li-Ling; Hsia, Chieh-Ren; Hsu, Chia-Lang; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-02-05

    Tanshinone IIA (TIIA) is a diterpene quinone extracted from the plant Danshen (Salvia miltiorrhiza) used in traditional Chinese herbal medicine. It has been reported to have anti-tumor potential against several kinds of cancer, including gastric cancer. In most solid tumors, a metabolic switch to glucose is a hallmark of cancer cells, which do this to provide nutrients for cell proliferation. However, the mechanism associated with glucose metabolism by which TIIA acts on gastric cancer cells remains to be elucidated. We found that TIIA treatment is able to significantly inhibit cell growth and the proliferation of gastric cancer in a dose-dependent manner. Using next-generation sequencing-based RNA-seq transcriptomics and quantitative proteomics-isobaric tags for relative and absolute quantification (iTRAQ), we characterized the mechanism of TIIA regulation in gastric cancer cell line AGS. In total, 16,603 unique transcripts and 102 proteins were identified. After enrichment analysis, we found that TIIA regulated genes are involved in carbohydrate metabolism, the cell cycle, apoptosis, DNA damage and cytoskeleton reorganization. Our proteomics data revealed the downregulation of intracellular ATP levels, glucose-6-phosphate isomerase and L-lactate dehydrogenase B chains by TIIA, which might work with disorders of glucose metabolism and extracellular lactate levels to suppress cell proliferation. The up-regulation of p53 and down-regulation of AKT was shown in TIIA- treated cells, which indicates the transformation of oncogenes. Severe DNA damage, cell cycle arrest at the G2/M transition and apoptosis with cytoskeleton reorganization were detected in TIIA-treated gastric cancer cells. Combining transcriptomics and proteomics results, we propose that TIIA treatment could lead cell stresses, including nutrient deficiency and DNA damage, by inhibiting the glucose metabolism of cancer cells. This study provides an insight into how the TIIA regulatory metabolism in gastric cancer cells suppresses cell growth, and may help improve the development of cancer therapy.

  1. Long term fault system reorganization of convergent and strike-slip systems

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.; McBeck, J.; Hatem, A. E.; Toeneboehn, K.; Beyer, J. L.

    2017-12-01

    Laboratory and numerical experiments representing deformation over many earthquake cycles demonstrate that fault evolution includes episodes of fault reorganization that optimize work on the fault system. Consequently, the mechanical and kinematic efficiencies of fault systems do not increase monotonically through their evolution. New fault configurations can optimize the external work required to accommodate deformation, suggesting that changes in system efficiency can drive fault reorganization. Laboratory evidence and numerical results show that fault reorganization within accretion, strike-slip and oblique convergent systems is associated with increasing efficiency due to increased fault slip (frictional work and seismic energy) and commensurate decreased off-fault deformation (internal work and work against gravity). Between episodes of fault reorganization, fault systems may become less efficient as they produce increasing off fault deformation. For example, laboratory and numerical experiments show that the interference and interaction between different fault segments may increase local internal work or that increasing convergence can increase work against gravity produced by a fault system. This accumulation of work triggers fault reorganization as stored work provides the energy required to grow new faults that reorganize the system to a more efficient configuration. The results of laboratory and numerical experiments reveal that we should expect crustal fault systems to reorganize following periods of increasing inefficiency, even in the absence of changes to the tectonic regime. In other words, fault reorganization doesn't require a change in tectonic loading. The time frame of fault reorganization depends on fault system configuration, strain rate and processes that relax stresses within the crust. For example, stress relaxation may keep pace with stress accumulation, which would limit the increase in the internal work and gravitational work so that irregularities can persist along active fault systems without reorganization of the fault system. Consequently, steady state behavior, for example with constant fault slip rates, may arise either in systems with high degree of stress-relaxation or occur only within the intervals between episodes of fault reorganization.

  2. Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Blancaflor, Elison B.; Hou, Guichuan; Chapman, Kent D.

    2003-01-01

    N-Acylethanolamines (NAEs) are prevalent in desiccated seeds of various plant species, and their levels decline substantially during seed imbibition and germination. Here, seeds of Arabidopsis thaliana (L.) Heynh. were germinated in, and seedlings maintained on, micromolar concentrations of N-lauroylethanolamine (NAE 12:0). NAE 12:0 inhibited root elongation, increased radial swelling of root tips, and reduced root hair numbers in a highly selective and concentration-dependent manner. These effects were reversible when seedlings were transferred to NAE-free medium. Older seedlings (14 days old) acclimated to exogenous NAE by increased formation of lateral roots, and generally, these lateral roots did not exhibit the severe symptoms observed in primary roots. Cells of NAE-treated primary roots were swollen and irregular in shape, and in many cases showed evidence, at the light- and electron-microscope levels, of improper cell wall formation. Microtubule arrangement was disrupted in severely distorted cells close to the root tip, and endoplasmic reticulum (ER)-localized green fluorescent protein (mGFP5-ER) was more abundant, aggregated and distributed differently in NAE-treated root cells, suggesting disruption of proper cell division, endomembrane organization and vesicle trafficking. These results suggest that NAE 12:0 likely influences normal cell expansion in roots by interfering with intracellular membrane trafficking to and/or from the cell surface. The rapid metabolism of NAEs during seed imbibition/germination may be a mechanism to remove this endogenous class of lipid mediators to allow for synchronized membrane reorganization associated with cell expansion.

  3. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation.

    PubMed

    Ismael, Amber; Tian, Wei; Waszczak, Nicholas; Wang, Xin; Cao, Youfang; Suchkov, Dmitry; Bar, Eli; Metodiev, Metodi V; Liang, Jie; Arkowitz, Robert A; Stone, David E

    2016-04-12

    Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion. Copyright © 2016, American Association for the Advancement of Science.

  4. Post-Training Intrahippocampal Injection of Synthetic Poly-Alpha-2,8-Sialic Acid-Neural Cell Adhesion Molecule Mimetic Peptide Improves Spatial Long-Term Performance in Mice

    ERIC Educational Resources Information Center

    Florian, Cedrick; Foltz, Jane; Norreel, Jean-Chretien; Rougon, Genevieve; Roullet, Pascal

    2006-01-01

    Several data have shown that the neural cell adhesion molecule (NCAM) is necessary for long-term memory formation and might play a role in the structural reorganization of synapses. The NCAM, encoded by a single gene, is represented by several isoforms that differ with regard to their content of alpha-2,8-linked sialic acid residues (PSA) on their…

  5. PAR-2 triggers placenta-derived protease-induced altered VE-cadherin reorganization at endothelial junctions in preeclampsia.

    PubMed

    Gu, Y; Groome, L J; Alexander, J S; Wang, Y

    2012-10-01

    PAR-2 is a G-protein coupled protease receptor whose activation in endothelial cells (ECs) is associated with increased solute permeability. VE-cadherin is an endothelial-specific junction protein, which exhibits a disorganized distribution at cell junction during inflammation and is a useful indicator of endothelial barrier dysfunction. In the present study, we tested the hypothesis that PAR-2 activation mediates placenta-derived chymotrypsin-like protease (CLP)-induced endothelial junction disturbance and permeability in preeclampsia (PE). PAR-2 and VE-cadherin were examined by immunofluorescent staining. Specific CLP induced PAR-2 activation and altered VE-cadherin distribution was assessed following depletion of protease chymotrypsin in the placental conditioned medium and after PAR-2 siRNA. VE-cadherin assembly was determined by treating cells with protease chymotrypsin and/or the specific PAR-2 agonist SLIGKV-NH2. Our results showed: 1) placental conditioned medium not only disturbed VE-cadherin distribution at cell junctions but also activated PAR-2 in ECs; 2) PAR-2 siRNA blocked the placental conditioned medium induced PAR-2 upregulation and disorganization of VE-cadherin at cell junctions; 3) PAR-2 agonist induced PAR-2 activation and VE-cadherin reorganization were dose-dependent; and 4) PAR-2 agonist could stimulate ERK1/2 activation. These results strongly suggest that proteases produced by the placenta elicit endothelial barrier dysfunction via a PAR-2 signaling regulatory mechanism in PE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. PAR-2 triggers placenta-derived protease-induced altered VE-cadherin reorganization at endothelial junctions in preeclampsia

    PubMed Central

    Gu, Yang; Groome, Lynn J.; Alexander, J. Steven; Wang, Yuping

    2014-01-01

    PAR-2 is a G-protein coupled protease receptor whose activation in endothelial cells (ECs) is associated with increased solute permeability. VE-cadherin is an endothelial specific junction protein, which exhibits a disorganized distribution at cell junction during inflammation and is a useful indicator of endothelial barrier dysfunction. In the present study, we tested the hypothesis that PAR-2 activation mediates placenta-derived chymotrypsin-like protease (CLP)-induced endothelial junction disturbance and permeability in preeclampsia (PE). PAR-2 and VE-cadherin were examined by immunofluorescent staining. Specific CLP-induced PAR-2 activation and altered VE-cadherin distribution was assessed following depletion of protease chymotrypsin in the placental conditioned medium and after PAR-2 siRNA. VE-cadherin assembly was determined by treating cells with protease chymotrypsin and/or the specific PAR-2 agonist SLIGKV-NH2. Our results showed: 1) placental conditioned medium not only disturbed VE-cadherin distribution at cell junctions but also activated PAR-2 in ECs; 2) PAR-2 siRNA blocked the placental conditioned medium induced PAR-2 upregulation and disorganization of VE-cadherin at cell junctions; 3) PAR-2 agonist induced PAR-2 activation and VE-cadherin reorganization were dose-dependent; and 4) PAR-2 agonist could stimulate ERK1/2 activation. These results strongly suggest that proteases produced by the placenta elicit endothelial barrier dysfunction via a PAR-2 signaling regulatory mechanism in PE. PMID:22840244

  7. The small molecule CS1 inhibits mitosis and sister chromatid resolution in HeLa cells.

    PubMed

    Wu, Xingkang; Li, Zhenyu; Shen, Yuemao

    2018-05-01

    Mitosis, the most dramatic event in the cell cycle, involves the reorganization of virtually all cellular components. Antimitotic agents are useful for dissecting the mechanism of this reorganization. Previously, we found that the small molecule CS1 accumulates cells in G2/M phase [1], but the mechanism of its action remains unknown. Cell cycle analysis, live cell imaging and nuclear staining were used. Chromosomal morphology was detected by chromosome spreading. The effects of CS1 on microtubules were confirmed by tubulin polymerization, colchicine tubulin-binding, cellular tubulin polymerization and immunofluorescence assays and by analysis of microtubule dynamics and molecular modeling. Histone phosphoproteomics was performed using mass spectrometry. Cell signaling cascades were analyzed using immunofluorescence, immunoprecipitation, immunoblotting, siRNA knockdown and chemical inhibition of specific proteins. The small molecule CS1 was shown to be an antimitotic agent. CS1 potently inhibited microtubule polymerization via interaction with the colchicine-binding pocket of tubulin in vitro and inhibited the formation of the spindle apparatus by reducing the bulk of growing microtubules in HeLa cells, which led to activation of the spindle assembly checkpoint (SAC) and mitotic arrest of HeLa cells. Compared with colchicine, CS1 impaired the progression of sister chromatid resolution independent of cohesin dissociation, and this was reversed by the removal of CS1. Additionally, CS1 induced unique histone phosphorylation patterns distinct from those induced by colchicine. CS1 is a unique antimitotic small molecule and a powerful tool with unprecedented value over colchicine that makes it possible to specifically and conditionally perturb mitotic progression. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The plasma membrane: Penultimate regulator of ADAM sheddase function.

    PubMed

    Reiss, Karina; Bhakdi, Sucharit

    2017-11-01

    ADAM10 and ADAM17 are the best characterized members of the ADAM (A Disintegrin and Metalloproteinase) - family of transmembrane proteases. Both are involved diverse physiological and pathophysiological processes. ADAMs are known to be regulated by posttranslational mechanisms. However, emerging evidence indicates that the plasma membrane with its unique dynamic properties may additionally play an important role in controlling sheddase function. Membrane events that could contribute to regulation of ADAM-function are summarized. Surface expression of peptidolytic activity should be differentiated from ADAM-sheddase function since the latter additionally requires that the protease finds its substrate in the lipid bilayer. We propose that this is achieved through horizontal and vertical reorganization of membrane nanoarchitecture coordinately occurring at the sites of sheddase activation. Reshuffling of nanodomains thereby guides traffic of enzyme and substrate to each other. For ADAM17 phosphatidylserine exposure is required to then induce its shedding function. The novel concept that physicochemical properties of the lipid bilayer govern the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017. Published by Elsevier B.V.

  9. Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays.

    PubMed

    Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B

    2013-10-01

    The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition.

  10. Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-κB signaling.

    PubMed

    Jackson, Shawn S; Oberley, Christopher; Hooper, Christopher P; Grindle, Kreg; Wuerzberger-Davis, Shelly; Wolff, Jared; McCool, Kevin; Rui, Lixin; Miyamoto, Shigeki

    2015-02-01

    The NF-κB family of transcription factors regulates numerous cellular processes, including cell proliferation and survival responses. The constitutive activation of NF-κB has also emerged as an important oncogenic driver in many malignancies, such as activated B-cell like diffuse large B cell lymphoma, among others. In this study, we investigated the impact and mechanisms of action of Withaferin A, a naturally produced steroidal lactone, against both signal-inducible as well as constitutive NF-κB activities. We found that Withaferin A is a robust inhibitor of canonical and constitutive NF-κB activities, leading to apoptosis of certain lymphoma lines. In the canonical pathway induced by TNF, Withaferin A did not disrupt RIP1 polyubiquitination or NEMO-IKKβ interaction and was a poor direct IKKβ inhibitor, but prevented the formation of TNF-induced NEMO foci which colocalized with TNF ligand. While GFP-NEMO efficiently formed TNF-induced foci, a GFP-NEMO(Y308S) mutant that is defective in binding to polyubiquitin chains did not form foci. Our study reveals that Withaferin A is a novel type of IKK inhibitor which acts by disrupting NEMO reorganization into ubiquitin-based signaling structures in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Cytoskeletal mechanics: Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Bausch, Andreas

    2008-03-01

    The actin cytoskeleton, a dynamic network of semiflexible filaments and associated regulatory proteins, is responsible for the extraordinary viscoelastic properties of cells. Especially for cellular motility the controlled self assembly to defined structures and the dynamic reorganization on different time scales are of outstanding importance. A prominent example for the controlled self assembly are actin bundles: in many cytoskeletal processes cells rely on the tight control of the structural and mechanical properties of the actin bundles. Using an in vitro model system we show that size control relies on a mismatch between the helical structure of individual actin filaments and the packing symmetry within bundles. While such self assembled structure may evoke the picture of a static network the contrary is the case: the cytoskeleton is highly dynamic and a constant remodeling takes place in vivo. Such dynamic reorganization of the cytoskeleton relies on the non-static nature of single actin/ABP bonds. Here, we study the thermal and forced unbinding events of individual ABP in such in vitro networks. The binding kinetics of the transient crosslinkers determines the mechanical response of such networks -- in the linear as well in the non-linear regime. These effects are important prerequisites for the high adaptability of cells and at the same time might be the molecular mechanism employed by them for mechanosensing.

  12. Shell effect on the electron and hole reorganization energy of core-shell II-VI nanoclusters

    NASA Astrophysics Data System (ADS)

    Cui, Xianhui; Wang, Xinqin; Yang, Fang; Cui, Yingqi; Yang, Mingli

    2017-09-01

    Density functional theory calculations were performed to study the effect of shell encapsulation on the geometrical and electronic properties of pure and hybrid core-shell CdSe nanoclusters. The CdSe cores are distorted by the shells, and the shells exhibit distinct surface activity from the cores, which leads to remarkable changes in their electron transition behaviors. Although the electron and hole reorganization energies, which are related to the formation and recombination of electron-hole pairs, vary in a complicated way, their itemized contributions, potentials of electron extraction, ionization and affinity, and hole extraction (HEP), are dependent on the cluster size, shell composition and/or solvent. Our calculations suggest that the behaviors of charge carriers, free electrons and holes, in the semiconductor core-shell nanoclusters can be modulated by selecting appropriate cluster size and controlling the chemical composition of the shells.

  13. Novel Roles of Focal Adhesion Kinase in Cytoplasmic Entry and Replication of Influenza A Viruses

    PubMed Central

    Cline, Troy; Baranovich, Tatiana; Govorkova, Elena A.; Schultz-Cherry, Stacey

    2014-01-01

    ABSTRACT Viruses modulate cellular signaling pathways at almost every step of the infection cycle. Cellular signaling pathways activated at later times of influenza infection have previously been investigated; however, early influenza virus-host cell interactions remain understudied. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that regulates phosphatidylinositol 3-kinase (PI3K) activation and actin reorganization, two critical processes during influenza A virus (IAV) infection in most cell types. Using 6 influenza A virus strains (A/Puerto Rico/8/1934, A/Aichi/2/1968 × A/Puerto Rico/8/1934 reassortant [X-31], A/California/04/2009, mouse-adapted A/California/04/2009, A/WSN/1933, and A/New Caledonia/20/1999), we examined the role of FAK during IAV entry. We found that influenza virus attachment induced PI3K-dependent FAK-Y397 phosphorylation. Pharmacological FAK inhibition or expression of a kinase-dead mutant of FAK led to disruption of the actin meshwork that resulted in sequestration of IAV at the cell periphery and reduced virion localization to early endosomes. Additionally, FAK inhibition impeded viral RNA replication at later times of infection and ultimately resulted in significantly reduced viral titers in both A549 and differentiated normal human bronchial epithelial (NHBE) cells. Although not all tested strains activated FAK, all of them exhibited a reduction in viral replication in response to inhibition of FAK signaling. These findings highlight novel biphasic roles of FAK activation during IAV infection and indicate that FAK serves as a central link between receptor-mediated PI3K activation and actin reorganization during IAV infection. IMPORTANCE We found that FAK links early activation of PI3K and actin reorganization, thereby regulating influenza virus entry. Surprisingly, we also found that FAK can regulate viral RNA replication independently of its role in entry. Our study addresses a knowledge gap in the understanding of signaling events triggered by influenza virus that mediate its internalization and initiation of the infection cycle. Understanding of these fundamental molecular events will be necessary to identify novel host targets, such as FAK, and development of future anti-influenza virus therapeutics. PMID:24696469

  14. Zincergic innervation from the anterior olfactory nucleus to the olfactory bulb displays plastic responses after mitral cell loss.

    PubMed

    Airado, Carmen; Gómez, Carmela; Recio, Javier S; Baltanás, Fernando C; Weruaga, Eduardo; Alonso, José R

    2008-12-01

    Zinc ions are selectively accumulated in certain neurons (zinc-enriched neurons). The mouse olfactory bulb is richly innervated by zinc-enriched terminals. Here, the plasticity of the zincergic system was studied in the olfactory bulb of the Purkinje Cell Degeneration mutant mouse, an animal with specific postnatal neurodegeneration of the main projection neurons of the olfactory bulb. The analysis focused particularly on the anterior olfactory nucleus since most centrifugal afferents coming to the olfactory bulb arise from this structure. Zinc-enriched terminals in the olfactory bulb and zinc-enriched somata in the anterior olfactory nucleus were visualized after selenite injections. Immunohistochemistry against the vesicular zinc transporter was also carried out to confirm the distribution pattern of zinc-enriched terminals in the olfactory bulb. The mutant mice showed a clear reorganization of zincergic centrifugal projections from the anterior olfactory nucleus to the olfactory bulb. First, all zincergic contralateral neurons projecting to the olfactory bulb were absent in the mutant mice. Second, a significant increase in the number of stained somata was detected in the ipsilateral anterior olfactory nucleus. Since no noticeable changes were observed in the zinc-enriched terminals in the olfactory bulb, it is conceivable that mitral cell loss could induce a reorganization of zinc-enriched projections coming from the anterior olfactory nucleus, probably directed at balancing the global zincergic centrifugal modulation. These results show that zincergic anterior olfactory nucleus cells projecting to the olfactory bulb undergo plastic changes to adapt to the loss of mitral cells in the olfactory bulb of Purkinje Cell Degeneration mutant mice.

  15. The balance between keystone clustering and bed roughness in experimental step-pool stabilization

    NASA Astrophysics Data System (ADS)

    Johnson, J. P.

    2016-12-01

    Predicting how mountain channels will respond to environmental perturbations such as floods requires an improved quantitative understanding of morphodynamic feedbacks among bed topography, surface grain size and sediment sorting. In boulder-rich gravel streams, transport and sorting often lead to the development of step pool morphologies, which are expressed both in bed topography and coarse grain clustering. Bed stability is difficult to measure, and is sometimes inferred from the presence of step pools. I use scaled flume experiments to explore feedbacks among surface grain sizes, coarse grain clustering, bed roughness and hydraulic roughness during progressive bed stabilization and over a range of sediment transport rates. While grain clusters are sometimes identified by subjective interpretation, I quantify the degree of coarse surface grain clustering using spatial statistics, including a novel normalization of Ripley's K function. This approach is objective and provides information on the strength of clustering over a range of length scales. Flume experiments start with an initial bed surface with a broad grain size distribution and spatially random positions. Flow causes the bed surface to progressively stabilize in response to erosion, surface coarsening, roughening and grain reorganization. At 95% confidence, many but not all beds stabilized with coarse grains becoming more clustered than complete spatial randomness (CSR). I observe a tradeoff between topographic roughness and clustering. Beds that stabilized with higher degrees of coarse-grain clustering were topographically smoother, and vice-versa. Initial conditions influenced the degree of clustering at stability: Beds that happened to have fewer initial coarse grains had more coarse grain reorganization during stabilization, leading to more clustering. Finally, regressions demonstrate that clustering statistics actually predict hydraulic roughness significantly better than does D84 (the size at which 84% of grains are smaller). In the experimental data, the spatial organization of surface grains is a stronger control on flow characteristics than the size of surface grains.

  16. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection.

    PubMed

    Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Brady, Charles; Pullagurla, Swathi; Kamande, Joyce; Aufforth, Rachel D; Tignanelli, Christopher J; Torphy, Robert J; Yeh, Jen Jen; Soper, Steven A

    2014-01-07

    The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ~3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer's damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device's cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the selection of CTCs from whole blood were evaluated, which required the immobilization of monoclonal antibodies to channel walls. From our results, we concluded the CTC yield and purity of isolated CTCs were dependent on the substrate material with COC producing the highest clinical yields for CTCs as well as better purities compared to PMMA.

  17. Near-memory data reorganization engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokhale, Maya; Lloyd, G. Scott

    A memory subsystem package is provided that has processing logic for data reorganization within the memory subsystem package. The processing logic is adapted to reorganize data stored within the memory subsystem package. In some embodiments, the memory subsystem package includes memory units, a memory interconnect, and a data reorganization engine ("DRE"). The data reorganization engine includes a stream interconnect and DRE units including a control processor and a load-store unit. The control processor is adapted to execute instructions to control a data reorganization. The load-store unit is adapted to process data move commands received from the control processor via themore » stream interconnect for loading data from a load memory address of a memory unit and storing data to a store memory address of a memory unit.« less

  18. Cobalt and iron segregation and nitride formation from nitrogen plasma treatment of CoFeB surfaces

    NASA Astrophysics Data System (ADS)

    Mattson, E. C.; Michalak, D. J.; Veyan, J. F.; Chabal, Y. J.

    2017-02-01

    Cobalt-iron-boron (CoFeB) thin films are the industry standard for ferromagnetic layers in magnetic tunnel junction devices and are closely related to the relevant surfaces of CoFe-based catalysts. Identifying and understanding the composition of their surfaces under relevant processing conditions is therefore critical. Here we report fundamental studies on the interaction of nitrogen plasma with CoFeB surfaces using infrared spectroscopy, x-ray photoemission spectroscopy, and low energy ion scattering. We find that, upon exposure to nitrogen plasma, clean CoFeB surfaces spontaneously reorganize to form an overlayer comprised of Fe2N3 and BN, with the Co atoms moved well below the surface through a chemically driven process. Subsequent annealing to 400 °C removes nitrogen, resulting in a Fe-rich termination of the surface region.

  19. Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors

    PubMed Central

    Yang, Esther H.; Rode, Julia; Howlader, Md. Amran; Eckermann, Marina; Santos, Jobette T.; Hernandez Armada, Daniel; Zheng, Ruixiang; Zou, Chunxia

    2017-01-01

    Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5β1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased β1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3–integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins. PMID:29016609

  20. Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface

    DOE PAGES

    Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; ...

    2016-10-12

    Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO 2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relativelymore » small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface.« less

  1. Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface

    PubMed Central

    Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; Madix, Robert J.; Kaxiras, Efthimios; Friend, Cynthia M.

    2016-01-01

    Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relatively small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface. PMID:27731407

  2. Quantification of asymmetric microtubule nucleation at sub-cellular structures

    PubMed Central

    Zhu, Xiaodong; Kaverina, Irina

    2012-01-01

    Cell polarization is important for multiple physiological processes. In polarized cells, microtubules (MTs) are organized into a spatially polarized array. Generally, in non-differentiated cells, it is assumed that MTs are symmetrically nucleated exclusively from centrosome (microtubule organizing center, MTOC) and then reorganized into the asymmetric array. We have recently identified the Golgi complex as an additional MTOC that asymmetrically nucleates MTs toward one side of the cell. Methods used for alternative MTOC identification include microtubule re-growth after complete drug-induced depolymerization and tracking of growing microtubules using fluorescence labeled MT +TIP binding proteins in living cells. These approaches can be used for quantification of MT nucleation sites at diverse sub-cellular structures. PMID:21773933

  3. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    DOE PAGES

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; ...

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons ismore » readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.« less

  4. 75 FR 7490 - Office of the Commissioner Reorganization; Statement of Organizations, Functions, and Delegations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ...The Food and Drug Administration (FDA) is announcing the reorganization of the Office of the Commissioner (OC). This reorganization includes the organizations and their substructure components as listed in this document. This notice was previously published in the Federal Register of August 18, 2009, but it contained several errors. For the convenience of the reader, the reorganization is being published again in its entirety.

  5. The coastal area of Togo: A space vulnerable to sea level rise hotly disputed

    NASA Astrophysics Data System (ADS)

    Adjoussi, P. D.

    2015-12-01

    Abstract Erosion caused in the coastal area of Togo especially in the cell to the east of the harbor of Lomé some reorganization of space and a reallocation of tasks functions of the importance of existing issues. This reorganization is an important race against time between the various stakeholders which paradoxically make this area a very dynamic environment. In spite of the disaster situation in the area, it is changing. This mutation has been observed for a decade in many ways. Fishing is a traditional activity disappears causing the emergence of new activities such as the extraction of gravel, the gardening, the informal trade of any kind, installing hotels, etc.. At the socio-economic transformation is associated with a beach in state of deficit causing the decline of the coastline that reaches approximately 500 m over a few kilometers according to the old marks missing. The decline of the coastline is by undermining the beach by the waves at high tide. These issues are reshaping the land use map that passes a distribution of fishing villages on the coast in 1980 to a suburban area exposed to sea level rise corollary to anticipated climate change. Keywords: Space, Reorganization, Vulnerability, Stakeholders, Sea Level, Fishing

  6. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network

    PubMed Central

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L.; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-01-01

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. PMID:28325812

  7. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network.

    PubMed

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-05-05

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. Copyright © 2017 Usaj et al.

  8. The protective effect of niacinamide on CHO AA8 cell line against ultraviolet radiation in the context of main cytoskeletal proteins.

    PubMed

    Izdebska, Magdalena; Hałas-Wiśniewska, Marta; Adamczyk, Iwona; Lewandowska, Ismena; Kwiatkowska, Iga; Gagat, Maciej; Grzanka, Alina

    2018-03-13

    Niacinamide is a stable and water-soluble form of vitamin B3, a valuable and versatile cosmetic ingredient, which is well absorbed and tolerated by the skin. A large body of literature has reported on the antioxidant and cell repair properties of niacinamide. Therefore, it has been shown to be useful in the protection of the skin against ultraviolet B (UVB) radiation and free radicals. Despite numerous hypotheses on the mechanism of vitamin B3, its protective effects have not yet been fully elucidated. The aim of the study was to determine the protective effects of niacinamide on CHO AA8 cell line against UVB radiation. We assessed the following factors: cell death, cell cycle phase distributions, reorganization of main cytoskeletal proteins, such as F-actin, vimentin and β-tubulin, and also alterations at the ultrastructural level. The material used for our research was Chinese hamster ovary cell line (CHO AA8). We used 4 research groups: 1) control cells; 2) cells treated with niacinamide; 3) cells exposed to UV radiation; and 4) cells co-incubated with niacinamide and next exposed to ultraviolet. The cell death and cell cycle were evaluated by a Tali® based-image cytometer. A fluorescence microscope was used to assess the reorganization of cytoskeletal proteins, whereas a transmission electron microscope enabled the evaluation of the alterations at the ultrastructural level of cells. We showed that UV-induced apoptosis and cell cycle distributions during treatment with niacinamide resulted in a non-statistical significance in cell survival and no significant changes in the morphology and cytoskeleton in comparison to the control group. In turn, a combination of both factors led to an increase in the population of live cells and a decreased level of apoptotic cells in comparison to UV-exposed cells. Our results confirmed the harmful effects of UV radiation on CHO AA8 cell line. Furthermore, niacinamide can protect cells against these factors, and the mechanism of action may be related to the stabilization of the cell cytoskeleton.

  9. Massive cortical reorganization in sighted Braille readers.

    PubMed

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-03-15

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

  10. Inducing morphological changes in lipid bilayer membranes with microfabricated substrates

    NASA Astrophysics Data System (ADS)

    Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick

    2016-11-01

    Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.

  11. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model.

    PubMed

    Hellweger, Ferdi L; van Sebille, Erik; Fredrick, Neil D

    2014-09-12

    A key question in ecology and evolution is the relative role of natural selection and neutral evolution in producing biogeographic patterns. We quantify the role of neutral processes by simulating division, mutation, and death of 100,000 individual marine bacteria cells with full 1 million-base-pair genomes in a global surface ocean circulation model. The model is run for up to 100,000 years and output is analyzed using BLAST (Basic Local Alignment Search Tool) alignment and metagenomics fragment recruitment. Simulations show the production and maintenance of biogeographic patterns, characterized by distinct provinces subject to mixing and periodic takeovers by neighbors (coalescence), after which neutral evolution reestablishes the province and the patterns reorganize. The emergent patterns are substantial (e.g., down to 99.5% DNA identity between North and Central Pacific provinces) and suggest that microbes evolve faster than ocean currents can disperse them. This approach can also be used to explore environmental selection. Copyright © 2014, American Association for the Advancement of Science.

  12. Adult Visual Cortical Plasticity

    PubMed Central

    Gilbert, Charles D.; Li, Wu

    2012-01-01

    The visual cortex has the capacity for experience dependent change, or cortical plasticity, that is retained throughout life. Plasticity is invoked for encoding information during perceptual learning, by internally representing the regularities of the visual environment, which is useful for facilitating intermediate level vision - contour integration and surface segmentation. The same mechanisms have adaptive value for functional recovery after CNS damage, such as that associated with stroke or neurodegenerative disease. A common feature to plasticity in primary visual cortex (V1) is an association field that links contour elements across the visual field. The circuitry underlying the association field includes a plexus of long range horizontal connections formed by cortical pyramidal cells. These connections undergo rapid and exuberant sprouting and pruning in response to removal of sensory input, which can account for the topographic reorganization following retinal lesions. Similar alterations in cortical circuitry may be involved in perceptual learning, and the changes observed in V1 may be representative of how learned information is encoded throughout the cerebral cortex. PMID:22841310

  13. ECM remodeling and its plasticity

    NASA Astrophysics Data System (ADS)

    Feng, Jingchen; Jones, Christopher A. R.; Cibula, Matthew; Mao, Xiaoming; Sander, Leonard M.; Levine, Herbert; Sun, Bo

    The mechanical interactions between cells and Extracellular Matrix (ECM) are of great importance in many cellular processes. These interactions are reciprocal, i.e. contracting cells pull and reorganize the surrounding matrix, while the remodeled matrix feeds back to regulate cell activities. Recent experiments show in collagen gels with densely distributed cells, aligned fiber bundles are formed in the direction between neighboring cells. Fibers flow into the center region between contracting cell pairs in this process, which causes the concentration of fibers in the fiber bundles to become significantly enhanced. Using an extended lattice-based model, we show that viscoelasticity plays an essential role in ECM remodeling and contributes to the enhanced concentration in fiber bundles. We further characterize ECM plasticity within our model and verify our results with rheometer experiments.

  14. Chemo-mechanical pushing of proteins along single-stranded DNA.

    PubMed

    Sokoloski, Joshua E; Kozlov, Alexander G; Galletto, Roberto; Lohman, Timothy M

    2016-05-31

    Single-stranded (ss)DNA binding (SSB) proteins bind with high affinity to ssDNA generated during DNA replication, recombination, and repair; however, these SSBs must eventually be displaced from or reorganized along the ssDNA. One potential mechanism for reorganization is for an ssDNA translocase (ATP-dependent motor) to push the SSB along ssDNA. Here we use single molecule total internal reflection fluorescence microscopy to detect such pushing events. When Cy5-labeled Escherichia coli (Ec) SSB is bound to surface-immobilized 3'-Cy3-labeled ssDNA, a fluctuating FRET signal is observed, consistent with random diffusion of SSB along the ssDNA. Addition of Saccharomyces cerevisiae Pif1, a 5' to 3' ssDNA translocase, results in the appearance of isolated, irregularly spaced saw-tooth FRET spikes only in the presence of ATP. These FRET spikes result from translocase-induced directional (5' to 3') pushing of the SSB toward the 3' ssDNA end, followed by displacement of the SSB from the DNA end. Similar ATP-dependent pushing events, but in the opposite (3' to 5') direction, are observed with EcRep and EcUvrD (both 3' to 5' ssDNA translocases). Simulations indicate that these events reflect active pushing by the translocase. The ability of translocases to chemo-mechanically push heterologous SSB proteins along ssDNA provides a potential mechanism for reorganization and clearance of tightly bound SSBs from ssDNA.

  15. Immunocytology with microwave-fixed fibroblasts shows 1 alpha,25- dihydroxyvitamin D3-dependent rapid and estrogen-dependent slow reorganization of vitamin D receptors

    PubMed Central

    1990-01-01

    Prior studies have given no evidence for regulation of vitamin D receptor (VDR) compartmentalization or subcellular organization. Microwave fixation (9-15 s) and an indirect immunodetection system of avidin-biotin enhancement and phycoerythrin fluorophore resulted in sufficient spatial and temporal resolution to allow analysis of these processes. We studied cultured fibroblasts from normals or from patients with four different types of hereditary defect compromising VDR function (mutant cells). Compartmentalization of VDRs in the absence of 1,25-dihydroxyvitamin D3 (calcitriol) was regulated by serum or estrogen. VDRs were mainly cytoplasmic in cells cultured without serum and phenol red, but VDRs were mainly intranuclear after addition of serum or an estrogen to cells for at least 18 h (slow regulation). Calcitriol initiated a rapid and multistep process (rapid regulation) of reorganization in a portion of VDRs: clumping within 15-45 s, alignment of clumps along fibrils within 30-45 s, perinuclear accumulation of clumps within 45-90 s, and intranuclear accumulation of clumps within 1-3 min. We found similar rapid effects of calcitriol on VDRs in various other types of cultured cells. These sequential VDR pattern changes showed calcitriol dose dependency and calcitriol analogue specificity characteristic for the VDR. In mutant fibroblasts VDR pattern changes after calcitriol were absent or severely disturbed at selected steps. Treatment of normal cells with wheat germ agglutinin, which blocks protein transport through nuclear pores, also blocked calcitriol-dependent translocation of VDRs. We conclude that immunocytology after microwave fixation provides evidence for regulation of VDR organization and localization. PMID:2177476

  16. Two coffins and a funeral: early or late caspase activation determines two types of apoptosis induced by DNA damaging agents.

    PubMed

    Oropesa-Ávila, Manuel; de la Cruz-Ojeda, Patricia; Porcuna, Jesús; Villanueva-Paz, Marina; Fernández-Vega, Alejandro; de la Mata, Mario; de Lavera, Isabel; Rivero, Juan Miguel Suarez; Luzón-Hidalgo, Raquel; Álvarez-Córdoba, Mónica; Cotán, David; Zaderenko, Ana Paula; Cordero, Mario D; Sánchez-Alcázar, José A

    2017-03-01

    Cell cytoskeleton makes profound changes during apoptosis including the organization of an Apoptotic Microtubule Network (AMN). AMN forms a cortical structure which plays an important role in preserving plasma membrane integrity during apoptosis. Here, we examined the cytoskeleton rearrangements during apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells. Using fixed and living cell imaging, we showed that CPT induced two dose- and cell cycle-dependent types of apoptosis characterized by different cytoskeleton reorganizations, time-dependent caspase activation and final apoptotic cell morphology. In the one referred as "slow" (~h) or round-shaped, apoptosis was characterized by a slow contraction of the actinomyosin ring and late caspase activation. In "slow" apoptosis the γ-tubulin complexes were not disorganized and microtubules were not depolymerized at early stages. In contrast, "fast" (~min) or irregular-shaped apoptosis was characterized by early caspase activation followed by full contraction of the actinomyosin ring. In fast apoptosis γ-tubulin complexes were disorganized and microtubules were initially depolymerized. However, after actinomyosin contraction, microtubules were reformed adopting a cortical but irregular disposition near plasma membrane. In addition to distinctive cytoskeleton reorganization kinetics, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocytes response. Our results suggest that the knowledge and modulation of the type of apoptosis promoted by genotoxic agents may be important for deciding a better therapeutic option and predicting the immune response in cancer treatment.

  17. Reorganization of polymerized actin: a possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels.

    PubMed

    Unemori, E N; Werb, Z

    1986-09-01

    Changes in cell shape are postulated to modulate gene expression during differentiation of a number of cell types, including rabbit synovial fibroblasts, which are inducible for expression of the zymogen form of the metalloendopeptidase, collagenase. In the work presented here, fibroblasts cultured on and within hydrated collagen gels were allowed to contract by release of the gels from the sides of the culture dish. Within 24 h of cell release, synthesis and secretion of procollagenase was initiated in the absence of any chemical manipulation. Fibroblasts grown in and on collagen also responded to 12-O-tetradecanoylphorbol-13-acetate and cytochalasin B with morphologic change and induced procollagenase. However, colchicine, which altered morphology to varying degrees in cells on plastic, on collagen, and within collagen gels, did not induce procollagenase expression. In all cases, the enzyme was induced only after reorganization of polymerized actin, rather than after a change in cellular morphology per se. As a first approach to identifying other aspects of the stimulated phenotype that could affect collagen turnover, the expression of collagen and endogenous metalloproteinase inhibitors in relation to procollagenase secretion was investigated. Collagen secretion by fibroblasts decreased when procollagenase secretion was induced by the pharmacologic agents, but not when cells were stimulated by contraction on or within collagen gels. The expression of two endogenous inhibitors was not coordinately regulated with induction of procollagenase. Therefore, the extracellular matrix and the cellular actin cytoskeleton may transduce signals that modulate the tissue remodeling phenotype of fibroblasts.

  18. Reorganization of Lipid Diffusion by Myelin Basic Protein as Revealed by STED Nanoscopy.

    PubMed

    Steshenko, Olena; Andrade, Débora M; Honigmann, Alf; Mueller, Veronika; Schneider, Falk; Sezgin, Erdinc; Hell, Stefan W; Simons, Mikael; Eggeling, Christian

    2016-06-07

    Myelin is a multilayered membrane that ensheathes axonal fibers in the vertebrate nervous system, allowing fast propagation of nerve action potentials. It contains densely packed lipids, lacks an actin-based cytocortex, and requires myelin basic protein (MBP) as its major structural component. This protein is the basic constituent of the proteinaceous meshwork that is localized between adjacent cytoplasmic membranes of the myelin sheath. Yet, it is not clear how MBP influences the organization and dynamics of the lipid constituents of myelin. Here, we used optical stimulated emission depletion super-resolution microscopy in combination with fluorescence correlation spectroscopy to assess the characteristics of diffusion of different fluorescent lipid analogs in myelin membrane sheets of cultured oligodendrocytes and in micrometer-sized domains that were induced by MBP in live epithelial PtK2 cells. Lipid diffusion was significantly faster and less anomalous both in oligodendrocytes and inside the MBP-rich domains of PtK2 cells compared with undisturbed live PtK2 cells. Our data show that MBP reorganizes lipid diffusion, possibly by preventing the buildup of an actin-based cytocortex and by preventing most membrane proteins from entering the myelin sheath region. Yet, in contrast to myelin sheets in oligodendrocytes, the MBP-induced domains in epithelial PtK2 cells demonstrate no change in lipid order, indicating that segregation of long-chain lipids into myelin sheets is a process specific to oligodendrocytes. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis.

    PubMed

    Sasakura, Yasunori; Mita, Kaoru; Ogura, Yosuke; Horie, Takeo

    2012-04-01

    The swimming larvae of the chordate ascidians possess a dorsal hollowed central nervous system (CNS), which is homologous to that of vertebrates. Despite the homology, the ascidian CNS consists of a countable number of cells. The simple nervous system of ascidians provides an excellent experimental system to study the developmental mechanisms of the chordate nervous system. The neural fate of the cells consisting of the ascidian CNS is determined in both autonomous and non-autonomous fashion during the cleavage stage. The ascidian neural plate performs the morphogenetic movement of neural tube closure that resembles that in vertebrate neural tube formation. Following neurulation, the CNS is separated into five distinct regions, whose homology with the regions of vertebrate CNS has been discussed. Following their larval stage, ascidians undergo a metamorphosis and become sessile adults. The metamorphosis is completed quickly, and therefore the metamorphosis of ascidians is a good experimental system to observe the reorganization of the CNS during metamorphosis. A recent study has shown that the major parts of the larval CNS remain after the metamorphosis to form the adult CNS. In contrast to such a conserved manner of CNS reorganization, most larval neurons disappear during metamorphosis. The larval glial cells in the CNS are the major source for the formation of the adult CNS, and some of the glial cells produce adult neurons. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  20. Silencing heat shock protein 27 (HSP27) inhibits the proliferation and migration of vascular smooth muscle cells in vitro.

    PubMed

    Huang, Jie; Xie, Liang-di; Luo, Li; Zheng, Su-Li; Wang, Hua-Jun; Xu, Chang-Sheng

    2014-05-01

    The objective of this study was to examine the role of heat shock protein 27 (HSP27) in proliferation and migration of vascular smooth muscle cells (VSMCs). Three complementary DNA sequences targeting rat HSP27 gene were designed, synthesized, and subcloned into lentiviral vector. The interfering efficiency was detected by reverse transcriptase-polymerase chain reaction and Western blot. Methyl thiazolyl tetrazolium bromide assay was used for examining cell proliferation. F-actin polymerization was detected by FITC-Phalloidin staining using confocal microscopy. Modified Boyden chamber technique was used to assess VSMCs migration. The recombinant lentivirus containing RNAi targeting HSP27 gene significantly inhibited expression of HSP27 at both mRNA and protein levels. The interfering efficiencies of pNL-HSP27-EGFP-1, pNL-HSP27-EGFP-2, and pNL-HSP27-EGFP-3 were 71 %, 77 %, and 43 %, respectively. Reorganization of actin stimulated by PDGF-BB was markedly blocked by pretreatment with pNL-HSP27-EGFP-2. Proliferation and migration rates of VSMCs induced by PDGF-BB were inhibited by 30.8 % and 45.6 %, respectively, by pNL-HSP27-EGFP-2 (all P < 0.01). To conclude, these data indicate that HSP27 may regulate the proliferation, actin reorganization, and the migration of VSMCs. RNAi targeting at HSP27 may be a potential approach for inhibition of cell migration involved in pathogenesis of proliferative vascular diseases.

  1. Protein phosphatase 2A inhibition and subsequent cytoskeleton reorganization contributes to cell migration caused by microcystin-LR in human laryngeal epithelial cells (Hep-2).

    PubMed

    Wang, Beilei; Liu, Jinghui; Huang, Pu; Xu, Kailun; Wang, Hanying; Wang, Xiaofeng; Guo, Zonglou; Xu, Lihong

    2017-03-01

    The major toxic mechanism of Microcystin-LR is inhibition of the activity of protein phosphatase 2A (PP2A), resulting in a series of cytotoxic effects. Our previous studies have demonstrated that microcystin-LR (MCLR) induced very different molecular effects in normal cells and the tumor cell line SMMC7721. To further explore the MCLR toxicity mechanism in tumor cells, human laryngeal epithelial cells (Hep-2) was examined in this study. Western blot, immunofluorescence, immunoprecipitation, and transwell migration assay were used to detect the effects of MCLR on PP2A activity, PP2A substrates, cytoskeleton, and cell migration. The results showed that the protein level of PP2A subunits and the posttranslational modification of the catalytic subunit were altered and that the binding of the AC core enzyme as well as the binding of PP2A/C and α4, was also affected. As PP2A substrates, the phosphorylation of MAPK pathway members, p38, ERK1/2, and the cytoskeleton-associated proteins, Hsp27, VASP, Tau, and Ezrin were increased. Furthermore, MCLR induced reorganization of the cytoskeleton and promoted cell migration. Taken together, direct covalent binding to PP2A/C, alteration of the protein levels and posttranslational modification, as well as the binding of subunits, are the main pattern for the effects of MCLR on PP2A in Hep-2. A dose-dependent change in p-Tau and p-Ezrin due to PP2A inhibition may contribute to the changes in the cytoskeleton and be related to the cell migration in Hep-2. Our data provide a comprehensive exposition of the MCLR mechanism on tumor cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 890-903, 2017. © 2016 Wiley Periodicals, Inc.

  2. Connectivity constraints on cortical reorganization of neural circuits involved in object naming.

    PubMed

    Papagno, Costanza; Gallucci, Marcello; Casarotti, Alessandra; Castellano, Antonella; Falini, Andrea; Fava, Enrica; Giussani, Carlo; Carrabba, Giorgio; Bello, Lorenzo; Caramazza, Alfonso

    2011-04-01

    The brain's plasticity in response to sensory deprivation and other perturbations is well established. While the functional properties of the reorganized areas are under vigorous investigation, the factors that constrain cortical reorganization remain poorly understood. One factor constraining such reorganization may be long-distance subcortical connectivity between relevant cortical regions-reorganization attempts to preserve the functionality of subcortical connections. Here we provide human neurophysiological evidence for the role of the subcortical connections in shaping cortical reorganization of the networks involved in object naming following perturbation of normal function. We used direct electrical stimulation (DES) during surgical removal of gliomas to identify the sites that are involved in naming different categories of objects. The sites that were selectively inhibited in naming either living or non-living objects were displaced relative to those observed with other subject populations, possibly reflecting cortical reorganization due to slowly evolving brain damage. Subcortical DES applied to the white matter underlying these regions also led to category-specific naming deficits. The existence of these subcortical fiber pathways was confirmed using diffusion tensor tractography. These results constitute the first neurophysiological evidence for the critical role of subcortical pathways as part of the neural circuits that are involved in object naming; they also highlight the importance of subcortical connectivity in shaping cortical reorganization following perturbations of normal function. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Remodeling of peripheral nerve ensheathment during the larval-to-adult transition in Drosophila.

    PubMed

    Subramanian, Aswati; Siefert, Matthew; Banerjee, Soumya; Vishal, Kumar; Bergmann, Kayla A; Curts, Clay C M; Dorr, Meredith; Molina, Camillo; Fernandes, Joyce

    2017-10-01

    Over the course of a 4-day period of metamorphosis, the Drosophila larval nervous system is remodeled to prepare for adult-specific behaviors. One example is the reorganization of peripheral nerves in the abdomen, where five pairs of abdominal nerves (A4-A8) fuse to form the terminal nerve trunk. This reorganization is associated with selective remodeling of four layers that ensheath each peripheral nerve. The neural lamella (NL), is the first to dismantle; its breakdown is initiated by 6 hours after puparium formation, and is completely removed by the end of the first day. This layer begins to re-appear on the third day of metamorphosis. Perineurial glial (PG) cells situated just underneath the NL, undergo significant proliferation on the first day of metamorphosis, and at that stage contribute to 95% of the glial cell population. Cells of the two inner layers, Sub-Perineurial Glia (SPG) and Wrapping Glia (WG) increase in number on the second half of metamorphosis. Induction of cell death in perineurial glia via the cell death gene reaper and the Diptheria toxin (DT-1) gene, results in abnormal bundling of the peripheral nerves, suggesting that perineurial glial cells play a role in the process. A significant number of animals fail to eclose in both reaper and DT-1 targeted animals, suggesting that disruption of PG also impacts eclosion behavior. The studies will help to establish the groundwork for further work on cellular and molecular processes that underlie the co-ordinated remodeling of glia and the peripheral nerves they ensheath. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1144-1160, 2017. © 2017 Wiley Periodicals, Inc.

  4. Design & synthesis of silicone elastomer networks with tunable physico-chemical characteristics

    NASA Astrophysics Data System (ADS)

    Willoughby, Julie Ann-Crowe

    2007-05-01

    We have engineered functional surfaces via the manipulation of silicone elastomers (SEs). The most common silicone, poly(dimethylsiloxane) PDMS, can be both challenging and advantageous in the design of surfaces due to its inherent inertness and flexibility of the siloxane backbone. This unique polymer is approaching a $10 billion dollar market attributed to its formulation in a wide array of applications; from the personal care industry to the electronics industry. While it can be used for many applications, surface design with PDMS usually requires a chemical or physical modification of the polymeric network. In addition, surface characteristics are tailored for specific functions since there is not one surface that fits all end-uses. In studying the intrinsic behavior of engineered SEs, we asked questions regarding surface stability, environmental conformation and adaptability, and tuning physical features. We report on the formation of responsive surfaces with tailorable surface-reconstruction kinetics and switching hysteresis by thiol-ene radical addition of mercaptoalkanols with variable lengths to poly(vinylmethylsiloxane) networks. Exposing the modified surfaces to water led to a rearrangement of the hydrophilic alkanes at the surface. The rearrangement kinetics decreases with increasing number of the methylene spacers (n) in the mercaptoalkanol. The response kinetics is found to be very fast for n = 2 and 6. For instance, upon exposing to water, the water contact angle on 3-mercaptopropanol-based surfaces decreases by ≈35° at the rate of 2°/second. The high flexibility of the siloxane backbone endows these materials with switching longevity; the materials were able to switch their wettability over 10 cycles with minimum hysteresis. Increasing the number of methylene spacers to n = 11 decreases the surface reorganization dramatically. Formation of semi-crystalline regions in such materials (detected via IR) is responsible for initial "sluggish" kinetics and eventual surface "freezing". The effects of surface chemistry and topology on cellular adhesion and proliferation have been studied extensively in the past. However, little work exists that aims at probing the effects of surface morphology and elastic modulus on cell behavior. To achieve timely and comprehensive experimental design, there is need for the availability of novel substrata with tunable mechanical properties (or compliance) at the micro and meso-scale level ranging from individual cells to whole tissues. Despite expansive research that has targeted the understanding of cellular response to its host scaffold, the choice of material and extrapolation of findings from one cell/material system to another has proven difficult. Thus establishing general relationships between substrate compliance and cell behavior cannot be considered independent of the material and cell type. In our work, we have explored creating surfaces from SEs comprising gradients in stiffness (or elastic modulus), by controlling the degree of cross-linking. Network regions consisting of higher cross-linking demonstrate a greater elastic modulus. We present two methods to control the mechanical properties of silicone elastomers. The first technique utilizes interdiffusion of multiple SEs with varied molecular weights that are subsequently cross-linked into a network. The second method involves synthesizing a UV-curable SE. This method controls the degree of cross-linking by regulating the intensity of the UV light via a transparency with tunable transmittance placed on top of the SE film. Our results show that it is possible to generate compliance gradients through either route, enabling a large range of both gradient patterns and stiffness.

  5. Tracking hippo in the cancer jungle.

    PubMed

    Suh, Jung H; Saba, Julie D

    2014-07-17

    Signaling through the Hippo pathway controls major aspects of cell growth and proliferation. Focusing on the metabolic consequences of Hippo signaling, Mulvihill and colleagues in this issue of Chemistry & Biology employ a large scale, integrative approach and uncover downstream reorganization of cellular metabolism when the effector TAZ is upregulated, identifying new connections to lipid metabolism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Analysis of Phosphatidic Acid Binding and Regulation of PIPKI In Vitro and in Intact Cells.

    PubMed

    Tay, L W R; Wang, Z; Du, G

    2017-01-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a lipid second messenger that regulates a wide array of essential cellular events, such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, adhesion, and motility. To control the spatiotemporal production of PI(4,5)P2, the activity of type 1 phosphotidylinositol-4-phosphate-5-kinases (PIPKIs) is tightly regulated by small GTPases and another signaling lipid, phosphatidic acid (PA). It is of interest that PI(4,5)P2 is also a critical cofactor for the activation of the PA-generating enzyme, phospholipase D (PLD). It has been proposed that the reciprocal stimulation of PLD and PIPKI enzymes enables a rapid feedforward stimulation loop for the localized and acute generation of signaling lipids that are critical for the regulation of actin cytoskeletal reorganization and membrane trafficking. Here, we outline the methods for the expression and purification of PIPKIγ from bacteria, determination of direct PA binding, and activation of PIPKIγ using in vitro liposomes assays, and examination of actin cytoskeletal reorganization promoted by the PA-PIPKIγ signaling in intact cells using fluorescent microscopy. © 2017 Elsevier Inc. All rights reserved.

  7. Chemico-Genetic Identification of Drebrin as a Regulator of Calcium Responses

    PubMed Central

    Mercer, Jason C.; Qi, Qian; Mottram, Laurie F.; Law, Mankit; Bruce, Danny; Iyer, Archana; Morales, J. Luis; Yamazaki, Hiroyuki; Shirao, Tomoaki; Peterson, Blake R.; August, Avery

    2009-01-01

    Store-operated calcium channels are plasma membrane Ca2+ channels that are activated by depletion of intracellular Ca2+ stores, resulting in an increase in intracellular Ca2+ concentration, which is maintained for prolonged periods in some cell types. Increases in intracellular Ca2+ concentration serve as signals that activate a number of cellular processes, however, little is known about the regulation of these channels. We have characterized the immuno-suppressant compound BTP, which blocks store-operated channel mediated calcium influx into cells. Using an affinity purification scheme to identify potential targets of BTP, we identified the actin reorganizing protein, drebrin, and demonstrated that loss of drebrin protein expression prevents store-operated channel mediated Ca2+ entry, similar to BTP treatment. BTP also blocks actin rearrangements induced by drebrin. While actin cytoskeletal reorganization has been implicated in store-operated calcium channel regulation, little is known about actin binding proteins that are involved in this process, or how actin regulates channel function. The identification of drebrin as a mediator of this process should provide new insight into the interaction between actin rearrangement and tore-operated channel mediated calcium influx. PMID:19948240

  8. Automated Tracing of Horizontal Neuron Processes During Retinal Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerekes, Ryan A; Martins, Rodrigo; Dyer, Michael A

    2011-01-01

    In the developing mammalian retina, horizontal neurons undergo a dramatic reorganization oftheir processes shortly after they migrate to their appropriate laminar position. This is an importantprocess because it is now understood that the apical processes are important for establishing theregular mosaic of horizontal cells in the retina and proper reorganization during lamination isrequired for synaptogenesis with photoreceptors and bipolar neurons. However, this process isdifficult to study because the analysis of horizontal neuron anatomy is labor intensive and time-consuming. In this paper, we present a computational method for automatically tracing the three-dimensional (3-D) dendritic structure of horizontal retinal neurons in two-photonmore » laser scanningmicroscope (TPLSM) imagery. Our method is based on 3-D skeletonization and is thus able topreserve the complex structure of the dendritic arbor of these cells. We demonstrate theeffectiveness of our approach by comparing our tracing results against two sets of semi-automatedtraces over a set of 10 horizontal neurons ranging in age from P1 to P5. We observe an averageagreement level of 81% between our automated trace and the manual traces. This automatedmethod will serve as an important starting point for further refinement and optimization.« less

  9. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    PubMed

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  10. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions

    NASA Technical Reports Server (NTRS)

    Pavalko, F. M.; Chen, N. X.; Turner, C. H.; Burr, D. B.; Atkinson, S.; Hsieh, Y. F.; Qiu, J.; Duncan, R. L.

    1998-01-01

    Mechanical stimulation of bone induces new bone formation in vivo and increases the metabolic activity and gene expression of osteoblasts in culture. We investigated the role of the actin cytoskeleton and actin-membrane interactions in the transmission of mechanical signals leading to altered gene expression in cultured MC3T3-E1 osteoblasts. Application of fluid shear to osteoblasts caused reorganization of actin filaments into contractile stress fibers and involved recruitment of beta1-integrins and alpha-actinin to focal adhesions. Fluid shear also increased expression of two proteins linked to mechanotransduction in vivo, cyclooxygenase-2 (COX-2) and the early response gene product c-fos. Inhibition of actin stress fiber development by treatment of cells with cytochalasin D, by expression of a dominant negative form of the small GTPase Rho, or by microinjection into cells of a proteolytic fragment of alpha-actinin that inhibits alpha-actinin-mediated anchoring of actin filaments to integrins at the plasma membrane each blocked fluid-shear-induced gene expression in osteoblasts. We conclude that fluid shear-induced mechanical signaling in osteoblasts leads to increased expression of COX-2 and c-Fos through a mechanism that involves reorganization of the actin cytoskeleton. Thus Rho-mediated stress fiber formation and the alpha-actinin-dependent anchorage of stress fibers to integrins in focal adhesions may promote fluid shear-induced metabolic changes in bone cells.

  11. Differentiation-dependent rearrangements of actin filaments and microtubules hinder apical endocytosis in urothelial cells.

    PubMed

    Tratnjek, Larisa; Romih, Rok; Kreft, Mateja Erdani

    2017-08-01

    During differentiation, superficial urothelial cells (UCs) of the urinary bladder form the apical surface, which is almost entirely covered by urothelial plaques containing densely packed uroplakin particles. These urothelial plaques are the main structural components of the blood-urine permeability barrier in the urinary bladder. We have shown previously that endocytosis from the apical plasma membrane decreases during urothelial cell differentiation. Here, we investigated the role of actin filament and microtubule rearrangements in apical endocytosis of differentiating UCs cells using hyperplastic and normoplastic porcine urothelial models. Partially differentiated normal porcine UCs contained actin filaments in the subapical cytoplasm, while microtubules had a net-like appearance. In highly differentiated UCs, actin filaments mostly disappeared from the subapical cytoplasm and microtubules remained as a thin layer close to the apical plasma membrane. Inhibition of actin filament formation with cytochalasin-D in partially differentiated UCs caused a decrease in apical endocytosis. Depolymerisation of microtubules with nocodazole did not prevent endocytosis of the endocytotic marker WGA into the subapical cytoplasm; however, it abolished WGA transport to endolysosomal compartments in the central cytoplasm. Cytochalasin-D or nocodazole treatment did not significantly change apical endocytosis in highly differentiated UCs. In conclusion, we showed that the physiological differentiation-dependent or chemically induced redistribution and reorganization of actin filaments and microtubules impair apical endocytosis in UCs. Importantly, reduced apical endocytosis due to cytoskeletal rearrangements in highly differentiated UCs, together with the formation of rigid urothelial plaques, reinforces the barrier function of the urothelium.

  12. Tetraspanin-3 is an organizer of the multi-subunit Nogo-A signaling complex.

    PubMed

    Thiede-Stan, Nina K; Tews, Björn; Albrecht, David; Ristic, Zorica; Ewers, Helge; Schwab, Martin E

    2015-10-01

    To ensure precision and specificity of ligand-receptor-induced signaling, co-receptors and modulatory factors play important roles. The membrane-bound ligand Nogo-A (an isoform encoded by RTN4) induces inhibition of neurite outgrowth, cell spreading, adhesion and migration through multi-subunit receptor complexes. Here, we identified the four-transmembrane-spanning protein tetraspanin-3 (TSPAN3) as a new modulatory co-receptor for the Nogo-A inhibitory domain Nogo-A-Δ20. Single-molecule tracking showed that TSPAN3 molecules in the cell membrane reacted to binding of Nogo-A with elevated mobility, which was followed by association with the signal-transducing Nogo-A receptor sphingosine-1-phosphate receptor 2 (S1PR2). Subsequently, TSPAN3 was co-internalized as part of the Nogo-A-ligand-receptor complex into early endosomes, where it subsequently separated from Nogo-A and S1PR2 to be recycled to the cell surface. The functional importance of the Nogo-A-TSPAN3 interaction is shown by the fact that knockdown of TSPAN3 strongly reduced the Nogo-A-induced S1PR2 clustering, RhoA activation, cell spreading and neurite outgrowth inhibition. In addition to the modulatory functions of TSPAN3 on Nogo-A-S1PR2 signaling, these results illustrate the very dynamic spatiotemporal reorganizations of membrane proteins during ligand-induced receptor complex organization. © 2015. Published by The Company of Biologists Ltd.

  13. Southeast Pacific tectonic evolution from Early Oligocene to Present

    NASA Astrophysics Data System (ADS)

    Tebbens, S. F.; Cande, S. C.

    1997-06-01

    Plate tectonic reconstructions of the Nazca, Antarctic, and Pacific plates are presented from late Oligocene to Present. These reconstructions document major plate boundary reorganizations in the southeast Pacific at dirons 6C (24 Ma), 6(o) (20 Ma), and 5A (12 Ma) and a smaller reorganization at chron 3(o) (5 Ma). During the chron 6(o) reorganization it appears that a ridge propagated into crust north of the northernmost Pacific-Antarctic Ridge, between the Chiloe fracture zone (FZ) of the Chile ridge and Agassiz FZ of the Pacific-Nazca ridge, which resulted in a northward jump of the Pacific-Antarctic-Nazca (PAC-ANT-NAZ) mid-ocean triple junction. During the chron 5A reorganization the Chile ridge propagated northward from the Valdivia FZ system to the Challenger FZ, through lithosphere formed roughly 5 Myr earlier at the Pacific-Nazca ridge. During this reorganization a short-lived microplate (the Friday microplate) existed at the PAC-ANT-NAZ triple junction. The PAC-ANT-NAZ triple junction jumped northward 500 km as a result of this reorganization, from a location along the Valdivia FZ to a location along the Challenger FZ. The chron 5A reorganization also included a change in spreading direction of the Chile and Pacific-Antarctic ridges. The reorganization at chron 3(o) initiated the formation of the Juan Fernandez and Easter microplates along the East Pacific rise. The manner of plate boundary reorganization at chron 6(o) and chron 5A (and possibly today at the Juan Fernandez microplate) included a sequence of rift propagation, transfer of lithosphere from one plate to another, microplate formation, and microplate abandonment and resulted in northward migration of the PAC-ANT-NAZ triple junction. The associated microplate differs from previously studied microplates in that there is no failed ridge.

  14. Reorganization of interaction networks modulates the persistence of species in late successional stages.

    PubMed

    Saavedra, Serguei; Cenci, Simone; Del-Val, Ek; Boege, Karina; Rohr, Rudolf P

    2017-09-01

    Ecological interaction networks constantly reorganize as interspecific interactions change across successional stages and environmental gradients. This reorganization can also be associated with the extent to which species change their preference for types of niches available in their local sites. Despite the pervasiveness of these interaction changes, previous studies have revealed that network reorganizations have a minimal or insignificant effect on global descriptors of network architecture, such as connectance, modularity and nestedness. However, little is known about whether these reorganizations may have an effect on community dynamics and composition. To answer the question above, we study the multi-year dynamics and reorganization of plant-herbivore interaction networks across secondary successional stages of a tropical dry forest. We develop new quantitative tools based on a structural stability approach to estimate the potential impact of network reorganization on species persistence. Then, we investigate whether this impact can explain the likelihood of persistence of herbivore species in the observed communities. We find that resident (early-arriving) herbivore species increase their likelihood of persistence across time and successional stages. Importantly, we demonstrate that, in late successional stages, the reorganization of interactions among resident species has a strong inhibitory effect on the likelihood of persistence of colonizing (late-arriving) herbivores. These findings support earlier predictions suggesting that, in mature communities, changes of species interactions can act as community-control mechanisms (also known as priority effects). Furthermore, our results illustrate that the dynamics and composition of ecological communities cannot be fully understood without attention to their reorganization processes, despite the invariability of global network properties. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  15. Signaling at the Golgi During Mitosis

    PubMed Central

    Colanzi, Antonino; Sütterlin, Christine

    2014-01-01

    The Golgi complex of mammalian cells is composed of interconnected stacks of flattened cisternae that form a continuous membrane system in the pericentriolar region of the cell. At the onset of mitosis, this so-called Golgi ribbon is converted into small tubular–vesicular clusters in a tightly regulated fragmentation process, which leads to a temporary loss of the physical Golgi–centrosome proximity. Mitotic Golgi breakdown is required for Golgi partitioning into the two daughter cells, cell cycle progression and may contribute to the dispersal of Golgi-associated signaling molecules. Here, we review our current understanding of the mechanisms that control mitotic Golgi reorganization, its biological significance, and assays that are used to study this process. PMID:24295319

  16. Cell death and morphogenesis during early mouse development: Are they interconnected?

    PubMed Central

    Bedzhov, Ivan; Zernicka-Goetz, Magdalena

    2015-01-01

    Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. PMID:25640415

  17. Bidirectional reflection functions from surface bump maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabral, B.; Max, N.; Springmeyer, R.

    1987-04-29

    The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating themore » integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.« less

  18. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    PubMed

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  19. Massive cortical reorganization in sighted Braille readers

    PubMed Central

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-01-01

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills. DOI: http://dx.doi.org/10.7554/eLife.10762.001 PMID:26976813

  20. Improvement in Direct Methanol Fuel Cell Performance by Treating the Anode at High Anodic Potential

    DTIC Science & Technology

    2014-01-01

    stripping voltammetryReorganization of Na? on ionomer Prabhuram Joghee, Svitlana Pylypenko, Kevin Wood , April Corpuz, Guido Bender, Huyen N. Dinh...methanol fuel cell performance by treating the anode at high anodic potential Prabhuram Joghee a,*, Svitlana Pylypenko a,b, Kevin Wood a, April Corpuz c...References [1] B. McNicol, D.A.J. Rand, K.R. Williams, J. Power Sources 83 (1999) 15e31. [2] K. Scot , W.M. Taama, J. Power Sources 79 (1999) 43e59. [3] P

  1. Lansing Community College Reorganization Overview Document.

    ERIC Educational Resources Information Center

    Lansing Community Coll., MI.

    In response to an unstable economy and diminishing resources, Lansing Community College, in Michigan, initiated a college-wide reorganization in July 1993 to improve institutional effectiveness and increase efficiency. This paper provides a description of the reorganization process and organizational structure before and after the change. First, a…

  2. Receptor signaling clusters in the immune synapse(in eng)

    DOE PAGES

    Dustin, Michael L.; Groves, Jay T.

    2012-02-23

    Signaling processes between various immune cells involve large-scale spatial reorganization of receptors and signaling molecules within the cell-cell junction. These structures, now collectively referred to as immune synapses, interleave physical and mechanical processes with the cascades of chemical reactions that constitute signal transduction systems. Molecular level clustering, spatial exclusion, and long-range directed transport are all emerging as key regulatory mechanisms. The study of these processes is drawing researchers from physical sciences to join the effort and represents a rapidly growing branch of biophysical chemistry. Furthermore, recent advances in physical and quantitative analyses of signaling within the immune synapses are reviewedmore » here.« less

  3. Receptor signaling clusters in the immune synapse (in eng)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dustin, Michael L.; Groves, Jay T.

    2012-02-23

    Signaling processes between various immune cells involve large-scale spatial reorganization of receptors and signaling molecules within the cell-cell junction. These structures, now collectively referred to as immune synapses, interleave physical and mechanical processes with the cascades of chemical reactions that constitute signal transduction systems. Molecular level clustering, spatial exclusion, and long-range directed transport are all emerging as key regulatory mechanisms. The study of these processes is drawing researchers from physical sciences to join the effort and represents a rapidly growing branch of biophysical chemistry. Furthermore, recent advances in physical and quantitative analyses of signaling within the immune synapses are reviewedmore » here.« less

  4. Rho-guanine nucleotide exchange factors during development

    PubMed Central

    Mulinari, Shai

    2010-01-01

    The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems. PMID:21686118

  5. Mechanisms-based viscoplasticity: Theoretical approach and experimental validation for steel 304L

    PubMed Central

    Zubelewicz, Aleksander; Oliferuk, Wiera

    2016-01-01

    We propose a mechanisms-based viscoplasticity approach for metals and alloys. First, we derive a stochastic model for thermally-activated motion of dislocations and, then, introduce power-law flow rules. The overall plastic deformation includes local plastic slip events taken with an appropriate weight assigned to each angle of the plane misorientation from the direction of maximum shear stress. As deformation progresses, the material experiences successive reorganizations of the slip systems. The microstructural evolution causes that a portion of energy expended on plastic deformation is dissipated and the rest is stored in the defect structures. We show that the reorganizations are stable in a homogeneously deformed material. The concept is tested for steel 304L, where we reproduce experimentally obtained stress-strain responses, we construct the Frost-Ashby deformation map and predict the rate of the energy storage. The storage is assessed in terms of synchronized measurements of temperature and displacement distributions on the specimen surface during tensile loading. PMID:27026209

  6. 76 FR 70704 - Foreign-Trade Zone 87-Lake Charles, LA; Application for Reorganization/Expansion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... Charles, LA; Application for Reorganization/Expansion An application has been submitted to the Foreign-Trade Zones Board (the Board) by the Lake Charles Harbor & Terminal District, grantee of FTZ 87, requesting authority to reorganize and expand the zone in Lake Charles. The application was submitted...

  7. 7 CFR 1786.163 - Existing wholesale power contracts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... borrower and the Administrator, take or suffer to be taken any steps for reorganization or dissolution, or..., reorganization, dissolution, consolidation, or merger, or to any such sale, lease or transfer (or any agreement..., the borrower may take or suffer to be taken any steps for reorganization or dissolution or to...

  8. 7 CFR 1786.163 - Existing wholesale power contracts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... borrower and the Administrator, take or suffer to be taken any steps for reorganization or dissolution, or..., reorganization, dissolution, consolidation, or merger, or to any such sale, lease or transfer (or any agreement..., the borrower may take or suffer to be taken any steps for reorganization or dissolution or to...

  9. 7 CFR 1786.163 - Existing wholesale power contracts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... borrower and the Administrator, take or suffer to be taken any steps for reorganization or dissolution, or..., reorganization, dissolution, consolidation, or merger, or to any such sale, lease or transfer (or any agreement..., the borrower may take or suffer to be taken any steps for reorganization or dissolution or to...

  10. 26 CFR 1.585-4 - Reorganizations and asset acquisitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Reorganizations and asset acquisitions. 1.585-4 Section 1.585-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Banking Institutions § 1.585-4 Reorganizations and asset...

  11. 29 CFR 24.111 - Withdrawal of complaints, objections, and findings; settlement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Energy Reorganization Act, the Clean Air Act, the Safe Drinking Water Act, or the Toxic Substances... under the Energy Reorganization Act, the Clean Air Act, the Safe Drinking Water Act, and the Toxic... withdrawal. If the objections are withdrawn because of settlement under the Energy Reorganization Act, the...

  12. 29 CFR Appendix A to Part 24 - Your Rights Under the Energy Reorganization Act

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Your Rights Under the Energy Reorganization Act A Appendix A to Part 24 Labor Office of the Secretary of Labor PROCEDURES FOR THE HANDLING OF RETALIATION... the Energy Reorganization Act ER10AU07.000 ...

  13. A New Strategy to Reduce Influenza Escape: Detecting Therapeutic Targets Constituted of Invariance Groups

    PubMed Central

    Lao, Julie; Vanet, Anne

    2017-01-01

    The pathogenicity of the different flu species is a real public health problem worldwide. To combat this scourge, we established a method to detect drug targets, reducing the possibility of escape. Besides being able to attach a drug candidate, these targets should have the main characteristic of being part of an essential viral function. The invariance groups that are sets of residues bearing an essential function can be detected genetically. They consist of invariant and synthetic lethal residues (interdependent residues not varying or slightly varying when together). We analyzed an alignment of more than 10,000 hemagglutinin sequences of influenza to detect six invariance groups, close in space, and on the protein surface. In parallel we identified five potential pockets on the surface of hemagglutinin. By combining these results, three potential binding sites were determined that are composed of invariance groups located respectively in the vestigial esterase domain, in the bottom of the stem and in the fusion area. The latter target is constituted of residues involved in the spring-loaded mechanism, an essential step in the fusion process. We propose a model describing how this potential target could block the reorganization of the hemagglutinin HA2 secondary structure and prevent viral entry into the host cell. PMID:28257108

  14. Bioresponsive antisense DNA gold nanobeacons as a hybrid in vivo theranostics platform for the inhibition of cancer cells and metastasis

    NASA Astrophysics Data System (ADS)

    Bao, Chenchen; Conde, João; Curtin, James; Artzi, Natalie; Tian, Furong; Cui, Daxiang

    2015-07-01

    Gold nanobeacons can be used as a powerful tool for cancer theranostics. Here, we proposed a nanomaterial platform based on gold nanobeacons to detect, target and inhibit the expression of a mutant Kras gene in an in vivo murine gastric cancer model. The conjugation of fluorescently-labeled antisense DNA hairpin oligonucleotides to the surface of gold nanoparticles enables using their localized surface plasmon resonance properties to directly track the delivery to the primary gastric tumor and to lung metastatic sites. The fluorescently labeled nanobeacons reports on the interaction with the target as the fluorescent Cy3 signal is quenched by the gold nanoparticle and only emit light following conjugation to the Kras target owing to reorganization and opening of the nanobeacons, thus increasing the distance between the dye and the quencher. The systemic administration of the anti-Kras nanobeacons resulted in approximately 60% tumor size reduction and a 90% reduction in tumor vascularization. More important, the inhibition of the Kras gene expression in gastric tumors prevents the occurrence of metastasis to lung (80% reduction), increasing mice survival in more than 85%. Our developed platform can be easily adjusted to hybridize with any specific target and provide facile diagnosis and treatment for neoplastic diseases.

  15. Pdsg1 and Pdsg2, Novel Proteins Involved in Developmental Genome Remodelling in Paramecium

    PubMed Central

    Hoehener, Cristina; Singh, Aditi; Swart, Estienne C.; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization. PMID:25397898

  16. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium.

    PubMed

    Arambasic, Miroslav; Sandoval, Pamela Y; Hoehener, Cristina; Singh, Aditi; Swart, Estienne C; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.

  17. Ezrin is down-regulated in diabetic kidney glomeruli and regulates actin reorganization and glucose uptake via GLUT1 in cultured podocytes.

    PubMed

    Wasik, Anita A; Koskelainen, Susanna; Hyvönen, Mervi E; Musante, Luca; Lehtonen, Eero; Koskenniemi, Kerttu; Tienari, Jukka; Vaheri, Antti; Kerjaschki, Dontscho; Szalay, Csaba; Révész, Csaba; Varmanen, Pekka; Nyman, Tuula A; Hamar, Peter; Holthöfer, Harry; Lehtonen, Sanna

    2014-06-01

    Diabetic nephropathy is a complication of diabetes and a major cause of end-stage renal disease. To characterize the early pathophysiological mechanisms leading to glomerular podocyte injury in diabetic nephropathy, we performed quantitative proteomic profiling of glomeruli isolated from rats with streptozotocin-induced diabetes and controls. Fluorescence-based two-dimensional difference gel electrophoresis, coupled with mass spectrometry, identified 29 differentially expressed spots, including actin-binding protein ezrin and its interaction partner, NHERF2, which were down-regulated in the streptozotocin group. Knockdown of ezrin by siRNA in cultured podocytes increased glucose uptake compared with control siRNA-transfected cells, apparently by increasing translocation of glucose transporter GLUT1 to the plasma membrane. Knockdown of ezrin also induced actin remodeling under basal conditions, but reduced insulin-stimulated actin reorganization. Ezrin-dependent actin remodeling involved cofilin-1 that is essential for the turnover and reorganization of actin filaments. Phosphorylated, inactive cofilin-1 was up-regulated in diabetic glomeruli, suggesting altered actin dynamics. Furthermore, IHC analysis revealed reduced expression of ezrin in the podocytes of patients with diabetes. Our findings suggest that ezrin may play a role in the development of the renal complication in diabetes by regulating transport of glucose and organization of the actin cytoskeleton in podocytes. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction.

    PubMed

    Yang, Chao-Yie; Sun, Haiying; Chen, Jianyong; Nikolovska-Coleska, Zaneta; Wang, Shaomeng

    2009-09-30

    Accurate prediction of the binding affinities of small-molecule ligands to their biological targets is fundamental for structure-based drug design but remains a very challenging task. In this paper, we have performed computational studies to predict the binding models of 31 small-molecule Smac (the second mitochondria-derived activator of caspase) mimetics to their target, the XIAP (X-linked inhibitor of apoptosis) protein, and their binding affinities. Our results showed that computational docking was able to reliably predict the binding models, as confirmed by experimentally determined crystal structures of some Smac mimetics complexed with XIAP. However, all the computational methods we have tested, including an empirical scoring function, two knowledge-based scoring functions, and MM-GBSA (molecular mechanics and generalized Born surface area), yield poor to modest prediction for binding affinities. The linear correlation coefficient (r(2)) value between the predicted affinities and the experimentally determined affinities was found to be between 0.21 and 0.36. Inclusion of ensemble protein-ligand conformations obtained from molecular dynamic simulations did not significantly improve the prediction. However, major improvement was achieved when the free-energy change for ligands between their free- and bound-states, or "ligand-reorganization free energy", was included in the MM-GBSA calculation, and the r(2) value increased from 0.36 to 0.66. The prediction was validated using 10 additional Smac mimetics designed and evaluated by an independent group. This study demonstrates that ligand reorganization free energy plays an important role in the overall binding free energy between Smac mimetics and XIAP. This term should be evaluated for other ligand-protein systems and included in the development of new scoring functions. To our best knowledge, this is the first computational study to demonstrate the importance of ligand reorganization free energy for the prediction of protein-ligand binding free energy.

  19. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity

    NASA Astrophysics Data System (ADS)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan

    2016-07-01

    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular cells reveal signs of destruction. Thus it was found that number of the alkaline phosphatase containing cells (i.e. osteogenic cells) declines in perivascular cells population. It is one of the mechanisms of the osteogenic process decrease of intensity in bones because of lessening support loading on the bone skeleton. In the adaptive remodeling zones of bone tissue (near the vascular canals) in experiments fibroblasts and fibrosis zones were found - areas filled with non-mineralized collagen fibrils on the bones surfaces. Hence it should be considered that decrease (removal) of support loading slows down osteogenic differentiation of the part of perivascular cells and stimulates differentiation of the fibroblast cells. Obtained data is considered as one of the cellular mechanisms of the adaptive reactions development in spongy bone under microgravity which could lead to the bone mass loss.

  20. [Structural reorganization and change in the lipid composition of rat liver microsomes in chlorophos poisoning].

    PubMed

    Boldeskul, A E; Gubskiĭ, Iu I; Mel'nik, A A; Fal'kovskaia, E N

    1993-01-01

    The influence of chlorophos on the endoplasmatic reticulum of rat liver has been studied using the methods of gas-liquid chromatography and fluorescence. Experiments have demonstrated an increase of lysophosphatidylethanolamine, total phospholipids, unsaturated fatty acids (C20:4 n6, C18:1 n11, C18:1 n7) and a decrease of phosphatidylserine and phosphatidylethanolamine. Changes in microviscosity and surface charge were also shown.

  1. Vasopressin Receptor Signaling and Cycling of Water Channels in Renal Epithelia (HBC)

    DTIC Science & Technology

    1993-08-27

    in the cellular ultrastructure that results in mucosal membrane reorganization to numerous microvilli from the normal phase of microridges ( DiBona ...a restructuring of the apical membrane microridges into numerous microvilli with an increase in membrane surface area ( DiBona , 1981; DiBona et aL...markers in freeze-fracture studies of toad urinary bladder. J. Histochem. Cytochem., 35, 1405-1414. DiBona , D.R. 1981. Vasopressin action on the

  2. Origin of dislocation luminescence centers and their reorganization in p-type silicon crystal subjected to plastic deformation and high temperature annealing.

    PubMed

    Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro

    2017-12-01

    Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4  cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.

  3. Fluorescence imaging analysis of taxol-induced ASTC-a-1 cell death with cell swelling and cytoplasmic vacuolization

    NASA Astrophysics Data System (ADS)

    Chen, Tong-sheng; Sun, Lei; Wang, Longxiang; Wang, Huiying

    2008-02-01

    Taxol (Paclitaxel), an isolated component from the bark of the Pacific yew Taxus brevifolia, exhibits a broad spectrum of clinical activity against human cancers. Taxol can promote microtubule (MT) assembly, inhibit depolymerization, and change MT dynamics, resulting in disruption of the normal reorganization of the microtubule network required for mitosis and cell proliferation. However, the molecular mechanism of taxol-induced cell death is still unclear. In this report, CCK-8 was used to assay the inhibition of taxol on the human lung adenocarcinoma (ASTC-a-1) cells viability, confocal fluorescence microscope was used to monitor the morphology changes of cells with taxol treatment. We for the first time describe the characteristics of taxol-induced cells swelling, cytoplasmic vacuolization and cell death. Taxol induced swelling, cytoplasmatic vacuolization and cell death without cell shrinkage and membrane rupture. These features differ from those of apoptosis and resemble the paraptosis, a novel nonapoptotic PCD.

  4. Plasticity in adult cat visual cortex (area 17) following circumscribed monocular lesions of all retinal layers

    PubMed Central

    Calford, M B; Wang, C; Taglianetti, V; Waleszczyk, W J; Burke, W; Dreher, B

    2000-01-01

    In eight adult cats intense, sharply circumscribed, monocular laser lesions were used to remove all cellular layers of the retina. The extents of the retinal lesions were subsequently confirmed with counts of α-ganglion cells in retinal whole mounts; in some cases these revealed radial segmental degeneration of ganglion cells distal to the lesion.Two to 24 weeks later, area 17 (striate cortex; V1) was studied electrophysiologically in a standard anaesthetized, paralysed (artificially respired) preparation. Recording single- or multineurone activity revealed extensive topographical reorganization within the lesion projection zone (LPZ).Thus, with stimulation of the lesioned eye, about 75 % of single neurones in the LPZ had ‘ectopic’ visual discharge fields which were displaced to normal retina in the immediate vicinity of the lesion.The sizes of the ectopic discharge fields were not significantly different from the sizes of the normal discharge fields. Furthermore, binocular cells recorded from the LPZ, when stimulated via their ectopic receptive fields, exhibited orientation tuning and preferred stimulus velocities which were indistinguishable from those found when the cells were stimulated via the normal eye.However, the responses to stimuli presented via ectopic discharge fields were generally weaker (lower peak discharge rates) than those to presentations via normal discharge fields, and were characterized by a lower-than-normal upper velocity limit.Overall, the properties of the ectopic receptive fields indicate that cortical mechanisms rather than a retinal ‘periphery’ effect underlie the topographic reorganization of area 17 following monocular retinal lesions. PMID:10767137

  5. Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-κB signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Shawn S.; Medical Scientist Training Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705; Cellular and Molecular Biology Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705

    2015-02-01

    The NF-κB family of transcription factors regulates numerous cellular processes, including cell proliferation and survival responses. The constitutive activation of NF-κB has also emerged as an important oncogenic driver in many malignancies, such as activated B-cell like diffuse large B cell lymphoma, among others. In this study, we investigated the impact and mechanisms of action of Withaferin A, a naturally produced steroidal lactone, against both signal-inducible as well as constitutive NF-κB activities. We found that Withaferin A is a robust inhibitor of canonical and constitutive NF-κB activities, leading to apoptosis of certain lymphoma lines. In the canonical pathway induced bymore » TNF, Withaferin A did not disrupt RIP1 polyubiquitination or NEMO–IKKβ interaction and was a poor direct IKKβ inhibitor, but prevented the formation of TNF-induced NEMO foci which colocalized with TNF ligand. While GFP-NEMO efficiently formed TNF-induced foci, a GFP-NEMO{sup Y308S} mutant that is defective in binding to polyubiquitin chains did not form foci. Our study reveals that Withaferin A is a novel type of IKK inhibitor which acts by disrupting NEMO reorganization into ubiquitin-based signaling structures in vivo. - Highlights: • Withaferin A, a NF-κB inhibitor, disrupts signaling induced NEMO localization, a novel point of inhibition. • NEMO can be localized to distinct signaling foci after treatment with TNF. • ABC-type DLCBL cells can be sensitized to apoptosis after treatment with Withaferin A.« less

  6. Effect of gel re-organization and tensional forces on alpha2beta1 integrin levels in dermal fibroblasts.

    PubMed

    Jenkins, G; Redwood, K L; Meadows, L; Green, M R

    1999-07-01

    Mechanical forces are known to play an important role in regulating cell function in a wide range of biological systems. This is of particular relevance to dermal fibroblast function, given that the skin is known to be held under an intrinsic natural tension. To understand more about the generation of force by dermal fibroblasts and their ability to respond to changes in it, we have studied the role of the beta1 integrin receptors expressed by dermal fibroblasts in their ability to generate tensional forces within a collagen type I matrix and the effect of altered tensional force on integrin expression by dermal fibroblasts. Using a purpose-built culture force monitor, function-blocking antibodies directed towards the beta1 receptors dramatically reduced the tensional forces generated by dermal fibroblasts in a 3D collagen I matrix. However, the specific involvement of alpha1 or alpha2 subunits could not be demonstrated. Analysis of cellular response demonstrated that cells isolated from contracting collagen gels expressed fourfold higher levels of alpha2 mRNA than cells isolated from fully restrained gels. The levels of beta1 messenger RNA were relatively unaffected by reductions in force. Cells exposed to single reductions in force, however, did not exhibit alterations in either alpha1 or beta1 mRNA levels. We propose, therefore that alpha2beta1 integrin receptor levels in dermal fibroblasts are not altered in response to single reductions of gel tension, but do change following a continual change in force and associated matrix re-organization

  7. Chemo-mechanical pushing of proteins along single-stranded DNA

    PubMed Central

    Sokoloski, Joshua E.; Kozlov, Alexander G.; Galletto, Roberto; Lohman, Timothy M.

    2016-01-01

    Single-stranded (ss)DNA binding (SSB) proteins bind with high affinity to ssDNA generated during DNA replication, recombination, and repair; however, these SSBs must eventually be displaced from or reorganized along the ssDNA. One potential mechanism for reorganization is for an ssDNA translocase (ATP-dependent motor) to push the SSB along ssDNA. Here we use single molecule total internal reflection fluorescence microscopy to detect such pushing events. When Cy5-labeled Escherichia coli (Ec) SSB is bound to surface-immobilized 3′-Cy3–labeled ssDNA, a fluctuating FRET signal is observed, consistent with random diffusion of SSB along the ssDNA. Addition of Saccharomyces cerevisiae Pif1, a 5′ to 3′ ssDNA translocase, results in the appearance of isolated, irregularly spaced saw-tooth FRET spikes only in the presence of ATP. These FRET spikes result from translocase-induced directional (5′ to 3′) pushing of the SSB toward the 3′ ssDNA end, followed by displacement of the SSB from the DNA end. Similar ATP-dependent pushing events, but in the opposite (3′ to 5′) direction, are observed with EcRep and EcUvrD (both 3′ to 5′ ssDNA translocases). Simulations indicate that these events reflect active pushing by the translocase. The ability of translocases to chemo-mechanically push heterologous SSB proteins along ssDNA provides a potential mechanism for reorganization and clearance of tightly bound SSBs from ssDNA. PMID:27185951

  8. Reorganization of muscle activity in patients with chronic temporomandibular disorders.

    PubMed

    Mapelli, Andrea; Zanandréa Machado, Bárbara Cristina; Giglio, Lucia Dantas; Sforza, Chiarella; De Felício, Cláudia Maria

    2016-12-01

    To investigate whether reorganization of muscle activity occurs in patients with chronic temporomandibular disorders (TMD) and, if so, how it is affected by symptomatology severity. Surface electromyography (sEMG) of masticatory muscles was made in 30 chronic TMD patients, diagnosed with disc displacement with reduction (DDR) and pain. Two 15-patient subgroups, with moderate (TMDmo) and severe (TMDse) signs and symptoms, were compared with a control group of 15 healthy subjects matched by age. The experimental tasks were: a 5s inter-arch maximum voluntary clench (MVC); right and left 15s unilateral gum chewing tests. Standardized sEMG indices characterizing masseter and temporalis muscles activity were calculated, and a comprehensive functional index (FI) was introduced to quantitatively summarize subjects' overall performance. Mastication was also clinically evaluated. During MVC, TMDse patients had a significantly larger asymmetry of temporalis muscles contraction. Both TMD groups showed reduced coordination between masseter and temporalis muscles' maximal contraction, and their muscular activity distribution shifted significantly from masseter to temporalis muscles. During chewing, TMDse patients recruited the balancing side muscles proportionally more than controls, specifically the masseter muscle. When comparing right and left side chewing, the muscles' recruitment pattern resulted less symmetric in TMD patients, especially in TMDse. Overall, the functional index of both TMDmo and TMDse patients was significantly lower than that obtained by controls. Chronic TMD patients, specifically those with severe symptomatology, showed a reorganized activity, mainly resulting in worse functional performances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. School District Reorganization: Can Small Schools Compete? A Position Paper.

    ERIC Educational Resources Information Center

    Mack, David P.; Lederman, Alfred T.

    The following position statements regarding school reorganization are discussed in chapter-by-chapter sequence within the paper: (1) It is the responsibility of all schools, regardless of size, to prepare students adequately to live full and productive lives in a rapidly changing world. (2) In New York State, school district reorganization, while…

  10. 46 CFR 391.8 - Certain corporate reorganizations and changes in partnerships, and certain transfers on death...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Certain corporate reorganizations and changes in..., DEPARTMENT OF TRANSPORTATION REGULATIONS UNDER PUBLIC LAW 91-469 FEDERAL INCOME TAX ASPECTS OF THE CAPITAL CONSTRUCTION FUND § 391.8 Certain corporate reorganizations and changes in partnerships, and certain transfers...

  11. 75 FR 61696 - Foreign-Trade Zone 51-Duluth, MN; Application for Reorganization Under Alternative Site Framework

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 58-2010] Foreign-Trade Zone 51--Duluth... FTZ 51, requesting authority to reorganize the zone under the alternative site framework (ASF) adopted... or reorganizing a general-purpose zone, the application would have no impact on FTZ 51's authorized...

  12. Cut income taxes with reorganization planning.

    PubMed

    Miller, J E

    1985-04-01

    It is necessary to plan when reorganizing a corporate structure, to minimize taxes at the tax-exempt parent organization level and avoid unexpected tax consequences at year-end. With an awareness of the income tax rules, proper debt structuring during the reorganization phase is possible and should enable the financial manager to minimize total income tax.

  13. 76 FR 67407 - Reorganization of Foreign-Trade Zone 37 (Expansion of Service Area) Under Alternative Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1796] Reorganization of Foreign-Trade Zone 37 (Expansion of Service Area) Under Alternative Site Framework Orange County, NY Pursuant to its.../10) as an option for the establishment or reorganization of general-purpose zones; Whereas, Orange...

  14. 5 CFR 890.504 - Disposition of contingency reserves upon reorganization or merger of plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Disposition of contingency reserves upon reorganization or merger of plans. 890.504 Section 890.504 Administrative Personnel OFFICE OF PERSONNEL... Contributions and Withholdings § 890.504 Disposition of contingency reserves upon reorganization or merger of...

  15. Internalization of titanium dioxide nanoparticles by glial cells is given at short times and is mainly mediated by actin reorganization-dependent endocytosis.

    PubMed

    Huerta-García, Elizabeth; Márquez-Ramírez, Sandra Gissela; Ramos-Godinez, María Del Pilar; López-Saavedra, Alejandro; Herrera, Luis Alonso; Parra, Alberto; Alfaro-Moreno, Ernesto; Gómez, Erika Olivia; López-Marure, Rebeca

    2015-12-01

    Many nanoparticles (NPs) have toxic effects on multiple cell lines. This toxicity is assumed to be related to their accumulation within cells. However, the process of internalization of NPs has not yet been fully characterized. In this study, the cellular uptake, accumulation, and localization of titanium dioxide nanoparticles (TiO2 NPs) in rat (C6) and human (U373) glial cells were analyzed using time-lapse microscopy (TLM) and transmission electron microscopy (TEM). Cytochalasin D (Cyt-D) was used to evaluate whether the internalization process depends of actin reorganization. To determine whether the NP uptake is mediated by phagocytosis or macropinocytosis, nitroblue tetrazolium (NBT) reduction was measured and the 5-(N-ethyl-N-isopropyl)-amiloride was used. Expression of proteins involved with endocytosis and exocytosis such as caveolin-1 (Cav-1) and cysteine string proteins (CSPs) was also determined using flow cytometry. TiO2 NPs were taken up by both cell types, were bound to cellular membranes and were internalized at very short times after exposure (C6, 30 min; U373, 2h). During the uptake process, the formation of pseudopodia and intracellular vesicles was observed, indicating that this process was mediated by endocytosis. No specific localization of TiO2 NPs into particular organelles was found: in contrast, they were primarily localized into large vesicles in the cytoplasm. Internalization of TiO2 NPs was strongly inhibited by Cyt-D in both cells and by amiloride in U373 cells; besides, the observed endocytosis was not associated with NBT reduction in either cell type, indicating that macropinocytosis is the main process of internalization in U373 cells. In addition, increases in the expression of Cav-1 protein and CSPs were observed. In conclusion, glial cells are able to internalize TiO2 NPs by a constitutive endocytic mechanism which may be associated with their strong cytotoxic effect in these cells; therefore, TiO2 NPs internalization and their accumulation in brain cells could be dangerous to human health. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Surfing along Filopodia: A Particle Transport Revealed by Molecular-Scale Fluctuation Analyses

    PubMed Central

    Kohler, Felix; Rohrbach, Alexander

    2015-01-01

    Filopodia perform cellular functions such as environmental sensing or cell motility, but they also grab for particles and withdraw them leading to an increased efficiency of phagocytic uptake. Remarkably, withdrawal of micron-sized particles is also possible without noticeable movements of the filopodia. Here, we demonstrate that polystyrene beads connected by optical tweezers to the ends of adherent filopodia of J774 macrophages, are transported discontinuously toward the cell body. After a typical resting time of 1–2 min, the cargo is moved with alternating velocities, force constants, and friction constants along the surface of the filopodia. This surfing-like behavior along the filopodium is recorded by feedback-controlled interferometric three-dimensional tracking of the bead motions at 10–100 kHz. We measured transport velocities of up to 120 nm/s and transport forces of ∼70 pN. Small changes in position, fluctuation width, and temporal correlation, which are invisible in conventional microscopy, indicate molecular reorganization of transport-relevant proteins in different phases of the entire transport process. A detailed analysis implicates a controlled particle transport with fingerprints of a nanoscale unbinding/binding behavior. The manipulation and analysis methods presented in our study may also be helpful in other fields of cellular biophysics. PMID:25954870

  17. Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere.

    PubMed

    Balsanelli, Eduardo; Tadra-Sfeir, Michelle Z; Faoro, Helisson; Pankievicz, Vânia Cs; de Baura, Valter A; Pedrosa, Fábio O; de Souza, Emanuel M; Dixon, Ray; Monteiro, Rose A

    2016-09-01

    Molecular mechanisms of plant recognition and colonization by diazotrophic bacteria are barely understood. Herbaspirillum seropedicae is a Betaproteobacterium capable of colonizing epiphytically and endophytically commercial grasses, to promote plant growth. In this study, we utilized RNA-seq to compare the transcriptional profiles of planktonic and maize root-attached H. seropedicae SmR1 recovered 1 and 3 days after inoculation. The results indicated that nitrogen metabolism was strongly activated in the rhizosphere and polyhydroxybutyrate storage was mobilized in order to assist the survival of H. seropedicae during the early stages of colonization. Epiphytic cells showed altered transcription levels of several genes associated with polysaccharide biosynthesis, peptidoglycan turnover and outer membrane protein biosynthesis, suggesting reorganization of cell wall envelope components. Specific methyl-accepting chemotaxis proteins and two-component systems were differentially expressed between populations over time, suggesting deployment of an extensive bacterial sensory system for adaptation to the plant environment. An insertion mutation inactivating a methyl-accepting chemosensor induced in planktonic bacteria, decreased chemotaxis towards the plant and attachment to roots. In summary, analysis of mutant strains combined with transcript profiling revealed several molecular adaptations that enable H. seropedicae to sense the plant environment, attach to the root surface and survive during the early stages of maize colonization. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. In-situ observation of switchable nanoscale topography for y-shaped binary brushes in fluids.

    PubMed

    Lin, Yen-Hsi; Teng, Jing; Zubarev, Eugene R; Shulha, Hennady; Tsukruk, Vladimir V

    2005-03-01

    Direct, in-fluid observation of the surface morphology and nanomechanical properties of the mixed brushes composed of Y-shaped binary molecules PS-PAA revealed nanoscale network-like surface topography formed by coexisting stretched soluble PAA arms and collapsed insoluble PS chains in water. Placement of Y-shaped brushes in different fluids resulted in dramatic reorganization ranging from soft repellent layer covered by swollen PS arms in toluene to an adhesive, mixed layer composed of coexisting swollen PAA and collapsed PS arms in water. These binary layers with the overall nanoscale thickness can serve as adaptive nanocoatings with stimuli-responsive properties.

  19. Spreading and contraction in phagocytosis: The role of actin organization and curvature

    NASA Astrophysics Data System (ADS)

    Curtis, Jennifer E.

    Phagocytosis is the process used by immune cells to engulf and remove foreign objects from the body. The engulfment is realized by the formation of an actin-driven `phagocytic cup' of the cell membrane, which quickly crawls up and then surrounds the object via constriction. In this study, we resolve the paradox of how actin-driven protrusion of the plasma membrane can co-exist with a contractile actin belt proposed to mechanically-drive the closure of the phagocytic cup. To do this we quantitatively assessed macrophage phagocytic behavior in a planar geometry, a process known as frustrated phagocytosis. Our results reveal that phagocytosis occurs in a binary manner, such that once it is initiated, frustrated phagocytosis proceeds at a prescribed rate, resulting in peak contact areas that correspond to a roughly 225% increase in apparent cell surface area. Upon reaching their maximum area, the majority of macrophages enter a period of late-stage contraction. During the contraction phase, cells exert significant stress on the underlying substrate. Contraction also corresponds with dramatic reorganization of the F-actin cytoskeleton, in particular the formation of a bundled contractile belt around the cell perimeter. In contrast to other studies of phagocytosis, our work definitively illustrates that whatever signals trigger late-stage phagocytic contraction must be independent of particle size and curvature. Mounting evidence suggests that membrane tension is involved in late-stage signaling. The idea that tension is linked to late-stage contraction is reinforced by our finding that the peak-contact area roughly corresponds to the area threshold that results in increased cortical tension, as measured by Lam et al., and that reducing tension through hypertonic buffer shock enables the cells to spread further before the onset of contraction. Supported by NSF Grants #PHYS-0848797 and SRN-POLS 1205878.

  20. Collective cell migration during inflammatory response

    NASA Astrophysics Data System (ADS)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  1. Cell death and morphogenesis during early mouse development: are they interconnected?

    PubMed

    Bedzhov, Ivan; Zernicka-Goetz, Magdalena

    2015-04-01

    Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. © 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

  2. Low energy positrons as probes of reconstructed semiconductor surfaces.

    NASA Astrophysics Data System (ADS)

    Fazleev, Nail G.; Weiss, Alex H.

    2007-03-01

    Positron probes of semiconductor surfaces that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of the reconstructed Si(100), Si(111), Ge(100), and Ge(111) surfaces, clean and exposed to hydrogen and oxygen, using a surface characterization technique, Positron-Annihilation-Induced Auger-Electron Spectroscopy (PAES). Experimental PAES results are analyzed by performing first-principles calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons for the reconstructed surfaces, taking into account discrete lattice effects, the electronic reorganization due to bonding, and charge redistribution effects at the surface. Effects of the hydrogen and oxygen adsorption on semiconductor surfaces on localization of positron surface state wave functions and annihilation characteristics are also analyzed. Theoretical calculations confirm that PAES intensities, which are proportional to annihilation probabilities of the surface trapped positrons that results in a core hole, are sensitive to the crystal face, surface structure and elemental content of the semiconductors.

  3. Engrams and Circuits Crucial for Systems Consolidation of a Memory

    PubMed Central

    Kitamura, Takashi; Ogawa, Sachie K.; Roy, Dheeraj S.; Okuyama, Teruhiro; Morrissey, Mark D.; Smith, Lillian M.; Redondo, Roger L.; Tonegawa, Susumu

    2017-01-01

    Episodic memories initially require rapid synaptic plasticity within the hippocampus for their formation and are gradually consolidated in neocortical networks for permanent storage. However, the engrams and circuits that support neocortical memory consolidation remain unknown. We found that neocortical prefrontal memory engram cells, critical for remote contextual fear memory, were rapidly generated during initial learning via inputs from both hippocampal-entorhinal cortex and basolateral amygdala. After their generation, the prefrontal engram cells, with support from hippocampal memory engram cells, became functionally mature with time. Whereas hippocampal engram cells gradually became silent with time, engram cells in the basolateral amygdala, which were necessary for fear memory, are maintained. Our data provide new insights into the functional reorganization of engrams and circuits underlying systems consolidation of memory. PMID:28386011

  4. Lysophosphatidylinositol-induced activation of the cation channel TRPV2 triggers glucagon-like peptide-1 secretion in enteroendocrine L cells.

    PubMed

    Harada, Kazuki; Kitaguchi, Tetsuya; Kamiya, Taichi; Aung, Kyaw Htet; Nakamura, Kazuaki; Ohta, Kunihiro; Tsuboi, Takashi

    2017-06-30

    The lysophosphatidylinositol (LPI) has crucial roles in multiple physiological processes, including insulin exocytosis from pancreatic islets. However, the role of LPI in secretion of glucagon-like peptide-1 (GLP-1), a hormone that enhances glucose-induced insulin secretion, is unclear. Here, we used the murine enteroendocrine L cell line GLUTag and primary murine small intestinal cells to elucidate the mechanism of LPI-induced GLP-1 secretion. Exogenous LPI addition increased intracellular Ca 2+ concentrations ([Ca 2+ ] i ) in GLUTag cells and induced GLP-1 secretion from both GLUTag and acutely prepared primary intestinal cells. The [Ca 2+ ] i increase was suppressed by an antagonist for G protein-coupled receptor 55 (GPR55) and by silencing of GPR55 expression, indicating involvement of G q and G 12/13 signaling pathways in the LPI-induced increased [Ca 2+ ] i levels and GLP-1 secretion. However, GPR55 agonists did not mimic many of the effects of LPI. We also found that phospholipase C inhibitor and Rho-associated kinase inhibitor suppressed the [Ca 2+ ] i increase and that LPI increased the number of focal adhesions, indicating actin reorganization. Of note, blockage or silencing of transient receptor potential cation channel subfamily V member 2 (TRPV2) channels suppressed both the LPI-induced [Ca 2+ ] i increase and GLP-1 secretion. Furthermore, LPI accelerated TRPV2 translocation to the plasma membrane, which was significantly suppressed by a GPR55 antagonist. These findings suggest that TRPV2 activation via actin reorganization induced by G q and G 12/13 signaling is involved in LPI-stimulated GLP-1 secretion in enteroendocrine L cells. Because GPR55 agonists largely failed to mimic the effects of LPI, its actions on L cells are at least partially independent of GPR55 activation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. 75 FR 4355 - Reorganization of Foreign-Trade Zone 39 Under Alternative Site Framework Dallas/Fort Worth, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... Zone 39 Under Alternative Site Framework Dallas/Fort Worth, TX Pursuant to its authority under the... establishment or reorganization of general-purpose zones; Whereas, the Dallas/Fort Worth International Airport..., filed 7/17/2009) for authority to reorganize under the ASF with a service area of Dallas, Tarrant...

  6. 29 CFR 24.111 - Withdrawal of complaints, objections, and petitions for review; settlement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... settlement under the Energy Reorganization Act, the Clean Air Act, the Safe Drinking Water Act, or the Toxic... withdrawn because of settlement under the Energy Reorganization Act, the Clean Air Act, the Safe Drinking... AND SECTION 211 OF THE ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Miscellaneous Provisions § 24.111...

  7. 29 CFR 24.111 - Withdrawal of complaints, objections, and petitions for review; settlement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... settlement under the Energy Reorganization Act, the Clean Air Act, the Safe Drinking Water Act, or the Toxic... withdrawn because of settlement under the Energy Reorganization Act, the Clean Air Act, the Safe Drinking... AND SECTION 211 OF THE ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Miscellaneous Provisions § 24.111...

  8. 29 CFR 24.111 - Withdrawal of complaints, objections, and petitions for review; settlement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... settlement under the Energy Reorganization Act, the Clean Air Act, the Safe Drinking Water Act, or the Toxic... withdrawn because of settlement under the Energy Reorganization Act, the Clean Air Act, the Safe Drinking... AND SECTION 211 OF THE ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Miscellaneous Provisions § 24.111...

  9. 29 CFR 24.111 - Withdrawal of complaints, objections, and petitions for review; settlement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... settlement under the Energy Reorganization Act, the Clean Air Act, the Safe Drinking Water Act, or the Toxic... withdrawn because of settlement under the Energy Reorganization Act, the Clean Air Act, the Safe Drinking... AND SECTION 211 OF THE ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Miscellaneous Provisions § 24.111...

  10. 26 CFR 1.368-3 - Records to be kept and information to be filed with returns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... such parties; (2) The date of the reorganization; (3) The aggregate fair market value and basis, determined immediately before the exchange, of the assets, stock or securities of the target corporation... all of the parties to the reorganization; (2) The date of the reorganization; and (3) The fair market...

  11. 78 FR 73823 - Foreign-Trade Zone 62-Brownsville, Texas; Application for Reorganization Under Alternative Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-103-2013] Foreign-Trade Zone 62--Brownsville, Texas; Application for Reorganization Under Alternative Site Framework An application has been submitted to the Foreign-Trade Zones (FTZ) Board by the Brownsville Navigation District, grantee of FTZ 62, requesting authority to reorganize the zone...

  12. 78 FR 59914 - Foreign-Trade Zone 160-Anchorage, Alaska; Application for Reorganization Under Alternative Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-87-2013] Foreign-Trade Zone 160--Anchorage, Alaska; Application for Reorganization Under Alternative Site Framework An application has been submitted to the Foreign-Trade Zones (FTZ) Board by the Municipality of Anchorage, grantee of FTZ 160, requesting authority to reorganize the zone under th...

  13. Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration.

    PubMed

    Stropahl, Maren; Debener, Stefan

    2017-01-01

    There is clear evidence for cross-modal cortical reorganization in the auditory system of post-lingually deafened cochlear implant (CI) users. A recent report suggests that moderate sensori-neural hearing loss is already sufficient to initiate corresponding cortical changes. To what extend these changes are deprivation-induced or related to sensory recovery is still debated. Moreover, the influence of cross-modal reorganization on CI benefit is also still unclear. While reorganization during deafness may impede speech recovery, reorganization also has beneficial influences on face recognition and lip-reading. As CI users were observed to show differences in multisensory integration, the question arises if cross-modal reorganization is related to audio-visual integration skills. The current electroencephalography study investigated cortical reorganization in experienced post-lingually deafened CI users ( n  = 18), untreated mild to moderately hearing impaired individuals (n = 18) and normal hearing controls ( n  = 17). Cross-modal activation of the auditory cortex by means of EEG source localization in response to human faces and audio-visual integration, quantified with the McGurk illusion, were measured. CI users revealed stronger cross-modal activations compared to age-matched normal hearing individuals. Furthermore, CI users showed a relationship between cross-modal activation and audio-visual integration strength. This may further support a beneficial relationship between cross-modal activation and daily-life communication skills that may not be fully captured by laboratory-based speech perception tests. Interestingly, hearing impaired individuals showed behavioral and neurophysiological results that were numerically between the other two groups, and they showed a moderate relationship between cross-modal activation and the degree of hearing loss. This further supports the notion that auditory deprivation evokes a reorganization of the auditory system even at early stages of hearing loss.

  14. Beta-adrenergic stimulation contributes to maintenance of endothelial barrier functions under baseline conditions.

    PubMed

    Spindler, Volker; Waschke, Jens

    2011-02-01

    cAMP signaling within the endothelium is known to reduce paracellular permeability and to protect against loss of barrier functions under various pathological conditions. Because activation of β-adrenergic receptors elevates cellular cAMP, we tested whether β-adrenergic receptor signaling contributes to the maintenance of baseline endothelial barrier properties. We compared hydraulic conductivity of rat postcapillary venules in vivo with resistance measurements and with reorganization of endothelial adherens junctions in cultured microvascular endothelial cells downstream of β-adrenergic receptor-mediated changes of cAMP levels. Inhibition of β-adrenergic receptors by propranolol increased hydraulic conductivity, reduced both cAMP levels and TER of microvascular endothelial cell monolayers and induced fragmentation of VE-cadherin staining. In contrast, activation by epinephrine both increased cAMP levels and TER and resulted in linearized VE-cadherin distribution, however this was not sufficient to block barrier-destabilization by propranolol. Similarly, PDE inhibition did not prevent propranolol-induced TER reduction and VE-cadherin reorganization whereas increased cAMP formation by AC activation enhanced endothelial barrier functions under baseline conditions and under conditions of propranolol treatment. Our results indicate that generation of cAMP mediated by activation of β-adrenergic receptor signaling contributes to the maintenance of endothelial barrier properties under baseline conditions. © 2011 John Wiley & Sons Ltd.

  15. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1

    PubMed Central

    Sussman, Mark A.; Welch, Sara; Walker, Angela; Klevitsky, Raisa; Hewett, Timothy E.; Price, Robert L.; Schaefer, Erik; Yager, Karen

    2000-01-01

    The ras family of small GTP-binding proteins exerts powerful effects upon cell structure and function. One member of this family, rac, induces actin cytoskeletal reorganization in nonmuscle cells and hypertrophic changes in cultured cardiomyocytes. To examine the effect of rac1 activation upon cardiac structure and function, transgenic mice were created that express constitutively activated rac1 specifically in the myocardium. Transgenic rac1 protein was expressed at levels comparable to endogenous rac levels, with activation of the rac1 signaling pathway resulting in two distinct cardiomyopathic phenotypes: a lethal dilated phenotype associated with neonatal activation of the transgene and a transient cardiac hypertrophy seen among juvenile mice that resolved with age. Neither phenotype showed myofibril disarray and hypertrophic hearts were hypercontractilein working heart analyses. The rac1 target p21-activated kinase translocated from a cytosolic to a cytoskeletal distribution, suggesting that rac1 activation was inducing focal adhesion reorganization. Corroborating results showed altered localizations of src in dilated cardiomyopathy and paxillin in both cardiomyopathic phenotypes. This study, the first examination of rac1-mediated cardiac effects in vivo, demonstrates that dilation and hypertrophy can share a common molecular origin and presents evidence that both timing and concurrent signaling from multiple pathways can influence cardiac remodeling. PMID:10749567

  16. Programmable genetic switches to control transcriptional machinery of pluripotency.

    PubMed

    Pandian, Ganesh N; Sugiyama, Hiroshi

    2012-06-01

    Transcriptional activators play a central role in the regulation of gene expression and have the ability to manipulate the specification of cell fate. Pluripotency is a transient state where a cell has the potential to develop into more than one type of mature cell. The induction of pluripotency in differentiated cells requires extensive chromatin reorganization regulated by core transcriptional machinery. Several small molecules have been shown to enhance the efficiency of somatic cell reprogramming into pluripotent stem cells. However, entirely chemical-based reprogramming remains elusive. Recently, we reported that selective DNA-binding hairpin pyrrole-imidazole polyamides conjugated with histone deacetylase inhibitor could mimic natural transcription factors and epigenetically activate certain pluripotency-associated genes. Here, we review the need to develop selective chromatin-modifying transcriptional activators for somatic genome reprogramming. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Possibility of Aggravation of Tissue Sclerosis after Injection of Multipotent Mesenchymal Stromal Cells Near the Forming Cicatrix in the Experiment.

    PubMed

    Maiborodin, I V; Morozov, V V; Anikeev, A A; Figurenko, N F; Maslov, R V; Matveeva, V A; Chastikina, G A; Maiborodina, V I

    2017-08-01

    The peculiarities of tissue sclerosis after injection of autologous bone marrow multipotent mesenchymal stromal cells transfected with GFP gene and stained with Vybrant CM-Dil cell membrane dye were studied by light microscopy with luminescence. The surgical intervention consisting in ligation of the great vein was followed by tissue sclerotic transformation caused by direct damage and chronic inflammation caused by the presence of slowly resorbed ligature. Injection of stromal cells after this intervention led to formation of more extensive scar. This can attest to the possibility of stromal cells differentiation into connective tissue cells, fibroblasts, and stimulation of proliferation and collagen synthesis by host fibroblasts. A decrease in the volume of dense fibrous connective tissue due to scar reorganization at latter terms cannot not excluded.

  18. Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy.

    PubMed

    Buzina, Alla; Lo, Mandy Y M; Moffett, Angela; Hotta, Akitsu; Fussner, Eden; Bharadwaj, Rikki R; Pasceri, Peter; Garcia-Martinez, J Victor; Bazett-Jones, David P; Ellis, James

    2008-04-11

    The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors.

  19. The use of biomaterials for cell function enhancement: acceleration of fibroblast migration and promotion of stem cell proliferation

    NASA Astrophysics Data System (ADS)

    Qin, Sisi

    Wound healing and tissue regeneration proceed via fibroblast migration along three dimensional scaffolds composed of fibers with different diameters, spacing, and junction angles. In order to understand how each of these factors influences fibroblast migration, a technique for preparation of three dimensional fibrillar scaffolds was developed where the fiber diameters and the angles between adjacent fiber layers could be precisely controlled. In order to study the en-mass migration process, the agarose droplet method was chosen since it enabled accurate determinations of the dependence of the migration speed, focal adhesion distribution, and nuclear deformation on the fiber structures. Results showed that on oriented single fiber layers, if the fiber diameters exceeded 1microm, large focal adhesion complexes formed in a linear arrangement along the fiber axis and cell motion was highly correlated. For fibers 1microm or less, some cell alignment along the fiber direction was measured, but no correlation between the distribution of focal adhesion points and fiber orientation was found. On multi layered scaffolds the focal adhesion sites were found to concentrate at the junction points and the migration speed followed a parabolic function with a distinct minimum at 35°. When compared to fibroblasts plated on 90° fibers, fibroblasts plated on 30° fibers showed a decrease of 25% in the degree of nuclear deformation and an increase of 25% in the number of focal adhesion sites, indicating that cell migration speed was correlated to the angle and distance of approach to the junction point. The time dependence of the migration velocity on oriented fibers was measured for four days and compared to the value measured on flat surfaces. After the initial 24 hour incubation period, the cells on both the 8microm fibers and flat surfaces migrated with a similar speed. During the next three days the migration speed for the cells on the fibrillar surfaces doubled in magnitude, while remained constant for the cells on the flat surfaces. The increased speed on the 8microm fiber surfaces could be correlated with a 20% increase in the nuclear deformation, and a decrease around 30% in the number of focal adhesion during the same observation period. RNA expression of Myosin IIA, a protein which complexes to the actin and is responsible for exertion of traction forces during migration was not upregulated during this process. On the other hand, histochemical staining of Myosin IIA showed that the protein had re-organized into large fibers which spanned the length of the cells. Observation of the cell morphology indicated that a new mode of motion had been established. Rather than the classical retraction of the cytoplasm followed by center of mass translation, which was observed on the flat surfaces, the cells were now moving by a contractile motion around the nucleus similar to that found in muscular motion. This mode was found to be more efficient when undergoing oriented motion. In addition to orientation, surface mechanics are also important in the tissue regeneration process. This study demonstrated that mechanical factors are important for the maintenance of pluripotency and control of proliferation rates. CD34+ hematopoietic stem cells (HSCs) were transduced with ICD (intracellular domain)-Notch and plated on gelatin hydrogels, whose moduli were controlled by the crosslinking ratio. On the softer hydrogel, a synergy was achieved which resulted in more than a five-fold increase in proliferation and a four-fold increase in the preservation of stemness, while HSCs maintained their ability to differentiate into multiple blood cell lineages. These results point the way for achieving clinically significant expansion of human HSCs.

  20. Programming and reprogramming neural cells by (endo-) cannabinoids: from physiological rules to emerging therapies

    PubMed Central

    Maccarrone, Mauro; Guzman, Manuel; Mackie, Ken; Doherty, Patrick; Harkany, Tibor

    2016-01-01

    Of the many signaling lipids, endocannabinoids are being increasingly recognized as having an important involvement in neuronal and glial development. Recent experimental evidence suggests that during neuronal differentiation, endocannabinoid signaling undergoes dynamic reorganization that results in a fundamental role-switch from the prenatal determination of cell fate to the homeostatic regulation of synaptic neurotransmission and bioenergetics in the mature nervous system. These studies also offer novel insights into neuropsychiatric disease mechanisms, and contribute to the public debate about the benefits and risks of cannabis use during pregnancy and in adolescence. PMID:25409697

  1. A Macro-to-Micro Interface for the Control of Cellular Organization

    PubMed Central

    Hui, Elliot E.; Li, Chun; Agrawal, Amit; Bhatia, Sangeeta N.

    2015-01-01

    The spatial organization of cellular communities plays a fundamental role in determining intercellular communication and emergent behavior. However, few tools exist to modulate tissue organization at the scale of individual cells, particularly in the case of dynamic manipulation. Micromechanical reconfigurable culture achieves dynamic control of tissue organization by culturing adherent cells on microfabricated plates that can be shifted to reorganize the arrangement of the cells. While biological studies utilizing this approach have been previously reported, this paper focuses on the engineering of the device, including the mechanism for translating manual manipulation to precise microscale position control, fault-tolerant design for manufacture, and the synthetic-to-living interface. PMID:26167106

  2. 75 FR 3160 - Corporate Reorganizations; Distributions Under Sections 368(a)(1)(D) and 354(b)(1)(B); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 [TD 9475] RIN 1545-BF83 Corporate Reorganizations; Distributions Under Sections 368(a)(1)(D) and 354(b)(1)(B); Correction AGENCY... reorganizations described in section 368(a)(1)(D) where no stock and/or securities of the acquiring corporation is...

  3. 75 FR 3159 - Corporate Reorganizations; Distributions Under Sections 368(a)(1)(D) and 354(b)(1)(B); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 [TD 9475] RIN 1545-BF83 Corporate Reorganizations; Distributions Under Sections 368(a)(1)(D) and 354(b)(1)(B); Correction AGENCY... transactions as reorganizations described in section 368(a)(1)(D) where no stock and/or securities of the...

  4. 76 FR 28952 - Foreign-Trade Zone 59-Lincoln, NE; Application for Reorganization Under Alternative Site Framework

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 33-2011] Foreign-Trade Zone 59--Lincoln, NE; Application for Reorganization Under Alternative Site Framework An application has been submitted to the Foreign-Trade Zones (FTZ) Board (the Board) by the Lincoln Foreign-Trade Zone, Inc., grantee of FTZ 59, requesting authority to reorganize...

  5. 26 CFR 3.8 - Certain corporate reorganizations and changes in partnerships, and certain transfers on death...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Certain corporate reorganizations and changes in partnerships, and certain transfers on death. [Reserved] 3.8 Section 3.8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) CAPITAL CONSTRUCTION FUND § 3.8 Certain corporate reorganizations and...

  6. 26 CFR 1.6046-2 - Returns as to foreign corporations which are created or organized, or reorganized, on or after...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... after such creation or organization, or reorganization, and (2) Each United States shareholder of such corporation by or for whom, at any time within 60 days after such creation or organization, or reorganization... return on Form 959 (Rev. Oct. 1960), United States Information Return With Respect to the Creation or...

  7. 26 CFR 1.6046-2 - Returns as to foreign corporations which are created or organized, or reorganized, on or after...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... after such creation or organization, or reorganization, and (2) Each United States shareholder of such corporation by or for whom, at any time within 60 days after such creation or organization, or reorganization... return on Form 959 (Rev. Oct. 1960), United States Information Return With Respect to the Creation or...

  8. 26 CFR 1.6046-2 - Returns as to foreign corporations which are created or organized, or reorganized, on or after...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... after such creation or organization, or reorganization, and (2) Each United States shareholder of such corporation by or for whom, at any time within 60 days after such creation or organization, or reorganization... return on Form 959 (Rev. Oct. 1960), United States Information Return With Respect to the Creation or...

  9. 26 CFR 1.6046-2 - Returns as to foreign corporations which are created or organized, or reorganized, on or after...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... after such creation or organization, or reorganization, and (2) Each United States shareholder of such corporation by or for whom, at any time within 60 days after such creation or organization, or reorganization... return on Form 959 (Rev. Oct. 1960), United States Information Return With Respect to the Creation or...

  10. 26 CFR 1.367(b)-14T - Acquisition of parent stock for property in triangular reorganizations (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Acquisition of parent stock for property in triangular reorganizations (temporary). 1.367(b)-14T Section 1.367(b)-14T Internal Revenue INTERNAL REVENUE... § 1.367(b)-14T Acquisition of parent stock for property in triangular reorganizations (temporary). (a...

  11. 78 FR 28576 - Foreign-Trade Zone 52-Suffolk County, New York; Application for Reorganization Under Alternative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-44-2013] Foreign-Trade Zone 52--Suffolk County, New York; Application for Reorganization Under Alternative Site Framework An application has been submitted to the Foreign-Trade Zones (FTZ) Board by Suffolk County, grantee of FTZ 52, requesting authority to reorganize the zone under the...

  12. Limitations to Plasticity of Language Network Reorganization in Localization Related Epilepsy

    ERIC Educational Resources Information Center

    Mbwana, J.; Berl, M. M.; Ritzl, E. K.; Rosenberger, L.; Mayo, J.; Weinstein, S.; Conry, J. A.; Pearl, P. L.; Shamim, S.; Moore, E. N.; Sato, S.; Vezina, L. G.; Theodore, W. H.; Gaillard, W. D.

    2009-01-01

    Neural networks for processing language often are reorganized in patients with epilepsy. However, the extent and location of within and between hemisphere re-organization are not established. We studied 45 patients, all with a left hemisphere seizure focus (mean age 22.8, seizure onset 13.3), and 19 normal controls (mean age 24.8) with an fMRI…

  13. 76 FR 49300 - Corporate Reorganizations; Distributions Under Sections 368(a)(1)(D) and 354(b)(1)(B); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Corporate Reorganizations; Distributions Under Sections 368(a)(1)(D) and 354(b)(1)(B); Correction AGENCY... in section 368(a)(1)(D) where no stock and/or securities of the acquiring corporation is issued and... guidance regarding the determination of the basis of stock or securities in a reorganization described in...

  14. An Exploratory Study of the Effect of Enclosed Structure on Type Design with Fixation Dispersion: Evidence from Eye Movements

    ERIC Educational Resources Information Center

    Ma, Min-Yuan; Chuang, Hsien-Chih

    2017-01-01

    Type design is the process of re-organizing visual elements and their corresponding meanings into a new organic entity, particularly for the highly logographic Chinese characters whose intrinsic features are retained even after re-organization. Due to this advantage, designers believe that such a re-organization process will not affect Chinese…

  15. Adaptive neuroplastic responses in early and late hemispherectomized monkeys.

    PubMed

    Burke, Mark W; Kupers, Ron; Ptito, Maurice

    2012-01-01

    Behavioural recovery in children who undergo medically required hemispherectomy showcase the remarkable ability of the cerebral cortex to adapt and reorganize following insult early in life. Case study data suggest that lesions sustained early in childhood lead to better recovery compared to those that occur later in life. In these children, it is possible that neural reorganization had begun prior to surgery but was masked by the dysfunctional hemisphere. The degree of neural reorganization has been difficult to study systematically in human infants. Here we present a 20-year culmination of data on our nonhuman primate model (Chlorocebus sabeus) of early-life hemispherectomy in which behavioral recovery is interpreted in light of plastic processes that lead to the anatomical reorganization of the early-damaged brain. The model presented here suggests that significant functional recovery occurs after the removal of one hemisphere in monkeys with no preexisting neurological dysfunctions. Human and primate studies suggest a critical role for subcortical and brainstem structures as well as corticospinal tracts in the neuroanatomical reorganization which result in the remarkable behavioral recovery following hemispherectomy. The non-human primate model presented here offers a unique opportunity for studying the behavioral and functional neuroanatomical reorganization that underlies developmental plasticity.

  16. After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination

    PubMed Central

    van der Lans, Milou; Benito, Cristina; Wagstaff, Laura J.

    2017-01-01

    There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the generation of these repair-supportive Schwann cells involves an extensive cellular elongation and branching, often to form long, parallel processes. This generates a distinctive repair cell morphology that is favorable for the formation of the regeneration tracks that are essential for nerve repair. Remyelination, conversely, involves a striking cell shortening to form the typical short myelin cells of regenerated nerves. We also provide evidence for direct lineage relationships between: (1) repair cells and myelin and Remak cells of uninjured nerves and (2) remyelinating cells in regenerated nerves. PMID:28904214

  17. After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination.

    PubMed

    Gomez-Sanchez, Jose A; Pilch, Kjara S; van der Lans, Milou; Fazal, Shaline V; Benito, Cristina; Wagstaff, Laura J; Mirsky, Rhona; Jessen, Kristjan R

    2017-09-13

    There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the generation of these repair-supportive Schwann cells involves an extensive cellular elongation and branching, often to form long, parallel processes. This generates a distinctive repair cell morphology that is favorable for the formation of the regeneration tracks that are essential for nerve repair. Remyelination, conversely, involves a striking cell shortening to form the typical short myelin cells of regenerated nerves. We also provide evidence for direct lineage relationships between: (1) repair cells and myelin and Remak cells of uninjured nerves and (2) remyelinating cells in regenerated nerves. Copyright © 2017 Gomez-Sanchez et al.

  18. STAT3 Regulates Uterine Epithelial Remodeling and Epithelial-Stromal Crosstalk During Implantation

    PubMed Central

    Pawar, Sandeep; Starosvetsky, Elina; Orvis, Grant D.; Behringer, Richard R.; Bagchi, Indrani C.

    2013-01-01

    Embryo implantation is regulated by a variety of endometrial factors, including cytokines, growth factors, and transcription factors. Earlier studies identified the leukemia inhibitory factor (LIF), a cytokine produced by uterine glands, as an essential regulator of implantation. LIF, acting via its cell surface receptor, activates the signal transducer and activator of transcription 3 (STAT3) in the uterine epithelial cells. However, the precise mechanism via which activated STAT3 promotes uterine function during implantation remains unknown. To identify the molecular pathways regulated by STAT3, we created SWd/d mice in which Stat3 gene is conditionally inactivated in uterine epithelium. The SWd/d mice are infertile due to a lack of embryo attachment to the uterine luminal epithelium and consequent implantation failure. Gene expression profiling of uterine epithelial cells of SWd/d mice revealed dysregulated expression of specific components of junctional complexes, including E-cadherin, α- and β-catenin, and several claudins, which critically regulate epithelial junctional integrity and embryo attachment. In addition, uteri of SWd/d mice exhibited markedly reduced stromal proliferation and differentiation, indicating that epithelial STAT3 controls stromal function via a paracrine mechanism. The stromal defect arose from a drastic reduction in the production of several members of the epidermal growth factor family in luminal epithelium of SWd/d uteri and the resulting lack of activation of epidermal growth factor receptor signaling and mitotic activity in the stromal cells. Collectively, our results uncovered an intricate molecular network operating downstream of STAT3 that regulates uterine epithelial junctional reorganization, and stromal proliferation, and differentiation, which are critical determinants of successful implantation. PMID:24100212

  19. Reorganization of muscle synergies during multidirectional reaching in the horizontal plane with experimental muscle pain

    PubMed Central

    Muceli, Silvia; Falla, Deborah

    2014-01-01

    Muscle pain induces a complex reorganization of the motor strategy which cannot be fully explained by current theories. We tested the hypothesis that the neural control of muscles during reaching in the presence of nociceptive input is determined by a reorganization of muscle synergies with respect to control conditions. Muscle pain was induced by injection of hypertonic saline into the anterior deltoid muscle of eight men. Electromyographic (EMG) signals were recorded from 12 upper limb muscles as subjects performed a reaching task before (baseline) and after the injection of hypertonic (pain) saline, and after the pain sensation vanished. The EMG envelopes were factorized in muscle synergies, and activation signals extracted for each condition. Nociceptive stimulation resulted in a complex muscle reorganization without changes in the kinematic output. The anterior deltoid muscle activity decreased in all subjects while the changes in other muscles were subject specific. Three synergies sufficed to describe the EMG patterns in each condition, suggesting that reaching movements remain modular in the presence of experimental pain. Muscle reorganization in all subjects was accompanied by a change in the activation signals compatible with a change in the central drive to muscles. One, two or three synergies were shared between the baseline and painful conditions, depending on the subject. These results indicate that nociceptive stimulation may induce a reorganization of modular control in reaching. We speculate that such reorganization may be due to the recruitment of synergies specific to the painful condition. PMID:24453279

  20. Engineered Models of Confined Cell Migration

    PubMed Central

    Paul, Colin D.; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos

    2017-01-01

    Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell–substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571

  1. Dimer formation through domain swapping in the crystal structure of the Grb2-SH2-Ac-pYVNV complex.

    PubMed

    Schiering, N; Casale, E; Caccia, P; Giordano, P; Battistini, C

    2000-11-07

    Src homology 2 (SH2) domains are key modules in intracellular signal transduction. They link activated cell surface receptors to downstream targets by binding to phosphotyrosine-containing sequence motifs. The crystal structure of a Grb2-SH2 domain-phosphopeptide complex was determined at 2.4 A resolution. The asymmetric unit contains four polypeptide chains. There is an unexpected domain swap so that individual chains do not adopt a closed SH2 fold. Instead, reorganization of the EF loop leads to an open, nonglobular fold, which associates with an equivalent partner to generate an intertwined dimer. As in previously reported crystal structures of canonical Grb2-SH2 domain-peptide complexes, each of the four hybrid SH2 domains in the two domain-swapped dimers binds the phosphopeptide in a type I beta-turn conformation. This report is the first to describe domain swapping for an SH2 domain. While in vivo evidence of dimerization of Grb2 exists, our SH2 dimer is metastable and a physiological role of this new form of dimer formation remains to be demonstrated.

  2. Lipid Gymnastics: Tethers and Fingers in membrane

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Miller, Gregory; Parikh, Atul

    2009-03-01

    A significant body of evidence now links local mesoscopic structure (e.g., shape and composition) of the cell membrane with its function; the mechanisms by which cellular membranes adopt the specific shapes remain poorly understood. Among all the different structures adopted by cellular membranes, the tubular shape is one of the most surprising one. While their formation is typically attributed to the reorganization of membrane cytoskeleton, many exceptions exist. We report the instantaneous formation of tubular membrane mesophases following the hydration under specific thermal conditions. The shapes emerge in a bimodal way where we have two distinct diameter ranges for tubes, ˜20μm and ˜1μm, namely fat fingers and narrow tethers. We study the roughening of hydrated drops of 3 lipids in 3 different spontaneous curvatures at various temp. and ionic strength to figure out the dominant effect in selection of tethers and fingers. Dynamics of the tubes are of particular interest where we observe four distinct steps of birth, coiling, uncoiling and retraction with different lifetime on different thermal condition. These dynamics appear to reflect interplay between membrane elasticity, surface adhesion, and thermal or hydrodynamic gradient.

  3. Programming self-organizing multicellular structures with synthetic cell-cell signaling.

    PubMed

    Toda, Satoshi; Blauch, Lucas R; Tang, Sindy K Y; Morsut, Leonardo; Lim, Wendell A

    2018-05-31

    A common theme in the self-organization of multicellular tissues is the use of cell-cell signaling networks to induce morphological changes. We used the modular synNotch juxtacrine signaling platform to engineer artificial genetic programs in which specific cell-cell contacts induced changes in cadherin cell adhesion. Despite their simplicity, these minimal intercellular programs were sufficient to yield assemblies with hallmarks of natural developmental systems: robust self-organization into multi-domain structures, well-choreographed sequential assembly, cell type divergence, symmetry breaking, and the capacity for regeneration upon injury. The ability of these networks to drive complex structure formation illustrates the power of interlinking cell signaling with cell sorting: signal-induced spatial reorganization alters the local signals received by each cell, resulting in iterative cycles of cell fate branching. These results provide insights into the evolution of multi-cellularity and demonstrate the potential to engineer customized self-organizing tissues or materials. Copyright © 2018, American Association for the Advancement of Science.

  4. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations.

    PubMed

    Nguyen, Thao; Mège, René Marc

    2016-11-01

    Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. High glucose upregulates BACE1-mediated Aβ production through ROS-dependent HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization in SK-N-MC cells

    PubMed Central

    Lee, Hyun Jik; Ryu, Jung Min; Jung, Young Hyun; Lee, Sei-Jung; Kim, Jeong Yeon; Lee, Sang Hun; Hwang, In Koo; Seong, Je Kyung; Han, Ho Jae

    2016-01-01

    There is an accumulation of evidence indicating that the risk of Alzheimer’s disease is associated with diabetes mellitus, an indicator of high glucose concentrations in blood plasma. This study investigated the effect of high glucose on BACE1 expression and amyloidogenesis in vivo, and we present details of the mechanism associated with those effects. Our results, using ZLC and ZDF rat models, showed that ZDF rats have high levels of amyloid-beta (Aβ), phosphorylated tau, BACE1, and APP-C99. In vitro result with mouse hippocampal neuron and SK-N-MC, high glucose stimulated Aβ secretion and apoptosis in a dose-dependent manner. In addition, high glucose increased BACE1 and APP-C99 expressions, which were reversed by a reactive oxygen species (ROS) scavenger. Indeed, high glucose increased intracellular ROS levels and HIF-1α expression, associated with regulation of BACE1 and Liver X Receptor α (LXRα). In addition, high glucose induced ATP-binding cassette transporter A1 (ABCA1) down-regulation, was associated with LXR-induced lipid raft reorganization and BACE1 localization on the lipid raft. Furthermore, silencing of BACE1 expression was shown to regulate Aβ secretion and apoptosis of SK-N-MC. In conclusion, high glucose upregulates BACE1 expression and activity through HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization, leading to Aβ production and apoptosis of SK-N-MC. PMID:27829662

  6. Mineral Surface Rearrangement at High Temperatures: Implications for Extraterrestrial Mineral Grain Reactivity.

    PubMed

    King, Helen E; Plümper, Oliver; Putnis, Christine V; O'Neill, Hugh St C; Klemme, Stephan; Putnis, Andrew

    2017-04-20

    Mineral surfaces play a critical role in the solar nebula as a catalytic surface for chemical reactions and potentially acted as a source of water during Earth's accretion by the adsorption of water molecules to the surface of interplanetary dust particles. However, nothing is known about how mineral surfaces respond to short-lived thermal fluctuations that are below the melting temperature of the mineral. Here we show that mineral surfaces react and rearrange within minutes to changes in their local environment despite being far below their melting temperature. Polished surfaces of the rock and planetary dust-forming silicate mineral olivine ((Mg,Fe) 2 SiO 4 ) show significant surface reorganization textures upon rapid heating resulting in surface features up to 40 nm in height observed after annealing at 1200 °C. Thus, high-temperature fluctuations should provide new and highly reactive sites for chemical reactions on nebula mineral particles. Our results also may help to explain discrepancies between short and long diffusion profiles in experiments where diffusion length scales are of the order of 100 nm or less.

  7. Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Chen, N. X.; Ryder, K. D.; Pavalko, F. M.; Turner, C. H.; Burr, D. B.; Qiu, J.; Duncan, R. L.

    2000-01-01

    Osteoblasts subjected to fluid shear increase the expression of the early response gene, c-fos, and the inducible isoform of cyclooxygenase, COX-2, two proteins linked to the anabolic response of bone to mechanical stimulation, in vivo. These increases in gene expression are dependent on shear-induced actin stress fiber formation. Here, we demonstrate that MC3T3-E1 osteoblast-like cells respond to shear with a rapid increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) that we postulate is important to subsequent cellular responses to shear. To test this hypothesis, MC3T3-E1 cells were grown on glass slides coated with fibronectin and subjected to laminar fluid flow (12 dyn/cm(2)). Before application of shear, cells were treated with two Ca(2+) channel inhibitors or various blockers of intracellular Ca(2+) release for 0. 5-1 h. Although gadolinium, a mechanosensitive channel blocker, significantly reduced the [Ca(2+)](i) response, neither gadolinium nor nifedipine, an L-type channel Ca(2+) channel blocker, were able to block shear-induced stress fiber formation and increase in c-fos and COX-2 in MC3T3-E1 cells. However, 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, an intracellular Ca(2+) chelator, or thapsigargin, which empties intracellular Ca(2+) stores, completely inhibited stress fiber formation and c-fos/COX-2 production in sheared osteoblasts. Neomycin or U-73122 inhibition of phospholipase C, which mediates D-myo-inositol 1,4,5-trisphosphate (IP(3))-induced intracellular Ca(2+) release, also completely suppressed actin reorganization and c-fos/COX-2 production. Pretreatment of MC3T3-E1 cells with U-73343, the inactive isoform of U-73122, did not inhibit these shear-induced responses. These results suggest that IP(3)-mediated intracellular Ca(2+) release is required for modulating flow-induced responses in MC3T3-E1 cells.

  8. Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche.

    PubMed

    Garg, Koyal; Boppart, Marni D

    2016-11-01

    Skeletal muscle is endowed with a remarkable capacity for regeneration, primarily due to the reserve pool of muscle resident satellite cells. The satellite cell is the physiologically quiescent muscle stem cell that resides beneath the basal lamina and adjacent to the sarcolemma. The anatomic location of satellite cells is in close proximity to vasculature where they interact with other muscle resident stem/stromal cells (e.g., mesenchymal stem cells and pericytes) through paracrine mechanisms. This mini-review describes the components of the muscle stem cell niche, as well as the influence of exercise and aging on the muscle stem cell niche. Although exercise promotes ECM reorganization and stem cell accumulation, aging is associated with dense ECM deposition and loss of stem cell function resulting in reduced regenerative capacity and strength. An improved understanding of the niche elements will be valuable to inform the development of therapeutic interventions aimed at improving skeletal muscle regeneration and adaptation over the life span. Copyright © 2016 the American Physiological Society.

  9. Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma

    PubMed Central

    Lamanuzzi, Aurelia; Saltarella, Ilaria; Desantis, Vanessa; Frassanito, Maria Antonia; Leone, Patrizia; Racanelli, Vito; Nico, Beatrice; Ribatti, Domenico; Ditonno, Paolo; Prete, Marcella; Solimando, Antonio Giovanni; Dammacco, Francesco; Vacca, Angelo; Ria, Roberto

    2018-01-01

    The mammalian Target of Rapamycin (mTOR) is an intracellular serine/threonine kinase that mediates intracellular metabolism, cell survival and actin rearrangement. mTOR is made of two independent complexes, mTORC1 and mTORC2, activated by the scaffold proteins RAPTOR and RICTOR, respectively. The activation of mTORC1 triggers protein synthesis and autophagy inhibition, while mTORC2 activation promotes progression, survival, actin reorganization, and drug resistance through AKT hyper-phosphorylation on Ser473. Due to the mTOR pivotal role in the survival of tumor cells, we evaluated its activation in endothelial cells (ECs) from 20 patients with monoclonal gammopathy of undetermined significance (MGUS) and 47 patients with multiple myeloma (MM), and its involvement in angiogenesis. MM-ECs showed a significantly higher expression of mTOR and RICTOR than MGUS-ECs. These data were supported by the higher activation of mTORC2 downstream effectors, suggesting a major role of mTORC2 in the angiogenic switch to MM. Specific inhibition of mTOR activity through siRNA targeting RICTOR and dual mTOR inhibitor PP242 reduced the MM-ECs angiogenic functions, including cell migration, chemotaxis, adhesion, invasion, in vitro angiogenesis on Matrigel®, and cytoskeleton reorganization. In addition, PP242 treatment showed anti-angiogenic effects in vivo in the Chick Chorioallantoic Membrane (CAM) and Matrigel® plug assays. PP242 exhibited a synergistic effect with lenalidomide and bortezomib, suggesting that mTOR inhibition can enhance the anti-angiogenic effect of these drugs. Data to be shown indicate that mTORC2 is involved in MM angiogenesis, and suggest that the dual mTOR inhibitor PP242 may be useful for the anti-angiogenic management of MM patients. PMID:29755672

  10. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Jang, Deok-Jin

    2009-08-21

    Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9,more » and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity.« less

  11. Interleukin-10 reorganizes the cytoskeleton of mature dendritic cells leading to their impaired biophysical properties and motilities.

    PubMed

    Xu, Xiaoli; Liu, Xianmei; Long, Jinhua; Hu, Zuquan; Zheng, Qinni; Zhang, Chunlin; Li, Long; Wang, Yun; Jia, Yi; Qiu, Wei; Zhou, Jing; Yao, Weijuan; Zeng, Zhu

    2017-01-01

    Interlukin-10 (IL-10) is an immunomodulatory cytokine which predominantly induces immune-tolerance. It has been also identified as a major cytokine in the tumor microenvironment that markedly mediates tumor immune escape. Previous studies on the roles of IL-10 in tumor immunosuppression mainly focus on its biochemical effects. But the effects of IL-10 on the biophysical characteristics of immune cells are ill-defined. Dendritic cells (DCs) are the most potent antigen-presenting cells and play a key role in the anti-tumor immune response. IL-10 can affect the immune regulatory functions of DCs in various ways. In this study, we aim to explore the effects of IL-10 on the biophysical functions of mature DCs (mDCs). mDCs were treated with different concentrations of IL-10 and their biophysical characteristics were identified. The results showed that the biophysical properties of mDCs, including electrophoresis mobility, osmotic fragility and deformability, as well as their motilities, were impaired by IL-10. Meanwhile, the cytoskeleton (F-actin) of mDCs was reorganized by IL-10. IL-10 caused the alternations in the expressions of fasin1 and profilin1 as well as the phosphorylation of cofilin1 in a concentration-dependent fashion. Moreover, Fourier transformed infrared resonance data showed that IL-10 made the status of gene transcription and metabolic turnover of mDCs more active. These results demonstrate a new aspect of IL-10's actions on the immune system and represent one of the mechanisms for immune escape of tumors. It may provide a valuable clue to optimize and improve the efficiency of DC-based immunotherapy against cancer.

  12. Differential nuclear shape dynamics of invasive andnon-invasive breast cancer cells are associated with actin cytoskeleton organization and stability.

    PubMed

    Chiotaki, Rena; Polioudaki, Hara; Theodoropoulos, Panayiotis A

    2014-08-01

    Cancer cells often exhibit characteristic aberrations in their nuclear architecture, which are indicative of their malignant potential. In this study, we have examined the nuclear and cytoskeletal composition, attachment configuration dynamics, and osmotic or drug treatment response of invasive (Hs578T and MDA-MB-231) and non-invasive (MCF-10A and MCF-7) breast cancer cell lines. Unlike MCF-10A and MCF-7, Hs578T and MDA-MB-231 cells showed extensive nuclear elasticity and deformability and displayed distinct kinetic profiles during substrate attachment. The nuclear shape of MCF-10A and MCF-7 cells remained almost unaffected upon detachment, hyperosmotic shock, or cytoskeleton depolymerization, while Hs578T and MDA-MB-231 revealed dramatic nuclear contour malformations following actin reorganization.

  13. Mixing, diffusion, and percolation in binary supported membranes containing mixtures of lipids and amphiphilic block copolymers.

    PubMed

    Gettel, Douglas L; Sanborn, Jeremy; Patel, Mira A; de Hoog, Hans-Peter; Liedberg, Bo; Nallani, Madhavan; Parikh, Atul N

    2014-07-23

    Substrate-mediated fusion of small polymersomes, derived from mixtures of lipids and amphiphilic block copolymers, produces hybrid, supported planar bilayers at hydrophilic surfaces, monolayers at hydrophobic surfaces, and binary monolayer/bilayer patterns at amphiphilic surfaces, directly responding to local measures of (and variations in) surface free energy. Despite the large thickness mismatch in their hydrophobic cores, the hybrid membranes do not exhibit microscopic phase separation, reflecting irreversible adsorption and limited lateral reorganization of the polymer component. With increasing fluid-phase lipid fraction, these hybrid, supported membranes undergo a fluidity transition, producing a fully percolating fluid lipid phase beyond a critical area fraction, which matches the percolation threshold for the immobile point obstacles. This then suggests that polymer-lipid hybrid membranes might be useful models for studying obstructed diffusion, such as occurs in lipid membranes containing proteins.

  14. Micromechanics of human mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F.

    2011-02-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed.

  15. Diversification of caldesmon-linked actin cytoskeleton in cell motility

    PubMed Central

    Mayanagi, Taira

    2011-01-01

    The actin cytoskeleton plays a key role in regulating cell motility. Caldesmon (CaD) is an actin-linked regulatory protein found in smooth muscle and non-muscle cells that is conserved among a variety of vertebrates. It binds and stabilizes actin filaments, as well as regulating actin-myosin interaction in a calcium (Ca2+)/calmodulin (CaM)- and/or phosphorylation-dependent manner. CaD function is regulated qualitatively by Ca2+/CaM and by its phosphorylation state and quantitatively at the mRNA level, by three different transcriptional regulation of the CALD1 gene. CaD has numerous functions in cell motility, such as migration, invasion and proliferation, exerted via the reorganization of the actin cytoskeleton. Here we will outline recent findings regarding CaD's structural features and functions. PMID:21350330

  16. Anhydrous Proton-Conducting Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Yen, Shiao-Pin S.

    2005-01-01

    Polymeric electrolyte membranes that do not depend on water for conduction of protons are undergoing development for use in fuel cells. Prior polymeric electrolyte fuel-cell membranes (e.g., those that contain perfluorosulfonic acid) depend on water and must be limited to operation below a temperature of 125 C because they retain water poorly at higher temperatures. In contrast, the present developmental anhydrous membranes are expected to function well at temperatures up to 200 C. The developmental membranes exploit a hopping-and-reorganization proton- conduction process that can occur in the solid state in organic amine salts and is similar to a proton-conduction process in a liquid. This process was studied during the 1970s, but until now, there has been no report of exploiting organic amine salts for proton conduction in fuel cells.

  17. Rotation-libration in a hierarchic supramolecular rotor-stator system: arrhenius activation and retardation by local interaction.

    PubMed

    Wahl, Markus; Stöhr, Meike; Spillmann, Hannes; Jung, Thomas A; Gade, Lutz H

    2007-04-07

    Fourfold symmetric zinc-octaethylporphyrin (OEP) has been incorporated in the holes of the hexagonal molecular network generated by thermal dehydrogenation of 4,9-diaminoperylene-quinone-3,10-diimine (DPDI) on a Cu(111) surface and displayed hindered rotation; the reorganization between the potential minima, a rotation-libration, which is characterized by an activation energy of ED=0.17+/-0.03 eV, has been monitored in the STM tunnelling currents as a bi-state "switching".

  18. Mexican Marine Corps in the Struggle for Scalable Security and Its Potential as a Guarantor of the Mexican Safety

    DTIC Science & Technology

    2013-03-20

    drugs and therefore should be counted in addition to the ground forces with air and surface units that allow the effective materialization fence...burden of services not related to their main mission and functions. The percentage of organic effectively covered causes exhaustion of the force - men...job if and when it reorganizes more efficiently and effectively . With the means and resources currently available to the Marines Corps of the

  19. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  20. Amphiphile-Induced Reorganization of Nematic Liquid Crystals at Aqueous Interfaces

    NASA Astrophysics Data System (ADS)

    Rahimi, Amin; Ramezani-Dakhel, Hadi; Pendery, Joel; Abbott, Nicholas; de Pablo, Juan; Juan de Pablo Team, Prof; Nicholas Abbott Collaboration, Prof

    Recent studies have shown that ordering transitions in 4-cyano-4'-pentylbiphenyl (5CB) molecules can be triggered by the self-assembly of specific amphiphiles near a flat aqueous-LC interface. In the absence of adsorbed amphiphiles, LC molecules adopt a parallel orientation at the aqueous interface. Self-assembly of amphiphile molecules at the LC-aqueous interface triggers a spontaneous reorientation of the LC at the aqueous interface. A number of observations indicate that the hydrophilic headgroup of the surfactant has marginal effect on the orientation of 5CB whereas the aliphatic tail structure, length, and conformation greatly affect the ordering of the LC. The structural reorganization of liquid crystals at aqueous interfaces has been primarily ascribed to a weakening of the surface anchoring strength induced by amphiphile molecules. Such explanations, however, have only been supported by a posteriorimicroscopic observations. The underlying mechanism of such an ordering transition and the effect of amphiphile structure remain poorly understood. Here, we study the nature of molecular interactions between amphiphiles, 5CB, and water to understand the mechanism of ordering transitions using atomistic molecular dynamics simulations.

  1. Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI

    DTIC Science & Technology

    2015-10-01

    Page | 2 AWARD NUMBER: W81XWH-13-1-0464 TITLE: Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI...Sep 2014 – 29 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional...findings include: 1) detection of brain organization in a cohort of 24 pediatric onset multiple sclerosis patients (POMS) and 25 healthy controls

  2. 78 FR 63963 - Foreign-Trade Zone 1 and 111-New York, New York; Application for Merger and Reorganization Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-90-2013] Foreign-Trade Zone 1 and 111--New York, New York; Application for Merger and Reorganization Under Alternative Site Framework An application has been submitted to the Foreign-Trade Zones (FTZ) Board by the City of New York, grantee of FTZ 1 and 111, requesting authority to reorganize...

  3. Adaptation of brain functional and structural networks in aging.

    PubMed

    Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

    2015-01-01

    The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  4. p53 regulates cytoskeleton remodeling to suppress tumor progression.

    PubMed

    Araki, Keigo; Ebata, Takahiro; Guo, Alvin Kunyao; Tobiume, Kei; Wolf, Steven John; Kawauchi, Keiko

    2015-11-01

    Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial-mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.

  5. Ultrastructural Complexity of Nuclear Components During Early Apoptotic Phases in Breast Cancer Cells

    PubMed Central

    Castelli, Christian; Losa, Gabriele A.

    2001-01-01

    Fractal morphometry was used to investigate the ultrastructural features of the plasma membrane, perinuclear membrane and nuclear chromatin in SK‐BR‐3 human breast cancer cells undergoing apoptosis. Cells were incubated with 1 μM calcimycin (A23187) for 24 h. Cells in the early stage of apoptosis had fractal dimension (FD) values indicating that their plasma membranes were less rough (lower FD) than those of control cells, while their perinuclear membranes were unaffected. Changes of the chromatin texture within the entire nucleus and in selected nuclear domains were more pronounced in treated cells. This confirms that the morphological reorganization imputable to a loss of structural complexity (reduced FD) occurs in the early stage of apoptosis, is accompanied by the inhibition of distinct enzymatic events and precedes the onset of conventional cellular markers, which can only be detected during the active phases of the apoptotic process. PMID:11790854

  6. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations.

    PubMed

    Wales, Pauline; Schuberth, Christian E; Aufschnaiter, Roland; Fels, Johannes; García-Aguilar, Ireth; Janning, Annette; Dlugos, Christopher P; Schäfer-Herte, Marco; Klingner, Christoph; Wälte, Mike; Kuhlmann, Julian; Menis, Ekaterina; Hockaday Kang, Laura; Maier, Kerstin C; Hou, Wenya; Russo, Antonella; Higgs, Henry N; Pavenstädt, Hermann; Vogl, Thomas; Roth, Johannes; Qualmann, Britta; Kessels, Michael M; Martin, Dietmar E; Mulder, Bela; Wedlich-Söldner, Roland

    2016-12-06

    Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress.

  7. Golgi polarization plays a role in the directional migration of neonatal dermal fibroblasts induced by the direct current electric fields.

    PubMed

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul

    2015-05-01

    Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Motor Cortex Reorganization in Patients with Glioma Assessed by Repeated Navigated Transcranial Magnetic Stimulation-A Longitudinal Study.

    PubMed

    Barz, Anne; Noack, Anika; Baumgarten, Peter; Seifert, Volker; Forster, Marie-Therese

    2018-04-01

    Evidence for cerebral reorganization after resection of low-grade glioma has mainly been obtained by serial intraoperative cerebral mapping. Noninvasively collected data on cortical plasticity in tumor patients over a surgery-free period are still scarce. The present study therefore aimed at evaluating motor cortex reorganization by navigated transcranial magnetic stimulation (nTMS) in patients after perirolandic glioma surgery. nTMS was performed preoperatively and postoperatively in 20 patients, separated by 26.1 ± 24.8 months. Further nTMS mapping was conducted in 14 patients, resulting in a total follow-up period of 46.3 ± 25.4 months. Centers of gravity (CoGs) were calculated for every muscle representation area, and Euclidian distances between CoGs over time were defined. Results were compared with data from 12 healthy individuals, who underwent motor cortex mapping by nTMS in 2 sessions. Preoperatively and postoperatively pooled CoGs from the area of the dominant abductor pollicis brevis muscle and of the nondominant leg area differed significantly compared with healthy individuals (P < 0.05). Most remarkably, during the ensuing follow-up period, a reorganization of all representation areas was observed in 3 patients, and a significant shift of hand representation areas was identified in further 3 patients. Complete functional recovery of postoperative motor deficits was exclusively associated with cortical reorganization. Despite the low potential of remodeling within the somatosensory region, long-term reorganization of cortical motor function can be observed. nTMS is best suited for a noninvasive evaluation of this reorganization. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Epidermal growth factor-induced selective phosphorylation of cultured rat hepatocyte 55-kD cytokeratin before filament reorganization and DNA synthesis

    PubMed Central

    1989-01-01

    We have reported previously that the addition of dexamethasone to cultured quiescent suckling rat hepatocytes in the presence of insulin, a culture condition which does not cause growth activation, induces a selective increase in the synthesis of the 49-kD/55-kD cytokeratin (CK49/CK55) pair over a 24-h period. This increased synthesis coincides with the formation of dense filament networks reminiscent of those observed in situ at the cell periphery (Marceau, N., H. Baribault, and I. Leroux-Nicollet. 1985. Can. J. Biochem. Cell Biol. 63:448-457). We show here for the first time that when EGF is added 48 h after insulin and dexamethasone, there is an early preferential phosphorylation of the CK55 of the CK49/CK55 pair, an induced filament rearrangement from the cell periphery to the cytoplasm, and a subsequent entry into S phase and mitosis after a lag period of 8 h. Indirect immunofluorescence microscopy with monoclonal antibodies to CK49 and CK55 indicate that, while before EGF treatment the cytokeratin filaments were mainly distributed near the cell periphery, the addition of EGF resulted in their reorganization to a predominantly cytoplasmic localization within less than 3 h. Antitubulin and anti-actin antibodies showed no detectable alteration in the distribution of microtubules and microfilaments. Pulse-chase measurements with [35S]methionine showed no apparent change in the turnover of either CK49 or CK55 during the period that precedes the initiation of DNA synthesis. 32P-labeling in vivo followed by SDS-PAGE demonstrated that CK55 was phosphorylated at a much higher level than CK49 in nonstimulated hepatocytes, and that the addition of EGF resulted in a selective stimulation of 32P-CK55 labeling within less than 30 min. Comparative analyses by two-dimensional PAGE of [35S]methionine and 32P- labeled cytokeratins at various times after EGF stimulation demonstrated a rapid increase in a first phosphorylated form of CK55 and the appearance of a second phosphorylated form at 30 min poststimulation. The changes in the relative proportion of nonphosphorylated and phosphorylated forms were confirmed by immunoblotting with the anti-CK55 monoclonal antibody. Determinations of the 32P-labeled phosphoamino acids of CK55 extracted from the gels demonstrated that the radioactivity was mostly in serine residues. Labeling of Triton-permeabilized hepatocytes with gamma 32P-ATP after treatment with EGF for 30 min to 3 h at 37 degrees C, also demonstrated a phosphorylation of CK55 and CK49 as well, implying that the EGF- responsive serine protein kinase is detergent insoluble and probably part of the surface membrane skeleton.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2477379

  10. Reorganization of the Peralta Community College District: A Study of Reorganization of the Territory Presently Included in the Plumas County Portion of the District. Assembly Concurrent Resolution No. 54.

    ERIC Educational Resources Information Center

    Alt, Weston M.

    In compliance with legislative mandate, this two-part report provides a comprehensive feasibility assessment of the reorganization of territory presently included in the Plumas County portion of the Peralta Community College District (PCCD). Part I begins with an overview of the study and its background, and then discusses barriers to and…

  11. Database Reorganization in Parallel Disk Arrays with I/O Service Stealing

    NASA Technical Reports Server (NTRS)

    Zabback, Peter; Onyuksel, Ibrahim; Scheuermann, Peter; Weikum, Gerhard

    1996-01-01

    We present a model for data reorganization in parallel disk systems that is geared towards load balancing in an environment with periodic access patterns. Data reorganization is performed by disk cooling, i.e. migrating files or extents from the hottest disks to the coldest ones. We develop an approximate queueing model for determining the effective arrival rates of cooling requests and discuss its use in assessing the costs versus benefits of cooling.

  12. Exploring Low Internal Reorganization Energies for Silicene Nanoclusters

    NASA Astrophysics Data System (ADS)

    Pablo-Pedro, Ricardo; Lopez-Rios, Hector; Mendoza-Cortes, Jose-L.; Kong, Jing; Fomine, Serguei; Van Voorhis, Troy; Dresselhaus, Mildred S.

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n -type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the "zigzag" and "armchair" directions may permit the design of novel n -type electronic materials and spintronics devices that incorporate both high electron affinities and very low internal reorganization energies.

  13. Cell migration through connective tissue in 3-D

    NASA Astrophysics Data System (ADS)

    Fabry, Ben

    2008-03-01

    A prerequisite for metastasis formation is the ability of tumor cells to invade and migrate through connective tissue. Four key components endow tumor cells with this ability: secretion of matrix-degrading enzymes, firm but temporary adhesion onto connective tissue fibers, contractile force generation, and rapid remodeling of cytoskeletal structures. Cell adhesion, contraction, and cytoskeletal remodeling are biomechanical parameter that can be measured on single cells using a panel of biophysical methods. We use 2-D and 3-D traction microscopy to measure contractile forces; magnetic tweezer microrheology to estimate adhesion strengths, cytoskeletal stiffness and molecular turn-over rates; and nanoscale particle tracking to measure cytoskeletal remodeling. On a wide range of tumor cell lines we could show that cell invasiveness correlates with increased expression of integrin adhesion receptors, increased contractile force generation, and increased speed of cytoskeletal reorganization. Each of those biomechanical parameters, however, varied considerably between cell lines of similar invasivity, suggesting that tumor cells employ multiple invasion strategies that cannot be unambiguously characterized using a single assay.

  14. WAVE2 is required for directed cell migration and cardiovascular development.

    PubMed

    Yamazaki, Daisuke; Suetsugu, Shiro; Miki, Hiroaki; Kataoka, Yuki; Nishikawa, Shin-Ichi; Fujiwara, Takashi; Yoshida, Nobuaki; Takenawa, Tadaomi

    2003-07-24

    WAVE2, a protein related to Wiskott-Aldrich syndrome protein, is crucial for Rac-induced membrane ruffling, which is important in cell motility. Cell movement is essential for morphogenesis, but it is unclear how cell movement is regulated or related to morphogenesis. Here we show the physiological functions of WAVE2 by disruption of the WAVE2 gene in mice. WAVE2 was expressed predominantly in vascular endothelial cells during embryogenesis. WAVE2-/- embryos showed haemorrhages and died at about embryonic day 10. Deficiency in WAVE2 had no significant effect on vasculogenesis, but it decreased sprouting and branching of endothelial cells from existing vessels during angiogenesis. In WAVE2-/- endothelial cells, cell polarity formed in response to vascular endothelial growth factor, but the formation of lamellipodia at leading edges and capillaries was severely impaired. These findings indicate that WAVE2-regulated actin reorganization might be required for proper cell movement and that a lack of functional WAVE2 impairs angiogenesis in vivo.

  15. Measuring topology of low-intensity DNA methylation sites for high-throughput assessment of epigenetic drug-induced effects in cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertych, Arkadiusz, E-mail: gertycha@cshs.org; Bioinformatics, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA; Farkas, Daniel L., E-mail: dlfarkas@gmail.com

    2010-11-15

    Epigenetic anti-cancer drugs with demethylating effects have shown to alter genome organization in mammalian cell nuclei. The interest in the development of novel epigenetic drugs has increased the demand for cell-based assays to evaluate drug performance in pre-clinical studies. An imaging-based cytometrical approach that can measure demethylation effects as changes in the spatial nuclear distributions of methylated cytosine and global DNA in cancer cells is introduced in this paper. The cells were studied by immunofluorescence with a specific antibody against 5-methylcytosine (MeC), and 4,6-diamidino-2-phenylindole (DAPI) for delineation of methylated sites and global DNA in nuclei. In the preprocessing step themore » segmentation of nuclei in three-dimensional images (3-D) is followed by an automated assessment of nuclear DAPI/MeC patterns to exclude dissimilar entities. Next, low-intensity MeC (LIM) and low-intensity DNA (LID) sites of similar nuclei are localized and processed to obtain specific nuclear density profiles. These profiles sampled at half of the total nuclear volume yielded two parameters: LIM{sub 0.5} and LID{sub 0.5}. The analysis shows that zebularine and 5-azacytidine-the two tested epigenetic drugs introduce changes in the spatial distribution of low-intensity DNA and MeC signals. LIM{sub 0.5} and LID{sub 0.5} were significantly different (p < 0.001) in 5-azacytidine treated (n = 660) and zebularine treated (n = 496) vs. untreated (n = 649) DU145 human prostate cancer cells. In the latter case the LIM sites were predominantly found at the nuclear border, whereas treated populations showed different degrees of increase in LIMs towards the interior nuclear space, in which a large portion of heterochromatin is located. The cell-by-cell evaluation of changes in the spatial reorganization of MeC/DAPI signals revealed that zebularine is a more gentle demethylating agent than 5-azacytidine. Measuring changes in the topology of low-intensity sites can potentially be a valuable component in the high-throughput assessment of demethylation and risk of chromatin reorganization in epigenetic-drug screening tasks.« less

  16. Reorganization of plasma membrane lipid domains during conidial germination.

    PubMed

    Santos, Filipa C; Fernandes, Andreia S; Antunes, Catarina A C; Moreira, Filipe P; Videira, Arnaldo; Marinho, H Susana; de Almeida, Rodrigo F M

    2017-02-01

    Neurospora crassa, a filamentous fungus, in the unicellular conidial stage has ideal features to study sphingolipid (SL)-enriched domains, which are implicated in fundamental cellular processes ranging from antifungal resistance to apoptosis. Several changes in lipid metabolism and in the membrane composition of N. crassa occur during spore germination. However, the biophysical impact of those changes is unknown. Thus, a biophysical study of N. crassa plasma membrane, particularly SL-enriched domains, and their dynamics along conidial germination is prompted. Two N. crassa strains, wild-type (WT) and slime, which is devoid of cell wall, were studied. Conidial growth of N. crassa WT from a dormancy state to an exponential phase was accompanied by membrane reorganization, namely an increase of membrane fluidity, occurring faster in a supplemented medium than in Vogel's minimal medium. Gel-like domains, likely enriched in SLs, were found in both N. crassa strains, but were particularly compact, rigid and abundant in the case of slime cells, even more than in budding yeast Saccharomyces cerevisiae. In N. crassa, our results suggest that the melting of SL-enriched domains occurs near growth temperature (30°C) for WT, but at higher temperatures for slime. Regarding biophysical properties strongly affected by ergosterol, the plasma membrane of slime conidia lays in between those of N. crassa WT and S. cerevisiae cells. The differences in biophysical properties found in this work, and the relationships established between membrane lipid composition and dynamics, give new insights about the plasma membrane organization and structure of N. crassa strains during conidial growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xufang, E-mail: xufang.zhang@student.qut.edu.au; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059; Jiang, Hongwei, E-mail: jianghw@163.com

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects onmore » proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.« less

  18. The Aorta-Gonad-Mesonephros Organ Culture Recapitulates 5hmC Reorganization and Replication-Dependent and Independent Loss of DNA Methylation in the Germline.

    PubMed

    Calvopina, Joseph Hargan; Cook, Helene; Vincent, John J; Nee, Kevin; Clark, Amander T

    2015-07-01

    Removal of cytosine methylation from the genome is critical for reprogramming and transdifferentiation and plays a central role in our understanding of the fundamental principles of embryo lineage development. One of the major models for studying cytosine demethylation is the mammalian germ line during the primordial germ cell (PGC) stage of embryo development. It is now understood that oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is required to remove cytosine methylation in a locus-specific manner in PGCs; however, the mechanisms downstream of 5hmC are controversial and hypothesized to involve either active demethylation or replication-coupled loss. In the current study, we used the aorta-gonad-mesonephros (AGM) organ culture model to show that this model recapitulates germ line reprogramming, including 5hmC reorganization and loss of cytosine methylation from Snrpn and H19 imprinting control centers (ICCs). To directly address the hypothesis that cell proliferation is required for cytosine demethylation, we blocked PI3-kinase-dependent PGC proliferation and show that this leads to a G1 and G2/M cell cycle arrest in PGCs, together with retained levels of cytosine methylation at the Snrpn ICC, but not at the H19 ICC. Taken together, the AGM organ culture model is an important tool to evaluate mechanisms of locus-specific demethylation and the role of PI3-kinase-dependent PGC proliferation in the locus-specific removal of cytosine methylation from the genome.

  19. Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways

    PubMed Central

    2014-01-01

    Airway hyperresponsiveness (AHR) in asthma remains poorly understood despite significant research effort to elucidate relevant underlying mechanisms. In particular, a significant body of experimental work has focused on the effect of tidal fluctuations on airway smooth muscle (ASM) cells, tissues, lung slices, and whole airways to understand the bronchodilating effect of tidal breathing and deep inspirations. These studies have motivated conceptual models that involve dynamic reorganization of both cytoskeletal components as well as contractile machinery. In this article, a biophysical model of the whole ASM cell is presented that combines 1) crossbridge cycling between actin and myosin; 2) actin-myosin disconnectivity, under imposed length changes, to allow dynamic reconfiguration of “force transmission pathways”; and 3) dynamic parallel-to-serial transitions of contractile units within these pathways that occur through a length fluctuation. Results of this theoretical model suggest that behavior characteristic of experimentally observed force-length loops of maximally activated ASM strips can be explained by interactions among the three mechanisms. Crucially, both sustained disconnectivity and parallel-to-serial transitions are necessary to explain the nature of hysteresis and strain stiffening observed experimentally. The results provide strong evidence that dynamic rearrangement of contractile machinery is a likely mechanism underlying many of the phenomena observed at timescales associated with tidal breathing. This theoretical cell-level model captures many of the salient features of mechanical behavior observed experimentally and should provide a useful starting block for a bottom-up approach to understanding tissue-level mechanical behavior. PMID:24481961

  20. Domain and network aggregation of CdTe quantum rods within Langmuir Blodgett monolayers

    NASA Astrophysics Data System (ADS)

    Zimnitsky, Dmitry; Xu, Jun; Lin, Zhiqun; Tsukruk, Vladimir V.

    2008-05-01

    Control over the organization of quantum rods was demonstrated by changing the surface area at the air-liquid interface by means of the Langmuir-Blodgett (LB) technique. The LB isotherm of CdTe quantum rods capped with a mixture of alkylphosphines shows a transition point in the liquid-solid state, which is caused by the inter-rod reorganization. As we observed, at low surface pressure the quantum rods are assembled into round-shaped aggregates composed of a monolayer of nanorods packed in limited-size clusters with random orientation. The increase of the surface pressure leads to the rearrangement of these aggregates into elongated bundles composed of uniformly oriented nanorod clusters. Further compression results in denser packing of nanorods aggregates and in the transformation of monolayered domains into a continuous network of locally ordered quantum rods.

  1. Silver nanoparticle-human hemoglobin interface: time evolution of the corona formation and interaction phenomenon

    NASA Astrophysics Data System (ADS)

    Bhunia, A. K.; Kamilya, T.; Saha, S.

    2017-10-01

    In this paper, we have used spectroscopic and electron microscopic analysis to monitor the time evolution of the silver nanoparticles (Ag NP)-human hemoglobin (Hb) corona formation and to characterize the interaction of the Ag NPs with Hb. The time constants for surface plasmon resonance binding and reorganization are found to be 9.51 and 118.48 min, respectively. The drop of surface charge and the increase of the hydrodynamic diameter indicated the corona of Hb on the Ag NP surface. The auto correlation function is found to broaden with the increasing time of the corona formation. Surface zeta potential revealed that positively charged Hb interact electrostatically with negatively charged Ag NP surfaces. The change in α helix and β sheet depends on the corona formation time. The visualization of the Hb corona from HRTEM showed large number of Hb domains aggregate containing essentially Ag NPs and without Ag NPs. Emission study showed the tertiary deformation, energy transfer, nature of interaction and quenching under three different temperatures.

  2. Silver nanoparticle-human hemoglobin interface: time evolution of the corona formation and interaction phenomenon.

    PubMed

    Bhunia, A K; Kamilya, T; Saha, S

    2017-01-01

    In this paper, we have used spectroscopic and electron microscopic analysis to monitor the time evolution of the silver nanoparticles (Ag NP)-human hemoglobin (Hb) corona formation and to characterize the interaction of the Ag NPs with Hb. The time constants for surface plasmon resonance binding and reorganization are found to be 9.51 and 118.48 min, respectively. The drop of surface charge and the increase of the hydrodynamic diameter indicated the corona of Hb on the Ag NP surface. The auto correlation function is found to broaden with the increasing time of the corona formation. Surface zeta potential revealed that positively charged Hb interact electrostatically with negatively charged Ag NP surfaces. The change in α helix and β sheet depends on the corona formation time. The visualization of the Hb corona from HRTEM showed large number of Hb domains aggregate containing essentially Ag NPs and without Ag NPs. Emission study showed the tertiary deformation, energy transfer, nature of interaction and quenching under three different temperatures.

  3. Development of Columnar Topography in the Excitatory Layer 4 to Layer 2/3 Projection in Rat Barrel Cortex

    PubMed Central

    Bender, Kevin J.; Rangel, Juliana; Feldman, Daniel E.

    2011-01-01

    The excitatory feedforward projection from layer (L) 4 to L2/3 in rat primary somatosensory (S1) cortex exhibits precise, columnar topography that is critical for columnar processing of whisker inputs. Here, we characterize the development of axonal topography in this projection using single-cell reconstructions in S1 slices. In the mature projection [postnatal day (P) 14 –26], axons of L4 cells extending into L2/3 were confined almost entirely to the home barrel column, consistent with previous results. At younger ages (P8 –11), however, axonal topography was significantly less columnar, with a large proportion of branches innervating neighboring barrel columns representing adjacent whisker rows. Mature topography developed from this initial state by targeted axonal growth within the home column and by growth of barrel columns themselves. Raising rats with all or a subset of whiskers plucked from P8 –9, manipulations that induce reorganization of functional whisker maps and synaptic depression at L4 to L2/3 synapses, did not alter normal anatomical development of L4 to L2/3 axons. Thus, development of this projection does not require normal sensory experience after P8, and deprivation-induced reorganization of whisker maps at this age is unlikely to involve physical remodeling of L4 to L2/3 axons. PMID:14507976

  4. Light signaling controls nuclear architecture reorganization during seedling establishment

    PubMed Central

    Bourbousse, Clara; Mestiri, Imen; Zabulon, Gerald; Bourge, Mickaël; Formiggini, Fabio; Koini, Maria A.; Brown, Spencer C.; Fransz, Paul; Bowler, Chris; Barneche, Fredy

    2015-01-01

    The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. PMID:25964332

  5. Inter-hemispheric language functional reorganization in low-grade glioma patients after tumour surgery.

    PubMed

    Kristo, Gert; Raemaekers, Mathijs; Rutten, Geert-Jan; de Gelder, Beatrice; Ramsey, Nick F

    2015-03-01

    Despite many claims of functional reorganization following tumour surgery, empirical studies that investigate changes in functional activation patterns are rare. This study investigates whether functional recovery following surgical treatment in patients with a low-grade glioma in the left hemisphere is linked to inter-hemispheric reorganization. Based on literature, we hypothesized that reorganization would induce changes in the spatial pattern of activation specifically in tumour homologue brain areas in the healthy right hemisphere. An experimental group (EG) of 14 patients with a glioma in the left hemisphere near language related brain areas, and a control group of 6 patients with a glioma in the right, non-language dominant hemisphere were scanned before and after resection. In addition, an age and gender matched second control group of 18 healthy volunteers was scanned twice. A verb generation task was used to map language related areas and a novel technique was used for data analysis. Contrary to our hypothesis, we found that functional recovery following surgery of low-grade gliomas cannot be linked to functional reorganization in language homologue brain areas in the healthy, right hemisphere. Although elevated changes in the activation pattern were found in patients after surgery, these were largest in brain areas in proximity to the surgical resection, and were very similar to the spatial pattern of the brain shift following surgery. This suggests that the apparent perilesional functional reorganization is mostly caused by the brain shift as a consequence of surgery. Perilesional functional reorganization can however not be excluded. The study suggests that language recovery after transient post-surgical language deficits involves recovery of functioning of the presurgical language system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Reorganization increases long-term sickness absence at all levels of hospital staff: panel data analysis of employees of Norwegian public hospitals.

    PubMed

    Ingelsrud, Mari H

    2014-09-19

    The Norwegian specialist health service has undergone many processes of reorganization during the last three decades. Changes are mainly initiated to increase the efficiency and quality of health care serving an ageing population under the condition of a diminishing labour supply. The aim of this study is to investigate the effects of reorganization on long-term sickness absence among different levels of hospital staff. The study draws on panel data on employees of Norwegian public hospitals in 2005 and 2007 (N = 106,715). National register data on individual employees' days of medically certified long-term (>16 days) sickness absence were linked with survey measures of actual reorganization executed at each hospital in each year. The surveys, answered by hospital administration staff, measured five types of reorganization: merging units, splitting up units, creating new units, shutting down units and reallocation of employees. The variation in sickness absence days was analysed using random and fixed effects Poisson regression with level of reorganization as the main explanatory variable. The fixed effects analysis shows that increasing the degree of organizational change at a hospital from a low to a moderate or high degree leads to an increase in the number of days of long-term sickness absence of respectively 9% (95% CI: 1.03-1.15) and 8% (95% CI: 1.02-1.15). There are few significant differences between employees in different education categories. Only physicians have a significantly higher relative increase in days of long-term sickness absence than the control group with lower tertiary education. Increased long-term sickness absence is a risk following reorganization. This risk affects all levels of hospital staff.

  7. Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions.

    PubMed

    Dörmann, Peter; Kim, Hyeran; Ott, Thomas; Schulze-Lefert, Paul; Trujillo, Marco; Wewer, Vera; Hückelhoven, Ralph

    2014-12-01

    Plant cells dynamically change their architecture and molecular composition following encounters with beneficial or parasitic microbes, a process referred to as host cell reprogramming. Cell-autonomous defense reactions are typically polarized to the plant cell periphery underneath microbial contact sites, including de novo cell wall biosynthesis. Alternatively, host cell reprogramming converges in the biogenesis of membrane-enveloped compartments for accommodation of beneficial bacteria or invasive infection structures of filamentous microbes. Recent advances have revealed that, in response to microbial encounters, plasma membrane symmetry is broken, membrane tethering and SNARE complexes are recruited, lipid composition changes and plasma membrane-to-cytoskeleton signaling is activated, either for pre-invasive defense or for microbial entry. We provide a critical appraisal on recent studies with a focus on how plant cells re-structure membranes and the associated cytoskeleton in interactions with microbial pathogens, nitrogen-fixing rhizobia and mycorrhiza fungi. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Grid and non-grid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes

    PubMed Central

    Diehl, Geoffrey W.; Hon, Olivia J.; Leutgeb, Stefan; Leutgeb, Jill K.

    2017-01-01

    Summary The medial entorhinal cortex (mEC) has been identified as a hub for spatial information processing by the discovery of grid, border, and head-direction cells. Here we find that in addition to these well characterized classes, nearly all of the remaining two thirds of mEC cells can be categorized as spatially selective. We refer to these cells as non-grid spatial cells and confirmed that their spatial firing patterns were unrelated to running speed and highly reproducible within the same environment. However, in response to manipulations of environmental features, such as box shape or box color, non-grid spatial cells completely reorganized their spatial firing patterns. At the same time, grid cells retained their spatial alignment and predominantly responded with redistributed firing rates across their grid fields. Thus, mEC contains a joint representation of both spatial and environmental feature content, with specialized cell types showing different types of integrated coding of multimodal information. PMID:28343867

  9. PKA-regulated VASP phosphorylation promotes extrusion of transformed cells from the epithelium

    PubMed Central

    Anton, Katarzyna A.; Sinclair, John; Ohoka, Atsuko; Kajita, Mihoko; Ishikawa, Susumu; Benz, Peter M.; Renne, Thomas; Balda, Maria; Matter, Karl; Fujita, Yasuyuki

    2014-01-01

    ABSTRACT At the early stages of carcinogenesis, transformation occurs in single cells within tissues. In an epithelial monolayer, such mutated cells are recognized by their normal neighbors and are often apically extruded. The apical extrusion requires cytoskeletal reorganization and changes in cell shape, but the molecular switches involved in the regulation of these processes are poorly understood. Here, using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry, we have identified proteins that are modulated in transformed cells upon their interaction with normal cells. Phosphorylation of VASP at serine 239 is specifically upregulated in RasV12-transformed cells when they are surrounded by normal cells. VASP phosphorylation is required for the cell shape changes and apical extrusion of Ras-transformed cells. Furthermore, PKA is activated in Ras-transformed cells that are surrounded by normal cells, leading to VASP phosphorylation. These results indicate that the PKA–VASP pathway is a crucial regulator of tumor cell extrusion from the epithelium, and they shed light on the events occurring at the early stage of carcinogenesis. PMID:24963131

  10. Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion

    PubMed Central

    Gui, Long; Ebner, Jamie L.; Mileant, Alexander; Williams, James A.

    2016-01-01

    ABSTRACT Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While structures of a subset of conformations and parts of the fusion machinery have been characterized, the nature and sequence of membrane deformations during fusion have largely eluded characterization. Building upon studies that focused on early stages of HA-mediated membrane remodeling, here cryo-electron tomography (cryo-ET) was used to image the three-dimensional organization of intact influenza virions at different stages of fusion with liposomes, leading all the way to completion of the fusion reaction. By monitoring the evolution of fusion intermediate populations over the course of acid-induced fusion, we identified the progression of membrane reorganization that leads to efficient fusion by an enveloped virus. PMID:27226364

  11. Engrams and circuits crucial for systems consolidation of a memory.

    PubMed

    Kitamura, Takashi; Ogawa, Sachie K; Roy, Dheeraj S; Okuyama, Teruhiro; Morrissey, Mark D; Smith, Lillian M; Redondo, Roger L; Tonegawa, Susumu

    2017-04-07

    Episodic memories initially require rapid synaptic plasticity within the hippocampus for their formation and are gradually consolidated in neocortical networks for permanent storage. However, the engrams and circuits that support neocortical memory consolidation have thus far been unknown. We found that neocortical prefrontal memory engram cells, which are critical for remote contextual fear memory, were rapidly generated during initial learning through inputs from both the hippocampal-entorhinal cortex network and the basolateral amygdala. After their generation, the prefrontal engram cells, with support from hippocampal memory engram cells, became functionally mature with time. Whereas hippocampal engram cells gradually became silent with time, engram cells in the basolateral amygdala, which were necessary for fear memory, were maintained. Our data provide new insights into the functional reorganization of engrams and circuits underlying systems consolidation of memory. Copyright © 2017, American Association for the Advancement of Science.

  12. Expression of Abelson Interactor 1 (Abi1) Correlates with Inflammation, KRAS Mutation and Adenomatous Change during Colonic Carcinogenesis

    PubMed Central

    Steinestel, Konrad; Brüderlein, Silke; Steinestel, Julie; Märkl, Bruno; Schwerer, Michael J.; Arndt, Annette; Kraft, Klaus; Pröpper, Christian; Möller, Peter

    2012-01-01

    Background Abelson interactor 1 (Abi1) is an important regulator of actin dynamics during cytoskeletal reorganization. In this study, our aim was to investigate the expression of Abi1 in colonic mucosa with and without inflammation, colonic polyps, colorectal carcinomas (CRC) and metastases as well as in CRC cell lines with respect to BRAF/KRAS mutation status and to find out whether introduction of KRAS mutation or stimulation with TNFalpha enhances Abi1 protein expression in CRC cells. Methodology/Principal Findings We immunohistochemically analyzed Abi1 protein expression in 126 tissue specimens from 95 patients and in 5 colorectal carcinoma cell lines with different mutation status by western immunoblotting. We found that Abi1 expression correlated positively with KRAS, but not BRAF mutation status in the examined tissue samples. Furthermore, Abi1 is overexpressed in inflammatory mucosa, sessile serrated polyps and adenomas, tubular adenomas, invasive CRC and CRC metastasis when compared to healthy mucosa and BRAF-mutated as well as KRAS wild-type hyperplastic polyps. Abi1 expression in carcinoma was independent of microsatellite stability of the tumor. Abi1 protein expression correlated with KRAS mutation in the analyzed CRC cell lines, and upregulation of Abi1 could be induced by TNFalpha treatment as well as transfection of wild-type CRC cells with mutant KRAS. The overexpression of Abi1 could be abolished by treatment with the PI3K-inhibitor Wortmannin after KRAS transfection. Conclusions/Significance Our results support a role for Abi1 as a downstream target of inflammatory response and adenomatous change as well as oncogenic KRAS mutation via PI3K, but not BRAF activation. Furthermore, they highlight a possible role for Abi1 as a marker for early KRAS mutation in hyperplastic polyps. Since the protein is a key player in actin dynamics, our data encourages further studies concerning the exact role of Abi1 in actin reorganization upon enhanced KRAS/PI3K signalling during colonic tumorigenesis. PMID:22808230

  13. Optical coherence tomography speckle decorrelation for detecting cell death

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Mariampillai, Adrian; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-03-01

    We present a dynamic light scattering technique applied to optical coherence tomography (OCT) for detecting changes in intracellular motion caused by cellular reorganization during apoptosis. We have validated our method by measuring Brownian motion in microsphere suspensions and comparing the measured values to those derived based on particle diffusion calculated using the Einstein-Stokes equation. Autocorrelations of OCT signal intensities acquired from acute myeloid leukemia cells as a function of treatment time demonstrated a significant drop in the decorrelation time after 24 hours of cisplatin treatment. This corresponded with nuclear fragmentation and irregular cell shape observed in histological sections. A similar analysis conducted with multicellular tumor spheroids indicated a shorter decorrelation time in the spheroid core relative to its edges. The spheroid core corresponded to a region exhibiting signs of cell death in histological sections and increased backscatter intensity in OCT images.

  14. 3D tissue engineered micro-tumors for optical-based therapeutic screening platform

    NASA Astrophysics Data System (ADS)

    Spano, Joseph L.; Schmitt, Trevor J.; Bailey, Ryan C.; Hannon, Timothy S.; Elmajdob, Mohamed; Mason, Eric M.; Ye, Guochang; Das, Soumen; Seal, Sudipta; Fenn, Michael B.

    2016-03-01

    Melanoma is an underserved area of cancer research, with little focus on studying the effects of tumor extracellular matrix (ECM) properties on melanoma tumor progression, metastasis, and treatment efficacy. We've developed a Raman spectral mapping-based in-vitro screening platform that allows for nondestructive in-situ, multi-time point assessment of a novel potential nanotherapeutic adjuvant, nanoceria (cerium oxide nanoparticles), for treating melanoma. We've focused primarily on understanding melanoma tumor ECM composition and how it influences cell morphology and ICC markers. Furthermore, we aim to correlate this with studies on nanotherapeutic efficacy to coincide with the goal of predicting and preventing metastasis based on ECM composition. We've compiled a Raman spectral database for substrates containing varying compositions of fibronectin, elastin, laminin, and collagens type I and IV. Furthermore, we've developed a machine learning-based semi-quantitative analysis platform utilizing dimensionality reduction with subsequent pixel classification and semi-quantitation of ECM composition using Direct Classical Least Squares for classification and estimation of the reorganization of these components by taking 2D maps using Raman spectroscopy. Gaining an understanding of how tissue properties influence ECM organization has laid the foundation for future work utilizing Raman spectroscopy to assess therapeutic efficacy and matrix reorganization imparted by nanoceria. Specifically, this will allow us to better understand the role of HIF1a in matrix reorganization of the tumor microenvironment. By studying the relationship between substrate modulus and nanoceria's ability to inhibit an ECM that is conducive to tumor formation, we endeavor to show that nanoceria may prevent or even revert tumor conducive microenvironments.

  15. Plates and Mantle Convection: A Far-From Equilibrium Self-Organized System

    NASA Astrophysics Data System (ADS)

    King, S. D.; Lowman, J. P.; Gable, C. W.

    2001-12-01

    A common observation of plate tectonics is that plate velocities change over short time scales. Some have speculated that these reorganization events are triggered by evolving plate boundaries. This work presents an alternative mechanism, due to the interaction of mobil plates and internally heated convection. We present numerical models of 3D Cartesian convection in an internally-heated fluid with mobile plates that exhibit rapid changes in plate motion. A persistent feature of these calculations is that plate motion is relatively uniform punctuated by rapid reorganization events where plate speed and direction change over a short time period. The rapid changes in plate motion result solely from the interaction of internally-heated convection and the mobile plates. Without plates, the convective planform of an internally-heated fluid evolves into a pattern with a larger number of small cells. When plates are included, the fluid is dominated by plate-scale structures; however, isolated regions develop where heat builds up. These isolated regions are near the location of mature slabs where the plates are older and thicker. As the system evolves, the temperature (and buoyancy) in these isolated regions increases, they become unstable and, as they rise, the net force on the plate is no longer dominated by `slab pull' from the mature slab. The plate reorganization allows the system to transfer heat from the short-wavelength, internal-heating scale, to the longer-wavelength, plate-cooling scale. As we will demonstrate, the interaction between plate motions and the mantle is sufficiently dynamic that evolving plate boundaries are not necessary to achieve rapid changes in plate motion.

  16. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization.

    PubMed

    Laperchia, Claudia; Imperatore, Roberta; Azeez, Idris A; Del Gallo, Federico; Bertini, Giuseppe; Grassi-Zucconi, Gigliola; Cristino, Luigia; Bentivoglio, Marina

    2017-11-01

    Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions. Mice were sacrificed during day or night, at times when sleep or wake, respectively, predominates, as assessed by electroencephalography in matched mice. Triple immunofluorescence was used to visualize OX-A perikarya and varicosities containing the vesicular glutamate transporter (VGluT)2 or the vesicular GABA transporter (VGAT) combined with synaptophysin (Syn) as a presynaptic marker. Appositions on OX-A + somata were quantitatively analyzed in pairs of sections in epifluorescence and confocal microscopy. The combined total number of glutamatergic (Syn + /VGluT2 + ) and GABAergic (Syn + /VGAT + ) varicosities apposed to OX-A somata was similar during day and night. However, glutamatergic varicosities were significantly more numerous at night, whereas GABAergic varicosities prevailed in the day. Triple immunofluorescence in confocal microscopy was employed to visualize synapse scaffold proteins as postsynaptic markers and confirmed the nighttime prevalence of VGluT2 + together with postsynaptic density protein 95 + excitatory contacts, and daytime prevalence of VGAT + together with gephyrin + inhibitory contacts, while also showing that they formed synapses on OX-A + cell bodies. The findings reveal a daily reorganization of axosomatic synapses in orexinergic neurons, with a switch from a prevalence of excitatory innervation at a time corresponding to wakefulness to a prevalence of inhibitory innervations in the antiphase, at a time corresponding to sleep. This reorganization could represent a key mechanism of plasticity of the orexinergic network in basal conditions.

  17. An Elmo–Dock complex locally controls Rho GTPases and actin remodeling during cadherin-mediated adhesion

    PubMed Central

    Collins, Caitlin

    2014-01-01

    Cell–cell contact formation is a dynamic process requiring the coordination of cadherin-based cell–cell adhesion and integrin-based cell migration. A genome-wide RNA interference screen for proteins required specifically for cadherin-dependent cell–cell adhesion identified an Elmo–Dock complex. This was unexpected as Elmo–Dock complexes act downstream of integrin signaling as Rac guanine-nucleotide exchange factors. In this paper, we show that Elmo2 recruits Dock1 to initial cell–cell contacts in Madin–Darby canine kidney cells. At cell–cell contacts, both Elmo2 and Dock1 are essential for the rapid recruitment and spreading of E-cadherin, actin reorganization, localized Rac and Rho GTPase activities, and the development of strong cell–cell adhesion. Upon completion of cell–cell adhesion, Elmo2 and Dock1 no longer localize to cell–cell contacts and are not required subsequently for the maintenance of cell–cell adhesion. These studies show that Elmo–Dock complexes are involved in both integrin- and cadherin-based adhesions, which may help to coordinate the transition of cells from migration to strong cell–cell adhesion. PMID:25452388

  18. Project management training : final report.

    DOT National Transportation Integrated Search

    2011-01-01

    In 2005 the Indiana Department of Transportation (INDOT) went through a complete reorganization of its operations going from centralized to decentralized (District) management. This reorganization gave Districts autonomy to manage construction projec...

  19. Project management training : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    In 2005, the Indiana Department of Transportation (INDOT) went through a complete reorganization of its operations going from centralized to decentralized (District) management. This reorganization gave Districts autonomy to manage construction proje...

  20. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro.

    PubMed

    Blair, Harry C; Larrouture, Quitterie C; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S; Robinson, Lisa J; Schlesinger, Paul H; Nelson, Deborah J

    2017-06-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors.

  1. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro

    PubMed Central

    Larrouture, Quitterie C.; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S.; Robinson, Lisa J.; Schlesinger, Paul H.; Nelson, Deborah J.

    2017-01-01

    We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors. PMID:27846781

  2. Drug Uptake, Lipid Rafts, and Vesicle Trafficking Modulate Resistance to an Anticancer Lysophosphatidylcholine Analogue in Yeast*

    PubMed Central

    Cuesta-Marbán, Álvaro; Botet, Javier; Czyz, Ola; Cacharro, Luis M.; Gajate, Consuelo; Hornillos, Valentín; Delgado, Javier; Zhang, Hui; Amat-Guerri, Francisco; Acuña, A. Ulises; McMaster, Christopher R.; Revuelta, José Luis; Zaremberg, Vanina; Mollinedo, Faustino

    2013-01-01

    The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane. PMID:23335509

  3. Status of the Bureau of Indian Affairs Reorganization. Hearing Before the United States Senate Select Committee on Indian Affairs, 95th Congress, 2nd Session on Oversight on the Status of the Reorganization of the Bureau of Indian Affairs.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Select Committee on Indian Affairs.

    The objective of the August 16, 1978, United States Senate hearing was to determine reorganization plans for the Bureau of Indian Affairs (BIA). The Assistant Secretary of the Interior for Indian Affairs, two Deputy Secretaries, and Mr. Charles Trimble of the United Effort Trust testified before the Select Committee on Indian Affairs. The…

  4. Nonsteroidal anti-inflammatory drugs attenuate amyloid-β protein-induced actin cytoskeletal reorganization through Rho signaling modulation.

    PubMed

    Ferrera, Patricia; Zepeda, Angélica; Arias, Clorinda

    2017-10-01

    Amyloid-β protein (Aβ) neurotoxicity occurs along with the reorganization of the actin-cytoskeleton through the activation of the Rho GTPase pathway. In addition to the classical mode of action of the non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin, and ibuprofen have Rho-inhibiting effects. In order to evaluate the role of the Rho GTPase pathway on Aβ-induced neuronal death and on neuronal morphological modifications in the actin cytoskeleton, we explored the role of NSAIDS in human-differentiated neuroblastoma cells exposed to Aβ. We found that Aβ induced neurite retraction and promoted the formation of different actin-dependent structures such as stress fibers, filopodia, lamellipodia, and ruffles. In the presence of Aβ, both NSAIDs prevented neurite collapse and formation of stress fibers without affecting the formation of filopodia and lamellipodia. Similar results were obtained when the downstream effector, Rho kinase inhibitor Y27632, was applied in the presence of Aβ. These results demonstrate the potential benefits of the Rho-inhibiting NSAIDs in reducing Aβ-induced effects on neuronal structural alterations.

  5. Cytoskeletal changes in oocytes and early embryos during in vitro fertilization process in mice.

    PubMed

    Gumus, E; Bulut, H E; Kaloglu, C

    2010-02-01

    The cytoskeleton plays crucial roles in the development and fertilization of germ cells and in the early embryo development. The growth, maturation and fertilization of oocytes require an active movement and a correct localization of cellular organelles. This is performed by the re-organization of microtubules and actin filaments. Therefore, the aim of the present study was to determine the changes in cytoskeleton during in vitro fertilization process using appropriate immunofluorescence techniques. While the chromatin content was found to be scattered throughout the nucleus during the oocyte maturation period, it was seen only around nucleolus following the completion of the maturation. Microtubules, during oocyte maturation, were regularly distributed throughout the ooplasm which was then localized in the subcortical region of oocytes. Similarly microfilaments were scattered throughout the ooplasm during the oocyte maturation period whereas they were seen in the subcortical region around the polar body and above the meiotic spindle throughout the late developmental stages. In conclusion, those changes occurred in microtubules and microfilaments might be closely related to the re-organization of the genetic material during the oocyte maturation and early embryo development.

  6. Effects of long-term non-traumatic noise exposure on the adult central auditory system. Hearing problems without hearing loss.

    PubMed

    Eggermont, Jos J

    2017-09-01

    It is known that hearing loss induces plastic changes in the brain, causing loudness recruitment and hyperacusis, increased spontaneous firing rates and neural synchrony, reorganizations of the cortical tonotopic maps, and tinnitus. Much less in known about the central effects of exposure to sounds that cause a temporary hearing loss, affect the ribbon synapses in the inner hair cells, and cause a loss of high-threshold auditory nerve fibers. In contrast there is a wealth of information about central effects of long-duration sound exposures at levels ≤80 dB SPL that do not even cause a temporary hearing loss. The central effects for these moderate level exposures described in this review include changes in central gain, increased spontaneous firing rates and neural synchrony, and reorganization of the cortical tonotopic map. A putative mechanism is outlined, and the effect of the acoustic environment during the recovery process is illustrated. Parallels are drawn with hearing problems in humans with long-duration exposures to occupational noise but with clinical normal hearing. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers.

    PubMed

    Thomson, Matt; Liu, Siyuan John; Zou, Ling-Nan; Smith, Zack; Meissner, Alexander; Ramanathan, Sharad

    2011-06-10

    Cell fate decisions are fundamental for development, but we do not know how transcriptional networks reorganize during the transition from a pluripotent to a differentiated cell state. Here, we asked how mouse embryonic stem cells (ESCs) leave the pluripotent state and choose between germ layer fates. By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, we found that Oct4 and Sox2, proteins that maintain ESC identity, also orchestrate germ layer fate selection. Oct4 suppresses neural ectodermal differentiation and promotes mesendodermal differentiation; Sox2 inhibits mesendodermal differentiation and promotes neural ectodermal differentiation. Differentiation signals continuously and asymmetrically modulate Oct4 and Sox2 protein levels, altering their binding pattern in the genome, and leading to cell fate choice. The same factors that maintain pluripotency thus also integrate external signals and control lineage selection. Our study provides a framework for understanding how complex transcription factor networks control cell fate decisions in progenitor cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Tubulin and Actin Interplay at the T Cell and Antigen-Presenting Cell Interface

    PubMed Central

    Martín-Cófreces, Noa Beatriz; Alarcón, Balbino; Sánchez-Madrid, Francisco

    2011-01-01

    T cells reorganize their actin and tubulin-based cytoskeletons to provide a physical basis to the immune synapse. However, growing evidence shows that their roles on T cell activation are more dynamic than merely serving as tracks or scaffold for different molecules. The crosstalk between both skeletons may be important for the formation and movement of the lamella at the immunological synapse by increasing the adhesion of the T cell to the antigen-presenting cells (APC), thus favoring the transport of components toward the plasma membrane and in turn regulating the T-APC intercellular communication. Microtubules and F-actin appear to be essential for the transport of the different signaling microclusters along the membrane, therefore facilitating the propagation of the signal. Finally, they can also be important for regulating the endocytosis, recycling, and degradation of the T cell receptor signaling machinery, thus helping both to sustain the activated state and to switch it off. PMID:22566814

  9. 7 CFR 4290.470 - Prior approval of merger, consolidation, or reorganization of RBIC.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... merge, consolidate, change form of organization (corporation, limited liability company, or limited partnership) or reorganize without the Secretary's prior written approval. Any such merger, consolidation, or...

  10. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation.

    PubMed

    Castellano, F; Montcourrier, P; Guillemot, J C; Gouin, E; Machesky, L; Cossart, P; Chavrier, P

    1999-04-08

    Cdc42, a GTP-binding protein of the Rho family, controls actin cytoskeletal organization and helps to generate actin-based protruding structures, such as filopodia. In vitro, Cdc42 regulates actin polymerization by facilitating the creation of free barbed ends - the more rapidly growing ends of actin filaments - and subsequent elongation at these ends. The Wiskott- Aldrich syndrome protein, WASP, which has a pleckstrin-homology domain and a Cdc42/Rac-binding motif, has been implicated in cell signaling and cytoskeleton reorganization. We have investigated the consequences of local recruitment of activated Cdc42 or WASP to the plasma membrane. We used an activated Cdc42 protein that could be recruited to an engineered membrane receptor by adding rapamycin as a bridge, and added antibody-coupled beads to aggregate these receptors. Inducible recruitment of Cdc42 to clusters of receptors stimulated actin polymerization, resulting in the formation of membrane protrusions. Cdc42-induced protrusions were enriched in the vasodilator-stimulated phosphoprotein VASP and the focal-adhesion-associated proteins zyxin and ezrin. The Cdc42 effector WASP could also induce the formation of protrusions, albeit of different morphology. This is the first demonstration that the local recruitment of activated Cdc42 or its downstream effector, WASP, to a membrane receptor in whole cells is sufficient to trigger actin polymerization that results in the formation of membrane protrusions. Our data suggest that Cdc42-induced actin-based protrusions result from the local and serial recruitment of cytoskeletal proteins including zyxin, VASP, and ezrin.

  11. Deriving principles of microbiology by multiscaling laws of molecular physics.

    PubMed

    Ortoleva, Peter; Adhangale, P; Cheluvaraja, S; Fontus, Max; Shreif, Zeina

    2009-01-01

    It has long been an objective of the physical sciences to derive principles of biology from the laws of physics. At the angstrom scale for processes evolving on timescales of 10(-14) s, many systems can be characterized in terms of atomic vibrations and collisions. In contrast, biological systems display dramatic transformations including self-assembly and reorganization from one cell phenotype to another as the microenvironment changes. We have developed a framework for understanding the emergence of living systems from the underlying atomic chaos.

  12. Nitrogen termination of single crystal (100) diamond surface by radio frequency N{sub 2} plasma process: An in-situ x-ray photoemission spectroscopy and secondary electron emission studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandran, Maneesh, E-mail: maneesh@tx.technion.ac.il, E-mail: choffman@tx.technion.ac.il; Shasha, Michal; Michaelson, Shaul

    2015-09-14

    In this letter, we report the electronic and chemical properties of nitrogen terminated (N-terminated) single crystal (100) diamond surface, which is a promising candidate for shallow NV{sup −} centers. N-termination is realized by an indirect RF nitrogen plasma process without inducing a large density of surface defects. Thermal stability and electronic property of N-terminated diamond surface are systematically investigated under well-controlled conditions by in-situ x-ray photoelectron spectroscopy and secondary electron emission. An increase in the low energy cut-off of the secondary electron energy distribution curve (EDC), with respect to a bare diamond surface, indicates a positive electron affinity of themore » N-terminated diamond. Exposure to atomic hydrogen results in reorganization of N-terminated diamond to H-terminated diamond, which exhibited a negative electron affinity surface. The change in intensity and spectral features of the secondary electron EDC of the N-terminated diamond is discussed.« less

  13. Experimental study of surface pattern effects on the propulsive performance and wake of a bio-inspired pitching panel

    NASA Astrophysics Data System (ADS)

    King, Justin; Kumar, Rajeev; Green, Melissa

    2016-11-01

    Force measurements and stereoscopic particle image velocimetry (PIV) were used to characterize the propulsive performance and wake structure of rigid, bio-inspired trapezoidal pitching panels. In the literature, it has been demonstrated that quantities such as thrust coefficient and propulsive efficiency are affected by changes in the surface characteristics of a pitching panel or foil. More specifically, the variation of surface pattern produces significant changes in wake structure and dynamics, especially in the distribution of vorticity in the wake. Force measurements and PIV data were collected for multiple surface patterns chosen to mimic fish surface morphology over a Strouhal number range of 0.17 to 0.56. Performance quantities are compared with the three-dimensional vortex wake structure for both the patterned and smooth panels to determine the nature and magnitude of surface pattern effects in terms of thrust produced, drag reduced, and wake vortices reshaped and reorganized. This work was supported by the Office of Naval Research under ONR Award No. N00014-14-1-0418.

  14. ["Hannibal ante portas" -- technical development and health care reorganization].

    PubMed

    Fülesdi, Béla; Velkey, György

    2011-11-20

    Authors intend to analyze the impact of medical technical development on the Hungarian health care system and try to draw attention to potentially necessary measures for professional and structural health care reorganization.

  15. The Roles and Regulation of Polycomb Complexes in Neural Development

    PubMed Central

    Corley, Matthew; Kroll, Kristen L.

    2014-01-01

    In the developing mammalian nervous system, common progenitors integrate both cell extrinsic and intrinsic regulatory programs to produce distinct neuronal and glial cell types as development proceeds. This spatiotemporal restriction of neural progenitor differentiation is enforced, in part, by the dynamic reorganization of chromatin into repressive domains by Polycomb Repressive Complexes, effectively limiting the expression of fate-determining genes. Here, we review distinct roles that the Polycomb Repressive Complexes play during neurogenesis and gliogenesis, while also highlighting recent work describing the molecular mechanisms that govern their dynamic activity in neural development. Further investigation of how Polycomb complexes are regulated in neural development will enable more precise manipulation of neural progenitor differentiation, facilitating the efficient generation of specific neuronal and glial cell types for many biological applications. PMID:25367430

  16. RAFT-Polymerization-Induced Self-Assembly and Reorganizations: Ultrahigh-Molecular-Weight Polymer and Morphology-Tunable Micro-/Nanoparticles in One Pot.

    PubMed

    Zhang, Xiao-Yun; Liu, Dong-Ming; Lv, Xin-Hu; Sun, Miao; Sun, Xiao-Li; Wan, Wen-Ming

    2016-11-01

    A one-pot method is introduced for the successful synthesis of narrow-distributed (Đ = 1.22) vinyl polymer with both ultrahigh molecular weight (UHMW) (M w = 1.31 × 10 6 g mol -1 ) and micro-/nanomorphology under mild conditions. The method involves the following four stages: homogeneous polymerization, polymerization-induced self-assembly (PISA), PISA and reorganization, and PISA and multiple reorganizations. The key points to the production of UHMW polystyrene are to minimize radical termination by segregating radicals in different nanoreactors and to ensure sufficient chain propagation by promoting further reorganizations of these reactors in situ. This method therefore endows polymeric materials with the outstanding properties of both UHMW and tunable micro-/nanoparticles under mild conditions in one pot. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Gal4-VP16 directs ATP-independent chromatin reorganization in a yeast chromatin assembly system.

    PubMed

    Robinson, Karen M; Schultz, Michael C

    2005-03-22

    Major insights into the regulation of chromatin organization have stemmed from biochemical studies using Gal4-VP16, a chimeric transcriptional activator in which the DNA binding domain of Gal4p is fused to the activation domain of viral protein VP16. Unexpectedly, given previous intensive efforts to understand how Gal4-VP16 functions in the context of chromatin, we have uncovered a new mode of chromatin reorganization that is dependent on Gal4-VP16. This reorganization is performed by an activity in a crude DEAE (CD) fraction from budding yeast which also supports ATP-dependent assembly of physiologically spaced nucleosome arrays. Biochemical analysis reveals that the activity tightly associates with chromatin and reorganizes nucleosome arrays by a mechanism which is insensitive to ATP depletion after nucleosome assembly. It generates a chromatin organization in which a nucleosome is stably positioned immediately adjacent to Gal4p binding sites in the template DNA. Individual deletion of genes previously implicated in chromatin assembly and remodeling, namely, the histone chaperones NAP1, ASF1, and CAC1 and the SNF2-like DEAD/H ATPases SNF2, ISW1, ISW2, CHD1, SWR1, YFR038w, and SPT20, does not significantly perturb reorganization. Therefore, Gal4-VP16-directed chromatin reorganization in yeast can occur by an ATP-independent mechanism that does not require SAGA, SWI/SNF, Isw1, or Isw2 chromatin remodeling complexes.

  18. Sleep Strengthens but does Not Reorganize Memory Traces in a Verbal Creativity Task.

    PubMed

    Landmann, Nina; Kuhn, Marion; Maier, Jonathan-Gabriel; Feige, Bernd; Spiegelhalder, Kai; Riemann, Dieter; Nissen, Christoph

    2016-03-01

    Sleep after learning promotes the quantitative strengthening of new memories. Less is known about the impact of sleep on the qualitative reorganization of memory content. This study tested the hypothesis that sleep facilitates both memory strengthening and reorganization as indexed by a verbal creativity task. Sixty healthy university students (30 female, 30 male, 20-30 years) were investigated in a randomized, controlled parallel-group study with three experimental groups (sleep, sleep deprivation, daytime wakefulness). At baseline, 60 items of the Compound Remote Associate (CRA) task were presented. At retest after the experimental conditions, the same items were presented again together with 20 new control items to disentangle off-line incubation from online performance effects. Sleep significantly strengthened formerly encoded memories in comparison to both wake conditions (improvement in speed of correctly resolved items). Offline reorganization was not enhanced following sleep, but was enhanced following sleep-deprivation in comparison to sleep and daytime wakefulness (solution time of previously incubated, newly solved items). Online performance did not differ between the groups (solution time of new control items). The results support the notion that sleep promotes the strengthening, but not the reorganization, of newly encoded memory traces in a verbal creativity task. Future studies are needed to further determine the impact of sleep on different types of memory reorganization, such as associative thinking, creativity and emotional memory processing, and potential clinical translations, such as the augmentation of psychotherapy through sleep interventions. © 2016 Associated Professional Sleep Societies, LLC.

  19. Heat transfer enhancement induced by wall inclination in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Kenjereš, Saša

    2015-11-01

    We present a series of numerical simulations of turbulent thermal convection of air in an intermediate range or Rayleigh numbers (106≤Ra ≤109 ) with different configurations of a thermally active lower surface. The geometry of the lower surface is designed in such a way that it represents a simplified version of a mountain slope with different inclinations (i.e., "Λ "- and "V "-shaped geometry). We find that different wall inclinations significantly affect the local heat transfer by imposing local clustering of instantaneous thermal plumes along the inclination peaks. The present results reveal that significant enhancement of the integral heat transfer can be obtained (up to 32%) when compared to a standard Rayleigh-Bénard configuration with flat horizontal walls. This is achieved through combined effects of the enlargement of the heated surface and reorganization of the large-scale flow structures.

  20. Expediting Scientific Data Analysis with Reorganization of Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byna, Surendra; Wu, Kesheng

    2013-08-19

    Data producers typically optimize the layout of data files to minimize the write time. In most cases, data analysis tasks read these files in access patterns different from the write patterns causing poor read performance. In this paper, we introduce Scientific Data Services (SDS), a framework for bridging the performance gap between writing and reading scientific data. SDS reorganizes data to match the read patterns of analysis tasks and enables transparent data reads from the reorganized data. We implemented a HDF5 Virtual Object Layer (VOL) plugin to redirect the HDF5 dataset read calls to the reorganized data. To demonstrate themore » effectiveness of SDS, we applied two parallel data organization techniques: a sort-based organization on a plasma physics data and a transpose-based organization on mass spectrometry imaging data. We also extended the HDF5 data access API to allow selection of data based on their values through a query interface, called SDS Query. We evaluated the execution time in accessing various subsets of data through existing HDF5 Read API and SDS Query. We showed that reading the reorganized data using SDS is up to 55X faster than reading the original data.« less

  1. Functional blockade of α5β1 integrin induces scattering and genomic landscape remodeling of hepatic progenitor cells

    PubMed Central

    2010-01-01

    Background Cell scattering is a physiological process executed by stem and progenitor cells during embryonic liver development and postnatal organ regeneration. Here, we investigated the genomic events occurring during this process induced by functional blockade of α5β1 integrin in liver progenitor cells. Results Cells treated with a specific antibody against α5β1 integrin exhibited cell spreading and scattering, over-expression of liver stem/progenitor cell markers and activation of the ERK1/2 and p38 MAPKs signaling cascades, in a similar manner to the process triggered by HGF/SF1 stimulation. Gene expression profiling revealed marked transcriptional changes of genes involved in cell adhesion and migration, as well as genes encoding chromatin remodeling factors. These responses were accompanied by conspicuous spatial reorganization of centromeres, while integrin genes conserved their spatial positioning in the interphase nucleus. Conclusion Collectively, our results demonstrate that α5β1 integrin functional blockade induces cell migration of hepatic progenitor cells, and that this involves a dramatic remodeling of the nuclear landscape. PMID:20958983

  2. Vacuolar and cytoskeletal dynamics during elicitor-induced programmed cell death in tobacco BY-2 cells.

    PubMed

    Higaki, Takumi; Kadota, Yasuhiro; Goh, Tatsuaki; Hayashi, Teruyuki; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro; Kuchitsu, Kazuyuki

    2008-09-01

    Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.

  3. The basolateral vesicle sorting machinery and basolateral proteins are recruited to the site of enteropathogenic E. coli microcolony growth at the apical membrane.

    PubMed

    Pedersen, Gitte A; Jensen, Helene H; Schelde, Anne-Sofie B; Toft, Charlotte; Pedersen, Hans N; Ulrichsen, Maj; Login, Frédéric H; Amieva, Manuel R; Nejsum, Lene N

    2017-01-01

    Foodborne Enteropathogenic Escherichia coli (EPEC) infections of the small intestine cause diarrhea especially in children and are a major cause of childhood death in developing countries. EPEC infects the apical membrane of the epithelium of the small intestine by attaching, effacing the microvilli under the bacteria and then forming microcolonies on the cell surface. We first asked the question where on epithelial cells EPEC attaches and grows. Using models of polarized epithelial monolayers, we evaluated the sites of initial EPEC attachment to the apical membrane and found that EPEC preferentially attached over the cell-cell junctions and formed microcolonies preferentially where three cells come together at tricellular tight junctions. The ability of EPEC to adhere increased when host cell polarity was compromised yielding EPEC access to basolateral proteins. EPEC pedestals contain basolateral cytoskeletal proteins. Thus, we asked if attached EPEC causes reorganization the protein composition of the host cell plasma membrane at sites of microcolony formation. We found that EPEC microcolony growth at the apical membrane resulted in a local accumulation of basolateral plasma membrane proteins surrounding the microcolony. Basolateral marker protein aquaporin-3 localized to forming EPEC microcolonies. Components of the basolateral vesicle targeting machinery were re-routed. The Exocyst (Exo70) was recruited to individual EPEC as was the basolateral vesicle SNARE VAMP-3. Moreover, several Rab variants were also recruited to the infection site, and their dominant-negative equivalents were not. To quantitatively study the recruitment of basolateral proteins, we created a pulse of the temperature sensitive basolateral VSVG, VSVG3-SP-GFP, from the trans-Golgi Network. We found that after release from the TGN, significantly more VSVG3-SP-GFP accumulated at the site of microcolony growth than on equivalent membrane regions of uninfected cells. This suggests that trafficking of vesicles destined for the basolateral membrane are redirected to the apical site of microcolony growth. Thus, in addition to disrupting host cell fence function, local host cell plasma membrane protein composition is changed by altered protein trafficking and recruitment of basolateral proteins to the apical microcolony. This may aid EPEC attachment and subsequent microcolony growth.

  4. The basolateral vesicle sorting machinery and basolateral proteins are recruited to the site of enteropathogenic E. coli microcolony growth at the apical membrane

    PubMed Central

    Pedersen, Gitte A.; Jensen, Helene H.; Schelde, Anne-Sofie B.; Toft, Charlotte; Pedersen, Hans N.; Ulrichsen, Maj; Login, Frédéric H.; Amieva, Manuel R.

    2017-01-01

    Foodborne Enteropathogenic Escherichia coli (EPEC) infections of the small intestine cause diarrhea especially in children and are a major cause of childhood death in developing countries. EPEC infects the apical membrane of the epithelium of the small intestine by attaching, effacing the microvilli under the bacteria and then forming microcolonies on the cell surface. We first asked the question where on epithelial cells EPEC attaches and grows. Using models of polarized epithelial monolayers, we evaluated the sites of initial EPEC attachment to the apical membrane and found that EPEC preferentially attached over the cell-cell junctions and formed microcolonies preferentially where three cells come together at tricellular tight junctions. The ability of EPEC to adhere increased when host cell polarity was compromised yielding EPEC access to basolateral proteins. EPEC pedestals contain basolateral cytoskeletal proteins. Thus, we asked if attached EPEC causes reorganization the protein composition of the host cell plasma membrane at sites of microcolony formation. We found that EPEC microcolony growth at the apical membrane resulted in a local accumulation of basolateral plasma membrane proteins surrounding the microcolony. Basolateral marker protein aquaporin-3 localized to forming EPEC microcolonies. Components of the basolateral vesicle targeting machinery were re-routed. The Exocyst (Exo70) was recruited to individual EPEC as was the basolateral vesicle SNARE VAMP-3. Moreover, several Rab variants were also recruited to the infection site, and their dominant-negative equivalents were not. To quantitatively study the recruitment of basolateral proteins, we created a pulse of the temperature sensitive basolateral VSVG, VSVG3-SP-GFP, from the trans-Golgi Network. We found that after release from the TGN, significantly more VSVG3-SP-GFP accumulated at the site of microcolony growth than on equivalent membrane regions of uninfected cells. This suggests that trafficking of vesicles destined for the basolateral membrane are redirected to the apical site of microcolony growth. Thus, in addition to disrupting host cell fence function, local host cell plasma membrane protein composition is changed by altered protein trafficking and recruitment of basolateral proteins to the apical microcolony. This may aid EPEC attachment and subsequent microcolony growth. PMID:28636623

  5. Reorganization of Nuclear Pore Complexes and the Lamina in Late-Stage Parvovirus Infection.

    PubMed

    Mäntylä, Elina; Niskanen, Einari A; Ihalainen, Teemu O; Vihinen-Ranta, Maija

    2015-11-01

    Canine parvovirus (CPV) infection induces reorganization of nuclear structures. Our studies indicated that late-stage infection induces accumulation of nuclear pore complexes (NPCs) and lamin B1 concomitantly with a decrease of lamin A/C levels on the apical side of the nucleus. Newly formed CPV capsids are located in close proximity to NPCs on the apical side. These results suggest that parvoviruses cause apical enrichment of NPCs and reorganization of nuclear lamina, presumably to facilitate the late-stage infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Formation of porous crystals via viscoelastic phase separation

    NASA Astrophysics Data System (ADS)

    Tsurusawa, Hideyo; Russo, John; Leocmach, Mathieu; Tanaka, Hajime

    2017-10-01

    Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.

  7. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.; Blusztajn, Jerzy; Nguyen, Anh Duc

    2006-10-01

    Current models of drainage evolution suggest that the non-dendritic patterns seen in rivers in SE Asia reflect progressive capture of headwaters away from the Red River during and as a result of surface uplift of Eastern Asia. Mass balancing of eroded and deposited rock volumes demonstrates that the Red River catchment must have been much larger in the past. In addition, the Nd isotope composition of sediments from the Hanoi Basin, Vietnam, interpreted as paleo-Red River sediments, shows rapid change during the Oligocene, before ~24 Ma. We interpret this change to reflect large-scale drainage capture away from the Red River, possibly involving loss of the middle Yangtze River. Reorganization was triggered by regional tilting of the region towards the east. This study constrains initial surface uplift in eastern Tibet and southwestern China to be no later than 24 Ma, well before major surface uplift and gorge incision after 13 Ma.

  8. Nuclear organization during in vitro differentiation of porcine mesenchymal stem cells (MSCs) into adipocytes.

    PubMed

    Stachecka, Joanna; Walczak, Agnieszka; Kociucka, Beata; Ruszczycki, Błażej; Wilczyński, Grzegorz; Szczerbal, Izabela

    2018-02-01

    Differentiation of progenitor cells into adipocytes is accompanied by remarkable changes in cell morphology, cytoskeletal organization, and gene expression profile. Mature adipocytes are filled with a large lipid droplet and the nucleus tends to move to the cell periphery. It was hypothesized that the differentiation process is also associated with changes of nuclear organization. The aim of this study was to determine the number and distribution of selected components of nuclear architecture during porcine in vitro adipogenesis. The pig is an important animal model sharing many similarities to humans at the anatomical, physiological, and genetic levels and has been recognized as a good model for human obesity. Thus, understanding how cellular structures important for fundamental nuclear processes may be altered during adipocyte differentiation is of great importance. Mesenchymal stem cells (MSCs) were derived from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) and were cultured for 7 days in the adipogenic medium. A variable differentiation potential of these cell populations towards adipogenic lineage was observed, and for further study, a comparative characteristic of the nuclear organization in BM-MSCs and AD-MSCs was performed. Nuclear substructures were visualized by indirect immunofluorescence (nucleoli, nuclear speckles, PML bodies, lamins, and HP1α) or fluorescence in situ hybridization (telomeres) on fixed cells at 0, 3, 5, and 7 days of differentiation. Comprehensive characterization of these structures, in terms of their number, size, dynamics, and arrangement in three-dimensional space of the nucleus, was performed. It was found that during differentiation of porcine MSCs into adipocytes, changes of nuclear organization occurred and concerned: (1) the nuclear size and shape; (2) reduced lamin A/C expression; and (3) reorganization of chromocenters. Other elements of nuclear architecture such as nucleoli, SC-35 nuclear speckles, and telomeres showed no significant changes when compared to undifferentiated and mature fat cells. In addition, the presence of a low number of PML bodies was characteristic of the studied porcine mesenchymal stem cell adipogenesis system. It has been shown that the arrangement of selected components of nuclear architecture was very similar in MSCs derived from different sources, whereas adipocyte differentiation involves nuclear reorganization. This study adds new data on nuclear organization during adipogenesis using the pig as a model organism.

  9. Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer.

    PubMed

    Maxwell, Christopher A; Benítez, Javier; Gómez-Baldó, Laia; Osorio, Ana; Bonifaci, Núria; Fernández-Ramires, Ricardo; Costes, Sylvain V; Guinó, Elisabet; Chen, Helen; Evans, Gareth J R; Mohan, Pooja; Català, Isabel; Petit, Anna; Aguilar, Helena; Villanueva, Alberto; Aytes, Alvaro; Serra-Musach, Jordi; Rennert, Gad; Lejbkowicz, Flavio; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Ripamonti, Carla B; Bonanni, Bernardo; Viel, Alessandra; Allavena, Anna; Bernard, Loris; Radice, Paolo; Friedman, Eitan; Kaufman, Bella; Laitman, Yael; Dubrovsky, Maya; Milgrom, Roni; Jakubowska, Anna; Cybulski, Cezary; Gorski, Bohdan; Jaworska, Katarzyna; Durda, Katarzyna; Sukiennicki, Grzegorz; Lubiński, Jan; Shugart, Yin Yao; Domchek, Susan M; Letrero, Richard; Weber, Barbara L; Hogervorst, Frans B L; Rookus, Matti A; Collee, J Margriet; Devilee, Peter; Ligtenberg, Marjolijn J; Luijt, Rob B van der; Aalfs, Cora M; Waisfisz, Quinten; Wijnen, Juul; Roozendaal, Cornelis E P van; Easton, Douglas F; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Harrington, Patricia; Evans, D Gareth; Lalloo, Fiona; Eeles, Rosalind; Izatt, Louise; Chu, Carol; Eccles, Diana; Douglas, Fiona; Brewer, Carole; Nevanlinna, Heli; Heikkinen, Tuomas; Couch, Fergus J; Lindor, Noralane M; Wang, Xianshu; Godwin, Andrew K; Caligo, Maria A; Lombardi, Grazia; Loman, Niklas; Karlsson, Per; Ehrencrona, Hans; Wachenfeldt, Anna von; Barkardottir, Rosa Bjork; Hamann, Ute; Rashid, Muhammad U; Lasa, Adriana; Caldés, Trinidad; Andrés, Raquel; Schmitt, Michael; Assmann, Volker; Stevens, Kristen; Offit, Kenneth; Curado, João; Tilgner, Hagen; Guigó, Roderic; Aiza, Gemma; Brunet, Joan; Castellsagué, Joan; Martrat, Griselda; Urruticoechea, Ander; Blanco, Ignacio; Tihomirova, Laima; Goldgar, David E; Buys, Saundra; John, Esther M; Miron, Alexander; Southey, Melissa; Daly, Mary B; Schmutzler, Rita K; Wappenschmidt, Barbara; Meindl, Alfons; Arnold, Norbert; Deissler, Helmut; Varon-Mateeva, Raymonda; Sutter, Christian; Niederacher, Dieter; Imyamitov, Evgeny; Sinilnikova, Olga M; Stoppa-Lyonne, Dominique; Mazoyer, Sylvie; Verny-Pierre, Carole; Castera, Laurent; de Pauw, Antoine; Bignon, Yves-Jean; Uhrhammer, Nancy; Peyrat, Jean-Philippe; Vennin, Philippe; Fert Ferrer, Sandra; Collonge-Rame, Marie-Agnès; Mortemousque, Isabelle; Spurdle, Amanda B; Beesley, Jonathan; Chen, Xiaoqing; Healey, Sue; Barcellos-Hoff, Mary Helen; Vidal, Marc; Gruber, Stephen B; Lázaro, Conxi; Capellá, Gabriel; McGuffog, Lesley; Nathanson, Katherine L; Antoniou, Antonis C; Chenevix-Trench, Georgia; Fleisch, Markus C; Moreno, Víctor; Pujana, Miguel Angel

    2011-11-01

    Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.

  10. Interplay between BRCA1 and RHAMM Regulates Epithelial Apicobasal Polarization and May Influence Risk of Breast Cancer

    PubMed Central

    Maxwell, Christopher A.; Benítez, Javier; Gómez-Baldó, Laia; Osorio, Ana; Bonifaci, Núria; Fernández-Ramires, Ricardo; Costes, Sylvain V.; Guinó, Elisabet; Chen, Helen; Evans, Gareth J. R.; Mohan, Pooja; Català, Isabel; Petit, Anna; Aguilar, Helena; Villanueva, Alberto; Aytes, Alvaro; Serra-Musach, Jordi; Rennert, Gad; Lejbkowicz, Flavio; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Ripamonti, Carla B.; Bonanni, Bernardo; Viel, Alessandra; Allavena, Anna; Bernard, Loris; Radice, Paolo; Friedman, Eitan; Kaufman, Bella; Laitman, Yael; Dubrovsky, Maya; Milgrom, Roni; Jakubowska, Anna; Cybulski, Cezary; Gorski, Bohdan; Jaworska, Katarzyna; Durda, Katarzyna; Sukiennicki, Grzegorz; Lubiński, Jan; Shugart, Yin Yao; Domchek, Susan M.; Letrero, Richard; Weber, Barbara L.; Hogervorst, Frans B. L.; Rookus, Matti A.; Collee, J. Margriet; Devilee, Peter; Ligtenberg, Marjolijn J.; van der Luijt, Rob B.; Aalfs, Cora M.; Waisfisz, Quinten; Wijnen, Juul; van Roozendaal, Cornelis E. P.; Easton, Douglas F.; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Harrington, Patricia; Evans, D. Gareth; Lalloo, Fiona; Eeles, Rosalind; Izatt, Louise; Chu, Carol; Eccles, Diana; Douglas, Fiona; Brewer, Carole; Nevanlinna, Heli; Heikkinen, Tuomas; Couch, Fergus J.; Lindor, Noralane M.; Wang, Xianshu; Godwin, Andrew K.; Caligo, Maria A.; Lombardi, Grazia; Loman, Niklas; Karlsson, Per; Ehrencrona, Hans; von Wachenfeldt, Anna; Bjork Barkardottir, Rosa; Hamann, Ute; Rashid, Muhammad U.; Lasa, Adriana; Caldés, Trinidad; Andrés, Raquel; Schmitt, Michael; Assmann, Volker; Stevens, Kristen; Offit, Kenneth; Curado, João; Tilgner, Hagen; Guigó, Roderic; Aiza, Gemma; Brunet, Joan; Castellsagué, Joan; Martrat, Griselda; Urruticoechea, Ander; Blanco, Ignacio; Tihomirova, Laima; Goldgar, David E.; Buys, Saundra; John, Esther M.; Miron, Alexander; Southey, Melissa; Daly, Mary B.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Meindl, Alfons; Arnold, Norbert; Deissler, Helmut; Varon-Mateeva, Raymonda; Sutter, Christian; Niederacher, Dieter; Imyamitov, Evgeny; Sinilnikova, Olga M.; Stoppa-Lyonne, Dominique; Mazoyer, Sylvie; Verny-Pierre, Carole; Castera, Laurent; de Pauw, Antoine; Bignon, Yves-Jean; Uhrhammer, Nancy; Peyrat, Jean-Philippe; Vennin, Philippe; Fert Ferrer, Sandra; Collonge-Rame, Marie-Agnès; Mortemousque, Isabelle; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Healey, Sue; Barcellos-Hoff, Mary Helen; Vidal, Marc; Gruber, Stephen B.; Lázaro, Conxi; Capellá, Gabriel; McGuffog, Lesley; Nathanson, Katherine L.; Antoniou, Antonis C.; Chenevix-Trench, Georgia; Fleisch, Markus C.; Moreno, Víctor; Pujana, Miguel Angel

    2011-01-01

    Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio (wHR) = 1.09 (95% CI 1.02–1.16), ptrend = 0.017; and n = 3,965, wHR = 1.04 (95% CI 0.94–1.16), ptrend = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM. PMID:22110403

  11. Septin dynamics are essential for exocytosis.

    PubMed

    Tokhtaeva, Elmira; Capri, Joe; Marcus, Elizabeth A; Whitelegge, Julian P; Khuzakhmetova, Venera; Bukharaeva, Ellya; Deiss-Yehiely, Nimrod; Dada, Laura A; Sachs, George; Fernandez-Salas, Ester; Vagin, Olga

    2015-02-27

    Septins are a family of 14 cytoskeletal proteins that dynamically form hetero-oligomers and organize membrane microdomains for protein complexes. The previously reported interactions with SNARE proteins suggested the involvement of septins in exocytosis. However, the contradictory results of up- or down-regulation of septin-5 in various cells and mouse models or septin-4 in mice suggested either an inhibitory or a stimulatory role for these septins in exocytosis. The involvement of the ubiquitously expressed septin-2 or general septin polymerization in exocytosis has not been explored to date. Here, by nano-LC with tandem MS and immunoblot analyses of the septin-2 interactome in mouse brain, we identified not only SNARE proteins but also Munc-18-1 (stabilizes assembled SNARE complexes), N-ethylmaleimide-sensitive factor (NSF) (disassembles SNARE complexes after each membrane fusion event), and the chaperones Hsc70 and synucleins (maintain functional conformation of SNARE proteins after complex disassembly). Importantly, α-soluble NSF attachment protein (SNAP), the adaptor protein that mediates NSF binding to the SNARE complex, did not interact with septin-2, indicating that septins undergo reorganization during each exocytosis cycle. Partial depletion of septin-2 by siRNA or impairment of septin dynamics by forchlorfenuron inhibited constitutive and stimulated exocytosis of secreted and transmembrane proteins in various cell types. Forchlorfenuron impaired the interaction between SNAP-25 and its chaperone Hsc70, decreasing SNAP-25 levels in cultured neuroendocrine cells, and inhibited both spontaneous and stimulated acetylcholine secretion in mouse motor neurons. The results demonstrate a stimulatory role of septin-2 and the dynamic reorganization of septin oligomers in exocytosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Cell-matrix interactions of Entamoeba histolytica and E. dispar. A comparative study by electron-, atomic force- and confocal microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamás-Lara, Daniel, E-mail: daniel_talamas@hotmail.com; Talamás-Rohana, Patricia, E-mail: ptr@cinvestav.mx; Fragoso-Soriano, Rogelio Jaime, E-mail: rogelio@fis.cinvestav.mx

    Invasion of tissues by Entamoeba histolytica is a multistep process that initiates with the adhesion of the parasite to target tissues. The recognition of the non-invasive Entamoeba dispar as a distinct, but closely related protozoan species raised the question as to whether the lack of its pathogenic potential could be related to a weaker adhesion due to limited cytoskeleton restructuring capacity. We here compared the adhesion process of both amebas to fibronectin through scanning, transmission, atomic force, and confocal microscopy. In addition, electrophoretic and western blot assays of actin were also compared. Adhesion of E. histolytica to fibronectin involves amore » dramatic reorganization of the actin network that results in a tighter contact to and the subsequent focal degradation of the fibronectin matrix. In contrast, E. dispar showed no regions of focal adhesion, the cytoskeleton was poorly reorganized and there was little fibronectin degradation. In addition, atomic force microscopy using topographic, error signal and phase modes revealed clear-cut differences at the site of contact of both amebas with the substrate. In spite of the morphological and genetic similarities between E. histolytica and E. dispar the present results demonstrate striking differences in their respective cell-to-matrix adhesion processes, which may be of relevance for understanding the invasive character of E. histolytica. - Highlights: • Striking differences in adhesion to FN between E. histolytica and E. dispar. • A greater degree of cell stiffness in E. histolytica with respect to E. dispar. • E. histolytica but not E. dispar forms regions of close contact with FN. • The actin cytoskeleton is involved in the pathogenicity of E. histolytica.« less

  13. Seafloor Spreading Reorganization South of Iceland

    NASA Astrophysics Data System (ADS)

    Hey, R. N.; Martinez, F.; Benediktsdottir, A.; Hoskuldsson, A.

    2011-12-01

    There is a major ongoing diachronous reorganization of North Atlantic seafloor spreading occurring at present south of Iceland, from an orthogonal ridge/transform geometry to the present oblique spreading geometry without transform faults on the Reykjanes Ridge. This reorganization is presently interpreted as a thermal phenomenon, with a pulse of warmer mantle expanding away from the Iceland plume causing a progressive change in subaxial mantle rheology from brittle to ductile, so that transform faults can no longer be maintained. Given that this is certainly the most obvious and arguably the type-example of active plate boundary reorganization, it is somewhat surprising that a thermal mechanism has near universal acceptance here whereas most if not all other seafloor spreading reorganizations are equally universally thought to result from the tectonic rift propagation mechanism. This suggests the possibility that either the thermal model might be wrong here, or that the propagating rift (PR) model might be wrong elsewhere. The reason the PR alternative was ignored here was that the younger seafloor record flanking the Reykjanes Ridge consisting of V-shaped ridges, troughs & scarps (VSRs) enclosed by the reorganization wake seemed to prove that there had been no rift propagation. It had long been thought that these VSRs were symmetric about the spreading axis, & if this conventional wisdom (that led directly to the pulsing Iceland plume model) were true, rift propagation, which must produce asymmetry, could not have occurred. However, our expedition collected marine geophysical data that showed that the VSRs actually have an asymmetric geometry consistent with rift propagation, not with previous pulsing plume models, & thus they can no longer be considered convincing proof of a pulsing Iceland plume. Although we had previously noted that plume pulses might drive the propagators away from Iceland, a significant new result (Benediktsdóttir et al., 2011) is that excellent magnetic anomaly fits can only be achieved if some rift propagation toward Iceland has also occurred. These newly identified propagators toward Iceland can't be driven by plume pulses even if the ones propagating away from Iceland are. Rift propagation is an alternative way to produce V-shaped wakes of thin crust & grabens, e.g. Earth's deepest axial valley is at the tip of the Pito propagator which has created the transient Easter microplate. (Hey had the great pleasure of sailing on the Nautile expedition Jean Francheteau led to Pito Deep, & after that advised his students to sail on French ships every chance they got). The involvement of rift propagation in VSR formation suggests this is also a possible explanation for the ongoing major transform-fault eliminating reorganization. If so, the tip of the reorganization would presently be near the first transform fault south of Iceland, the Bight transform near 56.8N, rather than in the extensively surveyed area 200 km farther north where the thermal reorganization model predicted the reorganization tip should be.

  14. An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes

    PubMed Central

    Shafqat-Abbasi, Hamdah; Kowalewski, Jacob M; Kiss, Alexa; Gong, Xiaowei; Hernandez-Varas, Pablo; Berge, Ulrich; Jafari-Mamaghani, Mehrdad; Lock, John G; Strömblad, Staffan

    2016-01-01

    Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration. DOI: http://dx.doi.org/10.7554/eLife.11384.001 PMID:26821527

  15. Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex.

    PubMed

    Khan, Adil G; Poort, Jasper; Chadwick, Angus; Blot, Antonin; Sahani, Maneesh; Mrsic-Flogel, Thomas D; Hofer, Sonja B

    2018-06-01

    How learning enhances neural representations for behaviorally relevant stimuli via activity changes of cortical cell types remains unclear. We simultaneously imaged responses of pyramidal cells (PYR) along with parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) inhibitory interneurons in primary visual cortex while mice learned to discriminate visual patterns. Learning increased selectivity for task-relevant stimuli of PYR, PV and SOM subsets but not VIP cells. Strikingly, PV neurons became as selective as PYR cells, and their functional interactions reorganized, leading to the emergence of stimulus-selective PYR-PV ensembles. Conversely, SOM activity became strongly decorrelated from the network, and PYR-SOM coupling before learning predicted selectivity increases in individual PYR cells. Thus, learning differentially shapes the activity and interactions of multiple cell classes: while SOM inhibition may gate selectivity changes, PV interneurons become recruited into stimulus-specific ensembles and provide more selective inhibition as the network becomes better at discriminating behaviorally relevant stimuli.

  16. Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis

    PubMed Central

    Roubinet, Chantal; Decelle, Barbara; Chicanne, Gaëtan; Dorn, Jonas F.; Payrastre, Bernard; Payre, François; Carreno, Sébastien

    2011-01-01

    The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division. PMID:21969469

  17. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations

    PubMed Central

    Wales, Pauline; Schuberth, Christian E; Aufschnaiter, Roland; Fels, Johannes; García-Aguilar, Ireth; Janning, Annette; Dlugos, Christopher P; Schäfer-Herte, Marco; Klingner, Christoph; Wälte, Mike; Kuhlmann, Julian; Menis, Ekaterina; Hockaday Kang, Laura; Maier, Kerstin C; Hou, Wenya; Russo, Antonella; Higgs, Henry N; Pavenstädt, Hermann; Vogl, Thomas; Roth, Johannes; Qualmann, Britta; Kessels, Michael M; Martin, Dietmar E; Mulder, Bela; Wedlich-Söldner, Roland

    2016-01-01

    Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress. DOI: http://dx.doi.org/10.7554/eLife.19850.001 PMID:27919320

  18. Noise Trauma-Induced Behavioral Gap Detection Deficits Correlate with Reorganization of Excitatory and Inhibitory Local Circuits in the Inferior Colliculus and Are Prevented by Acoustic Enrichment

    PubMed Central

    Zhang-Hooks, Ying-Xin; Roos, Hannah

    2017-01-01

    Hearing loss leads to a host of cellular and synaptic changes in auditory brain areas that are thought to give rise to auditory perception deficits such as temporal processing impairments, hyperacusis, and tinnitus. However, little is known about possible changes in synaptic circuit connectivity that may underlie these hearing deficits. Here, we show that mild hearing loss as a result of brief noise exposure leads to a pronounced reorganization of local excitatory and inhibitory circuits in the mouse inferior colliculus. The exact nature of these reorganizations correlated with the presence or absence of the animals' impairments in detecting brief sound gaps, a commonly used behavioral sign for tinnitus in animal models. Mice with gap detection deficits (GDDs) showed a shift in the balance of synaptic excitation and inhibition that was present in both glutamatergic and GABAergic neurons, whereas mice without GDDs showed stable excitation–inhibition balances. Acoustic enrichment (AE) with moderate intensity, pulsed white noise immediately after noise trauma prevented both circuit reorganization and GDDs, raising the possibility of using AE immediately after cochlear damage to prevent or alleviate the emergence of central auditory processing deficits. SIGNIFICANCE STATEMENT Noise overexposure is a major cause of central auditory processing disorders, including tinnitus, yet the changes in synaptic connectivity underlying these disorders remain poorly understood. Here, we find that brief noise overexposure leads to distinct reorganizations of excitatory and inhibitory synaptic inputs onto glutamatergic and GABAergic neurons and that the nature of these reorganizations correlates with animals' impairments in detecting brief sound gaps, which is often considered a sign of tinnitus. Acoustic enrichment immediately after noise trauma prevents circuit reorganizations and gap detection deficits, highlighting the potential for using sound therapy soon after cochlear damage to prevent the development of central processing deficits. PMID:28583912

  19. Communication between filamentous pathogens and plants at the biotrophic interface.

    PubMed

    Yi, Mihwa; Valent, Barbara

    2013-01-01

    Fungi and oomycetes that colonize living plant tissue form extensive interfaces with plant cells in which the cytoplasm of the microorganism is closely aligned with the host cytoplasm for an extended distance. In all cases, specialized biotrophic hyphae function to hijack host cellular processes across an interfacial zone consisting of a hyphal plasma membrane, a specialized interfacial matrix, and a plant-derived membrane. The interface is the site of active secretion by both players. This cross talk at the interface determines the winner in adversarial relationships and establishes the partnership in mutualistic relationships. Fungi and oomycetes secrete many specialized effector proteins for controlling the host, and they can stimulate remarkable cellular reorganization even in distant plant cells. Breakthroughs in live-cell imaging of fungal and oomycete encounter sites, including live-cell imaging of pathogens secreting fluorescently labeled effector proteins, have led to recent progress in understanding communication across the interface.

  20. Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations

    PubMed Central

    Stein, Hannah; Spindler, Susann; Bonakdar, Navid; Wang, Chun; Sandoghdar, Vahid

    2017-01-01

    The cell membrane forms a dynamic and complex barrier between the living cell and its environment. However, its in vivo studies are difficult because it consists of a high variety of lipids and proteins and is continuously reorganized by the cell. Therefore, membrane model systems with precisely controlled composition are used to investigate fundamental interactions of membrane components under well-defined conditions. Giant unilamellar vesicles (GUVs) offer a powerful model system for the cell membrane, but many previous studies have been performed in unphysiologically low ionic strength solutions which might lead to altered membrane properties, protein stability and lipid-protein interaction. In the present work, we give an overview of the existing methods for GUV production and present our efforts on forming single, free floating vesicles up to several tens of μm in diameter and at high yield in various buffer solutions with physiological ionic strength and pH. PMID:28243205

Top