Sample records for cell system integration

  1. Fundamentals of fuel cell system integration

    NASA Astrophysics Data System (ADS)

    Krumpelt, Michael; Kumar, Romesh; Myles, Kevin M.

    1994-04-01

    Fuel cells are theoretically very efficient energy conversion devices that have the potential of becoming a commercial product for numerous uses in the civilian economy. We have analyzed several fuel cell system designs with regard to thermal and chemical integration of the fuel cell stack into the rest of the system. Thermal integration permits the use of the stack waste heat for the endothermic steps of fuel reforming. Chemical integration provides the steam needed for fuel reforming from the water produced by the electrochemical cell reaction. High-temperature fuel cells, such as the molten carbonate and the solid oxide fuel cells, permit this system integration in a relatively simple manner. Lower temperature fuel cells, such as the polymer electrolyte and phosphoric acid systems, require added system complexity to achieve such integration. The system economics are affected by capital and fuel costs and technical parameters, such as electrochemical fuel utilization, current density, and system complexity. At today's low fuel prices and the high fuel cell costs (in part, because of the low rates of production of the early prototypes), fuel cell systems are not cost competitive with conventional power generation. With the manufacture and sale of larger numbers of fuel cell systems, the total costs will decrease from the current several thousand dollars per kW, to perhaps less than $100 per kW as production volumes approa ch a million units per year.

  2. 9. Exterior view, Test Cell 7, Systems Integration Laboratory Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Exterior view, Test Cell 7, Systems Integration Laboratory Building (T-28), looking southwest. The enclosure discussed in CO-88-B-8 is at the right. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  3. 1. Exterior view of Systems Integration Laboratory Building (T28), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Exterior view of Systems Integration Laboratory Building (T-28), looking northeast. The taller of the two gantries on the left houses Test Cell 6 (fuel), while the shorter gantry on the right houses Test Cell 7 (oxidizer). This structure serves as the functional center of the Systems Integration Laboratory complex for testing, handling, and storage of the Titan II's hydrazine - and nitrogen tetroxide-based fuel system propellants. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  4. Integrated photoelectrochemical cell and system having a liquid electrolyte

    DOEpatents

    Deng, Xunming; Xu, Liwei

    2010-07-06

    An integrated photoelectrochemical (PEC) cell generates hydrogen and oxygen from water while being illuminated with radiation. The PEC cell employs a liquid electrolyte, a multi-junction photovoltaic electrode, and a thin ion-exchange membrane. A PEC system and a method of making such PEC cell and PEC system are also disclosed.

  5. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel a fuel cell test in the Fuel Cell Development and Test Laboratory. Capability Hubs The Fuel Cell

  6. Study of component technologies for fuel cell on-site integrated energy system. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Lee, W. D.; Mathias, S.

    1980-01-01

    This data base catalogue was compiled in order to facilitate the analysis of various on site integrated energy system with fuel cell power plants. The catalogue is divided into two sections. The first characterizes individual components in terms of their performance profiles as a function of design parameters. The second characterizes total heating and cooling systems in terms of energy output as a function of input and control variables. The integrated fuel cell systems diagrams and the computer analysis of systems are included as well as the cash flows series for baseline systems.

  7. A review of integration strategies for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongwen; Chan, S. H.; Li, Guojun; Ho, H. K.; Li, Jun; Feng, Zhenping

    Due to increasing oil and gas demand, the depletion of fossil resources, serious global warming, efficient energy systems and new energy conversion processes are urgently needed. Fuel cells and hybrid systems have emerged as advanced thermodynamic systems with great promise in achieving high energy/power efficiency with reduced environmental loads. In particular, due to the synergistic effect of using integrated solid oxide fuel cell (SOFC) and classical thermodynamic cycle technologies, the efficiency of the integrated system can be significantly improved. This paper reviews different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security.

  8. Application of fuel cells with heat recovery for integrated utility systems

    NASA Technical Reports Server (NTRS)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  9. Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration.

    PubMed

    Gravel, Annie; Dubuc, Isabelle; Wallaschek, Nina; Gilbert-Girard, Shella; Collin, Vanessa; Hall-Sedlak, Ruth; Jerome, Keith R; Mori, Yasuko; Carbonneau, Julie; Boivin, Guy; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39 , U90 , and U100 , without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state. IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the present study, we describe two quantitative cell culture viral integration systems. These systems can be used to define cellular and viral factors that play a role in HHV-6A/B integration. Furthermore, these systems will allow us to decipher the conditions resulting in virus gene expression and excision of the integrated viral genome resulting in reactivation. Copyright © 2017 American Society for Microbiology.

  10. Improved site-specific recombinase-based method to produce selectable marker- and vector-backbone-free transgenic cells

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Tong, Qi; Li, Zhongxia; Tian, Jinhai; Wang, Yizhi; Su, Feng; Wang, Yongsheng; Liu, Jun; Zhang, Yong

    2014-02-01

    PhiC31 integrase-mediated gene delivery has been extensively used in gene therapy and animal transgenesis. However, random integration events are observed in phiC31-mediated integration in different types of mammalian cells; as a result, the efficiencies of pseudo attP site integration and evaluation of site-specific integration are compromised. To improve this system, we used an attB-TK fusion gene as a negative selection marker, thereby eliminating random integration during phiC31-mediated transfection. We also excised the selection system and plasmid bacterial backbone by using two other site-specific recombinases, Cre and Dre. Thus, we generated clean transgenic bovine fetal fibroblast cells free of selectable marker and plasmid bacterial backbone. These clean cells were used as donor nuclei for somatic cell nuclear transfer (SCNT), indicating a similar developmental competence of SCNT embryos to that of non-transgenic cells. Therefore, the present gene delivery system facilitated the development of gene therapy and agricultural biotechnology.

  11. 5. Exterior view, enclosure at walkin entry level between Test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Exterior view, enclosure at walk-in entry level between Test Cell 6 (right) and Test Cell 7 (left), Systems Integration Laboratory Building (T-28), looking southwest. High pressure gas tank and generator test firings are conducted in the enclosure. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  12. 11. Exterior view, showing instrumentation and gauge panel at walkin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Exterior view, showing instrumentation and gauge panel at walk-in entry level (bottom) of Test Cell 7, Systems Integration Laboratory Building (T-28), looking west. Metal stair at left leads to working platform levels surrounding test cell. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  13. Integrated Cabin and Fuel Cell System Thermal Management with a Metal Hydride Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovland, V.

    2004-12-01

    Integrated approaches for the heating and cooling requirements of both the fuel cell (FC) stack and cabin environment are critical to fuel cell vehicle performance in terms of stack efficiency, fuel economy, and cost. An integrated FC system and cabin thermal management system would address the cabin cooling and heating requirements, control the temperature of the stack by mitigating the waste heat, and ideally capture the waste heat and use it for useful purposes. Current work at the National Renewable Energy Laboratory (NREL) details a conceptual design of a metal hydride heat pump (MHHP) for the fuel cell system andmore » cabin thermal management.« less

  14. Develop and test fuel cell powered on-site integrated total energy system. Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1981-01-01

    An integrated 5 kW power system based upon methanol fuel and a phosphoric acid fuel cell operating at about 473 K is described. Description includes test results of advanced fuel cell catalysts, a semiautomatic acid replenishment system and a completed 5 kW methanol/system reformer. The results of a preliminary system test on a reformer/stack/inverter combination are reported. An initial design for a 25 kW stack is presented. Experimental plans are outlined for data acquisition necessary for design of a 50 kW methanol/steam reformer. Activities related to complete mathematical modelling of the integrated power system, including wasteheat utilization, are described.

  15. Efficient treatment of phenolic wastewater with high salinity using a novel integrated system of magnetically immobilized cells coupling with electrodes.

    PubMed

    Jiang, Bei; Shi, Shengnan; Song, Lun; Tan, Liang; Li, Meidi; Liu, Jiaxin; Xue, Lanlan

    2016-10-01

    A novel integrated system in which magnetically immobilized cells coupled with a pair of stainless iron meshes-graphite plate electrodes has been designed and operated to enhance the treatment performance of phenolic wastewater under high salinity. With NaCl concentration increased, phenol, o-cresol, m-cresol, p-cresol and COD removal rates by integrated system increased significantly, which were obviously higher than the sum of removal rates by single magnetically immobilized cells and electrode reaction. This integrated system exhibited higher removal rates for all the compounds than that by single magnetically immobilized cells during six cycles for reuse, and it still performed better, even when the voltage was cut off. These results indicated that there was a coupling effect between biodegradation and electrode reaction. The investigation of phenol hydroxylase activity and cells concentration confirmed that electrode reaction played an important role in this coupling effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  17. Fuel cell on-site integrated energy system parametric analysis of a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.

    1977-01-01

    A parametric energy-use analysis was performed for a large apartment complex served by a fuel cell on-site integrated energy system (OS/IES). The variables parameterized include operating characteristics for four phosphoric acid fuel cells, eight OS/IES energy recovery systems, and four climatic locations. The annual fuel consumption for selected parametric combinations are presented and a breakeven economic analysis is presented for one parametric combination. The results show fuel cell electrical efficiency and system component choice have the greatest effect on annual fuel consumption; fuel cell thermal efficiency and geographic location have less of an effect.

  18. Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Hackler, I. M.

    1986-01-01

    The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.

  19. ECAS Phase I fuel cell results. [Energy Conservation Alternatives Study

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1978-01-01

    This paper summarizes and discusses the fuel cell system results of Phase I of the Energy Conversion Alternatives Study (ECAS). Ten advanced electric powerplant systems for central-station baseload generation using coal were studied by NASA in ECAS. Three types of low-temperature fuel cells (solid polymer electrolyte, SPE, aqueous alkaline, and phosphoric acid) and two types of high-temperature fuel cells (molten carbonate, MC, and zirconia solid electrolyte, SE) were studied. The results indicate that (1) overall efficiency increases with fuel cell temperature, and (2) scale-up in powerplant size can produce a significant reduction in cost of electricity (COE) only when it is accompanied by utilization of waste fuel cell heat through a steam bottoming cycle and/or integration with a gasifier. For low-temperature fuel cell systems, the use of hydrogen results in the highest efficiency and lowest COE. In spite of higher efficiencies, because of higher fuel cell replacement costs integrated SE systems have higher projected COEs than do integrated MC systems. Present data indicate that life can be projected to over 30,000 hr for MC fuel cells, but data are not yet sufficient for similarly projecting SE fuel cell life expectancy.

  20. Integral reactor system and method for fuel cells

    DOEpatents

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  1. Integral reactor system and method for fuel cells

    DOEpatents

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  2. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems.

    PubMed

    Kawabe, Yoshinori; Komatsu, Shinya; Komatsu, Shodai; Murakami, Mai; Ito, Akira; Sakuma, Tetsushi; Nakamura, Takahiro; Yamamoto, Takashi; Kamihira, Masamichi

    2018-05-01

    Chinese hamster ovary (CHO) cells have been used as host cells for the production of pharmaceutical proteins. For the high and stable production of target proteins, the transgene should be integrated into a suitable genomic locus of host cells. Here, we generated knock-in CHO cells, in which transgene cassettes without a vector backbone sequence were integrated into the hprt locus of the CHO genome using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) systems. We investigated the efficiency of targeted knock-in of transgenes using these systems. As a practical example, we generated knock-in CHO cells producing an scFv-Fc antibody using the CRIS-PITCh system mediated by microhomology sequences for targeting. We found that the CRIS-PITCh system can facilitate targeted knock-in for CHO cell engineering. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system

    PubMed Central

    Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas

    2017-01-01

    The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice. PMID:28425472

  4. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system.

    PubMed

    Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas

    2017-04-20

    The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice.

  5. Optical and electrical interfacing technologies for living cell bio-chips.

    PubMed

    Shacham-Diamand, Y; Belkin, S; Rishpon, J; Elad, T; Melamed, S; Biran, A; Yagur-Kroll, S; Almog, R; Daniel, R; Ben-Yoav, H; Rabner, A; Vernick, S; Elman, N; Popovtzer, R

    2010-06-01

    Whole-cell bio-chips for functional sensing integrate living cells on miniaturized platforms made by micro-system-technologies (MST). The cells are integrated, deposited or immersed in a media which is in contact with the chip. The cells behavior is monitored via electrical, electrochemical or optical methods. In this paper we describe such whole-cell biochips where the signal is generated due to the genetic response of the cells. The solid-state platform hosts the biological component, i.e. the living cells, and integrates all the required micro-system technologies, i.e. the micro-electronics, micro-electro optics, micro-electro or magneto mechanics and micro-fluidics. The genetic response of the cells expresses proteins that generate: a. light by photo-luminescence or bioluminescence, b. electrochemical signal by interaction with a substrate, or c. change in the cell impedance. The cell response is detected by a front end unit that converts it to current or voltage amplifies and filters it. The resultant signal is analyzed and stored for further processing. In this paper we describe three examples of whole-cell bio chips, photo-luminescent, bioluminescent and electrochemical, which are based on the genetic response of genetically modified E. coli microbes integrated on a micro-fluidics MEMS platform. We describe the chip outline as well as the basic modeling scheme of such sensors. We discuss the highlights and problems of such system, from the point of view of micro-system-technology.

  6. Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach

    NASA Astrophysics Data System (ADS)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2013-12-01

    A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.

  7. Carbonate fuel cell system with thermally integrated gasification

    DOEpatents

    Steinfeld, G.; Meyers, S.J.; Lee, A.

    1996-09-10

    A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

  8. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    PubMed

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  9. Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksiy O.

    2018-05-01

    Developing the idea of increasing the number of structural elements in the unit cell of a quasi-one-dimensional lattice as applied to the semi-discrete integrable systems of nonlinear Schrödinger type, we construct the zero-curvature representation for the general integrable nonlinear system on a lattice with three structural elements in the unit cell. The integrability of the obtained general system permits to find explicitly a number of local conservation laws responsible for the main features of system dynamics and in particular for the so-called natural constraints separating the field variables into the basic and the concomitant ones. Thus, considering the reduction to the semi-discrete integrable system of nonlinear Schrödinger type, we revealed the essentially nontrivial impact of concomitant fields on the Poisson structure and on the whole Hamiltonian formulation of system dynamics caused by the nonzero background values of these fields. On the other hand, the zero-curvature representation of a general nonlinear system serves as an indispensable key to the dressing procedure of system integration based upon the Darboux transformation of the auxiliary linear problem and the implicit Bäcklund transformation of field variables. Due to the symmetries inherent to the six-component semi-discrete integrable nonlinear Schrödinger system with attractive-type nonlinearities, the Darboux-Bäcklund dressing scheme is shown to be simplified considerably, giving rise to the appropriately parameterized multi-component soliton solution consisting of six basic and four concomitant components.

  10. Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.

    1984-01-01

    Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.

  11. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis

    PubMed Central

    Faria-Blanc, Nuno; Mortimer, Jenny C.; Dupree, Paul

    2018-01-01

    Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants. PMID:29636762

  12. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis.

    PubMed

    Faria-Blanc, Nuno; Mortimer, Jenny C; Dupree, Paul

    2018-01-01

    Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants.

  13. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  14. Compact electrochemical sensor system and method for field testing for metals in saliva or other fluids

    DOEpatents

    Lin, Yuehe; Bennett, Wendy D.; Timchalk, Charles; Thrall, Karla D.

    2004-03-02

    Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating "plug and play" concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform. Another integration scheme was based on a multilayer lamination method utilizing stacking modules with different functionality to achieve a compact microanalytical device. Application of the microanalytical system for detection of lead in, for example, river water and saliva samples using stripping voltammetry is described.

  15. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  16. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.

  17. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    NASA Astrophysics Data System (ADS)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  18. Solar cell system having alternating current output

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1980-01-01

    A monolithic multijunction solar cell was modified by fabricating an integrated circuit inverter on the back of the cell to produce a device capable of generating an alternating current output. In another embodiment, integrated curcuit power conditioning electronics was incorporated in a module containing a solar cell power supply.

  19. 12. Exterior view, showing tank and piping associated with Test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Exterior view, showing tank and piping associated with Test Cell 7, Systems Integration Laboratory Building (T-28), looking west. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. Biona-C Cell Culture pH Monitoring System

    NASA Technical Reports Server (NTRS)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.

  1. 8. Exterior view, showing tank and associated piping adjacent to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Exterior view, showing tank and associated piping adjacent to Test Cell 6, Systems Integration Laboratory Building (T-28), looking south. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. Develop and test fuel cell powered on-site integrated total energy systems. Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Feigenbaum, H.; Kaufman, A.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1983-01-01

    Operating experience with a 5kW methanol-air integrated system is described. On-going test results for a 24-cell, two-sq ft (4kW) stack are reported. The main activity for this stack is currently the evaluation of developmental non-metalic cooling plates. Single-cell test results are presented for a promising developmental cathode catalyst.

  3. Develop and test fuel cell powered on-site integrated total energy system

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Feigenbaum, H.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1983-01-01

    Test results are presented for a 24 cell, two sq ft (4kW) stack. This stack is a precursor to a 25kW stack that is a key milestone. Results are discussed in terms of cell performance, electrolyte management, thermal management, and reactant gas manifolding. The results obtained in preliminary testing of a 50kW methanol processing subsystem are discussed. Subcontracting activities involving application analysis for fuel cell on site integrated energy systems are updated.

  4. Analysis of integrated photovoltaic-thermal systems using solar concentrators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, M.B.

    1983-01-01

    An integrated photovoltaic-thermal system using solar concentrators utilizes the solar radiation spectrum in the production of electrical and thermal energy. The electrical conversion efficiency of this system decreases with increasing solar cell temperature. Since a high operating temperature is desirable to maximize the quality of thermal output of the planned integrated system, a proper choice of the operating temperature for the unit cell is of vital importance. The analysis predicts performance characteristics of the unit cell by considering the dependence of the heat generation, the heat absorption and the heat transmission on the material properties of the unit cell structure.more » An analytical model has been developed to describe the heat transport phenomena occurring in the unit cell structure. The range of applicability of the one-dimensional and the two-dimensional models, which have closed-form solutions, has been demonstrated. Parametric and design studies point out the requirements for necessary good electrical and thermal performance. A procedure utilizing functional forms of component characteristics in the form of partial coefficients of the dependent variable has been developed to design and operate the integrated system to have a desirable value of the thermal to electrical output ratio both at design and operating modes.« less

  5. Bacterial cell-free expression technology to in vitro systems engineering and optimization.

    PubMed

    Caschera, Filippo

    2017-06-01

    Cell-free expression system is a technology for the synthesis of proteins in vitro . The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.

  6. Fuel cell system with interconnect

    DOEpatents

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  7. Grid cell spatial tuning reduced following systemic muscarinic receptor blockade

    PubMed Central

    Newman, Ehren L.; Climer, Jason R.; Hasselmo, Michael E.

    2014-01-01

    Grid cells of the medial entorhinal cortex exhibit a periodic and stable pattern of spatial tuning that may reflect the output of a path integration system. This grid pattern has been hypothesized to serve as a spatial coordinate system for navigation and memory function. The mechanisms underlying the generation of this characteristic tuning pattern remain poorly understood. Systemic administration of the muscarinic antagonist scopolamine flattens the typically positive correlation between running speed and entorhinal theta frequency in rats. The loss of this neural correlate of velocity, an important signal for the calculation of path integration, raises the question of what influence scopolamine has on the grid cell tuning as a read out of the path integration system. To test this, the spatial tuning properties of grid cells were compared before and after systemic administration of scopolamine as rats completed laps on a circle track for food rewards. The results show that the spatial tuning of the grid cells was reduced following scopolamine administration. The tuning of head direction cells, in contrast, was not reduced by scopolamine. This is the first report to demonstrate a link between cholinergic function and grid cell tuning. This work suggests that the loss of tuning in the grid cell network may underlie the navigational disorientation observed in Alzheimer's patients and elderly individuals with reduced cholinergic tone. PMID:24493379

  8. 6. Exterior view, showing structural details and instrumentation at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Exterior view, showing structural details and instrumentation at the walk-in entry level (bottom) of Test Cell 6, Systems Integration Laboratory Building (T-28), looking southwest. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  9. 7. Exterior view, showing instrumentation and gauge panel at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Exterior view, showing instrumentation and gauge panel at the walk-in entry level (bottom) of Test Cell 6, Systems Integration Laboratory Building (T-28), looking west. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. 10. Exterior view, showing the structural details and tanks above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Exterior view, showing the structural details and tanks above at walk-in entry level (bottom) of Test Cell 7, Systems Integration Laboratory Building (T-28), looking west. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  11. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system

    PubMed Central

    Desplan, Claude

    2016-01-01

    Nervous system development is a process that integrates cell proliferation, differentiation and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerge while integrating this information. PMID:27404003

  12. System level electrochemical principles

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1985-01-01

    The traditional electrochemical storage concepts are difficult to translate into high power, high voltage multikilowatt storage systems. The increased use of electronics, and the use of electrochemical couples that minimize the difficulties associated with the corrective measures to reduce the cell to cell capacity dispersion were adopted by battery technology. Actively cooled bipolar concepts are described which represent some attractive alternative system concepts. They are projected to have higher energy densities lower volumes than current concepts. They should be easier to scale from one capacity to another and have a closer cell to cell capacity balance. These newer storage system concepts are easier to manage since they are designed to be a fully integrated battery. These ideas are referred to as system level electrochemistry. The hydrogen-oxygen regenerative fuel cells (RFC) is probably the best example of the integrated use of these principles.

  13. Coal Integrated Gasification Fuel Cell System Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable withmore » the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.« less

  14. An integrated cell-free metabolic platform for protein production and synthetic biology

    PubMed Central

    Jewett, Michael C; Calhoun, Kara A; Voloshin, Alexei; Wuu, Jessica J; Swartz, James R

    2008-01-01

    Cell-free systems offer a unique platform for expanding the capabilities of natural biological systems for useful purposes, i.e. synthetic biology. They reduce complexity, remove structural barriers, and do not require the maintenance of cell viability. Cell-free systems, however, have been limited by their inability to co-activate multiple biochemical networks in a single integrated platform. Here, we report the assessment of biochemical reactions in an Escherichia coli cell-free platform designed to activate natural metabolism, the Cytomim system. We reveal that central catabolism, oxidative phosphorylation, and protein synthesis can be co-activated in a single reaction system. Never before have these complex systems been shown to be simultaneously activated without living cells. The Cytomim system therefore promises to provide the metabolic foundation for diverse ab initio cell-free synthetic biology projects. In addition, we describe an improved Cytomim system with enhanced protein synthesis yields (up to 1200 mg/l in 2 h) and lower costs to facilitate production of protein therapeutics and biochemicals that are difficult to make in vivo because of their toxicity, complexity, or unusual cofactor requirements. PMID:18854819

  15. Architectural constraints are a major factor reducing path integration accuracy in the rat head direction cell system.

    PubMed

    Page, Hector J I; Walters, Daniel; Stringer, Simon M

    2015-01-01

    Head direction cells fire to signal the direction in which an animal's head is pointing. They are able to track head direction using only internally-derived information (path integration)In this simulation study we investigate the factors that affect path integration accuracy. Specifically, two major limiting factors are identified: rise time, the time after stimulation it takes for a neuron to start firing, and the presence of symmetric non-offset within-layer recurrent collateral connectivity. On the basis of the latter, the important prediction is made that head direction cell regions directly involved in path integration will not contain this type of connectivity; giving a theoretical explanation for architectural observations. Increased neuronal rise time is found to slow path integration, and the slowing effect for a given rise time is found to be more severe in the context of short conduction delays. Further work is suggested on the basis of our findings, which represent a valuable contribution to understanding of the head direction cell system.

  16. A Novel System for Simultaneous or Sequential Integration of Multiple Gene-Loading Vectors into a Defined Site of a Human Artificial Chromosome

    PubMed Central

    Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2014-01-01

    Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming. PMID:25303219

  17. A novel system for simultaneous or sequential integration of multiple gene-loading vectors into a defined site of a human artificial chromosome.

    PubMed

    Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2014-01-01

    Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming.

  18. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    PubMed

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  20. Packaging Considerations for Biopreservation

    PubMed Central

    Woods, Erik J.; Thirumala, Sreedhar

    2011-01-01

    Summary The packaging system chosen for biopreservation is critical for many reasons. An ideal biopreservation container system must provide for closure integrity, sample stability and ready access to the preserved material. This means the system needs to be hermetically sealed to ensure integrity of the specimen is maintained throughout processing, storage and distribution; the system must remain stable over long periods of time as many biobanked samples may be stored indefinitely; and functionally closed access systems must be used to avoid contamination upon sample withdraw. This study reviews the suitability of a new commercially available vial configuration container utilizing blood bag style closure and access systems that can be hermetically sealed and remain stable through cryopreservation and biobanking procedures. This vial based systems allow for current good manufacturing/tissue practice (cGTP) requirements during processing of samples and may provide the benefit of ease of delivery by a care giver. In this study, the CellSeal® closed system cryovial was evaluated and compared to standard screw cap vials. The CellSeal system was evaluated for durability, closure integrity through transportation and maintenance of functional viability of a cryopreserved mesenchymal stem cell model. The results of this initial proof-of-concept study indicated that the CellSeal vials are highly suitable for biopreservation and biobanking, and provide a suitable container system for clinical and commercial cell therapy products frozen in small volumes. PMID:21566715

  1. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors,more » therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.« less

  2. Small Portable PEM Fuel Cell Systems for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2005-01-01

    Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges

  3. Coordinated Research in Robotics and Integrated Manufacturing.

    DTIC Science & Technology

    1983-07-31

    of three research divisions: Robot Systems, Management Systems, and Integrated Design and Manufacturing, and involves about 40 faculty spanning the...keystone of their program. A relatively smaller level of effort is being supported within the Management Systems Division. This is the first annual...SYSTEMS MANAGEMENT 0 DESIGN DATABASES " ROBOT-BASED 0 HUMAN FACTORSMANUFACTURING • CAD CELL* PRODUCTIONMUCR LANNING * INTEGRATION LANGUAGE AND VIA LOCAL

  4. Experimental Microfluidic System

    NASA Technical Reports Server (NTRS)

    Culbertson, Christopher; Gonda, Steve; Ramsey, John Michael

    2005-01-01

    The ultimate goal of this project is to integrate microfluidic devices with NASA's space bioreactor systems. In such a system, the microfluidic device would provide realtime feedback control of the bioreactor by monitoring pH, glucose, and lactate levels in the cell media; and would provide an analytical capability to the bioreactor in exterrestrial environments for monitoring bioengineered cell products and health changes in cells due to environmental stressors. Such integrated systems could be used as biosentinels both in space and on planet surfaces. The objective is to demonstrate the ability of microfabricated devices to repeatedly and reproducibly perform bead cytometry experiments in micro, lunar, martian, and hypergravity (1.8g).

  5. Integrated Power Source Grant

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Traditional spacecraft power systems incorporate a solar array energy source, an energy storage element (battery), and battery charge control and bus voltage regulation electronics to provide continuous electrical power for spacecraft systems and instruments. Dedicated power conditioning components provide limited fault isolation between systems and instruments, while a centralized power-switching unit provides spacecraft load control. Battery undervoltage conditions are detected by the spacecraft processor, which removes fault conditions and non-critical loads before permanent battery damage can occur. Cost effective operation of a micro-sat constellation requires a fault tolerant spacecraft architecture that minimizes on-orbit operational costs by permitting autonomous reconfiguration in response to unexpected fault conditions. A new micro-sat power system architecture that enhances spacecraft fault tolerance and improves power system survivability by continuously managing the battery charge and discharge processes on a cell-by-cell basis has been developed. This architecture is based on the Integrated Power Source (US patent 5644207), which integrates dual junction solar cells, Lithium Ion battery cells, and processor based charge control electronics into a structural panel that can be deployed or used to form a portion of the outer shell of a micro-spacecraft. The first generation Integrated Power Source is configured as a one inch thick panel in which prismatic Lithium Ion battery cells are arranged in a 3x7 matrix (26VDC) and a 3x1 matrix (3.7VDC) to provide the required output voltages and load currents. A multi-layer structure holds the battery cells, as well as the thermal insulators that are necessary to protect the Lithium Ion battery cells from the extreme temperatures of the solar cell layer. Independent thermal radiators, located on the back of the panel, are dedicated to the solar cell array, the electronics, and the battery cell array. In deployed panel applications, these radiators maintain the battery cells in an appropriate operational temperature range.

  6. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology

    PubMed Central

    2011-01-01

    Background Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown utility in the study of systems medicine. However, no integrated analysis between human tissues has been done. Results To describe tissue-specific functions, Recon 1 was tailored to describe metabolism in three human cells: adipocytes, hepatocytes, and myocytes. These cell-specific networks were manually curated and validated based on known cellular metabolic functions. To study intercellular interactions, a novel multi-tissue type modeling approach was developed to integrate the metabolic functions for the three cell types, and subsequently used to simulate known integrated metabolic cycles. In addition, the multi-tissue model was used to study diabetes: a pathology with systemic properties. High-throughput data was integrated with the network to determine differential metabolic activity between obese and type II obese gastric bypass patients in a whole-body context. Conclusion The multi-tissue type modeling approach presented provides a platform to study integrated metabolic states. As more cell and tissue-specific models are released, it is critical to develop a framework in which to study their interdependencies. PMID:22041191

  7. Advanced nickel-hydrogen cell configuration study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Long-term trends in the evolution of space power technology point toward increased payload power demand which in turn translates into both higher battery system charge storage capability and higher operating voltages. State of the art nickel-hydrogen cells of the 50 to 60 Wh size, packaged in individual pressure vessels, are capable of meeting the required cycle life for a wide range of anticipated operating conditions; however, they provided several drawbacks to battery system integrated efforts. Because of size, high voltage/high power systems require integrating hundreds of cells into the operating system. Packaging related weight and volume inefficiencies degrade the energy density and specific energy of individual cells currently at 30 Wh/cudm and 40 Wh/kg respectively. In addition, the increased parts count and associated handling significantly affect the overall battery related costs. Spacecraft battery systems designers within industry and Government realize that to reduce weight, volume, and cost requires increases in the capacity of nickel-hydrogen cells.

  8. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines.

    PubMed

    Kowarz, Eric; Löscher, Denise; Marschalek, Rolf

    2015-04-01

    Stable gene expression in mammalian cells is a prerequisite for many in vitro and in vivo experiments. However, either the integration of plasmids into mammalian genomes or the use of retro-/lentiviral systems have intrinsic limitations. The use of transposable elements, e.g. the Sleeping Beauty system (SB), circumvents most of these drawbacks (integration sites, size limitations) and allows the quick generation of stable cell lines. The integration process of SB is catalyzed by a transposase and the handling of this gene transfer system is easy, fast and safe. Here, we report our improvements made to the existing SB vector system and present two new vector types for robust constitutive or inducible expression of any gene of interest. Both types are available in 16 variants with different selection marker (puromycin, hygromycin, blasticidin, neomycin) and fluorescent protein expression (GFP, RFP, BFP) to fit most experimental requirements. With this system it is possible to generate cell lines from stable transfected cells quickly and reliably in a medium-throughput setting (three to five days). Cell lines robustly express any gene-of-interest, either constitutively or tightly regulated by doxycycline. This allows many laboratory experiments to speed up generation of data in a rapid and robust manner. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Integrated microfluidic systems for sample preparation and detection of respiratory pathogen Bordetella pertussis.

    PubMed

    de la Rosa, Carlos; Prakash, Ranjit; Tilley, Peter A; Fox, Julie D; Kaler, Karan V i S

    2007-01-01

    An integrated microfluidic system for combined manipulation, pre-concentration, and lysis of samples containing Bordetella pertussis by dielectrophoresis and electroporation has been developed and implemented. The microfluidic device was able to pre-concentrate the amount of B. pertussis cells present in 200 microl of a B. pertussis suspension stock into a 20 microl volume. The device exhibited optimal sample pre-concentration of 6.7x at a stock value of 10(3) cfu/ml and at a flow rate of 250 microl/h. Electro-disruption experiments showed that on-chip-based electroporation is an effective solution for lysis of B. pertussis cells that is easily integrated with dielectrophoresis assisted pre-concentration procedures. Pulsed voltage applied, number of pulses, and presence of potassium chloride in a B. pertussis suspension showed a reduction in B. pertussis cell viability by electroporation; and transmission electron microscopy confirmed B. pertussis cell disruption by electroporation. Genetic amplification and detection of the pre-concentrated sample employing an integrated chip-based system demonstrated a complete chip approach for pathogen detection.

  10. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    NASA Astrophysics Data System (ADS)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  11. Mouse mammary tumor virus-based vector transduces non-dividing cells, enters the nucleus via a TNPO3-independent pathway and integrates in a less biased fashion than other retroviruses.

    PubMed

    Konstantoulas, Constantine James; Indik, Stanislav

    2014-04-30

    Mouse mammary tumor virus (MMTV) is a complex, milk-born betaretrovirus, which preferentially infects dendritic cells (DC) in the gastrointestinal tract and then spreads to T and B lymphocytes and finally to the mammary gland. It is not clear how the prototypic betaretrovirus infects mucosal DCs and naïve lymphocytes as these cells are considered to be non-proliferative. Studies of MMTV biology have been hampered by the difficulty of obtaining sufficient virus/vector titers after transfection of a molecular clone in cultured cells. To surmount this barrier we developed a novel MMTV-based vector system with a split genome design containing potent posttranscriptional regulatory functions. Using this system, vector particles were produced to markedly greater titers (>1000-fold) than those obtained previously. The titers (>106 transduction units /ml) were comparable to those achieved with lentiviral or gammaretroviral vectors. Importantly, the vector transduced the enhanced green fluorescence protein gene into the chromosomes of non-dividing cells, such as cells arrested at the G2/M phase of the cell cycle and unstimulated hematopoietic progenitor cells, at an efficiency similar to that obtained with the HIV-1-based vector. In contrast to HIV-1, MMTV transductions were not affected by knocking down the expression of a factor involved in nuclear import of the HIV-1 pre-integration complexes, TNPO3. In contrast to HIV-1, the MMTV-based vector did not preferentially integrate in transcription units. Additionally, no preference for integration near transcription start sites, the regions preferentially targeted by gammaretroviral vectors, was observed. The vector derived from MMTV exhibits a random integration pattern. Overall, the betaretroviral vector system should facilitate molecular virology studies of the prototypic betaretrovirus as well as studies attempting to elucidate fundamental cellular processes such as nuclear import pathways. Random integration in cycling and non-cycling cells may be applicable in unbiased gene delivery.

  12. Laboratories | Energy Systems Integration Facility | NREL

    Science.gov Websites

    laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing

  13. Hybrid fuel cell/diesel generation total energy system, part 2

    NASA Astrophysics Data System (ADS)

    Blazek, C. F.

    1982-11-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  14. Hybrid fuel cell/diesel generation total energy system, part 2

    NASA Technical Reports Server (NTRS)

    Blazek, C. F.

    1982-01-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  15. Exploring continuous and integrated strategies for the up- and downstream processing of human mesenchymal stem cells.

    PubMed

    Cunha, Bárbara; Aguiar, Tiago; Silva, Marta M; Silva, Ricardo J S; Sousa, Marcos F Q; Pineda, Earl; Peixoto, Cristina; Carrondo, Manuel J T; Serra, Margarida; Alves, Paula M

    2015-11-10

    The integration of up- and downstream unit operations can result in the elimination of hold steps, thus decreasing the footprint, and ultimately can create robust closed system operations. This type of design is desirable for the bioprocess of human mesenchymal stem cells (hMSC), where high numbers of pure cells, at low volumes, need to be delivered for therapy applications. This study reports a proof of concept of the integration of a continuous perfusion culture in bioreactors with a tangential flow filtration (TFF) system for the concentration and washing of hMSC. Moreover, we have also explored a continuous alternative for concentrating hMSC. Results show that expanding cells in a continuous perfusion operation mode provided a higher expansion ratio, and led to a shift in cells' metabolism. TFF operated either in continuous or discontinuous allowed to concentrate cells, with high cell recovery (>80%) and viability (>95%); furthermore, continuous TFF permitted to operate longer with higher cell concentrations. Continuous diafiltration led to higher protein clearance (98%) with lower cell death, when comparing to discontinuous diafiltration. Overall, an integrated process allowed for a shorter process time, recovering 70% of viable hMSC (>95%), with no changes in terms of morphology, immunophenotype, proliferation capacity and multipotent differentiation potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Multiwell cell culture plate format with integrated microfluidic perfusion system

    NASA Astrophysics Data System (ADS)

    Domansky, Karel; Inman, Walker; Serdy, Jim; Griffith, Linda G.

    2006-01-01

    A new cell culture analog has been developed. It is based on the standard multiwell cell culture plate format but it provides perfused three-dimensional cell culture capability. The new capability is achieved by integrating microfluidic valves and pumps into the plate. The system provides a means to conduct high throughput assays for target validation and predictive toxicology in the drug discovery and development process. It can be also used for evaluation of long-term exposure to drugs or environmental agents or as a model to study viral hepatitis, cancer metastasis, and other diseases and pathological conditions.

  17. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    NASA Astrophysics Data System (ADS)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the obtained experimental data, the research studied the control of airflow to regulate the temperature of reactors within the fuel processor. The dynamic model provided a platform to test the dynamic response for different control gains. With sufficient sensing and appropriate control, a rapid response to maintain the temperature of the reactor despite an increase in power was possible. The third part of the research studied the use of a fuel cell in conjunction with photovoltaic panels, and energy storage to provide electricity for buildings. This research developed an optimization framework to determine the size of each device in the hybrid energy system to satisfy the electrical demands of buildings and yield the lowest cost. The advantage of having the fuel cell with photovoltaic and energy storage was the ability to operate the fuel cell at baseload at night, thus reducing the need for large battery systems to shift the solar power produced in the day to the night. In addition, the dispatchability of the fuel cell provided an extra degree of freedom necessary for unforeseen disturbances. An operation framework based on model predictive control showed that the method is suitable for optimizing the dispatch of the hybrid energy system.

  18. In vitro membrane protein synthesis inside Sec translocon-reconstituted cell-sized liposomes

    PubMed Central

    Ohta, Naoki; Kato, Yasuhiko; Watanabe, Hajime; Mori, Hirotada; Matsuura, Tomoaki

    2016-01-01

    Protein synthesis using an in vitro transcription-translation system (IVTT) inside cell-sized liposomes has become a valuable tool to study the properties of biological systems under cell-mimicking conditions. However, previous liposome systems lacked the machinery for membrane protein translocation. Here, we reconstituted the translocon consisting of SecYEG from Escherichia coli inside cell-sized liposomes. The cell-sized liposomes also carry the reconstituted IVTT, thereby providing a cell-mimicking environment for membrane protein synthesis. By using EmrE, a multidrug transporter from E. coli, as a model membrane protein, we found that both the amount and activity of EmrE synthesized inside the liposome is increased approximately three-fold by incorporating the Sec translocon. The topological change of EmrE induced by the translocon was also identified. The membrane integration of 6 out of 9 E. coli inner membrane proteins that was tested was increased by incorporation of the translocon. By introducing the Sec translocon, the membrane integration efficiency of the membrane protein of interest was increased, and enabled the integration of membrane proteins that otherwise cannot be inserted. In addition, this work represents an essential step toward the construction of an artificial cell through a bottom-up approach. PMID:27808179

  19. Electrolysis Propulsion for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  20. [Expression of human-mouse chimeric antibody directed against Chikungunya virus with site-specific integration system].

    PubMed

    Li, Jian-min; Chen, Wei; Jia, Xiu-jie; An, Xiao-ping; Li, Bing; Fan, Ying-ru; Tong, Yi-gang

    2005-05-01

    To obtain CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site and to express human-mouse chimeric antibody directed against Chikungunya Virus by using the cell line. The fusion gene of FRT and HBsAg was constructed by PCR and cloned into the MCS of pCI-neo to construct pCI-FRT-HBsAg. The pCI-FRT-HBsAg was transfected into CHO/dhfr(-) cells and cell clones with high expression of HBsAg were screened by detecting the amount of HBsAg with ELISA. A CHO cell clone with the highest expression was chosen and named as CHO/dhfr(-) FRT(+). pAFRT HFLF, a expression plasmid of chimeric antibody with RFT sequence was transfected into CHO/dhfr(-) FRT(+) cells and cell clones with high expression of the chimeric antibody were screened by increasing concentration of MTX. A CHO cell clone with high expression of the chimeric antibody was cultured in large scale and supernatant was collected from which the chimeric antibody was purified. The purified chimeric antibody was analyzed by SDS-PAGE, Western blot and IFA. A CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site was obtained successfully. A cell clone with yield of 5 mg/L of chimeric antibody was obtained, as compared with routine CHO cell expression system with a yield of 2 mg/L. A cell line with integrated FRT sequence in the chromosome transcription active site was obtained and with it human-mouse chimeric antibody directed against Chikungunya virus was expressed. This system lays a solid foundation which can be used for expressing antibodies and other proteins.

  1. Comparative analysis of chimeric ZFP-, TALE- and Cas9-piggyBac transposases for integration into a single locus in human cells.

    PubMed

    Luo, Wentian; Galvan, Daniel L; Woodard, Lauren E; Dorset, Dan; Levy, Shawn; Wilson, Matthew H

    2017-08-21

    Integrating DNA delivery systems hold promise for many applications including treatment of diseases; however, targeted integration is needed for improved safety. The piggyBac (PB) transposon system is a highly active non-viral gene delivery system capable of integrating defined DNA segments into host chromosomes without requiring homologous recombination. We systematically compared four different engineered zinc finger proteins (ZFP), four transcription activator-like effector proteins (TALE), CRISPR associated protein 9 (SpCas9) and the catalytically inactive dSpCas9 protein fused to the amino-terminus of the transposase enzyme designed to target the hypoxanthine phosphoribosyltransferase (HPRT) gene located on human chromosome X. Chimeric transposases were evaluated for expression, transposition activity, chromatin immunoprecipitation at the target loci, and targeted knockout of the HPRT gene in human cells. One ZFP-PB and one TALE-PB chimera demonstrated notable HPRT gene targeting. In contrast, Cas9/dCas9-PB chimeras did not result in gene targeting. Instead, the HPRT locus appeared to be protected from transposon integration. Supplied separately, PB permitted highly efficient isolation of Cas9-mediated knockout of HPRT, with zero transposon integrations in HPRT by deep sequencing. In summary, these tools may allow isolation of 'targeted-only' cells, be utilized to protect a genomic locus from transposon integration, and enrich for Cas9-mutated cells. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  2. Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters.

    PubMed

    Cheng, Jia; Zhu, Xiuping; Ni, Jinren; Borthwick, Alistair

    2010-04-01

    An integrated system of two-stage microbial fuel cells (MFCs) and immobilized biological aerated filters (I-BAFs) was used to treat palm oil mill effluent (POME) at laboratory scale. By replacing the conventional two-stage up-flow anaerobic sludge blanket (UASB) with a newly proposed upflow membrane-less microbial fuel cell (UML-MFC) in the integrated system, significant improvements on NH(3)-N removal were observed and direct electricity generation implemented in both MFC1 and MFC2. Moreover, the coupled iron-carbon micro-electrolysis in the cathode of MFC2 further enhanced treatment efficiency of organic compounds. The I-BAFs played a major role in further removal of NH(3)-N and COD. For influent COD and NH(3)-N of 10,000 and 125 mg/L, respectively, the final effluents COD and NH(3)-N were below 350 and 8 mg/L, with removal rates higher than 96.5% and 93.6%. The GC-MS analysis indicated that most of the contaminants were satisfactorily biodegraded by the integrated system. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Integrated CZE-ESI-MS/MS system with an immobilized trypsin microreactor for online digestion and analysis of picogram amounts of RAW 264.7 cell lysate

    PubMed Central

    Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J.

    2013-01-01

    A capillary zone electrophoresis (CZE) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) system was integrated with an immobilized trypsin microreactor. The system was evaluated and then applied for online digestion and analysis of picogram loadings of RAW 264.7 cell lysate. Protein samples were dissolved in a buffer containing 50% (v/v) acetonitrile (ACN), and then directly loaded into the capillary for digestion, followed by CZE separation and MS/MS identification. The organic solvent (50% (v/v) ACN) assisted the immobilized trypsin digestion and simplified the protein sample preparation protocol. Neither protein reduction nor alkylation steps were employed, which minimized sample loss and contamination. The integrated CZE-ESI-MS/MS system generated confident identification of bovine serum albumin (BSA) with 19% sequence coverage and 14 peptide IDs when 20 fmole was loaded. When only 1 fmole BSA was injected, one BSA peptide was consistently detected. For the analysis of a standard protein mixture, the integrated system produced efficient protein digestion and confident identification for proteins with different molecular weights and isoelectric points when low fmole amount was loaded for each protein. We further applied the system for triplicate analysis of a RAW 264.7 cell lysate; 2 ± 1 and 7 ± 2 protein groups were confidently identified from only 300 pg and 3 ng loadings, respectively. The 300 pg sample loading corresponds to the protein content of three RAW 264.7 cells. In addition to high sensitivity analysis, the integrated CZE-ESI-MS/MS system produces good reproducibility in terms of peptide and protein IDs, peptide migration time, and peptide intensity. PMID:23510126

  4. Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells.

    PubMed

    Trache, Andreea; Meininger, Gerald A

    2005-01-01

    A novel hybrid imaging system is constructed integrating atomic force microscopy (AFM) with a combination of optical imaging techniques that offer high spatial resolution. The main application of this instrument (the NanoFluor microscope) is the study of mechanotransduction with an emphasis on extracellular matrix-integrin-cytoskeletal interactions and their role in the cellular responses to changes in external chemical and mechanical factors. The AFM allows the quantitative assessment of cytoskeletal changes, binding probability, adhesion forces, and micromechanical properties of the cells, while the optical imaging applications allow thin sectioning of the cell body at the coverslip-cell interface, permitting the study of focal adhesions using total internal reflection fluorescence (TIRF) and internal reflection microscopy (IRM). Combined AFM-optical imaging experiments show that mechanical stimulation at the apical surface of cells induces a force-generating cytoskeletal response, resulting in focal contact reorganization on the basal surface that can be monitored in real time. The NanoFluor system is also equipped with a novel mechanically aligned dual camera acquisition system for synthesized Forster resonance energy transfer (FRET). The integrated NanoFluor microscope system is described, including its characteristics, applications, and limitations.

  5. Clonal selection versus clonal cooperation: the integrated perception of immune objects

    PubMed Central

    Nataf, Serge

    2016-01-01

    Analogies between the immune and nervous systems were first envisioned by the immunologist Niels Jerne who introduced the concepts of antigen "recognition" and immune "memory". However, since then, it appears that only the cognitive immunology paradigm proposed by Irun Cohen, attempted to further theorize the immune system functions through the prism of neurosciences. The present paper is aimed at revisiting this analogy-based reasoning. In particular, a parallel is drawn between the brain pathways of visual perception and the processes allowing the global perception of an "immune object". Thus, in the visual system, distinct features of a visual object (shape, color, motion) are perceived separately by distinct neuronal populations during a primary perception task. The output signals generated during this first step instruct then an integrated perception task performed by other neuronal networks. Such a higher order perception step is by essence a cooperative task that is mandatory for the global perception of visual objects. Based on a re-interpretation of recent experimental data, it is suggested that similar general principles drive the integrated perception of immune objects in secondary lymphoid organs (SLOs). In this scheme, the four main categories of signals characterizing an immune object (antigenic, contextual, temporal and localization signals) are first perceived separately by distinct networks of immunocompetent cells.  Then, in a multitude of SLO niches, the output signals generated during this primary perception step are integrated by TH-cells at the single cell level. This process eventually generates a multitude of T-cell and B-cell clones that perform, at the scale of SLOs, an integrated perception of immune objects. Overall, this new framework proposes that integrated immune perception and, consequently, integrated immune responses, rely essentially on clonal cooperation rather than clonal selection. PMID:27830060

  6. Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via NTCP-dependent uptake of enveloped virus particles.

    PubMed

    Tu, Thomas; Budzinska, Magdalena A; Vondran, Florian W R; Shackel, Nicholas A; Urban, Stephan

    2018-02-07

    Chronic infection by the Hepatitis B Virus (HBV) is the major contributor to liver disease worldwide. Though HBV replicates via a nuclear episomal DNA (cccDNA), integration of HBV DNA into the host cell genome is regularly observed in the liver of infected patients. While reported as a pro-oncogenic alteration, the mechanism(s) and timing of HBV DNA integration are not well-understood, chiefly due to the lack of in vitro infection models that have detectable integration events. Here, we have established an in vitro system in which integration can be reliably detected following HBV infection. We measured HBV DNA integration using inverse nested PCR in primary human hepatocytes, HepaRG-NTCP, HepG2-NTCP, and Huh7-NTCP cells after HBV infection. Integration was detected in all cell types at a rate of >1 per 10000 cells, with the most consistent detection in Huh7-NTCP cells. Integration rate remained stable between 3 and 9 days post-infection. HBV DNA integration was efficiently blocked by treatment with 200nM of the HBV entry inhibitor Myrcludex B, but not with 10μM Tenofovir, 100U Interferon alpha, or 1μM of the capsid assembly inhibitor GLS4. This suggests integration of HBV DNA occurs immediately after infection of hepatocytes and is likely independent of de novo HBV replication in this model. Site analysis revealed that HBV DNA integrations were distributed over the entire human genome. Further, integrated HBV DNA sequences were consistent with double-stranded linear HBV DNA being the major precursor. Thus, we have established an in vitro system to interrogate the mechanisms of HBV DNA integration. Importance Hepatitis B Virus (HBV) is a common blood-borne pathogen and, following a chronic infection, can cause liver cancer and liver cirrhosis. Integration of HBV DNA into the host genome occurs in all known members of the hepadnaviridae family, despite this form not being necessary for viral replication. HBV DNA integration has been reported to drive liver cancer formation and persistence of virus infection. However, when and the mechanism(s) by which HBV DNA integration occurs is not clear. Here, we have developed and characterized an in vitro system to reliably detect HBV DNA integrations that result from a true HBV infection event and that closely resemble those found in patient tissues. Using this model, we show that integration already occurs when the infection is first established. Importantly, we provide here a system to analyze molecular factors involved in HBV integration, which can be used to develop strategies to halt its formation. Copyright © 2018 American Society for Microbiology.

  7. High yield cell-free production of integral membrane proteins without refolding or detergents.

    PubMed

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  8. Economic competitiveness of fuel cell onsite integrated energy systems

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  9. Develop and test fuel cell powered on-site integrated total energy systems: Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of a commercially viable and cost-effective phospheric acid fuel cell powered on-site integrated energy system (OS/IES) is described. The fuel cell offers energy efficients in the range of 35-40% of the higher heating value of available fuels in the form of electrical energy. In addition, by utilizing the thermal energy generated for heating, ventilating and air-conditioning (HVAC), a fuel cell OS/IES could provide total energy efficiencies in the neighborhood of 80%. Also, the Engelhard fuel cell OS/IES offers the important incentive of replacing imported oil with domestically produced methanol, including coal-derived methanol.

  10. Research and Development for Off-Road Fuel Cell Applications U.S. Department of Energy Grant DE-FG36-04GO14303 - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, Michael; Erickson, Paul; Lawrence, Richard

    Off-road concerns are related to the effects of shock and vibration and air quality on fuel cell power requirements. Mechanical stresses on differing material makeup and mass distribution within the system may render some components susceptible to impulse trauma while others may show adverse effects from harmonic disturbances or broad band mechanical agitation. One of the recognized challenges in fuel cell systems air purification is in providing a highly efficient particulate and chemical filter with minimal pressure drop. PEM integrators do not want additional parasitic loads added to the system as compensation for a highly efficient yet highly restrictive filter.more » Additionally, there is challenge in integrating multiple functions into a single air intake module tasked with effectively filtering high dust loads, diesel soot, pesticides, ammonias, and other anticipated off-road contaminants. This project has investigated both off-road associated issues cumulating in the prototype build and testing of two light duty off-road vehicles with integrated fuel cell power plant systems.« less

  11. Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and Central Nervous System Homeostasis.

    PubMed

    Tran, Khiem A; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F; Göthert, Joachim R; Malik, Asrar B; Valyi-Nagy, Tibor; Zhao, You-Yang

    2016-01-12

    The blood-brain barrier (BBB) formed by brain endothelial cells interconnected by tight junctions is essential for the homeostasis of the central nervous system. Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Using a mouse model with tamoxifen-inducible endothelial cell-restricted disruption of ctnnb1 (iCKO), we show here that endothelial β-catenin signaling is essential for maintaining BBB integrity and central nervous system homeostasis in adult mice. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and central nervous system inflammation, and all had postictal death. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of the specific tight junction proteins claudin-1 and -3 in adult brain endothelial cells. The clinical relevance of the data is indicated by the observation of decreased expression of claudin-1 and nuclear β-catenin in brain endothelial cells of hemorrhagic lesions of hemorrhagic stroke patients. These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity, and central nervous system inflammation. © 2015 American Heart Association, Inc.

  12. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  13. Applicability of integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) for the simultaneous detection of the four human enteric enterovirus species in disinfection studies

    EPA Science Inventory

    A newly developed integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method and its applicability in UV disinfection studies is described. This method utilizes a singular cell culture system coupled with four RTqPCR assays to detect infectious serotypes t...

  14. Integrative Technologies and Knowledge Gatekeepers: Bridging the Gap between Epistemic Communities in the Case of Stem Cell Science

    ERIC Educational Resources Information Center

    Wink, Rudiger

    2008-01-01

    The article analyses the role of gatekeepers between regional and disciplinary innovation systems in stem cell research as a case of integrative technologies. Which kind of gatekeepers is needed and which function can be fulfilled, differs along the knowledge value chain. Empirical results are used to explain the rationality of stem cell policies…

  15. Tissue aging: the integration of collective and variant responses of cells to entropic forces over time.

    PubMed

    Todhunter, Michael E; Sayaman, Rosalyn W; Miyano, Masaru; LaBarge, Mark A

    2018-06-13

    Aging is driven by unavoidable entropic forces, physicochemical in nature, that damage the raw materials that constitute biological systems. Single cells experience and respond to stochastic physicochemical insults that occur either to the cells themselves or to their microenvironment, in a dynamic and reciprocal manner, leading to increased age-related cell-to-cell variation. We will discuss the biological mechanisms that integrate cell-to-cell variation across tissues resulting in stereotypical phenotypes of age. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yen; Lee, Gwo-Bin; Lin, Jr-Lung; Huang, Fu-Chun; Liao, Chia-Sheng

    2005-06-01

    The present paper reports a fully automated microfluidic system for the DNA amplification process by integrating an electroosmotic pump, an active micromixer and an on-chip temperature control system. In this DNA amplification process, the cell lysis is initially performed in a micro cell lysis reactor. Extracted DNA samples, primers and reagents are then driven electroosmotically into a mixing region where they are mixed by the active micromixer. The homogeneous mixture is then thermally cycled in a micro-PCR (polymerase chain reaction) chamber to perform DNA amplification. Experimental results show that the proposed device can successfully automate the sample pretreatment operation for DNA amplification, thereby delivering significant time and effort savings. The new microfluidic system, which facilitates cell lysis, sample driving/mixing and DNA amplification, could provide a significant contribution to ongoing efforts to miniaturize bio-analysis systems by utilizing a simple fabrication process and cheap materials.

  17. Sensitive detection of methane at 3.3 μm using an integrating sphere and interband cascade laser

    NASA Astrophysics Data System (ADS)

    Davis, N. M.; Hodgkinson, J.; Francis, D.; Tatam, R. P.

    2016-04-01

    Detection of methane at 3.3μm using a DFB Interband Cascade Laser and gold coated integrating sphere is performed. A 10cm diameter sphere with effective path length of 54.5cm was adapted for use as a gas cell. A comparison between this system and one using a 25cm path length single-pass gas cell is made using direct TDLS and methane concentrations between 0 and 1000 ppm. Initial investigations suggest a limit of detection of 1.0ppm for the integrating sphere and 2.2ppm for the single pass gas cell. The system has potential applications in challenging or industrial environments subject to high levels of vibration.

  18. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation.

    PubMed

    Ballios, Brian G; Cooke, Michael J; Donaldson, Laura; Coles, Brenda L K; Morshead, Cindi M; van der Kooy, Derek; Shoichet, Molly S

    2015-06-09

    The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC) and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC)-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs). The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. 78 FR 26378 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ..., Genomes, and Genetics Integrated Review Group; Prokaryotic Cell and Molecular Biology Study Section. Date..., Kidney and Urological Systems Integrated Review Group; Clinical, Integrative and Molecular... Respiratory Sciences Integrated Review Group; Lung Cellular, Molecular, and Immunobiology Study Section. Date...

  20. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network.

    PubMed

    Hamann, Thorsten

    2015-04-01

    Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. 500 Watt Solar AMTEC Power System for Small Spacecraft.

    DTIC Science & Technology

    1995-03-01

    Thermal Modeling of High Efficiency AMTEC Cells ," Proceedings of the 24th National Heat Transfer Conference. Journal Article 12. SPACE...power flow calculation is the power required by the AMTEC cells which is the cell output power over the cell efficiency . The system model also...Converter ( AMTEC ) cell , called the multi-tube cell , integrated with an individual Thermal Energy Storage (TES) unit. The

  2. Lean Big Data integration in systems biology and systems pharmacology.

    PubMed

    Ma'ayan, Avi; Rouillard, Andrew D; Clark, Neil R; Wang, Zichen; Duan, Qiaonan; Kou, Yan

    2014-09-01

    Data sets from recent large-scale projects can be integrated into one unified puzzle that can provide new insights into how drugs and genetic perturbations applied to human cells are linked to whole-organism phenotypes. Data that report how drugs affect the phenotype of human cell lines and how drugs induce changes in gene and protein expression in human cell lines can be combined with knowledge about human disease, side effects induced by drugs, and mouse phenotypes. Such data integration efforts can be achieved through the conversion of data from the various resources into single-node-type networks, gene-set libraries, or multipartite graphs. This approach can lead us to the identification of more relationships between genes, drugs, and phenotypes as well as benchmark computational and experimental methods. Overall, this lean 'Big Data' integration strategy will bring us closer toward the goal of realizing personalized medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Retroviral DNA Integration Directed by HIV Integration Protein in Vitro

    NASA Astrophysics Data System (ADS)

    Bushman, Frederic D.; Fujiwara, Tamio; Craigie, Robert

    1990-09-01

    Efficient retroviral growth requires integration of a DNA copy of the viral RNA genome into a chromosome of the host. As a first step in analyzing the mechanism of integration of human immunodeficiency virus (HIV) DNA, a cell-free system was established that models the integration reaction. The in vitro system depends on the HIV integration (IN) protein, which was partially purified from insect cells engineered to express IN protein in large quantities. Integration was detected in a biological assay that scores the insertion of a linear DNA containing HIV terminal sequences into a λ DNA target. Some integration products generated in this assay contained five-base pair duplications of the target DNA at the recombination junctions, a characteristic of HIV integration in vivo; the remaining products contained aberrant junctional sequences that may have been produced in a variation of the normal reaction. These results indicate that HIV IN protein is the only viral protein required to insert model HIV DNA sequences into a target DNA in vitro.

  4. Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle

    NASA Astrophysics Data System (ADS)

    Siddiqui, Osamah; Dincer, Ibrahim

    2017-12-01

    In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.

  5. Bio-energy generation in an affordable, single-chamber microbial fuel cell integrated with adsorption hybrid system: effects of temperature and comparison study.

    PubMed

    Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy A W; Amin, Mohamed A M; Nolasco-Hipolito, Cirilo; Bujang, Kopli

    2018-04-01

    A microbial fuel cell (MFC) integrated with adsorption system (MFC-AHS) is tested under various operating temperatures with palm oil mill effluent as the substrate. The optimum operating temperature for such system is found to be at ∼35°C with current, power density, internal resistance (R in ), Coulombic efficiency (CE) and maximum chemical oxygen demand (COD) removal of 2.51 ± 0.2 mA, 74 ± 6 mW m -3 , 25.4 Ω, 10.65 ± 0.5% and 93.57 ± 1.2%, respectively. Maximum current density increases linearly with temperature at a rate of 0.1772 mA m -2  °C -1 , whereas maximum power density was in a polynomial function. The temperature coefficient (Q 10 ) is found to be 1.20 between 15°C and 35°C. Present studies have demonstrated better CE performance when compared to other MFC-AHSs. Generally, MFC-AHS has demonstrated higher COD removals when compared to standalone MFC regardless of operating temperatures. ACFF: activated carbon fiber felt; APHA: American Public Health Association; CE: Coulombic efficiency; COD: chemical oxygen demand; ECG: electrocardiogram; GAC: granular activated carbon; GFB: graphite fiber brush; MFC: microbial fuel cell; MFC-AHS: microbial fuel cell integrated with adsorption hybrid system; MFC-GG: microbial fuel cell integrated with graphite granules; POME: palm oil mill effluent; PTFE: polytetrafluoroethylene; SEM: scanning electron microscope.

  6. An integrated system for synchronous culture of animal cells under controlled conditions.

    PubMed

    Mendoza-Pérez, Elena; Hernández, Vanessa; Palomares, Laura A; Serrato, José A

    2016-01-01

    The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture.

  7. Study of component technologies for fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Lee, W. D.; Mathias, S.

    1980-01-01

    Heating, ventilation and air conditioning equipment are integrated with three types of fuel cells. System design and computer simulations are developed to utilize the thermal energy discharge of the fuel in the most cost effective manner. The fuel provides all of the electric needs and a loss of load probability analysis is used to ensure adequate power plant reliability. Equipment cost is estimated for each of the systems analyzed. A levelized annual cost reflecting owning and operating costs including the cost of money was used to select the most promising integrated system configurations. Cash flows are presented for the most promising 16 systems. Several systems for the 96 unit apartment complex (a retail store was also studied) were cost competitive with both gas and electric based conventional systems. Thermal storage is shown to be beneficial and the optimum absorption chiller sizing (waste heat recovery) in connection with electric chillers are developed. Battery storage was analyzed since the system is not electric grid connected. Advanced absorption chillers were analyzed as well. Recommendations covering financing, technical development, and policy issues are given to accelerate the commercialization of the fuel cell for on-site power generation in buildings.

  8. Path integration of head direction: updating a packet of neural activity at the correct speed using axonal conduction delays.

    PubMed

    Walters, Daniel; Stringer, Simon; Rolls, Edmund

    2013-01-01

    The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a "look-up" table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity.

  9. Path Integration of Head Direction: Updating a Packet of Neural Activity at the Correct Speed Using Axonal Conduction Delays

    PubMed Central

    Walters, Daniel; Stringer, Simon; Rolls, Edmund

    2013-01-01

    The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a “look-up” table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity. PMID:23526976

  10. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cellsmore » versus a few large cells and using prismatic cells versus cylindrical cells.« less

  11. Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts

    PubMed Central

    2014-01-01

    Background Lipase-catalyzed biotransformation of acylglycerides or fatty acids into biodiesel via immobilized enzymes or whole cell catalysts has been considered as one of the most promising methods to produce renewable and environmentally friendly alternative liquid fuels, thus being extensively studied so far. In all previously pursued approaches, however, lipase enzymes are prepared in an independent process separated from enzymatic biodiesel production, which would unavoidably increase the cost and energy consumption during industrial manufacture of this cost-sensitive energy product. Therefore, there is an urgent need to develop novel cost-effective biocatalysts and biocatalytic processes with genuine industrial feasibility. Result Inspired by the consolidated bioprocessing of lignocellulose to generate bioethanol, an integrated process with coupled lipase production and in situ biodiesel synthesis in a recombinant P. pastoris yeast was developed in this study. The novel and efficient dual biocatalytic system based on Thermomyces lanuginosus lipase took advantage of both cell free enzymes and whole cell catalysts. The extracellular and intracellular lipases of growing yeast cells were simultaneously utilized to produce biodiesel from waste cooking oils in situ and in one pot. This integrated system effectively achieved 58% and 72% biodiesel yield via concurrent esterified-transesterified methanolysis and stepwise hydrolysis-esterification at 3:1 molar ratio between methanol and waste cooking oils, respectively. Further increasing the molar ratio of methanol to waste cooking oils to 6:1 led to an 87% biodiesel yield using the stepwise strategy. Both water tolerance and methanol tolerance of this novel system were found to be significantly improved compared to previous non-integrated biodiesel production processes using separately prepared immobilized enzymes or whole cell catalysts. Conclusion We have proposed a new concept of integrated biodiesel production. This integrated system couples lipase production to lipase-catalyzed biodiesel synthesis in one pot. The proof-of-concept was established through construction of a recombinant P. pastoris yeast strain that was able to grow, overexpress T. lanuginosus lipase, and efficiently catalyze biodiesel production from fed waste cooking oils and methanol simultaneously. This simplified single-step process represents a significant advance toward achieving economical production of biodiesel at industrial scale via a ‘green’ biocatalytic route. PMID:24713071

  12. Enhanced CRISPR/Cas9-mediated biallelic genome targeting with dual surrogate reporter-integrated donors.

    PubMed

    Wu, Yun; Xu, Kun; Ren, Chonghua; Li, Xinyi; Lv, Huijiao; Han, Furong; Wei, Zehui; Wang, Xin; Zhang, Zhiying

    2017-03-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has recently emerged as a simple, yet powerful genome engineering tool, which has been widely used for genome modification in various organisms and cell types. However, screening biallelic genome-modified cells is often time-consuming and technically challenging. In this study, we incorporated two different surrogate reporter cassettes into paired donor plasmids, which were used as both the surrogate reporters and the knock-in donors. By applying our dual surrogate reporter-integrated donor system, we demonstrate high frequency of CRISPR/Cas9-mediated biallelic genome integration in both human HEK293T and porcine PK15 cells (34.09% and 18.18%, respectively). Our work provides a powerful genetic tool for assisting the selection and enrichment of cells with targeted biallelic genome modification. © 2017 Federation of European Biochemical Societies.

  13. Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo

    PubMed Central

    Torday, John S.; Rehan, V. K.

    2009-01-01

    Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell–cell signaling and extrinsic factors is the reverse of the “top-down” conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a “middle-out” cell–cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell–cell communication as the basis for complex physiologic traits, from sponges to man. PMID:20607136

  14. Time Integrating Optical Signal Processing

    DTIC Science & Technology

    1981-07-01

    advantage of greatly reducing the bandwidth requirement for the memory feeding the second cell. For a system composed of a PbMoO 4 and a ( TeO2 )s Bragg cell...bounds. ( TeO2 )L and ( TeO2 )s represent, respectively, the long- / , / itudinal and slow shear / modes of TeO2 . ’a , / / /a ’o [ / / / / was assumed here...could be implemented with a 25mm TeO2 device operated in the longitudinal mode in a hybrid system. A purely time-integrating system would require about

  15. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses

    PubMed Central

    Sager, Ross; Lee, Jung-Youn

    2014-01-01

    To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways. PMID:25262225

  16. Design and Economic Potential of an Integrated High-Temperature Fuel Cell and Absorption Chiller Combined Cooling, Heat, and Power System

    NASA Astrophysics Data System (ADS)

    Hosford, Kyle S.

    Clean distributed generation power plants can provide a much needed balance to our energy infrastructure in the future. A high-temperature fuel cell and an absorption chiller can be integrated to create an ideal combined cooling, heat, and power system that is efficient, quiet, fuel flexible, scalable, and environmentally friendly. With few real-world installations of this type, research remains to identify the best integration and operating strategy and to evaluate the economic viability and market potential of this system. This thesis informs and documents the design of a high-temperature fuel cell and absorption chiller demonstration system at a generic office building on the University of California, Irvine (UCI) campus. This work details the extension of prior theoretical work to a financially-viable power purchase agreement (PPA) with regard to system design, equipment sizing, and operating strategy. This work also addresses the metering and monitoring for the system showcase and research and details the development of a MATLAB code to evaluate the economics associated with different equipment selections, building loads, and economic parameters. The series configuration of a high-temperature fuel cell, heat recovery unit, and absorption chiller with chiller exhaust recirculation was identified as the optimal system design for the installation in terms of efficiency, controls, ducting, and cost. The initial economic results show that high-temperature fuel cell and absorption chiller systems are already economically competitive with utility-purchased generation, and a brief case study of a southern California hospital shows that the systems are scalable and viable for larger stationary power applications.

  17. Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    An individual starts off as a single cell, the progeny of which form complex structures that are themselves integrated into progressively larger systems. Developmental biology is concerned with how this cellular complexity and patterning arises through orchestration of cell divi...

  18. A practical guide to microfluidic perfusion culture of adherent mammalian cells.

    PubMed

    Kim, Lily; Toh, Yi-Chin; Voldman, Joel; Yu, Hanry

    2007-06-01

    Culturing cells at microscales allows control over microenvironmental cues, such as cell-cell and cell-matrix interactions; the potential to scale experiments; the use of small culture volumes; and the ability to integrate with microsystem technologies for on-chip experimentation. Microfluidic perfusion culture in particular allows controlled delivery and removal of soluble biochemical molecules in the extracellular microenvironment, and controlled application of mechanical forces exerted via fluid flow. There are many challenges to designing and operating a robust microfluidic perfusion culture system for routine culture of adherent mammalian cells. The current literature on microfluidic perfusion culture treats microfluidic design, device fabrication, cell culture, and micro-assays independently. Here we systematically present and discuss important design considerations in the context of the entire microfluidic perfusion culture system. These design considerations include the choice of materials, culture configurations, microfluidic network fabrication and micro-assays. We also present technical issues such as sterilization; seeding cells in both 2D and 3D configurations; and operating the system under optimized mass transport and shear stress conditions, free of air-bubbles. The integrative and systematic treatment of the microfluidic system design and fabrication, cell culture, and micro-assays provides novices with an effective starting point to build and operate a robust microfludic perfusion culture system for various applications.

  19. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  20. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  1. Integration of systems biology with organs-on-chips to humanize therapeutic development

    NASA Astrophysics Data System (ADS)

    Edington, Collin D.; Cirit, Murat; Chen, Wen Li Kelly; Clark, Amanda M.; Wells, Alan; Trumper, David L.; Griffith, Linda G.

    2017-02-01

    "Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance.

  2. Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures.

    PubMed

    Forsberg, David; Thonabulsombat, Charoensri; Jäderstad, Johan; Jäderstad, Linda Maria; Olivius, Petri; Herlenius, Eric

    2017-08-14

    Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. Thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell in combined heat and power applications

    NASA Astrophysics Data System (ADS)

    Abraham, F.; Dincer, I.

    2015-12-01

    This paper presents a comprehensive steady state modelling and thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell integrated with Gas Turbine power cycle (DU-SOFC/GT). The use of urea as direct fuel mitigates public health and safety risks associated with the use of hydrogen and ammonia. The integration scheme in this study covers both oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Parametric case studies are carried out to investigate the effects of design and operating parameters on the overall performance of the system. The results reveal that the fuel cell exhibited the highest level of exergy destruction among other system components. Furthermore, the SOFC-O based system offers better overall performance than that with the SOFC-H option mainly due to the detrimental reverse water-gas shift reaction at the SOFC anode as well as the unique configuration of the system.

  4. Hybrid lentivirus-phiC31-int-NLS vector allows site-specific recombination in murine and human cells but induces DNA damage.

    PubMed

    Grandchamp, Nicolas; Altémir, Dorothée; Philippe, Stéphanie; Ursulet, Suzanna; Pilet, Héloïse; Serre, Marie-Claude; Lenain, Aude; Serguera, Che; Mallet, Jacques; Sarkis, Chamsy

    2014-01-01

    Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable.

  5. Integrative freight demand management in the New York City metropolitan area.

    DOT National Transportation Integrated Search

    2010-09-01

    This project is one of the first in the world that has successfully integrated the use of remote sensing : technologyin this case Global Positioning System (GPS) enabled cell phonesas part of a system that : effectively reduces truck traffic in...

  6. Comparison of fuel-cell and diesel integrated energy systems and a conventional system for a 500-unit apartment

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1978-01-01

    The electrical and thermal energy utilization efficiencies of a 500 unit apartment complex are analyzed and compared for each of three energy supply systems. Two on-site integrated energy systems, one powered by diesel engines and the other by phosphoric-acid fuel cells were compared with a conventional system which uses purchased electricity and on-site boilers for heating. All fuels consumed on-site are clean, synthetic fuels (distillate fuel oil or pipeline quality gas) derived from coal. Purchased electricity was generated from coal at a central station utility. The relative energy consumption and economics of the three systems are analyzed and compared.

  7. LTCC based bioreactors for cell cultivation

    NASA Astrophysics Data System (ADS)

    Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.

    2016-01-01

    LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.

  8. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction.

    PubMed

    Fisher-Adams, G; Wong, K K; Podsakoff, G; Forman, S J; Chatterjee, S

    1996-07-15

    Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system.

  9. Hybrid Adeno-Associated Viral Vectors Utilizing Transposase-Mediated Somatic Integration for Stable Transgene Expression in Human Cells

    PubMed Central

    Zhang, Wenli; Solanki, Manish; Müther, Nadine; Ebel, Melanie; Wang, Jichang; Sun, Chuanbo; Izsvak, Zsuzsanna; Ehrhardt, Anja

    2013-01-01

    Recombinant adeno-associated viral (AAV) vectors have been shown to be one of the most promising vectors for therapeutic gene delivery because they can induce efficient and long-term transduction in non-dividing cells with negligible side-effects. However, as AAV vectors mostly remain episomal, vector genomes and transgene expression are lost in dividing cells. Therefore, to stably transduce cells, we developed a novel AAV/transposase hybrid-vector. To facilitate SB-mediated transposition from the rAAV genome, we established a system in which one AAV vector contains the transposon with the gene of interest and the second vector delivers the hyperactive Sleeping Beauty (SB) transposase SB100X. Human cells were infected with the AAV-transposon vector and the transposase was provided in trans either by transient and stable plasmid transfection or by AAV vector transduction. We found that groups which received the hyperactive transposase SB100X showed significantly increased colony forming numbers indicating enhanced integration efficiencies. Furthermore, we found that transgene copy numbers in transduced cells were dose-dependent and that predominantly SB transposase-mediated transposition contributed to stabilization of the transgene. Based on a plasmid rescue strategy and a linear-amplification mediated PCR (LAM-PCR) protocol we analysed the SB100X-mediated integration profile after transposition from the AAV vector. A total of 1840 integration events were identified which revealed a close to random integration profile. In summary, we show for the first time that AAV vectors can serve as template for SB transposase mediated somatic integration. We developed the first prototype of this hybrid-vector system which with further improvements may be explored for treatment of diseases which originate from rapidly dividing cells. PMID:24116154

  10. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.

    PubMed

    Kehat, Izhak; Khimovich, Leonid; Caspi, Oren; Gepstein, Amira; Shofti, Rona; Arbel, Gil; Huber, Irit; Satin, Jonathan; Itskovitz-Eldor, Joseph; Gepstein, Lior

    2004-10-01

    Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.

  11. The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome.

    PubMed

    González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred; Llosa, Matxalen

    2017-06-15

    Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site-specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination. Copyright © 2017 American Society for Microbiology.

  12. The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome

    PubMed Central

    González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred

    2017-01-01

    ABSTRACT Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site-specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination. PMID:28411218

  13. A biomimetic functionalization approach to integration of carbon nanoutbes into biological systems

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Tam, Un Chong; Bertozzi, Carolyn; Zettl, Alex

    2006-03-01

    Due to their remarkable structural, electrical, and mechanical properties, carbon nanotubes (CNTs) have potential applications in biology ranging from imaging and tissue engineering. To realize these applications, however, new strategies for controlling the interaction between CNTs and biological systems such as proteins and cells are required. Here we describe a biomimetic approach to functionalize CNTs and therefore render them biocompatibility in order to facilitate their integration into biological systems. CNTs were coated with synthetic gycopolymers that mimic cell surface mucin gycoproteins. The functionalized CNTs were soluble in water, resisted non-specific protein binding and bound specifically to biomolecules. The coated CNTs could then be integrated onto mammalian cell surface by virtue of glycan-receptor interactions. Furthermore, the functionalized CNTs are non-toxic to cells. This strategy offers new opportunities for development of biosensor to probe biological processes. References: 1. X. Chen, G. S. Lee, A. Zettl, C. R. Bertozzi, Angewandte Chemie-International Edition 43, 6111 (2004). 2. X. Chen, U. C. Tam, J. L. Czlapanski, G. S. Lee, D. Rabuka, A. Zettl, C. R. Bertozzi, submitted.

  14. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models

    PubMed Central

    2013-01-01

    Background The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. Results A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The results demonstrate how this framework can be used to integrate mathematical models of the immune response from several published sources and describe qualitative predictions of global immune system response arising from the integrated, hybrid model. In addition, we show how the model can be expanded to include novel biological findings. Case studies were carried out to simulate TB infection, tumor rejection, response to a blood borne pathogen and the consequences of accounting for regulatory T-cells. Conclusions The final result of this work is a postulated and increasingly comprehensive representation of the mammalian immune system, based on physiological knowledge and susceptible to further experimental testing and validation. We believe that the integrated nature of FIRM has the potential to simulate a range of responses under a variety of conditions, from modeling of immune responses after tuberculosis (TB) infection to tumor formation in tissues. FIRM also has the flexibility to be expanded to include both complex and novel immunological response features as our knowledge of the immune system advances. PMID:24074340

  15. Fuel cells and the city of the future — a Japanese view

    NASA Astrophysics Data System (ADS)

    Satomi, Tomohide

    The development and practical application of fuel cells have been promoted aggressively in Japan, and the on-site phosphoric acid fuel cell (PAFC) has been attained with the prospect for practical market enery in commercial buildings by the middle of the 1990s. Fuel cells have features of less environmental impact and high energy efficiency which meet the requirements of the utility system for the future city. In Japan, the recent concentration of social functions and population to the city have begun to cause many serious problems. To resolve these environmental and resource related problems and to move towards developing and constructing a new city, one answer offered is the concept of CAN (community amenity network). CAN is a sophisticated utility system which integrates fuel cells as well as a system for effective use of unused energy and recycling of waste disposal and water. For solving the housing shortage problem in the next century, the concept of skyscraper building cities is currently proposed. Fuel cell systems can also be applied to these cities as a major element of the integrated zone energy supply network facility.

  16. Solid Oxide Fuel Cell APU Feasibility Study for a Long Range Commercial Aircraft Using UTC ITAPS Approach. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    NASA Technical Reports Server (NTRS)

    Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry

    2006-01-01

    The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.

  17. Automated live cell screening system based on a 24-well-microplate with integrated micro fluidics.

    PubMed

    Lob, V; Geisler, T; Brischwein, M; Uhl, R; Wolf, B

    2007-11-01

    In research, pharmacologic drug-screening and medical diagnostics, the trend towards the utilization of functional assays using living cells is persisting. Research groups working with living cells are confronted with the problem, that common endpoint measurement methods are not able to map dynamic changes. With consideration of time as a further dimension, the dynamic and networked molecular processes of cells in culture can be monitored. These processes can be investigated by measuring several extracellular parameters. This paper describes a high-content system that provides real-time monitoring data of cell parameters (metabolic and morphological alterations), e.g., upon treatment with drug compounds. Accessible are acidification rates, the oxygen consumption and changes in adhesion forces within 24 cell cultures in parallel. Addressing the rising interest in biomedical and pharmacological high-content screening assays, a concept has been developed, which integrates multi-parametric sensor readout, automated imaging and probe handling into a single embedded platform. A life-maintenance system keeps important environmental parameters (gas, humidity, sterility, temperature) constant.

  18. Design And Implementation Of Integrated Vision-Based Robotic Workcells

    NASA Astrophysics Data System (ADS)

    Chen, Michael J.

    1985-01-01

    Reports have been sparse on large-scale, intelligent integration of complete robotic systems for automating the microelectronics industry. This paper describes the application of state-of-the-art computer-vision technology for manufacturing of miniaturized electronic components. The concepts of FMS - Flexible Manufacturing Systems, work cells, and work stations and their control hierarchy are illustrated in this paper. Several computer-controlled work cells used in the production of thin-film magnetic heads are described. These cells use vision for in-process control of head-fixture alignment and real-time inspection of production parameters. The vision sensor and other optoelectronic sensors, coupled with transport mechanisms such as steppers, x-y-z tables, and robots, have created complete sensorimotor systems. These systems greatly increase the manufacturing throughput as well as the quality of the final product. This paper uses these automated work cells as examples to exemplify the underlying design philosophy and principles in the fabrication of vision-based robotic systems.

  19. Progress in Integrative Biomaterial Systems to Approach Three-Dimensional Cell Mechanotransduction

    PubMed Central

    Zhang, Ying; Liao, Kin; Li, Chuan; Lai, Alvin C.K.; Foo, Ji-Jinn

    2017-01-01

    Mechanotransduction between cells and the extracellular matrix regulates major cellular functions in physiological and pathological situations. The effect of mechanical cues on biochemical signaling triggered by cell–matrix and cell–cell interactions on model biomimetic surfaces has been extensively investigated by a combination of fabrication, biophysical, and biological methods. To simulate the in vivo physiological microenvironment in vitro, three dimensional (3D) microstructures with tailored bio-functionality have been fabricated on substrates of various materials. However, less attention has been paid to the design of 3D biomaterial systems with geometric variances, such as the possession of precise micro-features and/or bio-sensing elements for probing the mechanical responses of cells to the external microenvironment. Such precisely engineered 3D model experimental platforms pave the way for studying the mechanotransduction of multicellular aggregates under controlled geometric and mechanical parameters. Concurrently with the progress in 3D biomaterial fabrication, cell traction force microscopy (CTFM) developed in the field of cell biophysics has emerged as a highly sensitive technique for probing the mechanical stresses exerted by cells onto the opposing deformable surface. In the current work, we first review the recent advances in the fabrication of 3D micropatterned biomaterials which enable the seamless integration with experimental cell mechanics in a controlled 3D microenvironment. Then, we discuss the role of collective cell–cell interactions in the mechanotransduction of engineered tissue equivalents determined by such integrative biomaterial systems under simulated physiological conditions. PMID:28952551

  20. Application of Signaling Pathway-Based Adverse Outcome Pathways and High Throughput Toxicokinetic-PBPK for Developmental Cardiac Malformations

    EPA Science Inventory

    Associating putative molecular initiating events (MIE) with downstream cell signaling pathways and modeling fetal exposure kinetics is an important challenge for integration in developmental systems toxicology. Here, we describe an integrative systems toxicology model for develop...

  1. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells.

    PubMed

    Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui

    2014-12-16

    Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 'contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments.

  2. An Integrated Microfluidic Chip System for Single-Cell Secretion Profiling of Rare Circulating Tumor Cells

    PubMed Central

    Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M.; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui

    2014-01-01

    Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 ‘contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments. PMID:25511131

  3. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip.

    PubMed

    Shahini, Mehdi; Yeow, John T W

    2011-08-12

    We report on the enhancement of electrical cell lysis using carbon nanotubes (CNTs). Electrical cell lysis systems are widely utilized in microchips as they are well suited to integration into lab-on-a-chip devices. However, cell lysis based on electrical mechanisms has high voltage requirements. Here, we demonstrate that by incorporating CNTs into microfluidic electrolysis systems, the required voltage for lysis is reduced by half and the lysis throughput at low voltages is improved by ten times, compared to non-CNT microchips. In our experiment, E. coli cells are lysed while passing through an electric field in a microchannel. Based on the lightning rod effect, the electric field strengthened at the tip of the CNTs enhances cell lysis at lower voltage and higher throughput. This approach enables easy integration of cell lysis with other on-chip high-throughput sample-preparation processes.

  4. Generation of Human Induced Pluripotent Stem Cells Using RNA-Based Sendai Virus System and Pluripotency Validation of the Resulting Cell Population.

    PubMed

    Chichagova, Valeria; Sanchez-Vera, Irene; Armstrong, Lyle; Steel, David; Lako, Majlinda

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) provide a platform for studying human disease in vitro, increase our understanding of human embryonic development, and provide clinically relevant cell types for transplantation, drug testing, and toxicology studies. Since their discovery, numerous advances have been made in order to eliminate issues such as vector integration into the host genome, low reprogramming efficiency, incomplete reprogramming and acquisition of genomic instabilities. One of the ways to achieve integration-free reprogramming is by using RNA-based Sendai virus. Here we describe a method to generate hiPSCs with Sendai virus in both feeder-free and feeder-dependent culture systems. Additionally, we illustrate methods by which to validate pluripotency of the resulting stem cell population.

  5. Synthetic Biology and Microbial Fuel Cells: Towards Self-Sustaining Life Support Systems

    NASA Technical Reports Server (NTRS)

    Hogan, John Andrew

    2014-01-01

    NASA ARC and the J. Craig Venter Institute (JCVI) collaborated to investigate the development of advanced microbial fuels cells (MFCs) for biological wastewater treatment and electricity production (electrogenesis). Synthetic biology techniques and integrated hardware advances were investigated to increase system efficiency and robustness, with the intent of increasing power self-sufficiency and potential product formation from carbon dioxide. MFCs possess numerous advantages for space missions, including rapid processing, reduced biomass and effective removal of organics, nitrogen and phosphorus. Project efforts include developing space-based MFC concepts, integration analyses, increasing energy efficiency, and investigating novel bioelectrochemical system applications

  6. Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors.

    PubMed

    Graham, Anthony H D; Robbins, Jon; Bowen, Chris R; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.

  7. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies

    EPA Science Inventory

    Human adenovirus is relatively resistant to UV radiation and has been used as a conservative testing microbe for evaluations of UV disinfection systems as components of water treatment processes. In this study, we attempted to validate the applicability of integrated cell culture...

  8. Optical design considerations for high-concentration photovoltaics

    NASA Astrophysics Data System (ADS)

    Garboushian, Vahan; Gordon, Robert

    2006-08-01

    Over the past 15 years, major advances in Concentrating Photovoltaics (CPV) have been achieved. Ultra-efficient Si solar cells have produced commercial concentration systems which are being fielded today and are competitively priced. Advanced research has primarily focused on significantly more efficient multi-junction solar cells for tomorrow's systems. This effort has produced sophisticated solar cells that significantly improve power production. Additional performance and cost improvements, especially in the optical system area and system integration, must be made before CPV can realize its ultimate commercial potential. Structural integrity and reliability are vital for commercial success. As incremental technical improvements are made in solar cell technologies, evaluation and 'fine-tuning' of optical systems properly matched to the solar cell are becoming increasingly necessary. As we move forward, it is increasingly important to optimize all of the interrelated elements of a CPV system for high performance without sacrificing the marketable cost and structural requirements of the system. Areas such as wavelength absorption of refractive optics need to be carefully matched to the solar cell technology employed. Reflective optics require advanced engineering models to insure uniform flux distribution without excessive losses. In Situ measurement of the 'fine-grain' improvements are difficult as multiple variables such as solar insolation, temperature, wind, altitude, etc. infringe on analytical data. This paper discusses design considerations based on 10 years of field trials of high concentration systems and their relevance for tomorrow's advanced CPV systems.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Eichman, Josh; Kurtz, Jennifer

    This National Renewable Energy Laboratory industry-inspired Laboratory Directed Research and Development project evaluates the feasibility and economics of using fuel cell backup power systems in cell towers to provide grid services (e.g., balancing, ancillary services, demand response). The work is intended to evaluate the integration of thousands of under-utilized, clean, efficient, and reliable fuel cell systems that are already installed in cell towers for potential grid and ancillary services.

  10. National Fuel Cell Technology Evaluation Center | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL National Fuel Cell Technology Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Cell Technology Evaluation Center to process and analyze data for a variety of hydrogen and fuel cell

  11. Hybrid semi-parametric mathematical systems: bridging the gap between systems biology and process engineering.

    PubMed

    Teixeira, Ana P; Carinhas, Nuno; Dias, João M L; Cruz, Pedro; Alves, Paula M; Carrondo, Manuel J T; Oliveira, Rui

    2007-12-01

    Systems biology is an integrative science that aims at the global characterization of biological systems. Huge amounts of data regarding gene expression, proteins activity and metabolite concentrations are collected by designing systematic genetic or environmental perturbations. Then the challenge is to integrate such data in a global model in order to provide a global picture of the cell. The analysis of these data is largely dominated by nonparametric modelling tools. In contrast, classical bioprocess engineering has been primarily founded on first principles models, but it has systematically overlooked the details of the embedded biological system. The full complexity of biological systems is currently assumed by systems biology and this knowledge can now be taken by engineers to decide how to optimally design and operate their processes. This paper discusses possible methodologies for the integration of systems biology and bioprocess engineering with emphasis on applications involving animal cell cultures. At the mathematical systems level, the discussion is focused on hybrid semi-parametric systems as a way to bridge systems biology and bioprocess engineering.

  12. A self-powered biosensing device with an integrated hybrid biofuel cell for intermittent monitoring of analytes.

    PubMed

    Majdecka, Dominika; Draminska, Sylwia; Janusek, Dariusz; Krysinski, Paweł; Bilewicz, Renata

    2018-04-15

    In this work, we propose an integrated self-powered sensing system, driven by a hybrid biofuel cell (HBFC) with carbon paper discs coated with multiwalled carbon nanotubes. The sensing system has a biocathode made from laccase or bilirubin oxidase, and the anode is made from a zinc plate. The system includes a dedicated custom-built electronic control unit for the detection of oxygen and catechol analytes, which are central to medical and environmental applications. Both the HBFC and sensors, operate in a mediatorless direct electron transfer mode. The measured characteristics of the HBFC with externally applied resistance included the power-time dependencies under flow cell conditions, the sensors performance (evaluated by cyclic voltammetry), and chronoamperometry. The HBFC is integrated with analytical devices and operating in a pulse mode form long-run monitoring experiments. The HBFC generated sufficient power for wireless data transmission to a local computer. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Allorecognition, via TgrB1 and TgrC1, mediates the transition from unicellularity to multicellularity in the social amoeba Dictyostelium discoideum

    PubMed Central

    Hirose, Shigenori; Santhanam, Balaji; Katoh-Kurosawa, Mariko; Shaulsky, Gad; Kuspa, Adam

    2015-01-01

    The social amoeba Dictyostelium discoideum integrates into a multicellular organism when individual starving cells aggregate and form a mound. The cells then integrate into defined tissues and develop into a fruiting body that consists of a stalk and spores. Aggregation is initially orchestrated by waves of extracellular cyclic adenosine monophosphate (cAMP), and previous theory suggested that cAMP and other field-wide diffusible signals mediate tissue integration and terminal differentiation as well. Cooperation between cells depends on an allorecognition system comprising the polymorphic adhesion proteins TgrB1 and TgrC1. Binding between compatible TgrB1 and TgrC1 variants ensures that non-matching cells segregate into distinct aggregates prior to terminal development. Here, we have embedded a small number of cells with incompatible allotypes within fields of developing cells with compatible allotypes. We found that compatibility of the allotype encoded by the tgrB1 and tgrC1 genes is required for tissue integration, as manifested in cell polarization, coordinated movement and differentiation into prestalk and prespore cells. Our results show that the molecules that mediate allorecognition in D. discoideum also control the integration of individual cells into a unified developing organism, and this acts as a gating step for multicellularity. PMID:26395484

  14. HIV promoter integration site primarily modulates transcriptional burst size rather than frequency.

    PubMed

    Skupsky, Ron; Burnett, John C; Foley, Jonathan E; Schaffer, David V; Arkin, Adam P

    2010-09-30

    Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian genomes, as well as be exploited for survival by integrating viruses.

  15. Container system for enabling commercial production of cryopreserved cell therapy products.

    PubMed

    Woods, Erik J; Bagchi, Aniruddha; Goebel, W Scott; Vilivalam, Vinod D; Vilivalam, Vinod D

    2010-07-01

    The expansion of cellular therapeutics will require large-scale manufacturing processes to expand and package cell products, which may not be feasible with current blood-banking bag technology. This study investigated the potential for freezing, storing and shipping cell therapy products using novel pharmaceutical-grade Crystal Zenith((R)) (CZ) plastic vials. CZ vials (0.5, 5 and 30 ml volume) with several closure systems were filled with mesenchymal stem cells and stored at either -85 or -196 degrees C for 6 months. Vials were tested for their ability to maintain cell viability, proliferative and differentiation capacity, as well as durability and integrity utilizing a 1-m drop test. As controls, 2 ml polypropylene vials were investigated under the same conditions. Post-thaw viability utilizing a dye exclusion assay was over 95% in all samples. Stored cells exhibited rapid recovery 2 h post-thaw and cultures were approximately 70% confluent within 5-7 days, consistent with nonfrozen controls and indicative of functional recovery. Doubling times were consistent over all vials. The doubling rate for cells from CZ vials were 2.14 + or - 0.83 days (1 week), 1.84 + or - 0.68 days (1 month) and 1.79 + or - 0.71 days (6 months), which were not significantly different compared with frozen and fresh controls. Cells recovered from the vials exhibited trilineage differentiation consistent with controls. As part of vial integrity via drop testing, no evidence of external damage was found on vial surfaces or on closure systems. Furthermore, the filled vials stored for 6 months were tested for container closure integrity. Vials removed from freezer conditions were transported to the test laboratory on dry ice and tested using pharmaceutical packaging tests, including dye ingress and microbial challenge. The results of all stoppered vials indicated container closure integrity with no failures. Pharmaceutical-grade plastic CZ vials, which are commercially used to package pharmaceutical products, are suitable for low-temperature storage and transport of mesenchymal stem cells, and are a scalable container system for commercial manufacturing and fill-finish operation of cell therapy products.

  16. Integration of living cells into nanostructures using non-conventional self-assembly

    NASA Astrophysics Data System (ADS)

    Carnes, Eric C.

    Patternable cell immobilization is an essential feature of any solid-state device designed for interrogating or exploiting living cells. Immobilized cells must remain viable in a robust matrix that promotes fluidic connectivity between the cells and their environment while retaining the ability to establish and maintain necessary chemical gradients. A suitable inorganic matrix can be constructed via evaporation-induced self-assembly of nanostructured silica, in which phospholipids are used in place of traditional surfactant structure-directing agents in order to enhance cell viability and to create a coherent interface between the cell and the surrounding three-dimensional nanostructure. We have used this technique to develop two distinct cell encapsulation processes: cell-directed assembly and cell-directed integration. Cell-directed assembly is a one-step procedure that provides superior viability of immobilized cells by encouraging cells to interact with the developing host matrix. Limitations of this system include low viability for some cell types due to exposure to solvents and stresses, as well as a lack of control over the developing host nanostructure. Cell-directed integration addresses these shortcomings by introducing a two-step process in which cells become encapsulated in a pre-formed silica matrix. The validity of each encapsulation method has been demonstrated with Gram-positive and Gram-negative bacteria, yeast, and mammalian cells. The ability of the immobilized cells to establish relevant gradients of ions or signaling molecules, a key feature of these systems, has been characterized. Additionally, extension of cell encapsulation to address lingering questions in cell biology is addressed. We have also adapted these immobilization processes to be compatible with a variety of patterning strategies having tailorable properties. Widely available photolithography techniques, as well as direct aerosol deposition, have been adapted to provide methods for obtaining both positive and negative transfer of desired cell patterns. Multi-step lithography is also used to create a highly functional system allowing spatial control of not only cells but also media and other molecules of interest.

  17. Simulation of a 250 kW diesel fuel processor/PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.

    Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.

  18. Optimization of Streptomyces bacteriophage phi C31 integrase system to prevent post integrative gene silencing in pulmonary type II cells.

    PubMed

    Aneja, Manish Kumar; Geiger, Johannes; Imker, Rabea; Uzgun, Senta; Kormann, Michael; Hasenpusch, Guenther; Maucksch, Christof; Rudolph, Carsten

    2009-12-31

    phi C31 integrase has emerged as a potent tool for achieving long-term gene expression in different tissues. The present study aimed at optimizing elements of phi C31 integrase system for alveolar type II cells. Luciferase and beta-galactosidase activities were measured at different time points post transfection. 5-Aza-2'deoxycytidine (AZA) and trichostatin A (TSA) were used to inhibit DNA methyltransferase and histone deacetylase complex (HDAC) respectively. In A549 cells, expression of the integrase using a CMV promoter resulted in highest integrase activity, whereas in MLE12 cells, both CAG and CMV promoter were equally effective. Effect of polyA site was observed only in A549 cells, where replacement of SV40 polyA by bovine growth hormone (BGH) polyA site resulted in an enhancement of integrase activity. Addition of a C-terminal SV40 nuclear localization signal (NLS) did not result in any significant increase in integrase activity. Long-term expression studies with AZA and TSA, provided evidence for post-integrative gene silencing. In MLE12 cells, both DNA methylases and HDACs played a significant role in silencing, whereas in A549 cells, it could be attributed majorly to HDAC activity. Donor plasmids comprising cellular promoters ubiquitin B (UBB), ubiquitin C (UCC) and elongation factor 1 alpha (EF1 alpha) in an improved backbone prevented post-integrative gene silencing. In contrast to A549 and MLE12 cells, no silencing could be observed in human bronchial epithelial cells, BEAS-2B. Donor plasmid coding for murine erythropoietin under the EF1 alpha promoter when combined with phi C31 integrase resulted in higher long-term erythropoietin expression and subsequently higher hematocrit levels in mice after intravenous delivery to the lungs. These results provide evidence for cell specific post integrative gene silencing with C31 integrase and demonstrate the pivotal role of donor plasmid in long-term expression attained with this system.

  19. Simultaneous and Sequential Integration by Cre/loxP Site-Specific Recombination in Saccharomyces cerevisiae.

    PubMed

    Choi, Ho-Jung; Kim, Yeon-Hee

    2018-05-28

    A Cre/ loxP -δ-integration system was developed to allow sequential and simultaneous integration of a multiple gene expression cassette in Saccharomyces cerevisiae . To allow repeated integrations, the reusable Candida glabrata MARKER ( CgMARKER ) carrying loxP sequences was used, and the integrated CgMARKER was efficiently removed by inducing Cre recombinase. The XYLP and XYLB genes encoding endoxylanase and β-xylosidase, respectively, were used as model genes for xylan metabolism in this system, and the copy number of these genes was increased to 15.8 and 16.9 copies/cell, respectively, by repeated integration. This integration system is a promising approach for the easy construction of yeast strains with enhanced metabolic pathways through multicopy gene expression.

  20. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three-dimensional computer-aided design (CAD) models of representative PEM fuel cell stack and components were developed and integrated into the virtual reality environment along with an Excel-based model used to calculate fuel cell electrical performance on the basis of cell dimensions (see the figure). CAD models of a representative general aviation aircraft were also developed and added to the environment. With the use of special headgear, users will be able to virtually manipulate the fuel cell s physical characteristics and its placement within the aircraft while receiving information on the resultant fuel cell output power and performance. As the systems analysis effort progresses, we will add more component models to the GRUVE environment to help us more fully understand the effect of various system configurations on the aircraft.

  1. Rapid white blood cell detection for peritonitis diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Tsung-Feng; Mei, Zhe; Chiu, Yu-Jui; Cho, Sung Hwan; Lo, Yu-Hwa

    2013-03-01

    A point-of-care and home-care lab-on-a-chip (LoC) system that integrates a microfluidic spiral device as a concentrator with an optical-coding device as a cell enumerator is demonstrated. The LoC system enumerates white blood cells from dialysis effluent of patients receiving peritoneal dialysis. The preliminary results show that the white blood cell counts from our system agree well with the results from commercial flow cytometers. The LoC system can potentially bring significant benefits to end stage renal disease (ESRD) patients that are on peritoneal dialysis (PD).

  2. Progression from productive infection to integration and oncogenic transformation in human papillomavirus type 59-immortalized foreskin keratinocytes.

    PubMed

    Spartz, Helena; Lehr, Elizabeth; Zhang, Benyue; Roman, Ann; Brown, Darron R

    2005-05-25

    Studies of changes in the virus and host cell upon progression from human papillomavirus (HPV) episomal infection to integration are critical to understanding HPV-related malignant transformation. However, there exist only a few in vitro models of both productive HPV infection and neoplastic progression on the same host background. We recently described a unique foreskin keratinocyte cell line (ERIN 59) that contains HPV 59 (a close relative of HPV 18). Early passages of ERIN 59 cells (passages 9-13) contained approximately 50 copies of episomes/cell, were feeder cell-dependent, and could be induced to differentiate and produce infectious virus in a simple culture system. We now report that late passage cells (passages greater than 50) were morphologically different from early passage cells, were feeder cell independent, and did not differentiate or produce virus. These late passage cells contained HPV in an integrated form. An integration-derived oncogene transcript was expressed in late passage cells. The E2 open reading frame was interrupted in this transcript at nucleotide 3351. Despite a lower viral genome copy number in late passage ERIN 59 cells, expression of E6/E7 oncogene transcripts was similar to early passage cells. We conclude that ERIN 59 cells are a valuable cell line representing a model of progression from HPV 59 episomal infection and virus production to HPV 59 integration and associated oncogenic transformation on the same host background.

  3. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth

    PubMed Central

    Krivanek, Jan; Adameyko, Igor; Fried, Kaj

    2017-01-01

    Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix–producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration. PMID:28638345

  4. Integrative systems control approach for reactivating Kaposi's sarcoma-associated herpesvirus (KSHV) with combinatory drugs

    PubMed Central

    Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming

    2009-01-01

    Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators. PMID:19851479

  5. Integrative systems control approach for reactivating Kaposi's sarcoma-associated herpesvirus (KSHV) with combinatory drugs.

    PubMed

    Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming

    2009-01-01

    Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators.

  6. Vector modifications to eliminate transposase expression following piggyBac-mediated transgenesis

    PubMed Central

    Chakraborty, Syandan; Ji, HaYeun; Chen, Jack; Gersbach, Charles A.; Leong, Kam W.

    2014-01-01

    Transgene insertion plays an important role in gene therapy and in biological studies. Transposon-based systems that integrate transgenes by transposase-catalyzed “cut-and-paste” mechanism have emerged as an attractive system for transgenesis. Hyperactive piggyBac transposon is particularly promising due to its ability to integrate large transgenes with high efficiency. However, prolonged expression of transposase can become a potential source of genotoxic effects due to uncontrolled transposition of the integrated transgene from one chromosomal locus to another. In this study we propose a vector design to decrease post-transposition expression of transposase and to eliminate the cells that have residual transposase expression. We design a single plasmid construct that combines the transposase and the transpositioning transgene element to share a single polyA sequence for termination. Consequently, the separation of the transposase element from the polyA sequence after transposition leads to its deactivation. We also co-express Herpes Simplex Virus thymidine kinase (HSV-tk) with the transposase. Therefore, cells having residual transposase expression can be eliminated by the administration of ganciclovir. We demonstrate the utility of this combination transposon system by integrating and expressing a model therapeutic gene, human coagulation Factor IX, in HEK293T cells. PMID:25492703

  7. Microfluidic device for acoustic cell lysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  8. Fuel Cell Airframe Integration Study for Short-Range Aircraft. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika; Pandy, Arun; Braun, Robert; Carriere, Thierry; Yamanis, Jean; Vanderspurt, Thomas; Hardin, Larry; Welch, Rick

    2006-01-01

    The objective of this study is to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future short range commercial aircraft, and to define the technology gaps to enable such a system. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate a baseline aircraft and several SOFC architectures. The technology benefits were captured as reductions of the mission fuel burn, life cycle cost, noise and emissions. As a result of the study, it was recognized that system integration is critical to maximize benefits from the SOFC APU for aircraft application. The mission fuel burn savings for the two SOFC architectures ranged from 4.7 percent for a system with high integration to 6.7 percent for a highly integrated system with certain technological risks. The SOFC APU itself produced zero emissions. The reduction in engine fuel burn achieved with the SOFC systems also resulted in reduced emissions from the engines for both ground operations and in flight. The noise level of the baseline APU with a silencer is 78 dBA, while the SOFC APU produced a lower noise level. It is concluded that a high specific power SOFC system is needed to achieve the benefits identified in this study. Additional areas requiring further development are the processing of the fuel to remove sulfur, either on board or on the ground, and extending the heat sink capability of the fuel to allow greater waste heat recovery, resolve the transient electrical system integration issues, and identification of the impact of the location of the SOFC and its size on the aircraft.

  9. ISYMOD: a knowledge warehouse for the identification, assembly and analysis of bacterial integrated systems.

    PubMed

    Chabalier, Julie; Capponi, Cécile; Quentin, Yves; Fichant, Gwennaele

    2005-04-01

    Complex biological functions emerge from interactions between proteins in stable supra-molecular assemblies and/or through transitory contacts. Most of the time protein partners of the assemblies are composed of one or several domains which exhibit different biochemical functions. Thus the study of cellular process requires the identification of different functional units and their integration in an interaction network; such complexes are referred to as integrated systems. In order to exploit with optimum efficiency the increased release of data, automated bioinformatics strategies are needed to identify, reconstruct and model such systems. For that purpose, we have developed a knowledge warehouse dedicated to the representation and acquisition of bacterial integrated systems involved in the exchange of the bacterial cell with its environment. ISYMOD is a knowledge warehouse that consistently integrates in the same environment the data and the methods used for their acquisition. This is achieved through the construction of (1) a domain knowledge base (DKB) devoted to the storage of the knowledge about the systems, their functional specificities, their partners and how they are related and (2) a methodological knowledge base (MKB) which depicts the task layout used to identify and reconstruct functional integrated systems. Instantiation of the DKB is obtained by solving the tasks of the MKB, whereas some tasks need instances of the DKB to be solved. AROM, an object-based knowledge representation system, has been used to design the DKB, and its task manager, AROMTasks, for developing the MKB. In this study two integrated systems, ABC transporters and two component systems, both involved in adaptation processes of a bacterial cell to its biotope, have been used to evaluate the feasibility of the approach.

  10. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewablemore » Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.« less

  11. Accurate path integration in continuous attractor network models of grid cells.

    PubMed

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.

  12. Development of a PEMFC Power System with Integrated Balance of Plant

    NASA Technical Reports Server (NTRS)

    Wynne, B.; Diffenderfer, C.; Ferguson, S.; Keyser, J.; Miller, M.; Sievers, B.; Ryan, A.; Vasquez, A.

    2012-01-01

    Autonomous Underwater Vehicles (AUV s) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Batteries are usually employed in these applications, but the energy density and therefore the mission duration are limited with current battery technology. At a certain energy or mission duration requirement, other means to get long duration power become feasible. For example, above 10 kW-hrs liquid oxygen and hydrogen have better specific energy than batteries and are preferable for energy storage as long as a compact system of about 100 W/liter is achievable to convert the chemical energy in these reactants into power. Other reactant forms are possible, such as high pressure gas, chemical hydrides or oxygen carriers, but it is essential that the power system be small and light weight. Recent fuel cell work, primarily focused on NASA applications, has developed power systems that can meet this target power density. Passive flow-through systems, using ejector driven reactant (EDR) flow, integrated into a compact balance of plant have been developed. These systems are thermally and functionally integrated in much the same way as are automotive, air breathing fuel cell systems. These systems fit into the small volumes required for AUV and future NASA applications. Designs have been developed for both a 21" diameter and a larger diameter (LD) AUV. These fuel cell systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for the reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.

  13. Battery management systems with thermally integrated fire suppression

    DOEpatents

    Bandhauer, Todd M.; Farmer, Joseph C.

    2017-07-11

    A thermal management system is integral to a battery pack and/or individual cells. It relies on passive liquid-vapor phase change heat removal to provide enhanced thermal protection via rapid expulsion of inert high pressure refrigerant during abnormal abuse events and can be integrated with a cooling system that operates during normal operation. When a thermal runaway event occurs and sensed by either active or passive sensors, the high pressure refrigerant is preferentially ejected through strategically placed passages within the pack to rapidly quench the battery.

  14. A Mini-Electrochemical System with Integrated Micropipet Tip and Pencil Graphite Electrode for Measuring Cytotoxicity.

    PubMed

    Wu, Dong-Mei; Guo, Xiao-Ling; Wang, Qian; Li, Jin-Lian; Cui, Ji-Wen; Zhou, Shi; Hao, Su-E

    2017-01-01

    A novel mini-electrochemical system has been developed for evaluating cytotoxicity of anticancer drugs based on trace cell samples. The mini-electrochemical system was integrated by using pencil graphite modified with threonine as working electrode, an Ag/AgCl reference electrode and a micropipet tip as electrochemical cell. The mini-electrochemical system dramatically reduces sample volumes from 500 μL in a traditional electrochemical system to 10 μL, and exhibits excellent electrocatalytic activity toward oxidation of purine from MCF-7 cells due to increased sensitivity provided by threonine. Moreover, the relationship between peak current and the cell concentration in the range from 3.0 × l0 3 to 7.0 × l0 6 cells/mL was studied, and a nonlinear exponential relationship between them was established over a wide concentration range. In evaluating the effect of anticancer drugs on cell viability, the results of drug cytotoxicity test based on cyclophosphamide were in close agreement with classical 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assays. The proposed device is so simple, cheap, and easy to operate that it could be applied to single-use applications. The mini-electrochemical system proved to be a useful tool and can be applied to electrochemical studies of cancer cells as well as other biological samples such as proteins and DNA.

  15. Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo.

    PubMed

    Sapet, Cédric; Pellegrino, Christophe; Laurent, Nicolas; Sicard, Flavie; Zelphati, Olivier

    2012-05-01

    Adenoviruses are among the most powerful gene delivery systems. Even if they present low potential for oncogenesis, there is still a need for minimizing widespread delivery to avoid deleterious reactions. In this study, we investigated Magnetofection efficiency to concentrate and guide vectors for an improved targeted delivery. Magnetic nanoparticles formulations were complexed to a replication defective Adenovirus and were used to transduce cells both in vitro and in vivo. A new integrated magnetic procedure for cell sorting and genetic modification (i-MICST) was also investigated. Magnetic nanoparticles enhanced viral transduction efficiency and protein expression in a dose-dependent manner. They accelerated the transduction kinetics and allowed non-permissive cells infection. Magnetofection greatly improved adenovirus-mediated DNA delivery in vivo and provided a magnetic targeting. The i-MICST results established the efficiency of magnetic nanoparticles assisted viral transduction within cell sorting columns. The results showed that the combination of Magnetofection and Adenoviruses represents a promising strategy for gene therapy. Recently, a new integrated method to combine clinically approved magnetic cell isolation devices and genetic modification was developed. In this study, we validated that magnetic cell separation and adenoviral transduction can be accomplished in one reliable integrated and safe system.

  16. MEMS-based thin-film fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  17. Automated, Miniaturized and Integrated Quality Control-on-Chip (QC-on-a-Chip) for Advanced Cell Therapy Applications

    NASA Astrophysics Data System (ADS)

    Wartmann, David; Rothbauer, Mario; Kuten, Olga; Barresi, Caterina; Visus, Carmen; Felzmann, Thomas; Ertl, Peter

    2015-09-01

    The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of evaluating cell cultures under defined, reproducible and standardizable measurement conditions. In the present review we describe recent lab-on-a-chip developments for cell analysis and how these methodologies could improve standard quality control in the field of manufacturing cell-based vaccines for clinical purposes. We highlight in particular the regulatory requirements for advanced cell therapy applications using as an example dendritic cell-based cancer vaccines to describe the tangible advantages of microfluidic devices that overcome most of the challenges associated with automation, miniaturization and integration of cell-based assays. As its main advantage lab-on-a-chip technology allows for precise regulation of culturing conditions, while simultaneously monitoring cell relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of cell cultures and their potential future applications for cell therapies and cancer immunotherapy are discussed in the present review.

  18. Integrated microfluidic devices for combinatorial cell-based assays.

    PubMed

    Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert; Radu, Caius G; Witte, Owen N; Lee, Ki-Bum; Tseng, Hsian-Rong

    2009-06-01

    The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-microChip), for parallel analyses of the effects of microenvironmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibroblast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-microChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology.

  19. Integrated microfluidic devices for combinatorial cell-based assays

    PubMed Central

    Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert

    2010-01-01

    The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-μChip), for parallel analyses of the effects of microenvir-onmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibro-blast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-μChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology. PMID:19130244

  20. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array

    NASA Astrophysics Data System (ADS)

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-06-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.

  1. Cellular and molecular specificity of pituitary gland physiology.

    PubMed

    Perez-Castro, Carolina; Renner, Ulrich; Haedo, Mariana R; Stalla, Gunter K; Arzt, Eduardo

    2012-01-01

    The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.

  2. Interdisciplinary Team Science in Cell Biology.

    PubMed

    Horwitz, Rick

    2016-11-01

    The cell is complex. With its multitude of components, spatial-temporal character, and gene expression diversity, it is challenging to comprehend the cell as an integrated system and to develop models that predict its behaviors. I suggest an approach to address this issue, involving system level data analysis, large scale team science, and philanthropy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A mini-electrochemical system integrated micropipet tip and pencil graphite electrode for detection of anticancer drug sensitivity in vitro.

    PubMed

    Guo, Xiaoling; Wang, Qian; Li, Jinlian; Cui, Jiwen; Zhou, Shi; Hao, Sue; Wu, Dongmei

    2015-02-15

    Developing a reliable and cost-effective miniaturized electroanalysis tool is of vital importance for cell electrochemical analysis. In this work, a novel mini-electrochemical system has been constructed for trace detection of cell samples. The mini-electrochemical system was constructed by integrating a pencil graphite modified by threonine (PT/PGE) as working electrode, an Ag/AgCl (Sat'd) as reference electrode, platinum wire as counter electrode and a micropipet tip as electrochemical cell. The mini-electrochemical system not only saved dramatically usage of samples from 500 μL in traditional electrochemical system to 10 μL, but also possessed an adjustable active surface area by changing the length of PT/PGE immersed into the cell suspension from 3mm to 15 mm, and the linear equation was ipa = 2.25 l-2.64 (R(2) = 0.990). The system was successfully used in detection of MCF-7 cells, and a nonlinear exponent relationship between peak current and the cell number range from 3.0 × l0(3) to 7.0 × l0(6) cells mL(-1) was established firstly with the index equation ipa = 59.557 e (-C/1.709)-71.486 (R(2) = 0.954). Finally, the system was used for evaluating the sensitivity of cyclophosphamide on MCF-7 cell, and the result was corresponded well with that of MTT assay. The proposed system is sufficiently simple, cheap and easy operated, and could be applied in electrochemical detection of other biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Reporter Proteins in Whole-Cell Optical Bioreporter Detection Systems, Biosensor Integrations, and Biosensing Applications

    PubMed Central

    Close, Dan M.; Ripp, Steven; Sayler, Gary S.

    2009-01-01

    Whole-cell, genetically modified bioreporters are designed to emit detectable signals in response to a target analyte or related group of analytes. When integrated with a transducer capable of measuring those signals, a biosensor results that acts as a self-contained analytical system useful in basic and applied environmental, medical, pharmacological, and agricultural sciences. Historically, these devices have focused on signaling proteins such as green fluorescent protein, aequorin, firefly luciferase, and/or bacterial luciferase. The biochemistry and genetic development of these sensor systems as well as the advantages, challenges, and common applications of each one will be discussed. PMID:22291559

  5. Identification of Putative Cardiovascular System Developmental Toxicants using a Classification Model based on Signaling Pathway-Adverse Outcome Pathways

    EPA Science Inventory

    An important challenge for an integrative approach to developmental systems toxicology is associating putative molecular initiating events (MIEs), cell signaling pathways, cell function and modeled fetal exposure kinetics. We have developed a chemical classification model based o...

  6. Regenerative fuel cell systems for space station

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Sheibley, D. W.

    1985-01-01

    Regenerative fuel cell (RFC) systems are the leading energy storage candidates for Space Station. Key design features are the advanced state of technology readiness and high degree of system level design flexibility. Technology readiness was demonstrated through testing at the single cell, cell stack, mechanical ancillary component, subsystem, and breadboard levels. Design flexibility characteristics include independent sizing of power and energy storage portions of the system, integration of common reactants with other space station systems, and a wide range of various maintenance approaches. The design features led to selection of a RFC system as the sole electrochemical energy storage technology option for the space station advanced development program.

  7. Use of mariner transposases for one-step delivery and integration of DNA in prokaryotes and eukaryotes by transfection

    PubMed Central

    Michlewski, Gracjan; Finnegan, David J.; Elfick, Alistair; Rosser, Susan J.

    2017-01-01

    Abstract Delivery of DNA to cells and its subsequent integration into the host genome is a fundamental task in molecular biology, biotechnology and gene therapy. Here we describe an IP-free one-step method that enables stable genome integration into either prokaryotic or eukaryotic cells. A synthetic mariner transposon is generated by flanking a DNA sequence with short inverted repeats. When purified recombinant Mos1 or Mboumar-9 transposase is co-transfected with transposon-containing plasmid DNA, it penetrates prokaryotic or eukaryotic cells and integrates the target DNA into the genome. In vivo integrations by purified transposase can be achieved by electroporation, chemical transfection or Lipofection of the transposase:DNA mixture, in contrast to other published transposon-based protocols which require electroporation or microinjection. As in other transposome systems, no helper plasmids are required since transposases are not expressed inside the host cells, thus leading to generation of stable cell lines. Since it does not require electroporation or microinjection, this tool has the potential to be applied for automated high-throughput creation of libraries of random integrants for purposes including gene knock-out libraries, screening for optimal integration positions or safe genome locations in different organisms, selection of the highest production of valuable compounds for biotechnology, and sequencing. PMID:28204586

  8. Propagating gene expression fronts in a one-dimensional coupled system of artificial cells

    NASA Astrophysics Data System (ADS)

    Tayar, Alexandra M.; Karzbrun, Eyal; Noireaux, Vincent; Bar-Ziv, Roy H.

    2015-12-01

    Living systems employ front propagation and spatiotemporal patterns encoded in biochemical reactions for communication, self-organization and computation. Emulating such dynamics in minimal systems is important for understanding physical principles in living cells and in vitro. Here, we report a one-dimensional array of DNA compartments in a silicon chip as a coupled system of artificial cells, offering the means to implement reaction-diffusion dynamics by integrated genetic circuits and chip geometry. Using a bistable circuit we programmed a front of protein synthesis propagating in the array as a cascade of signal amplification and short-range diffusion. The front velocity is maximal at a saddle-node bifurcation from a bistable regime with travelling fronts to a monostable regime that is spatially homogeneous. Near the bifurcation the system exhibits large variability between compartments, providing a possible mechanism for population diversity. This demonstrates that on-chip integrated gene circuits are dynamical systems driving spatiotemporal patterns, cellular variability and symmetry breaking.

  9. BioMEMS to bionanotechnology: state of the art in integrated biochips and future prospects

    NASA Astrophysics Data System (ADS)

    Gupta, Amit; Li, H.; Gomez, Rafael; Chang, W.-J.; Koo, Y. M.; Chang, H.; Andreadakis, G.; Akin, Demir; Bashir, Rashid

    2004-12-01

    Biomedical or Biological Micro-Electro-Mechanical- Systems (BioMEMS) have in recent years become increasingly prevalent and have found widespread use in a wide variety of applications such as diagnostics, therapeutics and tissue engineering. This paper reviews the interdisciplinary work performed in our group in recent years to develop micro-integrated devices to characterize biological entities. We present the use of electrical and mechanically based phenomena to perform characterization and various functions needed for integrated biochips. One sub-system takes advantage of the dielectrophoretic effect to sort and concentrate bacterial cells and viruses within a micro-fluidic biochip. Another sub-system measures impedance changes produced by the metabolic activity of bacterial cells to determine their viability. A third sub-system is used to detect the mass of viruses as they bind to micro-mechanical sensors. The last sub-system described has been used to detect the charge on DNA molecules as it translocates through nanopore channels. These devices with an electronic or mechanical signal output can be very useful in producing practical systems for rapid detection and characterization of cells for a wide variety of applications in the food safety and health diagnostics industries. The paper will also briefly discuss future prospects of BioMEMS and its possible impact and on bionanotechnology.

  10. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  11. Regenerative fuel cell energy storage system for a low earth orbit space station

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Garow, J.; Michaels, K. B.

    1988-01-01

    A study was conducted to define characteristics of a Regenerative Fuel Cell System (RFCS) for low earth orbit Space Station missions. The RFCS's were defined and characterized based on both an alkaline electrolyte fuel cell integrated with an alkaline electrolyte water electrolyzer and an alkaline electrolyte fuel cell integrated with an acid solid polymer electrolyte (SPE) water electrolyzer. The study defined the operating characteristics of the systems including system weight, volume, and efficiency. A maintenance philosophy was defined and the implications of system reliability requirements and modularization were determined. Finally, an Engineering Model System was defined and a program to develop and demonstrate the EMS and pacing technology items that should be developed in parallel with the EMS were identified. The specific weight of an optimized RFCS operating at 140 F was defined as a function of system efficiency for a range of module sizes. An EMS operating at a nominal temperature of 180 F and capable of delivery of 10 kW at an overall efficiency of 55.4 percent is described. A program to develop the EMS is described including a technology development effort for pacing technology items.

  12. Glycans as Regulatory Elements of the Insulin/IGF System: Impact in Cancer Progression

    PubMed Central

    Andrade-da-Costa, Jéssica; Silva, Mariana Costa

    2017-01-01

    The insulin/insulin-like growth factor (IGF) system in mammals comprises a dynamic network of proteins that modulate several biological processes such as development, cell growth, metabolism, and aging. Dysregulation of the insulin/IGF system has major implications for several pathological conditions such as diabetes and cancer. Metabolic changes also culminate in aberrant glycosylation, which has been highlighted as a hallmark of cancer. Changes in glycosylation regulate every pathophysiological step of cancer progression including tumour cell-cell dissociation, cell migration, cell signaling and metastasis. This review discusses how the insulin/IGF system integrates with glycosylation alterations and impacts on cell behaviour, metabolism and drug resistance in cancer. PMID:28880250

  13. High spatial and temporal resolution cell manipulation techniques in microchannels.

    PubMed

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  14. Transfection in perfused microfluidic cell culture devices: A case study.

    PubMed

    Raimes, William; Rubi, Mathieu; Super, Alexandre; Marques, Marco P C; Veraitch, Farlan; Szita, Nicolas

    2017-08-01

    Automated microfluidic devices are a promising route towards a point-of-care autologous cell therapy. The initial steps of induced pluripotent stem cell (iPSC) derivation involve transfection and long term cell culture. Integration of these steps would help reduce the cost and footprint of micro-scale devices with applications in cell reprogramming or gene correction. Current examples of transfection integration focus on maximising efficiency rather than viable long-term culture. Here we look for whole process compatibility by integrating automated transfection with a perfused microfluidic device designed for homogeneous culture conditions. The injection process was characterised using fluorescein to establish a LabVIEW-based routine for user-defined automation. Proof-of-concept is demonstrated by chemically transfecting a GFP plasmid into mouse embryonic stem cells (mESCs). Cells transfected in the device showed an improvement in efficiency (34%, n = 3) compared with standard protocols (17.2%, n = 3). This represents a first step towards microfluidic processing systems for cell reprogramming or gene therapy.

  15. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    PubMed Central

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  16. Digital Single-Cell Analysis of Plant Organ Development Using 3DCellAtlas[OPEN

    PubMed Central

    Montenegro-Johnson, Thomas D.; Stamm, Petra; Strauss, Soeren; Topham, Alexander T.; Tsagris, Michail; Wood, Andrew T.A.; Smith, Richard S.; Bassel, George W.

    2015-01-01

    Diverse molecular networks underlying plant growth and development are rapidly being uncovered. Integrating these data into the spatial and temporal context of dynamic organ growth remains a technical challenge. We developed 3DCellAtlas, an integrative computational pipeline that semiautomatically identifies cell types and quantifies both 3D cellular anisotropy and reporter abundance at single-cell resolution across whole plant organs. Cell identification is no less than 97.8% accurate and does not require transgenic lineage markers or reference atlases. Cell positions within organs are defined using an internal indexing system generating cellular level organ atlases where data from multiple samples can be integrated. Using this approach, we quantified the organ-wide cell-type-specific 3D cellular anisotropy driving Arabidopsis thaliana hypocotyl elongation. The impact ethylene has on hypocotyl 3D cell anisotropy identified the preferential growth of endodermis in response to this hormone. The spatiotemporal dynamics of the endogenous DELLA protein RGA, expansin gene EXPA3, and cell expansion was quantified within distinct cell types of Arabidopsis roots. A significant regulatory relationship between RGA, EXPA3, and growth was present in the epidermis and endodermis. The use of single-cell analyses of plant development enables the dynamics of diverse regulatory networks to be integrated with 3D organ growth. PMID:25901089

  17. Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models

    PubMed Central

    Todd, Robert G.; van der Zee, Lucas

    2016-01-01

    Abstract The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information has been made predictive, through computational models. These models have allowed for the identification of novel molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a minimal logical model of the cell cycle with a metabolic network. PMID:27993914

  18. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    PubMed Central

    Graham, Anthony H. D.; Robbins, Jon; Bowen, Chris R.; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented. PMID:22163884

  19. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  20. System interface for an integrated intelligent safety system (ISS) for vehicle applications.

    PubMed

    Hannan, Mahammad A; Hussain, Aini; Samad, Salina A

    2010-01-01

    This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS) that includes an airbag deployment decision system (ADDS) and a tire pressure monitoring system (TPMS). A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.

  1. System Interface for an Integrated Intelligent Safety System (ISS) for Vehicle Applications

    PubMed Central

    Hannan, Mahammad A.; Hussain, Aini; Samad, Salina A.

    2010-01-01

    This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS) that includes an airbag deployment decision system (ADDS) and a tire pressure monitoring system (TPMS). A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications. PMID:22205861

  2. Activity ranking of synthetic analogs targeting vascular endothelial growth factor receptor 2 by an integrated cell membrane chromatography system.

    PubMed

    Wang, Dongyao; Lv, Diya; Chen, Xiaofei; Liu, Yue; Ding, Xuan; Jia, Dan; Chen, Langdong; Zhu, Zhenyu; Cao, Yan; Chai, Yifeng

    2015-12-01

    Evaluating the biological activities of small molecules represents an important part of the drug discovery process. Cell membrane chromatography (CMC) is a well-developed biological chromatographic technique. In this study, we have developed combined SMMC-7721/CMC and HepG2/CMC with high-performance liquid chromatography and time-of-flight mass spectrometry to establish an integrated screening platform. These systems was subsequently validated and used for evaluating the activity of quinazoline compounds, which were designed and synthesized to target vascular endothelial growth factor receptor 2. The inhibitory activities of these compounds towards this receptor were also tested using a classical caliper mobility shift assay. The results revealed a significant correlation between these two methods (R(2) = 0.9565 or 0.9420) for evaluating the activities of these compounds. Compared with traditional methods of evaluating the activities analogous compounds, this integrated cell membrane chromatography screening system took less time and was more cost effective, indicating that it could be used as a practical method in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele-specific MYC expression in HeLa cells.

    PubMed

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Chen, Xiangmei; Lu, Fengmin

    2017-08-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis-activate the expression of proto-oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV-integrated haplotype, and a long-range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long-range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence-associated acidic β-gal activity in HeLa cells. These data indicate a long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  4. Long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele‐specific MYC expression in HeLa cells

    PubMed Central

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Lu, Fengmin

    2017-01-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis‐activate the expression of proto‐oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV‐integrated haplotype, and a long‐range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long‐range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence‐associated acidic β‐gal activity in HeLa cells. These data indicate a long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. PMID:28470669

  5. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.

    PubMed

    Chung, Mu-En; Yeh, I-Hsin; Sung, Li-Yu; Wu, Meng-Ying; Chao, Yun-Peng; Ng, I-Son; Hu, Yu-Chen

    2017-01-01

    Metabolic engineering often necessitates chromosomal integration of multiple genes but integration of large genes into Escherichia coli remains difficult. CRISPR/Cas9 is an RNA-guided system which enables site-specific induction of double strand break (DSB) and programmable genome editing. Here, we hypothesized that CRISPR/Cas9-triggered DSB could enhance homologous recombination and augment integration of large DNA into E. coli chromosome. We demonstrated that CRISPR/Cas9 system was able to trigger DSB in >98% of cells, leading to subsequent cell death, and identified that mutagenic SOS response played roles in the cell survival. By optimizing experimental conditions and combining the λ-Red proteins and linear dsDNA, CRISPR/Cas9-induced DSB enabled homologous recombination of the donor DNA and replacement of lacZ gene in the MG1655 strain at efficiencies up to 99%, and allowed high fidelity, scarless integration of 2.4, 3.9, 5.4, and 7.0 kb DNA at efficiencies approaching 91%, 92%, 71%, and 61%, respectively. The CRISPR/Cas9-assisted gene integration also functioned in different E. coli strains including BL21 (DE3) and W albeit at different efficiencies. Taken together, our methodology facilitated precise integration of dsDNA as large as 7 kb into E. coli with efficiencies exceeding 60%, thus significantly ameliorating the editing efficiency and overcoming the size limit of integration using the commonly adopted recombineering approach. Biotechnol. Bioeng. 2017;114: 172-183. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Research Update: Electrical monitoring of cysts using organic electrochemical transistors a

    NASA Astrophysics Data System (ADS)

    Huerta, M.; Rivnay, J.; Ramuz, M.; Hama, A.; Owens, R. M.

    2015-03-01

    Organotypic three-dimensional (3D) cell culture models have the potential to act as surrogate tissues in vitro, both for basic research and for drug discovery/toxicology. 3D cultures maintain not only 3D architecture but also cell-cell and cell extracellular matrix interactions, particularly when grown in cysts or spheroids. Characterization of cell cultures grown in 3D formats, however, provides a significant challenge for cell biologists due to the incompatibility of these structures with commonly found optical or electronic monitoring systems. Electronic impedance spectroscopy is a cell culture monitoring technique with great potential; however, it has not been possible to integrate 3D cultures with commercially available systems to date. Cyst-like 3D cultures are particularly challenging due to their small size and difficulty in manipulation. Herein, we demonstrate isolation of cyst-like 3D cultures by capillarity and subsequent integration with the organic electrochemical transistor for monitoring the integrity of these structures. We show not only that this versatile device can be adapted to the cyst format for measuring resistance and, therefore, the quality of the cysts, but also can be used for quantitative monitoring of the effect of toxic compounds on cells in a 3D format. The ability to quantitatively predict effects of drugs on 3D cultures in vitro has large future potential for the fields of drug discovery and toxicology.

  7. Research Update: Electrical monitoring of cysts using organic electrochemical transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huerta, M.; Rivnay, J.; Ramuz, M.

    2015-03-01

    Organotypic three-dimensional (3D) cell culture models have the potential to act as surrogate tissues in vitro, both for basic research and for drug discovery/toxicology. 3D cultures maintain not only 3D architecture but also cell-cell and cell extracellular matrix interactions, particularly when grown in cysts or spheroids. Characterization of cell cultures grown in 3D formats, however, provides a significant challenge for cell biologists due to the incompatibility of these structures with commonly found optical or electronic monitoring systems. Electronic impedance spectroscopy is a cell culture monitoring technique with great potential; however, it has not been possible to integrate 3D cultures withmore » commercially available systems to date. Cyst-like 3D cultures are particularly challenging due to their small size and difficulty in manipulation. Herein, we demonstrate isolation of cyst-like 3D cultures by capillarity and subsequent integration with the organic electrochemical transistor for monitoring the integrity of these structures. We show not only that this versatile device can be adapted to the cyst format for measuring resistance and, therefore, the quality of the cysts, but also can be used for quantitative monitoring of the effect of toxic compounds on cells in a 3D format. The ability to quantitatively predict effects of drugs on 3D cultures in vitro has large future potential for the fields of drug discovery and toxicology.« less

  8. Lentivector Integration Sites in Ependymal Cells From a Model of Metachromatic Leukodystrophy: Non-B DNA as a New Factor Influencing Integration

    PubMed Central

    McAllister, Robert G; Liu, Jiahui; Woods, Matthew W; Tom, Sean K; Rupar, C Anthony; Barr, Stephen D

    2014-01-01

    The blood–brain barrier controls the passage of molecules from the blood into the central nervous system (CNS) and is a major challenge for treatment of neurological diseases. Metachromatic leukodystrophy is a neurodegenerative lysosomal storage disease caused by loss of arylsulfatase A (ARSA) activity. Gene therapy via intraventricular injection of a lentiviral vector is a potential approach to rapidly and permanently deliver therapeutic levels of ARSA to the CNS. We present the distribution of integration sites of a lentiviral vector encoding human ARSA (LV-ARSA) in murine brain choroid plexus and ependymal cells, administered via a single intracranial injection into the CNS. LV-ARSA did not exhibit a strong preference for integration in or near actively transcribed genes, but exhibited a strong preference for integration in or near satellite DNA. We identified several genomic hotspots for LV-ARSA integration and identified a consensus target site sequence characterized by two G-quadruplex-forming motifs flanking the integration site. In addition, our analysis identified several other non-B DNA motifs as new factors that potentially influence lentivirus integration, including human immunodeficiency virus type-1 in human cells. Together, our data demonstrate a clinically favorable integration site profile in the murine brain and identify non-B DNA as a potential new host factor that influences lentiviral integration in murine and human cells. PMID:25158091

  9. Design, integration and demonstration of a 50 W JP8/kerosene fueled portable SOFC power generator

    NASA Astrophysics Data System (ADS)

    Cheekatamarla, Praveen K.; Finnerty, Caine M.; Robinson, Charles R.; Andrews, Stanley M.; Brodie, Jonathan A.; Lu, Y.; DeWald, Paul G.

    A man-portable solid oxide fuel cell (SOFC) system integrated with desulfurized JP8 partial oxidation (POX) reformer was demonstrated to supply a continuous power output of 50 W. This paper discusses some of the design paths chosen and challenges faced during the thermal integration of the stack and reformer in aiding the system startup and shutdown along with balance of plant and power management solutions. The package design, system capabilities, and test results of the prototype unit are presented.

  10. Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases.

    PubMed

    Clague, Michael J; Urbé, Sylvie

    2017-06-01

    The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  11. Single-Cell RT-PCR in Microfluidic Droplets with Integrated Chemical Lysis.

    PubMed

    Kim, Samuel C; Clark, Iain C; Shahi, Payam; Abate, Adam R

    2018-01-16

    Droplet microfluidics can identify and sort cells using digital reverse transcription polymerase chain reaction (RT-PCR) signals from individual cells. However, current methods require multiple microfabricated devices for enzymatic cell lysis and PCR reagent addition, making the process complex and prone to failure. Here, we describe a new approach that integrates all components into a single device. The method enables controlled exposure of isolated single cells to a high pH buffer, which lyses cells and inactivates reaction inhibitors but can be instantly neutralized with RT-PCR buffer. Using our chemical lysis approach, we distinguish individual cells' gene expression with data quality equivalent to more complex two-step workflows. Our system accepts cells and produces droplets ready for amplification, making single-cell droplet RT-PCR faster and more reliable.

  12. Design, fabrication and performance evaluation of an integrated reformed methanol fuel cell for portable use

    NASA Astrophysics Data System (ADS)

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Yin, Congwen; Liu, Xiaowei

    2018-06-01

    In this paper, an integrated reformed methanol fuel cell (RMFC) as a portable power source is designed, fabricated and tested. The RMFC consists of a methanol steam reformer (MSR), a high temperature proton exchange membrane fuel cell (HT-PEMFC) stack, a microcontroller unit (MCU) and other auxiliaries. First, a system model based on Matlab/Simulink is established to investigate the mass and energy transport characteristics within the whole system. The simulation results suggest a hydrogen flow rate of at least 670 sccm is needed for the system to output 30 W and simultaneously maintain thermal equilibrium. Second, a metallic MSR and an HT-PEMFC stack with 12 cells are fabricated and tested. The tests show that the RMFC system is able to function normally when the performances of all the components meet the minimum requirements. At last, in the experiment of successfully powering a laptop, the RMFC system exhibits a stable performance during the complete work flow of all the phases, namely start-up, output and shutdown. Moreover, with a conservative design of 20 W power rating, maximum energy conversion efficiency of the RMFC system can be achieved (36%), and good stability in long-term operation is shown.

  13. Compact microelectrode array system: tool for in situ monitoring of drug effects on neurotransmitter release from neural cells.

    PubMed

    Chen, Yu; Guo, Chunxian; Lim, Layhar; Cheong, Serchoong; Zhang, Qingxin; Tang, Kumcheong; Reboud, Julien

    2008-02-15

    This paper presents a compact microelectrode array (MEA) system, to study potassium ion-induced dopamine release from PC12 neural cells, without relying on a micromanipulator and a microscope. The MEA chip was integrated with a custom-made "test jig", which provides a robust electrical interfacing tool between the microchip and the macroenvironment, together with a potentiostat and a microfluidic syringe pump. This integrated system significantly simplifies the operation procedures, enhances sensing performance, and reduces fabrication costs. The achieved detection limit for dopamine is 3.8 x 10-2 muM (signal/noise, S/N = 3) and the dopamine linear calibration range is up to 7.39 +/- 0.06 muM (mean +/- SE). The effects of the extracelluar matrix collagen coating of the microelectrodes on dopamine sensing behaviors, as well as the influences of K+ and l-3,4-digydroxyphenylalanine concentrations and incubation times on dopamine release, were extensively studied. The results show that our system is well suited for biologists to study chemical release from living cells as well as drug effects on secreting cells. The current system also shows a potential for further improvements toward a multichip array system for drug screening applications.

  14. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism

    PubMed Central

    Sychev, Zoi E.; Hu, Alex; Lagunoff, Michael

    2017-01-01

    Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. PMID:28257516

  15. Cell-microenvironment interactions and architectures in microvascular systems

    PubMed Central

    Bersini, Simone; Yazdi, Iman K.; Talò, Giuseppe; Shin, Su Ryon; Moretti, Matteo; Khademhosseini, Ali

    2016-01-01

    In the past decade, significant advances have been made in the design and optimization of novel biomaterials and microfabrication techniques to generate vascularized tissues. Novel microfluidic systems have facilitated the development and optimization of in vitro models for exploring the complex pathophysiological phenomena that occur inside a microvascular environment. To date, most of these models have focused on engineering of increasingly complex systems, rather than analyzing the molecular and cellular mechanisms that drive microvascular network morphogenesis and remodeling. In fact, mutual interactions among endothelial cells (ECs), supporting mural cells and organ-specific cells, as well as between ECs and the extracellular matrix, are key driving forces for vascularization. This review focuses on the integration of materials science, microengineering and vascular biology for the development of in vitro microvascular systems. Various approaches currently being applied to study cell-cell/cell-matrix interactions, as well as biochemical/biophysical cues promoting vascularization and their impact on microvascular network formation, will be identified and discussed. Finally, this review will explore in vitro applications of microvascular systems, in vivo integration of transplanted vascularized tissues, and the important challenges for vascularization and controlling the microcirculatory system within the engineered tissues, especially for microfabrication approaches. It is likely that existing models and more complex models will further our understanding of the key elements of vascular network growth, stabilization and remodeling to translate basic research principles into functional, vascularized tissue constructs for regenerative medicine applications, drug screening and disease models. PMID:27417066

  16. Cell-microenvironment interactions and architectures in microvascular systems.

    PubMed

    Bersini, Simone; Yazdi, Iman K; Talò, Giuseppe; Shin, Su Ryon; Moretti, Matteo; Khademhosseini, Ali

    2016-11-01

    In the past decade, significant advances have been made in the design and optimization of novel biomaterials and microfabrication techniques to generate vascularized tissues. Novel microfluidic systems have facilitated the development and optimization of in vitro models for exploring the complex pathophysiological phenomena that occur inside a microvascular environment. To date, most of these models have focused on engineering of increasingly complex systems, rather than analyzing the molecular and cellular mechanisms that drive microvascular network morphogenesis and remodeling. In fact, mutual interactions among endothelial cells (ECs), supporting mural cells and organ-specific cells, as well as between ECs and the extracellular matrix, are key driving forces for vascularization. This review focuses on the integration of materials science, microengineering and vascular biology for the development of in vitro microvascular systems. Various approaches currently being applied to study cell-cell/cell-matrix interactions, as well as biochemical/biophysical cues promoting vascularization and their impact on microvascular network formation, will be identified and discussed. Finally, this review will explore in vitro applications of microvascular systems, in vivo integration of transplanted vascularized tissues, and the important challenges for vascularization and controlling the microcirculatory system within the engineered tissues, especially for microfabrication approaches. It is likely that existing models and more complex models will further our understanding of the key elements of vascular network growth, stabilization and remodeling to translate basic research principles into functional, vascularized tissue constructs for regenerative medicine applications, drug screening and disease models. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Ceramic Integration Technologies for Aerospace and Energy Systems: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2007-01-01

    Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.

  18. Engineering model system study for a regenerative fuel cell: Study report

    NASA Technical Reports Server (NTRS)

    Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.

    1984-01-01

    Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.

  19. Electromagnetic fields as structure-function zeitgebers in biological systems: environmental orchestrations of morphogenesis and consciousness.

    PubMed

    Rouleau, Nicolas; Dotta, Blake T

    2014-01-01

    Within a cell system structure dictates function. Any interaction between cells, or a cell and its environment, has the potential to have long term implications on the function of a given cell and emerging cell aggregates. The structure and function of cells are continuously subjected to modification by electrical and chemical stimuli. However, biological systems are also subjected to an ever-present influence: the electromagnetic (EM) environment. Biological systems have the potential to be influenced by subtle energies which are exchanged at atomic and subatomic scales as EM phenomena. These energy exchanges have the potential to manifest at higher orders of discourse and affect the output (behavior) of a biological system. Here we describe theoretical and experimental evidence of EM influence on cells and the integration of whole systems. Even weak interactions between EM energies and biological systems display the potential to affect a developing system. We suggest the growing literature of EM effects on biological systems has significant implications to the cell and its functional aggregates.

  20. Towards toxicity detection using a lab-on-chip based on the integration of MOEMS and whole-cell sensors.

    PubMed

    Elman, Noel M; Ben-Yoav, Hadar; Sternheim, Marek; Rosen, Rachel; Krylov, Slava; Shacham-Diamand, Yosi

    2008-06-15

    A lab-on-chip consisting of a unique integration of whole-cell sensors, a MOEMS (Micro-Opto-Electro-Mechanical-System) modulator, and solid-state photo-detectors was implemented for the first time. Whole-cell sensors were genetically engineered to express a bioluminescent reporter (lux) as a function of the lac promoter. The MOEMS modulator was designed to overcome the inherent low frequency noise of solid-state photo-detectors by means of a previously reported modulation technique, named IHOS (Integrated Heterodyne Optical System). The bio-reporter signals were modulated prior to photo-detection, increasing the SNR of solid-state photo-detectors at least by three orders of magnitude. Experiments were performed using isopropyl-beta-d-thiogalactopyranoside (IPTG) as a preliminary step towards testing environmental toxicity. The inducer was used to trigger the expression response of the whole-cell sensors testing the sensitivity of the lab-on-chip. Low intensity bio-reporter optical signals were measured after the whole-cell sensors were exposed to IPTG concentrations of 0.1, 0.05, and 0.02mM. The experimental results reveal the potential of this technology for future implementation as an inexpensive massive method for rapid environmental toxicity detection.

  1. Design and integration of a solar AMTEC power system with an advanced global positioning satellite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.; Hunt, M.E.; Determan, W.R.

    1996-12-31

    A 1,200-W solar AMTEC (alkali metal thermal-to-electric conversion) power system concept was developed and integrated with an advanced global positioning system (GPS) satellite. The critical integration issues for the SAMTEC with the GPS subsystems included (1) packaging within the Delta 2 launch vehicle envelope, (2) deployment and start-up operations for the SAMTEC, (3) SAMTEC operation during all mission phases, (4) satellite field of view restrictions with satellite operations, and (5) effect of the SAMTEC requirements on other satellite subsystems. The SAMTEC power system was compared with a conventional planar solar array/battery power system to assess the differences in system weight,more » size, and operations. Features of the design include the use of an advanced multitube, vapor anode AMTEC cell design with 24% conversion efficiency, and a direct solar insolation receiver design with integral LiF salt canisters for energy storage to generate power during the maximum solar eclipse cycle. The modular generator design consists of an array of multitube AMTEC cells arranged into a parallel/series electrical network with built-in cell redundancy. The preliminary assessment indicates that the solar generator design is scalable over a 500 to 2,500-W range. No battery power is required during the operational phase of the GPS mission. SAMTEC specific power levels greater than 5 We/kg and 160 We/m{sup 2} are anticipated for a mission duration of 10 to 12 yr in orbits with high natural radiation backgrounds.« less

  2. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem

    PubMed Central

    Pfeiffer, Anne; Janocha, Denis; Dong, Yihan; Medzihradszky, Anna; Schöne, Stefanie; Daum, Gabor; Suzaki, Takuya; Forner, Joachim; Langenecker, Tobias; Rempel, Eugen; Schmid, Markus; Wirtz, Markus; Hell, Rüdiger; Lohmann, Jan U

    2016-01-01

    A major feature of embryogenesis is the specification of stem cell systems, but in contrast to the situation in most animals, plant stem cells remain quiescent until the postembryonic phase of development. Here, we dissect how light and metabolic signals are integrated to overcome stem cell dormancy at the shoot apical meristem. We show on the one hand that light is able to activate expression of the stem cell inducer WUSCHEL independently of photosynthesis and that this likely involves inter-regional cytokinin signaling. Metabolic signals, on the other hand, are transduced to the meristem through activation of the TARGET OF RAPAMYCIN (TOR) kinase. Surprisingly, TOR is also required for light signal dependent stem cell activation. Thus, the TOR kinase acts as a central integrator of light and metabolic signals and a key regulator of stem cell activation at the shoot apex. DOI: http://dx.doi.org/10.7554/eLife.17023.001 PMID:27400267

  3. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.

    PubMed

    Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi

    2017-12-01

    In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.

  4. Simulation of a spiking neuron circuit using carbon nanotube transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najari, Montassar, E-mail: malnjar@jazanu.edu.sa; IKCE unit, Jazan University, Jazan; El-Grour, Tarek, E-mail: grour-tarek@hotmail.fr

    2016-06-10

    Neuromorphic engineering is related to the existing analogies between the physical semiconductor VLSI (Very Large Scale Integration) and biophysics. Neuromorphic systems propose to reproduce the structure and function of biological neural systems for transferring their calculation capacity on silicon. Since the innovative research of Carver Mead, the neuromorphic engineering continues to emerge remarkable implementation of biological system. This work presents a simulation of an elementary neuron cell with a carbon nanotube transistor (CNTFET) based technology. The model of the cell neuron which was simulated is called integrate and fire (I&F) model firstly introduced by G. Indiveri in 2009. This circuitmore » has been simulated with CNTFET technology using ADS environment to verify the neuromorphic activities in terms of membrane potential. This work has demonstrated the efficiency of this emergent device; i.e CNTFET on the design of such architecture in terms of power consumption and technology integration density.« less

  5. Integrating open-source software applications to build molecular dynamics systems.

    PubMed

    Allen, Bruce M; Predecki, Paul K; Kumosa, Maciej

    2014-04-05

    Three open-source applications, NanoEngineer-1, packmol, and mis2lmp are integrated using an open-source file format to quickly create molecular dynamics (MD) cells for simulation. The three software applications collectively make up the open-source software (OSS) suite known as MD Studio (MDS). The software is validated through software engineering practices and is verified through simulation of the diglycidyl ether of bisphenol-a and isophorone diamine (DGEBA/IPD) system. Multiple simulations are run using the MDS software to create MD cells, and the data generated are used to calculate density, bulk modulus, and glass transition temperature of the DGEBA/IPD system. Simulation results compare well with published experimental and numerical results. The MDS software prototype confirms that OSS applications can be analyzed against real-world research requirements and integrated to create a new capability. Copyright © 2014 Wiley Periodicals, Inc.

  6. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  7. Hardware simulation of fuel cell/gas turbine hybrids

    NASA Astrophysics Data System (ADS)

    Smith, Thomas Paul

    Hybrid solid oxide fuel cell/gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the capabilities of HILS as a research tool for investigating the dynamic behavior of SOFC/GT hybrid power generation systems.

  8. Dielectrophoretic focusing integrated pulsed laser activated cell sorting

    NASA Astrophysics Data System (ADS)

    Zhu, Xiongfeng; Kung, Yu-Chun; Wu, Ting-Hsiang; Teitell, Michael A.; Chiou, Pei-Yu

    2017-08-01

    We present a pulsed laser activated cell sorter (PLACS) integrated with novel sheathless size-independent dielectrophoretic (DEP) focusing. Microfluidic fluorescence activated cell sorting (μFACS) systems aim to provide a fully enclosed environment for sterile cell sorting and integration with upstream and downstream microfluidic modules. Among them, PLACS has shown a great potential in achieving comparable performance to commercial aerosol-based FACS (>90% purity at 25,000 cells sec-1). However conventional sheath flow focusing method suffers a severe sample dilution issue. Here we demonstrate a novel dielectrophoresis-integrated pulsed laser activated cell sorter (DEP-PLACS). It consists of a microfluidic channel with 3D electrodes laid out to provide a tunnel-shaped electric field profile along a 4cmlong channel for sheathlessly focusing microparticles/cells into a single stream in high-speed microfluidic flows. All focused particles pass through the fluorescence detection zone along the same streamline regardless of their sizes and types. Upon detection of target fluorescent particles, a nanosecond laser pulse is triggered and focused in a neighboring channel to generate a rapidly expanding cavitation bubble for precise sorting. DEP-PLACS has achieved a sorting purity of 91% for polystyrene beads at a throughput of 1,500 particle/sec.

  9. a Mini Multi-Gas Detection System Based on Infrared Principle

    NASA Astrophysics Data System (ADS)

    Zhijian, Xie; Qiulin, Tan

    2006-12-01

    To counter the problems of gas accidents in coal mines, family safety resulted from using gas, a new infrared detection system with integration and miniaturization has been developed. The infrared detection optics principle used in developing this system is mainly analyzed. The idea that multi gas detection is introduced and guided through analyzing single gas detection is got across. Through researching the design of cell structure, the cell with integration and miniaturization has been devised. The way of data transmission on Controller Area Network (CAN) bus is explained. By taking Single-Chip Microcomputer (SCM) as intelligence handling, the functional block diagram of gas detection system is designed with its hardware and software system analyzed and devised. This system designed has reached the technology requirement of lower power consumption, mini-volume, big measure range, and able to realize multi-gas detection.

  10. Dynamic modeling and evaluation of solid oxide fuel cell - combined heat and power system operating strategies

    NASA Astrophysics Data System (ADS)

    Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott

    Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.

  11. Analysis of the clonal repertoire of gene-corrected cells in gene therapy.

    PubMed

    Paruzynski, Anna; Glimm, Hanno; Schmidt, Manfred; Kalle, Christof von

    2012-01-01

    Gene therapy-based clinical phase I/II studies using integrating retroviral vectors could successfully treat different monogenetic inherited diseases. However, with increased efficiency of this therapy, severe side effects occurred in various gene therapy trials. In all cases, integration of the vector close to or within a proto-oncogene contributed substantially to the development of the malignancies. Thus, the in-depth analysis of integration site patterns is of high importance to uncover potential clonal outgrowth and to assess the safety of gene transfer vectors and gene therapy protocols. The standard and nonrestrictive linear amplification-mediated PCR (nrLAM-PCR) in combination with high-throughput sequencing exhibits technologies that allow to comprehensively analyze the clonal repertoire of gene-corrected cells and to assess the safety of the used vector system at an early stage on the molecular level. It enables clarifying the biological consequences of the vector system on the fate of the transduced cell. Furthermore, the downstream performance of real-time PCR allows a quantitative estimation of the clonality of individual cells and their clonal progeny. Here, we present a guideline that should allow researchers to perform comprehensive integration site analysis in preclinical and clinical studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    PubMed

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  13. Integrating human stem cell expansion and neuronal differentiation in bioreactors

    PubMed Central

    Serra, Margarida; Brito, Catarina; Costa, Eunice M; Sousa, Marcos FQ; Alves, Paula M

    2009-01-01

    Background Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. Results The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line) as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time. Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process. Conclusion The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors. PMID:19772662

  14. Fostering synergy between cell biology and systems biology.

    PubMed

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. A portable and integrated instrument for cell manipulation by dielectrophoresis.

    PubMed

    Burgarella, Sarah; Di Bari, Marco

    2015-07-01

    The physical manipulation of biological cells is a key point in the development of miniaturized systems for point-of-care analyses. Dielectrophoresis (DEP) has been reported by several laboratories as a promising method in biomedical research for label-free cell manipulation without physical contact, by exploiting the dielectric properties of cells suspended in a microfluidic sample, under the action of high-gradient electric fields. In view of a more extended use of DEP phenomena in lab-on-chip devices for point-of-care settings, we have developed a portable instrument, integrating on the same device the microfluidic biochip for cell manipulation and all the laboratory functions (i.e., DEP electric signal generation, microscopic observation of the biological sample under test and image acquisition) that are normally obtained by combining different nonportable standard laboratory instruments. The nonuniform electric field for cell manipulation on the biochip is generated by microelectrodes, patterned on the silicon substrate of microfluidic channels, using standard microfabrication techniques. Numerical modeling was performed to simulate the electric field distribution, quantify the DEP force, and optimize the geometry of the microelectrodes. The developed instrument includes an electronic board, which allows the control of the electric signal applied to electrodes necessary for DEP, and a miniaturized optical microscope system that allows visual inspection and eventually cell counting, as well as image and video recording. The system also includes the control software. The portable and integrated platform described in this work therefore represents a complete and innovative solution of applied research, suitable for many biological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Liquid Oxygen/Liquid Methane Integrated Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Banker, Brian; Ryan, Abigail

    2016-01-01

    The proposed paper will cover ongoing work at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) on integrated power and propulsion for advanced human exploration. Specifically, it will present findings of the integrated design, testing, and operational challenges of a liquid oxygen / liquid methane (LOx/LCH4) propulsion brassboard and Solid Oxide Fuel Cell (SOFC) system. Human-Mars architectures point to an oxygen-methane economy utilizing common commodities, scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU), and common commodities across sub-systems. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth) increasing commonality between spacecraft subsystems such as power and propulsion can result in tremendous launch mass and volume savings. Historically, propulsion and fuel cell power subsystems have had little interaction outside of the generation (fuel cell) and consumption (propulsion) of electrical power. This was largely due to a mismatch in preferred commodities (hypergolics for propulsion; oxygen & hydrogen for fuel cells). Although this stove-piped approach benefits from simplicity in the design process, it means each subsystem has its own tanks, pressurization system, fluid feed system, etc. increasing overall spacecraft mass and volume. A liquid oxygen / liquid methane commodities architecture across propulsion and power subsystems would enable the use of common tankage and associated pressurization and commodity delivery hardware for both. Furthermore, a spacecraft utilizing integrated power and propulsion could use propellant residuals - propellant which could not be expelled from the tank near depletion due to hydrodynamic considerations caused by large flow demands of a rocket engine - to generate power after all propulsive maneuvers are complete thus utilizing previously wasted mass. Such is the case for human and robotic planetary landers. Although many potential benefits through integrated power & propulsion exist, integrated operations have yet to be successfully demonstrated and many challenges have already been identified the most obvious of which is the large temperature gradient. SOFC chemistry is exothermic with operating temperatures in excess of 1,000 K; however, any shared commodities will be undoubtedly stored at cryogenic temperatures (90-112 K) for mass efficiency reasons. Spacecraft packaging will drive these two subsystems in close proximity thus heat leak into the commodity tankage must be minimized and/or mitigated. Furthermore, commodities must be gasified prior to consumption by the SOFC. Excess heat generated by the SOFC could be used to perform this phase change; however, this has yet to be demonstrated. A further identified challenge is the ability of the SOFC to handle the sudden power spikes created by the propulsion system. A power accumulator (battery) will likely be necessary to handle these sudden demands while the SOFC thermally adjusts. JSC's current SOFC test system consists of a 1 kW fuel cell designed by Delphi. The fuel cell is currently undergoing characterization testing at the NASA JSC Energy Systems Test Area (ESTA) after which a Steam Methane Reformer (SMR) will be integrated and the combined system tested in closed-loop. The propulsion brassboard is approximately the size of what could be flown on a sounding rocket. It consists of one 100 lbf thrust "main" engine developed for NASA by Aerojet and two 10 lbf thrusters to simulate a reaction control system developed at NASA JSC. This system is also under development and initial testing at ESTA. After initial testing, combined testing will occur which will provide data on the fuel cell's ability to sufficiently handle the power spikes created by the propulsion system. These two systems will also be modeled using General-Use Nodal Network Solver (GUNNS) software. Once anchored with test data, this model will be used to extrapolate onto other firing profiles and used to size the power accumulator.

  17. Daple coordinates organ-wide and cell-intrinsic polarity to pattern inner-ear hair bundles

    PubMed Central

    Siletti, Kimberly; Hudspeth, A. J.

    2017-01-01

    The establishment of planar polarization by mammalian cells necessitates the integration of diverse signaling pathways. In the inner ear, at least two systems regulate the planar polarity of sensory hair bundles. The core planar cell polarity (PCP) proteins coordinate the orientations of hair cells across the epithelial plane. The cell-intrinsic patterning of hair bundles is implemented independently by the G protein complex classically known for orienting the mitotic spindle. Although the primary cilium also participates in each of these pathways, its role and the integration of the two systems are poorly understood. We show that Dishevelled-associating protein with a high frequency of leucine residues (Daple) interacts with PCP and cell-intrinsic signals. Regulated by the cell-intrinsic pathway, Daple is required to maintain the polarized distribution of the core PCP protein Dishevelled and to position the primary cilium at the abneural edge of the apical surface. Our results suggest that the primary cilium or an associated structure influences the domain of cell-intrinsic signals that shape the hair bundle. Daple is therefore essential to orient and pattern sensory hair bundles. PMID:29229865

  18. Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid.

    PubMed

    Shimono, Kazumi; Goto, Mie; Kikukawa, Takashi; Miyauchi, Seiji; Shirouzu, Mikako; Kamo, Naoki; Yokoyama, Shigeyuki

    2009-10-01

    Cell-free expression has become a highly promising tool for the efficient production of membrane proteins. In this study, we used a dialysis-based Escherichia coli cell-free system for the production of a membrane protein actively integrated into liposomes. The membrane protein was the light-driven proton pump bacteriorhodopsin, consisting of seven transmembrane alpha-helices. The cell-free expression system in the dialysis mode was supplemented with a combination of a detergent and a natural lipid, phosphatidylcholine from egg yolk, in only the reaction mixture. By examining a variety of detergents, we found that the combination of a steroid detergent (digitonin, cholate, or CHAPS) and egg phosphatidylcholine yielded a large amount (0.3-0.7 mg/mL reaction mixture) of the fully functional bacteriorhodopsin. We also analyzed the process of functional expression in our system. The synthesized polypeptide was well protected from aggregation by the detergent-lipid mixed micelles and/or lipid disks, and was integrated into liposomes upon detergent removal by dialysis. This approach might be useful for the high yield production of functional membrane proteins.

  19. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  20. Efficient integration method for fictitious domain approaches

    NASA Astrophysics Data System (ADS)

    Duczek, Sascha; Gabbert, Ulrich

    2015-10-01

    In the current article, we present an efficient and accurate numerical method for the integration of the system matrices in fictitious domain approaches such as the finite cell method (FCM). In the framework of the FCM, the physical domain is embedded in a geometrically larger domain of simple shape which is discretized using a regular Cartesian grid of cells. Therefore, a spacetree-based adaptive quadrature technique is normally deployed to resolve the geometry of the structure. Depending on the complexity of the structure under investigation this method accounts for most of the computational effort. To reduce the computational costs for computing the system matrices an efficient quadrature scheme based on the divergence theorem (Gauß-Ostrogradsky theorem) is proposed. Using this theorem the dimension of the integral is reduced by one, i.e. instead of solving the integral for the whole domain only its contour needs to be considered. In the current paper, we present the general principles of the integration method and its implementation. The results to several two-dimensional benchmark problems highlight its properties. The efficiency of the proposed method is compared to conventional spacetree-based integration techniques.

  1. A high throughput spectral image microscopy system

    NASA Astrophysics Data System (ADS)

    Gesley, M.; Puri, R.

    2018-01-01

    A high throughput spectral image microscopy system is configured for rapid detection of rare cells in large populations. To overcome flow cytometry rates and use of fluorophore tags, a system architecture integrates sample mechanical handling, signal processors, and optics in a non-confocal version of light absorption and scattering spectroscopic microscopy. Spectral images with native contrast do not require the use of exogeneous stain to render cells with submicron resolution. Structure may be characterized without restriction to cell clusters of differentiation.

  2. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  3. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  4. Development and design of experiments optimization of a high temperature proton exchange membrane fuel cell auxiliary power unit with onboard fuel processor

    NASA Astrophysics Data System (ADS)

    Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan

    In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.

  5. Enhanced functional expression of aquaporin Z via fusion of in situ cleavable leader peptides in Escherichia coli cell-free system.

    PubMed

    Zhang, Xu; Lian, Jiazhang; Kai, Lei; Huang, Lei; Cen, Peilin; Xu, Zhinan

    2014-02-05

    Aquaporin Z (AqpZ) is a water channel protein from Escherichia coli and has attracted many attentions to develop the biomimetic water filtration technology. Cell-free protein synthesis (CFPS) system, one of the most complex multi-enzymatic systems, has the ability of producing the integral membrane protein in vitro. To enhance the synthesis of AqpZ in E. coli cell-free system, several natural leader peptides were respectively fused at the N-terminus and were verified to enhance the expression level significantly. Moreover, the supplementation of detergents or liposome could activate leader peptidase from the cell-free extract and provide hydrophobic environment for proper folding of AqpZ. Thus, the release of mature AqpZ via the in situ removal of leader peptide was achieved, with a specific water transport activity of (2.1 ± 0.1) × 10⁻¹⁴ cm³ s⁻¹ monomer⁻¹. Using this in situ removable leader peptide strategy, the transcription-translation, leader sequence cleavage and membrane protein folding were integrated into a simple process in the cell-free system, providing a convenient approach to enhance the expression of target proteins, especially those membrane proteins difficult to achieve. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Systems heterogeneity: An integrative way to understand cancer heterogeneity.

    PubMed

    Wang, Diane Catherine; Wang, Xiangdong

    2017-04-01

    The concept of systems heterogeneity was firstly coined and explained in the Special Issue, as a new alternative to understand the importance and complexity of heterogeneity in cancer. Systems heterogeneity can offer a full image of heterogeneity at multi-dimensional functions and multi-omics by integrating gene or protein expression, epigenetics, sequencing, phosphorylation, transcription, pathway, or interaction. The Special Issue starts with the roles of epigenetics in the initiation and development of cancer heterogeneity through the interaction between permanent genetic mutations and dynamic epigenetic alterations. Cell heterogeneity was defined as the difference in biological function and phenotypes between cells in the same organ/tissue or in different organs, as well as various challenges, as exampled in telocytes. The single cell heterogeneity has the value of identifying diagnostic biomarkers and therapeutic targets and clinical potential of single cell systems heterogeneity in clinical oncology. A number of signaling pathways and factors contribute to the development of systems heterogeneity. Proteomic heterogeneity can change the strategy and thinking of drug discovery and development by understanding the interactions between proteins or proteins with drugs in order to optimize drug efficacy and safety. The association of cancer heterogeneity with cancer cell evolution and metastasis was also overviewed as a new alternative for diagnostic biomarkers and therapeutic targets in clinical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Encapsulated Optically Responsive Cell Systems: Toward Smart Implants in Biomedicine.

    PubMed

    Boss, Christophe; Bouche, Nicolas; De Marchi, Umberto

    2018-04-01

    Managing increasingly prevalent chronic diseases will require close continuous monitoring of patients. Cell-based biosensors may be used for implantable diagnostic systems to monitor health status. Cells are indeed natural sensors in the body. Functional cellular systems can be maintained in the body for long-term implantation using cell encapsulation technology. By taking advantage of recent progress in miniaturized optoelectronic systems, the genetic engineering of optically responsive cells may be combined with cell encapsulation to generate smart implantable cell-based sensing systems. In biomedical research, cell-based biosensors may be used to study cell signaling, therapeutic effects, and dosing of bioactive molecules in preclinical models. Today, a wide variety of genetically encoded fluorescent sensors have been developed for real-time imaging of living cells. Here, recent developments in genetically encoded sensors, cell encapsulation, and ultrasmall optical systems are highlighted. The integration of these components in a new generation of biosensors is creating innovative smart in vivo cell-based systems, bringing novel perspectives for biomedical research and ultimately allowing unique health monitoring applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Integration of photoswitchable proteins, photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications.

    PubMed

    Wang, Fuan; Liu, Xiaoqing; Willner, Itamar

    2013-01-18

    Light-triggered biological processes provide the principles for the development of man-made optobioelectronic systems. This Review addresses three recently developed topics in the area of optobioelectronics, while addressing the potential applications of these systems. The topics discussed include: (i) the reversible photoswitching of the bioelectrocatalytic functions of redox proteins by the modification of proteins with photoisomerizable units or by the integration of proteins with photoisomerizable environments; (ii) the integration of natural photosynthetic reaction centers with electrodes and the construction of photobioelectrochemical cells and photobiofuel cells; and (iii) the synthesis of biomolecule/semiconductor quantum dots hybrid systems and their immobilization on electrodes to yield photobioelectrochemical and photobiofuel cell elements. The fundamental challenge in the tailoring of optobioelectronic systems is the development of means to electrically contact photoactive biomolecular assemblies with the electrode supports. Different methods to establish electrical communication between the photoactive biomolecular assemblies and electrodes are discussed. These include the nanoscale engineering of the biomolecular nanostructures on surfaces, the development of photoactive molecular wires and the coupling of photoinduced electron transfer reactions with the redox functions of proteins. The different possible applications of optobioelectronic systems are discussed, including their use as photosensors, the design of biosensors, and the construction of solar energy conversion and storage systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Field-programmable lab-on-a-chip based on microelectrode dot array architecture.

    PubMed

    Wang, Gary; Teng, Daniel; Lai, Yi-Tse; Lu, Yi-Wen; Ho, Yingchieh; Lee, Chen-Yi

    2014-09-01

    The fundamentals of electrowetting-on-dielectric (EWOD) digital microfluidics are very strong: advantageous capability in the manipulation of fluids, small test volumes, precise dynamic control and detection, and microscale systems. These advantages are very important for future biochip developments, but the development of EWOD microfluidics has been hindered by the absence of: integrated detector technology, standard commercial components, on-chip sample preparation, standard manufacturing technology and end-to-end system integration. A field-programmable lab-on-a-chip (FPLOC) system based on microelectrode dot array (MEDA) architecture is presented in this research. The MEDA architecture proposes a standard EWOD microfluidic component called 'microelectrode cell', which can be dynamically configured into microfluidic components to perform microfluidic operations of the biochip. A proof-of-concept prototype FPLOC, containing a 30 × 30 MEDA, was developed by using generic integrated circuits computer aided design tools, and it was manufactured with standard low-voltage complementary metal-oxide-semiconductor technology, which allows smooth on-chip integration of microfluidics and microelectronics. By integrating 900 droplet detection circuits into microelectrode cells, the FPLOC has achieved large-scale integration of microfluidics and microelectronics. Compared to the full-custom and bottom-up design methods, the FPLOC provides hierarchical top-down design approach, field-programmability and dynamic manipulations of droplets for advanced microfluidic operations.

  10. Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)

    NASA Technical Reports Server (NTRS)

    Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.

    2005-01-01

    This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  11. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface.

    PubMed

    Nalayanda, Divya D; Puleo, Christopher; Fulton, William B; Sharpe, Leilani M; Wang, Tza-Huei; Abdullah, Fizan

    2009-10-01

    In an effort to improve the physiologic relevance of existing in vitro models for alveolar cells, we present a microfluidic platform which provides an air-interface in a dynamic system combining microfluidic and suspended membrane culture systems. Such a system provides the ability to manipulate multiple parameters on a single platform along with ease in cell seeding and manipulation. The current study presents a comparison of the efficacy of the hybrid system with conventional platforms using assays analyzing the maintenance of function and integrity of A549 alveolar epithelial cell monolayer cultures. The hybrid system incorporates bio-mimetic nourishment on the basal side of the epithelial cells along with an open system on the apical side of the cells exposed to air allowing for easy access for assays.

  12. Design of a new concentrated photovoltaic system under UAE conditions

    NASA Astrophysics Data System (ADS)

    Hachicha, Ahmed Amine; Tawalbeh, Muahammad

    2017-06-01

    Concentrated Photovoltaic Systems (CPVs) are considered one of the innovative designs for concentrated solar power applications. By concentrating the incident radiation, the solar cells will be able to produce much more electricity compared to conventional PV systems. However, the temperature of the solar cells increases significantly with concentration. Therefore, cooling of the solar cells will be needed to maintain high conversion efficiency. In this work, a novel design of CPV system is proposed and implemented under UAE conditions for electricity generation and hot water production. The proposed design integrates a water cooling system and PV system to optimize both the electrical and thermal performances of the CPV system.

  13. Optical tweezers and multiphoton microscopies integrated photonic tool for mechanical and biochemical cell processes studies

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Faustino, W. M.; Fontes, A.; Fernandes, H. P.; Barjas-Castro, M. d. L.; Metze, K.; Giorgio, S.; Barbosa, L. C.; Cesar, C. L.

    2007-09-01

    The research in biomedical photonics is clearly evolving in the direction of the understanding of biological processes at the cell level. The spatial resolution to accomplish this task practically requires photonics tools. However, an integration of different photonic tools and a multimodal and functional approach will be necessary to access the mechanical and biochemical cell processes. This way we can observe mechanicaly triggered biochemical events or biochemicaly triggered mechanical events, or even observe simultaneously mechanical and biochemical events triggered by other means, e.g. electricaly. One great advantage of the photonic tools is its easiness for integration. Therefore, we developed such integrated tool by incorporating single and double Optical Tweezers with Confocal Single and Multiphoton Microscopies. This system can perform 2-photon excited fluorescence and Second Harmonic Generation microscopies together with optical manipulations. It also can acquire Fluorescence and SHG spectra of specific spots. Force, elasticity and viscosity measurements of stretched membranes can be followed by real time confocal microscopies. Also opticaly trapped living protozoas, such as leishmania amazonensis. Integration with CARS microscopy is under way. We will show several examples of the use of such integrated instrument and its potential to observe mechanical and biochemical processes at cell level.

  14. Characterization of a novel, highly integrated tubular solid oxide fuel cell system using high-fidelity simulation tools

    NASA Astrophysics Data System (ADS)

    Kattke, K. J.; Braun, R. J.

    2011-08-01

    A novel, highly integrated tubular SOFC system intended for small-scale power is characterized through a series of sensitivity analyses and parametric studies using a previously developed high-fidelity simulation tool. The high-fidelity tubular SOFC system modeling tool is utilized to simulate system-wide performance and capture the thermofluidic coupling between system components. Stack performance prediction is based on 66 anode-supported tubular cells individually evaluated with a 1-D electrochemical cell model coupled to a 3-D computational fluid dynamics model of the cell surroundings. Radiation is the dominate stack cooling mechanism accounting for 66-92% of total heat loss at the outer surface of all cells at baseline conditions. An average temperature difference of nearly 125 °C provides a large driving force for radiation heat transfer from the stack to the cylindrical enclosure surrounding the tube bundle. Consequently, cell power and voltage disparities within the stack are largely a function of the radiation view factor from an individual tube to the surrounding stack can wall. The cells which are connected in electrical series, vary in power from 7.6 to 10.8 W (with a standard deviation, σ = 1.2 W) and cell voltage varies from 0.52 to 0.73 V (with σ = 81 mV) at the simulation baseline conditions. It is observed that high cell voltage and power outputs directly correspond to tubular cells with the smallest radiation view factor to the enclosure wall, and vice versa for tubes exhibiting low performance. Results also reveal effective control variables and operating strategies along with an improved understanding of the effect that design modifications have on system performance. By decreasing the air flowrate into the system by 10%, the stack can wall temperature increases by about 6% which increases the minimum cell voltage to 0.62 V and reduces deviations in cell power and voltage by 31%. A low baseline fuel utilization is increased by decreasing the fuel flowrate and by increasing the stack current demand. Simulation results reveal fuel flow as a poor control variable because excessive tail-gas combustor temperatures limit fuel flow to below 110% of the baseline flowrate. Additionally, system efficiency becomes inversely proportional to fuel utilization over the practical fuel flow range. Stack current is found to be an effective control variable in this type of system because system efficiency becomes directly proportional to fuel utilization. Further, the integrated system acts to dampen temperature spikes when fuel utilization is altered by varying current demand. Radiation remains the dominate heat transfer mechanism within the stack even if stack surfaces are polished lowering emissivities to 0.2. Furthermore, the sensitivity studies point to an optimal system insulation thickness that balances the overall system volume and total conductive heat loss.

  15. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787

  16. Multiscale modeling of mucosal immune responses.

    PubMed

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.

  17. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-09-08

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  18. Dynamic kirigami structures for integrated solar tracking

    PubMed Central

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  19. Acetylcholine contributes to the integration of self-movement cues in head direction cells.

    PubMed

    Yoder, Ryan M; Chan, Jeremy H M; Taube, Jeffrey S

    2017-08-01

    Acetylcholine contributes to accurate performance on some navigational tasks, but details of its contribution to the underlying brain signals are not fully understood. The medial septal area provides widespread cholinergic input to various brain regions, but selective damage to medial septal cholinergic neurons generally has little effect on landmark-based navigation, or the underlying neural representations of location and directional heading in visual environments. In contrast, the loss of medial septal cholinergic neurons disrupts navigation based on path integration, but no studies have tested whether these path integration deficits are associated with disrupted head direction (HD) cell activity. Therefore, we evaluated HD cell responses to visual cue rotations in a familiar arena, and during navigation between familiar and novel arenas, after muscarinic receptor blockade with systemic atropine. Atropine treatment reduced the peak firing rate of HD cells, but failed to significantly affect other HD cell firing properties. Atropine also failed to significantly disrupt the dominant landmark control of the HD signal, even though we used a procedure that challenged this landmark control. In contrast, atropine disrupted HD cell stability during navigation between familiar and novel arenas, where path integration normally maintains a consistent HD cell signal across arenas. These results suggest that acetylcholine contributes to path integration, in part, by facilitating the use of idiothetic cues to maintain a consistent representation of directional heading. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity

    PubMed Central

    Rosa, Jeffrey B.; Metzstein, Mark M.

    2018-01-01

    During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens. PMID:29309404

  1. Network Analysis of Epidermal Growth Factor Signaling Using Integrated Genomic, Proteomic and Phosphorylation Data

    PubMed Central

    Waters, Katrina M.; Liu, Tao; Quesenberry, Ryan D.; Willse, Alan R.; Bandyopadhyay, Somnath; Kathmann, Loel E.; Weber, Thomas J.; Smith, Richard D.; Wiley, H. Steven; Thrall, Brian D.

    2012-01-01

    To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response. PMID:22479638

  2. Construction and Characterization of an in-vivo Linear Covalently Closed DNA Vector Production System

    PubMed Central

    2012-01-01

    Background While safer than their viral counterparts, conventional non-viral gene delivery DNA vectors offer a limited safety profile. They often result in the delivery of unwanted prokaryotic sequences, antibiotic resistance genes, and the bacterial origins of replication to the target, which may lead to the stimulation of unwanted immunological responses due to their chimeric DNA composition. Such vectors may also impart the potential for chromosomal integration, thus potentiating oncogenesis. We sought to engineer an in vivo system for the quick and simple production of safer DNA vector alternatives that were devoid of non-transgene bacterial sequences and would lethally disrupt the host chromosome in the event of an unwanted vector integration event. Results We constructed a parent eukaryotic expression vector possessing a specialized manufactured multi-target site called “Super Sequence”, and engineered E. coli cells (R-cell) that conditionally produce phage-derived recombinase Tel (PY54), TelN (N15), or Cre (P1). Passage of the parent plasmid vector through R-cells under optimized conditions, resulted in rapid, efficient, and one step in vivo generation of mini lcc—linear covalently closed (Tel/TelN-cell), or mini ccc—circular covalently closed (Cre-cell), DNA constructs, separated from the backbone plasmid DNA. Site-specific integration of lcc plasmids into the host chromosome resulted in chromosomal disruption and 105 fold lower viability than that seen with the ccc counterpart. Conclusion We offer a high efficiency mini DNA vector production system that confers simple, rapid and scalable in vivo production of mini lcc DNA vectors that possess all the benefits of “minicircle” DNA vectors and virtually eliminate the potential for undesirable vector integration events. PMID:23216697

  3. Construction and characterization of an in-vivo linear covalently closed DNA vector production system.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2012-12-06

    While safer than their viral counterparts, conventional non-viral gene delivery DNA vectors offer a limited safety profile. They often result in the delivery of unwanted prokaryotic sequences, antibiotic resistance genes, and the bacterial origins of replication to the target, which may lead to the stimulation of unwanted immunological responses due to their chimeric DNA composition. Such vectors may also impart the potential for chromosomal integration, thus potentiating oncogenesis. We sought to engineer an in vivo system for the quick and simple production of safer DNA vector alternatives that were devoid of non-transgene bacterial sequences and would lethally disrupt the host chromosome in the event of an unwanted vector integration event. We constructed a parent eukaryotic expression vector possessing a specialized manufactured multi-target site called "Super Sequence", and engineered E. coli cells (R-cell) that conditionally produce phage-derived recombinase Tel (PY54), TelN (N15), or Cre (P1). Passage of the parent plasmid vector through R-cells under optimized conditions, resulted in rapid, efficient, and one step in vivo generation of mini lcc--linear covalently closed (Tel/TelN-cell), or mini ccc--circular covalently closed (Cre-cell), DNA constructs, separated from the backbone plasmid DNA. Site-specific integration of lcc plasmids into the host chromosome resulted in chromosomal disruption and 10(5) fold lower viability than that seen with the ccc counterpart. We offer a high efficiency mini DNA vector production system that confers simple, rapid and scalable in vivo production of mini lcc DNA vectors that possess all the benefits of "minicircle" DNA vectors and virtually eliminate the potential for undesirable vector integration events.

  4. Shed-blood-separation and cell-saver: an integral Part of MiECC? Shed-blood-separation and its influence on the perioperative inflammatory response during coronary revascularization with minimal invasive extracorporeal circulation systems - a randomized controlled trial.

    PubMed

    Bauer, Adrian; Hausmann, Harald; Schaarschmidt, Jan; Scharpenberg, Martin; Troitzsch, Dirk; Johansen, Peter; Nygaard, Hans; Eberle, Thomas; Hasenkam, J Michael

    2018-03-01

    The postoperative systemic inflammatory response after cardiopulmonary bypass (CPB) is still an undesirable side-effect after cardiac surgery. It is most likely caused by blood contact with foreign surfaces and by the surgical trauma itself. However, the recirculation of activated shed mediastinal blood is another main cause of blood cell activation and cytokine release. Minimal invasive extracorporeal circulation (MiECC) comprises a completely closed circuit, coated surfaces and the separation of suction blood. We hypothesized that MiECC, with separated cell saved blood, would induce less of a systemic inflammatory response than MiECC with no cell-saver. The aim of this study was, therefore, to investigate the impact of cell washing shed blood from the operating field versus direct return to the ECC on the biomarkers for systemic inflammation. In the study, patients with MiECC and cell-saver were compared with the control group, patients with MiECC and direct re-transfusion of the drawn blood shed from the surgical field. High amounts of TNF-α (+ 120% compared to serum blood) were found in the shed blood itself, but a significant reduction was demonstrated with the use of a cell-saver (TNF-α ng/l post-ECC 10 min: 9.5±3.5 vs. 19.7±14.5, p<0.0001). The values for procalcitonin were not significantly increased in the control group (6h: 1.07±3.4 vs. 2.15±9.55, p=0.19) and lower for C-reactive protein (CRP) (24h: 147.1±64.0 vs.134.4±52.4 p=0.28). The use of a cell-saver and the processing of shed blood as an integral part of MiECC significantly reduces the systemic cytokine load. We, therefore, recommend the integration of cell-saving devices in MiECC to reduce the perioperative inflammatory response.

  5. Role of the Guanine Nucleotide Exchange Factor Rom2 in Cell Wall Integrity Maintenance of Aspergillus fumigatus

    PubMed Central

    Samantaray, Sweta; Neubauer, Michael; Helmschrott, Christoph

    2013-01-01

    Aspergillus fumigatus is a mold and the causal agent of invasive aspergillosis, a systemic disease with high lethality. Recently, we identified and functionally characterized three stress sensors implicated in the cell wall integrity (CWI) signaling of this pathogen, namely, Wsc1, Wsc3, and MidA. Here, we functionally characterize Rom2, a guanine nucleotide exchange factor with essential function for the cell wall integrity of A. fumigatus. A conditional rom2 mutant has severe growth defects under repressive conditions and incorporates all phenotypes of the three cell wall integrity sensor mutants, e.g., the echinocandin sensitivity of the Δwsc1 mutant and the Congo red, calcofluor white, and heat sensitivity of the ΔmidA mutant. Rom2 interacts with Rho1 and shows a similar intracellular distribution focused at the hyphal tips. Our results place Rom2 between the cell surface stress sensors Wsc1, Wsc3, MidA, and Rho1 and their downstream effector mitogen-activated protein (MAP) kinase module Bck1-Mkk2-MpkA. PMID:23264643

  6. Modeling and Optimization of Renewable and Hybrid Fuel Cell Systems for Space Power and Propulsion

    DTIC Science & Technology

    2010-11-14

    For that the project achieved: the optimization of SOFC and PEMFC internal structure and external shape under a volume constraint; an initial set of...subcomponent models for regenerative, renewable fuel cell system (RFC); the integration of PEMFC into RFC systems were developed; power electronic...with the same objectives and goals but using a PEMFC regenerative system instead. This research group studied and published on the optimization and

  7. Photovoltaic roofing tile systems

    NASA Astrophysics Data System (ADS)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  8. Power attenuation characteristics as switch-over criterion in personal satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Castro, Jonathan P.

    1993-01-01

    A third generation mobile system intends to support communications in all environments (i.e., outdoors, indoors at home or office and when moving). This system will integrate services that are now available in architectures such as cellular, cordless, mobile data networks, paging, including satellite services to rural areas. One way through which service integration will be made possible is by supporting a hierarchical cellular structure based on umbrella cells, macro cells, micro and pico cells. In this type of structure, satellites are part of the giant umbrella cells allowing continuous global coverage, the other cells belong to cities, neighborhoods, and buildings respectively. This does not necessarily imply that network operation of terrestrial and satellite segments interconnect to enable roaming and spectrum sharing. However, the cell concept does imply hand-off between different cell types, which may involve change of frequency. Within this propsective, the present work uses power attenuation characteristics to determine a dynamic criterion that allows smooth transition from space to terrestrial networks. The analysis includes a hybrid channel that combines Rician, Raleigh and Log Normal fading characteristics.

  9. INTEGRATION OF PARTICLE-GAS SYSTEMS WITH STIFF MUTUAL DRAG INTERACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chao-Chin; Johansen, Anders, E-mail: ccyang@astro.lu.se, E-mail: anders@astro.lu.se

    2016-06-01

    Numerical simulation of numerous mm/cm-sized particles embedded in a gaseous disk has become an important tool in the study of planet formation and in understanding the dust distribution in observed protoplanetary disks. However, the mutual drag force between the gas and the particles can become so stiff—particularly because of small particles and/or strong local solid concentration—that an explicit integration of this system is computationally formidable. In this work, we consider the integration of the mutual drag force in a system of Eulerian gas and Lagrangian solid particles. Despite the entanglement between the gas and the particles under the particle-mesh construct,more » we are able to devise a numerical algorithm that effectively decomposes the globally coupled system of equations for the mutual drag force, and makes it possible to integrate this system on a cell-by-cell basis, which considerably reduces the computational task required. We use an analytical solution for the temporal evolution of each cell to relieve the time-step constraint posed by the mutual drag force, as well as to achieve the highest degree of accuracy. To validate our algorithm, we use an extensive suite of benchmarks with known solutions in one, two, and three dimensions, including the linear growth and the nonlinear saturation of the streaming instability. We demonstrate numerical convergence and satisfactory consistency in all cases. Our algorithm can, for example, be applied to model the evolution of the streaming instability with mm/cm-sized pebbles at high mass loading, which has important consequences for the formation scenarios of planetesimals.« less

  10. Intelligent automotive battery systems

    NASA Astrophysics Data System (ADS)

    Witehira, P.

    A single power-supply battery is incompatible with modern vehicles. A one-cmbination 12 cell/12 V battery, developed by Power Beat International Limited (PBIL), is described. The battery is designed to be a 'drop in' replacement for existing batteries. The cell structures, however, are designed according to load function, i.e., high-current shallow-discharge cycles and low-current deep-discharge cycles. The preferred energy discharge management logic and integration into the power distribution network of the vehicle to provide safe user-friendly usage is described. The system is designed to operate transparent to the vehicle user. The integrity of the volatile high-current cells is maintained by temperature-sensitive voltage control and discharge management. The deep-cycle cells can be fully utilized without affecting startability under extreme conditions. Electric energy management synchronization with engine starting will provide at least 6% overall reduction in hydrocarbon emissions using an intelligent on-board power-supply technology developed by PBIL.

  11. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency

    PubMed Central

    Cacchiarelli, Davide; Trapnell, Cole; Ziller, Michael J.; Soumillon, Magali; Cesana, Marcella; Karnik, Rahul; Donaghey, Julie; Smith, Zachary D.; Ratanasirintrawoot, Sutheera; Zhang, Xiaolan; Ho Sui, Shannan J.; Wu, Zhaoting; Akopian, Veronika; Gifford, Casey A.; Doench, John; Rinn, John L.; Daley, George Q.; Meissner, Alexander; Lander, Eric S.; Mikkelsen, Tarjei S.

    2015-01-01

    Summary Induced pluripotency is a promising avenue for disease modeling and therapy, but the molecular principles underlying this process, particularly in human cells, remain poorly understood due to donor-to-donor variability and intercellular heterogeneity. Here we constructed and characterized a clonal, inducible human reprogramming system that provides a reliable source of cells at any stage of the process. This system enabled integrative transcriptional and epigenomic analysis across the human reprogramming timeline at high resolution. We observed distinct waves of gene network activation, including the ordered reactivation of broad developmental regulators followed by early embryonic patterning genes and culminating in the emergence of a signature reminiscent of pre-implantation stages. Moreover, complementary functional analyses allowed us to identify and validate novel regulators of the reprogramming process. Altogether, this study sheds light on the molecular underpinnings of induced pluripotency in human cells and provides a robust cell platform for further studies. PMID:26186193

  12. MEETING REPORT ASSESSING HUMAN GERM-CELL MUTAGENESIS IN THE POST-GENOME ERA: A CELEBRATION OF THE LEGACY OF WILLIAM LAWSON (BILL) RUSSELL

    EPA Science Inventory

    Although numerous germ-cell mutagens have been identified in animal model systems, to date, no human germ-cell mutagens have been confirmed. Because the genomic integrity of our germ cells is essential for the continuation of the human species, a resolution of this enduring conu...

  13. Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran.

    PubMed

    Schievano, Andrea; Sciarria, Tommy Pepè; Gao, Yong Chang; Scaglia, Barbara; Salati, Silvia; Zanardo, Marina; Quiao, Wei; Dong, Renjie; Adani, Fabrizio

    2016-10-01

    This work describes how dark fermentation (DF), anaerobic digestion (AD) and microbial fuel cells (MFC) and solid-liquid separation can be integrated to co-produce valuable biochemicals (hydrogen and methane), bioelectricity and biofertilizers. Two integrated systems (System 1: AD+MFC, and System 2: DF+AD+MFC) are described and compared to a traditional one-stage AD system in converting a mixture (COD=124±8.1gO2kg(-1)Fresh Matter) of swine manure and rice bran. System 1 gave a biomethane yield of 182 LCH4kg(-1)COD-added, while System 2 gave L yields of bio-hydrogen and bio-methane of 27.3±7.2LH2kg(-1)COD-added and 154±14LCH4kg(-1)COD-added, respectively. A solid-liquid separation (SLS) step was applied to the digested slurry, giving solid and liquid fractions. The liquid fraction was treated via the MFC-steps, showing power densities of 12-13Wm(-3) (500Ω) and average bioelectricity yields of 39.8Whkg(-1)COD to 54.2Whkg(-1)COD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling.

    PubMed

    Gilroy, Simon; Suzuki, Nobuhiro; Miller, Gad; Choi, Won-Gyu; Toyota, Masatsugu; Devireddy, Amith R; Mittler, Ron

    2014-10-01

    Systemic signaling pathways enable multicellular organisms to prepare all of their tissues and cells to an upcoming challenge that may initially only be sensed by a few local cells. They are activated in plants in response to different stimuli including mechanical injury, pathogen infection, and abiotic stresses. Key to the mobilization of systemic signals in higher plants are cell-to-cell communication events that have thus far been mostly unstudied. The recent identification of systemically propagating calcium (Ca(2+)) and reactive oxygen species (ROS) waves in plants has unraveled a new and exciting cell-to-cell communication pathway that, together with electric signals, could provide a working model demonstrating how plant cells transmit long-distance signals via cell-to-cell communication mechanisms. Here, we summarize recent findings on the ROS and Ca(2+) waves and outline a possible model for their integration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Electron lithography STAR design guidelines. Part 1: The STAR user design manual

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Newman, W.

    1982-01-01

    The STAR system developed by NASA enables any user with a logic diagram to design a semicustom digital MOS integrated circuit. The system is comprised of a library of standard logic cells and computer programs to place, route, and display designs implemented with cells from the library. Library cells of the CMOS metal gate and CMOS silicon gate technologies were simulated using SPICE, and the results are shown and compared.

  16. Latest status of the clinical and industrial applications of cell sheet engineering and regenerative medicine.

    PubMed

    Egami, Mime; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2014-01-01

    Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.

  17. Oleyl group-functionalized insulating gate transistors for measuring extracellular pH of floating cells

    NASA Astrophysics Data System (ADS)

    Imaizumi, Yuki; Goda, Tatsuro; Toya, Yutaro; Matsumoto, Akira; Miyahara, Yuji

    2016-01-01

    The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of -37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays.

  18. Oleyl group-functionalized insulating gate transistors for measuring extracellular pH of floating cells

    PubMed Central

    Imaizumi, Yuki; Goda, Tatsuro; Toya, Yutaro; Matsumoto, Akira; Miyahara, Yuji

    2016-01-01

    Abstract The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of −37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays. PMID:27877886

  19. A regenerative fuel cell system for modular space station integrated electrical power.

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Schubert, F. H.

    1973-01-01

    A regenerative fuel cell system (RFCS) for energy storage aboard the Modular Space Station (MSS) was selected over the battery technique because of lower cost, lower launch weight, lower required solar array area, and its ability to be integrated into the station's reaction control and environmental control and life support subsystems in addition to the electrical power subsystem. The total MSS energy storage requirement was met by dividing it into four equal modular RFCSs, each made up of a fuel cell subsystem, a water electrolysis subsystem, a gas accumulator subassembly, and a water tank subassembly. The weight of each of the four RFCSs varied from 4000 to 7000 lb with the latter being a more maintainable design. The specific energy ranged between 5.6 to 9.4 watt-hr/lb.

  20. Systems microscopy: an emerging strategy for the life sciences.

    PubMed

    Lock, John G; Strömblad, Staffan

    2010-05-01

    Dynamic cellular processes occurring in time and space are fundamental to all physiology and disease. To understand complex and dynamic cellular processes therefore demands the capacity to record and integrate quantitative multiparametric data from the four spatiotemporal dimensions within which living cells self-organize, and to subsequently use these data for the mathematical modeling of cellular systems. To this end, a raft of complementary developments in automated fluorescence microscopy, cell microarray platforms, quantitative image analysis and data mining, combined with multivariate statistics and computational modeling, now coalesce to produce a new research strategy, "systems microscopy", which facilitates systems biology analyses of living cells. Systems microscopy provides the crucial capacities to simultaneously extract and interrogate multiparametric quantitative data at resolution levels ranging from the molecular to the cellular, thereby elucidating a more comprehensive and richly integrated understanding of complex and dynamic cellular systems. The unique capacities of systems microscopy suggest that it will become a vital cornerstone of systems biology, and here we describe the current status and future prospects of this emerging field, as well as outlining some of the key challenges that remain to be overcome. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Magnetic microfluidic system for isolation of single cells

    NASA Astrophysics Data System (ADS)

    Mitterboeck, Richard; Kokkinis, Georgios; Berris, Theocharis; Keplinger, Franz; Giouroudi, Ioanna

    2015-06-01

    This paper presents the design and realization of a compact, portable and cost effective microfluidic system for isolation and detection of rare circulating tumor cells (CTCs) in suspension. The innovative aspect of the proposed isolation method is that it utilizes superparamagnetic particles (SMPs) to label CTCs and then isolate those using microtraps with integrated current carrying microconductors. The magnetically labeled and trapped CTCs can then be detected by integrated magnetic microsensors e.g. giant magnetoresistive (GMR) or giant magnetoimpedance (GMI) sensors. The channel and trap dimensions are optimized to protect the cells from shear stress and achieve high trapping efficiency. These intact single CTCs can then be used for additional analysis, testing and patient specific drug screening. Being able to analyze the CTCs metastasis-driving capabilities on the single cell level is considered of great importance for developing patient specific therapies. Experiments showed that it is possible to capture single labeled cells in multiple microtraps and hold them there without permanent electric current and magnetic field.

  2. C5a alters blood-brain barrier integrity in experimental lupus.

    PubMed

    Jacob, Alexander; Hack, Bradley; Chiang, Eddie; Garcia, Joe G N; Quigg, Richard J; Alexander, Jessy J

    2010-06-01

    The blood-brain barrier (BBB) is a crucial anatomic location in the brain. Its dysfunction complicates many neurodegenerative diseases, from acute conditions, such as sepsis, to chronic diseases, such as systemic lupus erythematosus (SLE). Several studies suggest an altered BBB in lupus, but the underlying mechanism remains unknown. In the current study, we observed a definite loss of BBB integrity in MRL/MpJ-Tnfrsf6(lpr) (MRL/lpr) lupus mice by IgG infiltration into brain parenchyma. In line with this result, we examined the role of complement activation, a key event in this setting, in maintenance of BBB integrity. Complement activation generates C5a, a molecule with multiple functions. Because the expression of the C5a receptor (C5aR) is significantly increased in brain endothelial cells treated with lupus serum, the study focused on the role of C5a signaling through its G-protein-coupled receptor C5aR in brain endothelial cells, in a lupus setting. Reactive oxygen species production increased significantly in endothelial cells, in both primary cells and the bEnd3 cell line treated with lupus serum from MRL/lpr mice, compared with those treated with control serum from MRL(+/+) mice. In addition, increased permeability monitored by changes in transendothelial electrical resistance, cytoskeletal remodeling caused by actin fiber rearrangement, and increased iNOS mRNA expression were observed in bEnd3 cells. These disruptive effects were alleviated by pretreating cells with a C5a receptor antagonist (C5aRant) or a C5a antibody. Furthermore, the structural integrity of the vasculature in MRL/lpr brain was maintained by C5aR inhibition. These results demonstrate the regulation of BBB integrity by the complement system in a neuroinflammatory setting. For the first time, a novel role of C5a in the maintenance of BBB integrity is identified and the potential of C5a/C5aR blockade highlighted as a promising therapeutic strategy in SLE and other neurodegenerative diseases.

  3. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Daniel D.; Department of Biomedical Engineering, University of California Davis, Davis, CA; Villarreal, Fernando D.

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with amore » special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.« less

  4. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    PubMed Central

    Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems. PMID:25538941

  5. Synthetic biology outside the cell: linking computational tools to cell-free systems.

    PubMed

    Lewis, Daniel D; Villarreal, Fernando D; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  6. Miniature Bioreactor System for Long-Term Cell Culture

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  7. Research | NREL

    Science.gov Websites

    manufacturing, buildings efficiency, concentrating solar power, geothermal energy, transportation, water power Integration Facility Geothermal Energy Grid Modernization Hydrogen & Fuel Cells Integrated Energy Research Research Researching energy systems and technologies-and the science behind them-for a

  8. Bionic Nanosystems

    NASA Astrophysics Data System (ADS)

    Sebastian Mannoor, Manu

    Direct multidimensional integration of functional electronics and mechanical elements with viable biological systems could allow for the creation of bionic systems and devices possessing unique and advanced capabilities. For example, the ability to three dimensionally integrate functional electronic and mechanical components with biological cells and tissue could enable the creation of bionic systems that can have tremendous impact in regenerative medicine, prosthetics, and human-machine interfaces. However, as a consequence of the inherent dichotomy in material properties and limitations of conventional fabrication methods, the attainment of truly seamless integration of electronic and/or mechanical components with biological systems has been challenging. Nanomaterials engineering offers a general route for overcoming these dichotomies, primarily due to the existence of a dimensional compatibility between fundamental biological functional units and abiotic nanomaterial building blocks. One area of compelling interest for bionic systems is in the field of biomedical sensing, where the direct interfacing of nanosensors onto biological tissue or the human body could stimulate exciting opportunities such as on-body health quality monitoring and adaptive threat detection. Further, interfacing of antimicrobial peptide based bioselective probes onto the bionic nanosensors could offer abilities to detect pathogenic bacteria with bio-inspired selectivity. Most compellingly, when paired with additive manufacturing techniques such as 3D printing, these characteristics enable three dimensional integration and merging of a variety of functional materials including electronic, structural and biomaterials with viable biological cells, in the precise anatomic geometries of human organs, to form three dimensionally integrated, multi-functional bionic hybrids and cyborg devices with unique capabilities. In this thesis, we illustrate these approaches using three representative bionic systems: 1) Bionic Nanosensors: featuring bio-integrated graphene nanosensors for ubiquitous sensing, 2) Bionic Organs: featuring 3D printed bionic ears with three dimensionally integrated electronics and 3) Bionic Leaves: describing ongoing work in the direction of the creation of a bionic leaf enabled by the integration of plant derived photosynthetic functional units with electronic materials and components into a leaf-shaped hierarchical structure for harvesting photosynthetic bioelectricity.

  9. The immune system and skin cancer.

    PubMed

    Yu, Sherry H; Bordeaux, Jeremy S; Baron, Elma D

    2014-01-01

    Carcinogenesis involves multiple mechanisms that disturb genomic integrity and encourage abnormal proliferation. The immune system plays an integral role in maintaining homeostasis and these mechanisms may arrest or enhance dysplasia. There exists a large body of evidence from organ transplantation literature supporting the significance of the immune suppression in the development of skin cancer. Nonmelanoma skin cancers are the most frequent neoplasms after organ transplantation, with organ transplant recipients having a 65-fold increase in squamous cell carcinoma incidence and 10-fold increase in basal cell carcinoma incidence. Similarly, UV-radiation (UVR) induced immunosuppression is correlated with the development of cutaneous malignancies in a dose-dependent manner. This was first shown several decades ago by Margaret Kripke, when transplanted tumors were rejected in mice with competent immune systems, but grew unchecked in immunosuppressed specimens. After UV exposure, chromophores initiate a cascade that leads to immunosuppression via derangement of Langerhans cells' antigen-presenting capacity. UV-irradiated Langerhans cells present antigens to Th2 cells, but fail to stimulate Th1 cells. A subset of T regulatory cells, specific for the antigen encountered after UVR, is also stimulated to proliferate. In general UV irradiation leads to a greater number of T regulatory cells and fewer effector T cells in the skin, shiftingthe balance from T-cell-mediated immunity to immunosuppression. These regulatory cells have the phenotype CD4+, CD25+, Foxp3+, CTLA-4+. These and many other changes in local immunity lead to a suppressed immune state, which allow for skin cancer development.

  10. Integrating a Silicon Solar Cell with a Triboelectric Nanogenerator via a Mutual Electrode for Harvesting Energy from Sunlight and Raindrops.

    PubMed

    Liu, Yuqiang; Sun, Na; Liu, Jiawei; Wen, Zhen; Sun, Xuhui; Lee, Shuit-Tong; Sun, Baoquan

    2018-03-27

    Solar cells, as promising devices for converting light into electricity, have a dramatically reduced performance on rainy days. Here, an energy harvesting structure that integrates a solar cell and a triboelectric nanogenerator (TENG) device is built to realize power generation from both sunlight and raindrops. A heterojunction silicon (Si) solar cell is integrated with a TENG by a mutual electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film. Regarding the solar cell, imprinted PEDOT:PSS is used to reduce light reflection, which leads to an enhanced short-circuit current density. A single-electrode-mode water-drop TENG on the solar cell is built by combining imprinted polydimethylsiloxane (PDMS) as a triboelectric material combined with a PEDOT:PSS layer as an electrode. The increasing contact area between the imprinted PDMS and water drops greatly improves the output of the TENG with a peak short-circuit current of ∼33.0 nA and a peak open-circuit voltage of ∼2.14 V, respectively. The hybrid energy harvesting system integrated electrode configuration can combine the advantages of high current level of a solar cell and high voltage of a TENG device, promising an efficient approach to collect energy from the environment in different weather conditions.

  11. Integrating Intracellular Dynamics Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell Growth and Invasion

    PubMed Central

    Andasari, Vivi; Roper, Ryan T.; Swat, Maciej H.; Chaplain, Mark A. J.

    2012-01-01

    In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and -catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach. PMID:22461894

  12. Safe genetic modification of cardiac stem cells using a site-specific integration technique.

    PubMed

    Lan, Feng; Liu, Junwei; Narsinh, Kazim H; Hu, Shijun; Han, Leng; Lee, Andrew S; Karow, Marisa; Nguyen, Patricia K; Nag, Divya; Calos, Michele P; Robbins, Robert C; Wu, Joseph C

    2012-09-11

    Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts. We used the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells. Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared with unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging, and positron emission tomography. Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function 2 weeks after cell delivery, as assessed by echocardiography (P=0.002) and MRI (P=0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated human endothelial cells, which enhanced hind limb perfusion (P<0.05 at day 7 and 14 after transplantation) on laser Doppler imaging. The phiC31 integrase genomic modification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types.

  13. Further development and implementation of the DIWA distributed hydrological model-based integrated hydroinformatics system in the Danube River Basin for supporting decision making in water management

    NASA Astrophysics Data System (ADS)

    Szabó, J. A.; Réti, G. Z.; Tóth, T.

    2012-04-01

    Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date Spatial Decision Support Systems (SDSS) for aiding decision-making processes to improve water management. One of the most important parts of such an SDSS is a distributed hydrologic model-based integrated hydroinformatics system to analyze the different scenarios. The less successful statistical and/or empirical model-experiments of earlier decades have highlighted the importance of paradigm shift in hydrological modelling approach towards the physically based distributed models, to better describe the complex hydrological processes even on catchments of more ten thousands of square km. Answers to questions like what are the effects of human actions in the catchment area (e. g. forestation or deforestation) or the changing of climate/land use on the flood, drought, or water scarcity, or what is the optimal strategy for planning and/or operating reservoirs, have become increasingly important. Nowadays the answers to this kind of questions can be provided more easily than before. The progress of applied mathematical methods, the advanced state of computer technology as well as the development of remote sensing and meteorological radar technology have accelerated the research capable of answering these questions using well-designed integrated hydroinformatics systems. With most emphasis on the recent years of extensive scientific and computational development HYDROInform UnLtd developed a distributed hydrological model-based integrated hydroinformatics system for supporting the various decisions in water management. Our developed integrated model has two basic pillars: the DIWA (DIstributed WAtershed) hydrologic, and the well-known HEC-RAS hydraulic models. The DIWA is a dynamic water-balance model that distributed both in space and its parameters, and which was developed along combined principles but its mostly based on physical foundations. According to the philosophy of the distributed model approach the catchment is divided into basic elements, cells where the basin characteristics, parameters, physical properties, and the boundary conditions are applied in the centre of the cell, and the cell is supposed to be homogenous between the block boundaries. The neighbouring cells are connected to each other according to runoff hierarchy (local drain direction). Applying the hydrological mass balance and the adequate dynamic equations to these cells, the result is a distributed hydrological model on a continuous, 3D gridded domain. For calculating the water level as well the HEC-RASS hydraulic model has been embedded into DIWA model. In this integration the DIWA model provides the upper boundary conditions for HEC-RAS, and then HEC-RAS provides the water levels along the lowland parts of the river-network. In this presentation, our recently developed integrated hydroinformatics system and its implementation for the middle-upper part of the Danube River Basin will be reported. Following an outline of the backgrounds, an overview on the DIWA and the integrated model-system will be given. The implementation of this integrated hydroinformatics system in the Danube River Basin will also be presented, including a summary of the developed 1km resolution geo-dataset for the modelling. Then some demonstrative results of the use of the pre-calibrated system will be discussed. Finally, an outline of the future steps of the development will be discussed.

  14. Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JaeHwa Koh; DuckJoo Yoon; Chang H. Oh

    2010-07-01

    An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.

  15. Selective elimination of long INterspersed element-1 expressing tumour cells by targeted expression of the HSV-TK suicide gene

    PubMed Central

    Chendeb, Mariam; Schneider, Robert; Davidson, Irwin; Fadloun, Anas

    2017-01-01

    In gene therapy, effective and selective suicide gene expression is crucial. We exploited the endogenous Long INterspersed Element-1 (L1) machinery often reactivated in human cancers to integrate the Herpes Simplex Virus Thymidine Kinase (HSV-TK) suicide gene selectively into the genome of cancer cells. We developed a plasmid-based system directing HSV-TK expression only when reverse transcribed and integrated in the host genome via the endogenous L1 ORF1/2 proteins and an Alu element. Delivery of these new constructs into cells followed by Ganciclovir (GCV) treatment selectively induced mortality of L1 ORF1/2 protein expressing cancer cells, but had no effect on primary cells that do not express L1 ORF1/2. This novel strategy for selective targeting of tumour cells provides high tolerability as the HSV-TK gene cannot be expressed without reverse transcription and integration, and high selectivity as these processes take place only in cancer cells expressing high levels of functional L1 ORF1/2. PMID:28415677

  16. DIELECTROPHORESIS-BASED MICROFLUIDIC SEPARATION AND DETECTION SYSTEMS

    PubMed Central

    Yang, Jun; Vykoukal, Jody; Noshari, Jamileh; Becker, Frederick; Gascoyne, Peter; Krulevitch, Peter; Fuller, Chris; Ackler, Harold; Hamilton, Julie; Boser, Bernhard; Eldredge, Adam; Hitchens, Duncan; Andrews, Craig

    2009-01-01

    Diagnosis and treatment of human diseases frequently requires isolation and detection of certain cell types from a complex mixture. Compared with traditional separation and detection techniques, microfluidic approaches promise to yield easy-to-use diagnostic instruments tolerant of a wide range of operating environments and capable of accomplishing automated analyses. These approaches will enable diagnostic advances to be disseminated from sophisticated clinical laboratories to the point-of-care. Applications will include the separation and differential analysis of blood cell subpopulations for host-based detection of blood cell changes caused by disease, infection, or exposure to toxins, and the separation and analysis of surface-sensitized, custom dielectric beads for chemical, biological, and biomolecular targets. Here we report a new particle separation and analysis microsystem that uses dielectrophoretic field-flow fractionation (DEP-FFF). The system consists of a microfluidic chip with integrated sample injector, a DEP-FFF separator, and an AC impedance sensor. We show the design of a miniaturized impedance sensor integrated circuit (IC) with improved sensitivity, a new packaging approach for micro-flumes that features a slide-together compression package and novel microfluidic interconnects, and the design, control, integration and packaging of a fieldable prototype. Illustrative applications will be shown, including the separation of different sized beads and different cell types, blood cell differential analysis, and impedance sensing results for beads, spores and cells. PMID:22025905

  17. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less

  18. Wafer integrated micro-scale concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  19. Integrating physiological regulation with stem cell and tissue homeostasis

    PubMed Central

    Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.

    2015-01-01

    Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826

  20. Live Faecalibacterium prausnitzii Does Not Enhance Epithelial Barrier Integrity in an Apical Anaerobic Co-Culture Model of the Large Intestine.

    PubMed

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2017-12-12

    Appropriate intestinal barrier maturation during infancy largely depends on colonization with commensal bacteria. Faecalibacterium prausnitzii is an abundant obligate anaerobe that colonizes during weaning and is thought to maintain colonic health throughout life. We previously showed that F. prausnitzii induced Toll-like receptor 2 (TLR2) activation, which is linked to enhanced tight junction formation. Therefore, we hypothesized that F. prausnitzii enhances barrier integrity, an important factor in appropriate intestinal barrier maturation. In order to test metabolically active bacteria, we used a novel apical anaerobic co-culture system that allows the survival of both obligate anaerobic bacteria and oxygen-requiring intestinal epithelial cells (Caco-2). The first aim was to optimize the culture medium to enable growth and active metabolism of F. prausnitzii while maintaining the viability and barrier integrity, as measured by trans-epithelial electrical resistance (TEER), of the Caco-2 cells. This was achieved by supplementing the apical cell culture medium with bacterial culture medium. The second aim was to test the effect of F. prausnitzii on TEER across Caco-2 cell layers. Live F. prausnitzii did not improve TEER, which indicates that its benefits are not via altering tight junction integrity. The optimization of the novel dual-environment co-culturing system performed in this research will enable the investigation of new probiotics originating from indigenous beneficial bacteria.

  1. Live Faecalibacterium prausnitzii Does Not Enhance Epithelial Barrier Integrity in an Apical Anaerobic Co-Culture Model of the Large Intestine

    PubMed Central

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2017-01-01

    Appropriate intestinal barrier maturation during infancy largely depends on colonization with commensal bacteria. Faecalibacterium prausnitzii is an abundant obligate anaerobe that colonizes during weaning and is thought to maintain colonic health throughout life. We previously showed that F. prausnitzii induced Toll-like receptor 2 (TLR2) activation, which is linked to enhanced tight junction formation. Therefore, we hypothesized that F. prausnitzii enhances barrier integrity, an important factor in appropriate intestinal barrier maturation. In order to test metabolically active bacteria, we used a novel apical anaerobic co-culture system that allows the survival of both obligate anaerobic bacteria and oxygen-requiring intestinal epithelial cells (Caco-2). The first aim was to optimize the culture medium to enable growth and active metabolism of F. prausnitzii while maintaining the viability and barrier integrity, as measured by trans-epithelial electrical resistance (TEER), of the Caco-2 cells. This was achieved by supplementing the apical cell culture medium with bacterial culture medium. The second aim was to test the effect of F. prausnitzii on TEER across Caco-2 cell layers. Live F. prausnitzii did not improve TEER, which indicates that its benefits are not via altering tight junction integrity. The optimization of the novel dual-environment co-culturing system performed in this research will enable the investigation of new probiotics originating from indigenous beneficial bacteria. PMID:29231875

  2. Neuron-glia signaling and the protection of axon function by Schwann cells.

    PubMed

    Quintes, Susanne; Goebbels, Sandra; Saher, Gesine; Schwab, Markus H; Nave, Klaus-Armin

    2010-03-01

    The interaction between neurons and glial cells is a feature of all higher nervous systems. In the vertebrate peripheral nervous system, Schwann cells ensheath and myelinate axons thereby allowing rapid saltatory conduction and ensuring axonal integrity. Recently, some of the key molecules in neuron-Schwann cell signaling have been identified. Neuregulin-1 (NRG1) type III presented on the axonal surface determines the myelination fate of axons and controls myelin sheath thickness. Recent observations suggest that NRG1 regulates myelination via the control of Schwann cell cholesterol biosynthesis. This concept is supported by the finding that high cholesterol levels in Schwann cells are a rate-limiting factor for myelin protein production and transport of the major myelin protein P0 from the endoplasmic reticulum into the growing myelin sheath. NRG1 type III activates ErbB receptors on the Schwann cell, which leads to an increase in intracellular PIP3 levels via the PI3-kinase pathway. Surprisingly, enforced elevation of PIP3 levels by inactivation of the phosphatase PTEN in developing and mature Schwann cells does not entirely mimic NRG1 type III stimulated myelin growth, but predominantly causes focal hypermyelination starting at Schmidt-Lanterman incisures and nodes of Ranvier. This indicates that the glial transduction of pro-myelinating signals has to be under tight and life-long control to preserve integrity of the myelinated axon. Understanding the cross talk between neurons and Schwann cells will help to further define the role of glia in preserving axonal integrity and to develop therapeutic strategies for peripheral neuropathies such as CMT1A.

  3. C5a alters blood-brain barrier integrity in experimental lupus

    PubMed Central

    Jacob, Alexander; Hack, Bradley; Chiang, Eddie; Garcia, Joe G. N.; Quigg, Richard J.; Alexander, Jessy J.

    2010-01-01

    The blood-brain barrier (BBB) is a crucial anatomic location in the brain. Its dysfunction complicates many neurodegenerative diseases, from acute conditions, such as sepsis, to chronic diseases, such as systemic lupus erythematosus (SLE). Several studies suggest an altered BBB in lupus, but the underlying mechanism remains unknown. In the current study, we observed a definite loss of BBB integrity in MRL/MpJ-Tnfrsf6lpr (MRL/lpr) lupus mice by IgG infiltration into brain parenchyma. In line with this result, we examined the role of complement activation, a key event in this setting, in maintenance of BBB integrity. Complement activation generates C5a, a molecule with multiple functions. Because the expression of the C5a receptor (C5aR) is significantly increased in brain endothelial cells treated with lupus serum, the study focused on the role of C5a signaling through its G-protein-coupled receptor C5aR in brain endothelial cells, in a lupus setting. Reactive oxygen species production increased significantly in endothelial cells, in both primary cells and the bEnd3 cell line treated with lupus serum from MRL/lpr mice, compared with those treated with control serum from MRL+/+ mice. In addition, increased permeability monitored by changes in transendothelial electrical resistance, cytoskeletal remodeling caused by actin fiber rearrangement, and increased iNOS mRNA expression were observed in bEnd3 cells. These disruptive effects were alleviated by pretreating cells with a C5a receptor antagonist (C5aRant) or a C5a antibody. Furthermore, the structural integrity of the vasculature in MRL/lpr brain was maintained by C5aR inhibition. These results demonstrate the regulation of BBB integrity by the complement system in a neuroinflammatory setting. For the first time, a novel role of C5a in the maintenance of BBB integrity is identified and the potential of C5a/C5aR blockade highlighted as a promising therapeutic strategy in SLE and other neurodegenerative diseases.—Jacob, A., Hack, B., Chiang, E., Garcia, J. G. N., Quigg, R. J., Alexander, J. J. C5a alters blood-brain barrier integrity in experimental lupus. PMID:20065106

  4. Integrated strain array for cellular mechanobiology studies

    NASA Astrophysics Data System (ADS)

    Simmons, C. S.; Sim, J. Y.; Baechtold, P.; Gonzalez, A.; Chung, C.; Borghi, N.; Pruitt, B. L.

    2011-05-01

    We have developed an integrated strain array for cell culture enabling high-throughput mechano-transduction studies. Biocompatible cell culture chambers were integrated with an acrylic pneumatic compartment and microprocessor-based control system. Each element of the array consists of a deformable membrane supported by a cylindrical pillar within a well. For user-prescribed waveforms, the annular region of the deformable membrane is pulled into the well around the pillar under vacuum, causing the pillar-supported region with cultured cells to be stretched biaxially. The optically clear device and pillar-based mechanism of operation enables imaging on standard laboratory microscopes. Straightforward fabrication utilizes off-the-shelf components, soft lithography techniques in polydimethylsiloxane and laser ablation of acrylic sheets. Proof of compatibility with basic biological assays and standard imaging equipment were accomplished by straining C2C12 skeletal myoblasts on the device for 6 h. At higher strains, cells and actin stress fibers realign with a circumferential preference.

  5. Multifunctional glial support by Semper cells in the Drosophila retina

    PubMed Central

    Charlton-Perkins, Mark A.

    2017-01-01

    Glial cells play structural and functional roles central to the formation, activity and integrity of neurons throughout the nervous system. In the retina of vertebrates, the high energetic demand of photoreceptors is sustained in part by Müller glia, an intrinsic, atypical radial glia with features common to many glial subtypes. Accessory and support glial cells also exist in invertebrates, but which cells play this function in the insect retina is largely undefined. Using cell-restricted transcriptome analysis, here we show that the ommatidial cone cells (aka Semper cells) in the Drosophila compound eye are enriched for glial regulators and effectors, including signature characteristics of the vertebrate visual system. In addition, cone cell-targeted gene knockdowns demonstrate that such glia-associated factors are required to support the structural and functional integrity of neighboring photoreceptors. Specifically, we show that distinct support functions (neuronal activity, structural integrity and sustained neurotransmission) can be genetically separated in cone cells by down-regulating transcription factors associated with vertebrate gliogenesis (pros/Prox1, Pax2/5/8, and Oli/Olig1,2, respectively). Further, we find that specific factors critical for glial function in other species are also critical in cone cells to support Drosophila photoreceptor activity. These include ion-transport proteins (Na/K+-ATPase, Eaat1, and Kir4.1-related channels) and metabolic homeostatic factors (dLDH and Glut1). These data define genetically distinct glial signatures in cone/Semper cells that regulate their structural, functional and homeostatic interactions with photoreceptor neurons in the compound eye of Drosophila. In addition to providing a new high-throughput model to study neuron-glia interactions, the fly eye will further help elucidate glial conserved "support networks" between invertebrates and vertebrates. PMID:28562601

  6. The architecture and conservation pattern of whole-cell control circuitry.

    PubMed

    McAdams, Harley H; Shapiro, Lucy

    2011-05-27

    The control circuitry that directs and paces Caulobacter cell cycle progression involves the entire cell operating as an integrated system. This control circuitry monitors the environment and the internal state of the cell, including the cell topology, as it orchestrates orderly activation of cell cycle subsystems and Caulobacter's asymmetric cell division. The proteins of the Caulobacter cell cycle control system and its internal organization are co-conserved across many alphaproteobacteria species, but there are great differences in the regulatory apparatus' functionality and peripheral connectivity to other cellular subsystems from species to species. This pattern is similar to that observed for the "kernels" of the regulatory networks that regulate development of metazoan body plans. The Caulobacter cell cycle control system has been exquisitely optimized as a total system for robust operation in the face of internal stochastic noise and environmental uncertainty. When sufficient details accumulate, as for Caulobacter cell cycle regulation, the system design has been found to be eminently rational and indeed consistent with good design practices for human-designed asynchronous control systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  8. Jointly characterizing epigenetic dynamics across multiple human cell types

    PubMed Central

    An, Lin; Yue, Feng; Hardison, Ross C

    2016-01-01

    Advanced sequencing technologies have generated a plethora of data for many chromatin marks in multiple tissues and cell types, yet there is lack of a generalized tool for optimal utility of those data. A major challenge is to quantitatively model the epigenetic dynamics across both the genome and many cell types for understanding their impacts on differential gene regulation and disease. We introduce IDEAS, an integrative and discriminative epigenome annotation system, for jointly characterizing epigenetic landscapes in many cell types and detecting differential regulatory regions. A key distinction between our method and existing state-of-the-art algorithms is that IDEAS integrates epigenomes of many cell types simultaneously in a way that preserves the position-dependent and cell type-specific information at fine scales, thereby greatly improving segmentation accuracy and producing comparable annotations across cell types. PMID:27095202

  9. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform

    PubMed Central

    Ramasamy, Sakthivel; Bennet, Devasier; Kim, Sanghyo

    2014-01-01

    This review will present a brief discussion on the recent advancements of bioelectrical impedance cell-based biosensors, especially the electric cell-substrate impedance sensing (ECIS) system for screening of various bioactive molecules. The different technical integrations of various chip types, working principles, measurement systems, and applications for drug targeting of molecules in cells are highlighted in this paper. Screening of bioactive molecules based on electric cell-substrate impedance sensing is a trial-and-error process toward the development of therapeutically active agents for drug discovery and therapeutics. In general, bioactive molecule screening can be used to identify active molecular targets for various diseases and toxicity at the cellular level with nanoscale resolution. In the innovation and screening of new drugs or bioactive molecules, the activeness, the efficacy of the compound, and safety in biological systems are the main concerns on which determination of drug candidates is based. Further, drug discovery and screening of compounds are often performed in cell-based test systems in order to reduce costs and save time. Moreover, this system can provide more relevant results in in vivo studies, as well as high-throughput drug screening for various diseases during the early stages of drug discovery. Recently, MEMS technologies and integration with image detection techniques have been employed successfully. These new technologies and their possible ongoing transformations are addressed. Select reports are outlined, and not all the work that has been performed in the field of drug screening and development is covered. PMID:25525360

  10. Chronic systemic IL-1β exacerbates central neuroinflammation independently of the blood-brain barrier integrity.

    PubMed

    Murta, Verónica; Farías, María Isabel; Pitossi, Fernando Juan; Ferrari, Carina Cintia

    2015-01-15

    Peripheral circulating cytokines are involved in immune to brain communication and systemic inflammation is considered a risk factor for flaring up the symptoms in most neurodegenerative diseases. We induced both central inflammatory demyelinating lesion, and systemic inflammation with an interleukin-1β expressing adenovector. The peripheral pro-inflammatory stimulus aggravated the ongoing central lesion independently of the blood-brain barrier (BBB) integrity. This model allows studying the role of specific molecules and cells (neutrophils) from the innate immune system, in the relationship between central and peripheral communication, and on relapsing episodes of demyelinating lesions, along with the role of BBB integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. HTLV-1 Integration into Transcriptionally Active Genomic Regions Is Associated with Proviral Expression and with HAM/TSP

    PubMed Central

    Meekings, Kiran N.; Leipzig, Jeremy; Bushman, Frederic D.; Taylor, Graham P.; Bangham, Charles R. M.

    2008-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) causes leukaemia or chronic inflammatory disease in ∼5% of infected hosts. The level of proviral expression of HTLV-1 differs significantly among infected people, even at the same proviral load (proportion of infected mononuclear cells in the circulation). A high level of expression of the HTLV-1 provirus is associated with a high proviral load and a high risk of the inflammatory disease of the central nervous system known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). But the factors that control the rate of HTLV-1 proviral expression remain unknown. Here we show that proviral integration sites of HTLV-1 in vivo are not randomly distributed within the human genome but are associated with transcriptionally active regions. Comparison of proviral integration sites between individuals with high and low levels of proviral expression, and between provirus-expressing and provirus non-expressing cells from within an individual, demonstrated that frequent integration into transcription units was associated with an increased rate of proviral expression. An increased frequency of integration sites in transcription units in individuals with high proviral expression was also associated with the inflammatory disease HAM/TSP. By comparing the distribution of integration sites in human lymphocytes infected in short-term cell culture with those from persistent infection in vivo, we infer the action of two selective forces that shape the distribution of integration sites in vivo: positive selection for cells containing proviral integration sites in transcriptionally active regions of the genome, and negative selection against cells with proviral integration sites within transcription units. PMID:18369476

  12. Microbial electrolysis cells for waste biorefinery: A state of the art review.

    PubMed

    Lu, Lu; Ren, Zhiyong Jason

    2016-09-01

    Microbial electrolysis cells (MECs) is an emerging technology for energy and resource recovery during waste treatment. MECs can theoretically convert any biodegradable waste into H2, biofuels, and other value added products, but the system efficacy can vary significantly when using different substrates or are operated in different conditions. To understand the application niches of MECs in integrative waste biorefineries, this review provides a critical analysis of MEC system performance reported to date in terms of H2 production rate, H2 yield, and energy efficiency under a variety of substrates, applied voltages and other crucial factors. It further discusses the mutual benefits between MECs and dark fermentation and argues such integration can be a viable approach for efficient H2 production from renewable biomass. Other marketable products and system integrations that can be applied to MECs are also summarized, and the challenges and prospects of the technology are highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Antibiotic-free pFAR4 Vector Paired with the Sleeping Beauty Transposon System Mediates Efficient Transgene Delivery in Human Cells.

    PubMed

    Pastor, Marie; Johnen, Sandra; Harmening, Nina; Quiviger, Mickäel; Pailloux, Julie; Kropp, Martina; Walter, Peter; Ivics, Zoltán; Izsvák, Zsuzsanna; Thumann, Gabriele; Scherman, Daniel; Marie, Corinne

    2018-06-01

    The anti-angiogenic and neurogenic pigment epithelium-derived factor (PEDF) demonstrated a potency to control choroidal neovascularization in age-related macular degeneration (AMD) patients. The goal of the present study was the development of an efficient and safe technique to integrate, ex vivo, the PEDF gene into retinal pigment epithelial (RPE) cells for later transplantation to the subretinal space of AMD patients to allow continuous PEDF secretion in the vicinity of the affected macula. Because successful gene therapy approaches require efficient gene delivery and stable gene expression, we used the antibiotic-free pFAR4 mini-plasmid vector to deliver the hyperactive Sleeping Beauty transposon system, which mediates transgene integration into the genome of host cells. In an initial study, lipofection-mediated co-transfection of HeLa cells with the SB100X transposase gene and a reporter marker delivered by pFAR4 showed a 2-fold higher level of genetically modified cells than when using the pT2 vectors. Similarly, with the pFAR4 constructs, electroporation-mediated transfection of primary human RPE cells led to 2.4-fold higher secretion of recombinant PEDF protein, which was still maintained 8 months after transfection. Thus, our results show that the pFAR4 plasmid is a superior vector for the delivery and integration of transgenes into eukaryotic cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A transposon and transposase system for human application.

    PubMed

    Hackett, Perry B; Largaespada, David A; Cooper, Laurence J N

    2010-04-01

    The stable introduction of therapeutic transgenes into human cells can be accomplished using viral and nonviral approaches. Transduction with clinical-grade recombinant viruses offers the potential of efficient gene transfer into primary cells and has a record of therapeutic successes. However, widespread application for gene therapy using viruses can be limited by their initially high cost of manufacture at a limited number of production facilities as well as a propensity for nonrandom patterns of integration. The ex vivo application of transposon-mediated gene transfer now offers an alternative to the use of viral vectors. Clinical-grade DNA plasmids can be prepared at much reduced cost and with lower immunogenicity, and the integration efficiency can be improved by the transient coexpression of a hyperactive transposase. This has facilitated the design of human trials using the Sleeping Beauty (SB) transposon system to introduce a chimeric antigen receptor (CAR) to redirect the specificity of human T cells. This review examines the rationale and safety implications of application of the SB system to genetically modify T cells to be manufactured in compliance with current good manufacturing practice (cGMP) for phase I/II trials.

  15. Inactivation of an integrated antibiotic resistance gene in mammalian cells to re-enable antibiotic selection.

    PubMed

    Ni, Peiling; Zhang, Qian; Chen, Haixia; Chen, Lingyi

    2014-01-01

    Removing an antibiotic resistance gene allows the same antibiotic to be re-used in the next round of genetic manipulation. Here we applied the CRISPR/Cas system to disrupt the puromycin resistance gene in an engineered mouse embryonic stem cell line and then re-used puromycin selection in the resulting cells to establish stable reporter cell lines. With the CRISPR/Cas system, pre-engineered sequences, such as loxP or FRT, are not required. Thus, this technique can be used to disrupt antibiotic resistance genes that cannot be removed by the Cre-loxP and Flp-FRT systems.

  16. The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations.

    PubMed

    Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay

    2018-01-24

    The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Verstraete, D.; Lehmkuehler, K.; Gong, A.; Harvey, J. R.; Brian, G.; Palmer, J. L.

    2014-03-01

    Advanced hybrid powerplants combining a fuel cell and battery can enable significantly higher endurance for small, electrically powered unmanned aircraft systems, compared with batteries alone. However, detailed investigations of the static and dynamic performance of such systems are required to address integration challenges. This article describes a series of tests used to characterise the Horizon Energy Systems' AeroStack hybrid, fuel-cell-based powertrain. The results demonstrate that a significant difference can exist between the dynamic performance of the fuel-cell system and its static polarisation curve, confirming the need for detailed measurements. The results also confirm that the AeroStack's lithium-polymer battery plays a crucial role in its response to dynamic load changes and protects the fuel cell from membrane dehydration and fuel starvation. At low static loads, the AeroStack fuel cell recharges the battery with currents up to 1 A, which leads to further differences with the polarisation curve.

  18. Safe Genetic Modification of Cardiac Stem Cells Using a Site-Specific Integration Technique

    PubMed Central

    Lan, Feng; Liu, Junwei; Narsinh, Kazim H.; Hu, Shijun; Han, Leng; Lee, Andrew S.; Karow, Marisa; Nguyen, Patricia K.; Nag, Divya; Calos, Michele P.; Robbins, Robert C.; Wu, Joseph C.

    2012-01-01

    Background Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts. Methods and Results We employed the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells (hECs). Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared to unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging (BLI), and positron emission tomography (PET). Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function two weeks after cell delivery, as assessed by echocardiography (P = 0.002) and magnetic resonance imaging (P = 0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated hECs, which enhanced hindlimb perfusion (P<0.05 at day 7 and 14 after transplantation) on laser Doppler imaging. Conclusions The phiC31 integrase genomic modification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types. PMID:22965984

  19. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.

  20. Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells.

    PubMed

    Zhao, Jiagang; Sun, Woong; Cho, Hyo Min; Ouyang, Hong; Li, Wenlin; Lin, Ying; Do, Jiun; Zhang, Liangfang; Ding, Sheng; Liu, Yizhi; Lu, Paul; Zhang, Kang

    2013-01-04

    Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.

  1. Enteric nervous system abnormalities are present in human necrotizing enterocolitis: potential neurotransplantation therapy

    PubMed Central

    2013-01-01

    Introduction Intestinal dysmotility following human necrotizing enterocolitis suggests that the enteric nervous system is injured during the disease. We examined human intestinal specimens to characterize the enteric nervous system injury that occurs in necrotizing enterocolitis, and then used an animal model of experimental necrotizing enterocolitis to determine whether transplantation of neural stem cells can protect the enteric nervous system from injury. Methods Human intestinal specimens resected from patients with necrotizing enterocolitis (n = 18), from control patients with bowel atresia (n = 8), and from necrotizing enterocolitis and control patients undergoing stoma closure several months later (n = 14 and n = 6 respectively) were subjected to histologic examination, immunohistochemistry, and real-time reverse-transcription polymerase chain reaction to examine the myenteric plexus structure and neurotransmitter expression. In addition, experimental necrotizing enterocolitis was induced in newborn rat pups and neurotransplantation was performed by administration of fluorescently labeled neural stem cells, with subsequent visualization of transplanted cells and determination of intestinal integrity and intestinal motility. Results There was significant enteric nervous system damage with increased enteric nervous system apoptosis, and decreased neuronal nitric oxide synthase expression in myenteric ganglia from human intestine resected for necrotizing enterocolitis compared with control intestine. Structural and functional abnormalities persisted months later at the time of stoma closure. Similar abnormalities were identified in rat pups exposed to experimental necrotizing enterocolitis. Pups receiving neural stem cell transplantation had improved enteric nervous system and intestinal integrity, differentiation of transplanted neural stem cells into functional neurons, significantly improved intestinal transit, and significantly decreased mortality compared with control pups. Conclusions Significant injury to the enteric nervous system occurs in both human and experimental necrotizing enterocolitis. Neural stem cell transplantation may represent a novel future therapy for patients with necrotizing enterocolitis. PMID:24423414

  2. Spaceflight of HUVEC: An Integrated eXperiment- SPHINX Onboard the ISS

    NASA Astrophysics Data System (ADS)

    Versari, S.; Maier, J. A. M.; Norfini, A.; Zolesi, V.; Bradamante, S.

    2013-02-01

    The spaceflight orthostatic challenge can promote in astronauts inadequate cardiovascular responses defined as cardiovascular deconditioning. In particular, disturbance of endothelial functions are known to lead to altered vascular performances, being the endothelial cells crucial in the maintenance of the functional integrity of the vascular wall. In order to evaluate whether weightlessness affects endothelial functions, we designed, developed, and performed the experiment SPHINX - SPaceflight of HUVEC: an INtegrated eXperiment - where HUVEC (Human Umbilical Vein Endothelial Cells) were selected as a macrovascular cell model system. SPHINX arrived at the International Space Station (ISS) onboard Progress 40P, and was processed inside Kubik 6 incubator for 7 days. At the end, all of the samples were suitably fixed and preserved at 6°C until return on Earth on Soyuz 23S.

  3. Neuroimmune interactions: potential target for mitigating or treating intestinal radiation injury.

    PubMed

    Wang, J; Hauer-Jensen, M

    2007-09-01

    Intestinal radiation injury is characterized by breakdown of the epithelial barrier and mucosal inflammation. In addition to replicative and apoptotic cell death, radiation also induces changes in cellular function, as well as alterations secondary to tissue injury. The recognition of these "non-cytocidal" radiation effects has enhanced the understanding of normal tissue radiation toxicity, thus allowing an integrated systems biology-based approach to modulating radiation responses and providing a mechanistic rationale for interventions to mitigate or treat radiation injuries. The enteric nervous system regulates intestinal motility, blood flow and enterocyte function. The enteric nervous system also plays a central role in maintaining the physiological state of the intestinal mucosa and in coordinating inflammatory and fibroproliferative processes. The afferent component of the enteric nervous system, in addition to relaying sensory information, also exerts important effector functions and contributes critically to preserving mucosal integrity. Interactions between afferent nerves, mast cells as well as other cells of the resident mucosal immune system serve to maintain mucosal homeostasis and to ensure an appropriate response to injury. Notably, enteric sensory neurons regulate the activation threshold of mast cells by secreting substance P, calcitonin gene-related peptide and other neuropeptides, whereas mast cells signal to enteric nerves by the release of histamine, nerve growth factor and other mediators. This article reviews how enteric neurons interact with mast cells and other immune cells to regulate the intestinal radiation response and how these interactions may be modified to mitigate intestinal radiation toxicity. These data are not only applicable to radiation therapy, but also to intestinal injury in a radiological terrorism scenario.

  4. Develop and test fuel cell powered on-site integrated total energy systems

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1984-01-01

    On-going testing of an 11 cell, 10.7 in. x 14 in. stack (about 1 kW) reached 2600 hours on steady load. Nonmetallic cooling plates and an automated electrolyte replenishment system continued to perform well. A 10 cell, 10.7 in. x 14 in. stack was constructed with a modified electrolyte matrix configuration for the purpose of reducing cell IR loss. The desired effect was achieved, but the general cell performance level was irregular. Evaluation is continuing. Preparations for a long term 25 cell, 13 in. x 23 in. test stack (about 4 kW) approached completion. Start up in early May 1984 is expected.

  5. Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ring, S

    1994-12-01

    The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, throughmore » a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.« less

  6. TITLE: Environmental, health, and safety issues offuel cells in transportation. Volume 1: Phosphoricacid fuel-cell buses

    NASA Astrophysics Data System (ADS)

    Ring, Shan

    1994-12-01

    The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase 1 of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase 3. After completing Phase 2, DOE plans a comprehensive performance testing program (Phase H1) to verify that the buses meet stringent transit industry requirements. The Phase 3 study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

  7. Feasibility Study of Seawater Electrolysis for Photovoltaic/Fuel Cell Hybrid Power System for the Coastal Areas in Thailand

    NASA Astrophysics Data System (ADS)

    Srisiriwat, A.; Pirom, W.

    2017-10-01

    Solar photovoltaic cell and fuel cell are the practicable options to realize as a possible hybrid power system because the power of the sun cannot be utilized at night or cloudy days but hydrogen has been found as an ideal energy carrier for being transportable, storable, and converting energy though fuel cell. Hydrogen storage is chosen for its ability to obtain a clean energy option. Electrolysis, which is the simplest process to produce hydrogen, can be powered by the dc voltage from the photovoltaic cell instead of using the battery as power supply. This paper concentrates on a feasibility study of seawater electrolysis using photovoltaic power integrated fuel cell system for the coastal cities in Thailand. The proposed system composed of photovoltaic arrays, seawater electrolyzer and fuel cell is presented when the 10-kW of fuel cell electrical power is considered. The feasibility study of hydrogen production and energy analysis of this proposed system is also evaluated.

  8. [Development of an incubation system for an inverted microscopy for long-term observation of cell cultures using chamber slides].

    PubMed

    Feicht, W; Buchner, A; Riesenberg, R

    2001-05-01

    Trifunctional bispecific antibodies open up new immunological possibilities in tumour treatment. Prior to clinical application, comprehensive investigations using animal models and in vitro examinations need to be done. To investigate long-term interactions between various immunologically active blood cells and individual tumour cells in the presence of antibodies, we developed an incubation system for experimental cell cultures on an inverted microscope. The system consists of a perspex box with a central moisture chamber with integrated water reservoir, external air circulation heating, and a CO2 supply. The sterile cell cultures are located in the wells of a slide positioned within a depression in the water reservoir. The newly developed incubation system enables continuous observation over the long term of experiments under optimal cell cultures conditions in combination with modern video techniques.

  9. Solving a mathematical model integrating unequal-area facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm.

    PubMed

    Ebrahimi, Ahmad; Kia, Reza; Komijan, Alireza Rashidi

    2016-01-01

    In this article, a novel integrated mixed-integer nonlinear programming model is presented for designing a cellular manufacturing system (CMS) considering machine layout and part scheduling problems simultaneously as interrelated decisions. The integrated CMS model is formulated to incorporate several design features including part due date, material handling time, operation sequence, processing time, an intra-cell layout of unequal-area facilities, and part scheduling. The objective function is to minimize makespan, tardiness penalties, and material handling costs of inter-cell and intra-cell movements. Two numerical examples are solved by the Lingo software to illustrate the results obtained by the incorporated features. In order to assess the effects and importance of integration of machine layout and part scheduling in designing a CMS, two approaches, sequentially and concurrent are investigated and the improvement resulted from a concurrent approach is revealed. Also, due to the NP-hardness of the integrated model, an efficient genetic algorithm is designed. As a consequence, computational results of this study indicate that the best solutions found by GA are better than the solutions found by B&B in much less time for both sequential and concurrent approaches. Moreover, the comparisons between the objective function values (OFVs) obtained by sequential and concurrent approaches demonstrate that the OFV improvement is averagely around 17 % by GA and 14 % by B&B.

  10. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight versus potential flight times. Combinations of the listed batteries, fuel cells, and storage tanks are plotted on the graph to evaluate various hybrid power system configurations.

  11. Sleeping Beauty transposon-based system for rapid generation of HBV-replicating stable cell lines.

    PubMed

    Wu, Yong; Zhang, Tian-Ying; Fang, Lin-Lin; Chen, Zi-Xuan; Song, Liu-Wei; Cao, Jia-Li; Yang, Lin; Yuan, Quan; Xia, Ning-Shao

    2016-08-01

    The stable HBV-replicating cell lines, which carry replication-competent HBV genome stably integrated into the genome of host cell, are widely used to evaluate the effects of antiviral agents. However, current methods to generate HBV-replicating cell lines, which are mostly dependent on random integration of foreign DNA via plasmid transfection, are less-efficient and time-consuming. To address this issue, we constructed an all-in-one Sleeping Beauty transposon system (denoted pTSMP-HBV vector) for robust generation of stable cell lines carrying replication-competent HBV genome of different genotype. This vector contains a Sleeping Beauty transposon containing HBV 1.3-copy genome with an expression cassette of the SV40 promoter driving red fluorescent protein (mCherry) and self-cleaving P2A peptide linked puromycin resistance gene (PuroR). In addition, a PGK promoter-driven SB100X hyperactive transposase cassette is placed in the outside of the transposon in the same plasmid.The HBV-replicating stable cells could be obtained from pTSMP-HBV transfected HepG2 cells by red fluorescence-activated cell sorting and puromycin resistant cell selection within 4-week. Using this system, we successfully constructed four cell lines carrying replication-competent HBV genome of genotypes A-D. The replication and viral protein expression profiles of these cells were systematically characterized. In conclusion, our study provides a high-efficiency strategy to generate HBV-replicating stable cell lines, which may facilitate HBV-related virological study. Copyright © 2016. Published by Elsevier B.V.

  12. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems.

    PubMed

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-15

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  13. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems

    NASA Astrophysics Data System (ADS)

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-01

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  14. Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange.

    PubMed

    Chen, Chang-Yu; Tu, Ting-Yuan; Jong, De-Shien; Wo, Andrew M

    2011-06-01

    Planar patch clamp has revolutionized characterization of ion channel behavior in drug discovery primarily via advancement in high throughput. Lab use of planar technology, however, addresses different requirements and suffers from inflexibility to enable wide range of interrogation via a single cell. This work presents integration of planar patch clamp with microfluidics, achieving multiple solution exchanges for tailor-specific measurement and allowing rapid replacement of the cell-contacting aperture. Studies via endogenously expressed ion channels in HEK 293T cells were commenced to characterize the device. Results reveal the microfluidic concentration generator produces distinct solution/drug combination/concentrations on-demand. Volume-regulated chloride channel and voltage-gated potassium channels in HEK 293T cells immersed in generated solutions under various osmolarities or drug concentrations show unique channel signature under specific condition. Excitation and blockage of ion channels in a single cell was demonstrated via serial solution exchange. Robustness of the reversible bonding and ease of glass substrate replacement were proven via repeated usage of the integrated device. The present approach reveals the capability and flexibility of integrated microfluidic planar patch-clamp system for ion channel assays. Copyright © 2011 Wiley Periodicals, Inc.

  15. Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes.

    PubMed

    Yang, Yoosoo; Hong, Yeonsun; Nam, Gi-Hoon; Chung, Jin Hwa; Koh, Eunee; Kim, In-San

    2017-04-01

    An efficient system for direct delivery of integral membrane proteins is successfully developed using a new biocompatible exosome-based platform. Fusogenic exosomes harboring viral fusogen, vascular stomatitis virus (VSV)-G protein, can fuse with and modify plasma membranes in a process called "membrane editing." This can facilitate the transfer of biologically active membrane proteins into the target cell membranes both in vitro and in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Develop and test fuel cell powered on-site integrated total energy systems. Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A schematic and physical layout is given for the 5kW integrated system and the development status of individual components is described. The results of using a one dimensional mathematical model of the 5kW reformer are presented. Plans for a single-tube reformer test unit for the acquisition of temperature profile data are described. Tentative specifications for a 50kW dc-to-ac inverter are listed. Performance data are given on two 3-cell stacks incorporating semiautomatic acid replenishment systems and improved electrocatalysts. A qualification test on methanol/steam reforming catalyst T2107RS is reported, including a portion in which the catalyst was deliberately poisoned with 800 ppm ethanol in the feed.

  17. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation.

    PubMed

    Luo, Tao; Fan, Lei; Zeng, Yixiao; Liu, Ya; Chen, Shuxun; Tan, Qiulin; Lam, Raymond H W; Sun, Dong

    2018-05-04

    Prefocusing of the cell mixture is necessary for achieving a high-efficiency and continuous dielectrophoretic (DEP) cell separation. However, prefocusing through sheath flow requires a complex and tedious peripheral system for multi-channel fluid control, hindering the integration of DEP separation systems with other microfluidic functionalities for comprehensive clinical and biological tasks. This paper presented a simplified sheathless cell separation approach that combines gravitational-sedimentation-based sheathless prefocusing and DEP separation methods. Through gravitational sedimentation in a tubing, which was inserted into the inlet of a microfluidic chip with an adjustable steering angle, the cells were focused into a stream at the upstream region of a microchannel prior to separation. Then, a DEP force was applied at the downstream region of the microchannel for the active separation of the cells. Through this combined strategy, the peripheral system for the sheath flow was no longer required, and thus the integration of cell separation system with additional microfluidic functionalities was facilitated. The proposed sheathless scheme focused the mixture of cells with different sizes and dielectric properties into a stream in a wide range of flow rates without changing the design of the microfluidic chip. The DEP method is a label-free approach that can continuously separate cells on the basis of the sizes or dielectric properties of the cells and thus capable of greatly flexible cell separation. The efficiency of the proposed approach was experimentally assessed according to its performance in the separation of human acute monocytic leukemia THP-1 cells from yeast cells with respect to different sizes and THP-1 cells from human acute myelomonocytic leukemia OCI-AML3 cells with respect to different dielectric properties. The experimental results revealed that the separation efficiency of the method can surpass 90% and thus effective in separating cells on the basis of either size or dielectric property.

  18. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.

    PubMed

    Kang, Hyun-Wook; Lee, Sang Jin; Ko, In Kap; Kengla, Carlos; Yoo, James J; Atala, Anthony

    2016-03-01

    A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs.

  19. Impute DC link (IDCL) cell based power converters and control thereof

    DOEpatents

    Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad

    2016-04-26

    Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.

  20. Biomaterial science meets computational biology.

    PubMed

    Hutmacher, Dietmar W; Little, J Paige; Pettet, Graeme J; Loessner, Daniela

    2015-05-01

    There is a pressing need for a predictive tool capable of revealing a holistic understanding of fundamental elements in the normal and pathological cell physiology of organoids in order to decipher the mechanoresponse of cells. Therefore, the integration of a systems bioengineering approach into a validated mathematical model is necessary to develop a new simulation tool. This tool can only be innovative by combining biomaterials science with computational biology. Systems-level and multi-scale experimental data are incorporated into a single framework, thus representing both single cells and collective cell behaviour. Such a computational platform needs to be validated in order to discover key mechano-biological factors associated with cell-cell and cell-niche interactions.

  1. Summary of Fuel Cell Programs at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla

    2000-01-01

    The objective of this program is to develop passive ancillary component technology to be teamed with a hydrogen-oxygen unitized regenerative fuel cell (URFC) stack to form a revolutionary new regenerative fuel cell energy (RFC) storage system for aerospace applications. Replacement of active RFC ancillary components with passive components minimizes parasitic power losses and allows the RFC to operate as a H2/O2 battery. The goal of this program is to demonstrate an integrated passive lkW URFC system.

  2. Integrating cell phone imaging with magnetic levitation (i-LEV) for label-free blood analysis at the point-of-living

    PubMed Central

    Durmus, Naside Gozde; Davis, Ronald W.; Steinmetz, Lars M.; Demirci, Utkan

    2016-01-01

    There is an emerging need for portable, robust, inexpensive and easy-to-use disease diagnosis and prognosis monitoring platforms to share health information at the point-of-living, including clinical and home settings. Recent advances in digital health technologies have improved early diagnosis, drug treatment, and personalized medicine. Smartphones with high-resolution cameras and high data processing power enable intriguing biomedical applications when integrated with diagnostic devices. Further, these devices have immense potential to contribute to public health in resource-limited settings where there is a particular need for portable, rapid, label-free, easy-to-use and affordable biomedical devices to diagnose and continuously monitor patients for precision medicine, especially those suffering from rare diseases, such as sickle cell anemia, thalassemia and chronic fatigue syndrome. Here, we present a magnetic levitation-based diagnosis system in which different cell types (i.e., white and red blood cells) are levitated in a magnetic gradient and separated due to their unique densities. Moreover, we introduce an easy-to-use, smartphone incorporated levitation system for cell analysis. Using our portable imaging magnetic levitation (i-LEV) system, we show that white and red blood cells can be identified and cell numbers can be quantified without using any labels. In addition, cells levitated in i-LEV can be distinguished at single cell resolution, potentially enabling diagnosis and monitoring, as well as clinical and research applications. PMID:26523938

  3. Integrating Cell Phone Imaging with Magnetic Levitation (i-LEV) for Label-Free Blood Analysis at the Point-of-Living.

    PubMed

    Baday, Murat; Calamak, Semih; Durmus, Naside Gozde; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2016-03-02

    There is an emerging need for portable, robust, inexpensive, and easy-to-use disease diagnosis and prognosis monitoring platforms to share health information at the point-of-living, including clinical and home settings. Recent advances in digital health technologies have improved early diagnosis, drug treatment, and personalized medicine. Smartphones with high-resolution cameras and high data processing power enable intriguing biomedical applications when integrated with diagnostic devices. Further, these devices have immense potential to contribute to public health in resource-limited settings where there is a particular need for portable, rapid, label-free, easy-to-use, and affordable biomedical devices to diagnose and continuously monitor patients for precision medicine, especially those suffering from rare diseases, such as sickle cell anemia, thalassemia, and chronic fatigue syndrome. Here, a magnetic levitation-based diagnosis system is presented in which different cell types (i.e., white and red blood cells) are levitated in a magnetic gradient and separated due to their unique densities. Moreover, an easy-to-use, smartphone incorporated levitation system for cell analysis is introduced. Using our portable imaging magnetic levitation (i-LEV) system, it is shown that white and red blood cells can be identified and cell numbers can be quantified without using any labels. In addition, cells levitated in i-LEV can be distinguished at single-cell resolution, potentially enabling diagnosis and monitoring, as well as clinical and research applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2015-09-01

    glioblastoma . We have successfully established several patient-derived cell lines from glioblastoma tumors and further established a number of...and single-cell technologies. Although the focus of this research is glioblastoma , the proposed tools are generally applicable to all cancer-based...studies. 15. SUBJECT TERMS Human cohorts, Glioblastoma , Genomic, Proteomic, Single-cell technologies, Hypothesis-driven, integrative systems approach

  5. Engineered Muscle Actuators: Cells and Tissues

    DTIC Science & Technology

    2007-01-10

    tissue culture perfusion bioreactors The UNC group led the development of the final version of the integrated cell culture bioreactor . The system was...construct engineered in vitro from primary mammalian cells (C) The first demonstration of developmental improvements in engineered tendon constitutive...2007 Final Performance Report 1 Nov 2004 - 31 Oct 2006 4. TITLE AND SUBTITLE 5.. CONTRACT NUMBER Engineered Muscle Actuators: Cells and Tissues FA9550

  6. Targeted transgene insertion into the CHO cell genome using Cre recombinase-incorporating integrase-defective retroviral vectors.

    PubMed

    Kawabe, Yoshinori; Shimomura, Takuya; Huang, Shuohao; Imanishi, Suguru; Ito, Akira; Kamihira, Masamichi

    2016-07-01

    Retroviral vectors have served as efficient gene delivery tools in various biotechnology fields. However, viral DNA is randomly inserted into the genome, which can cause problems, such as insertional mutagenesis and gene silencing. Previously, we reported a site-specific gene integration system, in which a transgene is integrated into a predetermined chromosomal locus of Chinese hamster ovary (CHO) cells using integrase-defective retroviral vectors (IDRVs) and Cre recombinase. In this system, a Cre expression plasmid is transfected into founder cells before retroviral transduction. In practical applications of site-specific gene modification such as for hard-to-transfect cells or for in vivo gene delivery, both the transgene and the Cre protein into retroviral virions should be encapsulate. Here, we generated novel hybrid IDRVs in which viral genome and enzymatically active Cre can be delivered (Cre-IDRVs). Cre-IDRVs encoding marker genes, neomycin resistance and enhanced green fluorescent protein (EGFP), flanked by wild-type and mutated loxP sites were produced using an expression plasmid for a chimeric protein of Cre and retroviral gag-pol. After analyzing the incorporation of the Cre protein into retroviral virions by Western blotting, the Cre-IDRV was infected into founder CHO cells, in which marker genes (hygromycin resistance and red fluorescent protein) flanked with corresponding loxP sites are introduced into the genome. G418-resistant colonies expressing GFP appeared and the site-specific integration of the transgene into the expected chromosomal site was confirmed by PCR and sequencing of amplicons. Moreover, when Cre-IDRV carried a gene expression unit for a recombinant antibody, the recombinant cells in which the antibody expression cassette was integrated in a site-specific manner were generated and the cells produced the recombinant antibody. This method may provide a promising tool to perform site-specific gene modification according to Cre-based cell engineering. Biotechnol. Bioeng. 2016;113: 1600-1610. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Enriched Environment Increases PCNA and PARP1 Levels in Octopus vulgaris Central Nervous System: First Evidence of Adult Neurogenesis in Lophotrochozoa.

    PubMed

    Bertapelle, Carla; Polese, Gianluca; Di Cosmo, Anna

    2017-06-01

    Organisms showing a complex and centralized nervous system, such as teleosts, amphibians, reptiles, birds and mammals, and among invertebrates, crustaceans and insects, can adjust their behavior according to the environmental challenges. Proliferation, differentiation, migration, and axonal and dendritic development of newborn neurons take place in brain areas where structural plasticity, involved in learning, memory, and sensory stimuli integration, occurs. Octopus vulgaris has a complex and centralized nervous system, located between the eyes, with a hierarchical organization. It is considered the most "intelligent" invertebrate for its advanced cognitive capabilities, as learning and memory, and its sophisticated behaviors. The experimental data obtained by immunohistochemistry and western blot assay using proliferating cell nuclear antigen and poli (ADP-ribose) polymerase 1 as marker of cell proliferation and synaptogenesis, respectively, reviled cell proliferation in areas of brain involved in learning, memory, and sensory stimuli integration. Furthermore, we showed how enriched environmental conditions affect adult neurogenesis. © 2017 Wiley Periodicals, Inc.

  8. Systems biology of stored blood cells: can it help to extend the expiration date?

    PubMed

    Paglia, Giuseppe; Palsson, Bernhard Ø; Sigurjonsson, Olafur E

    2012-12-05

    With increasingly stringent regulations regarding deferral and elimination of blood donors it will become increasingly important to extend the expiration date of blood components beyond the current allowed storage periods. One reason for the storage time limit for blood components is that platelets and red blood cells develop a condition called storage lesions during their storage in plastic blood containers. Systems biology provides comprehensive bio-chemical descriptions of organisms through quantitative measurements and data integration in mathematical models. The biological knowledge for a target organism can be translated in a mathematical format and used to compute physiological properties. The use of systems biology represents a concrete solution in the study of blood cell storage lesions, and it may open up new avenues towards developing better storage methods and better storage media, thereby extending the storage period of blood components. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeast Saccharomyces cerevisiae.

    PubMed

    Morimoto, Yuji; Tani, Motohiro

    2015-02-01

    Complex sphingolipids play important roles in many physiologically important events in yeast Saccharomyces cerevisiae. In this study, we screened yeast mutant strains showing a synthetic lethal interaction with loss of mannosylinositol phosphorylceramide (MIPC) synthesis and found that a specific group of glycosyltransferases involved in the synthesis of mannan-type N-glycans is essential for the growth of cells lacking MIPC synthases (Sur1 and Csh1). The genetic interaction was also confirmed by repression of MNN2, which encodes alpha-1,2-mannosyltransferase that synthesizes mannan-type N-glycans, by a tetracycline-regulatable system. MNN2-repressed sur1Δ csh1Δ cells exhibited high sensitivity to zymolyase treatment, and caffeine and sodium dodecyl sulfate (SDS) strongly inhibited the growth of sur1Δ csh1Δ cells, suggesting impairment of cell integrity due to the loss of MIPC synthesis. The phosphorylated form of Slt2, a mitogen-activated protein (MAP) kinase activated by impaired cell integrity, increased in sur1Δ csh1Δ cells, and this increase was dramatically enhanced by the repression of Mnn2. Moreover, the growth defect of MNN2-repressed sur1Δ csh1Δ cells was enhanced by the deletion of SLT2 or RLM1 encoding a downstream target of Slt2. These results indicated that loss of MIPC synthesis causes impairment of cell integrity, and this effect is enhanced by impaired synthesis of mannan-type N-glycans. © 2014 John Wiley & Sons Ltd.

  10. Improvement and scale-up of the NASA Redox storage system

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Thaller, L. H.

    1980-01-01

    A preprototype full-function 1.0 kW Redox system (2 kW peak) with 11 kW storage capacity has been built and integrated with the NASA/DOE photovoltaic test facility. The system includes four substacks of 39 cells each (1/3 sq ft active area) which are connected hydraulically in parallel and electrically in series. An open circuit voltage cell and a set of rebalance cells are used to continuously monitor the system state of charge and automatically maintain the anode and cathode reactants electrochemically in balance. Technological advances in membrane and electrodes and results of multicell stack tests are reviewed.

  11. Process Improvement and CMMI (registered trademark) -Developing Complex Systems- Using CMMI (registered trademark) to Achieve Effective Systems and Software Engineering Integration

    DTIC Science & Technology

    2008-11-01

    1952) Microwave (1953) Cell Phone (1983) PC (1975) Source: Rich Kaplan, Microsoft Internet (1975) 90 80 70 60 50 40 30 20 10 0 100 Percentage of O w...nership No. of Years Since Invention Source: Rich Kaplan, Microsoft Automobile = 56 years Telephone = 36 years Television = 26 years Cell phone = 14

  12. The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology.

    PubMed

    Hegyi, Peter; Petersen, Ole H

    2013-01-01

    There are many reviews of pancreatic acinar cell function and also of pancreatic duct function, but there is an almost total absence of synthetic reviews bringing the integrated functions of these two vitally and mutually interdependent cells together. This is what we have attempted to do in this chapter. In the first part, we review the normal integrated function of the acinar-ductal system, with particular emphasis on how regulation of one type of cell also influences the other cell type. In the second part, we review a range of pathological processes, particularly those involved in acute pancreatitis (AP), an often-fatal human disease in which the pancreas digests itself, in order to explore how malfunction of one of the cell types adversely affects the function of the other.

  13. Peroxisystem: harnessing systems cell biology to study peroxisomes.

    PubMed

    Schuldiner, Maya; Zalckvar, Einat

    2015-04-01

    In recent years, high-throughput experimentation with quantitative analysis and modelling of cells, recently dubbed systems cell biology, has been harnessed to study the organisation and dynamics of simple biological systems. Here, we suggest that the peroxisome, a fascinating dynamic organelle, can be used as a good candidate for studying a complete biological system. We discuss several aspects of peroxisomes that can be studied using high-throughput systematic approaches and be integrated into a predictive model. Such approaches can be used in the future to study and understand how a more complex biological system, like a cell and maybe even ultimately a whole organism, works. © 2015 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  14. Six-component semi-discrete integrable nonlinear Schrödinger system

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksiy O.

    2018-01-01

    We suggest the six-component integrable nonlinear system on a quasi-one-dimensional lattice. Due to its symmetrical form, the general system permits a number of reductions; one of which treated as the semi-discrete integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell is considered in considerable details. Besides six truly independent basic field variables, the system is characterized by four concomitant fields whose background values produce three additional types of inter-site resonant interactions between the basic fields. As a result, the system dynamics becomes associated with the highly nonstandard form of Poisson structure. The elementary Poisson brackets between all field variables are calculated and presented explicitly. The richness of system dynamics is demonstrated on the multi-component soliton solution written in terms of properly parameterized soliton characteristics.

  15. Automatic cell identification and visualization using digital holographic microscopy with head mounted augmented reality devices.

    PubMed

    O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram

    2018-03-01

    We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.

  16. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    PubMed

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  17. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    PubMed Central

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  18. Static regenerative fuel cell system for use in space

    NASA Technical Reports Server (NTRS)

    Levy, Alexander H. (Inventor); VanDine, Leslie L. (Inventor); Trocciola, John C. (Inventor)

    1989-01-01

    The cell stack can be operated as a fuel cell stack or as an electrolysis cell stack. The stack consists of a series of alternate fuel cell subassemblies with intervening electrolysis cell subassemblies, and interspersed cooling plates. The water produced and consumed in the two modes of operation migrates between adjacent cell subassemblies. The component plates are annular with a central hydrogen plenum and integral internal oxygen manifolds. No fluid pumps are needed to operate the stack in either mode.

  19. Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupta, Ian

    2005-01-01

    High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.

  20. A Microchip-based Endothelium Mimic Utilizing Open Reservoirs for Cell Immobilization and Integrated Carbon Ink Microelectrodes for Detection

    PubMed Central

    Hulvey, Matthew K; Martin, R. Scott

    2010-01-01

    This paper describes the fabrication and characterization of a microfluidic device that utilizes a reservoir-based approach for endothelial cell immobilization and integrated embedded carbon ink microelectrodes for the amperometric detection of extracellular nitric oxide (NO) release. The design utilizes a buffer channel to continuously introduce buffer or a plug of stimulant to the reservoir as well as a separate sampling channel that constantly withdraws buffer from the reservoir and over the microelectrode. A steel pin is used for both the fluidic connection to the sampling channel and to provide a quasi-reference electrode for the carbon ink microelectrode. Characterization of the device was performed using NO standards produced from a NONOate salt. Finally, NO release from a layer of immobilized endothelial cells was monitored and quantified using the system. This system holds promise as a means to electrochemically detect extracellular NO release from endothelial cells in either an array of reservoirs or concurrently with fluorescence-based intracellular NO measurements. PMID:18989663

  1. Hot Cell Installation and Demonstration of the Severe Accident Test Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linton, Kory D.; Burns, Zachary M.; Terrani, Kurt A.

    A Severe Accident Test Station (SATS) capable of examining the oxidation kinetics and accident response of irradiated fuel and cladding materials for design basis accident (DBA) and beyond design basis accident (BDBA) scenarios has been successfully installed and demonstrated in the Irradiated Fuels Examination Laboratory (IFEL), a hot cell facility at Oak Ridge National Laboratory. The two test station modules provide various temperature profiles, steam, and the thermal shock conditions necessary for integral loss of coolant accident (LOCA) testing, defueled oxidation quench testing and high temperature BDBA testing. The installation of the SATS system restores the domestic capability to examinemore » postulated and extended LOCA conditions on spent fuel and cladding and provides a platform for evaluation of advanced fuel and accident tolerant fuel (ATF) cladding concepts. This document reports on the successful in-cell demonstration testing of unirradiated Zircaloy-4. It also contains descriptions of the integral test facility capabilities, installation activities, and out-of-cell benchmark testing to calibrate and optimize the system.« less

  2. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    Declining supplies of domestic oil and gas and the increased cost of energy resulted in a renewed emphasis in utilizing available resources in the most efficient manner possible. This, in turn, brought about a reassessment of a number of methods for converting fossil fuels to end uses at the highest practical efficiency. One of these is the on-site integrated energy system (OS/IES). This system provides electric power from an on-site power plant and recovers heat from the power plant that would normally be rejected to the environment. An OS/IES is potentially useful in any application that requires both electricity and heat. Several OS/IES are analyzed for a residential complex. The paper is divided into two sections; the first compares three energy supply systems, the second compares various designs for fuel cell OS/IES.

  3. Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

    NASA Astrophysics Data System (ADS)

    Ferrie, Ann M.; Sun, Haiyan; Fang, Ye

    2011-07-01

    We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs.

  4. An Integrated Platform for Isolation, Processing, and Mass Spectrometry-based Proteomic Profiling of Rare Cells in Whole Blood*

    PubMed Central

    Li, Siyang; Plouffe, Brian D.; Belov, Arseniy M.; Ray, Somak; Wang, Xianzhe; Murthy, Shashi K.; Karger, Barry L.; Ivanov, Alexander R.

    2015-01-01

    Isolation and molecular characterization of rare cells (e.g. circulating tumor and stem cells) within biological fluids and tissues has significant potential in clinical diagnostics and personalized medicine. The present work describes an integrated platform of sample procurement, preparation, and analysis for deep proteomic profiling of rare cells in blood. Microfluidic magnetophoretic isolation of target cells spiked into 1 ml of blood at the level of 1000–2000 cells/ml, followed by focused acoustics-assisted sample preparation has been coupled with one-dimensional PLOT-LC-MS methodology. The resulting zeptomole detection sensitivity enabled identification of ∼4000 proteins with injection of the equivalent of only 100–200 cells per analysis. The characterization of rare cells in limited volumes of physiological fluids is shown by the isolation and quantitative proteomic profiling of first MCF-7 cells spiked into whole blood as a model system and then two CD133+ endothelial progenitor and hematopoietic cells in whole blood from volunteers. PMID:25755294

  5. Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system.

    PubMed

    Moya, A; Ortega-Ribera, M; Guimerà, X; Sowade, E; Zea, M; Illa, X; Ramon, E; Villa, R; Gracia-Sancho, J; Gabriel, G

    2018-06-12

    The demand for real-time monitoring of cell functions and cell conditions has dramatically increased with the emergence of organ-on-a-chip (OOC) systems. However, the incorporation of co-cultures and microfluidic channels in OOC systems increases their biological complexity and therefore makes the analysis and monitoring of analytical parameters inside the device more difficult. In this work, we present an approach to integrate multiple sensors in an extremely thin, porous and delicate membrane inside a liver-on-a-chip device. Specifically, three electrochemical dissolved oxygen (DO) sensors were inkjet-printed along the microfluidic channel allowing local online monitoring of oxygen concentrations. This approach demonstrates the existence of an oxygen gradient up to 17.5% for rat hepatocytes and 32.5% for human hepatocytes along the bottom channel. Such gradients are considered crucial for the appearance of zonation of the liver. Inkjet printing (IJP) was the selected technology as it allows drop on demand material deposition compatible with delicate substrates, as used in this study, which cannot withstand temperatures higher than 130 °C. For the deposition of uniform gold and silver conductive inks on the porous membrane, a primer layer using SU-8 dielectric material was used to seal the porosity of the membrane at defined areas, with the aim of building a uniform sensor device. As a proof-of-concept, experiments with cell cultures of primary human and rat hepatocytes were performed, and oxygen consumption rate was stimulated with carbonyl-cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), accelerating the basal respiration of 0.23 ± 0.07 nmol s-1/106 cells up to 5.95 ± 0.67 nmol s-1/106 cells s for rat cells and the basal respiration of 0.17 ± 0.10 nmol s-1/106 cells by up to 10.62 ± 1.15 nmol s-1/106 cells for human cells, with higher oxygen consumption of the cells seeded at the outflow zone. These results demonstrate that the approach of printing sensors inside an OOC has tremendous potential because IJP is a feasible technique for the integration of different sensors for evaluating metabolic activity of cells, and overcomes one of the major challenges still remaining on how to tap the full potential of OOC systems.

  6. Calcium as a signal integrator in developing epithelial tissues.

    PubMed

    Brodskiy, Pavel A; Zartman, Jeremiah J

    2018-05-16

    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  7. System Integration - A Major Step toward Lab on a Chip

    PubMed Central

    2011-01-01

    Microfluidics holds great promise to revolutionize various areas of biological engineering, such as single cell analysis, environmental monitoring, regenerative medicine, and point-of-care diagnostics. Despite the fact that intensive efforts have been devoted into the field in the past decades, microfluidics has not yet been adopted widely. It is increasingly realized that an effective system integration strategy that is low cost and broadly applicable to various biological engineering situations is required to fully realize the potential of microfluidics. In this article, we review several promising system integration approaches for microfluidics and discuss their advantages, limitations, and applications. Future advancements of these microfluidic strategies will lead toward translational lab-on-a-chip systems for a wide spectrum of biological engineering applications. PMID:21612614

  8. Integration of Cell Phone Imaging with Microchip ELISA to Detect Ovarian Cancer HE4 Biomarker in Urine at the Point-of-Care

    PubMed Central

    Wang, ShuQi; Zhao, Xiaohu; Khimji, Imran; Akbas, Ragip; Qiu, Weiliang; Edwards, Dale; Cramer, Daniel W.; Ye, Bin; Demirci, Utkan

    2013-01-01

    Ovarian cancer is asymptomatic at early stages and most patients present with advanced levels of disease. Lack of cost-effective methods that can achieve frequent, simple and non-invasive testing hinders early detection and causes high mortality in ovarian cancer patients. Here, we report a simple and inexpensive microchip ELISA-based detection module that employs a portable detection system, i.e., a cell phone/charge-coupled device (CCD) to quantify an ovarian cancer biomarker, HE4, in urine. Integration of a mobile application with a cell phone enabled immediate processing of microchip ELISA results, which eliminated the need for a bulky, expensive spectrophotometer. The HE4 level detected by a cell phone or a lensless CCD system was significantly elevated in urine samples from cancer patients (n = 19) than normal healthy controls (n = 20) (p < 0.001). Receiver operating characteristic (ROC) analyses showed that the microchip ELISA coupled with a cell phone running an automated analysis application had a sensitivity of 89.5% at a specificity of 90%. Under the same specificity, the microchip ELISA coupled with a CCD had a sensitivity of 84.2%. In conclusion, integration of microchip ELISA with cell phone/CCD-based colorimetric measurement technology can be used to detect HE4 biomarker at the point-of-care (POC), paving the way to create bedside technologies for diagnostics and treatment monitoring. PMID:21881677

  9. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.

    PubMed

    Huang, Shih-Hsuan; Hung, Lien-Yu; Lee, Gwo-Bin

    2016-04-21

    The extraction of a cell's nucleus is an essential technique required for a number of procedures, such as disease diagnosis, genetic replication, and animal cloning. However, existing nucleus extraction techniques are relatively inefficient and labor-intensive. Therefore, this study presents an innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format. In comparison to previous micro-devices designed for nucleus extraction, the new OICL device designed herein is superior in terms of flexibility, selectivity, and efficiency. To facilitate this OICL module for continuous nucleus extraction, we further integrated an optically-induced dielectrophoresis (ODEP) module with the OICL device within the microfluidic chip. This on-chip integration circumvents the need for highly trained personnel and expensive, cumbersome equipment. Specifically, this microfluidic system automates four steps by 1) automatically focusing and transporting cells, 2) releasing the nuclei on the OICL module, 3) isolating the nuclei on the ODEP module, and 4) collecting the nuclei in the outlet chamber. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%. These results demonstrate that this microfluidics-based system can successfully perform nucleus extraction, and the integrated platform is therefore promising in cell fusion technology with the goal of achieving genetic replication, or even animal cloning, in the near future.

  10. Foundry Technologies Focused on Environmental and Ecological Applications

    NASA Astrophysics Data System (ADS)

    Roizin, Ya.; Lisiansky, M.; Pikhay, E.

    Solutions allowing fabrication of remote control systems with integrated sensors (motes) were introduced as a part of CMOS foundry production platform and verified on silicon. The integrated features include sensors employing principles previously verified in the development of ultra-low power consuming non-volatile memories (C-Flash, MRAM) and components allowing low-power energy harvesting (low voltage rectifiers, high -voltage solar cells). The developed systems are discussed with emphasis on their environmental and security applications.

  11. Develop and test fuel cell powered on-site integrated total energy system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Test results are given for a 5 kW stack and initial results for an integrated, grid connected system operating from methanol fuel. Site selection criteria are presented for future demonstration of a 50 or 100 kW OS/IES. Preliminary results are also given with approximate internal rates of return to the building owner. Progress in development and construction of a 50 kW modular methanol/steam reformer is reported.

  12. Modular Integration of Upconverting Nanocrystal-Dendrimer Composites for Folate Receptor-Specific NIR Imaging and Light-Triggered Drug Release.

    PubMed

    Wong, Pamela T; Chen, Dexin; Tang, Shengzhuang; Yanik, Sean; Payne, Michael; Mukherjee, Jhindan; Coulter, Alexa; Tang, Kenny; Tao, Ke; Sun, Kang; Baker, James R; Choi, Seok Ki

    2015-12-02

    Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Towards Self-Assembled Hybrid Artificial Cells: Novel Bottom-Up Approaches to Functional Synthetic Membranes

    PubMed Central

    Brea, Roberto J.; Hardy, Michael D.; Devaraj, Neal K.

    2015-01-01

    There has been increasing interest in utilizing bottom-up approaches to develop synthetic cells. A popular methodology is the integration of functionalized synthetic membranes with biological systems, producing “hybrid” artificial cells. This Concept article covers recent advances and the current state-of-the-art of such hybrid systems. Specifically, we describe minimal supramolecular constructs that faithfully mimic the structure and/or function of living cells, often by controlling the assembly of highly ordered membrane architectures with defined functionality. These studies give us a deeper understanding of the nature of living systems, bring new insights into the origin of cellular life, and provide novel synthetic chassis for advancing synthetic biology. PMID:26149747

  14. Probabilistic Analysis of Solid Oxide Fuel Cell Based Hybrid Gas Turbine System

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2003-01-01

    The emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance. A gas turbine thermodynamic cycle integrated with a fuel cell was computationally simulated and probabilistically evaluated in view of the several uncertainties in the thermodynamic performance parameters. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the uncertainties in the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of criteria for gas turbine performance.

  15. Leaf shape: genetic controls and environmental factors.

    PubMed

    Tsukaya, Hirokazu

    2005-01-01

    In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.

  16. Innate control of adaptive immunity: Beyond the three-signal paradigm

    PubMed Central

    Jain, Aakanksha; Pasare, Chandrashekhar

    2017-01-01

    Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information in order to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond T cell receptor engagement, co-stimulation and priming cytokine production but are critical for generation of protective T cell immunity. PMID:28483987

  17. Fuel cell drives for road vehicles

    NASA Astrophysics Data System (ADS)

    Charnah, R. M.

    For fuel-cell driven vehicles, including buses, the fuel cell may be the main, determining factor in the system but must be integrated into the complete design process. A Low-Floor Bus design is used to illustrate this point. The influence of advances in drive-train electronics is illustrated as are novel designs for motors and mechanical transmission of power to the wheels allowing the use of novel hub assemblies. A hybrid electric power system is being deployed in which Fuel Cells produce the energy needs but are coupled with batteries especially for acceleration phases and for recuperative braking.

  18. Current-Controlled Electrical Point-Source Stimulation of Embryonic Stem Cells

    PubMed Central

    Chen, Michael Q.; Xie, Xiaoyan; Wilson, Kitchener D.; Sun, Ning; Wu, Joseph C.; Giovangrandi, Laurent; Kovacs, Gregory T. A.

    2010-01-01

    Stem cell therapy is emerging as a promising clinical approach for myocardial repair. However, the interactions between the graft and host, resulting in inconsistent levels of integration, remain largely unknown. In particular, the influence of electrical activity of the surrounding host tissue on graft differentiation and integration is poorly understood. In order to study this influence under controlled conditions, an in vitro system was developed. Electrical pacing of differentiating murine embryonic stem (ES) cells was performed at physiologically relevant levels through direct contact with microelectrodes, simulating the local activation resulting from contact with surrounding electroactive tissue. Cells stimulated with a charged balanced voltage-controlled current source for up to 4 days were analyzed for cardiac and ES cell gene expression using real-time PCR, immunofluorescent imaging, and genome microarray analysis. Results varied between ES cells from three progressive differentiation stages and stimulation amplitudes (nine conditions), indicating a high sensitivity to electrical pacing. Conditions that maximally encouraged cardiomyocyte differentiation were found with Day 7 EBs stimulated at 30 µA. The resulting gene expression included a sixfold increase in troponin-T and a twofold increase in β-MHCwithout increasing ES cell proliferation marker Nanog. Subsequent genome microarray analysis revealed broad transcriptome changes after pacing. Concurrent to upregulation of mature gene programs including cardiovascular, neurological, and musculoskeletal systems is the apparent downregulation of important self-renewal and pluripotency genes. Overall, a robust system capable of long-term stimulation of ES cells is demonstrated, and specific conditions are outlined that most encourage cardiomyocyte differentiation. PMID:20652088

  19. cellPACK: A Virtual Mesoscope to Model and Visualize Structural Systems Biology

    PubMed Central

    Johnson, Graham T.; Autin, Ludovic; Al-Alusi, Mostafa; Goodsell, David S.; Sanner, Michel F.; Olson, Arthur J.

    2014-01-01

    cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10−7–10−8m) between molecular and cellular biology. cellPACK’s modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive 3D models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is currently available as open source code, with tools for validation of models and with recipes and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators, and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org. PMID:25437435

  20. LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis

    PubMed Central

    Zhou, Li; Plattner, Florian; Liu, Mingxia; Parks, John S; Hammer, Robert E; Boucher, Philippe; Tsai, Shirling

    2017-01-01

    Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor with diverse physiological roles, ranging from cellular uptake of lipoproteins and other cargo by endocytosis to sensor of the extracellular environment and integrator of a wide range of signaling mechanisms. As a chylomicron remnant receptor, LRP1 controls systemic lipid metabolism in concert with the LDL receptor in the liver, whereas in smooth muscle cells (SMC) LRP1 functions as a co-receptor for TGFβ and PDGFRβ in reverse cholesterol transport and the maintenance of vascular wall integrity. Here we used a knockin mouse model to uncover a novel atheroprotective role for LRP1 in macrophages where tyrosine phosphorylation of an NPxY motif in its intracellular domain initiates a signaling cascade along an LRP1/SHC1/PI3K/AKT/PPARγ/LXR axis to regulate and integrate cellular cholesterol homeostasis through the expression of the major cholesterol exporter ABCA1 with apoptotic cell removal and inflammatory responses. PMID:29144234

  1. Self-organizing path integration using a linked continuous attractor and competitive network: path integration of head direction.

    PubMed

    Stringer, Simon M; Rolls, Edmund T

    2006-12-01

    A key issue is how networks in the brain learn to perform path integration, that is update a represented position using a velocity signal. Using head direction cells as an example, we show that a competitive network could self-organize to learn to respond to combinations of head direction and angular head rotation velocity. These combination cells can then be used to drive a continuous attractor network to the next head direction based on the incoming rotation signal. An associative synaptic modification rule with a short term memory trace enables preceding combination cell activity during training to be associated with the next position in the continuous attractor network. The network accounts for the presence of neurons found in the brain that respond to combinations of head direction and angular head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform path integration of place and spatial view representations.

  2. An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation

    NASA Astrophysics Data System (ADS)

    Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.

    2007-09-01

    Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.

  3. Wood-fired fuel cells in selected buildings

    NASA Astrophysics Data System (ADS)

    McIlveen-Wright, D. R.; McMullan, J. T.; Guiney, D. J.

    The positive attributes of fuel cells for high efficiency power generation at any scale and of biomass as a renewable energy source which is not intermittent, location-dependent or very difficult to store, suggest that a combined heat and power (CHP) system consisting of a fuel cell integrated with a wood gasifier (FCIWG) may offer a combination for delivering heat and electricity cleanly and efficiently. Phosphoric acid fuel cell (PAFC) systems, fuelled by natural gas, have already been used in a range of CHP applications in urban settings. Some of these applications are examined here using integrated biomass gasification/fuel cell systems in CHP configurations. Five building systems, which have different energy demand profiles, are assessed. These are a hospital, a hotel, a leisure centre, a multi-residential community and a university hall of residence. Heat and electricity use profiles for typical examples of these buildings were obtained and the FCIWG system was scaled to the power demand. The FCIWG system was modelled for two different types of fuel cell, the molten carbonate and the phosphoric acid. In each case an oxygen-fired gasification system is proposed, in order to eliminate the need for a methane reformer. Technical, environmental and economic analyses of each version were made, using the ECLIPSE process simulation package. Since fuel cell lifetimes are not yet precisely known, economics for a range of fuel cell lifetimes have been produced. The wood-fired PAFC system was found to have low electrical efficiency (13-16%), but much of the heat could be recovered, so that the overall efficiency was 64-67%, suitable where high heat/electricity values are required. The wood-fired molten carbonate fuel cell (MCFC) system was found to be quite efficient for electricity generation (24-27%), with an overall energy efficiency of 60-63%. The expected capital costs of both systems would currently make them uncompetitive for general use, but the specific features of selected buildings in rural areas, with regard to the high cost of importing other fuel, and/or lack of grid electricity, could still make these systems attractive options. Any economic analysis of these systems is beset with severe difficulties. Capital costs of the major system components are not known with any great precision. However, a guideline assessment of the payback period for such CHP systems was made. When the best available capital costs for system components were used, most of these systems were found to have unacceptably long payback periods, particularly where the fuel cell lifetimes are short, but the larger systems show the potential for a reasonable economic return.

  4. Redox sensing: Orthogonal control in cell cycle and apoptosis signaling

    PubMed Central

    Jones, Dean P.

    2010-01-01

    Living systems have three major types of cell signaling systems that are dependent upon high-energy chemicals, redox environment and transmembranal ion gating mechanisms. Development of integrated systems biology descriptions of cell signaling require conceptual models incorporating all three. Recent advances in redox biology show that thiol/disulfide redox systems are regulated under dynamic, non-equilibrium conditions, progressively oxidized with the life cycle of cells and distinct in terms of redox potentials among subcellular compartments. The present article uses these observations as a basis to distinguish “redox-sensing” mechanisms, which are more global biologic redox control mechanisms, from “redox signaling”, which involves conveyance of discrete activating or inactivating signals. Both redox sensing and redox signaling use sulfur switches, especially cysteine (Cys) residues in proteins which are sensitive to reversible oxidation, nitrosylation, glutathionylation, acylation, sulfhydration or metal binding. Unlike specific signaling mechanisms, the redox-sensing mechanisms provide means to globally affect the rates and activities of the high-energy, ion gating and redox-signaling systems by controlling sensitivity, distribution, macromolecular interactions and mobility of signaling proteins. Effects mediated through Cys residues not directly involved in signaling means redox-sensing control can be orthogonal to the signaling mechanisms. This provides a capability to integrate signals according to cell cycle and physiologic state without fundamentally altering the signaling mechanisms. Recent findings that thiol/disulfide pools in humans are oxidized with age, environmental exposures and disease risk suggest that redox-sensing thiols could provide a central mechanistic link in disease development and progression. PMID:20964735

  5. Electrochemical cell and separator plate thereof

    DOEpatents

    Baker, Bernard S.; Dharia, Dilip J.

    1979-10-02

    A fuel cell includes a separator plate having first and second flow channels extending there through contiguously with an electrode and respectively in flow communication with the cell electrolyte and in flow isolation with respect to such electrolyte. In fuel cell system arrangement, the diverse type channels are supplied in common with process gas for thermal control purposes. The separator plate is readily formed by corrugation of integral sheet material. 10 figs.

  6. A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation

    NASA Astrophysics Data System (ADS)

    Lorusso, D.; Nikolov, H. N.; Chmiel, T.; Beach, R. J.; Sims, S. M.; Dixon, S. J.; Holdsworth, D. W.

    2017-03-01

    Mechanotransduction - the process by which cells sense and respond to mechanical stimuli - is essential for several physiological processes including skeletal homeostasis. Mammalian cells are thought to be sensitive to different modes of mechanical stimuli, including vibration and fluid shear. To better understand the mechanisms underlying the early stages of mechanotransduction, we describe the development of devices for mechanostimulation (by vibration and fluid shear) of live cells that can be integrated with real-time optical microscopy. The integrated system can deliver up to 3 Pa of fluid shear simultaneous with high-frequency sinusoidal vibrations up to 1 g. Stimuli can be applied simultaneously or independently to cells during real-time microscopic imaging. A custom microfluidic chamber was prepared from polydimethylsiloxane on a glass-bottom cell culture dish. Fluid flow was applied with a syringe pump to induce shear stress. This device is compatible with a custom-designed motion control vibration system. A voice coil actuates the system that is suspended on linear air bushings. Accelerations produced by the system were monitored with an on-board accelerometer. Displacement was validated optically using particle tracking digital high-speed imaging (1200 frames per second). During operation at nominally 45 Hz and 0.3 g, displacements were observed to be within 3.56% of the expected value. MC3T3-E1 osteoblast like cells were seeded into the microfluidic device and loaded with the calcium sensitive fluorescent probe fura-2, then mounted onto the dual-modal mechanostimulation platform. Cells were then imaged and monitored for fluorescence emission. In summary, we have developed a system to deliver physiologically relevant vibrations and fluid shear to live cells during real-time imaging and photometry. Monitoring the behavior of live cells loaded with appropriate fluorescent probes will enable characterization of the signals activated during the initial stages of mechanotransduction.

  7. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Hardware synthesis from DDL description. [simulating a digital system for computerized design of large scale integrated circuits

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.; Shah, A. M.

    1980-01-01

    The details of digital systems can be conveniently input into the design automation system by means of hardware description language (HDL). The computer aided design and test (CADAT) system at NASA MSFC is used for the LSI design. The digital design language (DDL) was selected as HDL for the CADAT System. DDL translator output can be used for the hardware implementation of the digital design. Problems of selecting the standard cells from the CADAT standard cell library to realize the logic implied by the DDL description of the system are addressed.

  9. Microfluidic integrated acoustic waving for manipulation of cells and molecules.

    PubMed

    Barani, Alireza; Paktinat, Hossein; Janmaleki, Mohsen; Mohammadi, Aminollah; Mosaddegh, Peiman; Fadaei-Tehrani, Alireza; Sanati-Nezhad, Amir

    2016-11-15

    Acoustophoresis with its simple and low-cost fabrication, rapid and localized fluid actuation, compatibility with microfluidic components, and biocompatibility for cellular studies, has been extensively integrated into microfluidics to provide on-chip microdevices for a variety of applications in biology, bioengineering and chemistry. Among different applications, noninvasive manipulation of cells and biomolecules are significantly important, which are addressed by acoustic-based microfluidics. Here in this paper, we briefly explain the principles and different configurations of acoustic wave and acoustic streaming for the manipulation of cells and molecules and overview its applications for single cell isolation, cell focusing and sorting, cell washing and patterning, cell-cell fusion and communication, and tissue engineering. We further discuss the application of acoustic-based microfluidic systems for the mixing and transport of liquids, manipulation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules, followed by explanation on the present challenges of acoustic-based microfluidics for the handling of cells and molecules, and highlighting the future directions. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  10. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  11. Integrated Micro/nanoengineered Functional Biomaterials for Cell Mechanics and Mechanobiology: A Materials Perspective

    PubMed Central

    Shao, Yue

    2014-01-01

    The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, we present an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions and highlight them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. We also discuss the recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. PMID:24339188

  12. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform.

    PubMed

    Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N

    2017-03-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.

  13. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform

    PubMed Central

    Moutsatsos, Ioannis K.; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J.; Jenkins, Jeremy L.; Holway, Nicholas; Tallarico, John; Parker, Christian N.

    2016-01-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an “off-the-shelf,” open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community. PMID:27899692

  14. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.

    PubMed

    Antfolk, Maria; Magnusson, Cecilia; Augustsson, Per; Lilja, Hans; Laurell, Thomas

    2015-09-15

    Enrichment of rare cells from peripheral blood has emerged as a means to enable noninvasive diagnostics and development of personalized drugs, commonly associated with a prerequisite to concentrate the enriched rare cell population prior to molecular analysis or culture. However, common concentration by centrifugation has important limitations when processing low cell numbers. Here, we report on an integrated acoustophoresis-based rare cell enrichment system combined with integrated concentration. Polystyrene 7 μm microparticles could be separated from 5 μm particles with a recovery of 99.3 ± 0.3% at a contamination of 0.1 ± 0.03%, with an overall 25.7 ± 1.7-fold concentration of the recovered 7 μm particles. At a flow rate of 100 μL/min, breast cancer cells (MCF7) spiked into red blood cell-lysed human blood were separated with an efficiency of 91.8 ± 1.0% with a contamination of 0.6 ± 0.1% from white blood cells with a 23.8 ± 1.3-fold concentration of cancer cells. The recovery of prostate cancer cells (DU145) spiked into whole blood was 84.1 ± 2.1% with 0.2 ± 0.04% contamination of white blood cells with a 9.6 ± 0.4-fold concentration of cancer cells. This simultaneous on-chip separation and concentration shows feasibility of future acoustofluidic systems for rapid label-free enrichment and molecular characterization of circulating tumor cells using peripheral venous blood in clinical practice.

  15. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  16. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  17. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  18. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  19. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  20. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    Banker, S.

    1982-01-01

    Development of a pulsed electron beam subsystem, wafer transport system, and ion implanter are discussed. A junction processing system integration and cost analysis are reviewed. Maintenance of the electron beam processor and the experimental test unit of the non-mass analyzed ion implanter is reviewed.

  1. Single cell transcriptomics to explore the immune system in health and disease†

    PubMed Central

    Regev, Aviv; Teichmann, Sarah A.

    2017-01-01

    The immune system varies in cell types, states, and locations. The complex networks, interactions and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as, massively-parallel single cell RNA-Seq and sophisticated computational methods are catalysing a revolution in our understanding of immunology. Here, we provide an overview of the state of single cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity. PMID:28983043

  2. Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye.

    PubMed

    Turunen, Tytteli Anni Kaarina; Laakkonen, Johanna Päivikki; Alasaarela, Laura; Airenne, Kari Juhani; Ylä-Herttuala, Seppo

    2014-01-01

    A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Integrated quantitative phase and birefringence microscopy for imaging malaria-infected red blood cells.

    PubMed

    Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng

    2016-09-01

    A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.

  4. Integrated quantitative phase and birefringence microscopy for imaging malaria-infected red blood cells

    NASA Astrophysics Data System (ADS)

    Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng

    2016-09-01

    A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.

  5. Metabolic Mapping of Breast Cancer with Multiphoton Spectral and Lifetime Imaging

    DTIC Science & Technology

    2007-03-01

    spectral and lifetime characterization of NADH may be used to reveal metabolic changes in vivo and has potential to be used as an early diagnostic...combined spectral lifetime imaging modality will help for 5 characterization of breast cancer cells from cell culture based models to a relevant in... spectral and lifetime system and integrated into a multiphoton fluorescence excitation microscopy system 7 • Calibrated and characterized this

  6. High temperature flow-through device for rapid solubilization and analysis

    DOEpatents

    West, Jason A. A. [Castro Valley, CA; Hukari, Kyle W [San Ramon, CA; Patel, Kamlesh D [Dublin, CA; Peterson, Kenneth A [Albuquerque, NM; Renzi, Ronald F [Tracy, CA

    2009-09-22

    Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.

  7. High temperature flow-through device for rapid solubilization and analysis

    DOEpatents

    West, Jason A. A.; Hukari, Kyle W.; Patel, Kamlesh D.; Peterson, Kenneth A.; Renzi, Ronald F.

    2013-04-23

    Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.

  8. Acoustic devices for particle and cell manipulation and sensing.

    PubMed

    Qiu, Yongqiang; Wang, Han; Demore, Christine E M; Hughes, David A; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy

    2014-08-13

    An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed.

  9. Acoustic Devices for Particle and Cell Manipulation and Sensing

    PubMed Central

    Qiu, Yongqiang; Wang, Han; Demore, Christine E. M.; Hughes, David A.; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy

    2014-01-01

    An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed. PMID:25123465

  10. Origin and early evolution of neural circuits for the control of ciliary locomotion.

    PubMed

    Jékely, Gáspár

    2011-03-22

    Behaviour evolved before nervous systems. Various single-celled eukaryotes (protists) and the ciliated larvae of sponges devoid of neurons can display sophisticated behaviours, including phototaxis, gravitaxis or chemotaxis. In single-celled eukaryotes, sensory inputs directly influence the motor behaviour of the cell. In swimming sponge larvae, sensory cells influence the activity of cilia on the same cell, thereby steering the multicellular larva. In these organisms, the efficiency of sensory-to-motor transformation (defined as the ratio of sensory cells to total cell number) is low. With the advent of neurons, signal amplification and fast, long-range communication between sensory and motor cells became possible. This may have first occurred in a ciliated swimming stage of the first eumetazoans. The first axons may have had en passant synaptic contacts to several ciliated cells to improve the efficiency of sensory-to-motor transformation, thereby allowing a reduction in the number of sensory cells tuned for the same input. This could have allowed the diversification of sensory modalities and of the behavioural repertoire. I propose that the first nervous systems consisted of combined sensory-motor neurons, directly translating sensory input into motor output on locomotor ciliated cells and steering muscle cells. Neuronal circuitry with low levels of integration has been retained in cnidarians and in the ciliated larvae of some marine invertebrates. This parallel processing stage could have been the starting point for the evolution of more integrated circuits performing the first complex computations such as persistence or coincidence detection. The sensory-motor nervous systems of cnidarians and ciliated larvae of diverse phyla show that brains, like all biological structures, are not irreducibly complex.

  11. How causal analysis can reveal autonomy in models of biological systems

    NASA Astrophysics Data System (ADS)

    Marshall, William; Kim, Hyunju; Walker, Sara I.; Tononi, Giulio; Albantakis, Larissa

    2017-11-01

    Standard techniques for studying biological systems largely focus on their dynamical or, more recently, their informational properties, usually taking either a reductionist or holistic perspective. Yet, studying only individual system elements or the dynamics of the system as a whole disregards the organizational structure of the system-whether there are subsets of elements with joint causes or effects, and whether the system is strongly integrated or composed of several loosely interacting components. Integrated information theory offers a theoretical framework to (1) investigate the compositional cause-effect structure of a system and to (2) identify causal borders of highly integrated elements comprising local maxima of intrinsic cause-effect power. Here we apply this comprehensive causal analysis to a Boolean network model of the fission yeast (Schizosaccharomyces pombe) cell cycle. We demonstrate that this biological model features a non-trivial causal architecture, whose discovery may provide insights about the real cell cycle that could not be gained from holistic or reductionist approaches. We also show how some specific properties of this underlying causal architecture relate to the biological notion of autonomy. Ultimately, we suggest that analysing the causal organization of a system, including key features like intrinsic control and stable causal borders, should prove relevant for distinguishing life from non-life, and thus could also illuminate the origin of life problem. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  12. Co-flow planar SOFC fuel cell stack

    DOEpatents

    Chung, Brandon W.; Pham, Ai Quoc; Glass, Robert S.

    2004-11-30

    A co-flow planar solid oxide fuel cell stack with an integral, internal manifold and a casing/holder to separately seal the cell. This construction improves sealing and gas flow, and provides for easy manifolding of cell stacks. In addition, the stack construction has the potential for an improved durability and operation with an additional increase in cell efficiency. The co-flow arrangement can be effectively utilized in other electrochemical systems requiring gas-proof separation of gases.

  13. Potentiometric Dye Imaging for Pheochromocytoma and Cortical Neurons with a Novel Measurement System Using an Integrated Complementary Metal-Oxide-Semiconductor Imaging Device

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuma; Tagawa, Ayato; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Tamura, Hideki; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2010-11-01

    The combination of optical imaging with voltage-sensitive dyes is a powerful tool for studying the spatiotemporal patterns of neural activity and understanding the neural networks of the brain. To visualize the potential status of multiple neurons simultaneously using a compact instrument with high density and a wide range, we present a novel measurement system using an implantable biomedical photonic LSI device with a red absorptive light filter for voltage-sensitive dye imaging (BpLSI-red). The BpLSI-red was developed for sensing fluorescence by the on-chip LSI, which was designed by using complementary metal-oxide-semiconductor (CMOS) technology. A micro-electro-mechanical system (MEMS) microfabrication technique was used to postprocess the CMOS sensor chip; light-emitting diodes (LEDs) were integrated for illumination and to enable long-term cell culture. Using the device, we succeeded in visualizing the membrane potential of 2000-3000 cells and the process of depolarization of pheochromocytoma cells (PC12 cells) and mouse cerebral cortical neurons in a primary culture with cellular resolution. Therefore, our measurement application enables the detection of multiple neural activities simultaneously.

  14. A Theoretical Solid Oxide Fuel Cell Model for System Controls and Stability Design

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni; Xu, Ming

    2006-01-01

    As the aviation industry moves towards higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The Hybrid Solid Oxide Fuel Cell system combines the fuel cell with a microturbine to obtain up to 70 percent cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multi-discipline system, and design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and distribution system and the fuel cell and microturbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. A novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled, but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  15. New bioproduction systems: from molecular circuits to novel reactor concepts in cell-free biotechnology.

    PubMed

    Rupp, Steffen

    2013-01-01

    : The last decades witnessed a strong growth in several areas of biotechnology, especially in fields related to health, as well as in industrial biotechnology. Advances in molecular engineering now enable biotechnologists to design more efficient pathways in order to convert a larger spectrum of renewable resources into industrially used biofuels and chemicals as well as into new pharmaceuticals and therapeutic proteins. In addition material sciences advanced significantly making it more and more possible to integrate biology and engineering. One of the key questions currently is how to develop new ways of engineering biological systems to cope with the complexity and limitations given by the cell. The options to integrate biology with classical engineering advanced cell free technologies in the recent years significantly. Cell free protein production using cellular extracts is now a well-established universal technology for production of proteins derived from many organisms even at the milligram scale. Among other applications it has the potential to supply the demand for a multitude of enzymes and enzyme variants facilitating in vitro metabolic engineering. This review will briefly address the recent achievements and limitations of cell free conversions. Especially, the requirements for reactor systems in cell free biotechnology, a currently underdeveloped field, are reviewed and some perspectives are given on how material sciences and biotechnology might be able to advance these new developments in the future.

  16. Semi-transparent solar cells

    NASA Astrophysics Data System (ADS)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  17. Challenges for fuel cells as stationary power resource in the evolving energy enterprise

    NASA Astrophysics Data System (ADS)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  18. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment.

    PubMed

    Li, Ruixiang; He, Yuwei; Zhang, Shuya; Qin, Jing; Wang, Jianxin

    2018-01-01

    Taking inspiration from nature, the biomimetic concept has been integrated into drug delivery systems in cancer therapy. Disguised with cell membranes, the nanoparticles can acquire various functions of natural cells. The cell membrane-coating technology has pushed the limits of common nano-systems (fast elimination in circulation) to more effectively navigate within the body. Moreover, because of the various functional molecules on the surface, cell membrane-based nanoparticles (CMBNPs) are capable of interacting with the complex biological microenvironment of the tumor. Various sources of cell membranes have been explored to camouflage CMBNPs and different tumor-targeting strategies have been developed to enhance the anti-tumor drug delivery therapy. In this review article we highlight the most recent advances in CMBNP-based cancer targeting systems and address the challenges and opportunities in this field.

  19. Expression systems for therapeutic glycoprotein production.

    PubMed

    Durocher, Yves; Butler, Michael

    2009-12-01

    There are slightly over 165 recombinant pharmaceuticals currently approved for human use. Another 500 protein candidates are in preclinical and clinical development, about 70% of these being glycosylated proteins. The need for expression systems allowing the efficient manufacturing of high quality glycoproteins is thus becoming imperative. Recent developments with CHO cells, the predominant mammalian expression system, have focused on either increasing cell specific productivity or prolonging the life span of cells in culture that translates to high integrated viable cell densities. These two factors have allowed volumetric productivities in excess of 5 g/L under conditions of controlled nutrient feeding. In addition to glycoengineering strategies, which are offering considerable advantage in producing proteins with enhanced therapeutic properties, several alternative expression systems are being developed for their manufacture, each with their advantages and limitations.

  20. Increasing cellular coverage within integrated terrestrial/satellite mobile networks

    NASA Technical Reports Server (NTRS)

    Castro, Jonathan P.

    1995-01-01

    When applying the hierarchical cellular concept, the satellite acts as giant umbrella cell covering a region with some terrestrial cells. If a mobile terminal traversing the region arrives to the border-line or limits of a regular cellular ground service, network transition occurs and the satellite system continues the mobile coverage. To adequately assess the boundaries of service of a mobile satellite system an a cellular network within an integrated environment, this paper provides an optimized scheme to predict when a network transition may be necessary. Under the assumption of a classified propagation phenomenon and Lognormal shadowing, the study applies an analytical approach to estimate the location of a mobile terminal based on a reception of the signal strength emitted by a base station.

  1. Improvement and scale-up of the NASA Redox storage system

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Thaller, L. H.

    1980-01-01

    A preprototype 1.0 kW redox system (2 kW peak) with 11 kWh storage capacity was built and integrated with the NASA/DOE photovoltaic test facility at NASA Lewis. This full function redox system includes four substacks of 39 cells each (1/3 cu ft active area) which are connected hydraulically in parallel and electrically in series. An open circuit voltage cell and a set of rebalance cells are used to continuously monitor the system state of charge and automatically maintain the anode and cathode reactants electrochemically in balance. Recent membrane and electrode advances are summarized and the results of multicell stack tests of 1 cu ft are described.

  2. Stable long-term blood formation by stem cells in murine steady-state hematopoiesis.

    PubMed

    Zavidij, Oksana; Ball, Claudia R; Herbst, Friederike; Oppel, Felix; Fessler, Sylvia; Schmidt, Manfred; von Kalle, Christof; Glimm, Hanno

    2012-09-01

    Hematopoietic stem cells (HSCs) generate all mature blood cells during the whole lifespan of an individual. However, the clonal contribution of individual HSC and progenitor cells in steady-state hematopoiesis is poorly understood. To investigate the activity of HSCs under steady-state conditions, murine HSC and progenitor cells were genetically marked in vivo by integrating lentiviral vectors (LVs) encoding green fluorescent protein (GFP). Hematopoietic contribution of individual marked clones was monitored by determination of lentiviral integration sites using highly sensitive linear amplification-mediated-polymerase chain reaction. A remarkably stable small proportion of hematopoietic cells expressed GFP in LV-injected animals for up to 24 months, indicating stable marking of murine steady-state hematopoiesis. Analysis of the lentiviral integration sites revealed that multiple hematopoietic clones with both myeloid and lymphoid differentiation potential contributed to long-term hematopoiesis. In contrast to intrafemoral vector injection, intravenous administration of LV preferentially targeted short-lived progenitor cells. Myelosuppressive treatment of mice prior to LV-injection did not affect the marking efficiency. Our study represents the first continuous analysis of clonal behavior of genetically marked hematopoietic cells in an unmanipulated system, providing evidence that multiple clones are simultaneously active in murine steady-state hematopoiesis. Copyright © 2012 AlphaMed Press.

  3. Building Integrated Photovoltaic Module-Based on Aluminum Substrate With Forced Water Cooling.

    PubMed

    Pang, Wei; Zhang, Yongzhe; Cui, Yanan; Yu, Hongwen; Liu, Yu; Yan, Hui

    2018-04-01

    The increase of operating temperature on a photovoltaic (PV) cell degrades its electrical efficiency. This paper is organized to describe our latest design of an aluminum substrate-based photovoltaic/thermal (PV/T) system. The electrical efficiency of the proposed PV/T can be increased by ∼ 20% in comparison with a conventional glass substrate-based PV. The work will benefit hybrid utilization of solar energy in development of building integrated photovoltaic systems.

  4. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    PubMed

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.

  5. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

    PubMed Central

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity. PMID:28060865

  6. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    EPA Science Inventory

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  7. SYSTEM AND PROCESS FOR PRODUCTION OF METHANOL FROM COMBINED WIND TURBINE AND FUEL CELL POWER

    EPA Science Inventory

    The paper examines an integrated use of ultra-clean wind turbines and high temperature fuel cells to produce methanol, especially for transportation purposes. The principal utility and application of the process is the production of transportation fuel from domestic resources to ...

  8. Development of a lightweight fuel cell vehicle

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  9. Portable power source needs of the future Army -- Batteries and fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, R.; Christopher, H.; Hamlen, R.

    This paper describes the US Army`s future needs for silent portable power in the area of batteries and fuel cells. These needs will continue to increase as a result of the introduction of newer types of equipment, the increasing digitization of the battlefield, and future integrated Soldier Systems. Current battery programs are aimed at improved, low-cost primary batteries, and rechargeable batteries with increased energy densities. The Army fuel cell program aimed at portable systems capable of the order of 150W is also described.

  10. Cell Libraries

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A NASA contract led to the development of faster and more energy efficient semiconductor materials for digital integrated circuits. Gallium arsenide (GaAs) conducts electrons 4-6 times faster than silicon and uses less power at frequencies above 100-150 megahertz. However, the material is expensive, brittle, fragile and has lacked computer automated engineering tools to solve this problem. Systems & Processes Engineering Corporation (SPEC) developed a series of GaAs cell libraries for cell layout, design rule checking, logic synthesis, placement and routing, simulation and chip assembly. The system is marketed by Compare Design Automation.

  11. Submergible barge retrievable storage and permanent disposal system for radioactive waste

    DOEpatents

    Goldsberry, Fred L.; Cawley, William E.

    1981-01-01

    A submergible barge and process for submerging and storing radioactive waste material along a seabed. A submergible barge receives individual packages of radwaste within segregated cells. The cells are formed integrally within the barge, preferably surrounded by reinforced concrete. The cells are individually sealed by a concrete decking and by concrete hatch covers. Seawater may be vented into the cells for cooling, through an integral vent arrangement. The vent ducts may be attached to pumps when the barge is bouyant. The ducts are also arranged to promote passive ventilation of the cells when the barge is submerged. Packages of the radwaste are loaded into individual cells within the barge. The cells are then sealed and the barge is towed to the designated disposal-storage site. There, the individual cells are flooded and the barge will begin descent controlled by a powered submarine control device to the seabed storage site. The submerged barge will rest on the seabed permanently or until recovered by a submarine control device.

  12. Immunometabolism in systemic lupus erythematosus.

    PubMed

    Morel, Laurence

    2017-05-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease mediated by pathogenic autoantibodies directed against nucleoprotein complexes. Beyond the activation of autoreactive B cells, this process involves dysregulation in many other types of immune cells, including CD4 + T cells, dendritic cells, macrophages and neutrophils. Metabolic substrate utilization and integration of cues from energy sensors are critical checkpoints of effector functions in the immune system, with common as well as cell-specific programmes. Patients with SLE and lupus-prone mice present with activated metabolism of CD4 + T cells, and the use of metabolic inhibitors to normalize these features is associated with therapeutic effects. Far less is known about the metabolic requirements of B cells and myeloid cells in SLE. This article reviews current knowledge of the alterations in metabolism of immune cells in patients with SLE and mouse models of lupus in the context of what is known about the metabolic regulation of these cells during normal immune responses. How these alterations might contribute to lupus pathogenesis and how they can be targeted therapeutically are also discussed.

  13. Cell-laden hydrogel/titanium microhybrids: Site-specific cell delivery to metallic implants for improved integration.

    PubMed

    Koenig, Geraldine; Ozcelik, Hayriye; Haesler, Lisa; Cihova, Martina; Ciftci, Sait; Dupret-Bories, Agnes; Debry, Christian; Stelzle, Martin; Lavalle, Philippe; Vrana, Nihal Engin

    2016-03-01

    Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards the titanium beads and fibroblast proliferation was significantly higher in hybrids compared to gel only controls. The MMP (Matrix Metalloproteinase)-sensitive hydrogels induced sprouting by cells in co-culture configuration which was quantified by fluorescence microscopy, confocal microscopy and qRT-PCR (Quantitative Reverse transcription polymerase chain reaction). When the microhybrid up-scaled to 3D thick structures, cellular localisation in specific areas of the 3D titanium structures was achieved, without decreasing overall cell proliferation compared to titanium only scaffolds. Microhybrids of titanium and hydrogels are useful models for deciding the necessary modifications of metallic implants and they can be used as a modelling system for the study of tissue/titanium implant interactions. This article demonstrates a method to apply cell-laden hydrogels to porous titanium implants and a model of titanium/hydrogel interaction at micro-level using titanium microbeads. The feasibility of site-specific modification of titanium implants with cell-laden microgels has been demonstrated. Use of titanium microbeads in combination with hydrogels with conventional analysis techniques as described in the article can facilitate the characterisation of surface modification of titanium in a relevant model system. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Theoretical analysis of insulin-dependent glucose uptake heterogeneity in 3D bioreactor cell culture.

    PubMed

    Magrofuoco, Enrico; Elvassore, Nicola; Doyle, Francis J

    2012-01-01

    Three-dimensional (3D) cell cultures in bioreactors are becoming relevant as models for biological and physiological in vitro studies. In such systems, mathematical models can assist the experiment design that links the macroscopic properties to single-cell responses. We investigated the relationship between biochemical stimuli and cell response within a 3D cell culture in scaffold with heterogeneous porosity. Specifically, we studied the effect of insulin on the local glucose metabolism as a function of 3D pore size distribution. The multiscale mathematical model combines the mass transport within a 3D scaffold and a signaling pathways model. It considers the scaffold heterogeneity, and it describes spatiotemporal concentration of metabolites, biochemical stimuli, and cell density. The signaling model was integrated into this model, linking the local insulin concentration at cell membrane to the glucose uptake rate through glucose transporter type 4 (GLUT4) translocation from the cytosol to the cell membrane. The integrated model determines the cell response heterogeneities in a single channel, hence the biological response distribution in a 3D system. It also provides macroscopic outcomes to evaluate the feasibility of an experimental measurement of the system response. From our analysis, it became apparent that the flow rate is the most important operative variable, and that an optimum value ensures a fast and detectable cell response. This model on insulin-dependent glucose consumption rate offers insight into the cell metabolism physiology, which is a fundamental requirement for the study metabolic disorder such as Type 2 diabetes mellitus, in which the physiological insulin-dependent glucose metabolism is impaired. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  15. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform.

    PubMed

    Candiello, Joseph; Grandhi, Taraka Sai Pavan; Goh, Saik Kia; Vaidya, Vimal; Lemmon-Kishi, Maya; Eliato, Kiarash Rahmani; Ros, Robert; Kumta, Prashant N; Rege, Kaushal; Banerjee, Ipsita

    2018-05-25

    Organoids, which exhibit spontaneous organ specific organization, function, and multi-cellular complexity, are in essence the in vitro reproduction of specific in vivo organ systems. Recent work has demonstrated human pluripotent stem cells (hPSCs) as a viable regenerative cell source for tissue-specific organoid engineering. This is especially relevant for engineering islet organoids, due to the recent advances in generating functional beta-like cells from human pluripotent stem cells. In this study, we report specific engineering of regenerative islet organoids of precise size and cellular heterogeneity, using a novel hydrogel system, Amikagel. Amikagel facilitated controlled and spontaneous aggregation of human embryonic stem cell derived pancreatic progenitor cells (hESC-PP) into robust homogeneous spheroids. This platform further allowed fine control over the integration of multiple cell populations to produce heterogeneous spheroids, which is a necessity for complex organoid engineering. Amikagel induced hESC-PP spheroid formation enhanced pancreatic islet-specific Pdx-1 and NKX6.1 gene and protein expression, while also increasing the percentage of committed population. hESC-PP spheroids were further induced towards mature beta-like cells which demonstrated increased Beta-cell specific INS1 gene and C-peptide protein expression along with functional insulin production in response to in vitro glucose challenge. Further integration of hESC-PP with biologically relevant supporting endothelial cells resulted in multicellular organoids which demonstrated spontaneous maturation towards islet-specific INS1 gene and C-peptide protein expression along with a significantly developed extracellular matrix support system. These findings establish Amikagel -facilitated platform ideal for islet organoid engineering. Copyright © 2018. Published by Elsevier Ltd.

  16. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  17. Integration of autopatching with automated pipette and cell detection in vitro

    PubMed Central

    Wu (吴秋雨), Qiuyu; Kolb, Ilya; Callahan, Brendan M.; Su, Zhaolun; Stoy, William; Kodandaramaiah, Suhasa B.; Neve, Rachael; Zeng, Hongkui; Boyden, Edward S.; Forest, Craig R.

    2016-01-01

    Patch clamp is the main technique for measuring electrical properties of individual cells. Since its discovery in 1976 by Neher and Sakmann, patch clamp has been instrumental in broadening our understanding of the fundamental properties of ion channels and synapses in neurons. The conventional patch-clamp method requires manual, precise positioning of a glass micropipette against the cell membrane of a visually identified target neuron. Subsequently, a tight “gigaseal” connection between the pipette and the cell membrane is established, and suction is applied to establish the whole cell patch configuration to perform electrophysiological recordings. This procedure is repeated manually for each individual cell, making it labor intensive and time consuming. In this article we describe the development of a new automatic patch-clamp system for brain slices, which integrates all steps of the patch-clamp process: image acquisition through a microscope, computer vision-based identification of a patch pipette and fluorescently labeled neurons, micromanipulator control, and automated patching. We validated our system in brain slices from wild-type and transgenic mice expressing channelrhodopsin 2 under the Thy1 promoter (line 18) or injected with a herpes simplex virus-expressing archaerhodopsin, ArchT. Our computer vision-based algorithm makes the fluorescent cell detection and targeting user independent. Compared with manual patching, our system is superior in both success rate and average trial duration. It provides more reliable trial-to-trial control of the patching process and improves reproducibility of experiments. PMID:27385800

  18. Design and specification of a centralized manufacturing data management and scheduling system

    NASA Technical Reports Server (NTRS)

    Farrington, Phillip A.

    1993-01-01

    As was revealed in a previous study, the Materials and Processes Laboratory's Productivity Enhancement Complex (PEC) has a number of automated production areas/cells that are not effectively integrated, limiting the ability of users to readily share data. The recent decision to utilize the PEC for the fabrication of flight hardware has focused new attention on the problem and brought to light the need for an integrated data management and scheduling system. This report addresses this need by developing preliminary designs specifications for a centralized manufacturing data management and scheduling system for managing flight hardware fabrication in the PEC. This prototype system will be developed under the auspices of the Integrated Engineering Environment (IEE) Oversight team and the IEE Committee. At their recommendation the system specifications were based on the fabrication requirements of the AXAF-S Optical Bench.

  19. Clinical indices of in vivo biocompatibility: the role of ex vivo cell function studies and effluent markers in peritoneal dialysis patients.

    PubMed

    Mackenzie, Ruth; Holmes, Clifford J; Jones, Suzanne; Williams, John D; Topley, Nicholas

    2003-12-01

    Clinical indices of in vivo biocompatibility: The role of ex vivo cell function studies and effluent markers in peritoneal dialysis patients. Over the past 20 years, studies of the biocompatibility profile of peritoneal dialysis solutions (PDF) have evolved from initial in vitro studies assessing the impact of solutions on leukocyte function to evaluations of mesothelial cell behavior. More recent biocompatibility evaluations have involved assessments of the impact of PDF on membrane integrity and cell function in peritoneal dialysis (PD) patients. The development of ex vivo systems for the evaluation of in vivo cell function, and effluent markers of membrane integrity and inflammation in patients exposed both acutely and chronically to conventional and new PDF will be interpreted in the context of our current understanding of the biology of the dialyzed peritoneum. The available data indicate that exposure of the peritoneal environment to more biocompatible PDF is associated with improvements in peritoneal cell function, alterations in markers of membrane integrity, and reduced local inflammation. These data suggest that more biocompatible PDF will have a positive impact on host defense, peritoneal homeostasis, and the long-term preservation of peritoneal membrane function in PD patients.

  20. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-07-07

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.

  1. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum

    PubMed Central

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-01-01

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels. PMID:26100881

  2. Thermophotovoltaic Energy Conversion for Space Applications

    NASA Astrophysics Data System (ADS)

    Teofilo, V. L.; Choong, P.; Chen, W.; Chang, J.; Tseng, Y.-L.

    2006-01-01

    Thermophotovoltaic (TPV) energy conversion cells have made steady and over the years considerable progress since first evaluated by Lockheed Martin for direct conversion using nuclear power sources in the mid 1980s. The design trades and evaluations for application to the early defensive missile satellites of the Strategic Defense Initiative found the cell technology to be immature with unacceptably low cell efficiencies comparable to thermoelectric of <10%. Rapid advances in the epitaxial growth technology for ternary compound semiconductors, novel double hetero-structure junctions, innovative monolithic integrated cell architecture, and bandpass tandem filter have, in concert, significantly improved cell efficiencies to 25% with the promise of 35% using solar cell like multi-junction approach in the near future. Recent NASA sponsored design and feasibility testing programs have demonstrated the potential for 19% system efficiency for 100 We radioisotopic power sources at an integrated specific power of ~14 We/kg. Current state of TPV cell technology however limits the operating temperature of the converter cells to < 400K due to radiator mass consideration. This limitation imposes no system mass penalty for the low power application for use with radioisotopes power sources because of the high specific power of the TPV cell converters. However, the application of TPV energy conversion for high power sources has been perceived as having a major impediment above 1 kWe due to the relative low waste heat rejection temperature. We explore this limitation and compare the integrated specific power of TPV converters with current and projected TPV cells with other advanced space power conversion technologies. We find that when the redundancy needed required for extended space exploration missions is considered, the TPV converters have a much higher range of applicability then previously understood. Furthermore, we believe that with a relatively modest modifications of the current epitaxial growth in MOCVD, an optimal cell architecture for elevated TPV operation can be found to out-perform the state-of-the-art TPV at an elevated temperature.

  3. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells.

    PubMed

    Liao, Hsin-Kai; Gu, Ying; Diaz, Arturo; Marlett, John; Takahashi, Yuta; Li, Mo; Suzuki, Keiichiro; Xu, Ruo; Hishida, Tomoaki; Chang, Chan-Jung; Esteban, Concepcion Rodriguez; Young, John; Izpisua Belmonte, Juan Carlos

    2015-03-10

    To combat hostile viruses, bacteria and archaea have evolved a unique antiviral defense system composed of clustered regularly interspaced short palindromic repeats (CRISPRs), together with CRISPR-associated genes (Cas). The CRISPR/Cas9 system develops an adaptive immune resistance to foreign plasmids and viruses by creating site-specific DNA double-stranded breaks (DSBs). Here we adapt the CRISPR/Cas9 system to human cells for intracellular defense against foreign DNA and viruses. Using HIV-1 infection as a model, our results demonstrate that the CRISPR/Cas9 system disrupts latently integrated viral genome and provides long-term adaptive defense against new viral infection, expression and replication in human cells. We show that engineered human-induced pluripotent stem cells stably expressing HIV-targeted CRISPR/Cas9 can be efficiently differentiated into HIV reservoir cell types and maintain their resistance to HIV-1 challenge. These results unveil the potential of the CRISPR/Cas9 system as a new therapeutic strategy against viral infections.

  4. A site-specific genetic modification for induction of pluripotency and subsequent isolation of derived lung alveolar epithelial type II cells.

    PubMed

    Yan, Qing; Quan, Yuan; Sun, Huanhuan; Peng, Xinmiao; Zou, Zhengyun; Alcorn, Joseph L; Wetsel, Rick A; Wang, Dachun

    2014-02-01

    Human induced pluripotent stem cells (hiPSCs) have great therapeutic potential in repairing defective lung alveoli. However, genetic abnormalities caused by vector integrations and low efficiency in generating hiPSCs, as well as difficulty in obtaining transplantable hiPSC-derived cell types are still major obstacles. Here we report a novel strategy using a single nonviral site-specific targeting vector with a combination of Tet-On inducible gene expression system, Cre/lox P switching gene expression system, and alveolar epithelial type II cell (ATIIC)-specific Neomycin(R) transgene expression system. With this strategy, a single copy of all of the required transgenes can be specifically knocked into a site immediately downstream of β-2-microglobulin (B2M) gene locus at a high frequency, without causing B2M dysfunction. Thus, the expression of reprogramming factors, Oct4, Sox2, cMyc, and Klf4, can be precisely regulated for efficient reprogramming of somatic cells into random integration-free or genetic mutation-free hiPSCs. The exogenous reprogramming factor transgenes can be subsequently removed after reprogramming by transient expression of Cre recombinase, and the resulting random integration-free and exogenous reprogramming factor-free hiPSCs can be selectively differentiated into a homogenous population of ATIICs. In addition, we show that these hiPSC-derived ATIICs exhibit ultrastructural characteristics and biological functions of normal ATIICs. When transplanted into bleomycin-challenged mice lungs, hiPSC-derived ATIICs efficiently remain and re-epithelialize injured alveoli to restore pulmonary function, preventing lung fibrosis and increasing survival without tumorigenic side effect. This strategy allows for the first time efficient generation of patient-specific ATIICs for possible future clinical applications. © 2013 AlphaMed Press.

  5. A site-specific genetic modification for induction of pluripotency and subsequent isolation of derived lung alveolar epithelial type II cells

    PubMed Central

    Yan, Qing; Quan, Yuan; Sun, Huanhuan; Peng, Xinmiao; Zou, Zhengyun; Alcorn, Joseph L.; Wetsel, Rick A.; Wang, Dachun

    2013-01-01

    Human induced pluripotent stem cells (hiPSCs) have great therapeutic potential in repairing defective lung alveoli. However, genetic abnormalities caused by vector-integrations and low efficiency in generating hiPSCs, as well as difficulty in obtaining transplantable hiPSC-derived cell types, are still major obstacles. Here we report a novel strategy using a single non-viral site-specific-targeting vector with a combination of Tet-On inducible gene expression system, Cre/lox P switching gene expression system, and alveolar epithelial type II cell (ATIIC)-specific NeomycinR trangene expression system. With this strategy, a single copy of all of the required transgenes can be specifically knocked into a site immediately downstream of beta-2-microglobulin (B2M) gene locus at a high frequency, without causing B2M dysfunction. Thus, the expression of reprogramming factors, Oct4, Sox2, cMyc and Klf4, can be precisely regulated for efficient reprogramming of somatic cells into random-integration-free or genetic mutation-free hiPSCs. The exogenous reprogramming factor transgenes can be subsequently removed after reprogramming by transient expression of Cre recombinase, and the resulting random-integration-free and exogenous reprogramming-factor-free hiPSCs can be selectively differentiated into a homogenous population of ATIICs. In addition, we show that these hiPSC-derived ATIICs exhibit ultra-structural characteristics and biological functions of normal ATIICs. When transplanted into bleomycin-challenged mice lungs, hiPSC-derived ATIICs efficiently remain and re-epithelialize injured alveoli to restore pulmonary function, preventing lung fibrosis and increasing survival without tumorigenic side effect. This strategy allows for the first time efficient generation of patient-specific ATIICs for possible future clinical applications. PMID:24123810

  6. The xipotl Mutant of Arabidopsis Reveals a Critical Role for Phospholipid Metabolism in Root System Development and Epidermal Cell Integrity

    PubMed Central

    Cruz-Ramírez, Alfredo; López-Bucio, José; Ramírez-Pimentel, Gabriel; Zurita-Silva, Andrés; Sánchez-Calderon, Lenin; Ramírez-Chávez, Enrique; González-Ortega, Emmanuel; Herrera-Estrella, Luis

    2004-01-01

    Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity. PMID:15295103

  7. A fuel cell balance of plant test facility

    NASA Astrophysics Data System (ADS)

    Dicks, A. L.; Martin, P. A.

    Much attention is focused in the fuel cell community on the development of reliable stack technology, but to successfully exploit fuel cells, they must form part of integrated power generation systems. No universal test facilities exist to evaluate SOFC stacks and comparatively little research has been undertaken concerning the issues of the rest of the system, or balance of plant (BOP). BG, in collaboration with Eniricerche, has therefore recently designed and built a test facility to evaluate different configurations of the BOP equipment for a 1-5 kWe solid oxide fuel cell (SOFC) stack. Within this BOP project, integrated, dynamic models have been developed. These have shown that three characteristic response times exist when the stack load is changed and that three independent control loops are required to manage the almost instantaneous change in power output from an SOFC stack, maintain the fuel utilisation and control the stack temperature. Control strategies and plant simplifications, arising from the dynamic modelling, have also been implemented in the BOP test facility. An SOFC simulator was designed and integrated into the control system of the test rig to behave as a real SOFC stack, allowing the development of control strategies without the need for a real stack. A novel combustor has been specifically designed, built and demonstrated to be capable of burning the low calorific anode exhaust gas from an SOFC using the oxygen depleted cathode stream. High temperature, low cost, shell and tube heat exchangers have been shown to be suitable for SOFC systems. Sealing of high temperature anode recirculation fans has, however, been shown to be a major issue and identified as a key area for further investigation.

  8. A study of pile-up in integrated time-correlated single photon counting systems

    NASA Astrophysics Data System (ADS)

    Arlt, Jochen; Tyndall, David; Rae, Bruce R.; Li, David D.-U.; Richardson, Justin A.; Henderson, Robert K.

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  9. A study of pile-up in integrated time-correlated single photon counting systems.

    PubMed

    Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  10. A Low-Noise, Modular, and Versatile Analog Front-End Intended for Processing In Vitro Neuronal Signals Detected by Microelectrode Arrays

    PubMed Central

    Regalia, Giulia; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2015-01-01

    The collection of good quality extracellular neuronal spikes from neuronal cultures coupled to Microelectrode Arrays (MEAs) is a binding requirement to gather reliable data. Due to physical constraints, low power requirement, or the need of customizability, commercial recording platforms are not fully adequate for the development of experimental setups integrating MEA technology with other equipment needed to perform experiments under climate controlled conditions, like environmental chambers or cell culture incubators. To address this issue, we developed a custom MEA interfacing system featuring low noise, low power, and the capability to be readily integrated inside an incubator-like environment. Two stages, a preamplifier and a filter amplifier, were designed, implemented on printed circuit boards, and tested. The system is characterized by a low input-referred noise (<1 μV RMS), a high channel separation (>70 dB), and signal-to-noise ratio values of neuronal recordings comparable to those obtained with the benchmark commercial MEA system. In addition, the system was successfully integrated with an environmental MEA chamber, without harming cell cultures during experiments and without being damaged by the high humidity level. The devised system is of practical value in the development of in vitro platforms to study temporally extended neuronal network dynamics by means of MEAs. PMID:25977683

  11. A low-noise, modular, and versatile analog front-end intended for processing in vitro neuronal signals detected by microelectrode arrays.

    PubMed

    Regalia, Giulia; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2015-01-01

    The collection of good quality extracellular neuronal spikes from neuronal cultures coupled to Microelectrode Arrays (MEAs) is a binding requirement to gather reliable data. Due to physical constraints, low power requirement, or the need of customizability, commercial recording platforms are not fully adequate for the development of experimental setups integrating MEA technology with other equipment needed to perform experiments under climate controlled conditions, like environmental chambers or cell culture incubators. To address this issue, we developed a custom MEA interfacing system featuring low noise, low power, and the capability to be readily integrated inside an incubator-like environment. Two stages, a preamplifier and a filter amplifier, were designed, implemented on printed circuit boards, and tested. The system is characterized by a low input-referred noise (<1 μV RMS), a high channel separation (>70 dB), and signal-to-noise ratio values of neuronal recordings comparable to those obtained with the benchmark commercial MEA system. In addition, the system was successfully integrated with an environmental MEA chamber, without harming cell cultures during experiments and without being damaged by the high humidity level. The devised system is of practical value in the development of in vitro platforms to study temporally extended neuronal network dynamics by means of MEAs.

  12. Embedded system based on PWM control of hydrogen generator with SEPIC converter

    NASA Astrophysics Data System (ADS)

    Fall, Cheikh; Setiawan, Eko; Habibi, Muhammad Afnan; Hodaka, Ichijo

    2017-09-01

    The objective of this paper is to design and to produce a micro electrical plant system based on fuel cell for teaching material-embedded systems in technical vocational training center. Based on this, the student can experience generating hydrogen by fuel cells, controlling the rate of hydrogen generation by the duty ration of single-ended primary-inductor converter(SEPIC), drawing the curve rate of hydrogen to duty ratio, generating electrical power by using hydrogen, and calculating the fuel cell efficiency when it is used as electrical energy generator. This project is of great importance insofar as students will need to acquire several skills to be able to realize it such as continuous DC DC conversion and the scientific concept behind the converter, the regulation of systems with integral proportional controllers, the installation of photovoltaic cells, the use of high-tech sensors, microcontroller programming, object-oriented programming, mastery of the fuel cell syste

  13. Application of the monolithic solid oxide fuel cell to space power systems

    NASA Astrophysics Data System (ADS)

    Myles, Kevin M.; Bhattacharyya, Samit K.

    1991-01-01

    The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented—the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system.

  14. Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology.

    PubMed

    Aricescu, A Radu; Owens, Raymond J

    2013-06-01

    Mammalian cells are rapidly becoming the system of choice for the production of recombinant glycoproteins for structural biology applications. Their use has enabled the structural investigation of a whole new set of targets including large, multi-domain and highly glycosylated eukaryotic cell surface receptors and their supra-molecular assemblies. We summarize the technical advances that have been made in mammalian expression technology and highlight some of the structural insights that have been obtained using these methods. Looking forward, it is clear that mammalian cell expression will provide exciting and unique opportunities for an integrative approach to the structural study of proteins, especially of human origin and medically relevant, by bridging the gap between the purified state and the cellular context. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  16. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOEpatents

    Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.

    1998-01-01

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

  17. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandhauer, Todd M.; Farmer, Joseph C.

    A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of themore » multiplicity of sensors, so that the thermal runaway event is rapidly quenched.« less

  18. INTEGRATION OF SYSTEMS GLYCOBIOLOGY WITH BIOINFORMATICS TOOLBOXES, GLYCOINFORMATICS RESOURCES AND GLYCOPROTEOMICS DATA

    PubMed Central

    Liu, Gang; Neelamegham, Sriram

    2015-01-01

    The glycome constitutes the entire complement of free carbohydrates and glycoconjugates expressed on whole cells or tissues. ‘Systems Glycobiology’ is an emerging discipline that aims to quantitatively describe and analyse the glycome. Here, instead of developing a detailed understanding of single biochemical processes, a combination of computational and experimental tools are used to seek an integrated or ‘systems-level’ view. This can explain how multiple biochemical reactions and transport processes interact with each other to control glycome biosynthesis and function. Computational methods in this field commonly build in silico reaction network models to describe experimental data derived from structural studies that measure cell-surface glycan distribution. While considerable progress has been made, several challenges remain due to the complex and heterogeneous nature of this post-translational modification. First, for the in silico models to be standardized and shared among laboratories, it is necessary to integrate glycan structure information and glycosylation-related enzyme definitions into the mathematical models. Second, as glycoinformatics resources grow, it would be attractive to utilize ‘Big Data’ stored in these repositories for model construction and validation. Third, while the technology for profiling the glycome at the whole-cell level has been standardized, there is a need to integrate mass spectrometry derived site-specific glycosylation data into the models. The current review discusses progress that is being made to resolve the above bottlenecks. The focus is on how computational models can bridge the gap between ‘data’ generated in wet-laboratory studies with ‘knowledge’ that can enhance our understanding of the glycome. PMID:25871730

  19. First experience with particle-in-cell plasma physics code on ARM-based HPC systems

    NASA Astrophysics Data System (ADS)

    Sáez, Xavier; Soba, Alejandro; Sánchez, Edilberto; Mantsinen, Mervi; Mateo, Sergi; Cela, José M.; Castejón, Francisco

    2015-09-01

    In this work, we will explore the feasibility of porting a Particle-in-cell code (EUTERPE) to an ARM multi-core platform from the Mont-Blanc project. The used prototype is based on a system-on-chip Samsung Exynos 5 with an integrated GPU. It is the first prototype that could be used for High-Performance Computing (HPC), since it supports double precision and parallel programming languages.

  20. Electrochemical Technology for Oxygen Removal and Measurement in the CELSS Test Facility, Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Drews, Michael E.; Covington, Al (Technical Monitor)

    1994-01-01

    The Life Support Flight Program is evaluating regenerative technologies, including those that utilize higher plants, as a means to reduce resupply over long duration space missions. Constructed to assist in the evaluation process is the CELSS Test Facility Engineering Development Unit (CTF-EDU) an environmentally closed (less than 1% mass and thermal leakage) technology test bed. This ground based fully functional prototype is currently configured to support crop growth, utilizing the power, volume and mass resources allocated for two space station racks. Sub-system technologies were selected considering their impact on available resources, their ability to minimize integration issues, and their degree of modularity. Gas specific mass handling is a key sub-system technology for both biological and physical/chemical life support technologies. The CTF-EDU requires such a system to accommodate non-linear oxygen production from crops, by enabling the control system to change and sustain partial pressure set points in the growth volume. Electrochemical cells are one of the technologies that were examined for oxygen handling in the CTF-EDU. They have been additionally considered to meet other regenerative life support functions, such as oxygen generation, the production of potable water from composite waste streams, and for having the potential to integrate life support functions with those of propulsion and energy storage. An oxygen removal system based on an electrochemical cell was chosen for the EDU due to it's low power, volume and mass requirements (10W, 0.000027 cu m, 4.5 kg) and because of the minimal number of integration considerations. Unlike it's competitors, the system doesn't require post treatments of its byproducts, or heat and power intensive regenerations, that also mandate system redundancy or cycling. The EDUs oxygen removal system only requires two resources, which are already essential to controlled plant growth: electricity and water. Additionally, the amount of oxygen that is removed from the EDU is directly proportional to the cell input current via Faraday's constant, potentially allowing for a mol/electron measurement of photosynthetic rate. The currently operative oxygen removal system has maintained reduced oxygen set points within the EDU, and preparation is underway to verify of the accuracy of electrochemical measurement of oxygen production and hence, photosynthesis. This paper examines the working principles of the electrochemical cell, outlines the overall design of the oxygen removal system and its integration with other EDU subsystems, and summarizes test results obtained over crop growth cycles in the CTF-EDU.

  1. A new analytical platform based on field-flow fractionation and olfactory sensor to improve the detection of viable and non-viable bacteria in food.

    PubMed

    Roda, Barbara; Mirasoli, Mara; Zattoni, Andrea; Casale, Monica; Oliveri, Paolo; Bigi, Alessandro; Reschiglian, Pierluigi; Simoni, Patrizia; Roda, Aldo

    2016-10-01

    An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system analysis.

  2. Lab-on-a-chip for the isolation and characterization of circulating tumor cells.

    PubMed

    Stakenborg, Tim; Liu, Chengxu; Henry, Olivier; O'Sullivan, Ciara K; Fermer, Christian; Roeser, Tina; Ritzi-Lehnert, Marion; Hauch, Sigfried; Borgen, Elin; Laddach, Nadja; Lagae, Liesbet

    2010-01-01

    A smart miniaturized system is being proposed for the isolation and characterization of circulating tumor cells (CTCs) directly from blood. Different microfluidic modules have been designed for cell enrichment and -counting, multiplex mRNA amplification as well as DNA detection. With the different modules at hand, future effort will focus on the integration of the modules in a fully automated, single platform.

  3. Integrated photovoltaic-thermal solar energy conversion systems

    NASA Technical Reports Server (NTRS)

    Samara, G. A.

    1975-01-01

    A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.

  4. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery.

    PubMed

    Bosl, William J

    2007-02-15

    Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer.

  5. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  6. Hijacking of the mismatch repair system to cause CAG expansion and cell death in neurodegenerative disease.

    PubMed

    McMurray, Cynthia T

    2008-07-01

    Mammalian cells have evolved sophisticated DNA repair systems to correct mispaired or damaged bases and extrahelical loops. Emerging evidence suggests that, in some cases, the normal DNA repair machinery is "hijacked" to become a causative factor in mutation and disease, rather than act as a safeguard of genomic integrity. In this review, we consider two cases in which active MMR leads to mutation or to cell death. There may be similar mechanisms by which uncoupling of normal MMR recognition from downstream repair allows triplet expansions underlying human neurodegenerative disease, or cell death in response to chemical lesion.

  7. Design and Analysis of Photovoltaic (PV) Power Plant at Different Locations in Malaysia

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.

    2018-05-01

    Power generation from sun oriented vitality through a photovoltaic (PV) system is ended up prevalent over the world due to clean innovation. Geographical location of Malaysia is very favorable for PV power generation system. The Malaysian government has also taken different steps to increase the use of solar energy especially by emphasizing on building integrated PV (BIPV) system. Comparative study on the feasibility of BIPV installation at the different location of Malaysia is rarely found. On the other hand, solar cell temperature has a negative impact on the electricity generation. So in this study cost effectiveness and initial investment cost of building integrated grid connected solar PV power plant in different regions of Malaysia have been carried. The effect of PV solar cell temperature on the payback period (PBP) is also investigated. Highest PBP is 12.38 years at Selangor and lowest PBP is 9.70 years at Sabah (Kota Kinabalu). Solar cell temperature significantly increases the PBP of PV plant and highest 14.64% and lowest 13.20% raise of PBP are encountered at Penang and Sarawak respectively.

  8. Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System.

    PubMed

    Withers, David R; Hepworth, Matthew R

    2017-01-01

    The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of "exogenous" signals, such as dietary metabolites and commensal microbes, and "endogenous" host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a "communications hub" in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell-cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases.

  9. Optical Spatial integration methods for ambiguity function generation

    NASA Technical Reports Server (NTRS)

    Tamura, P. N.; Rebholz, J. J.; Daehlin, O. T.; Lee, T. C.

    1981-01-01

    A coherent optical spatial integration approach to ambiguity function generation is described. It uses one dimensional acousto-optic Bragg cells as input tranducers in conjunction with a space variant linear phase shifter, a passive optical element, to generate the two dimensional ambiguity function in one exposure. Results of a real time implementation of this system are shown.

  10. CHOmine: an integrated data warehouse for CHO systems biology and modeling

    PubMed Central

    Hanscho, Michael; Ruckerbauer, David E.; Zanghellini, Jürgen; Borth, Nicole

    2017-01-01

    Abstract The last decade has seen a surge in published genome-scale information for Chinese hamster ovary (CHO) cells, which are the main production vehicles for therapeutic proteins. While a single access point is available at www.CHOgenome.org, the primary data is distributed over several databases at different institutions. Currently research is frequently hampered by a plethora of gene names and IDs that vary between published draft genomes and databases making systems biology analyses cumbersome and elaborate. Here we present CHOmine, an integrative data warehouse connecting data from various databases and links to other ones. Furthermore, we introduce CHOmodel, a web based resource that provides access to recently published CHO cell line specific metabolic reconstructions. Both resources allow to query CHO relevant data, find interconnections between different types of data and thus provides a simple, standardized entry point to the world of CHO systems biology. Database URL: http://www.chogenome.org PMID:28605771

  11. The Computing And Interdisciplinary Systems Office: Annual Review and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2003-01-01

    The goal of this research is to develop an advanced engineering analysis system that enables high-fidelity, multi-disciplinary, full propulsion system simulations to be performed early in the design process (a virtual test cell that integrates propulsion and information technologies). This will enable rapid, high-confidence, cost-effective design of revolutionary systems.

  12. Renewable Hydrogen-Economically Viable: Integration into the U.S. Transportation Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer; Peters, Mike; Muratori, Matteo

    The U.S. transportation sector is expected to meet numerous goals in differing applications. These goals address security, safety, fuel source, emissions reductions, advanced mobility models, and improvements in quality and accessibility. Solutions to meeting these goals include a variety of alternative-fuel technologies, including batteries, fuel cells, synthetic fuels, and biofuels, as well as modifying how current transportation systems are used and integrating new systems, such as storing renewable energy. Overall, there are many combinations of problems, objectives, and solutions.

  13. Genetic recombination pathways and their application for genome modification of human embryonic stem cells.

    PubMed

    Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri

    2010-10-01

    Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens. 2010 Elsevier Inc. All rights reserved.

  14. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    PubMed

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models.

  15. Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks

    PubMed Central

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models. PMID:24244124

  16. The LAM-PCR Method to Sequence LV Integration Sites.

    PubMed

    Wang, Wei; Bartholomae, Cynthia C; Gabriel, Richard; Deichmann, Annette; Schmidt, Manfred

    2016-01-01

    Integrating viral gene transfer vectors are commonly used gene delivery tools in clinical gene therapy trials providing stable integration and continuous gene expression of the transgene in the treated host cell. However, integration of the reverse-transcribed vector DNA into the host genome is a potentially mutagenic event that may directly contribute to unwanted side effects. A comprehensive and accurate analysis of the integration site (IS) repertoire is indispensable to study clonality in transduced cells obtained from patients undergoing gene therapy and to identify potential in vivo selection of affected cell clones. To date, next-generation sequencing (NGS) of vector-genome junctions allows sophisticated studies on the integration repertoire in vitro and in vivo. We have explored the use of the Illumina MiSeq Personal Sequencer platform to sequence vector ISs amplified by non-restrictive linear amplification-mediated PCR (nrLAM-PCR) and LAM-PCR. MiSeq-based high-quality IS sequence retrieval is accomplished by the introduction of a double-barcode strategy that substantially minimizes the frequency of IS sequence collisions compared to the conventionally used single-barcode protocol. Here, we present an updated protocol of (nr)LAM-PCR for the analysis of lentiviral IS using a double-barcode system and followed by deep sequencing using the MiSeq device.

  17. Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning.

    PubMed

    Lin, Alexander Y T; Pearson, Bret J

    2014-03-01

    During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/β-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues.

  18. NASA PEMFC Development Background and History

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. Four vendors have designed and fabricated non-flow-through fuel cell stacks under NASA funding. One of these vendors is considered the "baseline" vendor, and the remaining three vendors are competing for the "alternate" role. Each has undergone testing of their stack hardware integrated with a NASA balance-of-plant. Future Exploration applications for this hardware include primary fuel cells for a Lunar Lander and regenerative fuel cells for Surface Systems.

  19. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective.

    PubMed

    Shao, Yue; Fu, Jianping

    2014-03-12

    The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrochemical Characterization Laboratory | Energy Systems Integration

    Science.gov Websites

    proton exchange membrane fuel cells. Photo of an NREL researcher evaluating catalyst activity in the the following capabilities: Determination and benchmarking of novel electrocatalyst activity

  1. Bioinspired decision architectures containing host and microbiome processing units.

    PubMed

    Heyde, K C; Gallagher, P W; Ruder, W C

    2016-09-27

    Biomimetic robots have been used to explore and explain natural phenomena ranging from the coordination of ants to the locomotion of lizards. Here, we developed a series of decision architectures inspired by the information exchange between a host organism and its microbiome. We first modeled the biochemical exchanges of a population of synthetically engineered E. coli. We then built a physical, differential drive robot that contained an integrated, onboard computer vision system. A relay was established between the simulated population of cells and the robot's microcontroller. By placing the robot within a target-containing a two-dimensional arena, we explored how different aspects of the simulated cells and the robot's microcontroller could be integrated to form hybrid decision architectures. We found that distinct decision architectures allow for us to develop models of computation with specific strengths such as runtime efficiency or minimal memory allocation. Taken together, our hybrid decision architectures provide a new strategy for developing bioinspired control systems that integrate both living and nonliving components.

  2. Nitric oxide signaling: systems integration of oxygen balance in defense of cell integrity.

    PubMed

    Gong, Li; Pitari, Giovanni M; Schulz, Stephanie; Waldman, Scott A

    2004-01-01

    Nitric oxide has emerged as a ubiquitous signaling molecule subserving diverse pathophysiologic processes, including cardiovascular homeostasis and its decompensation in atherogenesis. Recent insights into molecular mechanisms regulating nitric oxide generation and the rich diversity of mechanisms by which it propagates signals reveal the role of this simple gas as a principle mediator of systems integration of oxygen balance. The molecular lexicon by which nitric oxide propagates signals encompasses the elements of posttranslational modification of proteins by redox-based nitrosylation of transition metal centers and free thiols. Spatial and temporal precision and specificity of signal initiation, amplification, and propagation are orchestrated by dynamic assembly of supramolecular complexes coupling nitric oxide production to upstream and downstream components in specific subcellular compartments. The concept of local paracrine signaling by nitric oxide over subcellular distances for short durations has expanded to include endocrine-like effects over anatomic spatial and temporal scales. From these insights emerges a role for nitric oxide in integrating system responses controlling oxygen supply and demand to defend cell integrity in the face of ischemic challenge. In this context, nitric oxide coordinates the respiratory cycle to acquire and deliver oxygen to target tissues by regulating hemoglobin function and vascular smooth muscle contractility and matches energy supply and demand by down-regulating energy-requiring functions while shifting metabolism to optimize energy production. Insights into mechanisms regulating nitric oxide production and signaling and their integration into responses mediating homeostasis place into specific relief the role of those processes in pathophysiology. Indeed, endothelial dysfunction associated with altered production of nitric oxide regulating tissue integrity contributes to the pathogenesis underlying atherogenesis. Moreover, this central role in pathophysiology identifies nitric oxide signaling as a key target for novel therapeutic interventions to minimize irreversible tissue damage associated with ischemic cardiovascular disease.

  3. [Alternatives to animal testing].

    PubMed

    Fabre, Isabelle

    2009-11-01

    The use of alternative methods to animal testing are an integral part of the 3Rs concept (refine, reduce, replace) defined by Russel & Burch in 1959. These approaches include in silico methods (databases and computer models), in vitro physicochemical analysis, biological methods using bacteria or isolated cells, reconstructed enzyme systems, and reconstructed tissues. Emerging "omic" methods used in integrated approaches further help to reduce animal use, while stem cells offer promising approaches to toxicologic and pathophysiologic studies, along with organotypic cultures and bio-artificial organs. Only a few alternative methods can so far be used in stand-alone tests as substitutes for animal testing. The best way to use these methods is to integrate them in tiered testing strategies (ITS), in which animals are only used as a last resort.

  4. Culture Models for Studying Thyroid Biology and Disorders

    PubMed Central

    Toda, Shuji; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Matsunobu, Aki; Yamamoto, Mihoko; Ootani, Akifumi; Yamasaki, Fumio; Koike, Eisuke; Sugihara, Hajime

    2011-01-01

    The thyroid is composed of thyroid follicles supported by extracellular matrix, capillary network, and stromal cell types such as fibroblasts. The follicles consist of thyrocytes and C cells. In this microenvironment, thyrocytes are highly integrated in their specific structural and functional polarization, but monolayer and floating cultures cannot allow thyrocytes to organize the follicles with such polarity. In contrast, three-dimensional (3-D) collagen gel culture enables thyrocytes to form 3-D follicles with normal polarity. However, these systems never reconstruct the follicles consisting of both thyrocytes and C cells. Thyroid tissue-organotypic culture retains 3-D follicles with both thyrocytes and C cells. To create more appropriate experimental models, we here characterize four culture systems above and then introduce the models for studying thyroid biology and disorders. Finally, we propose a new approach to the cell type-specific culture systems on the basis of in vivo microenvironments of various cell types. PMID:22363871

  5. A discrete model of Drosophila eggshell patterning reveals cell-autonomous and juxtacrine effects.

    PubMed

    Fauré, Adrien; Vreede, Barbara M I; Sucena, Elio; Chaouiya, Claudine

    2014-03-01

    The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems.

  6. Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue.

    PubMed

    Fromherz, Peter

    2006-12-01

    We consider the direct electrical interfacing of semiconductor chips with individual nerve cells and brain tissue. At first, the structure of the cell-chip contact is studied. Then we characterize the electrical coupling of ion channels--the electrical elements of nerve cells--with transistors and capacitors in silicon chips. On that basis it is possible to implement signal transmission between microelectronics and the microionics of nerve cells in both directions. Simple hybrid neuroelectronic systems are assembled with neuron pairs and with small neuronal networks. Finally, the interfacing with capacitors and transistors is extended to brain tissue cultured on silicon chips. The application of highly integrated silicon chips allows an imaging of neuronal activity with high spatiotemporal resolution. The goal of the work is an integration of neuronal network dynamics with digital electronics on a microscopic level with respect to experiments in brain research, medical prosthetics, and information technology.

  7. Spatial pattern of long-distance symplasmic transport and communication in trees

    PubMed Central

    Sokołowska, Katarzyna; Brysz, Alicja Maria; Zagórska-Marek, Beata

    2013-01-01

    Symplasmic short- and long-distance communication may be regulated at different levels of plant body organization. It depends on cell-to-cell transport modulated by plasmodesmata conductivity and frequency but above all on morphogenetic fields that integrate a plant at the supracellular level. Their control of physiological and developmental processes is especially important in trees, where the continuum consists of 3-dimensional systems of: 1) stem cells in cambium, and 2) living parenchyma cells in the secondary conductive tissues. We found that long-distance symplasmic transport in trees is spatially regulated. Uneven distribution of fluorescent tracer in cambial cells along the branches examined illustrates an unknown intrinsic phenomenon that can possibly be important for plant organism integration. Here we illustrate the spatial dynamics of symplasmic transport in cambium, test and exclude the role of callose in its regulation, and discuss the mechanism that could possibly be responsible for the maintenance of this spatial pattern. PMID:23989002

  8. Tumor Immunotherapy by Gene-circuit Recruited Immunomodulatory Systems (TIGRIS) for Prostate Cancer

    DTIC Science & Technology

    2017-09-01

    Fu, X., Huang, W., and Cai, Z. (2014). Syn- thesizing AND gate genetic circuits based on CRISPR -Cas9 for identification of bladder cancer cells. Nat...and Lu, T.K. (2014). Multi- plexed and programmable regulation of gene networks with an integrated RNA and CRISPR /Cas toolkit in human cells. Mol

  9. Ground Vehicle Power and Mobility Overview - Germany Visit

    DTIC Science & Technology

    2011-11-10

    the current and future force Survivability Robotics – Intelligent Systems Vehicle Electronics & Architecture Fuel, Water, Bridging ...Test Cell • Engine Generator Test Lab • Full Vehicle Environmental Test Cell • Hybrid Electric Reconfigurable Moveable Integration Testbed (HERMIT...Converter Conducted competitive runoff evaluations on Bridging Boat engine candidates Completed independent durability assessment of OEM

  10. Lipopolysaccharide-induced early response genes in bovine peripheral blood mononuclear cells implicate GLG1/E-selectin as a key ligand–receptor interaction

    USDA-ARS?s Scientific Manuscript database

    This study uses a systems biology approach, integrating global gene expression information and knowledge of the regulatory events in cells to identify transcription networks controlling peripheral blood mononuclear cells’ (PBMCs) immune response to lipopolysaccharide (LPS) and to identify the molecu...

  11. Pathogenesis and spectrum of autoimmunity.

    PubMed

    Perl, Andras

    2012-01-01

    The immune system specifically recognizes and eliminates foreign antigens and, thus, protects integrity of the host. During maturation of the immune system, tolerance mechanisms develop that prevent or inhibit potentially harmful reactivities to self-antigens. Autoreactive B and T cells that are generated during immune responses are eliminated by apoptosis in the thymus, lymph nodes, or peripheral circulation or actively suppressed by regulatory T cells. However, autoreactive cells may survive due to failure of apoptosis or molecular mimicry, i.e., presentation and recognition of cryptic epitopes of self-antigens, or aberrant lymphokine production. Preservation of the host requires the development of immune responses to foreign antigen and tolerance to self-antigens. Autoimmunity results from a breakdown of tolerance to self-antigens through an interplay of genetic and environmental factors.One of the basic functions of the immune system is to specifically recognize and eliminate foreign antigens and, thus, protect integrity of the host. Through rearrangements and somatic mutations of various gene segments encoding T and B cell receptors and antibody molecules, the immune system acquires tremendous diversity. During maturation of the immune system, recognition of self-antigens plays an important role in shaping the repertoires of immune receptors. Tolerance mechanisms develop that prevent or inhibit potentially harmful reactivities to self-antigens. These self-defense mechanisms are mediated on the levels of central and peripheral tolerance, i.e., autoreactive T cells are either eliminated by apoptosis in the thymus, lymph nodes, or peripheral circulation or actively suppressed by regulatory T cells. Likewise, autoreactive B cells are eliminated in the bone marrow or peripheral lymphoid organs. However, immune responses triggered by foreign antigens may be sustained by molecular mimicry, i.e., presentation and recognition of cryptic epitopes of self-antigens. Further downstream, execution of immune responses depends on the functioning of intracellular signaling networks and the cooperation of many cell types communicating via surface receptors, cytokines, chemokines, and antibody molecules. Therefore, autoimmunity represents the end result of the breakdown of one or multiple basic mechanisms of immune tolerance (Table 1).

  12. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    The design details of an optimized integrated residential photovoltaic module/array are presented. This selected design features a waterproofing and mounting scheme which was devised to simplify the installation procedures by the avoidance of complex gasketed or caulked joints, while still maintaining a high confidence that the watertight integrity of the integral roofing surface will be achieved for the design lifetime of the system. The production and installation costs for the selected module/array design are reported for a range of annual production rates as a function of the cost of solar cells.

  13. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution.

    PubMed

    B, Vinoth; Lai, Xin-Ji; Lin, Yu-Chih; Tu, Han-Yen; Cheng, Chau-Jern

    2018-04-13

    Digital holographic microtomography is a promising technique for three-dimensional (3D) measurement of the refractive index (RI) profiles of biological specimens. Measurement of the RI distribution of a free-floating single living cell with an isotropic superresolution had not previously been accomplished. To the best of our knowledge, this is the first study focusing on the development of an integrated dual-tomographic (IDT) imaging system for RI measurement of an unlabelled free-floating single living cell with an isotropic superresolution by combining the spatial frequencies of full-angle specimen rotation with those of beam rotation. A novel 'UFO' (unidentified flying object) like shaped coherent transfer function is obtained. The IDT imaging system does not require any complex image-processing algorithm for 3D reconstruction. The working principle was successfully demonstrated and a 3D RI profile of a single living cell, Candida rugosa, was obtained with an isotropic superresolution. This technology is expected to set a benchmark for free-floating single live sample measurements without labeling or any special sample preparations for the experiments.

  14. Stem cell sources for regenerative medicine.

    PubMed

    Riazi, Ali M; Kwon, Sarah Y; Stanford, William L

    2009-01-01

    Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.

  15. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    NASA Astrophysics Data System (ADS)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  16. An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites.

    PubMed

    Ma, Sanyuan; Liu, Yue; Liu, Yuanyuan; Chang, Jiasong; Zhang, Tong; Wang, Xiaogang; Shi, Run; Lu, Wei; Xia, Xiaojuan; Zhao, Ping; Xia, Qingyou

    2017-04-01

    Genome editing enabled unprecedented new opportunities for targeted genomic engineering of a wide variety of organisms ranging from microbes, plants, animals and even human embryos. The serial establishing and rapid applications of genome editing tools significantly accelerated Bombyx mori (B. mori) research during the past years. However, the only CRISPR system in B. mori was the commonly used SpCas9, which only recognize target sites containing NGG PAM sequence. In the present study, we first improve the efficiency of our previous established SpCas9 system by 3.5 folds. The improved high efficiency was also observed at several loci in both BmNs cells and B. mori embryos. Then to expand the target sites, we showed that two newly discovered CRISPR system, SaCas9 and AsCpf1, could also induce highly efficient site-specific genome editing in BmNs cells, and constructed an integrated CRISPR system. Genome-wide analysis of targetable sites was further conducted and showed that the integrated system cover 69,144,399 sites in B. mori genome, and one site could be found in every 6.5 bp. The efficiency and resolution of this CRISPR platform will probably accelerate both fundamental researches and applicable studies in B. mori, and perhaps other insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Design of mini-multi-gas monitoring system based on IR absorption

    NASA Astrophysics Data System (ADS)

    Tan, Qiu-lin; Zhang, Wen-dong; Xue, Chen-yang; Xiong, Ji-jun; Ma, You-chun; Wen, Fen

    2008-07-01

    In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually an incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use the mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.

  18. Development of A General Principle Solution Forisoagrinet Compliant Networking System Components in Animal Husbandry

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Arne; Herd, Daniel; Röβler, Benjamin; Gallmann, Eva; Jungbluth, Thomas

    In pig production software and electronic systems are widely used for process control and management. Unfortunately most devices on farms are proprietary solutions and autonomically working. To unify data communication of devices in agricultural husbandry, the international standard ISOagriNET (ISO 17532:2007) was developed. It defines data formats and exchange protocols, to link up devices like climate controls, feeding systems and sensors, but also management software. The aim of the research project, "Information and Data Collection in Livestock Systems" is to develop an ISOagriNET compliant IT system, a so called Farming Cell. It integrates all electronic components to acquire the available data and information for pig fattening. That way, an additional benefit to humans, animals and the environment regarding process control and documentation, can be generated. Developing the Farming Cell is very complex; in detail it is very difficult and long-winded to integrate hardware and software by various vendors into an ISOagriNET compliant IT system. This ISOagriNET prototype shows as a test environment the potential of this new standard.

  19. Development and application of a recombination-based library versus library high- throughput yeast two-hybrid (RLL-Y2H) screening system.

    PubMed

    Yang, Fang; Lei, Yingying; Zhou, Meiling; Yao, Qili; Han, Yichao; Wu, Xiang; Zhong, Wanshun; Zhu, Chenghang; Xu, Weize; Tao, Ran; Chen, Xi; Lin, Da; Rahman, Khaista; Tyagi, Rohit; Habib, Zeshan; Xiao, Shaobo; Wang, Dang; Yu, Yang; Chen, Huanchun; Fu, Zhenfang; Cao, Gang

    2018-02-16

    Protein-protein interaction (PPI) network maintains proper function of all organisms. Simple high-throughput technologies are desperately needed to delineate the landscape of PPI networks. While recent state-of-the-art yeast two-hybrid (Y2H) systems improved screening efficiency, either individual colony isolation, library preparation arrays, gene barcoding or massive sequencing are still required. Here, we developed a recombination-based 'library vs library' Y2H system (RLL-Y2H), by which multi-library screening can be accomplished in a single pool without any individual treatment. This system is based on the phiC31 integrase-mediated integration between bait and prey plasmids. The integrated fragments were digested by MmeI and subjected to deep sequencing to decode the interaction matrix. We applied this system to decipher the trans-kingdom interactome between Mycobacterium tuberculosis and host cells and further identified Rv2427c interfering with the phagosome-lysosome fusion. This concept can also be applied to other systems to screen protein-RNA and protein-DNA interactions and delineate signaling landscape in cells.

  20. Integrative systems and synthetic biology of cell-matrix adhesion sites.

    PubMed

    Zamir, Eli

    2016-09-02

    The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.

Top