Science.gov

Sample records for cell transformation neoplastic

  1. Neoplastic transformation of human cells

    NASA Technical Reports Server (NTRS)

    Goth-Goldstein, Regine

    1995-01-01

    The goal of this project was to gain a better understanding of the cellular mechanisms of cancer induction by ionizing radiation as a risk assessment for workers subjected to high LET irradiation such as that found in space. The following ions were used for irradiation: Iron, Argon, Neon, and Lanthanum. Two tests were performed: growth in low serum and growth in agar were used as indicators of cell transformation. The specific aims of this project were to: (1) compare the effectiveness of various ions on degree of transformation of a single dose of the same RBE; (2) determine if successive irradiations with the same ion (Ge 600 MeV/u) increases the degree of transformation; (3) test if clones with the greatest degree of transformation produce tumors in nude mice; and (4) construct a cell hybrid of a transformed and control (non-transformed) clone. The cells used for this work are human mammary epithelial cells with an extended lifespan and selected for growth in MEM + 10% serum.

  2. Neoplastic transformation of human cells in vitro.

    PubMed

    Rhim, J S

    1993-01-01

    Efforts to investigate the progression of events that lead normal human cells in culture to become neoplastic in response to carcinogenic agents have been aided by the development of the suitable in vitro model systems. For initial human cell transformation studies, a flat, nontumorigenic clonal line, originally derived from a human osteosarcoma (HOS), was used. When treated with chemical carcinogens such as N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and 3-methyl-cholanthrene (3MC), the HOS cells underwent morphological alterations and acquired tumorigenic properties. These cell lines were very useful inasmuch as a non-ras cellular transforming gene, met, and an activated H-ras oncogene have been isolated from MNNG-transformed and 3MC-transformed HOS lines, respectively, by DNA transfection procedure. Alteration of p53 gene in chemically transformed HOS cell lines has recently been shown. Although carcinogens cause human cancer, normal human cells in culture have proven difficult to achieve. Neoplastic transformation of human cells in culture has recently been achieved by a stepwise fashion-immortalization and conversion of the immortalized cells to tumorigenic cells. One of the critical initial events in the progression of normal human cells to tumor cells is the escape from cellular senescence. With few exceptions, normal human cells require immortalization to provide a practical system for transformation studies. Thus, the role of carcinogenic agents in the development of human cancers is now being defined using a variety of human cells. The neoplastic transformation in human cell cultures is reviewed. In doing so, this author attempts to put into perspective the history of human cell transformation by carcinogenic agents, and to discuss the current state of the art in transformation of human cells in culture; thus providing insight into the molecular and cellular mechanisms involved in the conversion of normal cells to a neoplastic state of growth.

  3. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  4. Neoplastic cell transformation by high-LET radiation: Molecular mechanisms

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Mei, Man-Tong; Tobias, Cornelius A.

    Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step processes, we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 Å may cause cell transformation and that two DNA breaks formed within 20 Å may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double strand breaks in mammalian cells. At

  5. Neoplastic cell transformation by high-LET radiation: molecular mechanisms.

    PubMed

    Yang, T C; Craise, L M; Mei, M T; Tobias, C A

    1989-01-01

    Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step process [correction of processes], we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 angstroms may cause cell transformation and that two DNA breaks formed within 20 angstroms may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double

  6. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  7. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  8. Neoplastic transformation of hamster embyro cells by heavy ions.

    PubMed

    Han, Z; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-01-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/micrometer. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/micrometer, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.

  9. Relocalization of cell adhesion molecules during neoplastic transformation of human fibroblasts.

    PubMed

    Belgiovine, Cristina; Chiodi, Ilaria; Mondello, Chiara

    2011-11-01

    Studying neoplastic transformation of telomerase immortalized human fibroblasts (cen3tel), we found that the transition from normal to tumorigenic cells was associated with the loss of growth contact inhibition, the acquisition of an epithelial-like morphology and a change in actin organization, from stress fibers to cortical bundles. We show here that these variations were paralleled by an increase in N-cadherin expression and relocalization of different adhesion molecules, such as N-cadherin, α-catenin, p-120 and β-catenin. These proteins presented a clear membrane localization in tumorigenic cells compared to a more diffuse, cytoplasmic distribution in primary fibroblasts and non-tumorigenic immortalized cells, suggesting that tumorigenic cells could form strong cell-cell contacts and cell contacts did not induce growth inhibition. The epithelial-like appearance of tumorigenic cells did not reflect a mesenchymal-epithelial transition; in fact, cen3tel cells expressed vimentin and did not express cytokeratins at all transformation stages. Moreover, they did not express epithelial proteins such as occluding and claudin-1. In contrast, ZO-1 showed higher levels and a more defined membrane localization in tumorigenic cells compared to non-tumorigenic cells; this confirms its role in adherens junction formation in mesenchymal cells and is in agreement with the strong cell-cell contact formation by neoplastically transformed cells. Finally, we found α-catenin and ZO-1 nuclear localization in non-transformed cells, suggestive of possible additional roles of these proteins besides cell junction formation.

  10. Neoplastic cell transformation by energetic heavy ions and its modification with chemical agents

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    One of the major deleterious late effects of ionizing radiation is related to the induction of neoplasms. In the present report recent experimental results on neoplastic cell transformation by heavy ions are presented, and possible means to circumvent the carcinogenic effect of space radiation are discussed. Biological effects observed in experiments involving the use of energetic heavy ions accelerated at the Bevalac suggest that many of the biological effects observed in earlier space flight experiments may be due to space radiation, particularly cosmic rays. It is found that the effect of radiation on cell transformation is dose-rate dependent. The frequency of neoplastic transformation for a given dose decreases with a decrease of dose rate of Co-60 gamma rays. It is found that various chemical agents give radiation protection, including DMSO.

  11. Somatic mutation and cell differentiation in neoplastic transformation

    SciTech Connect

    Huberman, E.; Collart, F.R.

    1987-01-01

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs.

  12. Upregulation of Twist in oesophageal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis

    PubMed Central

    Yuen, Hiu‐Fung; Chan, Yuen‐Piu; Wong, Michelle Lok‐Yee; Kwok, Wei‐Kei; Chan, Ka‐Kui; Lee, Pin‐Yin; Srivastava, Gopesh; Law, Simon Ying‐Kit; Wong, Yong‐Chuan; Wang, Xianghong; Chan, Kwok‐Wah

    2007-01-01

    Background The antiapoptotic and epithelial–mesenchymal transition activities of Twist have been implicated in the neoplastic transformation and the development of metastasis, respectively. Upregulation of Twist, described in several types of human cancer, also acts as a prognostic marker of poor outcome. Aim To investigate Twist expression in oesophageal squamous cell carcinoma (SCC) and its prognostic value in a Chinese cohort of patients with oesophageal SCC. Methods Twist expression in primary oesophageal SCC of 87 Chinese patients was investigated by immunohistochemical staining. Twist protein level in one immortalised normal oesophageal epithelial cell line and six oesophageal SCC cell lines was measured by western blot analysis. Twist mRNA level in 30 pairs of frozen specimens of primary oesophageal SCC and non‐neoplastic oesophageal epithelium from the upper resection margin of corresponding oesophagectomy specimen was also determined by semiquantitative reverse transcription‐PCR. Results It was found that Twist was upregulated in oesophageal SCC cell lines, and its mRNA and protein levels were both increased in oesophageal SCC and the non‐neoplastic oesophageal epithelium (p<0.001). In addition, a high level of Twist expression in oesophageal SCC was significantly associated with a greater risk for the patient of developing distant metastasis within 1 year of oesophagectomy (OR 3.462, 95% CI 1.201 to 9.978; p = 0.022). Conclusions Our results suggest that upregulation of Twist plays a role in the neoplastic transformation to oesophageal SCC and subsequent development of distant metastasis. Twist may serve as a useful prognostic marker for predicting the development of distant metastasis in oesophageal SCC. PMID:16822877

  13. Probiotics against neoplastic transformation of gastric mucosa: Effects on cell proliferation and polyamine metabolism

    PubMed Central

    Russo, Francesco; Linsalata, Michele; Orlando, Antonella

    2014-01-01

    Gastric cancer is still the second leading cause of cancer death worldwide, accounting for about 10% of newly diagnosed neoplasms. In the last decades, an emerging role has been attributed to the relations between the intestinal microbiota and the onset of both gastrointestinal and non-gastrointestinal neoplasms. Thus, exogenous microbial administration of peculiar bacterial strains (probiotics) has been suggested as having a profound influence on multiple processes associated with a change in cancer risk. The internationally accepted definition of probiotics is live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. The possible effects on the gastrointestinal tract following probiotic administration have been investigated in vitro and in animal models, as well as in healthy volunteers and in patients suffering from different human gastrointestinal diseases. Although several evidences are available on the use of probiotics against the carcinogen Helicobacter pylori, little is still known about the potential cross-interactions among probiotics, the composition and quality of intestinal flora and the neoplastic transformation of gastric mucosa. In this connection, a significant role in cell proliferation is played by polyamines (putrescine, spermidine, and spermine). These small amines are required in both pre-neoplastic and neoplastic tissue to sustain the cell growth and the evidences here provided suggest that probiotics may act as antineoplastic agents in the stomach by affecting also the polyamine content and functions. This review will summarize data on the most widely recognized effects of probiotics against neoplastic transformation of gastric mucosa and in particular on their ability in modulating cell proliferation, paying attention to the polyamine metabolism. PMID:25309063

  14. Probiotics against neoplastic transformation of gastric mucosa: effects on cell proliferation and polyamine metabolism.

    PubMed

    Russo, Francesco; Linsalata, Michele; Orlando, Antonella

    2014-10-07

    Gastric cancer is still the second leading cause of cancer death worldwide, accounting for about 10% of newly diagnosed neoplasms. In the last decades, an emerging role has been attributed to the relations between the intestinal microbiota and the onset of both gastrointestinal and non-gastrointestinal neoplasms. Thus, exogenous microbial administration of peculiar bacterial strains (probiotics) has been suggested as having a profound influence on multiple processes associated with a change in cancer risk. The internationally accepted definition of probiotics is live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. The possible effects on the gastrointestinal tract following probiotic administration have been investigated in vitro and in animal models, as well as in healthy volunteers and in patients suffering from different human gastrointestinal diseases. Although several evidences are available on the use of probiotics against the carcinogen Helicobacter pylori, little is still known about the potential cross-interactions among probiotics, the composition and quality of intestinal flora and the neoplastic transformation of gastric mucosa. In this connection, a significant role in cell proliferation is played by polyamines (putrescine, spermidine, and spermine). These small amines are required in both pre-neoplastic and neoplastic tissue to sustain the cell growth and the evidences here provided suggest that probiotics may act as antineoplastic agents in the stomach by affecting also the polyamine content and functions. This review will summarize data on the most widely recognized effects of probiotics against neoplastic transformation of gastric mucosa and in particular on their ability in modulating cell proliferation, paying attention to the polyamine metabolism.

  15. Dose protraction studies with low- and high-LET radiations on neoplastic cell transformation in vitro

    NASA Technical Reports Server (NTRS)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1986-01-01

    The effects of the low- and high-LET radiation (by X-rays, Co-60, and heavy ions) on the transformation of neoplastic cells were studied using cultured C3H10T1/2 mouse embryo cells. The transformed colonies in the confluent cell monolayers were recognized as focuses composed of highly polar fibroblastic multilayered criss-cross arrays of densely stained cells. For the low-LET radiation, there was a decrease in cell killing and cell transformation frequency when cells were irradiated with fractionated doses and at a low dose rate, indicating that cultured mammalian cells can repair both subtransformation and potential transformation lesions. No sparing effect, however, was found for the high-LET radiation. An enhancement of cell transformation was observed for low-dose/rate argon (400 MeV/u; 120 keV/micron) and iron particles (600 MeV/u; 200 keV/micron). The molecular mechanism for this enhancement effect is not known.

  16. Dose protraction studies with low- and high-LET radiations on neoplastic cell transformation in vitro

    NASA Technical Reports Server (NTRS)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1986-01-01

    The effects of the low- and high-LET radiation (by X-rays, Co-60, and heavy ions) on the transformation of neoplastic cells were studied using cultured C3H10T1/2 mouse embryo cells. The transformed colonies in the confluent cell monolayers were recognized as focuses composed of highly polar fibroblastic multilayered criss-cross arrays of densely stained cells. For the low-LET radiation, there was a decrease in cell killing and cell transformation frequency when cells were irradiated with fractionated doses and at a low dose rate, indicating that cultured mammalian cells can repair both subtransformation and potential transformation lesions. No sparing effect, however, was found for the high-LET radiation. An enhancement of cell transformation was observed for low-dose/rate argon (400 MeV/u; 120 keV/micron) and iron particles (600 MeV/u; 200 keV/micron). The molecular mechanism for this enhancement effect is not known.

  17. Radiation-resistant B-1 cells: A possible initiating cells of neoplastic transformation.

    PubMed

    Guimarães-Cunha, Caroline Ferreira; Alvares-Saraiva, Anuska Marcelino; de Souza Apostolico, Juliana; Popi, Ana Flavia

    2016-07-01

    The role of B-1 cells in the hyperproliferative hematologic disease has been described. Several reports bring evidences that B-1 cells are the main cell population in the chronic lymphatic leukemia. It is also described that these cells have an important involvement in the lupus erythematous systemic. The murine model used to investigate both disease models is NZB/NZW. Data from literature point that mutation in micro-RNA 15a and 16 are the responsible for the B-1 hyperplasia in these mice. Interestingly, it was demonstrated that NZB/NZW B-1 cells are radioresistant, contrariwise to observe in other mouse lineage derived B-1 cells and B-2 cells. However, some reports bring evidences that a small percentage of B-1 cells in healthy mice are also able to survive to irradiation. Herein, we aim to investigate the malignant potential of ionizing-radiation resistant B-1 cells in vitro. Our main goal is to establish a model that mimics the neoplastic transformation originate to a damage exposure of DNA, and not only related to intrinsic mutations. Data shown here demonstrated that radiation-resistant B-1 cells were able to survive long periods in culture. Further, these cells show proliferation index increase in relation to non-irradiated B-1 cells. In addition, radiation resistant B-1 cells showed hyperploid, morphologic alterations, increased induction of apoptosis after anti-IgM stimulation. Based on these results, we could suggest that radiation resistant B-1 cells showed some modifications in that could be related to induction of malignant potential.

  18. Diagnostic ultrasound is unable to enhance the rate of neoplastic transformation in cultured mammalian cells.

    PubMed

    Tolsma, S S; Madsen, E L; Chmiel, J; Martin, A O; Bouck, N P

    1991-11-01

    The ability of diagnostic pulsed ultrasound to induce heritable genetic damage of the type that could result in neoplasia was assayed using BHK21/cl 13 hamster cells or normal human fibroblasts as targets. Using an exposure apparatus carefully designed to minimize beam attenuation and reflection, cavitation, and heating, cells were exposed from 20 seconds to 40 minutes either to clinical machines operating at maximum power, or to a highly focused nonclinical transducer at 2900 W/cm2, or to 200 shocks from a lithotripter. No evidence of an increase in the frequency of neoplastically transformed BHK cells or in the frequency of mutant human cells was seen over those found in matched sham-exposed controls.

  19. Neoplastic transformation of cells by soluble but not particulate forms of metals used in orthopaedic implants.

    PubMed

    Doran, A; Law, F C; Allen, M J; Rushton, N

    1998-01-01

    Recent developments in cell culture techniques have made it possible to study the cellular mechanisms involved in carcinogenesis and to apply these methods as screening tools in vitro. This study investigated and compared the ability of the metals most commonly used in orthopedic implants to induce toxicity and neoplastic transformation in the C3H10T1/2 mouse fibroblast cell line. Eight metals (cobalt, chromium, nickel, iron, molybdenum, aluminium, vanadium and titanium) and their alloys (stainless steel, cobalt-chrome alloy and titanium alloy) were tested, both as soluble salts and as solid particles. There were marked differences between the various metals in terms of both toxicity and transforming ability. Significant increases in the incidence of cell transformation were seen with soluble forms of cobalt, chromium, nickel and molybdenum but not with iron, aluminium, vanadium or titanium. For most of the metals. transforming ability was directly related to toxicity, although this correlation did not hold for either molybdenum or vanadium. The physical form of the metal was critically important in determining its effects, and transformation occurred only with soluble metal salts.

  20. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells

    PubMed Central

    Zhang, Shiwu; Mercado-Uribe, Imelda; Sood, Anil; Bast, Robert C.; Liu, Jinsong

    2016-01-01

    Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen. Here we show that immortalized or HRAS-transformed mullerian epithelial cells contain a subpopulation of polyploid giant cells that grow as multicellular spheroids expressing hematopoietic markers in response to treatment with CoCl2. The immortalized or transformed epithelial cells can transdifferentiate into stromal cells when transplanted into nude mice. Immunofluorescent staining revealed expression of stem cell factors OCT4, Nanog, and SOX-2 in spheroid, whereas expression of embryonic stem cell marker SSEA1 was increased in HRAS-transformed cells compared with their immortalized isogenic counterparts. These results suggest that normal mullerian epithelial cells are intrinsically highly plastic, via the formation of polyploid giant cells and activation of embryonic stem-like program, which work together to promote the coevolution of neoplastic epithelial cells and multiple lineage stromal cells. PMID:27382431

  1. DUAL ION EXPOSURE VS. SPLIT-DOSE EXPOSURES IN HUMAN CELL NEOPLASTIC TRANSFORMATION.

    SciTech Connect

    BENNETT, P.V.; CUTTER, N.C.; SUTHERLAND, B.M.

    2006-06-05

    Since radiation fields of space contain many-fold more protons than high atomic number, high energy (HZE) particles, cells in astronaut crews will experience on average several proton hits before an HZE hit. Thus radiation regimes of proton exposure before HZE particle exposure simulate space radiation exposure, and measurement of the frequency of neoplastic transformation of human primary cells to anchorage-independent growth simulates in initial step in cancer induction. Previously our group found that exposure to 20 cGy 1 GeV/n protons followed within about 1 hr by a HZE ion (20 cGy 1 GeV/n Fe or Ti ions) hit gave about a 3-fold increase in transformation frequency ([1]). To provide insight into the H-HZE induced increased transformation frequencies, we asked if split doses of the same ion gave similar increased transformation frequencies. However, the data show that the split dose of 20 cGy plus 20 cGy of either H or HZE ions gave about the same effect as the 40 cGy uninterrupted dose, quite different from the effect of the mixed ion H + HZE irradiation. We also asked if lower proton doses than 20 cGy followed 15 minutes later by 20 cGy of HZE ions gave greater than additive transformation frequencies. Substantial increases in transformation levels were observed for all proton doses tested, including 1 cGy. These results point to the signal importance of protons in affecting the effect of space radiation on human cells.

  2. Neoplastic transformation of rat liver epithelial cells is enhanced by non-transferrin-bound iron

    PubMed Central

    Messner, Donald J; Kowdley, Kris V

    2008-01-01

    Background Iron overload is associated with liver toxicity, cirrhosis, and hepatocellular carcinoma in humans. While most iron circulates in blood as transferrin-bound iron, non-transferrin-bound iron (NTBI) also becomes elevated and contributes to toxicity in the setting of iron overload. The mechanism for iron-related carcinogenesis is not well understood, in part due to a shortage of suitable experimental models. The primary aim of this study was to investigate NTBI-related hepatic carcinogenesis using T51B rat liver epithelial cells, a non-neoplastic cell line previously developed for carcinogenicity and tumor promotion studies. Methods T51B cells were loaded with iron by repeated addition of ferric ammonium citrate (FAC) to the culture medium. Iron internalization was documented by chemical assay, ferritin induction, and loss of calcein fluorescence. Proliferative effects were determined by cell count, toxicity was determined by MTT assay, and neoplastic transformation was assessed by measuring colony formation in soft agar. Cyclin levels were measured by western blot. Results T51B cells readily internalized NTBI given as FAC. Within 1 week of treatment at 200 μM, there were significant but well-tolerated toxic effects including a decrease in cell proliferation (30% decrease, p < 0.01). FAC alone induced little or no colony formation in soft agar. In contrast, FAC addition to cells previously initiated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in a concentration dependent increase in colony formation. This was first detected at 12 weeks of FAC treatment and increased at longer times. At 16 weeks, colony formation increased more than 10 fold in cells treated with 200 μM FAC (p < 0.001). The iron chelator desferoxamine reduced both iron uptake and colony formation. Cells cultured with 200 μM FAC showed decreased cyclin D1, decreased cyclin A, and increased cyclin B1. Conclusion These results establish NTBI as a tumor promoter in T51B rat liver

  3. Identification of the neoplastically transformed cells in Marek's disease herpesvirus-induced lymphomas: recognition by the monoclonal antibody AV37.

    PubMed

    Burgess, Shane C; Davison, T Fred

    2002-07-01

    Understanding the interactions between herpesviruses and their host cells and also the interactions between neoplastically transformed cells and the host immune system is fundamental to understanding the mechanisms of herpesvirus oncology. However, this has been difficult as no animal models of herpesvirus-induced oncogenesis in the natural host exist in which neoplastically transformed cells are also definitively identified and may be studied in vivo. Marek's disease (MD) herpesvirus (MDV) of poultry, although a recognized natural oncogenic virus causing T-cell lymphomas, is no exception. In this work, we identify for the first time the neoplastically transformed cells in MD as the CD4(+) major histocompatibility complex (MHC) class I(hi), MHC class II(hi), interleukin-2 receptor alpha-chain-positive, CD28(lo/-), phosphoprotein 38-negative (pp38(-)), glycoprotein B-negative (gB(-)), alphabeta T-cell-receptor-positive (TCR(+)) cells which uniquely overexpress a novel host-encoded extracellular antigen that is also expressed by MDV-transformed cell lines and recognized by the monoclonal antibody (MAb) AV37. Normal uninfected leukocytes and MD lymphoma cells were isolated directly ex vivo and examined by flow cytometry with MAb recognizing AV37, known leukocyte antigens, and MDV antigens pp38 and gB. CD28 mRNA was examined by PCR. Cell cycle distribution and in vitro survival were compared for each lymphoma cell population. We demonstrate for the first time that the antigen recognized by AV37 is expressed at very low levels by small minorities of uninfected leukocytes, whereas particular MD lymphoma cells uniquely express extremely high levels of the AV37 antigen; the AV37(hi) MD lymphoma cells fulfill the accepted criteria for neoplastic transformation in vivo (protection from cell death despite hyperproliferation, presence in all MD lymphomas, and not supportive of MDV production); the lymphoma environment is essential for AV37(+) MD lymphoma cell survival; pp38 is

  4. Althaea rosea Cavanil and Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase.

    PubMed

    Choi, Eun-Sun; Cho, Sung-Dae; Shin, Ji-Ae; Kwon, Ki Han; Cho, Nam-Pyo; Shim, Jung-Hyun

    2012-10-01

    For thousands of years in Asia, Althaea rosea Cavanil (ARC) and Plantago major L. (PML) have been used as powerful non-toxic therapeutic agents that inhibit inflammation. However, the anticancer mechanisms and molecular targets of ARC and PML are poorly understood, particularly in epidermal growth factor (EGF)-induced neoplastic cell transformation. The aim of this study was to evaluate the chemopreventive effects and mechanisms of the methanol extracts from ARC (MARC) and PML (MPML) in EGF-induced neoplastic cell transformation of JB6 P+ mouse epidermal cells using an MTS assay, anchorage-independent cell transformation assay and western blotting. Our results showed that MARC and MPML significantly suppressed neoplastic cell transformation by inhibiting the kinase activity of the EGF receptor (EGFR). The activation of EGFR by EGF was suppressed by MARC and MPML treatment in EGFR(+/+) cells, but not in EGFR(-/-) cells. In addition, MARC and MPML inhibited EGF-induced cell proliferation in EGFR-expressing murine embryonic fibroblasts (EGFR(+/+)). These results strongly indicate that EGFR targeting by MARC and MPML may be a good strategy for chemopreventive or chemotherapeutic applications.

  5. Radiation-induced neoplastic transformation of C3H10T1/2 cells is suppressed by ascorbic acid

    SciTech Connect

    Yasukawa, M.; Terasima, T.; Seki, M. )

    1989-12-01

    X-ray induced transformation of C3H10T1/2 cells was suppressed in a concentration-dependent manner by administration of ascorbic acid after irradiation (0.1-20 micrograms/ml for the first week) in the culture medium. The dose-response curve was shifted about 60% downward and was slightly steeper in the presence of ascorbic acid (5 micrograms/ml for the first week) than in its absence. The 1-week treatment procedure revealed that cells initiated by radiation remained susceptible to ascorbic acid until the time of morphological phenotype expression. The neoplastically transformed phenotype expressed after incubation for 8 weeks could no longer be suppressed by ascorbic acid even after culture transfer. Similarly, the neoplastically transformed phenotype suppressed for 8 weeks by ascorbic acid treatment was not subsequently expressed in the absence of ascorbic acid. On the basis of the oxygen-detoxifying nature of ascorbic acid, we postulated that expression of the neoplastically transformed phenotype is promoted by reactive oxygen species and peroxy radicals generated in cells during the whole assay period. The data may be useful as a guide for chemopreventive efforts against radiation carcinogenesis.

  6. Neoplastic transformation of C3H 10T1/2 cells: a study with fractionated doses of monoenergetic neutrons.

    PubMed

    Saran, A; Pazzaglia, S; Pariset, L; Rebessi, S; Broerse, J J; Zoetelief, J; Di Majo, V; Coppola, M; Covelli, V

    1994-05-01

    As most occupational and environmental exposures to ionizing radiation are at low dose rates or in small dose fractions, risk estimation requires that the effects of the temporal distribution of dose are taken into account. Previous in vitro studies of oncogenic transformation, as well as in vivo studies of carcinogenesis induced by high-LET radiation, yielded controversial results concerning the presence of an inverse dose-rate effect. The present study tested the influence of one scheme of dose fractionation of monoenergetic neutrons on neoplastic transformation of C3H 10T1/2 cells. Neutrons of 0.5, 1.0 and 6.0 MeV were used. Cells were exposed to doses of 0.25 and 0.5 Gy, given acutely or in five fractions at 2-h intervals. The acute and fractionated irradiations with each energy were done on the same day. No significant difference between the two irradiation modes was found for both cell inactivation and neoplastic transformation at all energies. These results are in agreement with our data for fractionated fission-spectrum neutrons from the RSV-TAPIRO reactor.

  7. Observation of radiation-specific damage in human cells exposed to depleted uranium: dicentric frequency and neoplastic transformation as endpoints.

    PubMed

    Miller, A C; Xu, J; Stewart, M; Brooks, K; Hodge, S; Shi, L; Page, N; McClain, D

    2002-01-01

    Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Published data from our laboratory have demonstrated that DU exposure in vitro to immortalised human osteoblast cells (HOS) is both neoplastically transforming and genotoxic. DU possesses both a radiological (alpha-particle) and chemical (metal) component. Since DU has a low specific activity in comparison to natural uranium, it is not considered to be a significant radiological hazard. The potential contribution of radiation to DU-induced biological effects is unknown and the involvement of radiation in DU-induced biological effects could have significant implications for current risk estimates for internalised DU exposure. Two approaches were used to address this question. The frequency of dicentrics was measured in HOS cells following DU exposure in vitro. Data demonstrated that DU exposure (50 microM, 24 h) induced a significant elevation in dicentric frequency in vitro in contrast to incubation with the heavy metals, nickel and tungsten which did not increase dicentric frequency above background levels. Using the same concentration (50 microM) of three uranyl nitrate compounds that have different uranium isotopic concentrations and therefore, different specific activities, the effect on neoplastic transformation in vitro was examined. HOS cells were exposed to one of three-uranyl nitrate compounds (238U-uranyl nitrate, specific activity 0.33 microCi.g-1; DU-uranyl nitrate, specific activity 0.44 microCi.g-1; and 235U-uranyl nitrate, specific activity 2.2 microCi.g-1) delivered at a concentration of 50 microM for 24 h. Results showed, at equal uranium concentration, there was a specific activity dependent increase in neoplastic transformation frequency. Taken together these data suggest that radiation can play a role in DU-induced biological effects in vitro.

  8. Increased Frequency of Spontaneous Neoplastic Transformation in Progeny of Bystander Cells from Cultures Exposed to Densely Ionizing Radiation

    PubMed Central

    Buonanno, Manuela; de Toledo, Sonia M.; Azzam, Edouard I.

    2011-01-01

    An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons. PMID:21738697

  9. Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells.

    PubMed Central

    Berlingieri, M T; Manfioletti, G; Santoro, M; Bandiera, A; Visconti, R; Giancotti, V; Fusco, A

    1995-01-01

    Elevated expression of the three high-mobility group I (HMGI) proteins (HMGI, HMGY, and HMGI-C) has previously been correlated with the presence of a highly malignant phenotype in epithelial and fibroblastic rat thyroid cells and in experimental thyroid, lung, mammary, and skin carcinomas. Northern (RNA) blot and run-on analyses demonstrated that the induction of HMGI genes in transformed thyroid cells occurs at the transcriptional level. An antisense methodology to block HMGI-C protein synthesis was then used to analyze the role of this protein in the process of thyroid cell transformation. Transfection of an antisense construct for the HMGI-C cDNA into normal thyroid cells, followed by infection with transforming myeloproliferative sarcoma virus or Kirsten murine sarcoma virus, generated cell lines that expressed significant levels of the retroviral transforming oncogenes v-mos or v-ras-Ki and removed the dependency on thyroid-stimulating hormones. However, in contrast with untransfected cells or cells transfected with the sense construct, those containing the antisense construct did not demonstrate the appearance of any malignant phenotypic markers (growth in soft agar and tumorigenicity in athymic mice). A great reduction of the HMGI-C protein levels and the absence of the HMGI(Y) proteins was observed in the HMGI-C antisense-transfected, virally infected cells. Therefore, the HMGI-C protein seems to play a key role in the transformation of these thyroid cells. PMID:7862147

  10. Specific aneusomies in Chinese hamster cells at different stages of neoplastic transformation, initiated by nitrosomethylurea

    PubMed Central

    Fabarius, Alice; Willer, Andreas; Yerganian, George; Hehlmann, Ruediger; Duesberg, Peter

    2002-01-01

    Aneuploidy is ubiquitous in cancer, and its phenotypes are inevitably dominant and abnormal. In view of these facts we recently proposed that aneuploidy is sufficient for carcinogenesis generating cancer-specific aneusomies via a chain reaction of autocatalytic aneuploidizations. According to this hypothesis a carcinogen initiates carcinogenesis via a random aneuploidy. Aneuploidy then generates transformation stage-specific aneusomies and further random aneusomies autocatalytically, because it renders chromosome segregation and repair mechanisms error-prone. The hypothesis predicts that several specific aneusomies can cause the same cancers, because several chromosomes also cooperate in normal differentiation. Here we describe experiments on the Chinese hamster (CH) that confirm this hypothesis. (i) Random aneuploidy was detected before transformation in up to 90% of CH embryo cells treated with the carcinogen nitrosomethylurea (NMU). (ii) Several specific aneusomies were found in 70–100% of the aneuploid cells from colonies transformed with NMU in vitro and from tumors generated by NMU-transformed cells in syngeneic animals. Among the aneuploid in vitro transformed cells, 79% were trisomic for chromosome 3, and 59% were monosomic for chromosome 10, compared with 8% expected for random distribution of any aneusomy among the 12 CH chromosomes. Moreover, 52% shared both trisomy 3 and monosomy 10 compared with 0.6% expected for random distribution of any two aneusomies. Among the tumor cells, 65% were trisomic for chromosome 3, 51% were trisomic for chromosome 5, and 30% shared both trisomies. Aneuploid cells without these specific aneusomies may contain minor transformation-specific aneusomies or may be untransformed. (iii) Random aneusomies and structurally altered chromosomes increased with the generations of transformed cells to the point where their origins became unidentifiable in tumors. We conclude that specific aneusomies are necessary for carcinogenesis

  11. Mobile phone base station radiation does not affect neoplastic transformation in BALB/3T3 cells.

    PubMed

    Hirose, H; Suhara, T; Kaji, N; Sakuma, N; Sekijima, M; Nojima, T; Miyakoshi, J

    2008-01-01

    A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields affect malignant transformation or other cellular stress responses. Our group previously reported that DNA strand breaks were not induced in human cells exposed to 2.1425 GHz Wideband Code Division Multiple Access (W-CDMA) radiation up to 800 mW/kg from mobile radio base stations employing the IMT-2000 cellular system. In the current study, BALB/3T3 cells were continuously exposed to 2.1425 GHz W-CDMA RF fields at specific absorption rates (SARs) of 80 and 800 mW/kg for 6 weeks and malignant cell transformation was assessed. In addition, 3-methylcholanthrene (MCA)-treated cells were exposed to RF fields in a similar fashion, to assess for effects on tumor promotion. Finally, the effect of RF fields on tumor co-promotion was assessed in BALB/3T3 cells initiated with MCA and co-exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). At the end of the incubation period, transformation dishes were fixed, stained with Giemsa, and scored for morphologically transformed foci. No significant differences in transformation frequency were observed between the test groups exposed to RF signals and the sham-exposed negative controls in the non-, MCA-, or MCA plus TPA-treated cells. Our studies found no evidence to support the hypothesis that RF fields may affect malignant transformation. Our results suggest that exposure to low-level RF radiation of up to 800 mW/kg does not induce cell transformation, which causes tumor formation. (c) 2007 Wiley-Liss, Inc.

  12. Role of H-Ras/ERK signaling in carbon nanotube-induced neoplastic-like transformation of human mesothelial cells

    PubMed Central

    Lohcharoenkal, Warangkana; Wang, Liying; Stueckle, Todd A.; Park, Jino; Tse, William; Dinu, Cerasela-Zoica; Rojanasakul, Yon

    2014-01-01

    Rapid development and deployment of engineered nanomaterials such as carbon nanotubes (CNTs) in various commercial and biomedical applications have raised concerns about their potential adverse health effects, especially their long-term effects which have not been well addressed. We demonstrated here that prolonged exposure of human mesothelial cells to single-walled CNT (SWCNT) induced neoplastic-like transformation as indicated by anchorage-independent cell growth and increased cell invasiveness. Such transformation was associated with an up-regulation of H-Ras and activation of ERK1/2. Downregulation of H-Ras by siRNA or inactivation of ERK by chemical inhibitor effectively inhibited the aggressive phenotype of SWCNT-exposed cells. Integrin alpha V and cortactin, but not epithelial-mesenchymal transition (EMT) transcriptional regulators, were up-regulated in the SWCNT-exposed cells, suggesting their role in the aggressive phenotype. Cortactin expression was shown to be controlled by the H-Ras/ERK signaling. Thus, our results indicate a novel role of H-Ras/ERK signaling and cortactin in the aggressive transformation of human mesothelial cells by SWCNT. PMID:24971065

  13. Multistep nature of X-ray-induced neoplastic transformation in golden hamster embryo cells: expression of transformed phenotypes and stepwise changes in karyotypes

    SciTech Connect

    Suzuki, K.; Suzuki, F.; Watanabe, M.; Nikaido, O.

    1989-04-15

    We have examined the expression of transformed phenotypes and genetic changes associated with the expression of each transformed phenotype after X-ray irradiation. Unirradiated cells grown at a constant growth rate until 8 passages (population doubling number, 15) exhibited little morphological change and ceased to divide thereafter. X-irradiated cells escaped from senescence and showed morphological alteration and anchorage independence after a population doubling number of 20. The acquisition of tumorigenicity in nude mice was observed much later (35 population doublings after irradiation). From cytogenetic analysis, all anchorage-independent clones were consistently found to have trisomy of chromosome 7. Furthermore, cells derived from tumors contained three copies of chromosome 9q in addition to the trisomy of chromosome 7. We have not detected any augmented expression of v-Ha-ras- and v-myc-related oncogenes with RNA dot-blot analysis and could not find activation of any type of oncogenes by NIH3T3 transfection experiments. Our studies demonstrated that X-ray-induced neoplastic transformation is a multistep phenomenon and that the numerical change of specific chromosomes may play an important role in the expression of each transformed phenotype. The results suggest that different endogenous oncogenes, other than the ras gene family and myc oncogene, could be responsible for the progressive nature of neoplastic transformation.

  14. Appalachian mountaintop mining particulate matter induces neoplastic transformation of human bronchial epithelial cells and promotes tumor formation.

    PubMed

    Luanpitpong, Sudjit; Chen, Michael; Knuckles, Travis; Wen, Sijin; Luo, Juhua; Ellis, Emily; Hendryx, Michael; Rojanasakul, Yon

    2014-11-04

    Epidemiological studies suggest that living near mountaintop coal mining (MTM) activities is one of the contributing factors for high lung cancer incidence. The purpose of this study was to investigate the long-term carcinogenic potential of MTM particulate matter (PMMTM) exposure on human bronchial epithelial cells. Our results show that chronic exposure (3 months) to noncytotoxic, physiological relevant concentration (1 μg/mL) of PMMTM, but not control particle PMCON, induced neoplastic transformation, accelerated cell proliferation, and enhanced cell migration of the exposed lung cells. Xenograft transplantation of the PMMTM-exposed cells in mice caused no apparent tumor formation, but promoted tumor growth of human lung carcinoma H460 cells, suggesting the tumor-promoting effect of PMMTM. Chronic exposure to the main inorganic chemical constituent of PMMTM, molybdenum but not silica, similarly induced cell transformation and tumor promotion, suggesting the contribution of molybdenum, at least in part, in the PMMTM effects. These results provide new evidence for the carcinogenic potential of PMMTM and support further risk assessment and implementation of exposure control for PMMTM.

  15. Cerebral chemical dominance and neural regulation of cell division, cell proliferation, neoplastic transformation, and genomic function.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-05-01

    The study assessed the isoprenoid pathway, digoxin synthesis, and neurotransmitter patterns in individuals of differing hemispheric dominance, neurogenetic disorders, and neoplasms. The HMG CoA reductase activity, serum digoxin, magnesium, tryptophan catabolites, tyrosine catabolites, and RBC membrane Na+-K+ ATPase activity were measured in individuals of differing hemispheric dominance. The digoxin status, membrane Na+-K+ ATPase activity, and serum magnesium were assessed in Huntington's disease, trisomy 21, glioblastoma multiforme, and non-Hodgkin's lymphoma (high grade lymphoma). The results showed that right hemispheric, chemically dominant individuals had elevated digoxin synthesis, increased tryptophan catabolites, and reduced tyrosine catabolites, and membrane Na+-K+ ATPase with hypomagnesemia. Left hemispheric, chemically dominant individuals had the opposite patterns. In neurogenetic disorders and neo plasms also hyperdigoxinemia induced membrane Na+-K+ ATPase inhibition, and hypomagnesemia similar to right hemispheric chemical dominance could be demonstrated. The role of hemispheric chemical dominance and hypothalamic digoxin secretion play a key role in the regulation of cell differentiation/proliferation and genomic function. Ninety-five percent of the patients with neurogenetic disorders and neoplasms were right-handed/left hemispheric dominant by dichotic listening test. However, all of them had biochemical patterns similar to right hemispheric chemical dominance. Hemispheric chemical dominance has no correlation to cerebral dominance detected by handness/dichotic listening test.

  16. Diffusion and Binding of Mismatch Repair Protein, MSH2, in Breast Cancer Cells at Different Stages of Neoplastic Transformation.

    PubMed

    Sigley, Justin; Jarzen, John; Scarpinato, Karin; Guthold, Martin; Pu, Tracey; Nelli, Daniel; Low, Josiah; Bonin, Keith

    2017-01-01

    The interior of cells is a highly complex medium, containing numerous organelles, a matrix of different fibers and a viscous, aqueous fluid of proteins and small molecules. The interior of cells is also a highly dynamic medium, in which many components move, either by active transport or passive diffusion. The mobility and localization of proteins inside cells can provide important insights into protein function and also general cellular properties, such as viscosity. Neoplastic transformation affects numerous cellular properties, and our goal was to investigate the diffusional and binding behavior of the important mismatch repair (MMR) protein MSH2 in live human cells at various stages of neoplastic transformation. Toward this end, noncancerous, immortal, tumorigenic, and metastatic mammary epithelial cells were transfected with EGFP and EGFP-tagged MSH2. MSH2 forms two MMR proteins (MutSα and MutSβ) and we assume MSH2 is in the complex MutSα, though our results are similar in either case. Unlike the MutS complexes that bind to nuclear DNA, EGFP diffuses freely. EGFP and MutSα-EGFP diffusion coefficients were determined in the cytoplasm and nucleus of each cell type using fluorescence recovery after photobleaching. Diffusion coefficients were 14-24 μm2/s for EGFP and 3-7 μm2/s for MutSα-EGFP. EGFP diffusion increased in going from noncancerous to immortal cells, indicating a decrease in viscosity, with smaller changes in subsequent stages. MutSα produces an effective diffusion coefficient that, coupled with the free EGFP diffusion measurements, can be used to extract a pure diffusion coefficient and a pseudo-equilibrium constant K*. The MutSα nuclear K* increased sixfold in the first stage of cancer and then decreased in the more advanced stages. The ratio of nuclear to cytoplasmic K*for MutSα increased almost two orders of magnitude in going from noncancerous to immortal cells, suggesting that this quantity may be a sensitive metric for recognizing the

  17. Diffusion and Binding of Mismatch Repair Protein, MSH2, in Breast Cancer Cells at Different Stages of Neoplastic Transformation

    PubMed Central

    Sigley, Justin; Jarzen, John; Scarpinato, Karin; Guthold, Martin; Pu, Tracey; Nelli, Daniel; Low, Josiah

    2017-01-01

    The interior of cells is a highly complex medium, containing numerous organelles, a matrix of different fibers and a viscous, aqueous fluid of proteins and small molecules. The interior of cells is also a highly dynamic medium, in which many components move, either by active transport or passive diffusion. The mobility and localization of proteins inside cells can provide important insights into protein function and also general cellular properties, such as viscosity. Neoplastic transformation affects numerous cellular properties, and our goal was to investigate the diffusional and binding behavior of the important mismatch repair (MMR) protein MSH2 in live human cells at various stages of neoplastic transformation. Toward this end, noncancerous, immortal, tumorigenic, and metastatic mammary epithelial cells were transfected with EGFP and EGFP-tagged MSH2. MSH2 forms two MMR proteins (MutSα and MutSβ) and we assume MSH2 is in the complex MutSα, though our results are similar in either case. Unlike the MutS complexes that bind to nuclear DNA, EGFP diffuses freely. EGFP and MutSα-EGFP diffusion coefficients were determined in the cytoplasm and nucleus of each cell type using fluorescence recovery after photobleaching. Diffusion coefficients were 14–24 μm2/s for EGFP and 3–7 μm2/s for MutSα-EGFP. EGFP diffusion increased in going from noncancerous to immortal cells, indicating a decrease in viscosity, with smaller changes in subsequent stages. MutSα produces an effective diffusion coefficient that, coupled with the free EGFP diffusion measurements, can be used to extract a pure diffusion coefficient and a pseudo-equilibrium constant K*. The MutSα nuclear K* increased sixfold in the first stage of cancer and then decreased in the more advanced stages. The ratio of nuclear to cytoplasmic K*for MutSα increased almost two orders of magnitude in going from noncancerous to immortal cells, suggesting that this quantity may be a sensitive metric for recognizing

  18. Neoplastic transformation of BALB/3T3 cells and cell cycle of HL-60 cells are inhibited by mango (Mangifera indica L.) juice and mango juice extracts.

    PubMed

    Percival, Susan S; Talcott, Stephen T; Chin, Sherry T; Mallak, Anne C; Lounds-Singleton, Angela; Pettit-Moore, Jennifer

    2006-05-01

    The mango, Mangifera indica L., is a fruit with high levels of phytochemicals, suggesting that it might have chemopreventative properties. In this study, whole mango juice and juice extracts were screened for antioxidant and anticancer activity. Antioxidant activity of the mango juice and juice extracts was measured by 3 standard in vitro methods. The results of the 3 methods were in general agreement, although different radicals were measured in each. Anticancer activity was measured by examining the effect on cell cycle kinetics and the ability to inhibit chemically induced neoplastic transformation of mammalian cell lines. Incubation of HL-60 cells with whole mango juice and mango juice fractions resulted in an inhibition of the cell cycle in the G(0)/G(1) phase. A fraction of the eluted mango juice with low peroxyl radical scavenging ability was most effective in arresting cells in the G(0)/G(1) phase. Whole mango juice was effective in reducing the number of transformed foci in the neoplastic transformation assay in a dose-dependent manner. These techniques provide valuable screening tools for health benefits derived from mango phytochemicals.

  19. Neoplastic transformation of rat thyroid cells requires the junB and fra-1 gene induction which is dependent on the HMGI-C gene product.

    PubMed Central

    Vallone, D; Battista, S; Pierantoni, G M; Fedele, M; Casalino, L; Santoro, M; Viglietto, G; Fusco, A; Verde, P

    1997-01-01

    The expression of the high mobility group I (HMGI)-C chromatin component was shown previously to be essential for the establishment of the neoplastic phenotype in retrovirally transformed thyroid cell lines. To identify possible targets of the HMGI-C gene product, we have analyzed the AP-1 complex in normal, fully transformed and antisense HMGI-C-expressing rat thyroid cells. We show that neoplastic transformation is associated with a drastic increase in AP-1 activity, which reflects multiple compositional changes. The strongest effect is represented by the dramatic junB and fra-1 gene induction, which is prevented in cell lines expressing the antisense HMGI-C. These results indicate that the HMGI-C gene product is essential for the junB and fra-1 transcriptional induction associated with neoplastic transformation. The inhibition of Fra-1 protein synthesis by stable transfection with a fra-1 antisense RNA vector significantly reduces the malignant phenotype of the transformed thyroid cells, indicating a pivotal role for the fra-1 gene product in the process of cellular transformation. PMID:9311991

  20. Ultraviolet light action spectra for neoplastic transformation and lethality of Syrian hamster embryo cells correlate with spectrum for pyrimidine dimer formation in cellular DNA.

    PubMed Central

    Doniger, J; Jacobson, E D; Krell, K; DiPaolo, J A

    1981-01-01

    Action spectra were determined for neoplastic transformation, production of pyrimidine dimers, and lethality in Syrian hamster embryo cells. Of wavelengths between 240 and 313 nm, the most effective were 265 and 270. The relative sensitivities per quantum for transformation, pyrimidine dimer production, and lethality were essentially the same at each of the wavelengths tested. This action spectrum for transformation, which is relevant to carcinogenesis, is similar to spectra obtained previously by measuring other cellular responses in either microbial or mammalian systems. Because the action spectra for cytotoxicity and transformation are the same as the spectrum for dimer production, DNA is suggested as the target for all these processes. PMID:6941297

  1. Neoplastic transformation and tumorigenesis by the human protooncogene MYC.

    PubMed Central

    Ramsay, G M; Moscovici, G; Moscovici, C; Bishop, J M

    1990-01-01

    Damage to the protooncogene MYC has been implicated in the genesis of diverse human tumors, but the tumorigenic potential of the isolated gene has been disputed. Here we report the use of a retroviral vector to test the potency of human MYC for neoplastic transformation in avian cells. We found that sustained and abundant expression of MYC can transform both embryonic fibroblasts and hematopoietic cells and elicit granulocytic leukemias in chickens. Transformation by MYC is accompanied by changes in diverse aspects of cellular phenotype, including morphology, ability to grow in suspension, rate of proliferation, the structure of the cytoskeleton, and the composition of the extracellular matrix. Nevertheless, the biological potency of MYC is inherently constrained when compared to that of the retroviral oncogene v-myc. Our findings enlarge on previous descriptions of neoplastic transformation by MYC and sustain the view that ungoverned expression of the gene can contribute to the genesis of human tumors. Images PMID:2156260

  2. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells

    PubMed Central

    Wang, Liying; Stueckle, Todd A.; Mishra, Anurag; Derk, Raymond; Meighan, Terence; Castranova, Vincent; Rojanasakul, Yon

    2015-01-01

    Accumulating evidence indicates that carbon nanotubes (CNTs) are biopersistent and can cause lung damage. With similar fibrous morphology and mode of exposure to asbestos, a known human carcinogen, growing concern has arisen for elevated risk of CNT-induced lung carcinogenesis; however, relatively little is known about the long-term carcinogenic effect of CNT. Neoplastic transformation is a key early event leading to carcinogenesis. We studied the ability of single- and multi-walled CNTs to induce neoplastic transformation of human lung epithelial cells compared to asbestos. Long-term (6-month) exposure of the cells to occupationally relevant concentrations of CNT in culture caused a neoplastic-like transformation phenotype as demonstrated by increased cell proliferation, anchorage-independent growth, invasion and angiogenesis. Whole-genome expression signature and protein expression analyses showed that single- and multi-walled CNTs shared similar signaling signatures which were distinct from asbestos. These results provide novel toxicogenomic information and suggest distinct particle-associated mechanisms of neoplasia promotion induced by CNTs and asbestos. PMID:23634900

  3. Neoplastic transformation in C3H 10T(1/2) cells after exposure to 835.62 MHz FDMA and 847.74 MHz CDMA radiations.

    PubMed

    Roti Roti JL; Malyapa, R S; Bisht, K S; Ahern, E W; Moros, E G; Pickard, W F; Straube, W L

    2001-01-01

    The effect of radiofrequency (RF) radiation in the cellular phone communication range (835.62 MHz frequency division multiple access, FDMA; 847.74 MHz code division multiple access, CDMA) on neoplastic transformation frequency was measured using the in vitro C3H 10T(1/2) cell transformation assay system. To determine if 835.62 MHz FDMA or 847.74 MHz CDMA radiations have any genotoxic effects that induce neoplastic transformation, C3H 10T(1/2) cells were exposed at 37 degrees C to either of the above radiations [each at a specific absorption rate (SAR) of 0.6 W/kg] or sham-exposed at the same time for 7 days. After the culture medium was changed, the cultures were transferred to incubators and refed with fresh growth medium every 7 days. After 42 days, the cells were fixed and stained with Giemsa, and transformed foci were scored. To determine if exposure to 835.62 MHz FDMA or 847.74 MHz CDMA radiation has any epigenetic effects that can promote neoplastic transformation, cells were first exposed to 4.5 Gy of X rays to induce the transformation process and then exposed to the above radiations (SAR = 0.6 W/kg) in temperature-controlled irradiators with weekly refeeding for 42 days. After both the 7-day RF exposure and the 42-day RF exposure after X irradiation, no statistically significant differences in the transformation frequencies were observed between incubator controls, the sham-exposed (maintained in irradiators without power to the antenna), and the 835.62 MHz FDMA or 847.74 MHz CDMA-exposed groups.

  4. MicroRNA-191, by promoting the EMT and increasing CSC-like properties, is involved in neoplastic and metastatic properties of transformed human bronchial epithelial cells.

    PubMed

    Xu, Wenchao; Ji, Jie; Xu, Yuan; Liu, Yawei; Shi, Le; Liu, Yi; Lu, Xiaolin; Zhao, Yue; Luo, Fei; Wang, Bairu; Jiang, Rongrong; Zhang, Jianping; Liu, Qizhan

    2015-06-01

    Lung cancer is the leading cause of cancer mortality worldwide. A common interest in lung cancer research is the identification of biomarkers for early diagnosis and accurate prognosis. There is increasing evidence that microRNAs (miRNAs) are involved in lung cancer. To explore new biomarkers of chemical exposure in risk assessment of chemical carcinogenesis and lung cancer, we analyzed miRNA expression profiles of human bronchial epithelial (HBE) cells malignantly transformed by arsenite. High-throughput microarray analysis showed that 51 miRNAs were differentially expressed in transformed HBE cells relative to normal HBE cells. In particular, miR-191 was up-regulated in transformed cells. In HBE cells, arsenite induced increases of miR-191 and WT1 levels, decreased BASP1 expression, and activated the Wnt/β-catenin pathway, effects that were blocked by miR-191 knockdown. In addition, a luciferase reporter assay indicated that BASP1 is a direct target of miR-191. By inhibiting the expression of BASP1, miR-191 increased the expression of WT1 to promote activation of Wnt/β-catenin pathway. In transformed cells, inhibition of miR-191 expression blocked the epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties of cells and decreased their migratory capacity and neoplastic properties. Thus, these results demonstrate that miR-191 modulates the EMT and the CSC-like properties of transformed cells and indicate that it is an onco-miR involved in the neoplastic and metastatic properties of transformed cells.

  5. Cellular neoplastic transformation induced by 916 MHz microwave radiation.

    PubMed

    Yang, Lei; Hao, Dongmei; Wang, Minglian; Zeng, Yi; Wu, Shuicai; Zeng, Yanjun

    2012-08-01

    There has been growing concern about the possibility of adverse health effects resulting from exposure to microwave radiations, such as those emitted by mobile phones. The purpose of this study was to investigate the cellular neoplastic transformation effects of electromagnetic fields. 916 MHz continuous microwave was employed in our study to simulate the electromagnetic radiation of mobile phone. NIH/3T3 cells were adopted in our experiment due to their sensitivity to carcinogen or cancer promoter in environment. They were divided randomly into one control group and three microwave groups. The three microwave groups were exposed to 916 MHz EMF for 2 h per day with power density of 10, 50, and 90 w/m(2), respectively, in which 10 w/m(2) was close to intensity near the antenna of mobile phone. The morphology and proliferation of NIH/3T3 cells were examined and furthermore soft agar culture and animal carcinogenesis assay were carried out to determine the neoplastic promotion. Our experiments showed NIH/3T3 cells changed in morphology and proliferation after 5-8 weeks exposure and formed clone in soft agar culture after another 3-4 weeks depending on the exposure intensity. In the animal carcinogenesis study, lumps developed on the back of SCID mice after being inoculated into exposed NIH/3T3 cells for more than 4 weeks. The results indicate that microwave radiation can promote neoplastic transformation of NIH/3T3cells.

  6. Adenomatous Polyposis Coli-Mediated Accumulation of Abasic DNA Lesions Lead to Cigarette Smoke Condensate-Induced Neoplastic Transformation of Normal Breast Epithelial Cells1

    PubMed Central

    Jaiswal, Aruna S; Panda, Harekrushna; Pampo, Christine A; Siemann, Dietmar W; Gairola, C Gary; Hromas, Robert; Narayan, Satya

    2013-01-01

    Adenomatous polyposis coli (APC) is a multifunctional protein having diverse cellular functions including cell migration, cell-cell adhesion, cell cycle control, chromosomal segregation, and apoptosis. Recently, we found a new role of APC in base excision repair (BER) and showed that it interacts with DNA polymerase β and 5′-flap endonuclease 1 and interferes in BER. Previously, we have also reported that cigarette smoke condensate (CSC) increases expression of APC and enhances the growth of normal human breast epithelial (MCF10A) cells in vitro. In the present study, using APC overexpression and knockdown systems, we have examined the molecular mechanisms by which CSC and its major component, Benzo[α]pyrene, enhances APC-mediated accumulation of abasic DNA lesions, which is cytotoxic and mutagenic in nature, leading to enhanced neoplastic transformation of MCF10A cells in an orthotopic xenograft model. PMID:23555190

  7. Neoplastic transformation of C3H mouse embryo 10T1/2 cells by 8-methoxypsoralen plus UVA radiation

    SciTech Connect

    Ananthaswamy, H.N.

    1985-08-01

    The effect of 8-methoxypsoralen plus UVA radiation (PUVA) on cell killing and induction of transformation was studied in the C3H mouse embryo 10T1/2 cell line. Dose-response data for both survival and transformation were obtained as a function of 8-methoxypsoralen (8-MOP) concentration and UVA dose. PUVA treatment caused cell death and induced transformation in a dose-dependent manner. Treatment of cells with 8-MOP alone (10 micrograms/ml) or UVA alone (90 J/m2) had no effect on either cell killing or transformation. The product of 8-MOP concentration and UVA dose calculated at 10% survival and 10(-3) transformation frequency levels were quite similar regardless of 8-MOP concentration or UVA dose. This suggests that there exists a simple reciprocal relationship between 8-MOP concentration and UVA dose. Both type II and type III foci induced by PUVA treatment were tumorigenic in vivo. These data provide further evidence for the carcinogenicity of PUVA treatment. In addition, the system described here could serve as a valuable model for studying the relationships between transformation and the specific cellular and molecular lesions induced by PUVA treatment.

  8. Rat Protein Tyrosine Phosphatase η Suppresses the Neoplastic Phenotype of Retrovirally Transformed Thyroid Cells through the Stabilization of p27Kip1

    PubMed Central

    Trapasso, Francesco; Iuliano, Rodolfo; Boccia, Angelo; Stella, Antonella; Visconti, Roberta; Bruni, Paola; Baldassarre, Gustavo; Santoro, Massimo; Viglietto, Giuseppe; Fusco, Alfredo

    2000-01-01

    The r-PTPη gene encodes a rat receptor-type protein tyrosine phosphatase whose expression is negatively regulated by neoplastic cell transformation. Here we first demonstrate a dramatic reduction in DEP-1/HPTPη (the human homolog of r-PTPη) expression in a panel of human thyroid carcinomas. Subsequently, we show that the reexpression of the r-PTPη gene in highly malignant rat thyroid cells transformed by retroviruses carrying the v-mos and v-ras-Ki oncogenes suppresses their malignant phenotype. Cell cycle analysis demonstrated that r-PTPη caused G1 growth arrest and increased the cyclin-dependent kinase inhibitor p27Kip1 protein level by reducing the proteasome-dependent degradation rate. We propose that the r-PTPη tumor suppressor activity is mediated by p27Kip1 protein stabilization, because suppression of p27Kip1 protein synthesis using p27-specific antisense oligonucleotides blocked the growth-inhibitory effect induced by r-PTPη. Furthermore, we provide evidence that in v-mos- or v-ras-Ki-transformed thyroid cells, the p27Kip1 protein level was regulated by the mitogen-activated protein (MAP) kinase pathway and that r-PTPη regulated p27Kip1 stability by preventing v-mos- or v-ras-Ki-induced MAP kinase activation. PMID:11094075

  9. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    SciTech Connect

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  10. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    PubMed Central

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a six month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. PMID:22521957

  11. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells.

    PubMed

    Stueckle, Todd A; Lu, Yongju; Davis, Mary E; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B; Rojanasakul, Yon

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A 'pro-cancer' gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment.

  12. The RBE of 3.4 MeV alpha-particles and 0.565 MeV neutrons relative to 60Co gamma-rays for neoplastic transformation of human hybrid cells and the impact of culture conditions.

    PubMed

    Frankenberg-Schwager, M; Spieren, S; Pralle, E; Giesen, U; Brede, H J; Thiemig, M; Frankenberg, D

    2010-01-01

    The neoplastic transformation of human hybrid CGL1 cells is affected by perturbations from external influences such as serum batch and concentration, the number of medium changes during the 21-day expression period and cell seeding density. Nevertheless, for doses up to 1.5 Gy, published transformation frequencies for low linear energy transfer (LET) radiations (gamma-rays, MeV electrons or photons) are in good agreement, whereas for higher doses larger variations are reported. The (60)Co gamma-ray data here for doses up to 1.5 Gy, using a low-yield serum batch and only one medium change, are in agreement with published frequencies of neoplastic transformation of human hybrid cells. For 3.4 MeV alpha-particles (LET = 124 keV/mum) and 0.565 MeV monoenergetic neutrons relative to low doses of (60)Co gamma-rays, a maximum relative biological effectiveness (RBE(M)) of 2.8 +/- 0.2 and 1.5 +/- 0.2, respectively, was calculated. Surprisingly, at higher doses of (60)Co gamma-rays lower frequencies of neoplastic transformation were observed. This non-monotonic dose relationship for neoplastic transformation by (60)Co gamma-rays is likely due to the lack of a G2/M arrest observed at low doses resulting in higher transformation frequencies per dose, whereas the lower frequencies per dose observed for higher doses are likely related to the induction of a G2/M arrest.

  13. A radiation-induced acute apoptosis involving TP53 and BAX precedes the delayed apoptosis and neoplastic transformation of CGL1 human hybrid cells.

    PubMed

    Mendonca, Marc S; Mayhugh, Brendan M; McDowell, Berry; Chin-Sinex, Helen; Smith, Martin L; Dynlacht, Joseph R; Spandau, Dan F; Lewis, Davina A

    2005-06-01

    Exposing CGL1 (HeLa x fibroblast) hybrid cells to 7 Gy of X rays results in the onset of a delayed apoptosis in the progeny of the cells 10 to 12 cell divisions postirradiation that correlates with the emergence of neoplastically transformed foci. The delayed apoptosis begins around day 8 postirradiation and lasts for 11 days. We now demonstrate that the delayed apoptosis is also characterized by the appearance of approximately 50-kb apoptotic DNA fragments and caspase 3 activation postirradiation. In addition, we confirm that stabilization of TP53 and transactivation of pro-apoptosis BAX also occurs during the delayed apoptosis and show that anti-apoptosis BCL-X(L) is down-regulated. To test whether the delayed apoptosis was due to a nonfunctional acute TP53 damage response in CGL1 cells, studies of acute apoptosis were completed. After irradiation, CGL1 cells underwent an acute wave of apoptosis that involves TP53 stabilization, transactivation of BAX gene expression, and a rapid caspase activation that ends by 96 h postirradiation. In addition, the acute onset of apoptosis correlates with transactivation of a standard wild-type TP53-responsive reporter (pG13-CAT) in CGL1 cells after radiation exposure. We propose that the onset of the delayed apoptosis is not the result of a nonfunctional acute TP53 damage response pathway but rather is a consequence of X-ray-induced genomic instability arising in the distant progeny of the irradiated cells.

  14. PDZ-binding kinase/T-LAK cell-originated protein kinase is a target of the fucoidan from brown alga Fucus evanescens in the prevention of EGF-induced neoplastic cell transformation and colon cancer growth

    PubMed Central

    Wang, Zhe; Ermakova, Svetlana P.; Xiao, JuanJuan; Lu, Tao; Xue, PeiPei; Zvyagintseva, Tatyana N.; Xiong, Hua; Shao, Chen; Yan, Wei; Duan, Qiuhong; Zhu, Feng

    2016-01-01

    The fucoidan with high anticancer activity was isolated from brown alga Fucus evanescens. The compound effectively prevented EGF-induced neoplastic cell transformation through inhibition of TOPK/ERK1/2/MSK 1 signaling axis. In vitro studies showed that the fucoidan attenuated mitogen-activated protein kinases downstream signaling in a colon cancer cells with different expression level of TOPK, resulting in growth inhibition. The fucoidan exerts its effects by directly interacting with TOPK kinase in vitro and ex vivo and inhibits its kinase activity. In xenograft animal model, oral administration of the fucoidan suppressed HCT 116 colon tumor growth. The phosphorylation of TOPK downstream signaling molecules in tumor tissues was also inhibited by the fucoidan. Taken together, our findings support the cancer preventive efficacy of the fucoidan through its targeting of TOPK for the prevention of neoplastic cell transformation and progression of colon carcinomas in vitro and ex vivo. PMID:26936995

  15. PDZ-binding kinase/T-LAK cell-originated protein kinase is a target of the fucoidan from brown alga Fucus evanescens in the prevention of EGF-induced neoplastic cell transformation and colon cancer growth.

    PubMed

    Vishchuk, Olesia S; Sun, Huimin; Wang, Zhe; Ermakova, Svetlana P; Xiao, JuanJuan; Lu, Tao; Xue, PeiPei; Zvyagintseva, Tatyana N; Xiong, Hua; Shao, Chen; Yan, Wei; Duan, Qiuhong; Zhu, Feng

    2016-04-05

    The fucoidan with high anticancer activity was isolated from brown alga Fucus evanescens. The compound effectively prevented EGF-induced neoplastic cell transformation through inhibition of TOPK/ERK1/2/MSK 1 signaling axis. In vitro studies showed that the fucoidan attenuated mitogen-activated protein kinases downstream signaling in a colon cancer cells with different expression level of TOPK, resulting in growth inhibition. The fucoidan exerts its effects by directly interacting with TOPK kinase in vitro and ex vivo and inhibits its kinase activity. In xenograft animal model, oral administration of the fucoidan suppressed HCT 116 colon tumor growth. The phosphorylation of TOPK downstream signaling molecules in tumor tissues was also inhibited by the fucoidan. Taken together, our findings support the cancer preventive efficacy of the fucoidan through its targeting of TOPK for the prevention of neoplastic cell transformation and progression of colon carcinomas in vitro and ex vivo.

  16. Cooperation of c-raf-1 and c-myc protooncogenes in the neoplastic transformation of simian virus 40 large tumor antigen-immortalized human bronchial epithelial cells.

    PubMed Central

    Pfeifer, A M; Mark, G E; Malan-Shibley, L; Graziano, S; Amstad, P; Harris, C C

    1989-01-01

    Overexpression of c-raf-1 and the myc family of protooncogenes is primarily associated with small cell carcinoma, which accounts for approximately 25% of human lung cancer. To determine the functional significance of the c-raf-1 and/or c-myc gene expression in lung carcinogenesis and to delineate the relationship between protooncogene expression and tumor phenotype, we introduced both protooncogenes, alone or in combination, into human bronchial epithelial cells. Two retroviral recombinants, pZip-raf and pZip-myc, containing the complete coding sequences of the human c-raf-1 and murine c-myc genes, respectively, were constructed and transfected into simian virus 40 large tumor antigen-immortalized bronchial epithelial cells (BEAS-2B); this was followed by selection for G418 resistance. BEAS-2B cells expressing both the transfected c-raf-1 and c-myc sequences formed large cell carcinomas in athymic nude mice with a latency of 4-21 weeks, whereas either pZip-raf- or pZip-myc-transfected cells were nontumorigenic after 12 months. Cell lines established from tumors (designated RMT) revealed the presence of the cotransfected c-raf-1 and c-myc sequences and expressed morphological, chromosomal, and isoenzyme markers, which identified BEAS-2B cells as the progenitor line of the tumors. A significant increase in the mRNA levels of neuron-specific enolase was detected in BEAS-2B cells containing both the c-raf-1 and c-myc genes and derived tumor cell lines. The data demonstrate that the concomitant expression of the c-raf and c-myc protooncogenes causes neoplastic transformation of human bronchial epithelial cells resulting in large cell carcinomas with certain neuroendocrine markers. The presented model system should be useful in studies of molecular events involved in multistage lung carcinogenesis. Images PMID:2557616

  17. Poly(ADP-ribosylation) and neoplastic transformation: effect of PARP inhibitors.

    PubMed

    Donà, Francesca; Chiodi, Ilaria; Belgiovine, Cristina; Raineri, Tatiana; Ricotti, Roberta; Mondello, Chiara; Scovassi, Anna Ivana

    2013-01-01

    Poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribosylation) play essential roles in several biological processes, among which neoplastic transformation and telomere maintenance. In this paper, we review the poly(ADP-ribosylation) process together with the highly appealing use of PARP inhibitors for the treatment of cancer. In addition, we report our results concerning poly(ADP-ribosylation) in a cellular model system for neoplastic transformation developed in our laboratory. Here we show that PARP-1 and PARP-2 expression increases during neoplastic transformation, together with the basal levels of poly(ADP-ribosylation). Furthermore, we demonstrate a greater effect of the PARP inhibitor 3-aminobenzamide (3AB) on cellular viability in neoplastically transformed cells compared to normal fibroblasts and we show that prolonged 3AB administration to tumorigenic cells causes a decrease in telomere length. Taken together, our data support an active involvement of poly(ADP-ribosylation) in neoplastic transformation and telomere length maintenance and confirm the relevant role of poly(ADP-ribosylation) inhibition for the treatment of cancer.

  18. Low Dose Suppression of Neoplastic Transformation in Vitro

    SciTech Connect

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  19. Cooperation of bcl-2 and myc in the neoplastic transformation of normal rat liver epithelial cells is related to the down-regulation of gap junction-mediated intercellular communication.

    PubMed

    DeoCampo, N D; Wilson, M R; Trosko, J E

    2000-08-01

    The objectives of this study were to isolate several rat liver epithelial cell clones containing the human bcl-2 and myc/bcl-2 genes in order to study their potential cooperative effect on neoplastic transformation and gap junction-mediated intercellular communication (GJIC) and to test the hypothesis that the loss of GJIC leads to tumorigenesis. Using anchorage-independent growth as a surrogate marker for neoplastic transformation, we transfected both normal rat liver epithelial cells, WB-F344, and a WB-F344 cell line overexpressing v-myc with human bcl-2 cDNA. Those cell lines that only expressed v-myc or human bcl-2 were unable to form colonies in soft agar. However, those cell lines that overexpressed both v-myc and human bcl-2 showed varying ability to form colonies in soft agar, which did not correlate with their human bcl-2 expression level. In order to test if there was a correlation between cell line growth in soft agar and the ability to communicate through gap junctions, we performed scrape load dye transfer and fluorescence recovery after photobleaching assays. Our results show that v-myc and human bcl-2 can cooperate in the transformation of normal cells, but the degree to which the cells are transformed is dependent on the cells' ability to communicate through gap junctions.

  20. Kinetic Modeling of Damage Repair, Genome Instability, and Neoplastic Transformation

    SciTech Connect

    Stewart, Robert D

    2007-03-17

    Inducible repair and pathway interactions may fundamentally alter the shape of dose-response curves because different mechanisms may be important under low- and high-dose exposure conditions. However, the significance of these phenomena for risk assessment purposes is an open question. This project developed new modeling tools to study the putative effects of DNA damage induction and repair on higher-level biological endpoints, including cell killing, neoplastic transformation and cancer. The project scope included (1) the development of new approaches to simulate the induction and base excision repair (BER) of DNA damage using Monte Carlo methods and (2) the integration of data from the Monte Carlo simulations with kinetic models for higher-level biological endpoints. Methods of calibrating and testing such multiscale biological simulations were developed. We also developed models to aid in the analysis and interpretation of data from experimental assays, such as the pulsed-field gel electrophoresis (PFGE) assay used to quantity the amount of DNA damage caused by ionizing radiation.

  1. Mechanical Properties of Human Cells Change during Neoplastic Processes

    NASA Astrophysics Data System (ADS)

    Guthold, Martin; Guo, Xinyi; Bonin, Keith; Scarpinato, Karin

    2014-03-01

    Using an AFM with a spherical probe of 5.3 μm, we determined mechanical properties of individual human mammary epithelial cells that have progressed through four stages of neoplastic transformation: normal, immortal, tumorigenic, and metastatic. Measurements on cells in all four stages were taken over both the nucleus and the cytoplasm. Moreover, the measurements were made for cells outside of a colony (isolated), on the periphery of a colony, and inside a colony. By fitting the AFM force vs. indentation curves to a Hertz model, we determined the Young's modulus, E. We found a distinct contrast in the influence a cell's colony environment has on its stiffness depending on whether the cells are normal or cancer cells. We also found that cells become softer as they advance to the tumorigenic stage and then stiffen somewhat in the final step to metastatic cells. For cells averaged over all locations the stiffness values of the nuclear region for normal, immortal, tumorigenic, and metastatic cells were (mean +/- sem) 880 +/- 50, 940+/-50, 400 +/- 20, and 600 +/-20 Pa respectively. Cytoplasmic regions followed a similar trend. These results point to a complex picture of the mechanical changes that occur as cells undergo neoplastic transformation. This work is supported by NSF Materials and Surface Engineering grant CMMI-1152781.

  2. Repair of neoplastic transformation damage following protracted exposures to /sup 60/Co. gamma. -rays

    SciTech Connect

    Han, A.; Hill, C.K.; Elkind, M.M.

    1983-01-01

    The incidences of neoplastic transformation induced by /sup 60/Co ..gamma..-rays in exponentially growing mouse embryo 10T1/2 cells were measured following acute and protracted exposures. Delivery of /sup 60/Co ..gamma..-rays at a low dose rate (0.1, 0.5, 2.5 rad/min) compared with a high dose rate (100 rad/min) results in appreciable, dose rate dependent reductions in cell killing and, independent of the effect on cell survival, reduces significantly the incidence of neoplastic transformation. Exposure of exponentially growing 10T1/2 cells to a dose of ..gamma..-rays in five equal daily fractions also significantly reduces transformation frequency, compared with delivery in a single dose, throughout the dose range examined (25 to 300 rads). The initial parts of the induction curves are fitted quite well by a linear dose dependence. The slopes of the regression lines for multifractionation delivery or irradiation at 0.1 rad/min, are one-third and one-half, respectively, of those for single exposures at a high dose rate. Increasing the interfraction interval up to 48 hours, or reduction of the dose per fraction further reduce incidence of neoplastic transformation. We conclude that protracted exposures of low LET radiation result in a net error-free repair of subtransformation damage.

  3. Enhanced G2 chromatid radiosensitivity, an early stage in the neoplastic transformation of human epidermal keratinocytes in culture

    SciTech Connect

    Gantt, R.; Sanford, K.K.; Parshad, R.; Price, F.M.; Peterson, W.D. Jr.; Rhim, J.S.

    1987-03-01

    A deficiency in DNA repair, manifest as enhanced chromatid radiosensitivity during the G2 phase of the cell cycle, together with a proliferative stimulus such as that provided by active oncogenes may be necessary and sufficient for the malignant neoplastic transformation of human keratinocytes in culture. Normal epidermal keratinocytes established as continuous cell lines by transfection with pSV3-neo or infection with adeno 12-SV40 hybrid virus developed enhanced G2 chromatid radiosensitivity after 18 passages in culture. In contrast to cells from primary or secondary culture, these cells could be transformed to malignant neoplastic cells by infection with Kirsten murine sarcoma virus containing the Ki-ras oncogene or in one line by the chemical carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine; both of these agents produced a marked proliferative response. Cytological heterogeneity and karyotypic instability characterized the cells during their progression to neoplasia. These results are interpreted in terms of a mechanism for neoplastic transformation.

  4. Cell cycle-dependent intervention by benzamide of carcinogen-induced neoplastic transformation and in vitro poly(ADP-ribosyl)ation of nuclear proteins in human fibroblasts.

    PubMed Central

    Kun, E; Kirsten, E; Milo, G E; Kurian, P; Kumari, H L

    1983-01-01

    Human fibroblasts were subjected to nutritionally induced G1 block, followed by release and subsequent entry into S phase, and exposed to nontoxic concentrations of carcinogens in early S phase. Cell transformation occurred as determined by early morphologic cell alterations, anchorage-independent colony formation, cell invasiveness, and augmentation of Ab 376 human malignancy-specific cell-surface antigenic determinant. Methylazoxymethanol acetate was the most potent transforming agent at doses that were negative in toxicity tests. Benzamide (10 microM intracellular concentration), a specific inhibitor of poly(ADP-ribose) polymerase, prevented transformation in a cell cycle-specific manner, maximal prevention coinciding with early S phase, also characteristic of maximal susceptibility to transformation. Neither an interference of carcinogen deoxyguanosine nucleoside adduct formation nor a chemical reaction between benzamide and carcinogens was detected. Methylazoxymethanol acetate at transforming but nontoxic dose partially inhibited poly(ADP-ribosyl)ation to about the same extent as benzamide. However, simultaneous exposure of cells to both agents in early S phase, resulting in the prevention of transformation, augmented poly(ADP-ribosyl)ation above the controls. Enzymatic activities ran parallel with the formation of DNA-associating polymer-nonhistone protein adducts that are assumed to regulate the physiological function of chromatin at the structural level. Images PMID:6196785

  5. MOLECULAR MECHANISM OF SUPPRESSION OF NEOPLASTIC TRANSFORMATION BY LOW DOSES OF LOW LET RADIATION

    SciTech Connect

    J.LESIE REDPATH, PH.D.

    2011-03-29

    We are currently funded (9/01-8/04) by the DOE Low Dose Radiation Research Program to examine mechanisms underlying the suppression of neoplastic transformation in vitro by low doses of low LET radiation. For the new studies proposed under Notice 04-21, we intend to follow up on our observation that upregulation of DNA repair may be an important factor and that its importance is dose-dependent. The experimental system will be the human hybrid cell neoplastic transformation assay that we are currently using. We propose to test the following hypothesis: Down-regulation of DNA dsb repair will abrogate the low dose suppression of neoplastic transformation. Using the technique of RNA silencing, it is proposed to test the effect of down-regulation of the two major DNA dsb repair pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ), on the dose response relationship for neoplastic transformation. Based on prior studies, we predict that this will result in abrogation of the suppressive effect at doses in the range 1 to 10 cGy, but not at lower doses. The proposed experiments will also help address the question as to which of the two DNA repair pathways may be the most important in causing suppression of transformation. HR is a pathway that is predominant in S and G2 phase cells and is known to be less error-prone than the NHEJ pathway that is predominant in G1 phase. We hypothesize that down-regulation of HR will result in the most effective abrogation of suppression. An important component of this study will be the determination of the how abrogation of DNA dsb repair impacts the spontaneous transformation frequency, presumably a consequence of endogeneous DNA damage. Experiments will be carried out using partially synchronized populations of cells enriched for G1 and S/G2 respectively. In addition to the endpoint of neoplastic transformation the impact of down-regulation of HR and NHEJ on the formation and disappearance of the DNA dsb marker

  6. Differential Methylation of the HPV 16 Upstream Regulatory Region during Epithelial Differentiation and Neoplastic Transformation

    PubMed Central

    Vinokurova, Svetlana; von Knebel Doeberitz, Magnus

    2011-01-01

    High risk human papillomaviruses are squamous epitheliotropic viruses that may cause cervical and other cancers. HPV replication depends on squamous epithelial differentiation. Transformation of HPV-infected cells goes along with substantial alteration of the viral gene expression profile and preferentially occurs at transformation zones usually at the uterine cervix. Methylation of the viral genome may affect regulatory features that control transcription and replication of the viral genome. Therefore, we analyzed the methylation pattern of the HPV16 upstream regulatory region (URR) during squamous epithelial differentiation and neoplastic transformation and analyzed how shifts in the HPV URR methylome may affect viral gene expression and replication. HPV 16 positive biopsy sections encompassing all stages of an HPV infection (latent, permissive and transforming) were micro-dissected and DNA was isolated from cell fractions representing the basal, intermediate, and superficial cell layers, each, as well as from transformed p16INK4a-positive cells. We observed fundamental changes in the methylation profile of transcription factor binding sites in the HPV16 upstream regulatory region linked to the squamous epithelial differentiation stage. Squamous epithelial transformation indicated by p16INK4a overexpression was associated with methylation of the distal E2 binding site 1 leading to hyper-activation of the HPV 16 URR. Adjacent normal but HPV 16-infected epithelial areas retained hyper-methylated HPV DNA suggesting that these viral genomes were inactivated. These data suggest that distinct shifts of the HPV 16 methylome are linked to differentiation dependent transcription and replication control and may trigger neoplastic transformation. PMID:21915330

  7. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation12

    PubMed Central

    Drosos, Yiannis; Neale, Geoffrey; Ye, Jianming; Paul, Leena; Kuliyev, Emin; Maitra, Anirban; Means, Anna L; Washington, M Kay; Rehg, Jerold; Finkelstein, David B; Sosa-Pineda, Beatriz

    2016-01-01

    The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness. PMID:26992918

  8. The shape of the dose-response curve for radiation-induced neoplastic transformation in vitro: evidence for an adaptive response against neoplastic transformation at low doses of low-LET radiation.

    PubMed

    Redpath, J L; Liang, D; Taylor, T H; Christie, C; Elmore, E

    2001-12-01

    A dose-response curve for gamma-radiation-induced neoplastic transformation of HeLa x skin fibroblast human hybrid cells over the dose range 0.1 cGy to 1 Gy is presented. In the experimental protocol used, the spontaneous (background) frequency of neoplastic transformation of sham-irradiated cultures was compared to that of cultures which had been irradiated with (137)Cs gamma radiation and either plated immediately or held for 24 h at 37 degrees C prior to plating, for assay for neoplastic transformation. The pooled data from a minimum of three repeat large-scale experiments at each dose demonstrated a reduced transformation frequency for the irradiated compared to the sham-irradiated cells for doses of 0.1, 0.5, 1, 5 and 10 cGy for the delayed-plating arm. The probability of this happening by chance is given by 1/2(n), where n is the number of observations (5); i.e., 1/32 congruent with 0.031. This is indicative of an adaptive response against spontaneous neoplastic transformation at least up to a dose of 10 cGy of gamma radiation. The high-dose data obtained at 30 and 50 cGy and 1 Gy showed a good fit to a linear extrapolation through the sham-irradiated, zero-dose control. The delayed-plating data at 10 cGy and below showed a statistically significant divergence from this linear extrapolation.

  9. A link between c-Myc-mediated transcriptional repression and neoplastic transformation.

    PubMed Central

    Lee, L A; Dolde, C; Barrett, J; Wu, C S; Dang, C V

    1996-01-01

    Recent studies indicate that the transcription factor c-Myc contributes to oncogenesis by altering the expression of genes involved in cell proliferation, but its precise function in neoplasia remains ambiguous. The ability of c-Myc to bind the sequence CAC(G/A)TG and transactivate appears to be linked to its transforming activity; however, c-Myc also represses transcription in vitro through a pyrimidine-rich cis element termed the initiator (Inr). In transfection experiments using the adenoviral major late (adML) promoter, which contains two Myc binding sites and an Inr, we determined that c-Myc represses transcription through the initiator in vivo. This activity requires the dimerization domain and amino acids 106 to 143, which are located within the transactivation domain and are necessary for neoplastic transformation. We studied a lymphoma-derived c-Myc substitution mutation at 115-Phe, which is within the region required for transcriptional suppression, and found the mutant more effective than wild-type c-Myc in transforming rodent fibroblasts and in suppressing the adML promoter. Our studies of both loss-of-function and gain-of-function c-Myc mutations suggest a link between c-Myc-mediated neoplastic transformation and transcriptional repression through the Inr. PMID:8601634

  10. A link between c-Myc-mediated transcriptional repression and neoplastic transformation.

    PubMed

    Lee, L A; Dolde, C; Barrett, J; Wu, C S; Dang, C V

    1996-04-01

    Recent studies indicate that the transcription factor c-Myc contributes to oncogenesis by altering the expression of genes involved in cell proliferation, but its precise function in neoplasia remains ambiguous. The ability of c-Myc to bind the sequence CAC(G/A)TG and transactivate appears to be linked to its transforming activity; however, c-Myc also represses transcription in vitro through a pyrimidine-rich cis element termed the initiator (Inr). In transfection experiments using the adenoviral major late (adML) promoter, which contains two Myc binding sites and an Inr, we determined that c-Myc represses transcription through the initiator in vivo. This activity requires the dimerization domain and amino acids 106 to 143, which are located within the transactivation domain and are necessary for neoplastic transformation. We studied a lymphoma-derived c-Myc substitution mutation at 115-Phe, which is within the region required for transcriptional suppression, and found the mutant more effective than wild-type c-Myc in transforming rodent fibroblasts and in suppressing the adML promoter. Our studies of both loss-of-function and gain-of-function c-Myc mutations suggest a link between c-Myc-mediated neoplastic transformation and transcriptional repression through the Inr.

  11. Resistance to neoplastic transformation of ex-vivo expanded human mesenchymal stromal cells after exposure to supramaximal physical and chemical stress

    PubMed Central

    Conforti, Antonella; Starc, Nadia; Biagini, Simone; Tomao, Luigi; Pitisci, Angela; Algeri, Mattia; Sirleto, Pietro; Novelli, Antonio; Grisendi, Giulia; Candini, Olivia; Carella, Cintia; Dominici, Massimo; Locatelli, Franco; Bernardo, Maria Ester

    2016-01-01

    The risk of malignant transformation of ex-vivo expanded human mesenchymal stromal cells (huMSCs) has been debated in the last years; however, the biosafety of these cells after exposure to supramaximal physical and chemical stress has never been systematically investigated. We established an experimental in vitro model to induce supramaximal physical (ionizing radiation, IR) and chemical (starvation) stress on ex-vivo expanded bone marrow (BM)-derived huMSCs and investigated their propensity to undergo malignant transformation. To this aim, we examined MSC morphology, proliferative capacity, immune-phenotype, differentiation potential, immunomodulatory properties and genetic profile before and after stressor exposure. Furthermore, we investigated the cellular mechanisms underlying MSC response to stress. MSCs were isolated from 20 healthy BM donors and expanded in culture medium supplemented with 5% platelet lysate (PL) up to passage 2 (P2). At this stage, MSCs were exposed first to escalating doses of IR (30, 100, 200 Gy) and then to starvation culture conditions (1% PL). With escalating doses of radiation, MSCs lost their typical spindle-shaped morphology, their growth rate markedly decreased and eventually stopped (at P4-P6) by reaching early senescence. Irradiated and starved MSCs maintained their typical immune-phenotype, ability to differentiate into adipocytes/osteoblasts and to inhibit mitogen-induced T-cell proliferation. The study of the genetic profile of irradiated/starved MSCs did not show any alteration. While the induction of supramaximal stress triggered production of ROS and activation of DNA damage response pathway via multiple mechanisms, our data indicate that irradiated/starved MSCs, although presenting altered morphology/growth rate, do not display increased propensity for malignant transformation. PMID:27764806

  12. Neoplastic Reprogramming of Patient-Derived Adipose Stem Cells by Prostate Cancer Cell-Associated Exosomes

    PubMed Central

    Abd Elmageed, Zakaria Y.; Yang, Yijun; Thomas, Raju; Ranjan, Manish; Mondal, Debasis; Moroz, Krzysztof; Fang, Zhide; Rezk, Bashir M.; Moparty, Krishnarao; Sikka, Suresh C.; Sartor, Oliver; Abdel-Mageed, Asim B.

    2014-01-01

    Emerging evidence suggests that mesenchymal stem cells (MSCs) are often recruited to tumor sites but their functional significance in tumor growth and disease progression remains elusive. Herein we report that prostate cancer (PC) cell microenvironment subverts PC patient adipose-derived stem cells (pASCs) to undergo neoplastic transformation. Unlike normal ASCs, the pASCs primed with PC cell conditioned media (CM) formed prostate-like neoplastic lesions in vivo and reproduced aggressive tumors in secondary recipients. The pASC tumors acquired cytogenetic aberrations and mesenchymal-to-epithelial transition (MET) and expressed epithelial, neoplastic, and vasculogenic markers reminiscent of molecular features of PC tumor xenografts. Our mechanistic studies revealed that PC cell-derived exosomes are sufficient to recapitulate formation of prostate tumorigenic mimicry generated by CM-primed pASCs in vivo. In addition to down-regulation of the large tumor suppressor homolog2 (Lats2) and the programmed cell death protein 4 (PDCD4), a neoplastic transformation inhibitor, the tumorigenic reprogramming of pASCs was associated with trafficking by PC cell-derived exosomes of oncogenic factors, including H-ras and K-ras transcripts, oncomiRNAs miR-125b, miR-130b, and miR-155 as well as the Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a. Our findings implicate a new role for PC cell-derived exosomes in clonal expansion of tumors through neoplastic reprogramming of tumor tropic ASCs in cancer patients. PMID:24715691

  13. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes.

    PubMed

    Abd Elmageed, Zakaria Y; Yang, Yijun; Thomas, Raju; Ranjan, Manish; Mondal, Debasis; Moroz, Krzysztof; Fang, Zhide; Rezk, Bashir M; Moparty, Krishnarao; Sikka, Suresh C; Sartor, Oliver; Abdel-Mageed, Asim B

    2014-04-01

    Emerging evidence suggests that mesenchymal stem cells (MSCs) are often recruited to tumor sites but their functional significance in tumor growth and disease progression remains elusive. Herein we report that prostate cancer (PC) cell microenvironment subverts PC patient adipose-derived stem cells (pASCs) to undergo neoplastic transformation. Unlike normal ASCs, the pASCs primed with PC cell conditioned media (CM) formed prostate-like neoplastic lesions in vivo and reproduced aggressive tumors in secondary recipients. The pASC tumors acquired cytogenetic aberrations and mesenchymal-to-epithelial transition and expressed epithelial, neoplastic, and vasculogenic markers reminiscent of molecular features of PC tumor xenografts. Our mechanistic studies revealed that PC cell-derived exosomes are sufficient to recapitulate formation of prostate tumorigenic mimicry generated by CM-primed pASCs in vivo. In addition to downregulation of the large tumor suppressor homolog2 and the programmed cell death protein 4, a neoplastic transformation inhibitor, the tumorigenic reprogramming of pASCs was associated with trafficking by PC cell-derived exosomes of oncogenic factors, including H-ras and K-ras transcripts, oncomiRNAs miR-125b, miR-130b, and miR-155 as well as the Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a. Our findings implicate a new role for PC cell-derived exosomes in clonal expansion of tumors through neoplastic reprogramming of tumor tropic ASCs in cancer patients. © 2013 AlphaMed Press.

  14. Adaptive Response Against Spontaneous Neoplastic Transformation In Vitro Induced by Ionizing Radiation

    SciTech Connect

    J. Leslie Redpath, Ph.D.

    2003-11-10

    The goal of this project was to establish a dose response curve for radiation-induced neoplastic transformation of HeLa x skin fibroblast human hybrid cells in vitro under experimental conditions were an adaptive response, if it were induced, would have an opportunity to be expressed. During the first two years of the grant an exhaustive series of experiments were performed and the resulting data were reported at the 2000 Annual Meeting of the Radiation Research Society and then Subsequently published. The data showed that an adaptive response against spontaneous neoplastic transformation was seen up to doses of 10cGy of Cs-137 gamma rays. At dose of 30, 50 and 100 cGy the transformation frequencies were above background. This indicated that for this system, under the specific experimental conditions used, there was a threshold of somewhere between 10 and 30 cGy. The results also indicated some unexpected, though very interesting, correlations with relative risk estimates made from human epidemiologic studies.

  15. CD44 and the adhesion of neoplastic cells.

    PubMed Central

    Rudzki, Z; Jothy, S

    1997-01-01

    CD44 is a family of transmembrane glycoproteins that act mainly as a receptor for hyaluronan. It can also bind some other extracellular matrix ligands (chondroitin sulphate, heparan sulphate, fibronectin, serglycin, osteopontin) with lower affinity. CD44 is encoded by a single gene containing 20 exons, 10 of which (v1-v10) are variant exons inserted by alternative splicing. The standard, ubiquitously expressed isoform of CD44, does not contain sequences encoded by these variant exons. Numerous variant isoforms of CD44 containing different combinations of exons v1-v10 inserted into the extracellular domain can be expressed in proliferating epithelial cells and activated lymphocytes. CD44 plays a significant role in lymphocyte homing. Both alternative splicing and glycosylation influence receptor function of the molecule, usually reducing its affinity to hyaluronan. The cytoplasmic domain of CD44 communicates with the cytoskeleton via ankyrin and proteins belonging to the ezrin-moesin-radixin family. Relatively little is known about the intracellular events following interactions of CD44 with its ligands. Some variant isoforms, especially those containing sequences encoded by v6-v10, are overexpressed in both human and animal neoplasms. In a rat pancreatic adenocarcinoma model one of the variant CD44 isoforms was proved to be determinant in the metastatic process. For some human neoplasms (carcinomas of the digestive tract, non-Hodgkin's lymphomas, thyroid carcinomas, and others) correlations have been made between the particular pattern of CD44 variants produced by neoplastic cells and clinicopathological parameters of tumours, such as grade, stage, presence of metastases, and survival. In vitro studies indicate that modifications of CD44 expression result in different ligand recognition and influence cell motility, invasive properties, and metastatic potential of experimental tumours. Investigation of CD44 neoexpression can be useful both in early cancer diagnosis

  16. Measuring neoplastic transformation in the hamster cheek pouch using Fourier domain low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Graf, Robert N.; Chen, Xiaoxin; Brown, William; Wax, Adam

    2008-02-01

    Fourier Domain Low Coherence Interferometry (fLCI) is a promising technique which combines the depth resolution of low coherence interferometry with the sensitivity of light scattering spectroscopy for probing the health of epithelial tissue layers. Our new fLCI system configuration utilizes a white light Xe arc lamp source and a 4-f interferometer which re-images light scattered from the sample onto the detection plane. The system employs an imaging spectrometer at the detection plane to acquire depth resolved profiles from 252 adjacent spatial points without the need for any scanning. The limited spatial coherence of the light source requires the resolution of adjacent spatial points for the generation of depth information. Depth-resolved spectral information is recovered by performing a short-time Fourier transform on the detected spectra, similar to spectroscopic optical coherence tomography. Wavelength dependent variations in scattering intensity are analyzed as a function of depth to obtain information about the neoplastic transformation of the probed cells. Previous studies have demonstrated fLCI as an excellent technique for probing the scatterer morphology of simple phantoms and of in vitro cancer cell monolayers. We now seek to assess the ability of the new fLCI system to measure the health of subsurface tissue layers using the hamster cheek pouch model. Seven hamsters will have one cheek pouch treated with the known carcinogen DMBA. At the conclusion of the 24 week treatment period the animals will be anesthetized and the cheek pouches will be extracted. We will use the fLCI optical system to measure the neoplastic transformation of the in situ subsurface tissue layers in both the normal and DMBA-treated cheek pouches. Traditional histological analysis will be used to verify the fLCI measurements. We expect our results to establish the feasibility of fLCI to distinguish between healthy and dysplastic epithelial tissues in the hamster cheek pouch.

  17. Possible error-prone repair of neoplastic transformation induced by fission-spectrum neutrons

    SciTech Connect

    Hill, C.K.; Han, A.; Elkind, M.M.

    1983-07-18

    We have examined the effect of fission-spectrum neutrons from the JANUS reactor at Argonne National Laboratory, delivered either as acute or protracted irradiation, on the incidence of neoplastic transformation in the C3H 1OT1/2 mouse embryo cell line. Acute exposures were delivered at 10 to 38 rads/min, protracted exposures at 0.086 or 0.43 rad/min. The total doses for both ranged from 2.4 to 350 rads. In the low dose region (2.4 to 80 rads), there was a large enhancement in transformation frequency when the neutrons were delivered at the low dose rates compared with the high dose rates, but the survival of the cells was not significantly different between the two exposure conditions. Analysis of the initial parts of the curves shows that the regression line for protracted doses is about 9 times steeper than that for single acute exposures. Finally, the possibility is discussed that an error-prone repair process may be causing the enhanced transformation frequency by protracted neutron exposures. 12 references, 2 figures, 1 table.

  18. Induction of differentiation in neoplastic cells.

    PubMed

    Freshney, R I

    1985-01-01

    There is now clear evidence that cells cultured from human and animal tumours can be induced to differentiate in vitro by recognised hormones, regulatory peptides, polar solvents and cytotoxic drugs. Examples can be found from several different types of tumour with the bulk of the data deriving from neuroblastoma and myeloid leukaemia. There is no clear correlation of inducer with cell type, other than some specific peptides like MSH, and agents such as dimethyl sulphoxide and dexamethasone have wide ranging activity. Steroid hormone action may require interaction between different cell types, and the inability of tumours to differentiate in situ may implicate reduced cell-cell interaction, possibly due to degradation of extracellular matrix, or to alteration of the stromal phenotype by tumour-derived factors such as peptides or prostaglandins. When differentiation has been demonstrated, it has been possible, in some cases, to correlate increased differentiation with reduced malignancy by in vitro characterisation or tumorigenicity. Conditions which induce differentiation in rat mammary carcinoma and mouse myeloma also reduce tumour growth in vivo. Clinical trials have not provided any conclusive evidence for a therapeutic benefit so far, but relatively few trials have been carried out. There is clearly a need for further investigation both in vitro and in vivo to select optimal conditions and combinations of agents for clinical evaluation.

  19. Analysis of the multistage process of neoplastic transformation of human fibroblasts

    SciTech Connect

    McCormick, J.J.

    1994-12-31

    Normal human cells in culture have never been neoplastically transformed by carcinogens. One explanation is that the life span of the cells is too short for them to acquire the necessary changes. To test this, we transfected diploid fibroblasts with a plasmid carrying v-myc gene and a selectable marker. A drug resistant clone expressing v-myc was passaged to the end of its life span. A few cells continued to proliferate and gave rise to a diploid, infinite life span that has normal growth control and in nontumorigenic. Analysis indicated that one more change, in addition to unregulated expression of v-myc, was involved in generating these cells. They spontaneously gave rise to a near-diploid strain with a stable karyotype of 34 chromosomes, including 2 markers. This strain, MSU-1.1, grows more rapidly, is less dependent on growth factors, but does not form large colonies in agar and is not tumorigenic. At least two additional changes were involved in generating this strain. To determine the number and kinds of additional changes required to transform MSU-1.1 cells to oncogenes in vectors engineering for overexpression, and selected for focus-formation. The focus-derived cells were growth factor independent, formed large colonies in agar, and produced sarcomas with a short latency. These malignant cells had acquired two additional changes, but no change in karyotype. Exposure of MSU-1.1 cells to carcinogens and selection for foci also yielded malignant cells. Those analyzed to date show loss of 1 or 2 more chromosomes and of p53 function.

  20. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    SciTech Connect

    Walker, C.; Nettesheim, P.; Barrett, J.C.; Gilmer, T.M.

    1987-04-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injected into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of approx. = 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor.

  1. [The risk of neoplastic processes transformation in cervix uteri].

    PubMed

    Kiseleva, V I; Krikunova, L I; Mkrtchian, L S; Liubina, L V; Beziaeva, G P; Panarina, L V; Zamuliaeva, I A

    2014-01-01

    There was performed a comparative analysis of quantitative load and physical status of human papillomavirus (HPV) type 16 in groups of patients with cervical intraepithelial neoplasia (CIN)--25 people and cervical cancer (CC)--85 people. According to the analysis there were selected criteria appropriate to a combination of adverse factors that characterized HPV- infection and at the same time estimated both quantitative load and physical status of the virus: high viral load (> 6,5 lg copies of HPV DNA per 100000 cells) in episomal form or low load (< 6,5 lg copies of HPV DNA per 100000 cells) in integrated form of the virus. According to calculations a relative chance of appearing of CC in CIN patients with unfavorable combination of factors was 7,5 times higher than in other patients.

  2. Organoids as Models for Neoplastic Transformation | Office of Cancer Genomics

    Cancer.gov

    Cancer models strive to recapitulate the incredible diversity inherent in human tumors. A key challenge in accurate tumor modeling lies in capturing the panoply of homo- and heterotypic cellular interactions within the context of a three-dimensional tissue microenvironment. To address this challenge, researchers have developed organotypic cancer models (organoids) that combine the 3D architecture of in vivo tissues with the experimental facility of 2D cell lines.

  3. Guanidine Alkaloids from the Marine Sponge Monanchora pulchra Show Cytotoxic Properties and Prevent EGF-Induced Neoplastic Transformation in Vitro

    PubMed Central

    Dyshlovoy, Sergey A.; Tabakmakher, Kseniya M.; Hauschild, Jessica; Shchekaleva, Regina K.; Otte, Katharina; Guzii, Alla G.; Makarieva, Tatyana N.; Kudryashova, Ekaterina K.; Fedorov, Sergey N.; Shubina, Larisa K.; Bokemeyer, Carsten; Honecker, Friedemann; Stonik, Valentin A.; von Amsberg, Gunhild

    2016-01-01

    Guanidine alkaloids from sponges Monanchora spp. represent diverse bioactive compounds, however, the mechanisms underlying bioactivity are very poorly understood. Here, we report results of studies on cytotoxic action, the ability to inhibit EGF-induced neoplastic transformation, and the effects on MAPK/AP-1 signaling of eight rare guanidine alkaloids, recently isolated from the marine sponge Monanchora pulchra, namely: monanchocidin A (1), monanchocidin B (2), monanchomycalin C (3), ptilomycalin A (4), monanchomycalin B (5), normonanchocidin D (6), urupocidin A (7), and pulchranin A (8). All of the compounds induced cell cycle arrest (apart from 8) and programmed death of cancer cells. Ptilomycalin A-like compounds 1–6 activated JNK1/2 and ERK1/2, following AP-1 activation and caused p53-independent programmed cell death. Compound 7 induced p53-independent cell death without activation of AP-1 or caspase-3/7, and the observed JNK1/2 activation did not contribute to the cytotoxic effect of the compound. Alkaloid 8 induced JNK1/2 (but not ERK1/2) activation leading to p53-independent cell death and strong suppression of AP-1 activity. Alkaloids 1–4, 7, and 8 were able to inhibit the EGF-induced neoplastic transformation of JB6 P+ Cl41 cells. Our results suggest that investigated guanidine marine alkaloids hold potential to eliminate human cancer cells and prevent cancer cell formation and spreading. PMID:27428983

  4. Guanidine Alkaloids from the Marine Sponge Monanchora pulchra Show Cytotoxic Properties and Prevent EGF-Induced Neoplastic Transformation in Vitro.

    PubMed

    Dyshlovoy, Sergey A; Tabakmakher, Kseniya M; Hauschild, Jessica; Shchekaleva, Regina K; Otte, Katharina; Guzii, Alla G; Makarieva, Tatyana N; Kudryashova, Ekaterina K; Fedorov, Sergey N; Shubina, Larisa K; Bokemeyer, Carsten; Honecker, Friedemann; Stonik, Valentin A; von Amsberg, Gunhild

    2016-07-15

    Guanidine alkaloids from sponges Monanchora spp. represent diverse bioactive compounds, however, the mechanisms underlying bioactivity are very poorly understood. Here, we report results of studies on cytotoxic action, the ability to inhibit EGF-induced neoplastic transformation, and the effects on MAPK/AP-1 signaling of eight rare guanidine alkaloids, recently isolated from the marine sponge Monanchora pulchra, namely: monanchocidin A (1), monanchocidin B (2), monanchomycalin C (3), ptilomycalin A (4), monanchomycalin B (5), normonanchocidin D (6), urupocidin A (7), and pulchranin A (8). All of the compounds induced cell cycle arrest (apart from 8) and programmed death of cancer cells. Ptilomycalin A-like compounds 1-6 activated JNK1/2 and ERK1/2, following AP-1 activation and caused p53-independent programmed cell death. Compound 7 induced p53-independent cell death without activation of AP-1 or caspase-3/7, and the observed JNK1/2 activation did not contribute to the cytotoxic effect of the compound. Alkaloid 8 induced JNK1/2 (but not ERK1/2) activation leading to p53-independent cell death and strong suppression of AP-1 activity. Alkaloids 1-4, 7, and 8 were able to inhibit the EGF-induced neoplastic transformation of JB6 P⁺ Cl41 cells. Our results suggest that investigated guanidine marine alkaloids hold potential to eliminate human cancer cells and prevent cancer cell formation and spreading.

  5. Lateral inhibition of Notch signaling in neoplastic cells

    PubMed Central

    Heth, Jason A.; Muraszko, Karin M.; Fan, Xing; Bar, Eli E.; Eberhart, Charles G.

    2015-01-01

    During normal development, heterogeneous expression of Notch ligands can result in pathway suppression in the signal-sending cell, a process known as lateral inhibition. It is unclear if an analogous phenomenon occurs in malignant cells. We observed significant induction of Notch ligands in glioblastoma neurospheres and pancreatic carcinoma cells cultured in low oxygen, suggesting that this phenomenon could occur around hypoxic regions. To model lateral inhibition in these tumors, the ligand Jagged1 was overexpressed in glioblastoma and pancreatic carcinoma cells, resulting in overall induction of pathway targets. However, when ligand high and ligand low cells from a single line were co-cultured and then separated, we noted suppression of Notch pathway targets in the former and induction in the latter, suggesting that neoplastic lateral inhibition can occur. We also found that repression of Notch pathway targets in signal-sending cells may occur through the activity of a Notch ligand intracellular domain, which translocates into the nucleus. Understanding how this neoplastic lateral inhibition process functions in cancer cells may be important in targeting ligand driven Notch signaling in solid tumors. PMID:25557173

  6. Early changes in proteome levels upon acute deltamethrin exposure in mammalian skin system associated with its neoplastic transformation potential.

    PubMed

    George, Jasmine; Shukla, Yogeshwer

    2013-01-01

    Deltamethrin, a pyrethroid insecticide, used extensively for pest control has been reported to cause adverse health effects including carcinogenic/toxic effects in animals but the underlying mechanism remains elusive. In the present study, we investigated the effect of deltamethrin after short exposure on early protein expression changes involved in neoplastic transformation in mouse skin, validated the results in human keratinocyte HaCaT cells and thereby explore the possible underlying mechanism. Deltamethrin (4 mg/kg b.wt) and benzo[a]pyrene (B[a]P, 0.05 mg/kg b.wt) were topically applied on Swiss albino mice, respectively. The comparative protein expression profiles with vehicle control were generated by 2-dimensional gel electrophoresis (2-DE) and mass spectrometry. 2-DE maps of deltamethrin and B[a]P treated mouse skin showed 20 and 24 significant (2 fold change, p < 0.05) differentially expressed protein spots, against vehicle controls. However, comparison between them showed relatively similar expression level of 20 spots. Among them, 5 proteins (carbonic anhydrase III, peroxiredoxin-2, calcyclin, superoxide dismutase [Cu-Zn], ubiquitin) are of particular significance as these are involved in cancer-related key processes. Deregulation of these was confirmed at protein and mRNA levels by immunoblotting and RT-PCR in mouse skin and HaCaT cells. Therefore, we conclude that these preliminarily identified proteins might be responsible for the neoplastic transformation of mouse skin epidermal cells and HaCaT cells by deltamethrin. This study proposes complementary mechanism where inhibition of proteasome activator protein (PA200) is responsible for accumulation of ubiquitinated-calcyclin, regulates deltamethrin-induced neoplastic changes in mouse skin and HaCaT cells.

  7. Inhibition of chemically-induced neoplastic transformation by a novel tetrasodium diphosphate astaxanthin derivative.

    PubMed

    Hix, Laura M; Frey, Dean A; McLaws, Mark D; Østerlie, Marianne; Lockwood, Samuel F; Bertram, John S

    2005-09-01

    Carotenoids have been implicated in numerous epidemiological studies as being protective against cancer at many sites, and their chemopreventive properties have been confirmed in laboratory studies. Astaxanthin (AST), primarily a carotenoid of marine origin, responsible for the pink coloration of salmon, shrimp and lobster, has received relatively little attention. As with other carotenoids, its highly lipophilic properties complicate delivery to model systems. To overcome this issue we have synthesized a novel tetrasodium diphosphate astaxanthin (pAST) derivative with aqueous dispersibility of 25.21 mg/ml. pAST was delivered to C3H/10T1/2 cells in an aqueous/ethanol solution and compared with non-esterified AST dissolved in tetrahydrofuran. We show pAST to (i) upregulate connexin 43 (Cx43) protein expression; (ii) increase the formation of Cx43 immunoreactive plaques; (iii) upregulate gap junctional intercellular communication (GJIC); and (iv) cause 100% inhibition of methylcholanthrene-induced neoplastic transformation at 10(-6) M. In all these assays, pAST was superior to non-esterified AST itself; in fact, pAST exceeded the potency of all other previously tested carotenoids in this model system. Cleavage of pAST to non-esterified (free) AST and uptake into cells was also verified by HPLC; however, levels of free AST were approximately 100-fold lower than in cells treated with AST itself, suggesting that pAST possesses intrinsic activity. The dual properties of water dispersibility (enabling parenteral administration in vivo) and increased potency should prove extremely useful in the future development of cancer chemopreventive agents.

  8. Glyoxalase I drives epithelial-to-mesenchymal transition via argpyrimidine-modified Hsp70, miR-21 and SMAD signalling in human bronchial cells BEAS-2B chronically exposed to crystalline silica Min-U-Sil 5: Transformation into a neoplastic-like phenotype.

    PubMed

    Antognelli, Cinzia; Gambelunghe, Angela; Muzi, Giacomo; Talesa, Vincenzo Nicola

    2016-03-01

    Glyoxalase I (Glo1) is the main scavenging enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). AGEs are known to control multiple biological processes, including epithelial to mesenchymal transition (EMT), a multistep phenomenon associated with cell transformation, playing a major role in a variety of diseases, including cancer. Crystalline silica is a well-known occupational health hazard, responsible for a great number of human pulmonary diseases, such as silicosis. There is still much debate concerning the carcinogenic role of crystalline silica, mainly due to the lack of a causal demonstration between silica exposure and carcinogenesis. It has been suggested that EMT might play a role in crystalline silica-induced lung neoplastic transformation. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 is involved in Min-U-Sil 5 (MS5) crystalline silica-induced EMT in BEAS-2B human bronchial epithelial cells chronically exposed, and whether this is associated with the beginning of a neoplastic-like transformation process. By using gene silencing/overexpression and scavenging/inhibitory agents, we demonstrated that MS5 induced hydrogen peroxide-mediated c-Jun-dependent Glo1 up-regulation which resulted in a decrease in the Argpyrimidine-modified Hsp70 protein level which triggered EMT in a novel mechanism involving miR-21 and SMAD signalling. The observed EMT was associated with a neoplastic-like phenotype. The results obtained provide a causal in vitro demonstration of the MS5 pro-carcinogenic transforming role and more importantly they provide new insights into the mechanisms involved in this process, thus opening new paths in research concerning the in vivo study of the carcinogenic potential of crystalline silica.

  9. Different Roles of Negative and Positive Components of the Circadian Clock in Oncogene-induced Neoplastic Transformation.

    PubMed

    Katamune, Chiharu; Koyanagi, Satoru; Shiromizu, Shoya; Matsunaga, Naoya; Shimba, Shigeki; Shibata, Shigenobu; Ohdo, Shigehiro

    2016-05-13

    In mammals, circadian rhythms in physiological function are generated by a molecular oscillator driven by transcriptional-translational feedback loop consisting of negative and positive regulators. Disruption of this circadian clock machinery is thought to increase the risk of cancer development, but the potential contributions of each component of circadian clock to oncogenesis have been little explored. Here we reported that negative and positive transcriptional regulators of circadian feedback loop had different roles in oncogene-induced neoplastic transformation. Mouse embryonic fibroblasts prepared from animals deficient in negative circadian clock regulators, Period2 (Per2) or Cryptochrome1/2 (Cry1/2), were prone to transformation induced by co-expression of H-ras(V12) and SV40 large T antigen (SV40LT). In contrast, mouse embryonic fibroblasts prepared from mice deficient in positive circadian clock regulators, Bmal1 or Clock, showed resistance to oncogene-induced transformation. In Per2 mutant and Cry1/2-null cells, the introduction of oncogenes induced expression of ATF4, a potent repressor of cell senescence-associated proteins p16INK4a and p19ARF. Elevated levels of ATF4 were sufficient to suppress expression of these proteins and drive oncogenic transformation. Conversely, in Bmal1-null and Clock mutant cells, the expression of ATF4 was not induced by oncogene introduction, which allowed constitutive expression of p16INK4a and p19ARF triggering cellular senescence. Although genetic ablation of either negative or positive transcriptional regulators of the circadian clock leads to disrupted rhythms in physiological functions, our findings define their different contributions to neoplastic cellular transformation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Mycalamide A Shows Cytotoxic Properties and Prevents EGF-Induced Neoplastic Transformation through Inhibition of Nuclear Factors

    PubMed Central

    Dyshlovoy, Sergey A.; Fedorov, Sergey N.; Kalinovsky, Anatoly I.; Shubina, Larisa K.; Bokemeyer, Carsten; Stonik, Valentin A.; Honecker, Friedemann

    2012-01-01

    Mycalamide A, a marine natural compound previously isolated from sponges, is known as a protein synthesis inhibitor with potent antitumor activity. However, the ability of this compound to prevent malignant transformation of cells has never been examined before. Here, for the first time, we report the isolation of mycalamide A from ascidian Polysincraton sp. as well as investigation of its cancer preventive properties. In murine JB6 Cl41 P+ cells, mycalamide A inhibited epidermal growth factor (EGF)-induced neoplastic transformation, and induced apoptosis at subnanomolar or nanomolar concentrations. The compound inhibited transcriptional activity of the oncogenic nuclear factors AP-1 and NF-κB, a potential mechanism of its cancer preventive properties. Induction of phosphorylation of the kinases MAPK p38, JNK, and ERK was also observed at high concentrations of mycalamide A. The drug shows promising potential for both cancer-prevention and cytotoxic therapy and should be further developed. PMID:22822368

  11. Dpp signaling and the induction of neoplastic tumors by caspase-inhibited apoptotic cells in Drosophila

    PubMed Central

    Pérez-Garijo, Ainhoa; Martín, Francisco A.; Struhl, Gary; Morata, Ginés

    2005-01-01

    In Drosophila, stresses such as x-irradiation or severe heat shock can cause most epidermal cells to die by apoptosis. Yet, the remaining cells recover from such assaults and form normal adult structures, indicating that they undergo extra growth to replace the lost cells. Recent studies of cells in which the cell death pathway is blocked by expression of the caspase inhibitor P35 have raised the possibility that dying cells normally regulate this compensatory growth by serving as transient sources of mitogenic signals. Caspase-inhibited cells that initiate apoptosis do not die. Instead, they persist in an “undead” state in which they ectopically express the signaling genes decapentaplegic (dpp) and wingless (wg) and induce abnormal growth and proliferation of surrounding tissue. Here, using mutations to abolish Dpp and/or Wg signaling by such undead cells, we show that Dpp and Wg constitute opposing stimulatory and inhibitory signals that regulate this excess growth and proliferation. Strikingly, we also found that, when Wg signaling is blocked, unfettered Dpp signaling by undead cells transforms their neighbors into neoplastic tumors, provided that caspase activity is also blocked in the responding cells. This phenomenon may provide a paradigm for the formation of neoplastic tumors in mammalian tissues that are defective in executing the cell death pathway. Specifically, we suggest that stress events (exposure to chemical mutagens, viral infection, or irradiation) that initiate apoptosis in such tissues generate undead cells, and that imbalances in growth regulatory signals sent by these cells can induce the oncogenic transformation of neighboring cells. PMID:16314564

  12. Dpp signaling and the induction of neoplastic tumors by caspase-inhibited apoptotic cells in Drosophila.

    PubMed

    Pérez-Garijo, Ainhoa; Martín, Francisco A; Struhl, Gary; Morata, Ginés

    2005-12-06

    In Drosophila, stresses such as x-irradiation or severe heat shock can cause most epidermal cells to die by apoptosis. Yet, the remaining cells recover from such assaults and form normal adult structures, indicating that they undergo extra growth to replace the lost cells. Recent studies of cells in which the cell death pathway is blocked by expression of the caspase inhibitor P35 have raised the possibility that dying cells normally regulate this compensatory growth by serving as transient sources of mitogenic signals. Caspase-inhibited cells that initiate apoptosis do not die. Instead, they persist in an "undead" state in which they ectopically express the signaling genes decapentaplegic (dpp) and wingless (wg) and induce abnormal growth and proliferation of surrounding tissue. Here, using mutations to abolish Dpp and/or Wg signaling by such undead cells, we show that Dpp and Wg constitute opposing stimulatory and inhibitory signals that regulate this excess growth and proliferation. Strikingly, we also found that, when Wg signaling is blocked, unfettered Dpp signaling by undead cells transforms their neighbors into neoplastic tumors, provided that caspase activity is also blocked in the responding cells. This phenomenon may provide a paradigm for the formation of neoplastic tumors in mammalian tissues that are defective in executing the cell death pathway. Specifically, we suggest that stress events (exposure to chemical mutagens, viral infection, or irradiation) that initiate apoptosis in such tissues generate undead cells, and that imbalances in growth regulatory signals sent by these cells can induce the oncogenic transformation of neighboring cells.

  13. Time-caloric restriction inhibits the neoplastic transformation of cirrhotic liver in rats treated with diethylnitrosamine.

    PubMed

    Molina-Aguilar, Christian; Guerrero-Carrillo, María de Jesús; Espinosa-Aguirre, Jesús Javier; Olguin-Reyes, Sitlali; Castro-Belio, Thania; Vázquez-Martínez, Olivia; Rivera-Zavala, Julieta Berenice; Díaz-Muñoz, Mauricio

    2017-08-01

    Hepatocellular cancer is the most common type of primary liver cancer. Cirrhosis is the main risk factor that generates this malady. It has been proven that caloric restriction protocols and restricted feeding schedules are protective in experimental carcinogenic models. We tested the influence of a time-caloric restriction protocol (2 h of food access during the daytime for 18 weeks) in an experimental model of cirrhosis-hepatocarcinoma produced by weekly administration of diethylnitrosamine. Our results indicate that time-caloric restriction reduced hepatomegaly and prevented the increase in blood leukocytes promoted by diethylnitrosamine. Strikingly, time-caloric restriction preserved functional and histological characteristics of the liver in fibrotic areas compared to the cirrhotic areas of the Ad Libitum-fed group. Tumoural masses in the restricted group were well differentiated; consider a neoplastic or early stage of HCC. However, time-caloric restriction enhanced collagen deposits. With regard to the cancerous process, food restriction prevented systemic inflammation and an increase in carcinoembryonic antigen, and it favoured the occurrence of diffuse multinodular tumours. Histologically, it prevented hepatocyte inflammation response, the regenerative process, and neoplastic transformation. Time-caloric restriction stimulated circadian synchronization in fibrotic and cancerous liver sections, and it increased BMAL1 clock protein levels. We conclude that time-caloric restriction prevents fibrosis from progressing into cirrhosis, thus avoiding chronic inflammation and regenerative processes. It also prevents, probably through circadian entrainment and caloric restriction, the neoplastic transformation of tumoural lesions induced by diethylnitrosamine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Micro-Raman spectroscopy Detects Individual Neoplastic and Normal Hematopoietic Cells

    SciTech Connect

    Chan, J W; Taylor, D; Zwerdling, T; Lane, S M; Ihara, K; Huser, T

    2005-01-18

    Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often non-specific, slow, biologically perturbing, or a combination, thereof. Here, we show that single-cell micro-Raman spectroscopy averts these shortcomings and can be used to discriminate between unfixed normal human lymphocytes and transformed Jurkat and Raji lymphocyte cell lines based on their biomolecular Raman signatures. We demonstrate that single-cell Raman spectra provide a highly reproducible biomolecular fingerprint of each cell type. Characteristic peaks, mostly due to different DNA and protein concentrations, allow for discerning normal lymphocytes from transformed lymphocytes with high confidence (p << 0.05). Spectra are also compared and analyzed by principal component analysis (PCA) to demonstrate that normal and transformed cells form distinct clusters that can be defined using just two principal components. The method is shown to have a sensitivity of 98.3% for cancer detection, with 97.2% of the cells being correctly classified as belonging to the normal or transformed type. These results demonstrate the potential application of confocal micro-Raman spectroscopy as a clinical tool for single cell cancer detection based on intrinsic biomolecular signatures, therefore eliminating the need for exogenous fluorescent labeling.

  15. Emperipolesis-like invasion of neoplastic lymphocytes into hepatocytes in feline T-cell lymphoma.

    PubMed

    Suzuki, M; Kanae, Y; Kagawa, Y; Ano, N; Nomura, K; Ozaki, K; Narama, I

    2011-05-01

    Twelve cases of feline malignant lymphoma with emperipolesis-like invasion of neoplastic lymphocytes were examined microscopically, immunohistochemically and ultrastructurally. Intracytoplasmic invasion of neoplastic cells varied in severity between the cases, between hepatic lobules and between areas within the lobules. The number of infiltrating neoplastic cells ranged from one to several per hepatocyte. Neoplastic cells exhibited widely varying morphology from case-to-case and cell-to-cell within each case, and contained eosinophilic cytoplasmic granules in four cases. Immunohistochemical examination revealed that neoplastic cells in 11 of the 12 cases expressed one or both T-cell markers (CD3 and TIA-1). Diagnosis of T-cell lymphoma was also confirmed by assessment of clonality by polymerase chain reaction. Ultrastructural analysis revealed that the neoplastic lymphocytes were contained within an invagination of the cell membrane of the hepatocyte, rather than directly infiltrating into the cytoplasm of the cell. There was no evidence that the invasive neoplastic lymphocytes had a cytotoxic effect.

  16. Cell cannibalism by malignant neoplastic cells: three cases in dogs and a literature review.

    PubMed

    Meléndez-Lazo, Antonio; Cazzini, Paola; Camus, Melinda; Doria-Torra, Georgina; Marco Valle, Alberto Jesús; Solano-Gallego, Laia; Pastor, Josep

    2015-06-01

    Cell cannibalism refers to the engulfment of cells by nonprofessional phagocytic cells. Studies in human medicine have demonstrated a relationship between the presence of cell cannibalism by neoplastic cells and a poor outcome, and have shown a positive correlation with the presence of metastasis at the time of diagnosis. The biologic significance of cell cannibalism is unknown, but it is proposed that it may represent a novel mechanism of tumor immune evasion as a survival strategy in cases of unfavorable microenvironmental conditions. This report describes clinical and morphologic features of 3 cases of dogs with malignant neoplasia in which the presence of cellular cannibalism was observed in cytologic and histologic specimens. In the 1(st) case, a dog with a primary tonsillar squamous cell carcinoma with metastasis to retropharyngeal lymph nodes had neoplastic epithelial cells engulfing neutrophils noted in cytologic examination of the lymph nodes. In the 2(nd) case, neoplastic epithelial cells were seen engulfing each other in fine-needle aspirates from a primary mammary carcinoma with lung metastasis. In the 3(rd) case, poorly differentiated neoplastic mast cells from a recurrent, metastatic grade III mast cell tumor were observed cannibalizing eosinophils. A brief review of the literature describing known cell-into-cell relationships and the possible biologic significance and mechanisms involved in this phenomenon is provided. The relationship between cell cannibalism and distant metastasis should be explored in further studies, as it may prove to be a criterion of malignancy, as it is proposed in human medicine.

  17. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression

    PubMed Central

    Rhodes, Daniel R.; Yu, Jianjun; Shanker, K.; Deshpande, Nandan; Varambally, Radhika; Ghosh, Debashis; Barrette, Terrence; Pandey, Akhilesh; Chinnaiyan, Arul M.

    2004-01-01

    Many studies have used DNA microarrays to identify the gene expression signatures of human cancer, yet the critical features of these often unmanageably large signatures remain elusive. To address this, we developed a statistical method, comparative metaprofiling, which identifies and assesses the intersection of multiple gene expression signatures from a diverse collection of microarray data sets. We collected and analyzed 40 published cancer microarray data sets, comprising 38 million gene expression measurements from >3,700 cancer samples. From this, we characterized a common transcriptional profile that is universally activated in most cancer types relative to the normal tissues from which they arose, likely reflecting essential transcriptional features of neoplastic transformation. In addition, we characterized a transcriptional profile that is commonly activated in various types of undifferentiated cancer, suggesting common molecular mechanisms by which cancer cells progress and avoid differentiation. Finally, we validated these transcriptional profiles on independent data sets. PMID:15184677

  18. Mechanisms underlying the adaptive response against spontaneous neoplastic transformation induced by low doses of low LET radiation - Final Technical Report

    SciTech Connect

    John Leslie Redpath

    2007-01-17

    The objective of the research was to examine mechanisms underlying the suppressive effects of low doses (<10 cGy) of low-LET radiation on the endpoint of neoplastic transformation in vitro. The findings indicated a role for upregulation of DNA repair but not of antioxidants.

  19. Neoplastic transformation and tumorigenesis associated with overexpression of imup-1 and imup-2 genes in cultured NIH/3T3 mouse fibroblasts

    SciTech Connect

    Ryoo, Zae Young . E-mail: jaewoong64@hanmail.net; Jung, Boo Kyoung; Lee, Sang Ryeul; Kim, Myoung Ok; Kim, Sung Hyun; Kim, Hyo Jin; Ahn, Jung Yong; Lee, Tae-Hoon; Cho, Youl Hee; Park, Jae Hak; Kim, Jin Kyeoung

    2006-10-27

    Immortalization-upregulated protein 1 (IMUP-1) and immortalization-upregulated protein 2 (IMUP-2) genes have been recently cloned and are known to be involved in SV40-mediated immortalization. IMUP-1 and IMUP-2 genes were strongly expressed in various cancer cell lines and tumors, suggesting the possibility that they might be involved in tumorigenicity. To directly elucidate the functional role of IMUP-1 and IMUP-2 on neoplastic transformation and tumorigenicity, we stably transfected IMUP-1 and IMUP-2 into NIH/3T3 mouse fibroblast cells. Cellular characteristics of the neoplastic transformation were assessed by transformation foci, growth in soft agar, and tumor development in nude mice. We found that IMUP-1 and IMUP-2 overexpressing cells showed altered growth properties, anchorage-independent growth in soft agar and inducing tumor in nude mice. Furthermore, IMUP-1 and IMUP-2 transformants proliferated in reduced serum and shortened cell cycle. These results suggest that ectopic overexpression of IMUP-1 and IMUP-2 may play an important role in acquiring a transformed phenotype, tumorigenicity in vivo, and be related to cellular proliferation.

  20. Patterns of microRNA Expression in Non-Human Primate Cells Correlate with Neoplastic Development In Vitro

    PubMed Central

    Teferedegne, Belete; Murata, Haruhiko; Quiñones, Mariam; Peden, Keith; Lewis, Andrew M.

    2010-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression post-transcriptionally. They play a critical role in developmental and physiological processes and have been implicated in the pathogenesis of several diseases including cancer. To identify miRNA signatures associated with different stages of neoplastic development, we examined the expression profile of 776 primate miRNAs in VERO cells (a neoplastically transformed cell line being used for the manufacture of viral vaccines), progenitor primary African green monkey kidney (pAGMK) cells, and VERO cell derivatives: spontaneously immortalized, non-tumorigenic, low-passage VERO cells (10-87 LP); tumorigenic, high-passage VERO cells (10-87 HP); and a cell line (10-87 T) derived from a 10-87 HP cell tumor xenograft in athymic nude mice. When compared with pAGMK cells, the majority of miRNAs were expressed at lower levels in 10-87 LP, 10-87 HP, and 10-87 T cells. We identified 10 up-regulated miRNAs whose level of expression correlated with VERO cell evolution from a non-tumorigenic phenotype to a tumorigenic phenotype. The overexpression of miR-376a and the polycistronic cluster of miR-376a, miR-376b and miR-376c conferred phenotypic changes to the non-tumorigenic 10-87 LP cells that mimic the tumorigenic 10-87 HP cells. Thirty percent of miRNAs that were components of the identified miRNAs in our spontaneously transformed AGMK cell model are also dysregulated in a variety of human tumors. These results may prove to be relevant to the biology of neoplastic development. In addition, one or more of these miRNAs could be biomarkers for the expression of a tumorigenic phenotype. PMID:21203544

  1. Patterns of microRNA expression in non-human primate cells correlate with neoplastic development in vitro.

    PubMed

    Teferedegne, Belete; Murata, Haruhiko; Quiñones, Mariam; Peden, Keith; Lewis, Andrew M

    2010-12-22

    MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression post-transcriptionally. They play a critical role in developmental and physiological processes and have been implicated in the pathogenesis of several diseases including cancer. To identify miRNA signatures associated with different stages of neoplastic development, we examined the expression profile of 776 primate miRNAs in VERO cells (a neoplastically transformed cell line being used for the manufacture of viral vaccines), progenitor primary African green monkey kidney (pAGMK) cells, and VERO cell derivatives: spontaneously immortalized, non-tumorigenic, low-passage VERO cells (10-87 LP); tumorigenic, high-passage VERO cells (10-87 HP); and a cell line (10-87 T) derived from a 10-87 HP cell tumor xenograft in athymic nude mice. When compared with pAGMK cells, the majority of miRNAs were expressed at lower levels in 10-87 LP, 10-87 HP, and 10-87 T cells. We identified 10 up-regulated miRNAs whose level of expression correlated with VERO cell evolution from a non-tumorigenic phenotype to a tumorigenic phenotype. The overexpression of miR-376a and the polycistronic cluster of miR-376a, miR-376b and miR-376c conferred phenotypic changes to the non-tumorigenic 10-87 LP cells that mimic the tumorigenic 10-87 HP cells. Thirty percent of miRNAs that were components of the identified miRNAs in our spontaneously transformed AGMK cell model are also dysregulated in a variety of human tumors. These results may prove to be relevant to the biology of neoplastic development. In addition, one or more of these miRNAs could be biomarkers for the expression of a tumorigenic phenotype.

  2. Insights on Neoplastic Stem Cells from Gel-Based Proteomics of Childhood Germ Cell Tumors

    PubMed Central

    Haskins, William E.; Eedala, Sruthi; Jadhav, Y.L. Avinash; Labhan, Manbir S.; Pericherla, Vidya C.; Perlman, Elizabeth J.

    2011-01-01

    Background Childhood germ cell tumors (cGCTs), believed to arise from transformed primordial germ cells by an unknown mechanism, provide a unique model system for investigating cell signaling, pluripotency and the microenvironment of neoplastic stem cells (NSCs) in vivo. This is the first report of proteomics of cGCTs. Procedure Four dysgerminomas (DYSs) and four childhood endodermal sinus tumors (cESTs), resembling self-renewing and differentiating NSCs, respectively, were selected. Proteomic studies were performed by 2-DE, SDS-PAGE and cLC/MS/MS with protein database searching. Results 2-DE: 9 of 941spots were differentially regulated with greater than a 2-fold change in spot volume for at least 3 of 4 gels in each group. 2 of 9 spots had p-values for the t-test analysis of comparisons less than 0.001, while the remaining spots had p-values from 0.013 to 0.191. Top-ranked proteins were identified in 9 of 9 spots with 4.0 to 38% sequence coverage. APOA1, CRK and PDIA3 were up-regulated in cESTs. TFG, TYMP, VCP, RBBP, FKBP4 and BiP were up-regulated in DYSs. SDS-PAGE: Up-regulation of NF45 and FKBP4 was observed in 4 of 4 cESTs and DYSs, respectively. The fold-changes observed correspond with characteristic genetic changes. Conclusion Differential regulation of FKBP4 and NF45, combined with previous research on immunosuppressant binding, suggests that glucocorticoid receptor signaling merits further investigation in cGCTs and NSCs. PMID:21793190

  3. Focus formation and neoplastic transformation by herpes simplex virus type 2 inactivated intracellularly by 5-bromo-2'-deoxyuridine and near UV light

    SciTech Connect

    Manak, M.M.; Aurelian, L.; Ts'o, P.O.

    1981-01-01

    The induction of focus formation in low serum and of neoplastic transformation of Syrian hamster embryo cells was examined after the expression of herpes simplex virus type 2 functions. Syrian hamster embryo cells infected at a high multiplicity (5 PFU/cell) with 5-bromo-2'-deoxyuridine-labeled herpes simplex virus type 2 (11% substitution of thymidine residues) were exposed to near UV light irradiation at various times postinfection. This procedure specifically inactivated the viral genome, while having little, if any, effect on the unlabeled cellular DNA. Focus formation in 1% serum and neoplastic transformation were observed in cells exposed to virus inactivated before infection, but the frequency was enhanced (15- to 27-fold) in cells in which the virus was inactivated at 4 to 8 h postinfection. Only 2 to 45 independently isolated foci were capable of establishing tumorigenic lines. The established lines exhibited phenotypic alterations characteristic of a transformed state, including reduced serum requirement, anchorage-independent growth, and tumorigenicity. They retained viral DNA sequences and, even at relatively late passage, expressed viral antigens, including ICP 10.

  4. Mechanisms underlying the adaptive response against spontaneous neoplastic transformation induced by low doses of low LET radiation, Final Technical Report

    SciTech Connect

    J. Leslie Redpath, Ph.D.

    2006-01-23

    The goal of this project was to investigate mechanisms underlying the adaptive response seen following exposure of HeLa x skin fibroblast human hybrid cells to low doses of low LET radiation. It was proposed to investigate the contributions of three possible mechanisms. These were: 1. Upregulation of cellular antioxidant status. 2. Upregulation of DNA repair. 3. Upregulation of gap junction intracellular communication. We have completed the study of the role of upregulation of reduced glutathione (GSH) as a possible mechanism underlying our observed suppression of transformation frequency at low radiation doses. We have also completed our study of the possible role of upregulation of DNA repair in the observed adaptive response against neoplastic transformation. We concluded that upregulation of DNA repair may be more important in modulating transformation at the higher dose. A manuscript describing the above studies has been submitted published in Carcinogenesis 24:1961-1965, 2003. Finally, we have completed two studies of the possible role of upregulation of gap junction intercellular communication (GJIC) in modulating transformation frequency at low doses of low LET radiation. This research was published in Radiation Research 162:646-654, 2004. In order to optimize the opportunity for GJIC, we then carried out a study where confluent cultures were irradiated. The results indicated, that while the degree of low dose suppression was somewhat reduced compared to that seen for subconfluent cultures, it was not completely absent. This research has been submitted for publication. Our research program was of sufficient interest to generate two invited reviews, and five invited presentations.

  5. MDM2 regulates a novel form of incomplete neoplastic transformation of Theileria parva infected lymphocytes.

    PubMed

    Hayashida, Kyoko; Kajino, Kiichi; Hattori, Masakazu; Wallace, Maura; Morrison, Ivan; Greene, Mark I; Sugimoto, Chihiro

    2013-02-01

    Our efforts are concerned with identifying features of incomplete malignant transformation caused by non viral pathogens. Theileria parva (T. parva) is a tick-transmitted protozoan parasite that can cause a fatal lymphoproliferative disease in cattle. The T. parva-infected lymphocytes display a transformed phenotype and proliferate in culture media like the other tumor cells, however those cells will return to normal after antiprotozoal treatment reflecting the incomplete nature of transformation. To identify signaling pathways involved in this form of transformation of T. parva-infected cells, we screened a library of anticancer compounds. Among these, TIBC, a specific inhibitor of MDM2, markedly inhibited proliferation of T. parva-infected lymphocytes and promoted apoptosis. Therefore we analyzed MDM2 function in T. parva-infected cells. Several T. parva-infected cell lines showed increased expression level of MDM2 with alternatively spliced isoforms compared to the lymphoma cells or ConA blasts. In addition, buparvaquone affected MDM2 expression in T. parva transformed cells. Moreover, p53 protein accumulation and function were impaired in T. parva-infected cells after cisplatin induced DNA damage despite the increased p53 transcription level. Finally, the treatment of T. parva-infected cells with boronic-chalcone derivatives TIBC restored p53 protein accumulation and induced Bax expression. These results suggest that the overexpression of MDM2 is closely linked to the inhibition of p53-dependent apoptosis of T. parva-infected lymphocytes. Aberrant expression of host lymphocyte MDM2 induced by cytoplasmic existence of T. parva, directly and/or indirectly, is associated with aspects of this type of transformation of T. parva-infected lymphocytes. This form of transformation shares features of oncogene induced malignant phenotype acquisition.

  6. Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation

    PubMed Central

    Obata, Yuuki; Toyoshima, Shota; Wakamatsu, Ei; Suzuki, Shunichi; Ogawa, Shuhei; Esumi, Hiroyasu; Abe, Ryo

    2014-01-01

    Kit is a receptor-type tyrosine kinase found on the plasma membrane. It can transform mast cells through activating mutations. Here, we show that a mutant Kit from neoplastic mast cells from mice, Kit(D814Y), is permanently active and allows cells to proliferate autonomously. It does so by activating two signalling pathways from different intracellular compartments. Mutant Kit from the cell surface accumulates on endolysosomes through clathrin-mediated endocytosis, which requires Kit’s kinase activity. Kit(D814Y) is constitutively associated with phosphatidylinositol 3-kinase, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. It resists destruction because it is under-ubiquitinated. Kit(D814Y) also appears in the endoplasmic reticulum soon after biosynthesis, and there, can activate STAT5 aberrantly. These mechanisms of oncogenic signalling are also seen in rat and human mast cell leukemia cells. Thus, oncogenic Kit signalling occurs from different intracellular compartments, and the mutation acts by altering Kit trafficking as well as activation. PMID:25493654

  7. The absorption of ultraviolet light by cell nuclei. A technique for identifying neoplastic change

    SciTech Connect

    Baisden, C.R.; Booker, D.; Wright, R.D. )

    1989-11-01

    A technique for measuring the absorption of 260-nm ultraviolet light by cell nuclei is described. The results of such measurements of normal thyroid epithelial cells and benign and malignant thyroid neoplastic cells demonstrate a progressive increase in absorbance that correlates with the histologic appearance of neoplasia. The possible theoretic basis for this phenomenon is explored. The increased nuclear absorbance observed in neoplastic cells is hypothesized to result from the disruption of hydrogen bonds between the DNA base pairs, which allows unwinding of the double helix and loss of the normal control of mitosis.

  8. Sensitivity of neoplastic cells to senescence unveiled under standard cell culture conditions.

    PubMed

    Zieba, Jolanta; Ksiazkiewcz, Magdalena; Janik, Karolina; Banaszczyk, Mateusz; Peciak, Joanna; Piaskowski, Sylwester; Lipinski, Marek; Olczak, Michal; Stoczynska-Fidelus, Ewelina; Rieske, Piotr

    2015-05-01

    Cancer cells are typically defined as infinitely proliferating, whereas normal cells (except stem cells) are considered as being programmed to become senescent. Our data show that this characterization is misleading. Multiplex Ligation-dependent Probe Amplification, TP53 sequencing, real-time polymerase chain reaction (PCR) for MUC1 and SCGB2A2 and immunocytochemistry, together with senescence detection assay and real-time microscopic observations were used to analyze primary neoplastic cells isolated from prostate, breast and colorectal tumors, as well as stable cancer cell lines (MCF7, MDA-MB-468, SW962, SK-MEL28, NCI-H1975 and NCI-H469). In all cases of primary cancer cell cultures, in vitro conditions rapidly revealed senescence in the majority of cells. Two out of six stable cancer cell lines did not exhibit any senescence-associated-β-Galactosidase-positive cells. Interestingly, four cell lines had small sub-populations of senescent cells (single SA-β-Gal-positive cells). Primary neoplastic cells from different types of cancer (prostate, breast, colon cancer) appear to be senescent in vitro. Apparently, cancer cell lines that have been used for many years in drug-testing analyses have constantly been misleading researchers in terms of the general sensitivity of cancer cells to senescence. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Radiogenic cell transformation and carcinogenesis

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic

  10. Radiogenic cell transformation and carcinogenesis

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic

  11. Final checkup of neoplastic DNA replication: evidence for failure in decision-making at the mitotic cell cycle checkpoint G(1)/S.

    PubMed

    Prindull, Gregor

    2008-11-01

    Processing of epigenomic transcriptional information by cell cycle phase G(1) and decision-making at checkpoint G(1)/S are the final organizational steps preceding gene replication in transcriptional reorientation programs (i.e., switches from proliferation to cycle arrest and neoplastic transformation). Further analyses of cycle progression will open up new approaches in antineoplastic therapy. The following bibliographic databases were consulted: Central Medical Library Cologne, PubMed (English), the last search was done on April 23,2008 and key words searched were: cell cycle, cell memory, DNA methylation, embryonal/neoplastic stem cells, enzyme-modulated chromatin, G(1)-G(1)/S checkpoint, genomic/epigenomics, genomic viral DNA, histones, telomere/telomerases, transcription factors, neoplastic transformation, senescence. Gene transcription and epigenomic surveillance form a functional entity. In proliferation programs, transcriptional information is mediated by chromatin and DNA methylation, analyzed and processed in G(1) phase, and converged on the parental checkpoint G(1)/S for final decision-making on DNA replication. Genomic reorientation appears to be associated with transcriptional instability, which normally is corrected, possibly during the G(2)/M phase, to new levels of epigenomic equilibria. We speculate that daughter stem cells inherit persistent neoplasm-specific transcriptional instabilities through failure of the parental G(1)/S checkpoint. Foreign, silenced, potentially oncogenic DNA sequences, i.e. regular components of the human genome such as endogenous retroviruses, could conceivably be activated for expression in neoplastic transformation by epigenomic histone deacetylase/acetyl transferase/histone methyltransferase-mixed lineage leukemia deregulations. Failure of cell cycle G(1)/S decision-making for DNA replication is the final and possibly a major cause in neoplastic transformation. Therefore, further analysis of the dynamics of G(1)-G(1

  12. bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells.

    PubMed

    Delia, D; Aiello, A; Soligo, D; Fontanella, E; Melani, C; Pezzella, F; Pierotti, M A; Della Porta, G

    1992-03-01

    The present study provides immunobiochemical and molecular data on the differentiation-linked expression of the bcl-2 proto-oncogene in normal and neoplastic myeloid cells. Using a recently developed monoclonal antibody (MoAb) to the bcl-2 molecule, staining of normal bone marrow myeloblasts, promyelocytes, and myelocytes, but neither monocytes nor most polymorphonuclear cells, was demonstrated. By two-color flow cytometric analysis, bcl-2 was evidenced in CD33+ and CD33+/CD34+ myeloid cells as well as in the more primitive CD33-/CD34+ population. The leukemic cell lines HL-60, KG1, GM-1, and K562 were bcl-2 positive together with 11 of 14 acute myeloid leukemias (AML) and three of three chronic myeloid leukemias (CML) in blast crises; six of seven CML were negative. Among myelodysplastic cases, augmentation of the bcl-2 positive myeloblastic compartment was found in refractory anemia with excess of blasts (RAEB) and in transformation (RAEB-t). Western blots of myeloid leukemias and control lymphocytes extracts evidenced an anti-bcl-2 immunoreactive band of the expected size (26 Kd). Moreover, the HL-60 and KG1 cell lines, both positive for the bcl-2 protein, exhibited the appropriate size bcl-2 mRNA (7.5 Kb). These findings clearly indicate that the bcl-2 gene is operative in myeloid cells and that the anti-bcl-2 MoAb identifies its product and not a cross-reactive epitope. Induction of HL-60 differentiation toward the monocytic and granulocytic pathways was accompanied by a marked decrease in bcl-2 mRNA and protein levels; bivariate flow cytometric analysis showed that the fraction becoming bcl-2 negative was in the G1 phase of the cell cycle. These data establish that the bcl-2 proto-oncogene is expressed on myeloid cells and their progenitors and is regulated in a differentiation-linked manner.

  13. KIT-D816V-independent oncogenic signaling in neoplastic cells in systemic mastocytosis: role of Lyn and Btk activation and disruption by dasatinib and bosutinib.

    PubMed

    Gleixner, Karoline V; Mayerhofer, Matthias; Cerny-Reiterer, Sabine; Hörmann, Gregor; Rix, Uwe; Bennett, Keiryn L; Hadzijusufovic, Emir; Meyer, Renata A; Pickl, Winfried F; Gotlib, Jason; Horny, Hans-Peter; Reiter, Andreas; Mitterbauer-Hohendanner, Gerlinde; Superti-Furga, Giulio; Valent, Peter

    2011-08-18

    Systemic mastocytosis (SM) either presents as a malignant neoplasm with short survival or as an indolent disease with normal life expectancy. In both instances, neoplastic mast cells (MCs) harbor D816V-mutated KIT, suggesting that additional oncogenic mechanisms are involved in malignant transformation. We here describe that Lyn and Btk are phosphorylated in a KIT-independent manner in neoplastic MCs in advanced SM and in the MC leukemia cell line HMC-1. Lyn and Btk activation was not only detected in KIT D816V-positive HMC-1.2 cells, but also in the KIT D816V-negative HMC-1.1 subclone. Moreover, KIT D816V did not induce Lyn/Btk activation in Ba/F3 cells, and deactivation of KIT D816V by midostaurin did not alter Lyn/Btk activation. siRNAs against Btk and Lyn were found to block survival in neoplastic MCs and to cooperate with midostaurin in producing growth inhibition. Growth inhibitory effects were also obtained with 2 targeted drugs, dasatinib which blocks KIT, Lyn, and Btk activation in MCs, and bosutinib, a drug that deactivates Lyn and Btk without blocking KIT activity. Together, KIT-independent signaling via Lyn/Btk contributes to growth of neoplastic MCs in advanced SM. Dasatinib and bosutinib disrupt Lyn/Btk-driven oncogenic signaling in neoplastic MC, which may have clinical implications and explain synergistic drug interactions.

  14. Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries.

    PubMed Central

    Jin, L.; Qian, X.; Kulig, E.; Sanno, N.; Scheithauer, B. W.; Kovacs, K.; Young, W. F.; Lloyd, R. V.

    1997-01-01

    Transforming growth factor (TGF)-beta has been implicated in the regulation of normal and neoplastic anterior pituitary cell function. TGF-beta regulates the expression of various proteins, including p27Kip1 (p27), a cell cycle inhibitory protein. We examined TGF-beta, TGF-beta type II receptor (TGF-beta-RII), and p27 expression in normal pituitaries, pituitary adenomas, and carcinomas to analyze the possible roles of these proteins in pituitary tumorigenesis. Normal pituitary, pituitary adenomas, and pituitary carcinomas all expressed TGF-beta and TGF-beta-RII immunoreactivity. Reverse transcription polymerase chain reaction analysis showed TGF-beta 1, -beta 2, and -beta 3 isoforms and TGF-beta-RII in normal pituitaries and pituitary adenomas. Pituitary adenomas cells cultured for 7 days in defined media showed a biphasic response to TGF-beta with significant inhibition of follicle-stimulating hormone secretion at higher concentrations (10(-9) mol/L) and stimulation of follicle-stimulating hormone secretion at lower concentrations (10(-13) mol/L) of TGF-beta 1 in gonadotroph adenomas. Immunohistochemical analysis for p27 protein expression showed the highest levels in nontumorous pituitaries with decreased immunoreactivity in adenomas and carcinomas. When nontumorous pituitaries and various adenomas were analyzed for p27 and specific hormone production, growth hormone, luteinizing hormone, and thyroid-stimulating hormone cells and tumors had the highest percentages of cells expressing p27, whereas adrenocorticotrophic hormone cells and tumors had the lowest percentages. Immunoblotting analysis showed that adrenocorticotrophic hormone adenomas also had the lowest levels of p27 protein. Semiquantitative reverse transcription polymerase chain reaction and Northern hybridization analysis did not show significant differences in p27 mRNA expression in the various types of adenomas or in nontumorous pituitaries. In situ hybridization for p27 mRNA showed similar

  15. Generation and Quantitative Analysis of Pulsed Low Frequency Ultrasound to Determine the Sonic Sensitivity of Untreated and Treated Neoplastic Cells

    PubMed Central

    Trendowski, Matthew; Christen, Timothy D.; Zoino, Joseph N.; Acquafondata, Christopher; Fondy, Thomas P.

    2015-01-01

    Low frequency ultrasound in the 20 to 60 kHz range is a novel physical modality by which to induce selective cell lysis and death in neoplastic cells. In addition, this method can be used in combination with specialized agents known as sonosensitizers to increase the extent of preferential damage exerted by ultrasound against neoplastic cells, an approach referred to as sonodynamic therapy (SDT). The methodology for generating and applying low frequency ultrasound in a preclinical in vitro setting is presented to demonstrate that reproducible cell destruction can be attained in order to examine and compare the effects of sonication on neoplastic and normal cells. This offers a means by which to reliably sonicate neoplastic cells at a level of consistency required for preclinical therapeutic assessment. In addition, the effects of cholesterol-depleting and cytoskeletal-directed agents on potentiating ultrasonic sensitivity in neoplastic cells are discussed in order to elaborate on mechanisms of action conducive to sonochemotherapeutic approaches. PMID:26274053

  16. Nuclear Factor kappa B is central to Marek’s Disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo

    USDA-ARS?s Scientific Manuscript database

    Background: Marek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the n...

  17. Galectin-1 is a useful marker for detecting neoplastic squamous cells in oral cytology smears.

    PubMed

    Noda, Yuri; Kondo, Yuko; Sakai, Manabu; Sato, Sunao; Kishino, Mitsunobu

    2016-06-01

    Cytologic diagnoses in the oral region are very difficult due to the small amount of cells in smears, which are also exposed to many stimulating factors and often show atypical changes. Galectin-1 (Gal1) is a β-galactoside binding protein that modulates tumor progression. Gal1 is very weakly expressed in normal cells, but is often overexpressed in neoplastic lesions. The aim of the present study was to determine whether it is possible to differentiate reactive changes from neoplastic changes in oral cytology smears based on the expression of Gal1. A total of 155 tissue biopsy specimens and 61 liquid-based cytology specimens were immunostained by an anti-Gal1 antibody, and Gal1 expression levels were subsequently evaluated. These samples consisted of oral squamous cell carcinomas, epithelial dysplasia, and oral mucosal diseases. The positive and negative expressions of Gal1 were examined in 37 specimens collected by scalpel and cytobrush biopsy. The sensitivity, specificity, and positive predictive value of Gal1 were also evaluated in smears. In tissue sections, the positive ratio of Gal1 in neoplastic lesions was high (72.3%). In cytology specimens, the positive ratio of Gal1 was higher in neoplastic lesions (79.0%) than in those negative for intraepithelial lesion or malignancy (22.2%). A correlation was found between immunocytochemical Gal1 expression and immunohistochemical Gal1 expression (P < .001). The sensitivity (75.0%), specificity (75.0%), and positive predictive value (91.3%) of Gal1 were also high in smears. In conclusion, Gal1 may be a useful marker for determining whether morphologic changes in cells are reactive or neoplastic.

  18. Potentiation of Anticancer Drugs: Effects of Pentoxifylline on Neoplastic Cells

    PubMed Central

    Barancik, Miroslav; Bohacova, Viera; Gibalova, Lenka; Sedlak, Jan; Sulova, Zdena; Breier, Albert

    2012-01-01

    The drug efflux activity of P-glycoprotein (P-gp, a product of the mdr1 gene, ABCB1 member of ABC transporter family) represents a mechanism by which tumor cells escape death induced by chemotherapeutics. In this study, we investigated the mechanisms involved in the effects of pentoxifylline (PTX) on P-gp-mediated multidrug resistance (MDR) in mouse leukemia L1210/VCR cells. Parental sensitive mouse leukemia cells L1210, and multidrug-resistant cells, L1210/VCR, which are characterized by the overexpression of P-gp, were used as experimental models. The cells were exposed to 100 μmol/L PTX in the presence or absence of 1.2 μmol/L vincristine (VCR). Western blot analysis indicated a downregulation of P-gp protein expression when multidrug-resistant L1210/VCR cells were exposed to PTX. The effects of PTX on the sensitization of L1210/VCR cells to VCR correlate with the stimulation of apoptosis detected by Annexin V/propidium iodide apoptosis necrosis kit and proteolytic activation of both caspase-3 and caspase-9 monitored by Western blot analysis. Higher release of matrix metalloproteinases (MMPs), especially MMP-2, which could be attenuated by PTX, was found in L1210/VCR than in L1210 cells by gelatin zymography in electrophoretic gel. Exposure of resistant cells to PTX increased the content of phosphorylated Akt kinase. In contrast, the presence of VCR eliminated the effects of PTX on Akt kinase phosphorylation. Taken together, we conclude that PTX induces the sensitization of multidrug-resistant cells to VCR via downregulation of P-gp, stimulation of apoptosis and reduction of MMPs released from drug-resistant L1210/VCR cells. These facts bring new insights into the mechanisms of PTX action on cancer cells. PMID:22312258

  19. Ah receptor ligands and tumor promotion: survival of neoplastic cells.

    PubMed

    Schwarz, M; Buchmann, A; Stinchcombe, S; Kalkuhl, A; Bock, K

    2000-03-15

    A number of agonists of the aryl hydrocarbon or dioxin receptor (AhR) are potent tumor promoters in rodent liver. The prototype compound is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Tumor promotion by TCDD is likely to be AhR-mediated. Tumor promoters may affect the rate of division, terminal differentiation or death (apoptosis) of tumor precursor cells. The present paper reviews some of the effects of TCDD on liver cell homeostasis that have been observed under diverse experimental settings and discusses some of the possible underlying mechanisms.

  20. The effect of erythropoietin on normal and neoplastic cells

    PubMed Central

    Elliott, Steve; Sinclair, Angus M

    2012-01-01

    Erythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor (EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. Recombinant human erythropoietin has been used successfully for over 20 years to treat anemia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have other effects, such as tissue protection and promotion of tumor cell growth or survival. This became of significant concern in 2003, when some clinical trials in cancer patients reported increased tumor progression and worse survival outcomes in patients treated with erythropoiesis-stimulating agents (ESAs). One of the potential mechanisms proffered to explain the observed safety issues was that functional EpoR was expressed in tumors and/or endothelial cells, and that ESAs directly stimulated tumor growth and/or antagonized tumor ablative therapies. Since then, numerous groups have performed further research evaluating this potential mechanism with conflicting data and conclusions. Here, we review the biology of endogenous Epo and EpoR expression and function in erythropoiesis, and evaluate the evidence pertaining to the expression of EpoR on normal nonhematopoietic and tumor cells. PMID:22848149

  1. Karyotype alteration generates the neoplastic phenotypes of SV40-infected human and rodent cells.

    PubMed

    Bloomfield, Mathew; Duesberg, Peter

    2015-01-01

    Despite over 50 years of research, it remains unclear how the DNA tumor viruses SV40 and Polyoma cause cancers. Prevailing theories hold that virus-coded Tumor (T)-antigens cause cancer by inactivating cellular tumor suppressor genes. But these theories don't explain four characteristics of viral carcinogenesis: (1) less than one in 10,000 infected cells become cancer cells, (2) cancers have complex individual phenotypes and transcriptomes, (3) recurrent tumors without viral DNA and proteins, (4) preneoplastic aneuploidies and immortal neoplastic clones with individual karyotypes. As an alternative theory we propose that viral carcinogenesis is a form of speciation, initiated by virus-induced aneuploidy. Since aneuploidy destabilizes the karyotype by unbalancing thousands of genes it catalyzes chain reactions of karyotypic and transcriptomic evolutions. Eventually rare karyotypes evolve that encode cancer-specific autonomy of growth. The low probability of forming new autonomous cancer-species by random karyotypic and transcriptomic variations predicts individual and clonal cancers. Although cancer karyotypes are congenitally aneuploid and thus variable, they are stabilized or immortalized by selections for variants with cancer-specific autonomy. Owing to these inherent variations cancer karyotypes are heterogeneous within clonal margins. To test this theory we analyzed karyotypes and phenotypes of SV40-infected human, rat and mouse cells developing into neoplastic clones. In all three systems we found (1) preneoplastic aneuploidies, (2) neoplastic clones with individual clonal but flexible karyotypes and phenotypes, which arose from less than one in 10,000 infected cells, survived over 200 generations, but were either T-antigen positive or negative, (3) spontaneous and drug-induced variations of neoplastic phenotypes correlating 1-to-1 with karyotypic variations. Since all 14 virus-induced neoplastic clones tested contained individual clonal karyotypes and

  2. Expression of nuclear membrane proteins in normal, hyperplastic, and neoplastic thyroid epithelial cells.

    PubMed

    Wang, Jieying; Kondo, Tetsuo; Yamane, Tetsu; Nakazawa, Tadao; Oish, Naoki; Mochizuki, Kunio; Katoh, Ryohei

    2015-10-01

    Emerin, lamin A/C, lamin B, and lamin-associated polypeptide 2 (LAP2) are nuclear membrane proteins that play an important role in maintaining nuclear structure and coordinating cell activity. We studied the expression and significance of nuclear membrane proteins in neoplastic thyroid cells by immunohistochemistry, RT-PCR, and real-time PCR. In papillary carcinomas (PCs), the nuclear proteins most frequently expressed at high levels were emerin (82 % positive), lamin A/C (64 %), and LAP2 (82 %). Follicular carcinomas (FCs) most frequently expressed lamin B, while none of the undifferentiated carcinomas (UCs) showed strong expression of emerin or lamin A/C. In all medullary carcinomas (MCs), intermediate to high levels of expression of lamin A/C and LAP2 were found. By RT-PCR analysis, messenger RNA (mRNA) expression of all nuclear membrane proteins except emerin was higher in PC than in normal tissue. Real-time PCR analysis showed that mRNA expression of nuclear membrane protein varied between cell lines. Our findings suggest that expression of nuclear membrane proteins may be related to follicular function in normal and hyperplastic follicles, and we hypothesize that they are also involved in the proliferation and differentiation of neoplastic thyroid cells. We suggest that they reflect the biological nature and/or function of normal, hyperplastic, and neoplastic thyroid cells and may have some value in diagnosing thyroid tumors.

  3. Localization of collagen modifying enzymes on fibroblastic reticular cells and follicular dendritic cells in non-neoplastic and neoplastic lymphoid tissues.

    PubMed

    Ohe, Rintaro; Aung, Naing Ye; Meng, Hongxue; Kabasawa, Takanobu; Suto, Aya; Tamazawa, Nobuyuki; Yang, Suran; Kato, Tomoya; Yamakawa, Mitsunori

    2016-07-01

    The aim of this study was to evaluate the localization of collagen modifying enzymes (CMEs) on fibroblastic reticular cells (FRCs) and follicular dendritic cells (FDCs) in non-neoplastic lymphoid tissues and various malignant lymphomas. The expression of prolyl 4-hydroxylase 1 (P4H1), lysyl hydroxylase 3 (LH3), and protein disulfide isomerase (PDI) was frequently observed on FRCs and FDCs in the germinal center (GC), except for the mantle zone. The expression of CMEs was lower in most lymphomas than in their respective postulated normal counterparts. The ratio of transglutaminase II(+) FRCs/CD35(+) FDCs was also lower in follicular lymphomas (FL) than in other lymphomas. The mRNAs of some CMEs (P4H1, prolyl 4-hydroxylase 3, LH3, and heat shock protein 47) were confirmed in almost all lymphomas. These results indicate that lymphoma cell proliferation suppresses/decreases the number of CMEs expressing FRCs and FDCs in most lymphomas.

  4. Localization of collagen modifying enzymes on fibroblastic reticular cells and follicular dendritic cells in non-neoplastic and neoplastic lymphoid tissues

    PubMed Central

    Ohe, Rintaro; Aung, Naing Ye; Meng, Hongxue; Kabasawa, Takanobu; Suto, Aya; Tamazawa, Nobuyuki; Yang, Suran; Kato, Tomoya; Yamakawa, Mitsunori

    2016-01-01

    Abstract The aim of this study was to evaluate the localization of collagen modifying enzymes (CMEs) on fibroblastic reticular cells (FRCs) and follicular dendritic cells (FDCs) in non-neoplastic lymphoid tissues and various malignant lymphomas. The expression of prolyl 4-hydroxylase 1 (P4H1), lysyl hydroxylase 3 (LH3), and protein disulfide isomerase (PDI) was frequently observed on FRCs and FDCs in the germinal center (GC), except for the mantle zone. The expression of CMEs was lower in most lymphomas than in their respective postulated normal counterparts. The ratio of transglutaminase II+ FRCs/CD35+ FDCs was also lower in follicular lymphomas (FL) than in other lymphomas. The mRNAs of some CMEs (P4H1, prolyl 4-hydroxylase 3, LH3, and heat shock protein 47) were confirmed in almost all lymphomas. These results indicate that lymphoma cell proliferation suppresses/decreases the number of CMEs expressing FRCs and FDCs in most lymphomas. PMID:26700650

  5. Nucleic acid distribution pattern as a possible biomarker for metabolic activities of neoplastic cells: a digitally-aided fluorescence microscopy study on normal and neoplastic lymphocytes of acute and chronic canine lymphocytic leukemia

    PubMed Central

    Isitor, Godwin N; Campbell, Mervyn; Nayak, Shivananda B

    2009-01-01

    Background Metabolic states of neoplastic cells are increasingly being relied upon for diagnostic and prognostic assessment of neoplastic conditions. The nucleic acid distribution pattern of cells in general, in terms of degree of condensation of the nuclear chromatin and overall spread of the nucleic acid within the nuclear and cytoplasmic compartments, can reflect the metabolic state of the cell. This simple but logical concept appears not be put into consideration to date as numerous attempts are being made towards formulating reliable biomarkers for rapid diagnosis, prognosis and subsequent therapeutic interventions for neoplastic conditions. We comparatively evaluated nucleic acid distribution patterns of normal lymphocytes and neoplastic cells of lymphocytic lineage, employing light and fluorescence microscopy procedures, as well as digital imaging analytical methods. Results The results demonstrate distinctiveness in the pattern of nucleic acid distribution for the normal lymphocytes and three lymphocytic neoplastic cell-types of canine lymphocytic leukemia that are categorized as small, intermediate and large neoplastic lymphocytes. Variably-shaped cytoplasmic processes laden with single-stranded nucleic acids (SSNA) were observed for the small and intermediate-sized neoplastic lymphocytes, compared with large neoplastic lymphocytes and the normal lymphocytes; the latter two categories of cells being virtually devoid of similar processes. Prominent cytoplasmic and nuclear clumps of SSNA, indicative of a higher rate of metabolic activity, were also observed within the neoplastic cells compared with fewer and narrower SSNA of the normal cells. Conclusion The comparative relative increases of SSNA in cytoplasmic processes and other cellular areas of small and intermediate-sized neoplastic lymphocytes is reflective of greater metabolic activity in neoplastic cells in general compared with their normal cellular counterparts. PMID:19432993

  6. Do the BEAF insulator proteins regulate genes involved in cell polarity and neoplastic growth?

    PubMed

    Hart, Craig M

    2014-05-15

    It was reported that a chromosome with the BEAF(NP6377) (NP6377) allele leads to a loss of cell polarity and neoplastic growth in Drosophila melanogaster when homozygous (Gurudatta et al., 2012). We had previously generated the BEAF(AB-KO) (AB-KO) allele by homologous recombination and did not note these phenotypes (Roy et al., 2007). Both alleles are null mutations. It was unclear why two null alleles of the same gene would give different phenotypes. To resolve this, we performed genetic tests to explore the possibility that the chromosome with the NP6377 allele contained other, second site mutations that might account for the different phenotypes. We found that the chromosome with NP6377 has at least two additional mutations. At least one of these, possibly in combination with the NP6377 allele, is presumably responsible for the reported effects on gene expression, cell polarity and neoplastic growth.

  7. A Translational Study of the Neoplastic Cells of Giant Cell Tumor of Bone Following Neoadjuvant Denosumab.

    PubMed

    Mak, Isabella W Y; Evaniew, Nathan; Popovic, Snezana; Tozer, Richard; Ghert, Michelle

    2014-08-06

    Giant cell tumor of bone is a primary bone tumor that is treated surgically and is associated with high morbidity in many cases. This tumor consists of giant cells expressing RANK (receptor activator of nuclear factor-κB) and mesenchymal spindle-like stromal cells expressing RANKL (RANK ligand); the interaction of these cells leads to bone resorption. Denosumab is a monoclonal antibody that binds RANKL and directly inhibits osteoclastogenesis. Clinical studies have suggested clinical and histological improvement when denosumab was administered to patients with a giant cell tumor. However, no studies have yet examined the viability and functional characteristics of tumor cells following denosumab treatment. Specimens were obtained from six patients with a histologically confirmed giant cell tumor. Two of the patients had been treated with denosumab for six months. Primary cultures of stromal cells from fresh tumor tissue were established. Cell proliferation was measured over a two-day time course. The expression of RANKL and osteoprotegerin was analyzed with use of real-time PCR (polymerase chain reaction). Histological specimens from both patients who had completed denosumab treatment showed the absence of giant cells but persistence of stromal cells. Cell proliferation studies indicated that proliferation of stromal cells cultured from clinical specimens following denosumab treatment was approximately 50% slower than that of specimens from untreated patients. The expression of RANKL in the specimens from the treated patients was almost completely eliminated. Once the giant cell tumor tissue was no longer exposed to denosumab, the stromal cells continued to proliferate in vitro, albeit to a lesser degree. However, they also showed almost complete loss of RANKL expression. It is clear that treatment with denosumab only partially addresses the therapeutic need of patients with a giant cell tumor by wiping out the osteoclasts but leaving the neoplastic stromal cells

  8. Activated Hepatic Stellate Cells Induce Tumor Progression of Neoplastic Hepatocytes in a TGF-β Dependent Fashion

    PubMed Central

    MIKULA, M.; PROELL, V.; FISCHER, A.N.M.; MIKULITS, W.

    2010-01-01

    The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells. For both tumorigenesis and hepatic fibrogenesis, transforming growth factor (TGF)-β signaling executes key roles and therefore is considered as a hallmark of these pathological events. By employing cellular transplantation we show that the interaction of neoplastic MIM-R hepatocytes with the tumor microenvironment, containing either activated hepatic stellate cells (M1-4HSCs) or myofibroblasts derived thereof (M-HTs), induces progression in malignancy. Cotransplantation of MIM-R hepatocytes with M-HTs yielded strongest MIM-R generated tumor formation accompanied by nuclear localization of Smad2/3 as well as of β-catenin. Genetic interference with TGF-β signaling by gain of antagonistic Smad7 in MIM-R hepatocytes diminished epithelial dedifferentiation and tumor progression upon interaction with M1-4HSCs or M-HTs. Further analysis showed that tumors harboring disrupted Smad signaling are devoid of nuclear β-catenin accumulation, indicating a crosstalk between TGF-β and β-catenin signaling. Together, these data demonstrate that activated HSCs and myofibroblasts directly govern hepatocarcinogenesis in a TGF-β dependent fashion by inducing autocrine TGF-β signaling and nuclear β-catenin accumulation in neoplastic hepatocytes. These results indicate that intervention with TGF-β signaling is highly promising in liver cancer therapy. PMID:16883581

  9. Chromosome 11 aneusomy in esophageal cancers and precancerous lesions- an early event in neoplastic transformation: An interphase fluorescence in situ hybridization study from south India

    PubMed Central

    Mohan, Vasavi; Ponnala, Shivani; Reddy, Hemakumar M; Sistla, Radha; Jesudasan, Rachel A; Ahuja, Yog Raj; Hasan, Qurratulain

    2007-01-01

    AIM: To detect aneusomic changes with respect to chromosome 11 copy number in esophageal precancers and cancers wherein the generation of cancer-specific phenotypes is believed to be associated with specific chromosomal aneuploidies. METHODS: We performed fluorescence in situ hybridization (FISH) on esophageal tissue paraffin sections to analyze changes in chromosome 11 copy number using apotome-generated images by optical sectioning microscopy. Sections were prepared from esophageal tumor tissue, tissues showing preneoplastic changes and histologically normal tissues (control) obtained from patients referred to the clinic for endoscopic evaluation. RESULTS: Our results demonstrated that aneusomy was seen in all the cancers and preneoplastic tissues, while none of the controls showed aneusomic cells. There was no increase in aneusomy from precancers to cancers. CONCLUSION: Our results suggest that evaluation of chromosome 11 aneusomy in esophageal tissue using FISH with an appropriate signal capture-analysis system, can be used as an ancillary molecular marker predictive of early neoplastic changes. Future studies can be directed towards the genes on chromosome 11, which may play a role in the neoplastic transformation of esophageal precancerous lesions to cancers. PMID:17278214

  10. The origin of pre-neoplastic metaplasia in the stomach: Chief cells emerge from the Mist

    SciTech Connect

    Goldenring, James R.; Nam, Ki Taek; Mills, Jason C.

    2011-11-15

    The digestive-enzyme secreting, gastric epithelial chief (zymogenic) cell is remarkable and underappreciated. Here, we discuss how all available evidence suggests that mature chief cells in the adult, mammalian stomach are postmitotic, slowly turning over cells that arise via a relatively long-lived progenitor, the mucous neck cell, The differentiation of chief cells from neck cells does not involve cell division, and the neck cell has its own distinct pattern of gene expression and putative physiological function. Thus, the ontogeny of the normal chief cell lineage exemplifies transdifferentiation. Furthermore, under pathophysiogical loss of acid-secreting parietal cell, the chief cell lineage can itself trasndifferentiate into a mucous cell metaplasia designated Spasmolytic Polypeptide Expressing Metaplasia (SPEM). Especially in the presence of inflammation, this metaplastic lineage can regain proliferative capacity and, in humans may also further differentiate into intestinal metaplasia. The results indicate that gastric fundic lineages display remarkable plasticity in both physiological ontogeny and pathophysiological pre-neoplastic metaplasia.

  11. The origin of pre-neoplastic metaplasia in the stomach: chief cells emerge from the Mist.

    PubMed

    Goldenring, James R; Nam, Ki Taek; Mills, Jason C

    2011-11-15

    The digestive-enzyme secreting, gastric epithelial chief (zymogenic) cell is remarkable and underappreciated. Here, we discuss how all available evidence suggests that mature chief cells in the adult, mammalian stomach are postmitotic, slowly turning over cells that arise via a relatively long-lived progenitor, the mucous neck cell, The differentiation of chief cells from neck cells does not involve cell division, and the neck cell has its own distinct pattern of gene expression and putative physiological function. Thus, the ontogeny of the normal chief cell lineage exemplifies transdifferentiation. Furthermore, under pathophysiogical loss of acid-secreting parietal cell, the chief cell lineage can itself trasndifferentiate into a mucous cell metaplasia designated Spasmolytic Polypeptide Expressing Metaplasia (SPEM). Especially in the presence of inflammation, this metaplastic lineage can regain proliferative capacity and, in humans may also further differentiate into intestinal metaplasia. The results indicate that gastric fundic lineages display remarkable plasticity in both physiological ontogeny and pathophysiological pre-neoplastic metaplasia.

  12. [Morphometric analysis of nuclear variations in normal and neoplastic mammary ductal cells].

    PubMed

    Parada, D; Farías, R M; García-Tamayo, J

    1999-12-01

    Morphometry is a method to detect changes in a variety of tissues through quantitative elements. The purpose of this study was to examine several nuclear morphologic characteristics in normal and neoplastic mammary ductal cells using a multivariable method and expression of estrogen receptors by immunohistochemical techniques. A total of 1879 nuclei were examined by a computerized program, following the detection of estrogen receptors. Nuclear area, perimeter, diameter, maximal and minimal radio were obtained in 439 normal ductal nuclei. The mean nuclear area was 14.45 with a range between 10.88 and 17.90. Variables showed adequate statistical correlation (r > 0.5). A total of 1440 neoplastic nuclei were classified as grades I, II and III, and a statistical significative difference was found between these three groups. We conclude that the nuclear area is a reliable variable for statistical correlation being the ductal nuclei anisotropic objects.

  13. The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth.

    PubMed

    Andersen, Ditte S; Colombani, Julien; Palmerini, Valentina; Chakrabandhu, Krittalak; Boone, Emilie; Röthlisberger, Michael; Toggweiler, Janine; Basler, Konrad; Mapelli, Marina; Hueber, Anne-Odile; Léopold, Pierre

    2015-06-25

    Disruption of epithelial polarity is a key event in the acquisition of neoplastic growth. JNK signalling is known to play an important part in driving the malignant progression of many epithelial tumours, although the link between loss of polarity and JNK signalling remains elusive. In a Drosophila genome-wide genetic screen designed to identify molecules implicated in neoplastic growth, we identified grindelwald (grnd), a gene encoding a transmembrane protein with homology to members of the tumour necrosis factor receptor (TNFR) superfamily. Here we show that Grnd mediates the pro-apoptotic functions of Eiger (Egr), the unique Drosophila TNF, and that overexpression of an active form of Grnd lacking the extracellular domain is sufficient to activate JNK signalling in vivo. Grnd also promotes the invasiveness of Ras(V12)/scrib(-/-) tumours through Egr-dependent Matrix metalloprotease-1 (Mmp1) expression. Grnd localizes to the subapical membrane domain with the cell polarity determinant Crumbs (Crb) and couples Crb-induced loss of polarity with JNK activation and neoplastic growth through physical interaction with Veli (also known as Lin-7). Therefore, Grnd represents the first example of a TNFR that integrates signals from both Egr and apical polarity determinants to induce JNK-dependent cell death or tumour growth.

  14. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells.

    PubMed

    Granger, D L; Lehninger, A L

    1982-11-01

    Previous work has shown that injury of neoplastic cells by cytotoxic macrophages (CM) in cell culture is accompanied by inhibition of mitochondrial respiration. We have investigated the nature of this inhibition by studying mitochondrial respiration in CM-injured leukemia L1210 cells permeabilized with digitonin. CM-induced injury affects the mitochondrial respiratory chain proper. Complex I (NADH-coenzyme Q reductase) and complex II (succinate-coenzyme Q reductase) are markedly inhibited. In addition a minor inhibition of cytochrome oxidase was found. Electron transport from alpha-glycerophosphate through the respiratory chain to oxygen is unaffected and permeabilized CM-injured L1210 cells oxidizing this substrate exhibit acceptor control. However, glycerophosphate shuttle activity was found not to occur within CM-injured or uninjured L1210 cells in culture hence, alpha-glycerophosphate is apparently unavailable for mitochondrial oxidation in the intact cell. It is concluded that the failure of respiration of intact neoplastic cells injured by CM is caused by the nearly complete inhibition of complexes I and II of the mitochondrial electron transport chain. The time courses of CM-induced electron transport inhibition and arrest of L1210 cell division are examined and the possible relationship between these phenomena is discussed.

  15. Microenvironment-dependent growth of pre-neoplastic and malignant plasma cells in humanized mice

    PubMed Central

    Das, Rituparna; Strowig, Till; Verma, Rakesh; Koduru, Srinivas; Hafemann, Anja; Hopf, Stephanie; Kocoglu, Mehmet H.; Borsotti, Chiara; Zhang, Lin; Branagan, Andrew; Eynon, Elizabeth; Manz, Markus G.; Flavell, Richard A.; Dhodapkar, Madhav V.

    2016-01-01

    Most human cancers including myeloma are preceded by a precursor state. There is an unmet need for in vivo models to study the interaction of human preneoplastic cells in the bone marrow microenvironment with non-malignant cells. Here, we genetically humanized mice to permit the growth of primary human pre-neoplastic and malignant plasma cells together with non-malignant cells in vivo [?]. Growth was largely restricted to the bone marrow, mirroring the pattern in patients. Xenografts captured the genomic complexity of parental tumors and revealed additional somatic changes. Moreover, xenografts from patients with preneoplastic gammopathy showed progressive growth, suggesting that the clinical stability of these lesions may in part be due to growth controls extrinsic to tumor cells. These data demonstrate a new approach to investigate the entire spectrum of human plasma cell neoplasia and illustrate the utility of humanized models for understanding the functional diversity of human tumors [?]. PMID:27723723

  16. The interleukin-6 receptor alpha-chain (CD126) is expressed by neoplastic but not normal plasma cells.

    PubMed

    Rawstron, A C; Fenton, J A; Ashcroft, J; English, A; Jones, R A; Richards, S J; Pratt, G; Owen, R; Davies, F E; Child, J A; Jack, A S; Morgan, G

    2000-12-01

    Interleukin-6 (IL-6) is reported to be central to the pathogenesis of myeloma, inducing proliferation and inhibiting apoptosis in neoplastic plasma cells. Therefore, abrogating IL-6 signaling is of therapeutic interest, particularly with the development of humanized anti-IL-6 receptor (IL-6R) antibodies. The use of such antibodies clinically requires an understanding of IL-6R expression on neoplastic cells, particularly in the cycling fraction. IL-6R expression levels were determined on plasma cells from patients with myeloma (n = 93) and with monoclonal gammopathy of undetermined significance (MGUS) or plasmacytoma (n = 66) and compared with the levels found on normal plasma cells (n = 11). In addition, 4-color flow cytometry was used to assess the differential expression by stage of differentiation and cell cycle status of the neoplastic plasma cells. IL-6R alpha chain (CD126) was not detectable in normal plasma cells, but was expressed in approximately 90% of patients with myeloma. In all groups, the expression levels showed a normal distribution. In patients with MGUS or plasmacytoma, neoplastic plasma cells expressed significantly higher levels of CD126 compared with phenotypically normal plasma cells from the same marrow. VLA-5(-) "immature" plasma cells showed the highest levels of CD126 expression, but "mature" VLA-5(+) myeloma plasma cells also overexpressed CD126 when compared with normal subjects. This study demonstrates that CD126 expression is restricted to neoplastic plasma cells, with little or no detectable expression by normal cells. Stromal cells in the bone marrow microenvironment do not induce the overexpression because neoplastic cells express higher levels of CD126 than normal plasma cells from the same bone marrow in individuals with MGUS. (Blood. 2000;96:3880-3886)

  17. Hormone-regulatable neoplastic transformation induced by a Jun-estrogen receptor chimera

    PubMed Central

    Kruse, Ulrich; Iacovoni, Jason S.; Goller, Martin E.; Vogt, Peter K.

    1997-01-01

    The v-jun oncogene encodes a nuclear DNA binding protein that functions as a transcription factor and is part of the activator protein 1 complex. Oncogenic transformation by v-jun is thought to be mediated by the aberrant expression of specific target genes. To identify such Jun-regulated genes and to explore the mechanisms by which Jun affects their expression, we have fused the full-length v-Jun and an amino-terminally truncated form of v-Jun to the hormone-binding domain of the human estrogen receptor. The two chimeric proteins function as ligand-inducible transactivators. Expression of the fusion proteins in chicken embryo fibroblasts causes estrogen-dependent transformation. PMID:9356460

  18. Phenotypic heterogeneity, novel diagnostic markers, and target expression profiles in normal and neoplastic human mast cells.

    PubMed

    Valent, Peter; Cerny-Reiterer, Sabine; Herrmann, Harald; Mirkina, Irina; George, Tracy I; Sotlar, Karl; Sperr, Wolfgang R; Horny, Hans-Peter

    2010-09-01

    Mast cells (MC) are specialized immune cells that play a key role in anaphylactic reactions. Growth, differentiation, and function of these cells are regulated by a complex network of cytokines, surface receptors, signaling molecules, the microenvironment, and the genetic background. A number of previous and more recent data suggest that MC are heterogeneous in terms of cytokine-regulation, expression of cytoplasmic and cell surface antigens, and response to ligands. MC heterogeneity is often organ-specific and is considered to be related to MC plasticity, disease-associated factors, and the maturation stage of the cells. The stem cell factor (SCF) receptor KIT (CD117) is expressed on all types of MC independent of maturation and activation-status. In systemic mastocytosis (SM), KIT is often expressed in MC in a mutated and constitutively activated form. In these patients, MC aberrantly display CD2 and CD25, diagnostic markers of neoplastic MC in all SM variants. In advanced SM, MC co-express substantial amounts of CD30, whereas CD2 expression on MC may be decreased compared to indolent SM. Other surface molecules, such as CD63 or CD203c, are overexpressed on neoplastic MC in SM, and are further upregulated upon cross-linking of the IgE receptor. Some of the cell surface antigens expressed on MC or their progenitors may serve as therapeutic targets in the future. These targets include CD25, CD30, CD33, CD44, and CD117/KIT. The current article provides an overview on cell surface antigens and target receptors expressed by MC in physiologic and reactive tissues, and in patients with SM, with special reference to phenotypic heterogeneity and clinical implications.

  19. NeuN expression correlates with reduced mitotic index of neoplastic cells in central neurocytomas.

    PubMed

    Englund, C; Alvord, E C; Folkerth, R D; Silbergeld, D; Born, D E; Small, R; Hevner, R F

    2005-08-01

    In the developing brain, neuronal differentiation is associated with permanent exit from the mitotic cycle. This raises the possibility that neuronal differentiation may suppress proliferative activity, even in neoplastic cells. As a first step towards understanding the relation between neuronal differentiation and mitotic cycling in brain tumours, we studied the expression of NeuN (a neuronal marker) and Ki-67 (a mitotic marker) by double-labelling immuno-fluorescence in 16 brain tumours with neuronal differentiation. The tumours included a series of 11 central neurocytomas, and five single cases of other tumour types. In the central neurocytomas, NeuN(+) cells had a 15-fold lower Ki-67 labelling index, on average, than did NeuN(-) cells (P < 0.01). In the other tumours (one extraventricular neurocytoma, one desmoplastic medulloblastoma, one olfactory neuroblastoma, one ganglioglioma and one anaplastic ganglioglioma), the Ki-67 labelling index was always at least fourfold lower in NeuN(+) cells than in NeuN(-) cells. These results indicate that neuronal differentiation is associated with a substantial decrease of proliferative activity in neoplastic cells of central neurocytomas, and suggest that the same may be true across diverse types of brain tumours. However, tumours with extensive neuronal differentiation may nevertheless have a high overall Ki-67 labelling index, if the mitotic activity of NeuN(-) cells is high. The correlation between NeuN expression and reduced mitotic activity in neurocytoma cells is consistent with the hypothesis that neuronal differentiation suppresses proliferation, but further studies will be necessary to determine causality and investigate underlying mechanisms.

  20. Neoplastic cells obtained from Hodgkin's disease are potent stimulators of human primary mixed lymphocyte cultures.

    PubMed

    Fisher, R I; Bostick-Bruton, F; Sauder, D N; Scala, G; Diehl, V

    1983-06-01

    Neoplastic cells obtained from the pleural effusion of a patient with Hodgkin's disease have been maintained in culture since 1978. These tumor cells have been shown to have the cytologic features, cytochemical staining, and cell surface markers of Reed-Sternberg cells. In this study we demonstrate that the cell line termed L428 is a potent stimulator of the primary human mixed lymphocyte reaction. Significant proliferation occurred when mononuclear leukocytes obtained from normal donors were stimulated with radiated L428 cells at responder:stimulator ratios varying from 200:1 to 20:1. Proliferative responses occurred between days 3 and 6 of the cultures with maximal proliferation on day 5. Under optimal culture conditions, mean net proliferative response of 14 normal donors was 51,000 +/- 10,600 dpm. The mixed lymphocyte response was totally blocked by concentrations of monoclonal anti-Ia antibody that had no effect on concanavalin A-induced proliferation. However, the mixed lymphocyte response was not blocked by an anti-K562 cell monoclonal antibody of the same immunoglobulin subclass that binds to the L428 cells. Antigen processing by responder monocytes or Ia-positive cells was not required for the MLC. When responder T cells from two normals were depleted of Ia-bearing cells and monocytes, the mixed lymphocyte reaction between the two normals was eliminated, yet the stimulation of each normal by the L428 cells was not reduced. The cells that proliferated in response to stimulation by the L428 cells were T cells, primarily of the helper subset. No IL 1 activity could be detected in concentrated supernatants of L428 cultures after stimulation of L428 cells by mitogens, phorbol esters, or muramyl dipeptide, or in the MLC. All of these cultures contain fetal calf serum. However, the L428 cells are capable of producing IL 1, because IL 1 was detected when the L428 cells were stimulated with LPS in the absence of fetal calf serum. These neoplastic cells, obtained

  1. Fatal cases of Theileria annulata infection in calves in Portugal associated with neoplastic-like lymphoid cell proliferation

    PubMed Central

    Orvalho, João; Leitão, Alexandre; Pereira, Isadora; Malta, Manuel; Mariano, Isabel; Carvalho, Tânia; Baptista, Rui; Shiels, Brian R.; Peleteiro, Maria C.

    2010-01-01

    This study was carried out to investigate fifteen cases of acute lethal infection of calves (≤ 4 months of age) by the protozoan parasite Theileria (T.) annulata in the south of Portugal. Calves developed multifocal to coalescent nodular skin lesions, similar to multicentric malignant lymphoma. Infestation with ticks (genus Hyalomma) was intense. Theileria was seen in blood and lymph node smears, and T. annulata infection was confirmed by isolation of schizont-transformed cells and sequencing of hypervariable region 4 of the 18S rRNA gene. At necropsy, hemorrhagic nodules or nodules with a hemorrhagic halo were seen, particularly in the skin, subcutaneous tissue, skeletal and cardiac muscles, pharynx, trachea and intestinal serosa. Histologically, nodules were formed by large, round, lymphoblastoid neoplastic-like cells. Immunohistochemistry (IHC) identified these cells as mostly CD3 positive T lymphocytes and MAC387 positive macrophages. A marker for B lymphocytes (CD79αcy) labeled very few cells. T. annulata infected cells in these nodules were also identified by IHC through the use of two monoclonal antibodies (1C7 and 1C12) which are diagnostic for the parasite. It was concluded that the pathological changes observed in the different organs and tissues were caused by proliferation of schizont-infected macrophages, which subsequently stimulate a severe uncontrolled proliferation of uninfected T lymphocytes. PMID:20195062

  2. LDOC1 silenced by cigarette exposure and involved in oral neoplastic transformation

    PubMed Central

    Lee, Chia-Huei; Pan, Kao-Lu; Tang, Ya-Chu; Tsai, Ming-Hsien; Cheng, Ann-Joy; Shen, Mei-Ya; Cheng, Ying-Min; Huang, Tze-Ta; Lin, Pinpin

    2015-01-01

    Previously, we identified global epigenetic aberrations in smoking-associated oral squamous cell carcinoma (OSCC). We hypothesized that cigarette exposure triggers OSCC through alteration of the methylome of oral cells. Here we report that cigarette smoke condensate (CSC) significantly changes the genomic 5-methyldeoxycytidine content and nuclear accumulation of DNA methyltransferase 1 (DNMT1) and DNMT3A in human untransformed oral cells. By using integrated analysis of cDNA and methylation arrays of the smoking-associated dysplastic oral cell line and OSCC tumors, respectively, we identified four epigenetic targets—UCHL1, GPX3, LXN, and LDOC1—which may be silenced by cigarette. Results of quantitative methylation-specific PCR showed that among these four genes, LDOC1 promoter was the most sensitive to CSC. LDOC1 promoter hypermethylation and gene silencing followed 3 weeks of CSC treatment. LDOC1 knockdown led to a proliferative response and acquired clonogenicity of untransformed oral cells. Immunohistochemistry showed that LDOC1 was downregulated in 53.3% (8/15) and 57.1% (20/35) of premalignant oral tissues and early stage OSCCs, respectively, whereas 76.5% (13/17) of normal oral tissues showed high LDOC1 expression. Furthermore, the microarray data showed that LDOC1 expression had decreased in the lung tissues of current smokers compared with that in those of never smokers and had significantly decreased in the lung tumors of smokers compared with that in normal lung tissues. Our data suggest that CSC-induced promoter methylation may contribute to LDOC1 downregulation, thereby conferring oncogenic features to oral cells. These findings also imply a tumor suppressor role of LDOC1 in smoking-related malignancies such as OSCC and lung cancer. PMID:26317789

  3. LDOC1 silenced by cigarette exposure and involved in oral neoplastic transformation.

    PubMed

    Lee, Chia-Huei; Pan, Kao-Lu; Tang, Ya-Chu; Tsai, Ming-Hsien; Cheng, Ann-Joy; Shen, Mei-Ya; Cheng, Ying-Min; Huang, Tze-Ta; Lin, Pinpin

    2015-09-22

    Previously, we identified global epigenetic aberrations in smoking-associated oral squamous cell carcinoma (OSCC). We hypothesized that cigarette exposure triggers OSCC through alteration of the methylome of oral cells. Here we report that cigarette smoke condensate (CSC) significantly changes the genomic 5-methyldeoxycytidine content and nuclear accumulation of DNA methyltransferase 1 (DNMT1) and DNMT3A in human untransformed oral cells. By using integrated analysis of cDNA and methylation arrays of the smoking-associated dysplastic oral cell line and OSCC tumors, respectively, we identified four epigenetic targets--UCHL1, GPX3, LXN, and LDOC1--which may be silenced by cigarette. Results of quantitative methylation-specific PCR showed that among these four genes, LDOC1 promoter was the most sensitive to CSC. LDOC1 promoter hypermethylation and gene silencing followed 3 weeks of CSC treatment. LDOC1 knockdown led to a proliferative response and acquired clonogenicity of untransformed oral cells. Immunohistochemistry showed that LDOC1 was downregulated in 53.3% (8/15) and 57.1% (20/35) of premalignant oral tissues and early stage OSCCs, respectively, whereas 76.5% (13/17) of normal oral tissues showed high LDOC1 expression. Furthermore, the microarray data showed that LDOC1 expression had decreased in the lung tissues of current smokers compared with that in those of never smokers and had significantly decreased in the lung tumors of smokers compared with that in normal lung tissues. Our data suggest that CSC-induced promoter methylation may contribute to LDOC1 downregulation, thereby conferring oncogenic features to oral cells. These findings also imply a tumor suppressor role of LDOC1 in smoking-related malignancies such as OSCC and lung cancer.

  4. Age-Related DNA Methylation Changes and Neoplastic Transformation of the Human Prostate

    DTIC Science & Technology

    2011-07-01

    Nhe1 and Kpn1 and then sub-cloned into the pGL3-Basic vector. The methylated promoter constructs were used for transient transfection assays...endothelial cells. J Cell Biol 2001; 152:1087-98. Sprouty1 5’-flanking region into the Kpn1/ Nhe1 site of the promot- erless and enhancerless firefly...and Nhe1 digestion and subcloned into the pGL3-Basic vector. Every construct was sequenced to ensure correct orientation and sequence integrity

  5. Regulation of the pituitary tumor transforming gene by insulin-like-growth factor-I and insulin differs between malignant and non-neoplastic astrocytes

    SciTech Connect

    Chamaon, Kathrin; Kirches, Elmar; Kanakis, Dimitrios; Braeuninger, Stefan; Dietzmann, Knut; Mawrin, Christian . E-mail: christian.mawrin@medizin.uni-magdeburg.de

    2005-05-27

    The reasons for overexpression of the oncogene pituitary tumor transforming gene (PTTG) in tumors are still not fully understood. A possible influence of the insulin-like growth factor I (Igf-I) may be of interest, since enhanced Igf-I signalling was reported in various human tumors. We examined the influence of Igf-I and insulin on PTTG expression in human astrocytoma cells in comparison to proliferating non-neoplastic rat embryonal astrocytes. PTTG mRNA expression and protein levels were increased in malignant astrocytes treated with Igf-I or insulin, whereas in rat embryonic astrocytes PTTG expression and protein levels increased only when cells were exposed to Igf-I. Enhanced transcription did not occur after treatment with inhibitors of phosphoinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK), blocking the two basic signalling pathways of Igf-I and insulin. In addition to this transcriptional regulation, both kinases directly bind to PTTG, suggesting a second regulatory route by phosphorylation. However, the interaction of endogenous PTTG with MAPK and PI3K, as well as PTTG phosphorylation were independent from Igf-I or insulin. The latter results were also found in human testis, which contains high PTTG levels as well as in nonneoplastic astrocytes. This suggest, that PI3K and MAPK signalling is involved in PTTG regulation not only in malignant astrocytomas but also in non-tumorous cells.

  6. Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment.

    PubMed

    Hass, Ralf; Otte, Anna

    2012-09-03

    Mesenchymal stem cells (MSC) represent a heterogeneous population exhibiting stem cell-like properties which are distributed almost ubiquitously among perivascular niches of various human tissues and organs. Organismal requirements such as tissue damage determine interdisciplinary functions of resident MSC including self-renewal, migration and differentiation, whereby MSC support local tissue repair, angiogenesis and concomitant immunomodulation. However, growth of tumor cells and invasion also causes local tissue damage and injury which subsequently activates repair mechanisms and consequently, attracts MSC. Thereby, MSC exhibit a tissue-specific functional biodiversity which is mediated by direct cell-to-cell communication via adhesion molecule signaling and by a tightly regulated exchange of a multifactorial panel of cytokines, exosomes, and micro RNAs. Such interactions determine either tumor-promoting or tumor-inhibitory support by MSC. Moreover, fusion with necrotic/apoptotic tumor cell bodies contributes to re-program MSC into an aberrant phenotype also suggesting that tumor tissue in general represents different types of neoplastic cell populations including tumor-associated stem cell-like cells. The present work summarizes some functional characteristics and biodiversity of MSC and highlights certain controversial interactions with normal and tumorigenic cell populations, including associated modulations within the MSC microenvironment.

  7. Neoplastic diseases of marine bivalves.

    PubMed

    Carballal, María J; Barber, Bruce J; Iglesias, David; Villalba, Antonio

    2015-10-01

    Two types of prevalent neoplastic diseases have been described in marine bivalves of commercial interest: disseminated neoplasia (DN) and gonadal neoplasia. The first involves the excessive proliferation of abnormal cells with unknown origin (probably of hemic source in some cases/species), disseminating through the circulatory system and infiltrating the connective tissue of various organs; the second consists of an abnormal proliferation of undifferentiated germinal cells of the gonad. These two types of bivalve neoplasia fit the criteria of malignant tumors: pleomorphic and undifferentiated cells, rapid and invasive growth, abundance of mitotic figures, metastasis and progressive development often resulting in the death of the affected individual. Different causes have been suggested regarding etiology: genetic alterations, virus, retrotranspons, and contaminants, although it could depend on the mollusk species; evidence of horizontal transmission of clonal cancer cells as the cause of DN spreading in clam Mya arenaria populations has been recently reported. In some species and populations, the neoplastic disorders affect only a few individuals, but in others reach high prevalence. Among the diagnostic methods, DN has been detected by histology and cytologic examination of hemolymph, and with developed specific antibodies. Recently, flow cytometry has also been applied, allowing detecting DNA quantity alteration. Several studies reported many genes and pathways critically involved in neoplastic transformation in Mya arenaria, Mytilus spp. and Ostrea edulis. These genetic studies will allow the development of diagnosis by PCR which can be used in biomonitoring studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Renal cell carcinoma with venous neoplastic thrombosis: a ten years review.

    PubMed

    Pirola, Giacomo Maria; Saredi, Giovanni; Damiano, Giuseppe; Marconi, Alberto Mario

    2013-12-31

    To review the 10-year experience of our urological unit in the surgical management of renal cell carcinoma (RCC) with neoplastic tumor thrombosis focusing on postoperative survival. We underwent a retrospective analysis of the patients treated for this pathology during the last decade 2002-2012, stratifying them by tumor thrombus level and histological subtype. Kaplan-Meyer curves were used to assess survival. Overall, 67 patients underwent surgery for RCC with neoplastic tumoral thrombosis in the period under review. 60 were clear cell RCC, 4 were urothelial papillary tumors of the renal pelvis and 3 were rare histotypes, as a nefroblastoma, a spinocellular tumor of the renal pelvis and an unclassifiable renal carcinoma. Thrombus level was I in 40 cases, II in 17, III in 2 and IV in 8 patients. We report the main postoperative complications and our survival data, with mean follow up of 36 months. Tumor stage is the most important variable in predicting survival. Patients with N0M0 disease had 70% survival at 36 months, instead of 20% for those with primitive metastatic tumor. Our survival results fit with the main reports in literature and our surgical management was completely in keeping with international guidelines. We did not observe relevany post-operative complications, except of hemorrhagic ones that occurred in 6 patients (9% of total) and were always successfully managed. Eighteen patients (26.87% of total) underwent caval filter positioning, without evidence of complications during its positioning or removal. Life expectancy was particularly low for the cases of RCC without clear cell histotype (7 cases in our series, 10.4% of total) that always was less than one year from surgery.

  9. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation1

    PubMed Central

    Cassinelli, Giuliana; Favini, Enrica; Degl'Innocenti, Debora; Salvi, Alessandro; De Petro, Giuseppina; Pierotti, Marco A; Zunino, Franco; Borrello, Maria Grazia; Lanzi, Cinzia

    2009-01-01

    Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC). We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F) devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs. PMID:19107227

  10. Role of oxytocin/oxytocin receptor system in regulation of cell growth and neoplastic processes.

    PubMed

    Strunecká, A; Hynie, S; Klenerová, V

    2009-01-01

    Novel sites of oxytocin receptor expression have recently been detected in central nervous system, cardiomyocytes, endothelial cells, various carcinoma cells, etc. These and other discoveries have greatly expanded the classical biological roles of oxytocin, which are stimulation of uterine smooth muscle contraction at parturition and milk ejection during lactation. It is becoming clear that the great diversity of oxytocin actions in the brain and peripheral organs is paralleled by activation of a diversity of signalling pathways. On the other hand, until now only one single oxytocin receptor type has been detected. This receptor belongs to G protein-coupled receptors and in dependence on cell conditions it binds to different G proteins; this phenomenon is called receptor-G protein promiscuity. Thus, in the same cells oxytocin can activate multiple responses at the same time. Recently, the oxytocinergic system has also been implicated in the growth modulation of various neoplastic cells, where it may inhibit or stimulate cell proliferation in dependence on cell type and activated metabolic pathways. The discovery of novel oxytocin receptor-linked signalling cascades brings interesting knowledge opening new avenues for research in oncology and molecular pharmacology with perspectives of finding new therapeutic agents.

  11. Intracellular mechanisms mediating tocotrienol-induced apoptosis in neoplastic mammary epithelial cells.

    PubMed

    Sylvester, Paul W; Shah, Sumit

    2005-01-01

    Tocotrienols and tocopherols represent the two subgroups that make up the vitamin E family of compounds. However, tocotrienols display significantly more potent apoptotic activity in neoplastic mammary epithelial cells than tocopherols. Studies were conducted to determine the intracellular mechanism(s) mediating tocotrienol-induced apoptosis in neoplastic +SA mouse mammary epithelial cells in vitro. An initial step in apoptosis is the activation of 'initiator' caspases (caspase-8 or -9) that subsequently activate 'effector' caspases (caspase-3, -6 and -7) and induce apoptosis. Treatment with cytotoxic doses of alpha-tocotrienol (20 microM) resulted in a time-dependent increase in caspase-8 and caspase-3 activity. Combined treatment with specific caspase-8 or caspase-3 inhibitors completely blocked alpha-tocotrienol-induced apoptosis and caspase-8 or caspase-3 activity, respectively. In contrast, alpha-tocotrienol treatment had no effect on caspase-9 activation, and combined treatment with a specific caspase-9 inhibitor did not block alpha-tocotrienol-induced apoptosis in (+)SA cells. Since caspase-8 activation is associated with the activation of death receptors, such as Fas, tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL) receptors, studies were conducted to determine the exact death receptor(s) and ligand(s) involved in mediating tocotrienol-induced caspase-8 activation and apoptosis. Treatment with Fas-ligand (FasL), Fas-activating antibody, or TRAIL failed to induce cell death in (+)SA neoplastic mammary epithelial cells, suggesting that these cells are resistant to death receptor-induced apoptosis. Moreover, treatment with cytotoxic doses of alpha-tocotrienol did not alter the intracellular levels of Fas, FasL, or Fas-associated death domain (FADD) in these cells. Western blot analysis also showed that alpha-tocotrienol did not induce FasL or FADD translocation from the cytosolic to membrane fraction in these cells. Finally

  12. Vitamin A and the biosynthesis of sulphated mucopolysaccharides. Experiments with rats and cultured neoplastic mast cells

    PubMed Central

    Thomas, D. B.; Pasternak, C. A.

    1969-01-01

    1. The uptake and incorporation of [35S]sulphate into mucopolysaccharides by colon and duodenum in vitro are unaffected by the vitamin A status of the animals. 2. Uptake and incorporation in vivo are unaffected at 4hr. after injection of [35S]sulphate, but at later times are decreased in some tissues of vitamin A-deficient animals. 3. The rate of removal of 35S from blood, its rate of appearance in urine, the plasma concentration of sulphate and the uronic acid content of several tissues are not significantly altered in vitamin A deficiency. 4. These results, and direct measurement of 35S in mucopolysaccharides at various times after injection of [35S]sulphate, suggest that the synthesis of mucopolysaccharides is unaffected but that their turnover is increased in vitamin A deficiency. 5. Neither the growth rate of, nor the incorporation of [35S]sulphate into heparin by, P815Y and HC cultured neoplastic mast cells is decreased when the horse serum necessary for growth is treated with ultraviolet light or is replaced by serum from vitamin A-deficient rats. 6. The addition of citral is no more toxic to growth rate or to incorporation of 35S than is the addition of vitamin A itself. 7. It is concluded that neoplastic mast cells in culture do not require vitamin A for growth or for the synthesis of heparin. 8. None of these results is compatible with the view that vitamin A or a derivative is directly involved in the biosynthesis of sulphated mucopolysaccharides. PMID:4237718

  13. Expression of keratin and vimentin intermediate filaments in rabbit bladder epithelial cells at different stages of benzo(a)pyrene-induced neoplastic progression

    SciTech Connect

    Summerhayes, I.C.; Cheng, Y.S.E.; Sun, T.T.; Chen, L.B.

    1981-07-01

    Rabbit bladder epithelium, grown on collagen gels and exposed to the chemical carcinogen benzo(a)pyrene, produced nontumorigenic altered foci as well as tumorigenic epithelial cell lines during 120 to 180 d in culture. Immunofluorescence studies revealed extensive keratin filaments in both primary epithelial cells and benzo(a)pyrene-induced altered epithelial foci but showed no detectable vimentin filaments. The absence of vimentin expression in these cells was confirmed by two-dimensional gel electrophoresis. In contrast, immunofluorescence staining of the cloned benzo(a)pyrene-transformed rabbit bladder epithelial cell line, RBC-1, revealed a reduction in filamentous keratin concomitant with the expression of vimentin filaments. The epithelial nature of this cell line was established by the observation that cells injected into nude mice formed well-differentiated adenocarcinomas. Frozen sections of such tumors showed strong staining with antikeratins antibodies, but no detectable staining with antivimentin antibodies. These results demonstrated a differential expression of intermediate filament type in cells at different stages of neoplastic progression and in cells maintained in different growth environments. It is apparent that the expression of intermediate filaments throughout neoplastic progression is best studied by use of an in vivo model system in parallel with culture studies.

  14. Hexon Modification to Improve the Activity of Oncolytic Adenovirus Vectors against Neoplastic and Stromal Cells in Pancreatic Cancer

    PubMed Central

    Lucas, Tanja; Benihoud, Karim; Vigant, Frédéric; Schmidt, Christoph Q. Andreas; Simmet, Thomas; Kochanek, Stefan

    2015-01-01

    Primary pancreatic carcinoma has an unfavourable prognosis and standard treatment strategies mostly fail in advanced cases. Virotherapy might overcome this resistance to current treatment modalities. However, data from clinical studies with oncolytic viruses, including replicating adenoviral (Ad) vectors, have shown only limited activity against pancreatic cancer and other carcinomas. Since pancreatic carcinomas have a complex tumor architecture and frequently a strong stromal compartment consisting of non-neoplastic cell types (mainly pancreatic stellate cells = hPSCs) and extracellular matrix, it is not surprising that Ad vectors replicating in neoplastic cells will likely fail to eradicate this aggressive tumor type. Because the TGFβ receptor (TGFBR) is expressed on both neoplastic cells and hPSCs we inserted the TGFBR targeting peptide CKS17 into the hypervariable region 5 (HVR5) of the capsid protein hexon with the aim to generate a replicating Ad vector with improved activity in complex tumors. We demonstrated increased transduction of both pancreatic cancer cell lines and of hPSCs and enhanced cytotoxicity in co-cultures of both cell types. Surface plasmon resonance analysis demonstrated decreased binding of coagulation factor X to CKS17-modified Ad particles and in vivo biodistribution studies performed in mice indicated decreased transduction of hepatocytes. Thus, to increase activity of replicating Ad vectors we propose to relax tumor cell selectivity by genetic hexon-mediated targeting to the TGFBR (or other receptors present on both neoplastic and non-neoplastic cells within the tumor) to enable replication also in the stromal cell compartment of tumors, while abolishing hepatocyte transduction, and thereby increasing safety. PMID:25692292

  15. Hexon modification to improve the activity of oncolytic adenovirus vectors against neoplastic and stromal cells in pancreatic cancer.

    PubMed

    Lucas, Tanja; Benihoud, Karim; Vigant, Frédéric; Schmidt, Christoph Q; Schmidt, Christoph Q Andreas; Wortmann, Andreas; Bachem, Max G; Simmet, Thomas; Kochanek, Stefan

    2015-01-01

    Primary pancreatic carcinoma has an unfavourable prognosis and standard treatment strategies mostly fail in advanced cases. Virotherapy might overcome this resistance to current treatment modalities. However, data from clinical studies with oncolytic viruses, including replicating adenoviral (Ad) vectors, have shown only limited activity against pancreatic cancer and other carcinomas. Since pancreatic carcinomas have a complex tumor architecture and frequently a strong stromal compartment consisting of non-neoplastic cell types (mainly pancreatic stellate cells = hPSCs) and extracellular matrix, it is not surprising that Ad vectors replicating in neoplastic cells will likely fail to eradicate this aggressive tumor type. Because the TGFβ receptor (TGFBR) is expressed on both neoplastic cells and hPSCs we inserted the TGFBR targeting peptide CKS17 into the hypervariable region 5 (HVR5) of the capsid protein hexon with the aim to generate a replicating Ad vector with improved activity in complex tumors. We demonstrated increased transduction of both pancreatic cancer cell lines and of hPSCs and enhanced cytotoxicity in co-cultures of both cell types. Surface plasmon resonance analysis demonstrated decreased binding of coagulation factor X to CKS17-modified Ad particles and in vivo biodistribution studies performed in mice indicated decreased transduction of hepatocytes. Thus, to increase activity of replicating Ad vectors we propose to relax tumor cell selectivity by genetic hexon-mediated targeting to the TGFBR (or other receptors present on both neoplastic and non-neoplastic cells within the tumor) to enable replication also in the stromal cell compartment of tumors, while abolishing hepatocyte transduction, and thereby increasing safety.

  16. Estrogens and Insulin-Like Growth Factor 1 Modulate Neoplastic Cell Growth in Human Cholangiocarcinoma

    PubMed Central

    Alvaro, Domenico; Barbaro, Barbara; Franchitto, Antonio; Onori, Paolo; Glaser, Shannon S.; Alpini, Gianfranco; Francis, Heather; Marucci, Luca; Sterpetti, Paola; Ginanni-Corradini, Stefano; Onetti Muda, Andrea; Dostal, David E.; De Santis, Adriano; Attili, Adolfo F.; Benedetti, Antonio; Gaudio, Eugenio

    2006-01-01

    We investigated the expression of estrogen receptors (ERs), insulin-like growth factor 1 (IGF-1), and IGF-1R (receptor) in human cholangiocarcinoma and cholangiocarcinoma cell lines (HuH-28, TFK-1, Mz-ChA-1), evaluating the role of estrogens and IGF-1 in the modulation of neoplastic cell growth. ER-α, ER-β, IGF-1, and IGF-1R were expressed (immunohistochemistry) in all biopsies (18 of 18) of intrahepatic cholangiocarcinoma. ER-α was expressed (Western blot) only by the HuH-28 cell line (intrahepatic cholangiocarcinoma), whereas ER-β, IGF-1, and IGF-1R were expressed in the three cell lines examined. In serum-deprived HuH-28 cells, serum readmission induced stimulation of cell proliferation that was inhibited by ER and IGF-1R antagonists. 17β-Estradiol and IGF-1 stimulated proliferation of HuH-28 cells to a similar extent to that of MCF7 (breast cancer) but greater than that of TFK-1 and Mz-ChA-1, inhibiting apoptosis and exerting additive effects. These effects of 17β-estradiol and IGF-1 were associated with enhanced protein expression of ER-α, phosphorylated (p)-ERK1/2 and pAKT but with decreased expression of ER-β. Finally, transfection of IGF-1R anti-sense oligonucleotides in HuH-28 cells markedly decreased cell proliferation. In conclusion, human intrahepatic cholangiocarcinomas express receptors for estrogens and IGF-1, which cooperate in the modulation of cell growth and apoptosis. Modulation of ER and IGF-1R could represent a strategy for the management of cholangiocarcinoma. PMID:16936263

  17. CD56(bright)perforin(low) noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph.

    PubMed

    Carrega, Paolo; Bonaccorsi, Irene; Di Carlo, Emma; Morandi, Barbara; Paul, Petra; Rizzello, Valeria; Cipollone, Giuseppe; Navarra, Giuseppe; Mingari, Maria Cristina; Moretta, Lorenzo; Ferlazzo, Guido

    2014-04-15

    As limited information is available regarding the distribution and trafficking of NK cells among solid organs, we have analyzed a wide array of tissues derived from different human compartments. NK cells were widely distributed in most solid tissues, although their amount varied significantly depending on the tissue/organ analyzed. Interestingly, the distribution appeared to be subset specific, as some tissues were preferentially populated by CD56(bright)perforin(low) NK cells, with others by the CD56(dim)perforin(high) cytotoxic counterpart. Nevertheless, most tissues were highly enriched in CD56(bright)perforin(low) cells, and the distribution of NK subsets appeared in accordance with tissue gene expression of chemotactic factors, for which receptors are differently represented in the two subsets. Remarkably, chemokine expression pattern of tissues was modified after neoplastic transformation. As a result, although the total amount of NK cells infiltrating the tissues did not significantly change upon malignant transformation, the relative proportion of NK subsets infiltrating the tissues was different, with a trend toward a tumor-infiltrating NK population enriched in noncytotoxic cells. Besides solid tissues, CD56(bright)perforin(low) NK cells were also detected in seroma fluids, which represents an accrual of human afferent lymph, indicating that they may leave peripheral solid tissues and recirculate to secondary lymphoid organs via lymphatic vessels. Our results provide a comprehensive mapping of NK cells in human tissues, demonstrating that discrete NK subsets populate and recirculate through most human tissues and that organ-specific chemokine expression patterns might affect their distribution. In this context, chemokine switch upon neoplastic transformation might represent a novel mechanism of tumor immune escape.

  18. The distribution and expression of the Bloom's syndrome gene product in normal and neoplastic human cells.

    PubMed

    Turley, H; Wu, L; Canamero, M; Gatter, K C; Hickson, I D

    2001-07-20

    Bloom's syndrome (BS) is an autosomal recessive disorder associated with a predisposition to cancers of all types. Cells from BS sufferers display extreme genomic instability. The BS gene product, BLM, is a 159 kDa DNA helicase enzyme belonging to the RecQ family. Here, we have analysed the distribution of BLM in normal and tumour tissues from humans using a recently characterized, specific monoclonal antibody. BLM was found to be localized to nuclei in normal lymphoid tissues, but was largely absent from other normal tissues analysed with the exception of the proliferating compartment of certain tissues. In contrast, expression of BLM was observed in a variety of tumours of both lymphoid and epithelial origin. A strong correlation was observed between expression of BLM and the proliferative status of cells, as determined by staining for markers of cell proliferation (PCNA and Ki67). We conclude that BLM is a proliferation marker in normal and neoplastic cells in vivo, and, as a consequence, is expressed at a higher level in tumours than in normal quiescent tissues.

  19. In vitro and in vivo studies on potentiation of cytotoxic effects of anticancer drugs or cobalt 60 gamma ray by interferon on human neoplastic cells

    SciTech Connect

    Namba, M.; Yamamoto, S.; Tanaka, H.; Kanamori, T.; Nobuhara, M.; Kimoto, T.

    1984-11-15

    A possibility that interferon may potentiate the cytotoxic effects of anticancer drugs or /sup 60/Co gamma ray on human neoplastic cells was studied by in vitro and in vivo experimental procedures. The human neoplastic cells used were HeLa (uterine cervical cancer) and WI-38 CT-1 (embryonic lung fibroblasts transformed in culture by /sup 60/Co gamma ray) cells. As normal human cells, WI-38 cells were used. Interferon was a preparation of beta-type produced by human fibroblasts. The cytotoxicity was determined by colony formation for in vitro experiments and by tumor growth for animal experiments. Of 17 anticancer drugs, the cytotoxic effects of six drugs, namely, peplomycin, bleomycin, aclacinomycin, cisplatin, 5-fluorouracil (5-FU), and Adriamycin (doxorubicin) were potentiated by concomitant application of interferon. The cytolethal effects of /sup 60/Co gamma ray were also enhanced by interferon. The growth of tumor induced by transplantation of HeLa cells into a nude mouse was remarkably reduced by combination therapy of interferon and 5-FU. The current results indicate a possibility that combined therapy of certain types of anticancer drugs or /sup 60/Co gamma ray with interferon may be effective in treatment of cancer patients.

  20. Fluorescence Spectroscopy of Neoplastic and Non-Neoplastic Tissues

    PubMed Central

    Ramanujam, Nirmala

    2000-01-01

    Abstract Fast and non-invasive, diagnostic techniques based on fluorescence spectroscopy have the potential to link the biochemical and morphologic properties of tissues to individual patient care. One of the most widely explored applications of fluorescence spectroscopy is the detection of endoscopically invisible, early neoplastic growth in epithelial tissue sites. Currently, there are no effective diagnostic techniques for these early tissue transformations. If fluorescence spectroscopy can be applied successfully as a diagnostic technique in this clinical context, it may increase the potential for curative treatment, and thus, reduce complications and health care costs. Steady-state, fluorescence measurements from small tissue regions as well as relatively large tissue fields have been performed. To a much lesser extent, time-resolved, fluorescence measurements have also been explored for tissue characterization. Furthermore, sources of both intrinsic (endogenous fluorophores) and extrinsic fluorescence (exogenous fluorophores) have been considered. The goal of the current report is to provide a comprehensive review on steady-state and time-resolved, fluorescence measurements of neoplastic and non-neoplastic, biologic systems of varying degrees of complexity. First, the principles and methodology of fluorescence spectroscopy are discussed. Next, the endogenous fluorescence properties of cells, frozen tissue sections and excised and intact bulk tissues are presented; fluorescence measurements from both animal and human tissue models are discussed. This is concluded with future perspectives. PMID:10933071

  1. Digital morphonuclear analyses of sensitive versus resistant neoplastic cells to vinca-alkaloid, alkylating, and intercalating drugs.

    PubMed

    Pauwels, O; Kiss, R

    1991-01-01

    We tested 12 resistant cell lines in vitro in order to evaluate common morphonuclear characteristics induced by various cytotoxic drugs on cell lines of different origins. We used the MXT mouse mammary cancer and the neoplastic J82 and T24 human bladder cell lines, whose variants are either sensitive or resistant to a vinca alkaloid derivative (Navelbine, NVB), to an investigational alkylating agent (PE1001), and to Adriamycin (ADR). We tested cell population variants resistant to NVB + PE1001 + ADR. The level of chemoresistance was evaluated by a colorimetric assay assessing the 50% concentration-induced inhibition of cellular growth (IC50) brought about by each drug on the growth of each cell variant under study. We show that resistant neoplastic cell nuclei present common morphonuclear characteristics, independent of cell origin (neoplastic mouse mammary versus human bladder cells) and the drug used (vinca alkaloid, alkylating, and intercalating derivatives). Our results further indicate that the phenotype of resistant versus sensitive cells corresponds to cell nuclei populations with smaller nuclei and less nuclear DNA content and, as a consequence, a chromatin texture showing large pale areas with some hyperchromatic clumps.

  2. Aberrant expression of the neuronal transcription factor FOXP2 in neoplastic plasma cells.

    PubMed

    Campbell, Andrew J; Lyne, Linden; Brown, Philip J; Launchbury, Rosalind J; Bignone, Paola; Chi, Jianxiang; Roncador, Giovanna; Lawrie, Charles H; Gatter, Kevin C; Kusec, Rajko; Banham, Alison H

    2010-04-01

    FOXP2 mutation causes a severe inherited speech and language defect, while the related transcription factors FOXP1, FOXP3 and FOXP4 are implicated in cancer. FOXP2 mRNA and protein expression were characterised in normal human tissues, haematological cell lines and multiple myeloma (MM) patients' samples. FOXP2 mRNA and protein were absent in mononuclear cells from different anatomical sites, lineages and stages of differentiation. However, FOXP2 mRNA and protein was detected in several lymphoma (8/20) and all MM-derived cell lines (n = 4). FOXP2 mRNA was expressed in bone marrow samples from 96% of MM patients (24/25), 66.7% of patients with the pre-neoplastic plasma cell proliferation monoclonal gammopathy of undetermined significance (MGUS) (6/9), but not in reactive plasma cells. The frequency of FOXP2 protein expression in CD138(+) plasma cells was significantly higher in MGUS (P = 0.0005; mean 46.4%) and MM patients (P < or = 0.0001; mean 57.3%) than in reactive marrows (mean 2.5%). FOXP2 (>10% nuclear positivity) was detectable in 90.2% of MM (55/61) and 90.9% of MGUS (10/11) patients, showing more frequent expression than CD56 and labelling 75% of CD56-negative MM (9/12). FOXP2 represents the first transcription factor whose expression consistently differentiates normal and abnormal plasma cells and FOXP2 target genes are implicated in MM pathogenesis.

  3. Immunoprofiling of glial tumours of the neurohypophysis suggests a common pituicytic origin of neoplastic cells.

    PubMed

    Hagel, Christian; Buslei, Rolf; Buchfelder, Michael; Fahlbusch, Rudolf; Bergmann, Markus; Giese, Armin; Flitsch, Jörg; Lüdecke, Dieter K; Glatzel, Markus; Saeger, Wolfgang

    2017-04-01

    To analyse the antigen expression profiles of 27 cases of pituicytoma, spindle cell oncocytoma, and granular cell tumour of the sellar region concerning a common pituicytic origin of neoplastic cells. Material from 12 female and 15 male patients (13 granular cell tumours of the sellar region, 10 pituicytomas, four spindle cell oncocytomas) collected in the German Registry of Pituitary Tumours between 1993 and 2015 was re-evaluated according to the current WHO classification of tumours of the central nervous system and supplementary immunohistochemistry including S100-protein, CD56, CD68, thyroid transcription factor-1 (TTF-1), and Ki-67 was performed. S100-protein was detected in all 27 tumours and TTF-1 in all 16 tumours that were assessed. Vimentin was expressed in all 13 cases investigated whereas broad spectrum cytokeratin was not detected in any of 14 evaluated cases. GFAP was observed in nine out of 21 cases. 15 out of 17 investigated lesions showed some CD68 expression and five out of 14 cases were labelled with CD56 antibodies. Proliferative activity did not differ significantly between the three tumour subgroups although one primary and one recurrent pituicytoma showed exceptionally high Ki-67-proliferation indices of 15.3 and 12.7 %, respectively (means: granular cell tumour of the sellar region 2.0 %, pituicytoma 2.8 %, spindle cell oncocytoma 2.7 %). The study confirms and expands earlier data and is in line with the notion that the three tumour types are variants of pituicytoma.

  4. Psidium guajava L. anti-neoplastic effects: induction of apoptosis and cell differentiation.

    PubMed

    Bontempo, P; Doto, A; Miceli, M; Mita, L; Benedetti, R; Nebbioso, A; Veglione, M; Rigano, D; Cioffi, M; Sica, V; Molinari, A M; Altucci, L

    2012-02-01

    Curative properties of medicinal plants such as Psidium guajava L. (Myrtaceae) have often been indicated by epidemiological studies on populations in which these fruits are consumed daily. However, complete characterization of the active principles responsible for this ability has never been performed. Here, we have characterized P. guajava's anti-cancer potential and identified the parts of the fruit involved in its anti-neoplastic action. We studied morphology of our cells, cell cycle characteristics and apoptosis and performed immunostaining, differentiation and western blot analyses. We report that the P. guajava extract exerted anti-cancer control on both haematological and solid neoplasias. P. guajava extract's anti-tumour properties were found to be tightly bound to induction of apoptosis and differentiation. Use of ex vivo myeloid leukaemia blasts corroborated that P. guajava was able to induce cell death but did not exhibit anti-cancer effects on all malignant cells investigated, indicating selective activity against certain types of tumour. Analyses of P. guajava pulp, peel and seeds identified the pulp as being the most relevant component for causing cell cycle arrest and apoptosis, whereas peel was responsible for causing cell differentiation. P. guajava itself and its pulp-derived extract were found to induce apoptosis accompanied by caspase activation and p16, p21, Fas ligand (FASL TNF super-family, member 6), Bcl-2-associated agonist of cell death (BAD) and tumour necrosis factor receptor super-family, member 10b (DR5), overexpression. Our findings showed that P. guajava L. extract was able to exert anti-cancer activity on cultures in vitro and ex vivo, supporting the hypothesis of its anti malignant pro-apoptotic modulation. © 2011 Blackwell Publishing Ltd.

  5. Protein p16 as a marker of dysplastic and neoplastic alterations in cervical epithelial cells

    PubMed Central

    Volgareva, Galina; Zavalishina, Larisa; Andreeva, Yulia; Frank, Georgy; Krutikova, Ella; Golovina, Darya; Bliev, Alexander; Spitkovsky, Dimitry; Ermilova, Valeriya; Kisseljov, Fjodor

    2004-01-01

    Background Cervical carcinomas are second most frequent type of women cancer. Success in diagnostics of this disease is due to the use of Pap-test (cytological smear analysis). However Pap-test gives significant portion of both false-positive and false-negative conclusions. Amendments of the diagnostic procedure are desirable. Aetiological role of papillomaviruses in cervical cancer is established while the role of cellular gene alterations in the course of tumor progression is less clear. Several research groups including us have recently named the protein p16INK4a as a possible diagnostic marker of cervical cancer. To evaluate whether the specificity of p16INK4a expression in dysplastic and neoplastic cervical epithelium is sufficient for such application we undertook a broader immunochistochemical registration of this protein with a highly p16INK4a-specific monoclonal antibody. Methods Paraffin-embedded samples of diagnostic biopsies and surgical materials were used. Control group included vaginal smears of healthy women and biopsy samples from patients with cervical ectopia. We examined 197 samples in total. Monoclonal antibody E6H4 (MTM Laboratories, Germany) was used. Results In control samples we did not find any p16INK4a-positive cells. Overexpression of p16INK4a was detected in samples of cervical dysplasia (CINs) and carcinomas. The portion of p16INK4a-positive samples increased in the row: CIN I – CIN II – CIN III – invasive carcinoma. For all stages the samples were found to be heterogeneous with respect to p16INK4a-expression. Every third of CINs III and one invasive squamous cell carcinoma (out of 21 analyzed) were negative. Conclusions Overexpression of the protein p16INK4a is typical for dysplastic and neoplastic epithelium of cervix uteri. However p16INK4a-negative CINs and carcinomas do exist. All stages of CINs and carcinomas analyzed are heterogeneous with respect to p16INK4a expression. So p16INK4a-negativity is not a sufficient reason to

  6. Inhibition of Neoplastic Transformation and Chemically-Induced Skin Hyperplasia in Mice by Traditional Chinese Medicinal Formula Si-Wu-Tang

    PubMed Central

    Liu, Mandy M.; Huang, Kevin M.; Yeung, Steven; Chang, Andy; Zhang, Suhui; Mei, Nan; Parsa, Cyrus; Orlando, Robert; Huang, Ying

    2017-01-01

    Exploring traditional medicines may lead to the development of low-cost and non-toxic cancer preventive agents. Si-Wu-Tang (SWT), comprising the combination of four herbs, Rehmanniae, Angelica, Chuanxiong, and Paeoniae, is one of the most popular traditional Chinese medicines for women’s diseases. In our previous studies, the antioxidant Nrf2 pathways were strongly induced by SWT in vitro and in vivo. Since Nrf2 activation has been associated with anticarcinogenic effects, the purpose of this study is to evaluate SWT’s activity of cancer prevention. In the Ames test, SWT demonstrated an antimutagenic activity against mutagenicity induced by the chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). In JB6 P+ cells, a non-cancerous murine epidermal model for studying tumor promotion, SWT inhibited epidermal growth factor (EGF)-induced neoplastic transformation. The luciferase reporter gene assays demonstrated that SWT suppressed EGF-induced AP-1 and TNF-α-induced NF-κB activation, which are essential factors involved in skin carcinogenesis. In a DMBA-induced skin hyperplasia assay in ‘Sensitivity to Carcinogenesis’ (SENCAR) mice, both topical and oral SWT inhibited DMBA-induced epidermal hyperplasia, expression of the proliferation marker Proliferating cell nuclear antigen (PCNA), and H-ras mutations. These findings demonstrate, for the first time, that SWT prevents tumor promoter and chemical-induced carcinogenesis in vitro and in vivo, partly by inhibiting DNA damage and blocking the activation of AP-1 and NF-κB. PMID:28335476

  7. Multiparametric flow cytometry profiling of neoplastic plasma cells in multiple myeloma.

    PubMed

    Johnsen, Hans E; Bøgsted, Martin; Klausen, Tobias W; Gimsing, Peter; Schmitz, Alexander; Kjaersgaard, Erik; Damgaard, Tina; Voss, Pia; Knudsen, Lene M; Mylin, Anne K; Nielsen, Johan Lanng; Björkstrand, Bo; Gruber, Astrid; Lenhoff, Stig; Remes, Kari; Dahl, Inger Marie; Fogd, Kirsten; Dybkaer, Karen

    2010-09-01

    The clinical impact of multiparametric flow cytometry (MFC) in multiple myeloma (MM) is still unclear and under evaluation. Further progress relies on multiparametric profiling of the neoplastic plasma cell (PC) compartment to provide an accurate image of the stage of differentiation. The primary aim of this study was to perform global analysis of CD expression on the PC compartment and subsequently to evaluate the prognostic impact. Secondary aims were to study the diagnostic and predictive impact. The design included a retrospective analysis of MFC data generated from diagnostic bone marrow (BM) samples of 109 Nordic patients included in clinical trials within NMSG. Whole marrow were analyzed by MFC for identification of end-stage CD45(-) /CD38(++) neoplastic PC and registered the relative numbers of events and mean fluorescence intensity (MFI) staining for CD19, CD20, CD27, CD28, CD38, CD44, CD45, CD56, and isotypes for cluster analysis. The median MFC-PC number was 15%, and the median light microscopy (LM)-PC number was 35%. However, the numbers were significant correlated and the prognostic value with an increased relative risk (95% CI) of 3.1 (1.7-5.5) and 2.9 (1.4-6.2), P < 0.0003 and P < 0.004 of MFC-PC and LM-PC counts, respectively. Unsupervised clustering based on global MFI assessment on PC revealed two clusters based on CD expression profiling. Cluster I with high intensity for CD56, CD38, CD45, right-angle light-scatter signal (SSC), forward-angle light-scatter signal (FSC), and low for CD28, CD19, and a Cluster II, with low intensity of CD56, CD38, CD45, SSC, FSC, and high for CD28, CD19 with a median survival of 39 months and 19 months, respectively (P = 0.02). The MFC analysis of MM BM samples produces diagnostic, prognostic, and predictive information useful in clinical practice, which will be prospectively validated within the European Myeloma Network (EMN). © 2010 International Clinical Cytometry Society. Copyright © 2010 International

  8. Decreased expression of complement receptor type 2 (CR2) on neoplastic B cells of chronic lymphocytic leukaemia.

    PubMed Central

    Tooze, J A; Bevan, D H

    1991-01-01

    Neoplastic cells from 49 patients with B cell chronic lymphocytic leukaemia (B-CLL) were studied and compared with normal peripheral and tonsillar B cells using CD21 monoclonal antibodies. Membrane expression of CR2 was quantified by calibrated flow cytometry and by binding analysis with radiolabelled antibody. Both assays indicate that B-CLL cells express only 30% of the CR2 found on normal B cells. These findings are further evidence of the aberrant phenotype of B-CLL cells. PMID:1825940

  9. Drm/Gremlin transcriptionally activates p21(Cip1) via a novel mechanism and inhibits neoplastic transformation.

    PubMed

    Chen, Bo; Athanasiou, Meropi; Gu, Qiuping; Blair, Donald G

    2002-08-02

    Drm/Gremlin, a member of the Dan family of BMP antagonists, is known to function in early embryonic development, but is also expressed in a tissue-specific fashion in adults and is significantly downregulated in transformed cells. In this report, we demonstrate that overexpression of Drm in the tumor-derived cell lines Daoy (primitive neuroectodermal) and Saos-2 (osteoblastic), either under ecdysone-inducible or constitutive promoters, significantly inhibits tumorigenesis. Furthermore, Drm overexpression in these cells increases the level of p21(Cip1) protein and reduces the level of phosphorylated p42/44 MAP kinase. Finally, our data indicate that Drm can induce p21(Cip1) transcriptionally via a novel pathway that is independent of p53 and the p38 and p42/44 MAP kinases. These results provide evidence that Drm can function as a novel transformation suppressor and suggest that this may occur through its affect on the levels of p21(Cip1) and phosphorylated p42/44 MAPK.

  10. Multiple KRAS mutations in pancreatic adenocarcinoma: molecular features of neoplastic clones indicate the selection of divergent populations of tumor cells.

    PubMed

    Visani, Michela; de Biase, Dario; Baccarini, Paola; Fabbri, Carlo; Polifemo, Anna Maria; Zanini, Nicola; Pession, Annalisa; Tallini, Giovanni

    2013-12-01

    KRAS is one of the most common genes mutated in pancreatic adenocarcinoma. Multiple KRAS mutations may be detected within the same pancreatic adenocarcinoma, but it is usually unclear whether the different mutations represent biologically irrelevant molecular events or whether they indicate the coexistence of distinct sizable neoplastic clones within a given tumor. We identified a case of pancreatic adenocarcinoma with 5 different mutations in the KRAS gene and have been able to characterize the allelic distribution of the KRAS mutations and the size of the neoplastic clones using allele-specific locked nucleic acid polymerase chain reaction and next-generation sequencing (454 GS-Junior). The results indicate that the tumor is composed of 5 distinct cell populations: one is KRAS G12V mutated (~38% of neoplastic cells), the second is KRAS G12V in one allele and KRAS G12D in the other (~32%), the third is KRAS G12V in one allele and KRAS G12R in the other (~24%), and the fourth is KRAS G12V in one allele and KRAS G12C in the other (~6%). The fifth clone, representing a minority of neoplastic cells, has a KRAS Q61H mutation in addition to one of the above alterations. Microsatellite analysis identified mutation of the NR21 marker out of the 13 tested, indicating that the tumor has a defect in maintaining DNA integrity different from loss of conventional DNA mismatch repair. These results are consistent with the successive selection of divergent populations of tumor cells and underscore the relevance of nucleotide instability in pancreatic adenocarcinoma.

  11. A High Throughput Screen Identifies Nefopam as Targeting Cell Proliferation in β-Catenin Driven Neoplastic and Reactive Fibroproliferative Disorders

    PubMed Central

    Poon, Raymond; Hong, Helen; Wei, Xin; Pan, James; Alman, Benjamin A.

    2012-01-01

    Fibroproliferative disorders include neoplastic and reactive processes (e.g. desmoid tumor and hypertrophic scars). They are characterized by activation of β-catenin signaling, and effective pharmacologic approaches are lacking. Here we undertook a high throughput screen using human desmoid tumor cell cultures to identify agents that would inhibit cell viability in tumor cells but not normal fibroblasts. Agents were then tested in additional cell cultures for an effect on cell proliferation, apoptosis, and β-catenin protein level. Ultimately they were tested in Apc1638N mice, which develop desmoid tumors, as well as in wild type mice subjected to full thickness skin wounds. The screen identified Neofopam, as an agent that inhibited cell numbers to 42% of baseline in cell cultures from β-catenin driven fibroproliferative disorders. Nefopam decreased cell proliferation and β-catenin protein level to 50% of baseline in these same cell cultures. The half maximal effective concentration in-vitro was 0.5 uM and there was a plateau in the effect after 48 hours of treatment. Nefopam caused a 45% decline in tumor number, 33% decline in tumor volume, and a 40% decline in scar size when tested in mice. There was also a 50% decline in β-catenin level in-vivo. Nefopam targets β-catenin protein level in mesenchymal cells in-vitro and in-vivo, and may be an effective therapy for neoplastic and reactive processes driven by β-catenin mediated signaling. PMID:22666417

  12. In vitro and in vivo correlates of physiological and neoplastic human Fallopian tube stem cells

    PubMed Central

    Howitt, Brooke E; Mehra, Karishma; Wu, Lingyan; Wang, Xia; Hong, Yue; Kern, Florian; Wei, Tay Seok; Zhang, Ting; Nagarajan, Niranjan; Basuli, Debargha; Torti, Suzy; Brewer, Molly; Choolani, Mahesh; McKeon, Frank; Crum, Christopher P; Xian, Wa

    2016-01-01

    High-grade serous cancer (HGSC) progresses to advanced stages without symptoms and the 5-year survival rate is a dismal 30%. Recent studies of ovaries and Fallopian tubes in patients with BRCA1 or BRCA2 mutations have documented a pre-metastatic intramucosal neoplasm that is found almost exclusively in the Fallopian tube, termed ‘serous tubal intraepithelial carcinoma’ or STIC. Moreover, other proliferations, termed p53 signatures, secretory cell outgrowths (SCOUTs), and lower-grade serous tubal intraepithelial neoplasms (STINs) fall short of STIC but share similar alterations in expression, in keeping with an underpinning of genomic disturbances involved in, or occurring in parallel with, serous carcinogenesis. To gain insight into the cellular origins of this unique tubal pathway to high-grade serous cancer, we cloned and both immortalized and transformed Fallopian tube stem cells (FTSCs). We demonstrated that pedigrees of FTSCs were capable of multipotent differentiation and that the tumours derived from transformed FTSCs shared the histological and molecular features of HGSC. We also demonstrated that altered expression of some biomarkers seen in transformed FTSCs and HGSCs (stathmin, EZH2, CXCR4, CXCL12, and FOXM1) could be seen as well in immortalized cells and their in vivo counterparts SCOUTs and STINs. Thus, a whole-genome transcriptome analysis comparing FTSCs, immortalized FTSCs, and transformed FTSCs showed a clear molecular progression sequence that is recapitulated by the spectrum of accumulated perturbations characterizing the range of proliferations seen in vivo. Biomarkers unique to STIC relative to normal tubal epithelium provide a basis for novel detection approaches to early HGSC, but must be viewed critically given their potential expression in lesser proliferations. Perturbations shared by both immortalized and transformed FTSCs may provide unique early targets for prevention strategies. Central to these efforts has been the ability to

  13. Histopathological and molecular studies in patients with goiter and hypercalcitoninemia: reactive or neoplastic C-cell hyperplasia?

    PubMed

    Verga, Uberta; Ferrero, Stefano; Vicentini, Leonardo; Brambilla, Tatiana; Cirello, Valentina; Muzza, Marina; Beck-Peccoz, Paolo; Fugazzola, Laura

    2007-06-01

    The cut-off values able to differentiate between reactive or neoplastic C-cell hyperplasia (CCH) or to predict sporadic medullary thyroid cancer (MTC) are still debated both for basal and stimulated calcitonin (bCT and sCT). In the present study, the prevalence and the histological patterns of CCH in 15 patients with multinodular goiter (MNG), bCT>10 pg/ml and sCT levels >50 pg/ml were studied. As controls, 16 patients with MNG and bCT levels <10 pg/ml and 4 patients with familial (FMTC) were included. For each case, calcitonin (CT) immunoreactive cells were counted in 60 consecutive high-power fields (400x) and CCH classified as focal, diffuse, nodular, or neoplastic. RET genetic analyses were performed at the germline and tissue levels in MTC and CCH cases. In patients with MNG, sCT levels >50 pg/ml were associated with CCH or MTC, being the total number of C-cells/60 fields significantly higher than that found in MNG with normal bCT (P = 0.0008) and comparable with that detected in FMTCs. In the group with sCT>50 pg/ml, the C-cells displayed a neoplastic phenotype. Neither germline nor somatic RET mutations were found. In conclusion, sCT levels >50 pg/ml were always associated with CCH, without correlation between CT levels and the number of C-cells or the final diagnosis. The C-cells had a morphology and distribution pattern similar to those observed in FMTC. Thus, sCT levels >50 pg/ml indicate the presence of CCH with a possible preneoplastic potential, suggesting the opportunity to perform a prophylactic surgical treatment.

  14. Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche.

    PubMed

    Hayakawa, Yoku; Ariyama, Hiroshi; Stancikova, Jitka; Sakitani, Kosuke; Asfaha, Samuel; Renz, Bernhard W; Dubeykovskaya, Zinaida A; Shibata, Wataru; Wang, Hongshan; Westphalen, Christoph B; Chen, Xiaowei; Takemoto, Yoshihiro; Kim, Woosook; Khurana, Shradha S; Tailor, Yagnesh; Nagar, Karan; Tomita, Hiroyuki; Hara, Akira; Sepulveda, Antonia R; Setlik, Wanda; Gershon, Michael D; Saha, Subhrajit; Ding, Lei; Shen, Zeli; Fox, James G; Friedman, Richard A; Konieczny, Stephen F; Worthley, Daniel L; Korinek, Vladimir; Wang, Timothy C

    2015-12-14

    The regulation and stem cell origin of normal and neoplastic gastric glands are uncertain. Here, we show that Mist1 expression marks quiescent stem cells in the gastric corpus isthmus. Mist1(+) stem cells serve as a cell-of-origin for intestinal-type cancer with the combination of Kras and Apc mutation and for diffuse-type cancer with the loss of E-cadherin. Diffuse-type cancer development is dependent on inflammation mediated by Cxcl12(+) endothelial cells and Cxcr4(+) gastric innate lymphoid cells (ILCs). These cells form the perivascular gastric stem cell niche, and Wnt5a produced from ILCs activates RhoA to inhibit anoikis in the E-cadherin-depleted cells. Targeting Cxcr4, ILCs, or Wnt5a inhibits diffuse-type gastric carcinogenesis, providing targets within the neoplastic gastric stem cell niche.

  15. Normal and neoplastic urothelial stem cells: getting to the root of the problem.

    PubMed

    Ho, Philip Levy; Kurtova, Antonina; Chan, Keith Syson

    2012-10-01

    Most epithelial tissues contain self-renewing stem cells that mature into downstream progenies with increasingly limited differentiation potential. It is not surprising that cancers arising from such hierarchically organized epithelial tissues retain features of cellular differentiation. Accumulating evidence suggests that the urothelium of the urinary bladder is a hierarchically organized tissue, containing tissue-specific stem cells that are important for both normal homeostasis and injury response. The phenotypic and functional properties of cancer stem cells (CSCs; also known as tumour-initiating cells) from bladder cancer tissue have been studied in detail. Urothelial CSCs are not isolated by a 'one-marker-fits-all' approach; instead, various cell surface marker combinations (possibly reflecting the cell-of-origin) are used to isolate CSCs from distinct differentiation subtypes of urothelial carcinomas. Additional CSC markers, including cytokeratin 14 (CK14), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), and tumour protein 63 (p63), have revealed prognostic value for urothelial carcinomas. Signalling pathways involved in normal stem cell self-renewal and differentiation are implicated in the malignant transformation of different subsets of urothelial carcinomas. Early expansion of primitive CK14+ cells--driven by genetic pathways such as STAT3--can lead to the development of carcinoma in situ, and CSC-enriched urothelial carcinomas are associated with poor clinical outcomes. Given that bladder CSCs are the proposed root of malignancy and drivers of cancer initiation and progression for urothelial carcinomas, these cells are ideal targets for anticancer therapies.

  16. Detection of a complement-derived chemotactic factor for tumor cells in human inflammatory and neoplastic effusions.

    PubMed Central

    Orr, F. W.; Delikatny, E. J.; Mokashi, S.; Krepart, G. V.; Stiver, H. G.

    1983-01-01

    A chemotactic factor for neoplastic cells can be generated in vitro by incubating human C5 or C5a with leukocytic or pancreatic lysosomal enzymes and is also detectable in experimental inflammatory exudates. The authors therefore sought evidence for the existence of this factor in human effusions. Using the Boyden chamber assay, they detected chemotactic activity for MB-MDA-231 human breast carcinoma cells and Walker ascites tumor cells in human inflammatory and neoplastic exudates, including ascites, pleural effusions, synovial fluids and cerebrospinal fluids. Chemotactic activity was not found in transudates, normal cerebrospinal fluid, or normal serum. Human ovarian adenocarcinoma cells from one of the effusions migrated toward autologous ascites and towards the C5-derived chemotactic factor that had been prepared in vitro. In gel filtration the chemotactic factor behaved generally as a molecule having a molecular weight of approximately 6000 daltons. The activity was blocked after incubation with antiserums directed against C5 but not by antiserums directed against C3 or C4. In vitro, chemotactic activity for tumor cells could be generated by incubating extracts of exudate cells with autologous plasma or with purified C5. The authors conclude that a chemotactic factor for tumor cells can be formed in human effusions and that this factor has properties similar to those of a previously described C5-derived chemotactic factor. PMID:6185003

  17. Video rate confocal laser scanning reflection microscopy in the investigation of normal and neoplastic living cell dynamics.

    PubMed

    Vesely, P; Boyde, A

    1996-01-01

    The introduction of video rate confocal laser scanning microscopes (VRCLSM) used in reflection mode with high magnification, high aperture objective lenses and with further magnification by a zoom facility allowed the first detailed observations of the activity of living cytoplasm and offered a new tool for investigation of the structural transition from the living state to the specimen fixed for electron microscopy (EM). We used a Noran Odyssey VRCLSM in reflection (backscattered) mode. A greater degree of oversampling and more comfortable viewing of the liver or taped video image was achieved at zoom factor 5, giving a display monitor field width of 10 microns. A series of mesenchyme derived cell lines--from normal cells to sarcoma cells of different malignancy--was used to compare behaviour of the observed intracellular structures and results of fixation. We contrasted the dynamic behaviour of fine features in the cytoplasm of normal and neoplastic living cells and changes induced by various treatments. The tubulomembraneous 3D structure of cytoplasm in living cells is dynamic with motion observable at the new limits of resolution provided by VRCLSM. All organelles appear integrated into one functional compartment supporting the continuous 3D trafficking of small particles (vesicles). This integrated dynamic spatial network (IDSN) was found to be largest in neoplastic cells.

  18. Simplified flow cytometric immunophenotyping panel for multiple myeloma, CD56/CD19/CD138(CD38)/CD45, to differentiate neoplastic myeloma cells from reactive plasma cells.

    PubMed

    Jeong, Tae-Dong; Park, Chan-Jeoung; Shim, Hyoeun; Jang, Seongsoo; Chi, Hyun-Sook; Yoon, Dok Hyun; Kim, Dae-Young; Lee, Jung-Hee; Lee, Je-Hwan; Suh, Cheolwon; Lee, Kyoo Hyung

    2012-12-01

    Flow cytometric immunophenotyping has been used to identify neoplastic plasma cell populations in patients with multiple myeloma (MM). Previous reports have described the use of several antigens, including CD38, CD138, CD56, CD117, CD52, CD19 and CD45, to distinguish distinct populations of plasma cells. The aim of this study was to evaluate a simplified immunophenotyping panel for MM analysis. A total of 70 patients were enrolled in the study, 62 of which were newly diagnosed with MM (untreated), whereas the remaining 8 were undergoing bone marrow assessment as part of follow-up after treatment (treated). Treated cases included 3 patients with relapse and 5 patients with persistence of MM. Multiparametric flow cytometric immunophenotyping was performed using monoclonal antibodies against CD56, CD19, CD138 (CD38), and CD45. In differential counts, plasma cells in bone marrow (BM) accounted for 3.6-93.2% of the total nucleated cell count. The positive expression rates of CD56, CD19, CD138, and CD45 in neoplastic myeloma cells were 83.9%, 0%, 98.4%, and 37.1%, respectively, among the 62 untreated cases, and 75.0%, 0%, 87.5%, and 37.5%, respectively, among the 8 treated cases. CD19 expression of neoplastic plasma cells was negative in both untreated and treated cases. The simplified immunophenotyping panel, CD56/CD19/CD138(CD38)/CD45, is useful for distinguishing neoplastic myeloma cells from reactive plasma cells in clinical practice. In addition, CD19 represents the most valuable antigen for identifying neoplastic myeloma cells in patients with MM.

  19. P-glycoprotein--implications of metabolism of neoplastic cells and cancer therapy.

    PubMed

    Breier, Albert; Barancík, Miroslav; Sulová, Zdenka; Uhrík, Branislav

    2005-09-01

    Multidrug resistance (MDR) of neoplastic tissues is a major obstacle in cancer chemotherapy. The predominant cause of MDR is the overexpression and drug transport activity of P-glycoprotein (P-gp, a product of the MDR gene). P-gp is a member of the ATP binding cassette (ABC) transporters family, with broad substrate specificity for several substances including anticancer drugs, linear and cyclic peptides, inhibitors of HIV protease, and several other substances. The development of P-gp-mediated MDR is often associated with several changes in cell structure and metabolism of resistant cells. In the present review are discussed the relations between glucosylceramide synthase activity, Pregnane X receptor and development of P-gp mediated MDR phenotype. Attention is also focused on the changes in protein kinase systems (mitogen-activated protein kinases, protein kinase C, Akt kinase) that are associated with the development of MDR phenotype and to the possible role of these kinase cascades in modulation of P-gp expression and function. The overexpression of P-gp may be associated with changes in metabolism of sugars as well as energy production. Structural and ultrastructural characteristics of multidrug resistant cells expressing P-gp are typical for cells engaged in a metabolically demanding process of protein synthesis and transport. P-gp mediated MDR phenotype is often also associated with alterations in cytoskeletal elements, microtubule and mitochondria distribution, Golgi apparatus, chromatin texture, vacuoles and caveolae formation. The current review also aims at bringing some state-of-the-art information on interactions of P-glycoprotein with various substances. To capture and transport the numerous unrelated substances, P-gp should contain site(s) able to bind compounds with a molecular weight of several hundreds and comprising hydrophobic and/or base regions that are protonated under physiological conditions. Drug binding sites that are able to recognize

  20. Difference of the Nuclear Green Light Intensity between Papillary Carcinoma Cells Showing Clear Nuclei and Non-neoplastic Follicular Epithelia in Papillary Thyroid Carcinoma

    PubMed Central

    Lee, Hyekyung; Baek, Tae Hwa; Park, Meeja; Lee, Seung Yun; Son, Hyun Jin; Kang, Dong Wook; Kim, Joo Heon; Kim, Soo Young

    2016-01-01

    Background There is subjective disagreement regarding nuclear clearing in papillary thyroid carcinoma. In this study, using digital instruments, we were able to quantify many ambiguous pathologic features and use numeric data to express our findings. Methods We examined 30 papillary thyroid carcinomas. For each case, we selected representative cancer cells showing clear nuclei and surrounding non-neoplastic follicular epithelial cells and evaluated objective values of green light intensity (GLI) for quantitative analysis of nuclear clearing in papillary thyroid carcinoma. Results From 16,274 GLI values from 600 cancer cell nuclei and 13,752 GLI values from 596 non-neoplastic follicular epithelial nuclei, we found a high correlation of 94.9% between GLI and clear nuclei. GLI between the cancer group showing clear nuclei and non-neoplastic follicular epithelia was statistically significant. The overall average level of GLI in the cancer group was over two times higher than the non-neoplastic group despite a wide range of GLI. On a polygonal line graph, there was a fluctuating unique difference between both the cancer and non-neoplastic groups in each patient, which was comparable to the microscopic findings. Conclusions Nuclear GLI could be a useful factor for discriminating between carcinoma cells showing clear nuclei and non-neoplastic follicular epithelia in papillary thyroid carcinoma. PMID:27550048

  1. Difference of the Nuclear Green Light Intensity between Papillary Carcinoma Cells Showing Clear Nuclei and Non-neoplastic Follicular Epithelia in Papillary Thyroid Carcinoma.

    PubMed

    Lee, Hyekyung; Baek, Tae Hwa; Park, Meeja; Lee, Seung Yun; Son, Hyun Jin; Kang, Dong Wook; Kim, Joo Heon; Kim, Soo Young

    2016-09-01

    There is subjective disagreement regarding nuclear clearing in papillary thyroid carcinoma. In this study, using digital instruments, we were able to quantify many ambiguous pathologic features and use numeric data to express our findings. We examined 30 papillary thyroid carcinomas. For each case, we selected representative cancer cells showing clear nuclei and surrounding non-neoplastic follicular epithelial cells and evaluated objective values of green light intensity (GLI) for quantitative analysis of nuclear clearing in papillary thyroid carcinoma. From 16,274 GLI values from 600 cancer cell nuclei and 13,752 GLI values from 596 non-neoplastic follicular epithelial nuclei, we found a high correlation of 94.9% between GLI and clear nuclei. GLI between the cancer group showing clear nuclei and non-neoplastic follicular epithelia was statistically significant. The overall average level of GLI in the cancer group was over two times higher than the non-neoplastic group despite a wide range of GLI. On a polygonal line graph, there was a fluctuating unique difference between both the cancer and non-neoplastic groups in each patient, which was comparable to the microscopic findings. Nuclear GLI could be a useful factor for discriminating between carcinoma cells showing clear nuclei and non-neoplastic follicular epithelia in papillary thyroid carcinoma.

  2. Calphostin C, a remarkable multimodal photodynamic killer of neoplastic cells by selective nuclear lamin B1 destruction and apoptogenesis (Review).

    PubMed

    Chiarini, Anna; Whitfield, James F; Pacchiana, Raffaella; Marconi, Maddalena; Armato, Ubaldo; Dal Prà, Ilaria

    2010-04-01

    Perylenequinones that generate reactive oxygen species (ROS) when illuminated with visible light have been recommended as photodynamic chemotherapeutic agents. One of these is calphostin C (CalC), the action of the photo-activated derivative of which, CalCphiE, has been ascribed to its ability to selectively and irreversibly inhibit protein kinase Cs (PKCs). But recent results of experiments with neoplastic rat fibroblasts and human breast and uterine cervix cancer cells have revealed that the action of CalCphiE involves more than PKC inhibition. Besides suppressing PKC activity, CalCphiE rapidly causes endoplasmic reticulum (ER) stress in breast cancer cells and the selective complete oxidation and proteasomal destruction of the functionally essential nuclear envelope protein lamin B1, in human cervical carcinoma (HCC) cells and neoplastic rat fibroblasts. When these lamin B1-lacking cells are placed in the dark, cytoplasmic membrane-linked PKC activities suddenly rebound and apoptogenesis is initiated as indicated by the immediate release of cytochrome c from mitochondria and later on the activation of caspases. Hence, CalCphiE is a photodynamic cytocidal agent attacking multiple targets in cancer cells and it would be worth determining, even for their best applicative use, whether other perylenequinones also share the so far unexpectedly complex deadly properties of the CalCphiE.

  3. Production of skeletal muscle elements by cell lines derived from neoplastic rat mammary epithelial stem cells.

    PubMed

    Rudland, P S; Dunnington, D J; Gusterson, B; Monaghan, P; Hughes, C M

    1984-05-01

    Single-cell-cloned cell lines intermediate in morphology between the cuboidal epithelial and fully elongated myoepithelial-like cells have been isolated from the single-cell-cloned epithelial stem cell lines Rama 25 and Rama 37 originally obtained from dimethylbenz(a)anthracene-induced mammary tumors from Sprague-Dawley and Wistar-Furth rats, respectively. These are designated Rama 25-l1, Rama 25-l2, Rama 25-l4 (Sprague-Dawley) and Rama 50-55, Rama 59, and Rama 60 (Wistar-Furth), respectively. When growing as tumors in nude mice or syngeneic Wistar-Furth rats, respectively, many of the newly cloned cell lines give rise to spindle and giant, multinucleated cells which stain immunocytochemically with antisera to myoglobin and myosin and contain longitudinal fibrils, some of which contain phosphotungstic acid-hematoxylin-staining cross-striations. Ultrastructural analysis demonstrates the presence of A-, l-, and H-bands and Z-discs and the hexagonal arrangement of thick and thin filaments characteristic of skeletal muscle. Similar results are obtained with selected cloned cell lines growing on floating collagen gels in vitro. Thus, a developmentally committed mammary epithelial cell can give rise, under suitable conditions, to a well-differentiated mesenchymal lineage, that of skeletal muscle. It is suggested that such cells may be responsible for the generation of the well-differentiated mesenchymal elements seen in the mixed (epithelial and myoepithelial) tumors of glandular origin.

  4. Incorporation of (/sup 35/S)sulfate in normal and neoplastic rat pancreatic acinar cells in relationship to cytodifferentiation

    SciTech Connect

    Kanwar, Y.S.; Rao, M.S.; Longnecker, D.S.; Reddy, J.K.

    1984-11-01

    The rates of (/sup 35/S)sulfate incorporation in highly differentiated acinar cells from normal pancreas, moderately differentiated cells of nafenopin-induced transplantable pancreatic carcinoma, and poorly differentiated cells from azaserine-induced transplantable pancreatic carcinoma were examined in an attempt to determine if sulfation is a property of acinar cells with well-developed secretory granules. The cells were dissociated, pulsed with (/sup 35/S)sulfate (specific activity, approximately 1000 Ci/mmol) for 10 and 60 min, and chased with medium containing 100 X excess of cold inorganic sulfate for 0, 15, 60, and 120 min. The cells were then processed for determining their pool size and light and electron microscopic autoradiography. No significant differences among their pool sizes were observed. However, the light microscopic autoradiograms revealed the (/sup 35/S)sulfate incorporation as follows: azaserine-induced transplantable pancreatic carcinoma greater than nafenopin-induced transplantable pancreatic carcinoma greater than normal pancreas. Electron microscopic autoradiograms revealed similar trends. The grain densities (concentration of radiation) were highest in the Golgi regions immediately postpulse (0 min) and gradually shifted toward the secretory granules over a 120-min period. In addition, the grain density values of the secretory granule-rich cells of nafenopin-induced transplantable pancreatic carcinoma were relatively similar to the cells of normal pancreas, whereas the grain density values of secretory granule-deficient cells from this tumor were similar to those of poorly differentiated neoplastic cells of azaserine-induced transplantable pancreatic carcinoma. These results show that poorly differentiated neoplastic cells incorporate more (/sup 35/S)sulfate than do the well-differentiated cells, but the reasons for this unexpected differential incorporation are at present unknown.

  5. Prognostic impact of reduced connexin43 expression and gap junction coupling of neoplastic stromal cells in giant cell tumor of bone.

    PubMed

    Balla, Peter; Maros, Mate Elod; Barna, Gabor; Antal, Imre; Papp, Gergo; Sapi, Zoltan; Athanasou, Nicholas Anthony; Benassi, Maria Serena; Picci, Pierro; Krenacs, Tibor

    2015-01-01

    Missense mutations of the GJA1 gene encoding the gap junction channel protein connexin43 (Cx43) cause bone malformations resulting in oculodentodigital dysplasia (ODDD), while GJA1 null and ODDD mutant mice develop osteopenia. In this study we investigated Cx43 expression and channel functions in giant cell tumor of bone (GCTB), a locally aggressive osteolytic lesion with uncertain progression. Cx43 protein levels assessed by immunohistochemistry were correlated with GCTB cell types, clinico-radiological stages and progression free survival in tissue microarrays of 89 primary and 34 recurrent GCTB cases. Cx43 expression, phosphorylation, subcellular distribution and gap junction coupling was also investigated and compared between cultured neoplastic GCTB stromal cells and bone marow stromal cells or HDFa fibroblasts as a control. In GCTB tissues, most Cx43 was produced by CD163 negative neoplastic stromal cells and less by CD163 positive reactive monocytes/macrophages or by giant cells. Significantly less Cx43 was detected in α-smooth muscle actin positive than α-smooth muscle actin negative stromal cells and in osteoclast-rich tumor nests than in the adjacent reactive stroma. Progressively reduced Cx43 production in GCTB was significantly linked to advanced clinico-radiological stages and worse progression free survival. In neoplastic GCTB stromal cell cultures most Cx43 protein was localized in the paranuclear-Golgi region, while it was concentrated in the cell membranes both in bone marrow stromal cells and HDFa fibroblasts. In Western blots, alkaline phosphatase sensitive bands, linked to serine residues (Ser369, Ser372 or Ser373) detected in control cells, were missing in GCTB stromal cells. Defective cell membrane localization of Cx43 channels was in line with the significantly reduced transfer of the 622 Da fluorescing calcein dye between GCTB stromal cells. Our results show that significant downregulation of Cx43 expression and gap junction coupling in

  6. Normal and neoplastic urothelial stem cells: getting to the root of the problem

    PubMed Central

    Ho, Philip Levy; Kurtova, Antonina; Chan, Keith Syson

    2012-01-01

    Most epithelial tissues contain self-renewing stem cells that mature into downstream progenies with increasingly limited differentiation potential. It is not surprising that cancers arising from such hierarchically organized epithelial tissues retain features of cellular differentiation. Accumulating evidence suggests that the urothelium of the urinary bladder is a hierarchically organized tissue, containing tissue-specific stem cells that are important for both normal homeostasis and injury response. The phenotypic and functional properties of cancer stem cells (CSCs; also known as tumour-initiating cells) from bladder cancer tissue have been studied in detail. Urothelial CSCs are not isolated by a ‘one-marker-fits-all’ approach; instead, various cell surface marker combinations (possibly reflecting the cell-of-origin) are used to isolate CSCs from distinct differentiation subtypes of urothelial carcinomas. Additional CSC markers, including cytokeratin 14 (CK14), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), and tumour protein 63 (p63), have revealed prognostic value for urothelial carcinomas. Signalling pathways involved in normal stem cell self-renewal and differentiation are implicated in the malignant transformation of different subsets of urothelial carcinomas. Early expansion of primitive CK14+ cells—driven by genetic pathways such as STAT3—can lead to the development of carcinoma in situ, and CSC-enriched urothelial carcinomas are associated with poor clinical outcomes. Given that bladder CSCs are the proposed root of malignancy and drivers of cancer initiation and progression for urothelial carcinomas, these cells are ideal targets for anticancer therapies. PMID:22890301

  7. Delivery of granulocyte-macrophage colony-stimulating factor in bioadhesive hydrogel stimulates migration of dendritic cells in models of human papillomavirus-associated (pre)neoplastic epithelial lesions.

    PubMed

    Hubert, Pascale; Evrard, Brigitte; Maillard, Catherine; Franzen-Detrooz, Elizabeth; Delattre, Luc; Foidart, Jean-Michel; Noël, Agnes; Boniver, Jacques; Delvenne, Philippe

    2004-11-01

    Because of the central role of dendritic cells and/or Langerhans cells(DC/LC) in the induction of cellular immune responses, pharmacological agents that modulate the recruitment of these cells might have a clinical interest. The present study was designed to evaluate the capacity of several pharmaceutical formulations to topically deliver granulocyte-macrophage colony-stimulating factor (GM-CSF) on human papillomavirus (HPV)-associated genital (pre)neoplastic lesions. The formulations were evaluated for their bioactivity and for their potential to recruit DC in organotypic cultures of HPV-transformed keratinocytes. We found that a bioadhesive polycarbophil gel (Noveon) at pH 5.5 is able to maintain the bioactivity of GM-CSF at 4 or 37 degrees C for at least 7 days, whereas a decreased activity of GM-CSF was observed when the molecule is included in other polymer gels. GM-CSF incorporated in the polycarbophil gel was also a potent factor in enhancing the colonization of DC into organotypic cultures of HPV-transformed keratinocytes since the infiltration of DC in the in vitro-formed (pre)neoplastic epithelium was very low under basal conditions and dramatically increased in the presence of GM-CSF gel. We next demonstrated that GM-CSF incorporated in polycarbophil gel induces the recruitment of human DC in a human (pre)neoplastic epithelium grafted into NOD/SCID mice. The efficacy of GM-CSF in this formulation was equivalent to that observed with liquid GM-CSF. These results suggest that GM-CSF incorporated in polycarbophil gel could play an important role in the recruitment of DC/LC in mucosal surfaces and be useful as a new immunotherapeutic approach for genital HPV-associated (pre)neoplastic lesions.

  8. Plasma sialic acid alterations in neoplastic diseases.

    PubMed

    Dwivedi, C; Dixit, M; Kumar, S S; Reddy, H; Semenya, K A; Hardy, R E

    1987-01-01

    The several types of neoplastic transformations are accompanied by alterations in the composition of cell glycoproteins, which are major structural components of cell surfaces. One such observed alteration is in the level of sialic acid on the cell surface. In the present investigation, plasma sialic acid levels were measured in normal volunteers and neoplastic patients using thiobarbituric acid spectrophotometric methods. The mean plasma sialic acid level from 124 normal volunteers was 3.0 mumol/ml. The mean for 20 non-malignant patients was 3.2 mumol/ml. Such observed mean values of sialic acid were 3.7 mumol/ml in 64 breast cancer patients, 5.1 mumol/ml in 22 lung cancer patients, 4.1 mumol/ml in 20 colon patients, and 5.0 mumol/ml in 26 patients having ovarian, cervix, pancreas, prostate, thyroid, uterine, squamous cell, esophageal and endometrial cancers. Serial determinations of plasma sialic acid in 15 patients correlated well with the progression and regression of disease. These results indicate that plasma sialic acid levels are elevated over control levels in the different types of cancer patients studied. Assay of plasma sialic acid is not sensitive enough to be used for screening, but could be used as a prognostic determinant in a variety of neoplastic conditions.

  9. Flow cytometric detection of neoplastic T cells in patients with mycosis fungoides based on levels of T-cell receptor expression.

    PubMed

    Kuchnio, M; Sausville, E A; Jaffe, E S; Greiner, T; Foss, F M; McClanahan, J; Fukushima, P; Stetler-Stevenson, M A

    1994-12-01

    The authors report the flow cytometric detection of neoplastic T cells in the peripheral blood of four out of five (80%) patients with peripheral blood involvement with mycosis fungoides (Sezary syndrome) based on the levels of T-cell receptor expression as measured by CD3 and TCR-alpha beta staining. Antigen receptor expression was abnormal in terms of increased density of surface CD3 or TCR-alpha beta per cell. Other immunophenotypic abnormalities were present in three of these patients. However, in one patient abnormal T-cell receptor expression was the only immunophenotypic evidence of neoplasia, although morphologically abnormal lymphocytes were present and a T-cell clone was detected by polymerase chain reaction (PCR). In another patient, the authors were able to detect development of a new, more aggressive neoplastic T-cell population based on levels of T-cell receptor expression. Levels of T-cell receptor expression may be of diagnostic utility in the evaluation of peripheral blood for the presence of neoplastic T-cell populations.

  10. A novel stem cell associated marker identified by monoclonal antibody HESC5:3 differentiates between neoplastic lesions in follicular thyroid neoplasms.

    PubMed

    Heikkilä, Annukka; Fermér, Christian; Hagström, Jaana; Louhimo, Johanna; Mäenpää, Hanna; Siironen, Päivi; Heiskanen, Ilkka; Nilsson, Olle; Arola, Johanna; Haglund, Caj

    2015-07-01

    Follicular thyroid lesions are the bane of cytopathology. Differentiation between adenoma and carcinoma is impossible, and often these neoplasms are indistinguishable even from uninodular goitre. In other cancers as well, a theory of stem cells as the origin of cancer has been discussed in thyroid carcinogenesis. We aimed to examine a novel stem cell associated marker identified by monoclonal antibody HESC5:3 in follicular lesions in an attempt to find a marker for differential diagnosis in thyroid cytopathology. HESC5:3 was raised against and is specific for undifferentiated human embryonic stem cells. The epitope of this novel antibody is to be defined. Immunohistochemical expression of HESC5:3 was examined in clinical material comprised of follicular neoplasms (83 adenomas, 43 carcinomas) and non-neoplastic lesions (41 goitrous, 22 hyperplastic, 23 normal tissue specimens). Staining differed significantly between neoplastic and non-neoplastic lesions. Nuclear staining was increased in non-neoplastic cells, whereas in neoplastic cells expression was mainly cytoplasmic. There was no difference between benign and malignant lesions, suggesting a role in early tumourigenesis. In conclusion, the HESC5:3 epitope may be of benefit as a neoplasia marker in distinguishing between uninodular goitre and neoplasia. Characterization of the epitope would increase the interest in this promising new stem cell associated marker.

  11. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    SciTech Connect

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  12. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  13. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  14. Chromosomal changes in cultured human epithelial cells transformed by low- and high-let radiation

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Prioleau, John C.; Stampfer, Martha R.; Rhim, Johng S.

    1992-07-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  15. Vincristine sulfate-induced cell transformation, mitotic inhibition and aneuploidy in cultured Syrian hamster embryo cells

    SciTech Connect

    Tsutsui, T.; Suzuki, N.; Maizumi, H.; Barrett, J.C.

    1986-01-01

    Vincristine, a naturally occurring Vinca alkaloid and widely used anti-neoplastic agent, was examined for its ability to induce cell transformation, inhibition of growth and mitosis, and genetic effects in Syrian hamster embryo cells in culture. Treatment of the cells with doses of less than or equal to 1 ng/ml vincristine sulfate (VCR) had no effect on cell growth, while exposure to greater than or equal to 3 ng/ml reduced the growth rate and treatment with 30 ng/ml resulted in no detectable increase in cell number. At this latter dose the mitotic index of the cells increased significantly suggesting that VCR delayed completion of mitosis. Exposure of the cells to VCR at doses of 1-10 ng/ml for 48 h resulted in morphological transformation of the cells in a doserelated fashion. The vincristine-treated transformed colonies were morphologically indistinguishable from colonies transformed by benzo(a)pyrene or other chemical carcinogens. Morphological transformation was induced by VCR at non-toxic and slightly toxic doses as measured by a reduction in colony-forming ability of the treated cells. Over the dose range which resulted in cell transformation, VCR failed to induce either detectable gene mutations at two genetic loci, unscheduled DNA synthesis, or chromosome aberrations in the Syrian hamster embryo cells. However, a significant dose-dependent increase in aneuploid cells with a near-diploid chromosome number was induced by VCR. Both chromosome losses and gains were induced which is consistent with a non-disjunctional mechanism. These results further support our hypothesis that aneuploidy is one possible mechanism for induction of this early step in the neoplastic transformation of Syrian hamster embryo cells. Furthermore, these findings indicate that VCR may have some carcinogenic potential if exposure to rapidly dividing cells occurs.

  16. Repair-dependent cell radiation survival and transformation: an integrated theory.

    PubMed

    Sutherland, John C

    2014-09-07

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete

  17. Management of neoplastic meningitis.

    PubMed

    Roth, Patrick; Weller, Michael

    2015-06-01

    Leptomeningeal dissemination of tumor cells, also referred to as neoplastic meningitis, is most frequently seen in patients with late-stage cancer and mostly associated with a poor prognosis. Basically, neoplastic meningitis may affect all patients with a malignant tumor but is most common in patients affected by lung cancer, breast carcinoma, melanoma or hematologic neoplasms such as lymphoma and leukemia. Controlled clinical trials are largely lacking which results in various non-standardized treatment regimens. The presence of solid tumor manifestations in the CNS as well as the extracranial tumor load defines the most appropriate treatment approach. Radiation therapy, systemic chemotherapy and intrathecal treatment must be considered. For each patient, the individual situation needs to be carefully evaluated to determine the potential benefit as well as putative side effects associated with any therapy. A moderate survival benefit and particularly relief from pain and neurological deficits are the main treatment goals. Here, we summarize the management of patients with neoplastic meningitis and review the available treatment options.

  18. Oncogenic transformation of C3H 10T1/2 cells by acute and protracted exposures to monoenergetic neutrons.

    PubMed

    Miller, R C; Hall, E J

    1991-10-01

    An in vitro assay was used to assess cell killing and induction of neoplastic transformation in C3H 10T1/2 cells exposed to X rays and a range of monoenergetic neutrons administered at various dose rates. Curves for cell survival and induction of neoplastic transformation showed nonlinearity for cells exposed to acute graded doses of X rays, while irradiation of cells with 0.05 to 1.5 Gy of 0.23-, 0.35-, 0.45-, 0.70-, 0.96-, 5.90-, and 13.7-MeV neutrons resulted in a linear response as a function of dose for both neoplastic transformation and killing. When compared to results obtained with 250-kVp X rays, all neutron energies were more effective at both cell killing and induction of neoplastic transformation. When expressed as maximum biological effectiveness (RBEM), both cell survival and induction of neoplastic transformation showed an initial increase with neutron energy (maximal at 0.35 MeV), followed by a decrease in effectiveness with further increases in energy. These responses are consistent with microdosimetric predictions in that recoil protons from neutron interaction are shifted to lower lineal energies as neutron energies increase. To examine the effects of temporal distribution of dose on neutron-induced neoplastic transformation, cells were exposed to either a single dose or five equal dose fractions spread over 8 h. As a function of dose for single or fractionated exposures to 0.5 Gy or 0.23-, 0.35-, 0.45-, 5.9-, or 13.7-MeV neutrons, neither a sparing nor an enhancing effect was seen with survival. Similarly, the frequency of induction of neoplastic transformation was independent of dose fractionation for all but 5.9-MeV neutrons. The enhancing effects of exposure to fractionated doses of 5.9-MeV neutrons were further studied by comparing exposures for a range of doses given singly, in five fractions over 8 h, or continuously for 8 h. Results reaffirm the enhancing effects of dose fractionation on the induction of oncogenic transformation for 5

  19. Osteopontin expression in co-cultures of human squamous cell carcinoma-derived cells and osteoblastic cells and its effects on the neoplastic cell phenotype and osteoclastic activation.

    PubMed

    Teixeira, Lucas Novaes; de Castro Raucci, Larissa Moreira Spinola; Alonso, Gabriela Caroline; Coletta, Ricardo Della; Rosa, Adalberto Luiz; de Oliveira, Paulo Tambasco

    2016-09-01

    This study evaluated the temporal expression of osteopontin (OPN) in co-cultures of human osteoblastic cells (SAOS-2) and oral squamous cell carcinoma (OSCC)-derived cells (SCC9) and examined the effects of osteoblast-derived OPN on the neoplastic cell phenotype. Additionally, the effects of these co-cultures on subsequent osteoclastic activity were explored. SCC9 cells were plated on Transwell® membranes that were either coated or not coated with Matrigel and were then co-cultured with SAOS-2 cells during the peak of OPN expression. SCC9 cells exposed to OPN-silenced SAOS-2 cultures and SCC9 cells cultured alone served as controls. SCC9 cells were quantitatively evaluated for cell adhesion, proliferation, migration, and invasion into Matrigel. The impact of co-culturing SAOS-2 and SCC9 cells on the resorptive capacity of U-937-derived osteoclastic cells was also investigated. Furthermore, a reciprocal induction of SAOS-2 and SCC9 cells in terms of OPN expression over the co-culture interval was identified. SAOS-2-secreted OPN altered the SCC9 cell phenotype, leading to enhanced cell adhesion and proliferation and higher Matrigel invasion. This invasion was also enhanced, albeit to a lesser degree, by co-culture with OPN-silenced SAOS-2 cells. Cell migration was not affected. Co-culture with SAOS-2 cells-mainly during the period of peak OPN expression-promoted over-expression of IL-6 and IL-8 by SCC9 cells and enhanced the resorptive capacity of osteoclastic cells. Taken together, these results suggest that osteoblast-derived OPN affects the interactions among OSCC-derived epithelial cells, osteoblasts, and osteoclasts, which could contribute to the process of bone destruction during bone invasion by OSCC.

  20. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation.

    PubMed

    Takeuchi, Masao; Higashino, Atsunori; Takeuchi, Kikuko; Hori, Yutaro; Koshiba-Takeuchi, Kazuko; Makino, Hatsune; Monobe, Yoko; Kishida, Marina; Adachi, Jun; Takeuchi, Jun; Tomonaga, Takeshi; Umezawa, Akihiro; Kameoka, Yosuke; Akagi, Ken-Ichi

    2015-01-01

    Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN); these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma) and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5), which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1), the cell surface receptor for hedgehog (Hh) signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells) through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional contribution of

  1. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation

    PubMed Central

    Hori, Yutaro; Koshiba-Takeuchi, Kazuko; Makino, Hatsune; Monobe, Yoko; Kishida, Marina; Adachi, Jun; Takeuchi, Jun; Tomonaga, Takeshi; Umezawa, Akihiro; Kameoka, Yosuke; Akagi, Ken-ichi

    2015-01-01

    Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN); these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma) and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5), which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1), the cell surface receptor for hedgehog (Hh) signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells) through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional contribution of

  2. The Roles of Telomerase in the Generation of Polyploidy during Neoplastic Cell Growth12

    PubMed Central

    Christodoulidou, Agni; Raftopoulou, Christina; Chiourea, Maria; Papaioannou, George K; Hoshiyama, Hirotoshi; Wright, Woodring E; Shay, Jerry W; Gagos, Sarantis

    2013-01-01

    Polyploidy contributes to extensive intratumor genomic heterogeneity that characterizes advanced malignancies and is thought to limit the efficiency of current cancer therapies. It has been shown that telomere deprotection in p53-deficient mouse embryonic fibroblasts leads to high rates of polyploidization. We now show that tumor genome evolution through whole-genome duplication occurs in ∼15% of the karyotyped human neoplasms and correlates with disease progression. In a panel of human cancer and transformed cell lines representing the two known types of genomic instability (chromosomal and microsatellite), as well as the two known pathways of telomere maintenance in cancer (telomerase activity and alternative lengthening of telomeres), telomere dysfunction-driven polyploidization occurred independently of the mutational status of p53. Depending on the preexisting context of telomere maintenance, telomerase activity and its major components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA component (hTERC), exert both reverse transcriptase-related (canonical) and noncanonical functions to affect tumor genome evolution through suppression or induction of polyploidization. These new findings provide a more complete mechanistic understanding of cancer progression that may, in the future, lead to novel therapeutic interventions. PMID:23441130

  3. 67 kDa laminin receptor (67LR) in normal and neoplastic hematopoietic cells: is its targeting a feasible approach?

    PubMed Central

    Montuori, Nunzia; Pesapane, Ada; Giudice, Valentina; Serio, Bianca; Rossi, Francesca W; De Paulis, Amato; Selleri, Carmine

    2016-01-01

    The 67 kDa laminin receptor (67LR) is a non-integrin cell surface receptor for laminin (LM) that derives from a 37 kDa precursor (37LRP). 67LR expression is increased in neoplastic cells and correlates with an enhanced invasive and metastatic potentialin many human solid tumors, recommending this receptor as a new promising target for cancer therapy. This is supported by in vivo studies showing that 67LR downregulation reduces tumour cell proliferation and tumour formation by inducing apoptosis. 67LR association with the anti-apoptotic protein PED/PEA-15 activates a signal transduction pathway, leading to cell proliferation and resistance to apoptosis. However, the main function of 67LR is to enhance tumor cell adhesion to the LM of basement membranes and cell migration, two crucial events in the metastasis cascade. Thus, inhibition of 67LR binding to LM has been proved to be a feasible approach to block metastatic cancer cell spread. Despite accumulating evidences on 67LR overexpression in hematologic malignancies, 67LR role in these diseases has not been clearly defined. Here, we review 67LR expression and function in normal and malignant hematopoietic cells, 67LR role and prognostic impact in hematological malignancies and first attempts in targeting its activity. PMID:27896222

  4. Involvement of epigenetics and EMT related miRNA in arsenic induced neoplastic transformation and their potential clinical use

    PubMed Central

    Michailidi, Christina; Hayashi, Masamichi; Datta, Sayantan; Sen, Tanusree; Zenner, Kaitlyn; Oladeru, Oluwadamilola; Brait, Mariana; Izumchenko, Evgeny; Baras, Alexander; VandenBussche, Christopher; Argos, Maria; Bivalacqua, Trinity J; Ahsan, Habibul; Hahn, Noah M.; Netto, George J.; Sidransky, David; Hoque, Mohammad O.

    2015-01-01

    Exposure to toxicants leads to cumulative molecular changes that overtime increase a subject’s risk of developing urothelial carcinoma (UC). To assess the impact of arsenic exposure at a time progressive manner, we developed and characterized a cell culture model and tested a panel of miRNAs in urine samples from arsenic exposed subjects, UC patients and controls. To prepare an in vitro model, we chronically exposed an immortalized normal human bladder cell line (HUC1) to arsenic. Growth of the HUC1 cells was increased in a time dependent manner after arsenic treatment and cellular morphology was changed. In soft agar assay, colonies were observed only in arsenic treated cells and the number of colonies gradually increased with longer periods of treatment. Similarly, invaded cells in invasion assay were observed only in arsenic treated cells. Withdrawal of arsenic treatment for 2.5 months did not reverse the tumorigenic properties of arsenic treated cells. Western blot analysis demonstrated decreased PTEN and increased AKT and mTOR in arsenic treated HUC1 cells. Levels of miR-200a, miR-200b, and miR-200c were down-regulated in arsenic exposed HUC1 cells by quantitative RT-PCR. Furthermore, in human urine, miR-200c and miR-205 were inversely associated with arsenic exposure (P=0.005 and 0.009, respectively). Expression of miR-205 discriminated cancer cases from controls with high sensitivity and specificity (AUC=0.845). Our study suggests that exposure to arsenic rapidly induces a multifaceted dedifferentiation program and miR-205 has potential to be used as a marker of arsenic exposure as well as a maker of early UC detection. PMID:25586904

  5. Functional Interactions Between c-Src and HER1 Potentiate Neoplastic Transformation: Implications for the Etiology of Human Breast Cancer

    DTIC Science & Technology

    2000-07-01

    neoplasms , including carcinomas of the breast, lung, colon, cytosis [1",21*°,22"°1, and the other is to affect esophagus, skin, parotid, cervix, and...gastric tissues, as well morphogenetic remodeling of the cell by phosphorylating as in neuroblastomas and myeloproliferative disorders. In proteins that...implicated c-Src as an etiological agent for the develop- ment of neuroblastomas, myeloproliferative disorders (including myeloid leukemia), and carcinomas

  6. Histopathological and Immunohistochemical Characterization of Methyl Eugenol-induced Nonneoplastic and Neoplastic Neuroendocrine Cell Lesions in Glandular Stomach of Rats.

    PubMed

    Janardhan, Kyathanahalli S; Rebolloso, Yvette; Hurlburt, Geoffrey; Olson, David; Lyght, Otis; Clayton, Natasha P; Gruebbel, Margarita; Picut, Catherine; Shackelford, Cynthia; Herbert, Ronald A

    2015-07-01

    Methyl eugenol induces neuroendocrine (NE) cell hyperplasia and tumors in F344/N rat stomach. Detailed histopathological and immunohistochemical (IHC) characterization of these tumors has not been previously reported. The objective of this study was to fill that data gap. Archived slides and paraffin blocks were retrieved from the National Toxicology Program Archives. NE hyperplasias and tumors were stained with chromogranin A, synaptophysin, amylase, gastrin, H(+)/K(+) adenosine triphosphatase (ATPase), pepsinogen, somatostatin, and cytokeratin 18 (CK18) antibodies. Many of the rats had gastric mucosal atrophy, due to loss of chief and parietal cells. The hyperplasias and tumors were confined to fundic stomach, and females were more affected than the males. Hyperplasia of NE cells was not observed in the pyloric region. Approximately one-third of the females with malignant NE tumors had areas of pancreatic acinar differentiation. The rate of metastasis was 21%, with liver being the most common site of metastasis. Immunohistochemically, the hyperplasias and tumors stained consistently with chromogranin A and synaptophysin. Neoplastic cells were also positive for amylase and CK18 and negative for gastrin, somatostatin, H(+)/K(+) ATPase, and pepsinogen. Metastatic neoplasms histologically similar to the primary neoplasm stained positively for chromogranin A and synaptophysin. Based on the histopathological and IHC features, the neoplasms appear to arise from enterochromaffin-like cells.

  7. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors.

    PubMed

    Sun, Gongping; Irvine, Kenneth D

    2011-02-01

    When cells undergo apoptosis, they can stimulate the proliferation of nearby cells, a process referred to as compensatory cell proliferation. The stimulation of proliferation in response to tissue damage or removal is also central to epimorphic regeneration. The Hippo signaling pathway has emerged as an important regulator of growth during normal development and oncogenesis from Drosophila to humans. Here we show that induction of apoptosis in the Drosophila wing imaginal disc stimulates activation of the Hippo pathway transcription factor Yorkie in surviving and nearby cells, and that Yorkie is required for the ability of the wing to regenerate after genetic ablation of the wing primordia. Induction of apoptosis activates Yorkie through the Jun kinase pathway, and direct activation of Jun kinase signaling also promotes Yorkie activation in the wing disc. We also show that depletion of neoplastic tumor suppressor genes, including lethal giant larvae and discs large, or activation of aPKC, activates Yorkie through Jun kinase signaling, and that Jun kinase activation is necessary, but not sufficient, for the disruption of apical-basal polarity associated with loss of lethal giant larvae. Our observations identify Jnk signaling as a modulator of Hippo pathway activity in wing imaginal discs, and implicate Yorkie activation in compensatory cell proliferation and disc regeneration.

  8. The pan-Bcl-2 blocker obatoclax promotes the expression of Puma, Noxa, and Bim mRNA and induces apoptosis in neoplastic mast cells.

    PubMed

    Peter, Barbara; Cerny-Reiterer, Sabine; Hadzijusufovic, Emir; Schuch, Karina; Stefanzl, Gabriele; Eisenwort, Gregor; Gleixner, Karoline V; Hoermann, Gregor; Mayerhofer, Matthias; Kundi, Michael; Baumgartner, Sigrid; Sperr, Wolfgang R; Pickl, Winfried F; Willmann, Michael; Valent, Peter

    2014-01-01

    Advanced SM is an incurable neoplasm with short survival time. So far, no effective therapy is available for these patients. We and others have shown recently that neoplastic MC in ASM and MCL express antiapoptotic Mcl-1, Bcl-2, and Bcl-xL. In this study, we examined the effects of the pan-Bcl-2 family blocker obatoclax (GX015-070) on primary neoplastic MC, the human MC leukemia cell line HMC-1, and the canine mastocytoma cell line C2. Obatoclax was found to inhibit proliferation in primary human neoplastic MC (IC₅₀: 0.057 μM), in HMC-1.2 cells expressing KIT D816V (IC₅₀: 0.72 μM), and in HMC-1.1 cells lacking KIT D816V (IC₅₀: 0.09 μM), as well as in C2 cells (IC₅₀: 0.74 μM). The growth-inhibitory effects of obatoclax in HMC-1 cells were accompanied by an increase in expression of Puma, Noxa, and Bim mRNA, as well as by apoptosis, as evidenced by microscopy, TUNEL assay, and caspase cleavage. Viral-mediated overexpression of Mcl-1, Bcl-xL, or Bcl-2 in HMC-1 cells was found to introduce partial resistance against apoptosis-inducing effects of obatoclax. We were also able to show that obatoclax synergizes with several other antineoplastic drugs, including dasatinib, midostaurin, and bortezomib, in producing apoptosis and/or growth arrest in neoplastic MC. Together, obatoclax exerts major growth-inhibitory effects on neoplastic MC and potentiates the antineoplastic activity of other targeted drugs. Whether these drug effects can be translated to application in patients with advanced SM remains to be determined.

  9. In vitro cytotoxicity of Selol-loaded magnetic nanocapsules against neoplastic cell lines under AC magnetic field activation

    NASA Astrophysics Data System (ADS)

    Falqueiro, A. M.; Siqueira-Moura, M. P.; Jardim, D. R.; Primo, F. L.; Morais, P. C.; Mosiniewicz-Szablewska, E.; Suchocki, P.; Tedesco, A. C.

    2012-04-01

    The goals of this study are to evaluate invitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, γ-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 µg/mL Selol plus 5 × 1012 particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 µg/mL Selol and 5 × 1012-2.5 × 1013 particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (±3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (±0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach.

  10. First evidence of TRPV5 and TRPV6 channels in human parathyroid glands: possible involvement in neoplastic transformation.

    PubMed

    Giusti, Laura; Cetani, Filomena; Da Valle, Ylenia; Pardi, Elena; Ciregia, Federica; Donadio, Elena; Gargini, Claudia; Piano, Ilaria; Borsari, Simona; Jaber, Ali; Caputo, Antonella; Basolo, Fulvio; Giannaccini, Gino; Marcocci, Claudio; Lucacchini, Antonio

    2014-10-01

    The parathyroid glands play an overall regulatory role in the systemic calcium (Ca(2+)) homeostasis. The purpose of the present study was to demonstrate the presence of the Ca(2+) channels transient receptor potential vanilloid (TRPV) 5 and TRPV6 in human parathyroid glands. Semi-quantitative and quantitative PCR was carried out to evaluate the presence of TRPV5 and TRPV6 mRNAs in sporadic parathyroid adenomas and normal parathyroid glands. Western blot and immunocytochemical assays were used to assess protein expression, cellular localization and time expression in primary cultures from human parathyroid adenoma. TRPV5 and TRPV6 transcripts were then identified both in normal and pathological tissues. Predominant immunoreactive bands were detected at 75-80 kD for both vanilloid channels. These channels co-localized with the calcium-sensing receptor (CASR) on the membrane surface, but immunoreactivity was also detected in the cytosol and around the nuclei. Our data showed that western blotting recorded an increase of protein expression of both channels in adenoma samples compared with normal glands suggesting a potential relation with the cell calcium signalling pathway and the pathological processes of these glands.

  11. [Change in the sensitivity to methotrexate of neoplastic cells cultivated in the presence of folic acid].

    PubMed

    Leĭpunskaia, I L; Svet-Moldavskiĭ, G I

    1976-01-01

    Cultivation of tumour L-cells in the presence of increasing folic acid concentrations led to the rise in the resistance of these cells population to metotrexate. With the subsequent cultivation, when the folic acid concentration was not increased the population of such cells became more sensitive to metotrexate even in comparison with the initial L-cells.

  12. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  13. Non-Neoplastic and Neoplastic Pleural Endpoints Following Fiber Exposure

    PubMed Central

    Broaddus, V. Courtney; Everitt, Jeffrey I.; Black, Brad; Kane, Agnes B.

    2011-01-01

    Exposure to asbestos fibers is associated with non-neoplastic pleural diseases including plaques, fibrosis, and benign effusions, as well as with diffuse malignant pleural mesothelioma. Translocation and retention of fibers are fundamental processes in understanding the interactions between the dose and dimensions of fibers retained at this anatomic site and the subsequent pathological reactions. The initial interaction of fibers with target cells in the pleura has been studied in cellular models in vitro and in experimental studies in vivo. The proposed biological mechanisms responsible for non-neoplastic and neoplastic pleural diseases and the physical and chemical properties of asbestos fibers relevant to these mechanisms are critically reviewed. Understanding mechanisms of asbestos fiber toxicity may help us anticipate the problems from future exposures both to asbestos and to novel fibrous materials such as nanotubes. Gaps in our understanding have been outlined as guides for future research. PMID:21534088

  14. Normal and neoplastic plasma cell membrane phenotype: studies with new monoclonal antibodies.

    PubMed Central

    Tazzari, P L; Gobbi, M; Dinota, A; Bontadini, A; Grassi, G; Cerato, C; Cavo, M; Pileri, S; Caligaris-Cappio, F; Tura, S

    1987-01-01

    Three monoclonal antibodies (MoAb), named 8A, 8F6 and 62B1, reacting with plasma cell-associated antigens, were characterized. 8A was found to be positive throughout the B cell lineage maturation steps from the immature B-committed CD10+ cell to the plasma cells. 8F6 and 62B1 reactivity is restricted to more mature cells and related lymphoid malignancies. In particular 62B1 appears to be limited to hairy cells and plasma cells. The results show that it is possible to obtain reagents reacting with plasma cells by immunizing mice with cells derived from human multiple myelomas. Furthermore, the obtained results suggest that it is possible to elicit antibodies against antigens which are present throughout all the differentiation steps of the B cell lineage. These new MoAb could help in elucidating the phenotype of the plasma cells and the relationships of multiple myelomas with other B cell proliferative disorders. Images Fig. 1 PMID:3319299

  15. Evolution of normal and neoplastic tissue stem cells: progress after Robert Hooke.

    PubMed

    Weissman, Irving

    2015-10-19

    The appearance of stem cells coincides with the transition from single-celled organisms to metazoans. Stem cells are capable of self-renewal as well as differentiation. Each tissue is maintained by self-renewing tissue-specific stem cells. The accumulation of mutations that lead to preleukaemia are in the blood-forming stem cell, while the transition to leukaemia stem cells occurs in the clone at a progenitor stage. All leukaemia and cancer cells escape being removed by scavenger macrophages by expressing the 'don't eat me' signal CD47. Blocking antibodies to CD47 are therapeutics for all cancers, and are currently being tested in clinical trials in the US and UK. © 2015 The Author(s).

  16. Evolution of normal and neoplastic tissue stem cells: progress after Robert Hooke

    PubMed Central

    Weissman, Irving

    2015-01-01

    The appearance of stem cells coincides with the transition from single-celled organisms to metazoans. Stem cells are capable of self-renewal as well as differentiation. Each tissue is maintained by self-renewing tissue-specific stem cells. The accumulation of mutations that lead to preleukaemia are in the blood-forming stem cell, while the transition to leukaemia stem cells occurs in the clone at a progenitor stage. All leukaemia and cancer cells escape being removed by scavenger macrophages by expressing the 'don't eat me' signal CD47. Blocking antibodies to CD47 are therapeutics for all cancers, and are currently being tested in clinical trials in the US and UK. PMID:26416675

  17. Ghrelin expression in hyperplastic and neoplastic proliferations of the enterochromaffin-like (ECL) cells.

    PubMed

    Srivastava, Amitabh; Kamath, Anitha; Barry, Shepard-Annette; Dayal, Yogeshwar

    2004-01-01

    Ghrelin, a recently discovered peptide isolated from the gastric corpus mucosa, is believed to be important in the regulation of growth hormone secretion and has been shown to increase appetite and food intake as well. It may also have other gastrointestinal and cardiac functions. Because a cell of origin for ghrelin has not been convincingly identified in the gastric mucosa thus far, we studied the immunohistochemical expression of ghrelin in proliferative lesions of the enterochromaffin-like (ECL) cells-a cell that is not only exclusively confined to the gastric corpus mucosa but is its dominant endocrine cell type as well. Formalin-fixed, paraffin embedded tissues from three cases of gastric ECL cell hyperplasia and five ECL carcinoids (three with coexisting foci of diffuse, linear, and micronodular hyperplasia) were immunohistochemically stained for ghrelin, using a commercially available antibody. The Sevier-Munger stain for ECL cells and immunohistochemical stains for chromogranin, gastrin, serotonin, somatostatin, and vesicular monoamine transporter-2 (VMAT-2) were performed on parallel sections for correlation with the ghrelin staining results. All ECL cell carcinoids and hyperplastic lesions were positive for both the Sevier-Munger and the immunohistochemical stains for chromogranin and VMAT-2. Immunoreactivity for ghrelin was seen in 4/5 ECL carcinoids, all cases of ECL cell hyperplasia, as well as in all areas with linear and micronodular hyperplasia adjacent to the ECL cell carcinoids. In each instance, such staining was confined to the Sevier-Munger, and VMAT-2 positive cells only. Our findings indicate that the ECL cells are either the ghrelin-producing cells of the gastric mucosa or acquire the capability to synthesize ghrelin during proliferative states encompassing the entire hyperplasia to neoplasia spectrum. In view of the orexigenic and other known actions of ghrelin, the functional and/or biologic significance of ghrelin production in such ECL

  18. Anti-neoplastic action of aspirin against a T-cell lymphoma involves an alteration in the tumour microenvironment and regulation of tumour cell survival.

    PubMed

    Kumar, Anjani; Vishvakarma, Naveen Kumar; Tyagi, Abhishek; Bharti, Alok Chandra; Singh, Sukh Mahendra

    2012-02-01

    The present study explores the potential of the anti-neoplastic action of aspirin in a transplantable murine tumour model of a spontaneously originated T-cell lymphoma designated as Dalton's lymphoma. The antitumour action of aspirin administered to tumour-bearing mice through oral and/or intraperitoneal (intratumoral) routes was measured via estimation of survival of tumour-bearing mice, tumour cell viability, tumour progression and changes in the tumour microenvironment. Intratumour administration of aspirin examined to assess its therapeutic potential resulted in retardation of tumour progression in tumour-bearing mice. Oral administration of aspirin to mice as a prophylactic measure prior to tumour transplantation further primed the anti-neoplastic action of aspirin administered at the tumour site. The anti-neoplastic action of aspirin was associated with a decline in tumour cell survival, augmented induction of apoptosis and nuclear shrinkage. Tumour cells of aspirin-treated mice were found arrested in G0/G1 phase of the cell cycle and showed nuclear localization of cyclin B1. Intratumoral administration of aspirin was accompanied by alterations in the biophysical, biochemical and immunological composition of the tumour microenvironment with respect to pH, level of dissolved O2, glucose, lactate, nitric oxide, IFNγ (interferon γ), IL-4 (interleukin-4), IL-6 and IL-10, whereas the TGF-β (tumour growth factor-β) level was unaltered. Tumour cells obtained from aspirin-treated tumour-bearing mice demonstrated an altered expression of pH regulators monocarboxylate transporter-1 and V-ATPase along with alteration in the level of cell survival regulatory molecules such as survivin, vascular endothelial growth factor, heat-shock protein 70, glucose transporter-1, SOCS-5 (suppressor of cytokine signalling-5), HIF-1α (hypoxia-inducible factor-1α) and PUMA (p53 up-regulated modulator of apoptosis). The study demonstrates a possible indirect involvement of the

  19. Efficient malignant transformation of rat embryo fibroblasts by genomic DNA from Walker carcinoma cells.

    PubMed

    Arvelo, F; Perez, J L; Antuna, O; Gonzalez-Cadavid, N F

    1988-01-01

    DNA isolated from Walker carcinoma ascites cells was transfected into primary rat embryo fibroblasts (REF), selecting transformed cells by growth in soft agar after prolonged propagation in monolayer. Both high molecular weight genomic DNA and a partially purified mitochondrial DNA fraction were able to transform REF with high efficiency, whereas pure mitochondrial DNA failed to elicit a transformed phenotype. Hybridization experiments showed that the mitochondrial DNA fraction contained DNA species of presumably extramitochondrial origin. Colonies were cloned into morphologically transformed, foci-forming, immortalized cell lines, showing different degrees of chromosomal alterations, tumorigenicity, and production of cell growth factors. These results indicate that although REF are refractory to genomic neoplastic DNA or to single cloned oncogenes in the absence of enhancers, they can be efficiently transformed by chromosomal DNA from a highly malignant tumor under conditions selecting against the remaining normal cells.

  20. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides

    PubMed Central

    Vieyra-Garcia, Pablo A.; Wei, Tianling; Naym, David Gram; Fredholm, Simon; Fink-Puches, Regina; Cerroni, Lorenzo; Odum, Niels; O'Malley, John T.; Gniadecki, Robert; Wolf, Peter

    2016-01-01

    Purpose Sustained inflammation is a key feature of mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL). Resident IL9–producing T cells have been found in skin infections and certain inflammatory skin diseases, but their role in MF is currently unknown. Experimental Design We analyzed lesional skin from patients with MF for the expression of IL9 and its regulators. To determine which cells were producing IL9, high-throughput sequencing was used to identify malignant clones and Vb-specific antibodies were employed to visualize malignant cells in histologic preparations. To explore the mechanism of IL9 secretion, we knocked down STAT3/5 and IRF4 by siRNA transfection in CTCL cell lines receiving psoralen+UVA (PUVA) ± anti-IL9 antibody. To further examine the role of IL9 in tumor development, the EL-4 T-cell lymphoma model was used in C57BL/6 mice. Results Malignant and reactive T cells produce IL9 in lesional skin. Expression of the Th9 transcription factor IRF4 in malignant cells was heterogeneous, whereas reactive T cells expressed it uniformly. PUVA or UVB phototherapy diminished the frequencies of IL9- and IL9r-positive cells, as well as STAT3/5a and IRF4 expression in lesional skin. IL9 production was regulated by STAT3/5 and silencing of STAT5 or blockade of IL9 with neutralizing antibodies potentiated cell death after PUVA treatment in vitro. IL9-depleted mice exhibited a reduction of tumor growth, higher frequencies of regulatory T cells, and activated CD4 and CD8 T lymphocytes. Conclusion Our results suggest that IL9 and its regulators are promising new targets for therapy development in mycosis fungoides. PMID:26851186

  1. p38α MAPK is required for arsenic-induced cell transformation.

    PubMed

    Kim, Hong-Gyum; Shi, Chengcheng; Bode, Ann M; Dong, Zigang

    2016-05-01

    Arsenic exposure has been reported to cause neoplastic transformation through the activation of PcG proteins. In the present study, we show that activation of p38α mitogen-activated protein kinase (MAPK) is required for arsenic-induced neoplastic transformation. Exposure of cells to 0.5 μM arsenic increased CRE and c-Fos promoter activities that were accompanied by increases in p38α MAPK and CREB phosphorylation and expression levels concurrently with AP-1 activation. Introduction of short hairpin (sh) RNA-p38α into BALB/c 3T3 cells markedly suppressed arsenic-induced colony formation compared with wildtype cells. CREB phosphorylation and AP-1 activation were decreased in p38α knockdown cells after arsenic treatment. Arsenic-induced AP-1 activation, measured as c-Fos and CRE promoter activities, and CREB phosphorylation were attenuated by p38 inhibition in BALB/c 3T3 cells. Thus, p38α MAPK activation is required for arsenic-induced neoplastic transformation mediated through CREB phosphorylation and AP-1 activation.

  2. Expression of myeloid antigen in neoplastic plasma cells is related to adverse prognosis in patients with multiple myeloma.

    PubMed

    Shim, Hyoeun; Ha, Joo Hee; Lee, Hyewon; Sohn, Ji Yeon; Kim, Hyun Ju; Eom, Hyeon-Seok; Kong, Sun-Young

    2014-01-01

    We evaluated the association between the expression of myeloid antigens on neoplastic plasma cells and patient prognosis. The expression status of CD13, CD19, CD20, CD33, CD38, CD56, and CD117 was analyzed on myeloma cells from 55 newly diagnosed patients, including 36 men (65%), of median age 61 years (range: 38-78). Analyzed clinical characteristics and laboratory parameters were as follows: serum β 2-microglobulin, lactate dehydrogenase, calcium, albumin, hemoglobin, serum creatinine concentrations, bone marrow histology, and cytogenetic findings. CD13+ and CD33+ were detected in 53% and 18%, respectively. Serum calcium (P = 0.049) and LDH (P = 0.018) concentrations were significantly higher and morphologic subtype of immature or plasmablastic was more frequent in CD33+ than in CD33- patients (P = 0.022). CD33 and CD13 expression demonstrate a potential prognostic impact and were associated with lower overall survival (OS; P = 0.001 and P = 0.025) in Kaplan-Meier analysis. Multivariate analysis showed that CD33 was independently prognostic of shorter progression free survival (PFS; P = 0.037) and OS (P = 0.001) with correction of clinical prognostic factors. This study showed that CD13 and CD33 expression associated with poor prognosis in patients with MM implicating the need of analysis of these markers in MM diagnosis.

  3. Evaluation of ARG protein expression in mature B cell lymphomas compared to non-neoplastic reactive lymph node.

    PubMed

    Kabiri, Zahra; Salehi, Mansoor; Mokarian, Fariborz; Mohajeri, Mohammad Reza; Mahmoodi, Farzaneh; Keyhanian, Kianoosh; Doostan, Iman; Ataollahi, Mohammad Reza; Modarressi, Mohammad Hossein

    2009-01-01

    The participation of Abl-Related Gene (ARG) is demonstrated in pathogenesis of different human malignancies. However there is no conclusive evidence on ARG expression level in mature B cell lymphomas. In this study we evaluated ARG protein expression in Follicular Lymphoma (FL), Burkitt's Lymphoma (BL) and Diffused Large B Cell Lymphoma (DLBCL) in comparison with non-neoplastic lymph nodes. Semi-quantitative fluorescent ImmunoHistoChemistry was applied on 14, 7 and 4 patients with DLBCL, FL and BL respectively, adding to 4 normal and 4 reactive lymph nodes. The mean ratio of ARG/GAPDH expression was significantly different (p<0.00) between lymphomas and control samples, with DLBCL having the highest ARG expression amongst all. Over expression of ARG was seen in FL and BL, with FL expressing statistically more ARG than BL. Moreover, the ARG/GAPDH expression ratio increased from DLBCL stage I towards stage VI, all showing significantly more ARG expression than FL and BL (in all cases p<0.00).

  4. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth.

    PubMed

    Peter, B; Winter, G E; Blatt, K; Bennett, K L; Stefanzl, G; Rix, U; Eisenwort, G; Hadzijusufovic, E; Gridling, M; Dutreix, C; Hoermann, G; Schwaab, J; Radia, D; Roesel, J; Manley, P W; Reiter, A; Superti-Furga, G; Valent, P

    2016-02-01

    Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multikinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC(50) values. Midostaurin and CGP62221 also produced growth inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, which accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug competition experiments revealed that midostaurin interacts with KIT and several additional kinase targets. The key downstream regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE receptor downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation, which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs.

  5. Characterization and automatic screening of reactive and abnormal neoplastic B lymphoid cells from peripheral blood.

    PubMed

    Alférez, S; Merino, A; Bigorra, L; Rodellar, J

    2016-04-01

    The objective was to advance in the automatic, image-based, characterization and recognition of a heterogeneous set of lymphoid cells from peripheral blood, including normal, reactive, and five groups of abnormal lymphocytes: hairy cells, mantle cells, follicular lymphoma, chronic lymphocytic leukemia, and prolymphocytes. A number of 4389 images from 105 patients were selected by pathologists, based on morphologic visual appearance, from patients whose diagnosis was confirmed by all the remaining complementary tests. Besides geometry, new color and texture features were extracted using six alternative color spaces to obtain rich information to characterize the cell groups. The recognition system was designed using support vector machines trained with the whole image set. In the experimental tests, individual sets of images from 21 new patients were analyzed by the trained recognition system and compared with the true diagnosis. An overall recognition accuracy of 97.67% was achieved when the cell screening was performed into three groups: normal lymphocytes, abnormal lymphoid cells, and reactive lymphocytes. The accuracy of the whole experimental study was 91.23% when considering the further discrimination of the abnormal lymphoid cells into the specific five groups. The excellent automatic screening of the three groups of normal, reactive, and abnormal lymphocytes is useful as it discriminates between malignancy and not malignancy. The discrimination of the five groups of abnormal lymphoid cells is encouraging toward the idea that the system could be an automated image-based screening method to identify blood involvement by a variety of B lymphomas. © 2016 John Wiley & Sons Ltd.

  6. Neoplastic cells obtained from Hodgkin's disease function as accessory cells for mitogen-induced human T cell proliferative responses.

    PubMed

    Fisher, R I; Bates, S E; Bostick-Bruton, F; Tuteja, N; Diehl, V

    1984-05-01

    Purified human peripheral blood T cells that have been depleted of Ia-bearing cells and adherent cells do not proliferate in response to concanavalin A. The addition of as few as 1% radiated L428 tumor cells restores the proliferative capacity of the T cells. The L428 cell line is a long-term tissue culture line of Reed-Sternberg cells obtained from a patient with Hodgkin's disease. The proliferation of the T cells plus the L428 cells follows the same kinetics and has the same response to varying doses of mitogen as either unfractionated mononuclear leukocytes or purified T cells plus allogeneic adherent cells. The L428 cells are 30 times more potent as accessory cells than allogeneic adherent cells. The accessory cell function of the L428 cells is not blocked in cultures containing anti-Ia antibody. Neither supernatant from the L428 cell cultures nor human IL 1 replaces the accessory cells. The ability of the L428 cells to restore the proliferative capacity of purified T cells isolated from patients with active Hodgkin's disease was also studied. Patients with early stages of the disease had normal proliferative responses in the presence of the L428 accessory cells. However, the proliferative response of the poor prognosis, advanced-stage patients was reduced as compared to age- and sex-matched controls, supporting a deficit in their T cell function. The L428 tumor cells share many properties such as accessory cell function, morphology, and cell surface markers with the dendritic cells described in animal and human systems.

  7. Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells.

    PubMed Central

    Graninger, W B; Seto, M; Boutain, B; Goldman, P; Korsmeyer, S J

    1987-01-01

    We examined the expression of the Bcl-2 gene at chromosome segment 18q21, that is translocated into the Ig heavy chain gene locus in t(14;18) bearing lymphomas. Bcl-2, while B cell associated, is expressed in a variety of hematopoietic lineages including T cells. Bcl-2 mRNA levels are high during pre-B cell development, the time at which the t(14;18) translocation occurs, but are down regulated with maturation. Like certain other oncogenes, Bcl-2 is quiescent in resting B cells but up-regulated with B cell activation. Mature B cell lymphomas with a t(14;18) have log-folds more mRNA than matched counterparts without the translocation. A sensitive S1 protection assay revealed that all transcripts in t(14;18) B cells were Bcl-2-Ig fusion mRNAs and originated from the translocated allele. Thus, there is a marked deregulation of Bcl-2 when it is introduced into the Ig locus in t(14;18) lymphomas. Images PMID:3500184

  8. In vitro cyclooxygenase-2 protein expression and enzymatic activity in neoplastic cells.

    PubMed

    Heller, David A; Fan, Timothy M; de Lorimier, Louis-Philippe; Charney, Sarah C; Barger, Anne M; Tannehill-Gregg, Sarah H; Rosol, Thomas J; Wallig, Matthew A

    2007-01-01

    Cyclooxygenase-2 (COX-2) and its principle enzymatic metabolite, prostaglandin E2 (PGE2), are implicated in cancer progression. Based upon immunohistochemical (IHC) evidence that several tumor types in animals overexpress COX-2 protein, COX-2 inhibitors are used as anticancer agents in dogs and cats. IHC is inaccurate for assessing tumor-associated COX-2 protein and enzymatic activity. Five mammalian cell lines were assessed for COX-2 protein expression by IHC and Western blot analysis (WB), and functional COX-2 activity was based upon PGE2 production. Detection of COX-2 protein by IHC and WB were in agreement in 4 of 5 cell lines. In 1 cell line that lacked COX-2 gene transcription because of promoter hypermethylation (HCT-116), IHC produced false-positive staining for COX-2 protein expression. Functional COX-2 enzymatic activity was dissociated from relative IHC-based COX-2 protein expression in 2 cell lines (RPMI 2650 and SCCF1). The RPMI 2650 cell line demonstrated strong COX-2 protein expression but minimal PGE2 production. Western blot is more accurate than IHC for the detection of COX-2 protein in the cell lines studied. Furthermore, the semiquantitative identification of COX-2 protein by IHC or WB does not necessarily correlate with enzymatic activity. Based upon the potential inaccuracy of IHC and dissociation of COX-2 protein expression from enzymatic activity, the practice of instituting treatment of tumors with COX-2 inhibitors based solely on IHC results should be reconsidered.

  9. Expression of SSX genes in the neoplastic cells of Hodgkin's lymphoma.

    PubMed

    Colleoni, Gisele W B; Capodieci, Paola; Tickoo, Satish; Cossman, Jeffrey; Filippa, Daniel A; Ladanyi, Marc

    2002-05-01

    The cancer/testis antigen (CTA) group of tumor-associated proteins have been reported to be expressed in various cancers and in adult testis but they are essentially not found in any other normal adult nonneoplastic tissues. Prompted by the frequent detection of SSX1 in a previous comprehensive expression profile of the Hodgkin's lymphoma (HL) cell line L428, we analyzed SSX expression by nonnested reverse-transcription polymerase chain reaction (RT-PCR) in 4 HL cell lines (L428, L540, HD-MY-Z, and KM-H2) and 32 tumor samples of HL. The cellular localization of SSX expression in the tumor samples was further analyzed by in situ hybridization (ISH). All 4 HL cell lines were positive by RT-PCR using SSX consensus primers. Using primers specific to individual SSX genes, all 4 cell lines expressed multiple SSX family members. Five tumor samples (15.6%) were positive by RT-PCR using SSX consensus primers and direct sequencing of the RT-PCR products showed that 4 of 5 expressed more than 1 SSX family member. ISH confirmed that SSX expression originated in HL cells in all 5 RT-PCR-positive tumor samples. Furthermore, ISH demonstrated SSX-positive HL cells in 6 of 11 cases (55%) that were negative by RT-PCR. Our results suggest that members of the SSX family of CTA are expressed in most HL. This subset of HL may be a candidate for immunotherapy approaches directed at SSX proteins.

  10. Interleukin-4 Expressed By Neoplastic Cells Provokes an Anti-Metastatic Myeloid Immune Response

    PubMed Central

    Zhang, Connie S.; Kim, Hyeyeon; Mullins, Graeme; Tyryshkin, Kathrin; LeBrun, David P.; Elliott, Bruce E.; Greer, Peter A.

    2016-01-01

    Objective Interleukin-4 (IL-4) can induce macrophages to undergo alternative activation and polarize toward an M2-like or wound healing phenotype. Tumor associated macrophages (TAMs) are thought to assume M2-like properties, and it has been suggested they promote tumor growth and metastasis through effects on the tumor stroma, including extracelluar matrix remodeling and angiogenesis. IL-4 also promotes macrophage survival and formation of multinucleated giant cells, which have enhanced phagocytic behavior. This study was designed to explore the effect of cancer cell derived IL-4 on the tumor immune stroma and metastasis. Methods The metastatic mouse mammary carcinoma cell line AC2M2 was transduced with control or IL-4 encoding retroviruses and employed in orthotopic engraftment models. Tumor growth and metastasis were assessed. The cellular composition and biomarker expression of tumors were examined by immunohistochemical staining and flow cytometry; the transcriptome of the immune stroma was analyzed by nanoString based transcript quantitation; and in vivo and in vitro interactions between cancer cells and macrophages were assessed by flow cytometry and co-culture with video-time lapse microscopy, respectively. Results Unexpectedly, tumors from IL-4 expressing AC2M2 engrafted cells grew at reduced rates, and most surprising, they lost all metastatic potential relative to tumors from control AC2M2 cells. Myeloid cell numbers were not increased in IL-4 expressing tumors, but their expression of the M2 marker arginase I was elevated. Transcriptome analysis revealed an immune signature consistent with IL-4 induced M2 polarization of the tumor microenvironment and a generalized increase in myeloid involvement in the tumor stroma. Flow cytometry analysis indicated enhanced cancer cell phagocytosis by TAMs from IL-4 expressing tumors, and co-culture studies showed that IL-4 expressing cancer cells supported the survival and promoted the in vitro phagocytic behavior of

  11. Oncocytic change in pleomorphic adenoma: molecular evidence in support of an origin in neoplastic cells

    PubMed Central

    Palma, Silvana Di; Lambros, Maryou B K; Savage, Kay; Jones, Chris; Mackay, Alan; Dexter, Tim; Iravani, Marjan; Fenwick, Kerry; Ashworth, Alan; Reis‐Filho, Jorge S

    2007-01-01

    Background Cells with oncocytic change (OC) are a common finding in salivary glands (SGs) and in SG tumours. When found within pleomorphic adenomas (PAs), cells with OC may be perceived as evidence of malignancy, and lead to a misdiagnosis of carcinoma ex pleomorphic adenoma (CaExPa). Aim To describe a case of PA with atypical OC, resembling a CaExPa. A genomewide molecular analysis was carried out to compare the molecular genetic features of the two components and to determine whether the oncocytic cells originated from PA cells, entrapped normal cells, or whether these cells constitute an independent tumour. Materials and methods Representative blocks were immunohistochemically analysed with antibodies raised against cytokeratin (Ck) 5/6, Ck8/18, Ck14, vimentin, p63, α‐smooth muscle actin (ASMA), S100 protein, anti‐mitochondria antibody, β‐catenin, HER2, Ki67, p53 and epidermal growth factor receptor. Typical areas of PA and OC were microdissected and subjected to microarray‐based comparative genomic hybridisation (aCGH). Chromogenic in situ hybridisation (CISH) was performed with in‐house generated probes to validate the aCGH findings. Results PA cells showed the typical immunohistochemical profile, including positivity for Ck5/6, Ck8/18, Ck14, vimentin, ASMA, S100 protein, p63, epidermal growth factor receptor and β‐catenin, whereas oncocytic cells showed a luminal phenotype, expression of anti‐mitochondria antibody and reduced β‐catenin staining. Both components showed low proliferation rates and lacked p53 reactivity. aCGH revealed a similar amplification in both components, mapping to 12q13.3–q21.1, which was further validated by CISH. No HER2 gene amplification or overexpression was observed. The foci of oncocytic metaplasia showed an additional low‐level gain of 6p25.2–p21.31. Conclusion The present data demonstrate that the bizarre atypical cells of the present case show evidence of clonality but no features of malignancy. In

  12. Mechanisms overseeing myeloid-derived suppressor cell production in neoplastic disease.

    PubMed

    Netherby, Colleen S; Abrams, Scott I

    2017-02-21

    Perturbations in myeloid cell differentiation are common in neoplasia, culminating in immature populations known as myeloid-derived suppressor cells (MDSCs). MDSCs favor tumor progression due to their ability to suppress host immunity or promote invasion and metastasis. They are thought to originate from the bone marrow as a result of exposure to stromal- or circulating tumor-derived factors (TDFs). Although great interest has been placed on understanding how MDSCs function, less is known regarding how MDSCs develop at a transcriptional level. Our work explores the premise that MDSCs arise because cancer cells, through the production of certain TDFs, inhibit the expression of interferon regulatory factor-8 (IRF8) that is ordinarily essential for controlling fundamental properties of myeloid cell differentiation. Our interest in IRF8 has been based on the following rationale. First, it is well-recognized that IRF8 is a 'master regulator' of normal myelopoiesis, critical not only for producing monocytes, dendritic cells (DCs), and neutrophils, but also for controlling the balance of all three major myeloid cell types. This became quite evident in IRF8(-/-) mice, whereby the loss of IRF8 leads to a disproportionate accumulation of neutrophils at the expense of monocytes and DCs. Second, we showed that such myeloid populations from IRF8(-/-) mice exhibit similar characteristics to MDSCs from tumor-bearing mice. Third, in a reciprocal fashion, we showed that enforced expression of IRF8 in the myeloid system significantly mitigates tumor-induced MDSC accumulation and improves immunotherapy efficacy. Altogether, these observations support the hypothesis that IRF8 is an integral negative regulator of MDSC biology.

  13. Comparison of the anti-tumor effects of denosumab and zoledronic acid on the neoplastic stromal cells of giant cell tumor of bone.

    PubMed

    Lau, Carol P Y; Huang, Lin; Wong, Kwok Chuen; Kumta, Shekhar Madhukar

    2013-01-01

    Denosumab and Zoledronic acid (ZOL) are two antiresorptive drugs currently in use for treating osteoporosis. They have different mechanisms of action but both have been shown to delay the onset of skeletal-related events in patients with giant cell tumor of bone (GCT). However, the anti-tumor mechanisms of denosumab on the neoplastic GCT stromal cells remain unknown. In this study, we focused on the direct effects of denosumab on the neoplastic GCT stromal cells and compared with ZOL. The microscopic view demonstrated a reduced cell growth in ZOL-treated but not in denosumab-treated GCT stromal cells. ZOL was found to exhibit a dose-dependent inhibition in cell growth in all GCT stromal cell lines tested and cause apoptosis in two out of three cell lines. In contrast, denosumab only exerted a minimal inhibitory effect in one cell line and did not induce any apoptosis. ZOL significantly inhibited the mRNA expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) in two GCT stromal cell lines whereas their protein levels remained unchanged. On the contrary, denosumab did not regulate RANKL and OPG expression at both mRNA and protein levels. Moreover, the protein expression of Macrophage Colony-Stimulating Factor (M-CSF), Alkaline Phosphatase (ALP), and Collagen α1 Type I were not regulated by denosumab and ZOL either. Our findings provide new insights in the anti-tumor effect of denosumab on GCT stromal cells and raise a concern that tumor recurrence may occur after the withdrawal of the drug.

  14. Critical Function of PRDM2 in the Neoplastic Growth of Testicular Germ Cell Tumors

    PubMed Central

    Di Zazzo, Erika; Porcile, Carola; Bartollino, Silvia; Moncharmont, Bruno

    2016-01-01

    Testicular germ cell tumors (TGCTs) derive from primordial germ cells. Their maturation is blocked at different stages, reflecting histological tumor subtypes. A common genetic alteration in TGCT is a deletion of the chromosome 1 short arm, where the PRDM2 gene, belonging to the Positive Regulatory domain gene (PRDM) family, is located. Expression of PRDM2 gene is shifted in different human tumors, where the expression of the two principal protein forms coded by PRDM2 gene, RIZ1 and RIZ2, is frequently unbalanced. Therefore, PRDM2 is actually considered a candidate tumor suppressor gene in different types of cancer. Although recent studies have demonstrated that PRDM gene family members have a pivotal role during the early stages of testicular development, no information are actually available on the involvement of these genes in TGCTs. In this article we show by qRT-PCR analysis that PRDM2 expression level is modulated by proliferation and differentiation agents such as estradiol, whose exposure during fetal life is probably an important risk factor for TGCTs development in adulthood. Furthermore in normal and cancer germ cell lines, PRDM2 binds estradiol receptor α (ERα) and influences proliferation, survival and apoptosis, as previously reported using MCF-7 breast cancer cell line, suggesting a potential tumor-suppressor role in TGCT formation. PMID:27983647

  15. Identification of neoplastic cells in blood using the Sysmex XT-2000iV: a preliminary step in the diagnosis of canine leukemia.

    PubMed

    Gelain, Maria Elena; Rossi, Gabriele; Giori, Luca; Comazzi, Stefano; Paltrinieri, Saverio

    2010-06-01

    Classification of leukemias requires specialized diagnostic techniques. Automated preliminary indicators of neoplastic cells in blood would expedite selection of appropriate tests. The objective of this study was to assess the capacity of the Sysmex XT-2000iV hematology analyzer to identify neoplastic cells in canine blood samples. Blood samples (n=160) were grouped into 5 categories: acute leukemia (n=30), chronic leukemia (n=15), neoplasia without blood involvement (n=41), non-neoplastic reactive conditions (n=31), and healthy dogs (n=43). WBC counts, WBC flags, scattergrams, percentages of cells with high fluorescence intensity, and percentages of cells in the lysis-resistant region were evaluated alone or in combination to establish a "leukemic flag." Sensitivity, specificity, negative (LR-) and positive (LR+) likelihood ratios, and the number of false-negative (FN) and false-positive (FP) results were calculated, and receiver operating characteristic curves were designed for numerical values. Among single measurements and parameters, only the evaluation of scattergrams minimized FN and FP results (sensitivity 100%, specificity 94.8%, LR+ 19.17, and LR- 0.00), although their interpretation was subjective. The more objective approach based on the generation of a "leukemic flag" had a sensitivity of 100%, specificity of 87.0%, LR- of 0.00, and LR+ of 7.67. Using a novel gating strategy the Sysmex XT-2000iV may be used effectively to screen canine blood for hematopoietic neoplasia.

  16. Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism.

    PubMed

    Waight, Jeremy D; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy.

  17. SAG/ROC2/Rbx2 is a novel activator protein-1 target that promotes c-Jun degradation and inhibits 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic transformation.

    PubMed

    Gu, Qingyang; Tan, Mingjia; Sun, Yi

    2007-04-15

    SAG (sensitive to apoptosis gene) was first identified as a stress-responsive protein that, when overexpressed, inhibited apoptosis both in vitro and in vivo. SAG was later found to be the second family member of ROC1 or Rbx1, a RING component of SCF and DCX E3 ubiquitin ligases. We report here that SAG/ROC2/Rbx2 is a novel transcriptional target of activator protein-1 (AP-1). AP-1 bound both in vitro and in vivo to two consensus binding sites in a 1.3-kb region of the mouse SAG promoter. The SAG promoter activity, as measured by luciferase reporter assay, was dependent on these sites. Consistently, endogenous SAG is induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) with an induction time course following the c-Jun induction in both mouse epidermal JB6-Cl.41 and human 293 cells. TPA-mediated SAG induction was significantly reduced in JB6-Cl.41 cells overexpressing a dominant-negative c-Jun, indicating a requirement of c-Jun/AP-1. On the other hand, SAG seemed to modulate the c-Jun levels. When overexpressed, SAG remarkably reduced both basal and TPA-induced c-Jun levels, whereas SAG small interfering RNA (siRNA) silencing increased substantially the levels of both basal and TPA-induced c-Jun. Consistently, SAG siRNA silencing reduced c-Jun polyubiquitination and blocked c-Jun degradation induced by Fbw7, an F-box protein of SCF E3 ubiquitin ligase. Finally, SAG overexpression inhibited, whereas SAG siRNA silencing enhanced, respectively, the TPA-induced neoplastic transformation in JB6-Cl.41 preneoplastic model. Thus, AP-1/SAG establishes an autofeedback loop, in which on induction by AP-1, SAG promotes c-Jun ubiquitination and degradation, thus inhibiting tumor-promoting activity of AP-1.

  18. Isolation, purification, culture and characterisation of myoepithelial cells from normal and neoplastic canine mammary glands using a magnetic-activated cell sorting separation system.

    PubMed

    Sánchez-Céspedes, R; Maniscalco, L; Iussich, S; Martignani, E; Guil-Luna, S; De Maria, R; Martín de Las Mulas, J; Millán, Y

    2013-08-01

    Mammary gland tumours, the most common malignant neoplasm in bitches, often display myoepithelial (ME) cell proliferation. The aim of this study was to isolate, purify, culture and characterise ME cells from normal and neoplastic canine mammary glands. Monodispersed cells from three normal canine mammary glands and five canine mammary tumours were incubated with an anti-Thy1 antibody and isolated by magnetic-activated cell sorting (MACS). Cells isolated from two normal glands (cell lines CmME-N1 and CmME-N2) and four tumours (cell lines CmME-K1 from a complex carcinoma, CmME-K2 from a simple tubulopapillary carcinoma, and CmME-K3 and CmME-K4 from two carcinomas within benign tumours) were cultured in supplemented DMEM/F12 media for 40days. Cell purity was >90%. Tumour-derived ME cell lines exhibited heterogeneous morphology, growth patterns and immunocytochemical expression of cytokeratins, whereas cell lines from normal glands retained their morphology and levels of cytokeratin expression during culture. Cell lines from normal glands and carcinomas within benign tumours grew more slowly than those from simple and complex carcinomas. This methodology has the potential to be used for in vitro analysis of the role of ME cells in the growth and progression of canine mammary tumours. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Immunogenicity of guinea pig cells transformed in culture by chemical carcinogens

    SciTech Connect

    Ohanian, S.H.; McCabe, R.P.; Evans, C.H.

    1981-12-01

    The immunogenicity of inbred strain 2/N guinea pig fibroblasts transformed to the malignant state in vitro by chemical carcinogens was evaluated with the use of a variety of in vivo and in vitro methods including delayed-type hypersensitivity skin and tumor transplantation tests and analysis of antibody production by immunofluorescence, complement fixation, and staphylococcal protein A binding tests. Neoplastic transformation was induced by direct treatment of cells in culture with benzo(a)pyrene, 3-methylcholanthrene, or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or by the host-mediated method by which fetuses were exposed to diethylnitrosamine or MNNG in vivo prior to cell culture. Rabbits and syngeneic guinea pigs were inoculated with unirradiated and X-irradiated clonally derived cells. Delayed hypersensitivity skin reactions to immunizing or other cells were equivalent in immunized or control guinea pigs, and no protection to tumor outgrowth from a challenge inoculum of immunizing cells was observed. Antibody activity induced in the sera of immunized guinea pigs was cross-reactive and removed by absorption with nontumorigenic cells. Rabbit anitsera after absorption with fetal guinea pig cells were nonreactive with the specific immunizing or other cultured cells. Chemical carcinogen-induced neoplastic transformation of guinea pig cells can, therefore, occur without formation of detectable, individually distinct cell surface tumor-specific neoantigens.

  20. Immunogenicity of guinea pig cells transformed in culture by chemical carcinogens

    SciTech Connect

    Ohanian, S.H.; McCabe, R.P.; Evans, C.H.

    1981-12-01

    The immunogenicity of inbred strain 2/N guinea pig fibroblasts transformed to the malignant state in vitro by chemical carcinogens was evaluated with the use of a variety of in vivo and in vitro methods including delayed-type hypersensitivity skin and tumor transplantation tests and analysis of antibody production by immunofluorescence, complement fixation, and staphylococcal protein A binding tests. Neoplastic transformation was induced by direct treatment of cells in culture with benzo(a)pyrene, 3-methylcholanthrene, or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or by the host-mediated method by which fetuses were exposed to diethylnitrosamine or MNNG in vivo prior to cell culture. Rabbits and syngeneic guinea pigs were inoculated with unirradiated and X-irradiated clonally derived cells. Delayed hypersensitivity skin reactions to immunizing or other cells were equivalent in immunized or control guinea pigs, and no protection to tumor outgrowth from a challenge inoculum of immunizing cells was observed. Antibody activity induced in the sera of immunized guinea pigs was cross-reactive and removed by absorption with nontumorigenic cells. Rabbit antisera after absorption with fetal guinea pig cells were nonreactive with the specific immunizing or other culture cells. Chemical carcinogen-induced neoplastic transformation of guinea pig cells can, therefore, occur without formation of detectable, individually distinct cell surface tumor-specific neoantigens.

  1. Degradation of type IV collagen by neoplastic human skin fibroblasts

    SciTech Connect

    Sheela, S.; Barrett, J.C.

    1985-02-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion.

  2. Loss of p53 protein during radiation transformation of primary human mammary epithelial cells.

    PubMed Central

    Wazer, D E; Chu, Q; Liu, X L; Gao, Q; Safaii, H; Band, V

    1994-01-01

    The causative factors leading to breast cancer are largely unknown. Increased incidence of breast cancer following diagnostic or therapeutic radiation suggests that radiation may contribute to mammary oncogenesis. This report describes the in vitro neoplastic transformation of a normal human mammary epithelial cell strain, 76N, by fractionated gamma-irradiation at a clinically used dose (30 Gy). The transformed cells (76R-30) were immortal, had reduced growth factor requirements, and produced tumors in nude mice. Remarkably, the 76R-30 cells completely lacked the p53 tumor suppressor protein. Loss of p53 was due to deletion of the gene on one allele and a 26-bp deletion within the third intron on the second allele which resulted in abnormal splicing out of either the third or fourth exon from the mRNA. PCR with a mutation-specific primer showed that intron 3 mutation was present in irradiated cells before selection for immortal phenotype. 76R-30 cells did not exhibit G1 arrest in response to radiation, indicating a loss of p53-mediated function. Expression of the wild-type p53 gene in 76R-30 cells led to their growth inhibition. Thus, loss of p53 protein appears to have contributed to neoplastic transformation of these cells. This unique model should facilitate analyses of molecular mechanisms of radiation-induced breast cancer and allow identification of p53-regulated cellular genes in breast cells. Images PMID:7511207

  3. Reversal of the Neoplastic State in Plants

    PubMed Central

    Meins, Frederick

    1977-01-01

    Crown-gall transformation involves the gradual and progressive activation of several biosynthetic capacities of the normal cell. These changes in cellular heredity, although extremely stable, are nonetheless potentially reversible and leave the cell totipotent. There is growing evidence that tumor-inducing principle is a self-replicating entity similar to a plasmid. Thus, it could be argued that tumor progression involves changes in the number or state of these entities in the cell. Studies of CDF habituation bear directly on this problem. Conversion of a cell division factor (CDF)-requiring normal cell to the CDF-autotrophic state is a key event in transformation. The fact that CDF habituation is progressive, occurs in the absence of agents of bacterial origin, and has an epigenetic basis indicates that it is not necessary to invoke either somatic mutation or the addition of foreign genes to account for tumor stability and progression in crown-gall. This conclusion provides further support for the hypothesis that, in the words of Braun,78 “... the cancer problem is basically a problem of anomolous differentiation... Neoplastic growth, like developmental processes, stems from epigenetic modifications against a constant cellular genome.” PMID:596424

  4. Recent Developments of the Local Effect Model (LEM) - Implications of clustered damage on cell transformation

    NASA Astrophysics Data System (ADS)

    Elsässer, Thilo

    Exposure to radiation of high-energy and highly charged ions (HZE) causes a major risk to human beings, since in long term space explorations about 10 protons per month and about one HZE particle per month hit each cell nucleus (1). Despite the larger number of light ions, the high ionisation power of HZE particles and its corresponding more complex damage represents a major hazard for astronauts. Therefore, in order to get a reasonable risk estimate, it is necessary to take into account the entire mixed radiation field. Frequently, neoplastic cell transformation serves as an indicator for the oncogenic potential of radiation exposure. It can be measured for a small number of ion and energy combinations. However, due to the complexity of the radiation field it is necessary to know the contribution to the radiation damage of each ion species for the entire range of energies. Therefore, a model is required which transfers the few experimental data to other particles with different LETs. We use the Local Effect Model (LEM) (2) with its cluster extension (3) to calculate the relative biological effectiveness (RBE) of neoplastic transformation. It was originally developed in the framework of hadrontherapy and is applicable for a large range of ions and energies. The input parameters for the model include the linear-quadratic parameters for the induction of lethal events as well as for the induction of transformation events per surviving cell. Both processes of cell inactivation and neoplastic transformation per viable cell are combined to eventually yield the RBE for cell transformation. We show that the Local Effect Model is capable of predicting the RBE of neoplastic cell transformation for a broad range of ions and energies. The comparison of experimental data (4) with model calculations shows a reasonable agreement. We find that the cluster extension results in a better representation of the measured RBE values. With this model it should be possible to better

  5. Catechol estrogens induce proliferation and malignant transformation in prostate epithelial cells.

    PubMed

    Mosli, Hisham A; Tolba, Mai F; Al-Abd, Ahmed M; Abdel-Naim, Ashraf B

    2013-07-18

    In the current study, the non-transformed prostatic epithelial cells (BPH-1) were exposed to the catechol estrogens (CE) 2-hydroxyestradiol (2-OHE2) or 4-hydroxyestradiol (4-OHE2), or the parent hormone 17-β-estradiol (E2) at an equimolar concentration (1μM) for a period of 6 weeks. It was found that both 2-OHE2 and 4-OHE2 have more potent proliferation-enhancing effect than E2. Exposure to 2-OHE2, 4-OHE2 or E2 resulted in a significant increase in the protein abundance of cyclin D1 and c-myc. The treated cells exhibited a shift toward the proliferative phase as indicated by FACScan. BPH-1 cells treated with 4-OHE2 showed increased abundance of estrogen receptor-α (ERα) and its downstream IGF-1R. Reduced abundance of estrogen receptor-β (ERβ) and its downstream tumor suppressor FOXO-1 were observed in cells exposed to E2, 2-OHE2 and, to a greater extent, 4-OHE2. Comet assay revealed that CE, especially 4-OHE2, elicited significant genotoxic effects as compared to E2. 4-OHE2 showed greater ability to neoplastically transform BPH-1 cells as indicated by increased colony forming capacity in soft agar and matrix invasion. In conclusion, in vitro exposure to CE could neoplastically transform human prostatic epithelial cells. Further, 4-OHE2 is more carcinogenic to prostate epithelial cells than the parent hormone E2.

  6. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  7. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  8. Characterization of preneoplastic and neoplastic rat mesothelial cell lines: the involvement of TETs, DNMTs, and 5-hydroxymethylcytosine

    PubMed Central

    Roulois, David; Deshayes, Sophie; Guilly, Marie-Noëlle; Nader, Joëlle S.; Liddell, Charly; Robard, Myriam; Hulin, Philippe; Ouacher, Amal; Le Martelot, Vanessa; Fonteneau, Jean-François; Grégoire, Marc

    2016-01-01

    Malignant mesothelioma (MM) is one of the worst cancers in terms of clinical outcome, urging the need to establish and characterize new preclinical tools for investigation of the tumorigenic process, improvement of early diagnosis and evaluation of new therapeutic strategies. For these purposes, we characterized a collection of 27 cell lines established from F344 rats, after 136 to 415 days of induction with crocidolite asbestos administered intraperitoneally. Four mesotheliomas were distinguished from 23 preneoplastic mesothelial cell lines (PN) according to their propensity to generate tumors after orthotopic transplantation into syngeneic rats, their growth pattern, and the expression profile of three genes. PN cell lines were further discriminated into groups / subgroups according to morphology in culture and the expression profiles of 14 additional genes. This approach was completed by analysis of positive and negative immunohistochemical MM markers in the four tumors, of karyotype alterations in the most aggressive MM cell line in comparison with a PN epithelioid cell line, and of human normal mesothelial and mesothelioma cells and a tissue array. Our results showed that both the rat and human MM cell lines shared in common a dramatic decrease in the relative expression of Cdkn2a and of epigenetic regulators, in comparison with PN and normal human mesothelial cells, respectively. In particular, we identified the involvement of the relative expression of the Ten-Eleven Translocation (TET) family of dioxygenases and Dnmt3a in relation to the 5-hydroxymethylcytosine level in malignant transformation and the acquisition of metastatic potential. PMID:27129173

  9. Characterization of preneoplastic and neoplastic rat mesothelial cell lines: the involvement of TETs, DNMTs, and 5-hydroxymethylcytosine.

    PubMed

    Roulois, David; Deshayes, Sophie; Guilly, Marie-Noëlle; Nader, Joëlle S; Liddell, Charly; Robard, Myriam; Hulin, Philippe; Ouacher, Amal; Le Martelot, Vanessa; Fonteneau, Jean-François; Grégoire, Marc; Blanquart, Christophe; Pouliquen, Daniel L

    2016-06-07

    Malignant mesothelioma (MM) is one of the worst cancers in terms of clinical outcome, urging the need to establish and characterize new preclinical tools for investigation of the tumorigenic process, improvement of early diagnosis and evaluation of new therapeutic strategies. For these purposes, we characterized a collection of 27 cell lines established from F344 rats, after 136 to 415 days of induction with crocidolite asbestos administered intraperitoneally. Four mesotheliomas were distinguished from 23 preneoplastic mesothelial cell lines (PN) according to their propensity to generate tumors after orthotopic transplantation into syngeneic rats, their growth pattern, and the expression profile of three genes. PN cell lines were further discriminated into groups / subgroups according to morphology in culture and the expression profiles of 14 additional genes. This approach was completed by analysis of positive and negative immunohistochemical MM markers in the four tumors, of karyotype alterations in the most aggressive MM cell line in comparison with a PN epithelioid cell line, and of human normal mesothelial and mesothelioma cells and a tissue array. Our results showed that both the rat and human MM cell lines shared in common a dramatic decrease in the relative expression of Cdkn2a and of epigenetic regulators, in comparison with PN and normal human mesothelial cells, respectively. In particular, we identified the involvement of the relative expression of the Ten-Eleven Translocation (TET) family of dioxygenases and Dnmt3a in relation to the 5-hydroxymethylcytosine level in malignant transformation and the acquisition of metastatic potential.

  10. High Expression of the DNA Methyltransferase Gene Characterizes Human Neoplastic Cells and Progression Stages of Colon Cancer

    NASA Astrophysics Data System (ADS)

    El-Deiry, Wafik S.; Nelkin, Barry D.; Celano, Paul; Chiu Yen, Ray-Whay; Falco, Joseph P.; Hamilton, Stanley R.; Baylin, Stephen B.

    1991-04-01

    DNA methylation abnormalities occur consistently in human neoplasia including widespread hypomethylation and more recently recognized local increases in DNA methylation that hold potential for gene inactivation events. To study this imbalance further, we have cloned and localized to chromosome 19 a portion of the human DNA methyltransferase gene that codes for the enzyme catalyzing DNA methylation. Expression of this gene is low in normal human cells, significantly increased (30- to 50-fold by PCR analysis) in virally transformed cells, and strikingly elevated in human cancer cells (several hundredfold). In comparison to colon mucosa from patients without neoplasia, median levels of DNA methyltransferase transcripts are 15-fold increased in histologically normal mucosa from patients with cancers or the benign polyps that can precede cancers, 60-fold increased in the premalignant polyps, and >200-fold increased in the cancers. Thus, increases in DNA methyltransferase gene expression precede development of colonic neoplasia and continue during progression of colonic neoplasms. These increases may play a role in the genetic instability of cancer and mark early events in cell transformation.

  11. High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer

    SciTech Connect

    El-Deiry, W.S.; Nelkin, B.D.; Celano, P.; Ray-Whay Chiu Yen; Falco, J.P.; Hamilton, S.R.; Baylin, S.B. )

    1991-04-15

    DNA methylation abnormalities occur consistently in human neoplasia including widespread hypomethylation and more recently recognized local increases in DNA methylation that hold potential for gene inactivation events. To study this imbalance further, the authors have localized to chromosome 19 a portion of the human DNA methyltransferase gene that codes for the enzyme catalyzing DNA methylation. Expression of this gene is low in normal human cells, significantly increased (30- to 50-fold by PCR analysis) in virally transformed cells, and strikingly elevated in human cancer cells (several hundredfold). In comparison to colon mucosa from patients without neoplasia, median levels of DNA methyltransferase transcripts are 15-fold increased in histologically normal mucosa from patients with cancers or the benign polyps that can precede cancers, 60-fold increased in the premalignant polyps, and >200-fold increased in the cancers. Thus, increases in DNA methyltransferase gene expression precede development of colonic neoplasia and continue during progression of colonic neoplasms. These increases may play a role in the genetic instability of cancer and mark early events in cell transformation.

  12. Synergism of v-myc and v-Ha-ras in the in vitro neoplastic progression of murine lymphoid cells.

    PubMed Central

    Schwartz, R C; Stanton, L W; Riley, S C; Marcu, K B; Witte, O N

    1986-01-01

    Murine bone marrow was either singly or doubly infected with retroviral vectors expressing v-myc (OK10) or v-Ha-ras. The infected bone marrow was cultured in a system that supports the long-term growth of B-lineage lymphoid cells. While the v-myc vector by itself had no apparent effect on lymphoid culture establishment and growth, infection with the v-Ha-ras vector or coinfection with both v-myc and v-Ha-ras vectors led to the appearance of growth-stimulated cell populations. Clonal pre-B-cell lines stably expressing v-Ha-ras alone or both v-myc and v-Ha-ras grew out of these cultures. In comparison with cell lines expressing v-Ha-ras alone, cell lines expressing both v-myc and v-Ha-ras grew to higher densities, had reduced dependence on a feeder layer for growth, and had a marked increase in ability to grow in soft-agar medium. The cell lines expressing both oncogenes were highly tumorigenic in syngeneic animals. These experiments show that the v-myc oncogene in synergy with v-Ha-ras can play a direct role in the in vitro transformation of murine B lymphoid cells. Images PMID:3023969

  13. Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway

    PubMed Central

    Blackiston, Douglas; Adams, Dany S.; Lemire, Joan M.; Lobikin, Maria; Levin, Michael

    2011-01-01

    SUMMARY Understanding the mechanisms that coordinate stem cell behavior within the host is a high priority for developmental biology, regenerative medicine and oncology. Endogenous ion currents and voltage gradients function alongside biochemical cues during pattern formation and tumor suppression, but it is not known whether bioelectrical signals are involved in the control of stem cell progeny in vivo. We studied Xenopus laevis neural crest, an embryonic stem cell population that gives rise to many cell types, including melanocytes, and contributes to the morphogenesis of the face, heart and other complex structures. To investigate how depolarization of transmembrane potential of cells in the neural crest’s environment influences its function in vivo, we manipulated the activity of the native glycine receptor chloride channel (GlyCl). Molecular-genetic depolarization of a sparse, widely distributed set of GlyCl-expressing cells non-cell-autonomously induces a neoplastic-like phenotype in melanocytes: they overproliferate, acquire an arborized cell shape and migrate inappropriately, colonizing numerous tissues in a metalloprotease-dependent fashion. A similar effect was observed in human melanocytes in culture. Depolarization of GlyCl-expressing cells induces these drastic changes in melanocyte behavior via a serotonin-transporter-dependent increase of extracellular serotonin (5-HT). These data reveal GlyCl as a molecular marker of a sparse and heretofore unknown cell population with the ability to specifically instruct neural crest derivatives, suggest transmembrane potential as a tractable signaling modality by which somatic cells can control stem cell behavior at considerable distance, identify a new biophysical aspect of the environment that confers a neoplastic-like phenotype upon stem cell progeny, reveal a pre-neural role for serotonin and its transporter, and suggest a novel strategy for manipulating stem cell behavior. PMID:20959630

  14. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas

    SciTech Connect

    Sun, Yu; Wong, Nicholas; Guan, Yinghui; Salamanca, Clara M.; Cheng, Jung Chien; Lee, Jonathan M.; Gray, Joe W.; Auersperg, Nelly

    2008-04-25

    Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.

  15. Differences in kinase-mediated regulation of cell cycle progression in normal and transformed cells

    SciTech Connect

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Stevenson, A.P.; Kraemer, P.M.; Bustos, L.D.; Dickson, J.A.; Bradbury, E.M. )

    1993-01-01

    Staurosporine (Stsp), a general protein kinase inhibitor, was used to investigate the role of kinase-mediated mechanisms in regulating mammalian cell proliferation. Low levels of Stsp (1-2nM) prevented nontransformed cells from entering S phase, indicating that protein phosphorylation processes are essential for commitment of DNA replication in normal cells. Cells resumed cycling when Stsp was removed. The period of sensitivity of nontransformed human diploid fibroblasts to low levels of the drug commenced 3 h later than the G0/G1 boundary and extended through the G1/S boundary. The initial block point at 3 h corresponds neither to the serum nor the amino acid restriction point. In contrast, neither low nor high concentrations (100nm) of Stsp affected G1 progression of transformed cells. High drug concentrations blocked normal cells in G1 and G2 but affected only G2-progression in transformed cells. These results indicate that kinase-mediated regulation of DNA replication is lost as a result of neoplastic transformation, but the G2-arrest mechanism remains intact.

  16. F-actin aggregates in transformed cells

    PubMed Central

    1981-01-01

    Polymerized actin has been found aggregated into distinctive patches inside transformed cells in culture. The F-actin-specific fluorescent probe, nitrobenzoxadiazole-phallacidin, labels these F-actin aggregates near the ventral cell surface of cells transformed by RNA or DNA tumor viruses, or by chemical mutagens, or spontaneously. Their appearance in all eight transformed cell types studied suggests their ubiquity and involvement in transformation morphology. Actin patches developed in normal rat kidney (NRK) cells transformed by a temperature-sensitive mutant of Rous sarcoma virus (LA23-NRK) within 30 min after a shift from the nonpermissive (39 degrees C) to the permissive temperature (32 degrees C). Patch appearance paralleling viral src gene expression tends to implicate pp60src kinase activity in destabilizing the cytoskeleton. However, appearance of the actin aggregates in cells not transformed by retrovirus calls for alternative mechanisms, perhaps involving an endogenous kinase, for this apparently common trait. PMID:6270163

  17. Transformation of human cells by DNAs ineffective in transformation of NIH 3T3 cells

    SciTech Connect

    Sutherland, B.M.; Bennett, P.B.; Freeman, A.G.; Moore, S.P.; Strickland, P.T.

    1985-04-01

    Neonatal human foreskin fibroblasts can be transformed to anchorage-independent growth by transfection with DNAs inefficient in transforming NIH 3T3 cells. Human cells transfected with DNA from GM 1312, a multiple myeloma cell line, or MOLT-4, a permanent lymphoblast line, grow without anchorage at a much higher frequency than do the parental cells and their DNAs can transform human cell recipients to anchorage-independent growth; they have extended but not indefinite life spans and are nontumorigenic. Human fibroblasts are also transformed by DNAs from two multiple myeloma lines that also transform 3T3 cells; however, restriction analysis suggests that different transforming genes in this DNA are acting in the human and murine systems. These results indicate that the human cell transfection system allows detection of transforming genes not effective in the 3T3 system and points out the possibility of detection of additional transforming sequences even in DNAs that do transform murine cells.

  18. A composite neoplastic lesion of the vulva with mixed features of fibroadenoma and hidradenoma papilliferum combined with pseudoangiomatous stromal hyperplasia containing multinucleated giant cells.

    PubMed

    Konstantinova, Anastasia M; Kacerovska, Denisa; Michal, Michal; Kazakov, Dmitry V

    2014-10-01

    Anogenital mammary-like glands (AGMLG) are nowadays considered a normal component of the anogenital area. Lesions affecting AGMLG are similar to those seen in breast. We present a case of a complex neoplastic lesion of the AGMLG with mixed features of fibroadenoma and hidradenoma papilliferum combined with pseudoangiomatous stromal hyperplasia. Multinucleated cells were detected in the pseudoangiomatous stromal hyperplasia areas as seen in some patients with neurofibromatosis type 1. The neoplasm is similar to rare mammary composite neoplasms that feature simultaneously patterns of a fibroepithelial neoplasms and intraductal papilloma.

  19. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells

    PubMed Central

    Nassour, Joe; Martien, Sébastien; Martin, Nathalie; Deruy, Emeric; Tomellini, Elisa; Malaquin, Nicolas; Bouali, Fatima; Sabatier, Laure; Wernert, Nicolas; Pinte, Sébastien; Gilson, Eric; Pourtier, Albin; Pluquet, Olivier; Abbadie, Corinne

    2016-01-01

    The main characteristic of senescence is its stability which relies on the persistence of DNA damage. We show that unlike fibroblasts, senescent epithelial cells do not activate an ATM-or ATR-dependent DNA damage response (DDR), but accumulate oxidative-stress-induced DNA single-strand breaks (SSBs). These breaks remain unrepaired because of a decrease in PARP1 expression and activity. This leads to the formation of abnormally large and persistent XRCC1 foci that engage a signalling cascade involving the p38MAPK and leading to p16 upregulation and cell cycle arrest. Importantly, the default in SSB repair also leads to the emergence of post-senescent transformed and mutated precancerous cells. In human-aged skin, XRCC1 foci accumulate in the epidermal cells in correlation with a decline of PARP1, whereas DDR foci accumulate mainly in dermal fibroblasts. These findings point SSBs as a DNA damage encountered by epithelial cells with aging which could fuel the very first steps of carcinogenesis. PMID:26822533

  20. Genomic instability in non-neoplastic oral mucosa cells can predict risk during 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis.

    PubMed

    Ribeiro, Daniel Araki; Fávero Salvadori, Daisy Maria; da Silva, Renata Nunes; Ribeiro Darros, Bruno; Alencar Marques, Mariangela Esther

    2004-10-01

    4-Nitroquinoline 1-oxide (4NQO)-induced rat tongue carcinogenesis is a useful model for studying oral squamous cell carcinoma. The aim of this study was to investigate the level of DNA damage induced by 4NQO in oral mucosa cells by the single cell gel (comet) assay. Male Wistar rats were distributed into three groups of 10 animals each and treated with 50 ppm 4NQO solution by drinking water for 4, 12 or 20 weeks. Ten animals were used as negative control. Statistically significant increase of DNA damage was observed in non-neoplastic oral cells at four weeks of 4NQO administration when compared with control (P < 0.05). The level of DNA damage was directly associated with the severity of histological changes. The results suggest that histologically normal tissue is able to harbor genetically unstable cells contributing to the initiation of oral carcinogenesis. Genomic instability appears to be associated with the risk and progression of oral cancer.

  1. CCN5/WISP-2 restores ER-∝ in normal and neoplastic breast cells and sensitizes triple negative breast cancer cells to tamoxifen

    PubMed Central

    Sarkar, S; Ghosh, A; Banerjee, S; Maity, G; Das, A; Larson, M A; Gupta, V; Haque, I; Tawfik, O; Banerjee, S K

    2017-01-01

    CCN5/WISP-2 is an anti-invasive molecule and prevents breast cancer (BC) progression. However, it is not well understood how CCN5 prevents invasive phenotypes of BC cells. CCN5 protein expression is detected in estrogen receptor-α (ER-α) -positive normal breast epithelial cells as well as BC cells, which are weakly invasive and rarely metastasize depending on the functional status of ER-α. A unique molecular relation between CCN5 and ER-α has been established as the components of the same signaling pathway that coordinate some essential signals associated with the proliferation as well as delaying the disease progression from a non-invasive to invasive phenotypes. Given the importance of this connection, we determined the role of CCN5 in regulation of ER-α in different cellular settings and their functional relationship. In a genetically engineered mouse model, induced expression of CCN5 in the mammary ductal epithelial cells by doxycycline promotes ER-α expression. Similarly, CCN5 regulates ER-α expression and activity in normal and neoplastic breast cells, as documented in various in vitro settings such as mouse mammary gland culture, human mammary epithelial cell and different BC cell cultures in the presence or absence of human recombinant CCN5 (hrCCN5) protein. Mechanistically, at least in the BC cells, CCN5 is sufficient to induce ER-α expression at the transcription level via interacting with integrins-α6β1 and suppressing Akt followed by activation of FOXO3a. Moreover, in vitro and in vivo functional assays indicate that CCN5 treatment promotes response to tamoxifen in triple-negative BC (TNBC) cells possibly via restoring ER-α. Collectively, these studies implicates that the combination treatments of CCN5 (via activation of CCN5 or hrCCN5 treatment) and tamoxifen as potential therapies for TNBC. PMID:28530705

  2. Induction of prostaglandin E synthesis in normal and neoplastic macrophages: role for colony-stimulating factor(s) distinct from effects on myeloid progenitor cell proliferation.

    PubMed Central

    Kurland, J I; Pelus, L M; Ralph, P; Bockman, R S; Moore, M A

    1979-01-01

    The biosynthesis of prostaglandin E (PGE) by normal and neoplastic macrophages is intrinsically linked to their synthesis of, and exposure to, myeloid colony-stimulating factors (CS-factors). The defect in responsiveness to endotoxin lipopolysaccharide (LPS) by macrophages from C3H/HeJ mice extends equally to the synthesis of CS-factor and PGE. However, C3H/HeJ macrophages can be stimulated to synthesize PGE by treatment with agents other than LPS [zymosan, tuberculin purified protein derivative, concanavalin A, poly(I).poly(C)], which also stimulate CS-factor production, or by the addition of various preparations of soluble CS-factor. In peritoneal wash preparations, constitutive PGE synthesis occurred in rapidly sedimenting macrophage cells, whereas constitutive CS-factor production and inducible PGE synthesis occurred in slower sedimenting adherent cells. A similar functional heterogeneity in CS-factor and PGE production was found in neoplastic macrophagae cell lines. The association of elevated CS-factor levels and PGE synthesis by macrophages suggests a role for CS-factor in many of the physiological responses heretofore associated with elevated tissue levels of the E type prostaglandins. PMID:313054

  3. Further delineation of the continuous human neoplastic enterochromaffin cell line, KRJ-I, and the inhibitory effects of lanreotide and rapamycin.

    PubMed

    Kidd, Mark; Eick, Geeta N; Modlin, Irvin M; Pfragner, Roswitha; Champaneria, Manish C; Murren, John

    2007-02-01

    Small intestinal carcinoids (SICs) are the most prevalent gastrointestinal carcinoid and characterized by local invasion metastasis and protean symptomatology. The proliferative and secretory regulation of the cell of origin, the enterochromaffin (EC) cell has not been characterized. The absence of either a pure preparation of normal EC cells or human EC carcinoid cell lines has hindered the development of therapeutic agents. We therefore further characterized the neoplastic SIC cell line, KRJ-I by assessing its secretory (serotonin (5-HT)) and proliferative responses and defining its log growth phase transcriptome. Electron microscopy demonstrated oval, lobulated nuclei and substance P, and 5-HT-positive cytoplasmic vesicles. RT-PCR detected transcripts for chromogranin A (CHGA), VMAT1 (SLC18A1), tryptophan hydroxylase (TPH1), substance P (TAC1), guanylin (GUCA2A), and SERT (SLC6A4). By immunohistochemistry, all cells were positive for CHGA, SERT, VMAT1, and TPH1. Transcriptome analysis (Affymetrix U133 Plus chips) identified somatostatin SSTR2/3, adrenergic alpha1C and beta1, dopamine D2, nicotinic-type cholinergic A5, A6, B1, muscarinic acetylcholine M4, and 5-HT-2A receptors. The presence of transcripts for SSTR1, SSTR2, and SSTR3 receptors was confirmed by RT-PCR and sequencing. Isoproterenol (ISO) resulted in a dose-dependent increase in intracellular cAMP (EC50=340 nM) and 5-HT (EC50=81 nM) which was completely inhibited by the cAMP antagonist 2',5'-dideoxyadenosine (10 microM). Preincubation with a SSTR agonist, lanreotide, inhibited Ip-stimulated 5-HT secretion (IC50=420 nM). Both lanreotide (10 nM) and rapamycin (50 nM) inhibited proliferation (20+/-12 and 35+/-5% respectively) in serum-free medium whereas gefitinib (1 nM-10 microM) inhibited proliferation at micromolar concentrations. KRJ-I is a neoplastic EC cell line that can be used as an in vitro model of SICs as it will allow elucidation and clarification of the secretory and proliferative mechanism

  4. Evaluation of in vitro effects of various targeted drugs on plasma cells and putative neoplastic stem cells in patients with multiple myeloma

    PubMed Central

    Blatt, Katharina; Herrmann, Harald; Stefanzl, Gabriele; Sperr, Wolfgang R.; Valent, Peter

    2016-01-01

    Multiple myeloma (MM) is a malignancy characterized by monoclonal paraproteinemia and tissue plasmocytosis. In advanced MM cytopenia and osteopathy may occur. Although several effective treatment strategies have been developed in recent years, there is still a need to identify new drug targets and to develop more effective therapies for patients with advanced MM. We examined the effects of 15 targeted drugs on growth and survival of primary MM cells and 5 MM cell lines (MM.1S, NCI-H929, OPM-2, RPMI-8226, U-266). The PI3-kinase blocker BEZ235, the pan-BCL-2 inhibitor obatoclax, the Hsp90-targeting drug 17AAG, and the Polo-like kinase-1 inhibitor BI2536, were found to exert major growth-inhibitory effects in all 5 MM cell lines tested. Moreover, these drugs suppressed the in vitro proliferation of primary bone marrow-derived MM cells and induced apoptosis at pharmacologic drug concentrations. Apoptosis-inducing effects were not only seen in the bulk of MM cells but also in MM stem cell-containing CD138−/CD20+/CD27+ memory B-cell fractions. Synergistic growth-inhibitory effects were observed in MM cell lines using various drug combinations, including 17AAG+BI2536 in MM.1S, OPM-2, RPMI-8226, and U-266 cells, 17AAG+BEZ235 in MM.1S, OPM-2, RPMI-8226, and U-266 cells, 17AAG+obatoclax in MM.1S, NCI-H929, OPM-2, and RPMI-8226 cells, BI2536+BEZ235 in MM.1S, NCI-H929, OPM-2, and RPMI-8226 cells, BI2536+obatoclax in MM.1S, OPM-2 and RPMI-8226 cells, and BEZ235+obatoclax in MM.1S and RPMI-8226 cells. Together, our data show that various targeted drugs induce profound and often synergistic anti-neoplastic effects in MM cells which may have clinical implications and may contribute to the development of novel treatment strategies in advanced MM. PMID:27582537

  5. Human neuroblastoma cell lines as models for the in vitro study of neoplastic and neuronal cell differentiation.

    PubMed Central

    Abemayor, E; Sidell, N

    1989-01-01

    Neuroblastoma is a childhood solid tumor composed of primitive cells derived from precursors of the autonomic nervous system. This neoplasm has the highest rate of spontaneous regression of all cancer types and has been noted to undergo spontaneous and chemically induced differentiation into elements resembling mature nervous tissue. As such, neuroblastoma has been a prime model system for the study of neuronal differentiation and the process of cancer cell maturation. In this paper we review those agents that have been described to induce the differentiation of neuroblastoma, with an emphasis on the effects and possible mechanisms of action of a group of related compounds, the retinoids. With this model system and the availability of subclones that are both responsive and resistant to chemically induced differentiation, fundamental questions regarding the mechanisms and processes underlying cell maturation have become more amenable to in vitro study. Images FIGURE 1. A FIGURE 1. B FIGURE 1. C FIGURE 2. A FIGURE 2. B PMID:2538324

  6. Curcumol induces apoptosis in SPC-A-1 human lung adenocarcinoma cells and displays anti-neoplastic effects in tumor bearing mice.

    PubMed

    Tang, Qi-Ling; Guo, Ji-Quan; Wang, Qi-You; Lin, Hai-Shu; Yang, Zhou-Ping; Peng, Tong; Pan, Xue-Diao; Liu, Bing; Wang, Su-Jun; Zang, Lin-Quan

    2015-01-01

    Curcumol is a sesquiterpene originally isolated from curcuma rhizomes, a component of herbal remedies commonly used in oriental medicine. Its beneficial pharmacological activities have attract significant interest recently. In this study, anti-cancer activity of curcumol was examined with both in vitro and in vivo models. It was found that curcumol exhibited time- and concentration-dependent anti-proliferative effects in SPC-A-1 human lung adenocarcinoma cells with cell cycle arrest in the G0/G1 phase while apoptosis-induction was also confirmed with flow cytometry and morphological analyses. Interestingly, curcumol did not display growth inhibition in MRC-5 human embryonic lung fibroblasts, suggesting the anti-proliferative effects of curcumol were specific to cancer cells. Anti-neoplastic effects of curcumol were also confirmed in tumor bearing mice. Curcumol (60 mg/kg daily) significantly reduced tumor size without causing notable toxicity. In conclusion, curcumol appears a favorable anti-cancer candidate for further development.

  7. Leptin acts on neoplastic behavior and expression levels of genes related to hypoxia, angiogenesis, and invasiveness in oral squamous cell carcinoma.

    PubMed

    Sobrinho Santos, Eliane Macedo; Guimarães, Talita Antunes; Santos, Hércules Otacílio; Cangussu, Lilian Mendes Borborema; de Jesus, Sabrina Ferreira; Fraga, Carlos Alberto de Carvalho; Cardoso, Claudio Marcelo; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Gomez, Ricardo Santiago; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2017-05-01

    Leptin, one of the main hormones controlling energy homeostasis, has been associated with different cancer types. In oral cancer, its effect is not well understood. We investigated, through in vitro and in vivo assays, whether leptin can affect the neoplastic behavior of oral squamous cell carcinoma. Expression of genes possibly linked to the leptin pathway was assessed in leptin-treated oral squamous cell carcinoma cells and also in tissue samples of oral squamous cell carcinoma and oral mucosa, including leptin, leptin receptor, hypoxia-inducible factor 1-alpha, E-cadherin, matrix metalloproteinase-2, matrix metalloproteinase-9, Col1A1, Ki67, and mir-210. Leptin treatment favored higher rates of cell proliferation and migration, and reduced apoptosis. Accordingly, leptin-treated oral squamous cell carcinoma cells show decreased messenger RNA caspase-3 expression, and increased levels of E-cadherin, Col1A1, matrix metalloproteinase-2, matrix metalloproteinase-9, and mir-210. In tissue samples, hypoxia-inducible factor 1-alpha messenger RNA and protein expression of leptin and leptin receptor were high in oral squamous cell carcinoma cases. Serum leptin levels were increased in first clinical stages of the disease. In animal model, oral squamous cell carcinoma-induced mice show higher leptin receptor expression, and serum leptin level was increased in dysplasia group. Our findings suggest that leptin seems to exert an effect on oral squamous cell carcinoma cells behavior and also on molecular markers related to cell proliferation, migration, and tumor angiogenesis.

  8. Genetic instability persists in non-neoplastic urothelial cells from patients with a history of urothelial cell carcinoma.

    PubMed

    de Castro Marcondes, João Paulo; de Oliveira, Maria Luiza Cotrim Sartor; Gontijo, Alisson M; de Camargo, João Lauro Viana; Salvadori, Daisy Maria Fávero

    2014-01-01

    Bladder cancer is one of the most common genitourinary neoplasms in industrialized countries. Multifocality and high recurrence rates are prominent clinical features of this disease and contribute to its high morbidity. Therefore, more sensitive and less invasive techniques could help identify individuals with asymptomatic disease. In this context, we used the micronucleus assay to evaluate whether cytogenetic alterations could be used as biomarkers for monitoring patients with a history of urothelial cell carcinoma (UCC). We determined the frequency of micronucleated urothelial cells (MNC) in exfoliated bladder cells from 105 patients with (n = 52) or without (n = 53) a history of UCC, all of whom tested negative for neoplasia by cytopathological and histopathological analyses. MNC frequencies were increased in patients with a history of UCC (non-smoker and smoker/ex-smoker patients vs non-smoker and smoker/ex-smoker controls; p<0.001), in non-smoker UCC patients (vs non-smoker controls; p<0.01), and in smoker/ex-smoker controls (vs non-smoker controls; p<0.001). Patients with a history of recurrent disease also demonstrated a higher MNC frequency compared to patients with non-recurrent neoplasia. However, logistic regression using smoking habits, age and gender as confounding factors did not confirm MNC frequency as a marker for UCC recurrence. Fluorescent in situ hybridization analysis (using a pan-centromeric probe) showed that micronuclei (MN) arose mainly from clastogenic events regardless of UCC and/or smoking histories. In conclusion, our results confirm previous indications that subjects with a history of UCC harbor genetically unstable cells in the bladder urothelium. Furthermore, these results support using the micronucleus assay as an important tool for monitoring patients with a history of UCC and tumor recurrence.

  9. Oncogenic Transformation of Dendritic Cells and Their Precursors Leads to Rapid Cancer Development in Mice

    PubMed Central

    Böttcher, Jan P.; Zelenay, Santiago; Rogers, Neil C.; Helft, Julie; Schraml, Barbara U.

    2015-01-01

    Dendritic cells (DCs) are powerful APCs that can induce Ag-specific adaptive immune responses and are increasingly recognized as important players in innate immunity to both infection and malignancy. Interestingly, although there are multiple described hematological malignancies, DC cancers are rarely observed in humans. Whether this is linked to the immunogenic potential of DCs, which might render them uniquely susceptible to immune control upon neoplastic transformation, has not been fully investigated. To address the issue, we generated a genetically engineered mouse model in which expression of Cre recombinase driven by the C-type lectin domain family 9, member a (Clec9a) locus causes expression of the Kirsten rat sarcoma viral oncogene homolog (Kras)G12D oncogenic driver and deletion of the tumor suppressor p53 within developing and differentiated DCs. We show that these Clec9aKras-G12D mice rapidly succumb from disease and display massive accumulation of transformed DCs in multiple organs. In bone marrow chimeras, the development of DC cancer could be induced by a small number of transformed cells and was not prevented by the presence of untransformed DCs. Notably, activation of transformed DCs did not happen spontaneously but could be induced upon stimulation. Although Clec9aKras-G12D mice showed altered thymic T cell development, peripheral T cells were largely unaffected during DC cancer development. Interestingly, transformed DCs were rejected upon adoptive transfer into wild-type but not lymphocyte-deficient mice, indicating that immunological control of DC cancer is in principle possible but does not occur during spontaneous generation in Clec9aKras-G12D mice. Our findings suggest that neoplastic transformation of DCs does not by default induce anti-cancer immunity and can develop unhindered by immunological barriers. PMID:26459350

  10. Clinical Presentation, Diagnosis, and Radiological Findings of Neoplastic Meningitis.

    PubMed

    Rigakos, Georgios; Liakou, Chrysoula I; Felipe, Naillid; Orkoulas-Razis, Dennis; Razis, Evangelia

    2017-01-01

    Neoplastic meningitis is a complication of solid and hematological malignancies. It consists of the spread of malignant cells to the leptomeninges and subarachnoid space and their dissemination within the cerebrospinal fluid. A literature review was conducted to summarize the clinical presentation, differential diagnosis, laboratory values, and imaging findings of neoplastic meningitis. Neoplastic meningitis is an event in the course of cancer with a variable clinical presentation and a wide differential diagnosis. In general, characteristic findings on gadolinium-enhanced magnetic resonance imaging and the presence of malignant cells in the cerebrospinal fluid remain the cornerstones of diagnosis. However, both modalities do not always confirm the diagnosis of neoplastic meningitis despite a typical clinical picture. Clinicians treating patients with cancer should be aware of the possibility of neoplastic meningitis, especially when multilevel neurological symptoms are present. Neoplastic meningitis can be an elusive diagnosis, so clinician awareness is important so that this malignant manifestation is recognized in a timely manner.

  11. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  12. Identification of non-neoplastic and neoplastic gastric polyps using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Shanghai; Kang, Deyong; Xu, Meifang; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2012-12-01

    Gastric polyps can be broadly defined as luminal lesions projecting above the plane of the mucosal surface. They are generally divided into non-neoplastic and neoplastic polyps. Accurate diagnosis of neoplastic polyps is important because of their well-known relationship with gastric cancer. Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) is one of the most important recent inventions in biological imaging. In this study, we used MPM to image the microstructure of gastric polyps, including fundic gland polyps, hyperplastic polyps, inflammatory fibroid polyps and adenomas, then compared with gold-standard hematoxylin- eosin(H-E)-stained histopathology. MPM images showed that different gastric polyps have different gland architecture and cell morphology. Dilated, elongated or branch-like hyperplastic polyps are arranged by columnar epithelial cells. Inflammatory fibroid polyps are composed of small, thin-walled blood vessels surrounded by short spindle cells. Fundic glands polyps are lined by parietal cells and chief cells, admixed with normal glands. Gastric adenomas are generally composed of tubules or villi of dysplastic epithelium, which usually show some degree of intestinal-type differentiation toward absorptive cells, goblet cells, endocrine cells. Our results demonstrated that MPM can be used to identify non- neoplastic and neoplastic gastric polyps without the need of any staining procedure.

  13. Impact of the putative differentiating agents sodium phenylbutyrate and sodium phenylacetate on proliferation, differentiation, and apoptosis of primary neoplastic myeloid cells.

    PubMed

    Gore, S D; Samid, D; Weng, L J

    1997-10-01

    Sodium phenylacetate (PA) and sodium phenylbutyrate (PB) are aromatic fatty acids that can effect differentiation in a variety of cell lines at doses that may be clinically attainable. We have studied the impact of these two agents on lineage- and differentiation stage-specific antigen expression, proliferation, apoptosis, and clonogenic cell survival in primary cultures of bone marrow samples from patients with myeloid neoplasms at presentation and in remission and from normal volunteers. PB inhibited the proliferation of primary acute myeloid leukemia cells in suspension culture with an ID50 of 6.6 mM, similar to its ED50 in cell lines. At higher doses (>/=5 mM), PB also induced apoptosis. PB inhibited clonogenic leukemia cell growth with a median ID50 of less than 2 mM; however, colony-forming units-granulocyte/macrophage from patients with myelodysplasia and normal volunteers were inhibited with a similar ID50. In contrast to PB, its metabolite PA had no significant effect on either acute myeloid leukemia proliferation or apoptosis. Expression of the monocytic marker CD14 was increased in monocytic and myelomonocytic leukemias in response to PB, and to a lesser extent, PA. Surprisingly, both agents appeared to increase expression of the progenitor cell antigen CD34, as well as the DR locus of the human leukocyte antigen. These data indicate that PB, but not its metabolite PA, has significant cytostatic and differentiating activity against primary neoplastic myeloid cells at doses that may be achievable clinically.

  14. Human retroviruses and neoplastic disease.

    PubMed

    Kaplan, M H

    1993-11-01

    Human retroviral infections result in significant neoplastic disease. Human T cell lymphotropic virus I (HTLV-I), the first human retrovirus to be discovered, is associated with the development of acute T cell leukemia with characteristic hypercalcemia and skin lesions after many years of chronic infection of CD4+ cells. HTLV-I also produces myelopathy. A minor T cell immunodeficiency occurs in HTLV-I acute T cell leukemia with associated strongyloidiasis and Pneumocystis carinii pneumonia. Human T cell lymphotropic virus II (HTLV-II) is found to be endemic in Amerindians and intravenous drug users (IVDUs) and has been linked to some cases of hairy-cell leukemia. HTLV-II infects the CD8+ population, with significant cell-associated viremia. Clinical neurological disease is rare, with one patient with myelopathy having been described. Immunodeficiency does not seem to occur. Human immunodeficiency virus 1 (HIV-1) produces aggressive large cell and Burkitt's lymphoma in as many as 10% of HIV-1-infected patients. More than 20% of homosexual men infected with HIV-1 develop Kaposi's sarcoma (KS). The pathogenesis of KS is better understood through studying KS-like cell lines that induce angiogenic factors. In some patients HIV-1 and HTLV-I or HTLV-II infections occur concomitantly. HIV-1 accelerates the tumorigenesis of HTLV-I and produces unusual skin diseases when combined with HTLV-II. Immunodeficiency occurs in all HIV-1-infected patients.

  15. Reduced trisialoganglioside synthesis in chemically but not mos-transformed mouse epidermal cells

    SciTech Connect

    Srinivas, L.; Colburn, N.H.

    1984-04-01

    A specific decrease in the net de novo synthesis ((1-14C)-glucosamine incorporation) of cell surface trisialoganglioside (GT) occurs in preneoplastic mouse JB6 epidermal cells in response to tumor-promoting phorbol esters, mezerein, or epidermal growth factor, all of which promote neoplastic transformation in JB6 cells, but not in response to the bladder promoter sodium cyclamate, a nonpromoter in JB6 cells. The ganglioside showing elevated synthesis after mezerein or epidermal growth factor exposure is monosialoganglioside 1, whereas disialoganglioside 1b synthesis is elevated after phorbol ester exposure. Primary mouse epidermal cells and putatively initiated epidermal cell lines selected for their resistance to induction of terminal differentiation by high calcium are resistant to promotion of anchorage-independent transformation by 2-week exposure to 12-O-tetradecanoylphorbol-13-acetate. In both cell types, little or no decrease in GT synthesis occurs in response to short-term 12-O-tetradecanoylphorbol-13-acetate exposure, thus extending further our previous observation that this GT response is restricted to promotable cells. A decreased synthesis of GT also occurs consistently in cell lines transformed by 12-O-tetradecanoylphorbol-13-acetate or N-methyl-N-nitro-nitrosoguanidine as compared with their nontransformed counterparts but not in cell lines transformed by a cloned integrated murine sarcoma provirus containing the oncogenic sequence v-mos. Thus, reduced cell surface GT synthesis may be important both in the induction and in the maintenance of the chemically transformed but not viral oncogene mos-transformed phenotype in mouse epidermal cells.

  16. Genetic and epigenetic aberrations of p16 in feline primary neoplastic diseases and tumor cell lines of lymphoid and non-lymphoid origins.

    PubMed

    Mochizuki, H; Fujiwara-Igarashi, A; Sato, M; Goto-Koshino, Y; Ohno, K; Tsujimoto, H

    2017-01-01

    The p16 gene acts as a tumor suppressor by regulating the cell cycle and is frequently inactivated in human and canine cancers. The aim of this study was to characterize genetic and epigenetic alterations of the p16 in feline lymphoid and non-lymphoid malignancies, using 74 primary tumors and 11 tumor cell lines. Cloning of feline p16 and subsequent sequence analysis revealed 11 germline sequence polymorphisms in control cats. Bisulfite sequencing analysis of the p16 promoter region in a feline lymphoma cell line revealed that promoter methylation was associated with decreased mRNA expression. Treatment with a demethylating agent restored mRNA expression of the silenced p16. PCR amplification and sequencing analysis detected homozygous loss (five tumors, 6.7%) and a missense mutation (one tumor, 1.4%) in the 74 primary tumors analyzed. Methylation-specific PCR analysis revealed promoter methylation in 10 primary tumors (14%). Promoter methylation was frequent in B cell lymphoid tumors (7/21 tumors, 33%). These genetic and epigenetic alterations were also observed in lymphoma and mammary gland carcinoma cell lines, but not detected in non-neoplastic control specimens. These data indicate that molecular alterations of the p16 locus may be involved in the development of specific types of feline cancer, and warrant further studies to evaluate the clinical value of this evolutionarily-conserved molecular alteration in feline cancers.

  17. USP6 and CDH11 Oncogenes Identify the Neoplastic Cell in Primary Aneurysmal Bone Cysts and Are Absent in So-Called Secondary Aneurysmal Bone Cysts

    PubMed Central

    Oliveira, Andre M.; Perez-Atayde, Antonio R.; Inwards, Carrie Y.; Medeiros, Fabiola; Derr, Victoria; Hsi, Bae-Li; Gebhardt, Mark C.; Rosenberg, Andrew E.; Fletcher, Jonathan A.

    2004-01-01

    Aneurysmal bone cyst (ABC) is a locally recurrent bone lesion that has been regarded as a reactive process. Recently, a neoplastic basis in primary ABC was evidenced by demonstration of clonal chromosome band 17p13 translocations that place the USP6 (TRE2 or TRE17) oncogene under the regulatory influence of the highly active CDH11 promoter. Herein, we report CDH11 and/or USP6 rearrangements in 36 of 52 primary ABCs (69%), of which 10 had CDH11-USP6 fusion, 23 had variant USP6 rearrangements without CDH11 rearrangement, and three had variant CDH11 rearrangements without USP6 rearrangement. USP6 and CDH11 rearrangements were restricted to spindle cells in the ABC and were not found in multinucleated giant cells, inflammatory cells, endothelial cells, or osteoblasts. CDH11 and USP6 rearrangements did not correlate with recurrence-free survival, or with other clinicopathological features. CDH11 and USP6 rearrangements were not found in any of 17 secondary ABC associated with giant cell tumor, chondroblastoma, osteoblastoma, and fibrous dysplasia. These findings demonstrate that primary ABC are mesenchymal neoplasms exhibiting USP6 and/or CDH11 oncogenic rearrangements. By contrast, secondary ABC lack CDH11 and USP6 rearrangements, and although morphological mimics of primary ABC, appear to represent a non-specific morphological pattern of a diverse group of non-ABC neoplasms. PMID:15509545

  18. Protection of germinal centres from complement attack: decay-accelerating factor (DAF) is a constitutive protein on follicular dendritic cells. A study in reactive and neoplastic follicles.

    PubMed

    Lampert, I A; Schofield, J B; Amlot, P; Van Noorden, S

    1993-06-01

    The development of B-cell memory is linked to the presence of germinal centres. This process is dependent on the presence of antigen, usually in the form of immune complexes with antibody, on the surface of the follicular dendritic cells (FDCs) that form a network in the germinal centre. The presence of immune complexes poses a constant danger of activating complement. Decay accelerating factor (DAF, CD55) and the membrane attack complex (MAC) inhibitor (CD59) are two cell proteins whose sole function is to protect cells from the action of complement, the former affecting the earlier components of the complement cascade, and the latter the terminal ones; both are bound to the cell surface via a glycosylphosphatidylinositol link. DAF but not CD59 could be demonstrated on FDCs. DAF is also present on the FDCs in follicular lymphomas despite the absence of complement (C3) in neoplastic follicles. This indicates that DAF is constitutive to FDCs but does not preclude the possibility that its expression is increased when immune complexes are deposited.

  19. In multiple myeloma, only a single stage of neoplastic plasma cell differentiation can be identified by VLA-5 and CD45 expression.

    PubMed

    Rawstron, A C; Barrans, S L; Blythe, D; English, A; Richards, S J; Fenton, J A; Davies, F E; Child, J A; Jack, A S; Morgan, G J

    2001-06-01

    The nature of the proliferating fraction in myeloma is still not known and understanding the characteristics of this fraction is central to the development of effective novel therapies. However, myeloma plasma cells typically show a very low rate of proliferation and this complicates accurate analysis. Although the level of CD45 and/or VLA-5 has been reported to identify proliferating 'precursor' plasma cells, there are discrepancies between these studies. We have therefore used a rigorous sequential gating strategy to simultaneously analyse cycle status and immunophenotype with respect to CD45, VLA-5 and a range of other integrin molecules. In 11 presentation myeloma patients, the proliferative fraction was distributed evenly between CD45+ and CD45- cells, however, cycling plasma cells were consistently VLA-5-. There was close correlation between the expression of VLA-5 and a range of other integrin molecules (CD11a, CD11c, CD103), as well as the immunoglobulin-associated molecules CD79a/b (Spearman, n = 10, P < 0.0001). In short-term culture, cells that were initially VLA-5-showed increasing VLA-5 expression with time. However, simultaneous analysis of the DNA-binding dye 7-amino-actinomycin D demonstrated that this was not as a result of differentiation, as VLA-5+ plasma cells were all non-viable. This was confirmed in freshly explanted plasma cells from nine patients. Discrete stages of plasma cell differentiation could not be distinguished by the level of CD45 or VLA-5 expression. The results indicate that there is a single stage of plasma cell differentiation, with the phenotype CD38+CD138+VLA-5-. These findings support the hypothesis that neoplastic bone marrow plasma cells represent an independent, self-replenishing population.

  20. Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis.

    PubMed

    Ramos, Teresa L; Sánchez-Abarca, Luis Ignacio; Rosón-Burgo, Beatriz; Redondo, Alba; Rico, Ana; Preciado, Silvia; Ortega, Rebeca; Rodríguez, Concepción; Muntión, Sandra; Hernández-Hernández, Ángel; De Las Rivas, Javier; González, Marcos; González Porras, José Ramón; Del Cañizo, Consuelo; Sánchez-Guijo, Fermín

    2017-01-01

    There is evidence of continuous bidirectional cross-talk between malignant cells and bone marrow-derived mesenchymal stromal cells (BM-MSC), which favors the emergence and progression of myeloproliferative neoplastic (MPN) diseases. In the current work we have compared the function and gene expression profile of BM-MSC from healthy donors (HD-MSC) and patients with MPN (JAK2V617F), showing no differences in the morphology, proliferation and differentiation capacity between both groups. However, BM-MSC from MPN expressed higher mean fluorescence intensity (MIF) of CD73, CD44 and CD90, whereas CD105 was lower when compared to controls. Gene expression profile of BM-MSC showed a total of 169 genes that were differentially expressed in BM-MSC from MPN patients compared to HD-MSC. In addition, we studied the ability of BM-MSC to support the growth and survival of hematopoietic stem/progenitor cells (HSPC), showing a significant increase in the number of CFU-GM colonies when MPN-HSPC were co-cultured with MPN-MSC. Furthermore, MPN-MSC showed alteration in the expression of genes associated to the maintenance of hematopoiesis, with an overexpression of SPP1 and NF-kB, and a downregulation of ANGPT1 and THPO. Our results suggest that BM-MSC from JAK2+ patients differ from their normal counterparts and favor the maintenance of malignant clonal hematopoietic cells.

  1. Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis

    PubMed Central

    Sánchez-Abarca, Luis Ignacio; Rosón-Burgo, Beatriz; Redondo, Alba; Rico, Ana; Preciado, Silvia; Ortega, Rebeca; Rodríguez, Concepción; Muntión, Sandra; Hernández-Hernández, Ángel; De Las Rivas, Javier; González, Marcos; González Porras, José Ramón; del Cañizo, Consuelo; Sánchez-Guijo, Fermín

    2017-01-01

    There is evidence of continuous bidirectional cross-talk between malignant cells and bone marrow-derived mesenchymal stromal cells (BM-MSC), which favors the emergence and progression of myeloproliferative neoplastic (MPN) diseases. In the current work we have compared the function and gene expression profile of BM-MSC from healthy donors (HD-MSC) and patients with MPN (JAK2V617F), showing no differences in the morphology, proliferation and differentiation capacity between both groups. However, BM-MSC from MPN expressed higher mean fluorescence intensity (MIF) of CD73, CD44 and CD90, whereas CD105 was lower when compared to controls. Gene expression profile of BM-MSC showed a total of 169 genes that were differentially expressed in BM-MSC from MPN patients compared to HD-MSC. In addition, we studied the ability of BM-MSC to support the growth and survival of hematopoietic stem/progenitor cells (HSPC), showing a significant increase in the number of CFU-GM colonies when MPN-HSPC were co-cultured with MPN-MSC. Furthermore, MPN-MSC showed alteration in the expression of genes associated to the maintenance of hematopoiesis, with an overexpression of SPP1 and NF-kB, and a downregulation of ANGPT1 and THPO. Our results suggest that BM-MSC from JAK2+ patients differ from their normal counterparts and favor the maintenance of malignant clonal hematopoietic cells. PMID:28796790

  2. DUSP6/MKP3 is overexpressed in papillary and poorly differentiated thyroid carcinoma and contributes to neoplastic properties of thyroid cancer cells.

    PubMed

    Degl'Innocenti, Debora; Romeo, Paola; Tarantino, Eva; Sensi, Marialuisa; Cassinelli, Giuliana; Catalano, Veronica; Lanzi, Cinzia; Perrone, Federica; Pilotti, Silvana; Seregni, Ettore; Pierotti, Marco A; Greco, Angela; Borrello, Maria Grazia

    2013-02-01

    Thyroid carcinomas derived from follicular cells comprise papillary thyroid carcinoma (PTC), follicular thyroid carcinoma, poorly differentiated thyroid carcinoma (PDTC) and undifferentiated anaplastic thyroid carcinoma (ATC). PTC, the most frequent thyroid carcinoma histotype, is associated with gene rearrangements that generate RET/PTC and TRK oncogenes and with BRAF-V600E and RAS gene mutations. These last two genetic lesions are also present in a fraction of PDTCs. The ERK1/2 pathway, downstream of the known oncogenes activated in PTC, has a central role in thyroid carcinogenesis. In this study, we demonstrate that the BRAF-V600E, RET/PTC, and TRK oncogenes upregulate the ERK1/2 pathway's attenuator cytoplasmic dual-phase phosphatase DUSP6/MKP3 in thyroid cells. We also show DUSP6 overexpression at the mRNA and protein levels in all the analysed PTC cell lines. Furthermore, DUSP6 mRNA was significantly higher in PTC and PDTC in comparison with normal thyroid tissues both in expression profile datasets and in patients' surgical samples analysed by real-time RT-PCR. Immunohistochemical and western blot analyses showed that DUSP6 was also overexpressed at the protein level in most PTC and PDTC surgical samples tested, but not in ATC, and revealed a positive correlation trend with ERK1/2 pathway activation. Finally, DUSP6 silencing reduced the neoplastic properties of four PTC cell lines, thus suggesting that DUSP6 may have a pro-tumorigenic role in thyroid carcinogenesis.

  3. Immunophenotypic characterization and quantification of neoplastic bone marrow plasma cells by multiparametric flow cytometry and its clinical significance in Korean myeloma patients.

    PubMed

    Cho, Young-Uk; Park, Chan-Jeoung; Park, Seo-Jin; Chi, Hyun-Sook; Jang, Seongsoo; Park, Sang Hyuk; Seo, Eul-Ju; Yoon, Dok Hyun; Lee, Jung-Hee; Suh, Cheolwon

    2013-04-01

    Multiparametric flow cytometry (MFC) allows discrimination between normal and neoplastic plasma cells (NeoPCs) within the bone marrow plasma cell (BMPC) compartment. This study sought to characterize immunophenotypes and quantitate the proportion of NeoPCs in BMPCs to diagnose plasma cell myeoma (PCM) and evaluate the prognostic impact of this method. We analyzed the MFC data of the bone marrow aspirates of 76 patients with PCM and 33 patients with reactive plasmacytosis. MFC analysis was performed using three combinations: CD38/CD138/-/CD45; CD56/CD20/CD138/CD19; and CD27/CD28/CD138/CD117. The plasma cells of patients with reactive plasmacytosis demonstrated normal immunophenotypic patterns. Aberrant marker expression was observed in NeoPCs, with negative CD19 expression observed in 100% of cases, CD56+ in 73.7%, CD117+ in 15.2%, CD27- in 10.5%, CD20+ in 9.2%, and CD28+ in 1.3%. In PCM patients, more than 20% of NeoPCs/BMPCs were significantly associated with factors suggestive of poor clinical outcomes. Patients who were CD27- or CD56+/CD27-, demonstrated shorter overall survival than patients of other CD56/CD27 combinations. Our results support the clinical value of immunophenotyping and quantifying NeoPCs in PCM patients. This strategy could help to reveal poor prognostic categories and delineate surrogate markers for risk stratification in PCM patients.

  4. Involvement of epigenetics and EMT-related miRNA in arsenic-induced neoplastic transformation and their potential clinical use.

    PubMed

    Michailidi, Christina; Hayashi, Masamichi; Datta, Sayantan; Sen, Tanusree; Zenner, Kaitlyn; Oladeru, Oluwadamilola; Brait, Mariana; Izumchenko, Evgeny; Baras, Alexander; VandenBussche, Christopher; Argos, Maria; Bivalacqua, Trinity J; Ahsan, Habibul; Hahn, Noah M; Netto, George J; Sidransky, David; Hoque, Mohammad Obaidul

    2015-03-01

    Exposure to toxicants leads to cumulative molecular changes that overtime increase a subject's risk of developing urothelial carcinoma. To assess the impact of arsenic exposure at a time progressive manner, we developed and characterized a cell culture model and tested a panel of miRNAs in urine samples from arsenic-exposed subjects, urothelial carcinoma patients, and controls. To prepare an in vitro model, we chronically exposed an immortalized normal human bladder cell line (HUC1) to arsenic. Growth of the HUC1 cells was increased in a time-dependent manner after arsenic treatment and cellular morphology was changed. In a soft agar assay, colonies were observed only in arsenic-treated cells, and the number of colonies gradually increased with longer periods of treatment. Similarly, invaded cells in an invasion assay were observed only in arsenic-treated cells. Withdrawal of arsenic treatment for 2.5 months did not reverse the tumorigenic properties of arsenic-treated cells. Western blot analysis demonstrated decreased PTEN and increased AKT and mTOR in arsenic-treated HUC1 cells. Levels of miR-200a, miR-200b, and miR-200c were downregulated in arsenic-exposed HUC1 cells by quantitative RT-PCR. Furthermore, in human urine, miR-200c and miR-205 were inversely associated with arsenic exposure (P = 0.005 and 0.009, respectively). Expression of miR-205 discriminated cancer cases from controls with high sensitivity and specificity (AUC = 0.845). Our study suggests that exposure to arsenic rapidly induces a multifaceted dedifferentiation program and miR-205 has potential to be used as a marker of arsenic exposure as well as a maker of early urothelial carcinoma detection.

  5. Multimodal tissue imaging: using coregistered optical tomography data to estimate tissue autofluorescence intensity change due to scattering and absorption by neoplastic epithelial cells.

    PubMed

    Pahlevaninezhad, Hamid; Cecic, Ivana; Lee, Anthony M D; Kyle, Alastair H; Lam, Stephen; MacAulay, Calum; Lane, Pierre M

    2013-10-01

    Autofluorescence (AF) imaging provides valuable information about the structural and chemical states of tissue that can be used for early cancer detection. Optical scattering and absorption of excitation and emission light by the epithelium can significantly affect observed tissue AF intensity. Determining the effect of epithelial attenuation on the AF intensity could lead to a more accurate interpretation of AF intensity. We propose to use optical coherence tomography coregistered with AF imaging to characterize the AF attenuation due to the epithelium. We present imaging results from three vital tissue models, each consisting of a three-dimensional tissue culture grown from one of three epithelial cell lines (HCT116, OVCAR8, and MCF7) and immobilized on a fluorescence substrate. The AF loss profiles in the tissue layer show two different regimes, each approximately linearly decreasing with thickness. For thin cell cultures (<300 μm), the AF signal changes as AF(t)/AF(0)=1-1.3t (t is the thickness in millimeter). For thick cell cultures (>400 μm), the AF loss profiles have different intercepts but similar slopes. The data presented here can be used to estimate AF loss due to a change in the epithelial layer thickness and potentially to reduce AF bronchoscopy false positives due to inflammation and non-neoplastic epithelial thickening.

  6. Genetic changes in Mammalian cells transformed by helium cells

    SciTech Connect

    Durante, M.; Grossi, G. . Dipt. di Scienze Fisiche); Yang, T.C.; Roots, R. )

    1990-11-01

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9--10 keV/{mu}m). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells. 26 refs., 5 figs., 2 tabs.

  7. KS900: a hypoxia-directed, reductively activated methylating antitumor prodrug that selectively ablates O6-alkylguanine-DNA alkyltransferase in neoplastic cells

    PubMed Central

    Baumann, Raymond P.; Ishiguro, Kimiko; Penketh, Philip G.; Shyam, Krishnamurthy; Zhu, Rui; Sartorelli, Alan C.

    2011-01-01

    To most effectively treat cancer it may be necessary to preferentially destroy tumor tissue while sparing normal tissues. One strategy to accomplish this is to selectively cripple the involved tumor resistance mechanisms, thereby allowing the affected anticancer drugs to gain therapeutic efficacy. Such an approach is exemplified by our design and synthesis of the intracellular hypoxic cell activated methylating agent, 1,2-bis(methylsulfonyl)-1-methyl-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS900) that targets the O-6 position of guanine in DNA. KS900 is markedly more cytotoxic in clonogenic experiments under conditions of oxygen deficiency than the non-intracellularly activated agents KS90, and 90M, when tested in O6-alkylguanine-DNA alkyltransferase (AGT) non-expressing cells (EMT6 mouse mammary carcinoma, CHO/AA8 hamster ovary, and U251 human glioma), and than temozolomide when tested in AGT expressing cells (DU145 human prostate carcinoma). Furthermore, KS900 more efficiently ablates AGT in HL-60 human leukemia and DU145 cells than the spontaneous globally activated methylating agent KS90, with an IC50 value over 9-fold lower than KS90. Finally, KS900 under oxygen-deficient conditions selectively sensitizes DU145 cells to the chloroethylating agent, onrigin, through the ablation of the resistance protein AGT. Thus, under hypoxia, KS900 is more cytotoxic at substantially lower concentrations than methylating agents such as temozolomide that are not preferentially activated in neoplastic cells by intracellular reductase catalysts. The necessity for intracellular activation of KS900 permits substantially greater cytotoxic activity against cells containing the resistance protein O6-alkylguanine-DNA alkyltransferase (AGT) than agents such as temozolomide. Furthermore, the hypoxia-directed intracellular activation of KS900 allows it to preferentially ablate AGT pools under the oxygen-deficient conditions that are present in malignant tissue. PMID:21396917

  8. Diminished number or complete loss of myoepithelial cells associated with metaplastic and neoplastic apocrine lesions of the breast.

    PubMed

    Tramm, Trine; Kim, Jee-Yeon; Tavassoli, Fattaneh A

    2011-02-01

    The presence of myoepithelial (ME) cells is considered an important feature in the vast majority of benign breast lesions. Recently, a case showing the absence of myoepithelium in a mammary duct with apocrine metaplasia was reported. To investigate the status of ME cells associated with apocrine metaplasia, the distribution of ME cells in 59 metaplastic and intraductal proliferative apocrine lesions was evaluated using immunohistochemical expression of p63 and Calponin. p63 showed a diminished number of ME cells and increased intermyoepithelial nuclear distance in ducts with all variants of apocrine metaplasia and proliferation compared with normal glands. In the majority of cases, Calponin showed a continuous ME layer. In 6 cases, including an apocrine papilloma, there were definitive ME gaps confirmed by both markers, in the absence of atypia and with preservation of the basement membrane. In all cases, there was frequent heterogeneity in the distribution of ME cells in ducts harboring apocrine cells and even in various papillae within papillary lesions. In summary, benign and noninvasive apocrine lesions can show reduction and occasional complete loss of ME cells. This observation is particularly important when evaluating apocrine papillary proliferations, in which the absence of ME cells may lead to overdiagnosis of atypia and/or malignancy. The observation suggests that at least 2 ME markers should be used when evaluating apocrine lesions, and that a malignant diagnosis should be based on features of the proliferating cells until more data become available on the significance, if any, of the absence of ME cells in apocrine lesions.

  9. Use of an antibody-ricin A-chain conjugate to delete neoplastic B cells from human bone marrow.

    PubMed

    Muirhead, M; Martin, P J; Torok-Storb, B; Uhr, J W; Vitetta, E S

    1983-08-01

    Affinity-purified rabbit antibody to human lambda and kappa chains (R alpha H lambda kappa) was conjugated to the A-chain of the plant toxin, ricin. The resulting immunotoxin (R alpha H lambda kappa-A) killed cells from the tumor cell line Daudi, which bears surface immunoglobulin, but was nontoxic to the CFU-E, BFU-E, and CFU-GM of human bone marrow. R alpha H lambda kappa-A eliminated 99% of clonogenic Daudi cells that had been mixed with marrow cells in vitro, without demonstrable toxicity to hematopoietic cells. Thus, in vitro treatment of marrow with R alpha H lambda kappa-A may increase the incidence of cure following autologous bone marrow transplantation for the treatment of human B-cell malignancies.

  10. Apparatus and method for transforming living cells

    DOEpatents

    Okandan, Murat; Galambos, Paul C.

    2003-11-11

    An apparatus and method are disclosed for in vitro transformation of living cells. The apparatus, which is formed as a microelectromechanical device by surface micromachining, can be used to temporarily disrupt the cell walls or membrane of host cells one at a time so that a particular substance (e.g. a molecular tag, nucleic acid, bacteria, virus etc.) can be introduced into the cell. Disruption of the integrity of the host cells (i.e. poration) can be performed mechanically or electrically, or by both while the host cells are contained within a flow channel. Mechanical poration is possible using a moveable member which has a pointed or serrated edge and which is driven by an electrostatic actuator to abrade, impact or penetrate the host cell. Electroporation is produced by generating a relatively high electric field across the host cell when the host cell is located in the flow channel between a pair of electrodes having a voltage applied therebetween.

  11. Rapamycin attenuates BAFF-extended proliferation and survival via disruption of mTORC1/2 signaling in normal and neoplastic B-lymphoid cells.

    PubMed

    Zeng, Qingyu; Qin, Shanshan; Zhang, Hai; Liu, Beibei; Qin, Jiamin; Wang, Xiaoxue; Zhang, Ruijie; Liu, Chunxiao; Dong, Xiaoqing; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2018-01-01

    B cell activating factor from the TNF family (BAFF) stimulates B-cell proliferation and survival, but excessive BAFF promotes the development of aggressive B cells leading to malignant and autoimmune diseases. Recently, we have reported that rapamycin, a macrocyclic lactone, attenuates human soluble BAFF (hsBAFF)-stimulated B-cell proliferation/survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway. Here, we show that the inhibitory effect of rapamycin on hsBAFF-promoted B cell proliferation/survival is also related to blocking hsBAFF-stimulated phosphorylation of Akt, S6K1, and 4E-BP1, as well as expression of survivin in normal and B-lymphoid (Raji and Daudi) cells. It appeared that both mTORC1 and mTORC2 were involved in the inhibitory activity of rapamycin, as silencing raptor or rictor enhanced rapamycin's suppression of hsBAFF-induced survivin expression and proliferation/viability in B cells. Also, PP242, an mTORC1/2 kinase inhibitor, repressed survivin expression, and cell proliferation/viability more potently than rapamycin (mTORC1 inhibitor) in B cells in response to hsBAFF. Of interest, ectopic expression of constitutively active Akt (myr-Akt) or constitutively active S6K1 (S6K1-ca), or downregulation of 4E-BP1 conferred resistance to rapamycin's attenuation of hsBAFF-induced survivin expression and B-cell proliferation/viability, whereas overexpression of dominant negative Akt (dn-Akt) or constitutively hypophosphorylated 4E-BP1 (4EBP1-5A), or downregulation of S6K1, or co-treatment with Akt inhibitor potentiated the inhibitory effects of rapamycin. The findings indicate that rapamycin attenuates excessive hsBAFF-induced cell proliferation/survival via blocking mTORC1/2 signaling in normal and neoplastic B-lymphoid cells. Our data underscore that rapamycin may be a potential agent for preventing excessive BAFF-evoked aggressive B-cell malignancies and autoimmune diseases. © 2017 Wiley Periodicals, Inc.

  12. Identification of campath-1 (CD52) as novel drug target in neoplastic stem cells in 5q-patients with MDS and AML.

    PubMed

    Blatt, Katharina; Herrmann, Harald; Hoermann, Gregor; Willmann, Michael; Cerny-Reiterer, Sabine; Sadovnik, Irina; Herndlhofer, Susanne; Streubel, Berthold; Rabitsch, Werner; Sperr, Wolfgang R; Mayerhofer, Matthias; Rülicke, Thomas; Valent, Peter

    2014-07-01

    The CD52-targeted antibody alemtuzumab induces major clinical responses in a group of patients with myelodysplastic syndromes (MDS). The mechanism underlying this drug effect remains unknown. We asked whether neoplastic stem cells (NSC) in patients with MDS (n = 29) or acute myelogenous leukemia (AML; n = 62) express CD52. As assessed by flow cytometry, CD52 was found to be expressed on NSC-enriched CD34(+)/CD38(-) cells in 8/11 patients with MDS and isolated del(5q). In most other patients with MDS, CD52 was weakly expressed or not detectable on NSC. In AML, CD34(+)/CD38(-) cells displayed CD52 in 23/62 patients, including four with complex karyotype and del(5q) and one with del(5q) and t(1;17;X). In quantitative PCR (qPCR) analyses, purified NSC obtained from del(5q) patients expressed CD52 mRNA. We were also able to show that CD52 mRNA levels correlate with EVI1 expression and that NRAS induces the expression of CD52 in AML cells. The CD52-targeting drug alemtuzumab, was found to induce complement-dependent lysis of CD34(+)/CD38(-)/CD52(+) NSC, but did not induce lysis in CD52(-) NSC. Alemtuzumab also suppressed engraftment of CD52(+) NSC in NSG mice. Finally, CD52 expression on NSC was found to correlate with a poor survival in patients with MDS and AML. The cell surface target Campath-1 (CD52) is expressed on NSC in a group of patients with MDS and AML. CD52 is a novel prognostic NSC marker and a potential NSC target in a subset of patients with MDS and AML, which may have clinical implications and may explain clinical effects produced by alemtuzumab in these patients. ©2014 American Association for Cancer Research.

  13. Sex hormone-binding globulin, its membrane receptor, and breast cancer: a new approach to the modulation of estradiol action in neoplastic cells.

    PubMed

    Fortunati, N; Becchis, M; Catalano, M G; Comba, A; Ferrera, P; Raineri, M; Berta, L; Frairia, R

    1999-01-01

    The role of human Sex Hormone-Binding Globulin (SHBG), the plasma carrier of sex steroids, and its membrane receptor, SHBG-R, in estrogen-dependent breast cancer has been investigated in our laboratory in the past few years. SHBG-R is expressed in MCF-10 A cells (not neoplastic mammary cells), MCF-7 cells (breast cancer, ER positive) and in tissue samples from patients affected with ER positive breast cancer, but not in estrogen-insensitive MDA-MB 231 cells. The SHBG/SHBG-R interaction, followed by the binding of estradiol to the complex protein/receptor, causes a significant increase of the intracellular levels of cAMP, but does not modify the amount of estradiol entering MCF-7 cells. The estradiol-induced proliferation of MCF-7 cells is inhibited by SHBG, through SHBG-R, cAMP and PKA. Similarly, the proliferation rate of tissue samples positive for SHBG-R was significantly lower than the proliferation rate of negative samples. SHBG and SHBG-R could thus trigger a 'biologic' anti-estrogenic pathway. In order to get a more detailed knowledge of this system, we first examined the frequence of the reported mutated form of SHBG in 255 breast cancer patients. The mutated SHBG is characterized by a point mutation (Asp 327 --> Asn) causing an additional N-glycosylation site, which does not affect the binding of steroids to SHBG. The frequence of the mutation was significantly higher (24.5%) in estrogen-dependent breast cancers than in healthy control subjects (11.6%). This observation confirms the close relationship between SHBG and estrogen-dependent breast cancer and suggests that the mutation could modify SHBG activity at cell site. Lastly, the possibility of using SHBG to modulate the estradiol action in breast cancer was further studied by transfecting MCF-7 cells with an expression vector carrying the SHBG cDNA (study in collaboration with G.L. Hammond). Transfected cells are able to produce significant amount of SHBG in their medium, but their SHBG-R is reduced to

  14. Cancer cells. 3: Growth factors and transformation

    SciTech Connect

    Feramisco, J.; Ozanne, B.; Stiles, C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Structure of Human Epidermal Growth Factor and Expression of Normal and Variant mRNAs in Epdermoid Carcinoma Cells; Tyrosine Kinase Activity Associated with the v-erb-B Gene Product; Cloning and Characterization of Human Epidermal Growth Factor-Receptor Gene Sequences in A431 Carcinoma Cells; Anti-oncogenes and the Suppression of Tumor Formation; and Normal Human sis/PDGF-2 Gene Expression Induces Cellular Transformation.

  15. Characterization of CD44+ALDH1+Ki-67- Cells in Non-malignant and Neoplastic Lesions of the Breast.

    PubMed

    DA Cruz Paula, Arnaud; Marques, Oriana; Sampaio, Rita; Rosa, Ana; Garcia, José; Rêma, Alexandra; DE Fátima Faria, Maria; Silva, Paula; Vizcaíno, Ramón; Lopes, Carlos

    2016-09-01

    Cancer stem cells are tumor cells that present self-renewal, clonal tumor initiation capacity and clonal long-term repopulation potential. We have previously demonstrated that the co-expression of the breast cancer stem cell (BCSC) markers hyaluronan receptor (CD44) and aldehyde dehydrogenase-1 (ALDH1) in ductal carcinomas in situ could be determinant for disease progression. Combining these established BCSC markers with Ki-67 to evaluate quiescence we sought to identify, evaluate the distribution and estimate the mean percentages of CD44(+)ALDH1(+)Ki-67(-) breast cells. Triple-immunohistochemistry for CD44, ALDH1 and Ki-67 was applied in a series of 16 normal, 54 non-malignant and 155 malignant breast tissues. Clinical relevance was inferred by associations with markers of breast cancer behavior, progression and survival. The mean percentages of cells with this phenotype increased significantly from non-malignant lesions to high-grade ductal carcinomas in situ, decreasing in invasive ductal carcinomas, as also evidenced by an inverse correlation with histological grade and tumor size. The mean percentage of CD44(+)ALDH1(+)Ki-67(-) cells was also significantly higher in women who developed distant metastasis and died due to breast cancer, and a significant association with human epidermal growth factor type 2 (HER2) negativity was observed. Our novel findings indicate that CD44(+)ALDH1(+)Ki-67(-) tumor cells may favor distant metastasis and can predict overall survival in patients with ductal carcinomas of the breast. More importantly, quiescence may have a crucial role for tumor progression, treatment resistance and metastatic ability of BCSCs. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40.

    PubMed Central

    Gruenert, D C; Basbaum, C B; Welsh, M J; Li, M; Finkbeiner, W E; Nadel, J A

    1988-01-01

    To facilitate understanding of the mechanisms underlying pulmonary diseases, including lung cancer and cystic fibrosis, we have transformed and characterized cultures of human tracheal epithelial cells. Cells were transfected by calcium phosphate precipitation with a plasmid containing a replication-defective simian virus 40 (SV40) genome. Colonies of cells with enhanced growth potential were isolated and analyzed for transformation- and epithelial-specific characteristics. Precrisis cells were observed to express the SV40 large tumor antigen, produce cytokeratins, have microvilli, and form tight junctions. After crisis, cells continued to express the SV40 large tumor antigen as well as epithelial-specific cytokeratins and to display the apical membrane microvilli. Apical membrane Cl channels were opened in postcrisis cells exposed to 50 microM forskolin. These channels showed electrical properties similar to those observed in primary cultures. The postcrisis cells have been in culture for greater than 250 generations and are potentially "immortal." In addition to providing a useful in vitro model for the study of ion transport by human airway epithelial cells, the cells can be used to examine stages of neoplastic progression. Images PMID:2457904

  17. Bioprocessing development: Immune/cellular applications: Anti-Ig autoantibody and complement-mediated destruction of neoplastic cells

    NASA Technical Reports Server (NTRS)

    Twomey, J. J.

    1976-01-01

    This space bioprocessing contract effort was comprised of four general objectives. These were: (1) the evaluation of current separation processes, (2) the identification of problems relevant to the separation of important biologicals, (3) the identification of ground-based assay methods needed for pre- and postflight analysis of space bioprocessing separation technology; and (4) the establishment of methods to determine the efficiency of space bioprocessing separation procedures. Immunology was deemed advantageous to study the diversity of cells and cell products involved and the extensive interest being given to their separation. Upon recognition of a cellular or molecular agent as foreign to the body, the immune system becomes activated to produce cells whose function is to destroy that agent and cell products whose function is to inactivate the agent and assist in its destruction. Long after the agent is removed from the body, some cells remain in a state of readiness to continue these destructive actions specifically against that agent should further exposure to it occur. This is the basis of acquired immunity to disease.

  18. Changes in cellular lipid synthesis of normal and neoplastic cells during cytolysis induced by alkyl lysophospholipid analogues.

    PubMed

    Herrmann, D B

    1985-09-01

    Susceptibility of eight different cell types of murine or human origins to alkyl lysophospholipid analogue (ALP)-induced cytolysis correlated well with a selective, dose-dependent inhibition of radiolabeled oleic acid incorporation into phosphatidylcholine (PC) and a concomitant stimulation of incorporation into neutral lipids (NL), mainly triacylglycerols. In resistant cells (murine macrophages, L929S, K562, and rMeth A) a counts per minute NL/counts per minute PC ratio of 0.8-1.0 was observed with 30 micrograms ALP/ml; in sensitive tumor targets (Meth A, HL60, YAC, and ABLS-8.1) values greater than 2.7 were found with 5-10 micrograms ALP/ml. Changes in lipid metabolism preceded cytolysis in Meth A fibrosarcoma cells. In degradation experiments the percentage of total lipid radioactivity in PC was reduced after 24 hours to 47% compared to that in controls in sensitive Meth A with 10 micrograms ALP/ml. The macrophage-PC was unaffected at the same concentration. Sensitivity to ALP was independent of cell proliferation. Resistance was not restricted to normal cells and was inducible in Meth A (and rMeth A).

  19. The ninth ENBDC Weggis meeting: growth and in-depth characterisation of normal and neoplastic breast cells.

    PubMed

    Wiese, Katrin E; Amante, Romain J; Vivanco, Maria dM; Bentires-Alj, Mohamed; Iggo, Richard D

    2017-08-22

    Mammary gland biologists gathered for the ninth annual workshop of the European Network for Breast Development and Cancer (ENBDC) at Weggis on the shores of Lake Lucerne in March 2017. The main themes were oestrogen receptor alpha signalling, new techniques for mammary cell culture, CRISPR screening and proteogenomics.

  20. Protein-kinase-Cmu expression correlates with enhanced keratinocyte proliferation in normal and neoplastic mouse epidermis and in cell culture.

    PubMed

    Rennecke, J; Rehberger, P A; Fürstenberger, G; Johannes, F J; Stöhr, M; Marks, F; Richter, K H

    1999-01-05

    In order to gain insight into the biological function of a PKC iso-enzyme, the protein kinase Cmu, we analyzed the expression pattern of this protein in mouse epidermis and keratinocytes in culture. Daily analysis of neonatal mouse epidermis immediately after birth showed a time-dependent reduction in the PKCmu content. Expression of the proliferating-cell nuclear antigen (PCNA), indicative of the proliferative state of cells, was reduced synchronously with PKCmu as the hyperplastic state of the neonatal tissue declined. In epidermal mouse keratinocytes, fractionated according to their maturation state, PKCmu expression was restricted to PCNA-positive basal-cell fractions. In primary cultures of those cells, growth arrest and induction of terminal differentiation by Ca2+ resulted in strongly reduced PKCmu expression, concomitantly with the loss of PCNA expression. Treatment of PMK-R1 keratinocytes with 100 nM of the mitogen 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in activation of PKCmu, reflected by translocation from the cytosolic to the particulate fraction and by shifts in electrophoretic mobility. DNA synthesis was significantly inhibited by the PKCmu inhibitor Goedecke 6976, while Goedecke 6983 did not inhibit PKCmu. Carcinomas generated according to the 2-stage carcinogenesis protocol in mouse skin consistently exhibited high levels of PKCmu. These data correlate PKCmu expression with the proliferative state of murine keratinocytes and point to a role of PKCmu in growth stimulation. A correlation between PKCmu expression and enhanced cell proliferation was also observed for NIH3T3 fibroblasts transfected with and overexpressing human PKCmu.

  1. Expression of Cytokeratin-19 and Thyroperoxidase in Relation to Morphological Features in Non-Neoplastic and Neoplastic Lesions of Thyroid

    PubMed Central

    Rajamani, Revathishree; Noorunnisa, Naseen; Durairaj, Manimaran

    2016-01-01

    Introduction Thyroperoxidase (TPO) is a protein involved in thyroid hormone synthesis. TPO gene suppression and mutation were involved in thyroid tumours. CK-19 plays important role in the structural integrity of epithelial cells. Reduced TPO expression with increased CK-19 immunoreactivity has been implicated as a marker for differentiating non neoplastic and neoplastic thyroid lesions. Aim To study the histopathological features of thyroid lesions and to evaluate the diagnostic role of thyroperoxidase and CK-19 in non-neoplastic and neoplastic thyroid lesions. Materials and Methods Prospective observational study of 65 thyroid specimens was studied for detailed histopathological examination and Expression of Immunohistochemical Markers Cytokeratin-19 (CK-19) and Thyroperoxidase. Results TPO IHC marker was expressed by non-neoplastic and benign lesions of thyroid but not in malignancy. CK-19 was expressed 100% in papillary carcinoma of thyroid and its variants, focal and weak staining noted in goitre and hyperplastic areas. Conclusion Most of the non-neoplastic and neoplastic lesions were diagnosed based on histopathological features. When the histopathological diagnosis are equivocal, immunohistochemical markers aids in diagnosing malignancy. Diffuse and strong TPO expression indicates non-neoplastic thyroid lesions whereas diffused and strong CK-19 expression indicates thyroid malignancy. PMID:27504290

  2. A two-stage morphological classifier of foci occurring in cell transformation assays

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni F.; Urani, Chiara; Bussinelli, Luca

    2009-02-01

    Cell Transformation Assays (CTA) rely on the detection of phenotypic changes, namely foci, induced by chemicals (e.g., xenobiotics or candidate drugs) in mammalian cells such as C3H10T1/2 mouse fibroblasts. A focus is a cell colony and as such is made visible by standardized techniques of light microscopy. Foci exhibit a variety of morphological features, by which three "Types" have been defined. Types II and III consist of cells having undergone neoplastic transformation. The assignment of a focus to a Type is based on the evaluation of phenotypic features by a trained human expert. An automated, two-stage morphological classifier of foci is described herewith. Morphological descriptors are extracted from light microscope images by the "spectrum enhancement" algorithm, which separates structure from texture. Said descriptors are submitted to a classifier, the first stage of which is trained to discriminate transformed cells from normal ones and the 2nd stage to discriminate Type III from Type II. The classifier operating in recognition mode (on images not used for training) is satisfactory in terms of confusion matrix entries. The whole procedure is aimed at removing subjectivity from the scoring and classification of foci and thus make CTA a more powerful tool in carcinogenesis studies.

  3. Actinic keratosis associated with squamous and basal cell carcinomas: an evaluation of neoplastic progression by a standardized AgNOR analysis.

    PubMed

    Giuffrè, G; Barresi, V; Catalano, A; Cappiello, A; Stagno d'Alcontres, F; Tuccari, G

    2008-01-01

    In an attempt to investigate the neoplastic progression in different stages of actinic keratosis (AK), a standardized AgNOR analysis was performed in 94 cases of AK, 35 of which were associated with squamous cell carcinoma (SCC) or basal cell carcinoma (BCC), and in 31 cases of SCC and 22 cases of BCC. The cases were subdivided into low- and high-AgNOR-expressing (AgNOR status) AK by using the mean area of AgNORs per cell (NORA) value (3.996 micro(2)) as the cut-off. In AK samples, a progressive increase of the mean NORA value from Stage I to Stage IV was encountered. In addition, a significantly higher mean NORA value was found in the AK cases associated with SCC, in comparison to those without SCC; by contrast, no significant differences in the mean NORA value were noted between AK cases with or without BCC. A highly significant association between a high AgNOR quantity and the coexistence of SCC was encountered in AK; no association was appreciable between the AgNOR quantity and the co-occurrence of BCC. Moreover, when the co-existence of SCC in AK was considered as the reference point, the AK cases associated with SCC mostly (95.5%) presented a high AgNOR quantity (high sensitivity), but only 57.6% of cases without SCC displayed a low AgNOR quantity (low specificity). Additionally, our data document that the standardised AgNOR analysis represents a strong negative predictor for the association between SCC and AK. Indeed, a low AgNOR quantity mostly is associated with AK cases without SCC.

  4. The Role of Epithelial-Mesenchymal Transition in the Formation of Normal and Neoplastic Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2011-09-01

    Sullivan, A., Brooks, M.W., Bell, G.W., Richardson, A.L., Polyak , K., Tubo, R., Weinberg, R.A. (2007). Mesenchym al stem cells within tumour stroma prom...Liao, M.J., Eaton, E.N., Ayya nan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., Campbell, L.L., Polyak , K., Brisken, C

  5. Chromophobe renal cell carcinoma with sarcomatoid transformation.

    PubMed

    Abrahams, Neil A; Ayala, Alberto G; Czerniak, Bogdan

    2003-10-01

    We present a rare case of a chromophobe renal cell carcinoma that progressed to a high-grade spindle cell sarcoma. The tumor affected a 50-year-old man who had presented with right upper quadrant discomfort and hematuria and subsequently underwent a right radical nephrectomy. Microscopically, the tumor was composed of two distinct components, a chromophobe renal cell carcinoma and a sarcomatoid component. The sarcomatoid component had exhibited aggressive behavior by spreading to a regional lymph node. This case report shows that chromophobe carcinoma can develop a sarcomatoid transformation with a high propensity for invasive growth and metastasis.

  6. Influence of dose rate on the transformation of Syrian hamster embryo cells by fission-spectrum neutrons

    SciTech Connect

    Jones, C.A.; Sedita, B.A.; Hill, C.K.; Elkind, M.M.

    1988-01-01

    Several explanations for this neutron dose-rate effect have been proposed, but further investigation is necessary to determine the mechanisms involved. In all cell transformation studies to date the immortalized, aneuploid 10T1/2 cell-line has been used. These cells may be premalignant; thus their response characteristics and, in particular, the nature of the transformation event, might differ from that in a normal, fibroblast cell. One reason for the present study was to determine whether the low-dose-rate effect of fission neutrons could be demonstrated in normal cells. If so, a normal cell system, which would more closely resemble a normal in vivo system, could be used for mechanistic studies. We chose Syrian hamster embryo (SHE) fibroblasts which are normal, diploid cells with a limited life span in culture. Upon exposure to low doses of ionizing radiation, the fraction of the cells that are transformed can be identified in a standard 8--10 day colony assay by examining their clonal morphology. Transformed cells form colonies with a dense, criss-crossed or piled-up structure. A high percentage of the transformed colonies can be further propagated and will acquire additional neoplastic characteristics; i.e., anchorage independence, immortality, altered proteolytic activity, karyotype alterations, and finally, tumorigenicity.

  7. Sialidase NEU3 contributes neoplastic potential on colon cancer cells as a key modulator of gangliosides by regulating Wnt signaling.

    PubMed

    Takahashi, Kohta; Hosono, Masahiro; Sato, Ikuro; Hata, Keiko; Wada, Tadashi; Yamaguchi, Kazunori; Nitta, Kazuo; Shima, Hiroshi; Miyagi, Taeko

    2015-10-01

    The plasma membrane-associated sialidase NEU3 is a key enzyme for ganglioside degradation. We previously demonstrated remarkable up-regulation of NEU3 in various human cancers, with augmented malignant properties. Here, we provide evidence of a close link between NEU3 expression and Wnt/β-catenin signaling in colon cancer cells by analyzing tumorigenic potential and cancer stem-like characteristics. NEU3 silencing in HT-29 and HCT116 colon cancer cells resulted in significant decrease in clonogenicity on soft agar and in vivo tumor growth, along with down-regulation of stemness and Wnt-related genes. Analyses further revealed that NEU3 enhanced phosphorylation of the Wnt receptor LRP6 and consequently β-catenin activation by accelerating complex formation with LRP6 and recruitment of GSK3β and Axin, whereas its silencing exerted the opposite effects. NEU3 activity-null mutants failed to demonstrate the activation, indicating the requirement of ganglioside modulation by the sialidase for the effects. Under sphere-forming conditions, when stemness genes are up-regulated, endogenous NEU3 expression was found to be significantly increased, whereas NEU3 silencing suppressed sphere-formation and in vivo tumor incidence in NOD-SCID mice. Increased ability of clonogenicity on soft agar and sphere formation by Wnt stimulation was abrogated by NEU3 silencing. Furthermore, NEU3 was found to regulate phosphorylation of ERK and Akt via EGF receptor and Ras cascades, thought to be additionally required for tumor progression. The results indicate an essential contribution of NEU3 to tumorigenic potential through maintenance of stem-like characteristics of colon cancer cells by regulating Wnt signaling at the receptor level, in addition to tumor progression via Ras/MAPK signaling.

  8. Cell adhesion-mediated transformation of a human SCLC cell line is associated with the development of a normal phenotype.

    PubMed

    Gilchrist, Anita J; Meuser, Renate; Turchinsky, Joan; Shaw, Andrew R E; Pasdar, Manijeh; Dixon, Walter T

    2002-05-15

    Small cell lung carcinoma (SCLC) is a highly metastatic disease with a poor prognosis due to its resistance to current modes of therapy. SCLC cells appear to arise by oncogenic transformation of self-renewing pulmonary neuroendocrine cells, which have the potential to differentiate into a variety of lung epithelial cell lineages. Epithelial-mesenchymal conversion involved in such cell type transitions leads to the acquisition of an invasive and metastatic phenotype and may be critical for neoplastic progression and its eventual resistance to therapy. In order to investigate mechanisms involved in such transitions, a SCLC cell line was exposed to 5-bromodeoxyuridine. This treatment induced a dramatic conversion from non-substrate-adherent aggregates to monolayers of cells exhibiting an epithelioid phenotype. The phenotypic transition was concomitant with downregulation of vimentin, upregulation of cytokeratins, and cell-cell and cell-matrix adhesion molecules as well as redistribution of the actin cytoskeleton. The changes in the levels and organization of cell-cell and cell-matrix adhesion molecules were correlated with an in vivo loss of tumorigenicity.

  9. CONDITIONAL NEOPLASMS AND SUBTHRESHOLD NEOPLASTIC STATES

    PubMed Central

    Rous, Peyton; Kidd, John G.

    1941-01-01

    The "warts" which tar elicits on rabbit skin (papillomas, carcinomatoids, frill horns) are true tumors, benign growths expressive of slight yet irreversible deviations of epidermal cells from the normal. The neoplastic condition gives the cells a superiority over their neighbors when both are submitted to the same encouraging influences, and then they proliferate into tumors. Their state entails such disabilities, though, that they are unable to maintain themselves under ordinary circumstances, and consequently growths composed of them disappear when no longer aided. Often the neoplastic cells resume the normal aspect and habit of life long before the tumor mass is gone; and they may persist as part of an apparently normal epidermis, retaining their neoplastic potentialities for months after all signs of the growth have disappeared. In these instances it can be made to appear again, sometimes repeatedly, by non-carcinogenic stimulation of the skin (wound healing, turpentining). There is reason however to suppose that in the end the tumor cells, unless helped, die or are cast off. It is plain that the neoplastic state does not necessarily connote independence of behavior or success in tumor formation. On the contrary it may render cells unable to survive or endow them with powers which they can exert only under favoring conditions. This is the case with the cells composing the tar warts of rabbits. In the lack of such conditions the cells of these growths do not manifest themselves but remain in a subthreshold neoplastic state, whereas if aided they form neoplasms. The deviations from the normal represented by the benign tar tumors of rabbits are slight and limited in character, but further deviations in larger variety may be superimposed upon them, with result in malignant tumors, growths possessed of a greater, though not always absolute, independence. Tar cancers usually come about in this way, by successive, step-like deviations from the normal, and so also do

  10. Improvement of the BALB/c-3T3 cell transformation assay: a tool for investigating cancer mechanisms and therapies

    PubMed Central

    Poburski, Doerte; Thierbach, René

    2016-01-01

    The identification of cancer preventive or therapeutic substances as well as carcinogenic risk assessment of chemicals is nowadays mostly dependent on animal studies. In vitro cell transformation assays mimic different stages of the in vivo neoplastic process and represent an excellent alternative to study carcinogenesis and therapeutic options. In the BALB/c-3T3 two-stage transformation assay cells are chemically transformed by treatment with MCA and TPA, along with the final Giemsa staining of morphological aberrant foci. In addition to the standard method we can show, that it is possible to apply other chemicals in parallel to identify potential preventive or therapeutic substances during the transformation process. Furthermore, we successfully combined the BALB/c cell transformation assay with several endpoint applications for protein analysis (immunoblot, subcellular fractionation and immunofluorescence) or energy parameter measurements (glucose and oxygen consumption) to elucidate cancer mechanisms in more detail. In our opinion the BALB/c cell transformation assay proves to be an excellent model to investigate alterations in key proteins or energy parameters during the different stages of transformation as well as therapeutic substances and their mode of action. PMID:27611302

  11. A comprehensive statistical classifier of foci in the cell transformation assay for carcinogenicity testing.

    PubMed

    Callegaro, Giulia; Malkoc, Kasja; Corvi, Raffaella; Urani, Chiara; Stefanini, Federico M

    2017-04-28

    The identification of the carcinogenic risk of chemicals is currently mainly based on animal studies. The in vitro Cell Transformation Assays (CTAs) are a promising alternative to be considered in an integrated approach. CTAs measure the induction of foci of transformed cells. CTAs model key stages of the in vivo neoplastic process and are able to detect both genotoxic and some non-genotoxic compounds, being the only in vitro method able to deal with the latter. Despite their favorable features, CTAs can be further improved, especially reducing the possible subjectivity arising from the last phase of the protocol, namely visual scoring of foci using coded morphological features. By taking advantage of digital image analysis, the aim of our work is to translate morphological features into statistical descriptors of foci images, and to use them to mimic the classification performances of the visual scorer to discriminate between transformed and non-transformed foci. Here we present a classifier based on five descriptors trained on a dataset of 1364 foci, obtained with different compounds and concentrations. Our classifier showed accuracy, sensitivity and specificity equal to 0.77 and an area under the curve (AUC) of 0.84. The presented classifier outperforms a previously published model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. WT1 expression in salivary gland pleomorphic adenomas: a reliable marker of the neoplastic myoepithelium.

    PubMed

    Langman, Gerald; Andrews, Claire L; Weissferdt, Annikka

    2011-02-01

    Pleomorphic adenoma is a benign salivary gland neoplasm with a diverse morphology. This is considered to be a function of the neoplastic myoepithelium, which shows histological and immunophenotypical variability. Wilms' tumor 1 gene (WT1) protein, involved in bidirectional mesenchymal-epithelial transition, has been detected by reverse transcription PCR in salivary gland tumors showing myoepithelial-epithelial differentiation. The aim of this study was to investigate the immunoreactivity of WT1 in pleomorphic adenomas and to compare the pattern of staining with p63 and calponin, two reliable markers of myoepithelial cells. A total of 31 cases of pleomorphic adenoma were selected. The myoepithelium was classified as myoepithelial-like (juxtatubular and spindled), modified myoepithelium (myxoid, chondroid and plasmacytoid) and transformed myoepithelium (solid epithelioid, squamous and basaloid cribriform). Immunohistochemistry for WT1, p63 and calponin was assessed in each myoepithelial component, as well as in nonneoplastic myoepithelial cells and inner tubular epithelial cells. There was no immunostaining of tubular epithelial cells by any of the markers. In contrast to p63 and calponin, WT1 did not react with normal myoepithelial cells. Cytoplasmic WT1 staining was present in all pleomorphic adenomas, and in 29 cases (94%), >50% of neoplastic myoepithelial cells were highlighted. p63 and calponin stained the myoepithelium in 30 tumors. In comparison, 50% of cells were positive in 21 (68%) and 9 (29%) cases of p63 and calponin, respectively. Staining with WT1 showed less variability across the spectrum of myoepithelial differentiation with the difference most marked in the transformed myoepithelium. WT1 is a sensitive marker of the neoplastic myoepithelial cell in pleomorphic adenomas. The role of this protein in influencing the mesenchymal-epithelial state of cells suggests that WT1 and the myoepithelial cell have an important role in the histogenesis of

  13. Wood dust exposure induces cell transformation through EGFR-mediated OGG1 inhibition.

    PubMed

    Staffolani, Sara; Manzella, Nicola; Strafella, Elisabetta; Nocchi, Linda; Bracci, Massimo; Ciarapica, Veronica; Amati, Monica; Rubini, Corrado; Re, Massimo; Pugnaloni, Armanda; Pasquini, Ernesto; Tarchini, Paolo; Valentino, Matteo; Tomasetti, Marco; Santarelli, Lory

    2015-07-01

    A high risk of neoplastic transformation of nasal and paranasal sinuses mucosa is related to the occupational exposure to wood dust. However, the role of occupational exposures in the aetiology of the airway cancers remains largely unknown. Here, an in vitro model was performed to investigate the carcinogenic effect of wood dusts. Human bronchial epithelial cells were incubated with hard and soft wood dusts and the DNA damage and response to DNA damage evaluated. Wood dust exposure induced accumulation of oxidised DNA bases, which was associated with a delay in DNA repair activity. By exposing cells to wood dust at a prolonged time, wood dust-initiated cells were obtained. Initiated-cells were able to form colonies in soft agar, and to induce blood vessel formation. These cells showed extensive autophagy, reduced DNA repair, which was associated with reduced OGG1 expression and oxidised DNA base accumulation. These events were found related to the activation of EGFR/AKT/mTOR pathway, through phosphorylation and subsequent inactivation of tuberin. The persistence in the tissue of wood dusts, their repetitious binding with EGFR may continually trigger the activation switch, leading to chronic down-regulation of genes involved in DNA repair, leading to cell transformation and proliferation.

  14. SEL1L, an UPR response protein, a potential marker of colonic cell transformation.

    PubMed

    Ashktorab, Hassan; Green, William; Finzi, Giovanna; Sessa, Fausto; Nouraie, Mehdi; Lee, Edward L; Morgano, Annalisa; Moschetta, Antonio; Cattaneo, Monica; Mariani-Costantini, Renato; Brim, Hassan; Biunno, Ida

    2012-04-01

    SEL1L gene product is implicated in the endoplasmic reticulum (ER)-associated protein degradation and Unfolded Protein Response pathways. This gene and associated miRNAs have been indicated as predictive and prognostic markers of pancreatic cancer. Explore the role of SEL1L in colorectal cancer (CRC) progression. SEL1L expression was analysed immunohistochemically in 153 adenomas and 71 CRCs from African American and North Italian patients. The distribution of stained cells was determined by computing median and inter quartile range. The receiver operating characteristics plot was used as discriminate power of SEL1L expression, CRC diagnosis and the effects on patient survival. SEL1L was low in normal mucosa and confined to few scattered cells at the base crypt of the villi and in the foveolar glandular compartment. The highest levels were in Paneth cells within the lysosomes. The enterocytic progenitor cells and mature enterocytes showed less cytoplasmic staining. In CRCs, SEL1L expression significantly correlated with the progression from adenoma to carcinoma (P = 0.0001) being stronger in well-to-moderately differentiated cancers. No correlation was found with other clinicopathological characteristics or ethnicity. SEL1L expression is a potential CRC tissue biomarker since its expression is significantly higher in adenoma cells with respect to normal mucosa. The levels of expression decrease sensibly in undifferentiated CRC cancers. Interestingly, Paneth cells contain high levels of SEL1L protein that could indicate pre-neoplastic mucosa undergoing neoplastic transformation. Since SEL1L's major function lies within ER stress and active ERAD response, it may identify CRCs with differentiated secretory phenotype and acute cellular stress.

  15. B cell origin of non-T cell acute lymphoblastic leukemia. A model for discrete stages of neoplastic and normal pre-B cell differentiation.

    PubMed Central

    Nadler, L M; Korsmeyer, S J; Anderson, K C; Boyd, A W; Slaughenhoupt, B; Park, E; Jensen, J; Coral, F; Mayer, R J; Sallan, S E

    1984-01-01

    The expression of B cell associated and restricted antigens on tumor cells isolated from 138 patients with non-T cell acute lymphoblastic leukemia (non-T cell ALL) was investigated by flow cytometric analysis by means of a panel of monoclonal antibodies. Tumor cells from these patients could be assigned to one of four subgroups: human leukocyte antigen-DR-related Ia-like antigens (Ia) alone (4%, stage I); IaB4 (14%, stage II); IaB4CALLA (33%, stage III); and IaB4CALLAB1 (49%, stage IV). The expression of B cell-restricted antigens (B4 and B1) and rearrangements of Ig heavy chain genes provided strong evidence for the B cell lineage of stages II, III, and IV tumors. The lineage of the Ia alone group is still unknown. The B4 antigen was expressed on approximately 95% of all non-T cell ALLs tested, and given its absence on T cell and myeloid tumors, it appears to be an exceptional marker to define cells of B lineage. The demonstration that Ia alone, IaB4, IaB4CALLA, and IaB4CALLAB1 positive cells can be readily identified by dual fluorescence analysis in normal fetal and adult bone marrow provided critical support for the view that these leukemic pre-B cell phenotypes were representative of the stages of normal pre-B cell differentiation. It was interesting that the IaB4+ cell was more frequently identified in fetal bone marrow than in adult marrow, whereas the predominant cell found in adult marrow expressed the IaB4CALLAB1 phenotype. These data suggest that the leukemogenic event may be random, since the predominant pre-B cell leukemic phenotype appears to correspond to the normal pre-B cell phenotype present in these hematopoietic organs. Our observations provide an additional distinction between adult and childhood ALL, since these studies show that most non-T cell ALLs seen in children less than 2 yr old are of stage II phenotype, whereas the majority of non-T ALLs in adults are of stage IV phenotype. Finally, it should be noted that the present study suggests

  16. Microsatellite instability in human mammary epithelial cells transformed by heavy ions

    NASA Astrophysics Data System (ADS)

    Yanada, S.; Yang, T. C.; George, K.; Okayasu, R.; Ando, K.; Tsujii, H.

    1998-11-01

    We analyzed DNA and proteins obtained from normal and transformed human mammary epithelial cells for studying the neoplastic transformation by high-LET irradiation in vitro. We also examined microsatellite instability in human mammary cells transformed to various stages of carcinogenesis, such as normal, growth variant and tumorigenic, using microsatellite marker D5S177 on the chromosome 5 and CY17 on the Chromosome 10. Microsatellite instabilities were detected in the tumorigenic stage. These results suggest that microsatellite instability may play a role in the progression of tumorigenecity. The cause of the genomic instability has been suggested as abnormalities of DNA-repair systems which may be due to one of the three reasons: 1) alterations of cell cycle regulating genes. 2) mutations in any of the DNA mismatch repair genes, 3) mutation in any of the DNA strand breaks repair genes. No abnormality of these genes and encoded proteins, however was found in the present studies. These studies thus suggest that the microsatellite instability is induced by an alternative mechanism.

  17. Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride.

    PubMed Central

    Miller, A C; Blakely, W F; Livengood, D; Whittaker, T; Xu, J; Ejnik, J W; Hamilton, M M; Parlette, E; John, T S; Gerstenberg, H M; Hsu, H

    1998-01-01

    Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Although the health effects of occupational uranium exposure are well known, limited data exist regarding the long-term health effects of internalized DU in humans. We established an in vitro cellular model to study DU exposure. Microdosimetric assessment, determined using a Monte Carlo computer simulation based on measured intracellular and extracellular uranium levels, showed that few (0.0014%) cell nuclei were hit by alpha particles. We report the ability of DU-uranyl chloride to transform immortalized human osteoblastic cells (HOS) to the tumorigenic phenotype. DU-uranyl chloride-transformants are characterized by anchorage-independent growth, tumor formation in nude mice, expression of high levels of the k-ras oncogene, reduced production of the Rb tumor-suppressor protein, and elevated levels of sister chromatid exchanges per cell. DU-uranyl chloride treatment resulted in a 9.6 (+/- 2.8)-fold increase in transformation frequency compared to untreated cells. In comparison, nickel sulfate resulted in a 7.1 (+/- 2.1)-fold increase in transformation frequency. This is the first report showing that a DU compound caused human cell transformation to the neoplastic phenotype. Although additional studies are needed to determine if protracted DU exposure produces tumors in vivo, the implication from these in vitro results is that the risk of cancer induction from internalized DU exposure may be comparable to other biologically reactive and carcinogenic heavy-metal compounds (e.g., nickel). Images Figure 1 Figure 2 Figure 3 PMID:9681973

  18. Transcriptional profile of Ki-Ras-induced transformation of thyroid cells.

    PubMed

    Visconti, Roberta; Federico, Antonella; Coppola, Valeria; Pentimalli, Francesca; Berlingieri, Maria Teresa; Pallante, Pierlorenzo; Kruhoffer, Mogens; Orntoft, Torben F; Fusco, Alfredo

    2007-06-01

    In the last years, an increasing number of experiments has provided compelling evidence for a casual role of Ras protein mutations, resulting in their constitutive activation, in thyroid carcinogenesis. However, despite the clear involvement of Ras proteins in thyroid carcinogenesis, the nature of most of the target genes, whose expression is modulated by the Ras-induced signaling pathways and that are ultimately responsible for Ras-induced cellular transformation, remains largely unknown. To analyze Ras-dependent modulation of gene expression in thyroid cells we took advantage of a differentiated rat thyroid cell line, FRTL-5. As a model for Ras-dependent thyroid transformation, we used FRTL-5 cells infected with the Kirsten murine sarcoma virus, carrying the v-Ki-Ras oncogene. The infected cells (FRTL-5 v-Ki-Ras) have lost expression of the thyroid differentiation markers and also are completely transformed. We hybridized two different Affimetrix chips containing probe sets interrogating both known rat genes and ESTs for a total of more than 17,000 sequences using mRNA extracted from FRTL-5 and FRTL-5 v-Ki-Ras cell lines. We identified about 50 genes whose expression was induced and about 40 genes whose expression was downregulated more than 10-fold by Ras. We confirmed the differential expression of many of these genes in FRTL-5 v-Ki-Ras as compared to parental cells by using alternative techniques. Remarkably, we investigated the expression of some of the Ras-regulated genes in human thyroid carcinoma cell lines and tumor samples, our results, therefore, providing a new molecular profile of the genes involved in thyroid neoplastic transformation.

  19. Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion.

    PubMed

    Kulawiec, Mariola; Safina, Alfiya; Desouki, Mohamed Mokhtar; Still, Ivan; Matsui, Sei-Ichi; Bakin, Andrei; Singh, Keshav K

    2008-11-01

    Human mitochondrial DNA (mtDNA) encodes 13 proteins involved in oxidative phosphorylation (OXPHOS). In order to investigate the role of mitochondrial OXPHOS genes in breast tumorigenesis, we have developed a breast epithelial cell line devoid of mtDNA (rho(0) cells). Our analysis revealed that depletion of mtDNA in breast epithelial cells results in in vitro tumorigenic phenotype as well as breast tumorigenesis in a xenograft model. We identified two major gene networks which were differentially regulated between parental and rho(0) epithelial cells. The focal proteins in these networks include (i) FN1 (fibronectin) and (ii) p53. Bioinformatic analyses of FN1 network identified laminin, integrin and 3 of 6 members of peroxiredoxin whose expression were altered in rho(0) epithelial cells. In the p53 network, we identified SMC4 and WRN whose changes in expression suggest that this network may affect chromosomal stability. Consistent with above finding our study revealed an increase in DNA double strand breaks and unique chromosomal rearrangements in rho(0) breast epithelial cells. Additionally, we identified tight junction proteins claudin-1 and claudin-7 in p53 network. To determine the functional relevance of altered gene expression, we focused on detailed analyses of claudin-1 and -7 proteins in breast tumorigenesis. Our study determined that (i) claudin-1 and 7 were indeed downregulated in rho(0) breast epithelial cells, (ii) downregulation of claudin-1 or -7 led to neoplastic transformation of breast epithelial cells, and (iii) claudin-1 and -7 were also downregulated in primary breast tumors. Together, our study suggest that mtDNA encoded OXPHOS genes play a key role in transformation of breast epithelial cells and that multiple pathway involved in mitochondria-to-nucleus retrograde regulation contribute to transformation of breast epithelial cells.

  20. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells

    SciTech Connect

    Xu, Yuan; Zhao, Yue; Xu, Wenchao; Luo, Fei; Wang, Bairu; Li, Yuan; Pang, Ying; Liu, Qizhan

    2013-10-15

    Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis. - Highlights: • Arsenite induces inflammation. • Arsenite-induced the increases of IL-6 and IL-8 via HIF-2α. • Inflammation is involved in arsenite-induced carcinogenesis.

  1. Lack of MHC class I surface expression on neoplastic cells and poor activation of the secretory pathway of cytotoxic cells in oral squamous cell carcinomas

    PubMed Central

    Cruz, I; Meijer, C J L M; Walboomers, J M M; Snijders, P J F; Waal, I Van der

    1999-01-01

    Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells use the secretory pathway of perforin/granzymes to kill their target cells. In contrast to NK cells, CTL responses are MHC class I restricted. In this study we analysed the relative activation of CTL and NK cells in relation with MHC class I expression on oral squamous cell carcinomas (OSCCs). MHC class I expression was investigated in 47 OSCCs by immunohistochemistry using HCA2, HC10 and β2-m antibodies. The presence of CTLs, NK cells, and its activation, was investigated in 21 of these OSCCs using respectively, CD8, CD57 and GrB7 antibodies. The Q-Prodit measuring system was used for quantification of cytotoxic cells. All OSCCs showed weak or absent staining of β2-m on the cell surface. The absence of β2-m was significantly associated with absent expression of MHC class I heavy chain as detected by HC10 antibody (P = 0.004). In tumour infiltrates CTLs always outnumbered NK cells, as reflected by the ratio CD57/CD8 being always inferior to one (mean: 0.19; SD: 0.15). The proportion of activated cytotoxic cells as detected by granzyme B expression was generally low (mean: 8.6%; SD 8.9). A clear correlation between MHC class I expression and the relative proportion of NK cells/CTLs was not found. This study shows that the majority of OSCCs show weak or absent expression of MHC class I molecules on the cell surface, possibly due to alterations in the normal β2-m pathway. The low proportion of granzyme B-positive CTLs/NK cells indicates that the secretory pathway of cytotoxicity is poor in these patients. The lack of correlation between MHC class I expression and CTL/NK cell activation as detected by granzyme B expression suggests that, next to poor antigen presentation, also local factors seem to determine the final outcome of the cytotoxic immune response. © 1999 Cancer Research Campaign PMID:10555762

  2. Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA

    SciTech Connect

    Franklin, Jeffrey L.; Rankin, Carl R.; Levy, Shawn; Snoddy, Jay R.; Zhang, Bing; Washington, Mary Kay; Thomson, J. Michael; Whitehead, Robert H.; Coffey, Robert J.

    2013-10-11

    Highlights: •Non-coding RNAs are found in the colonic crypt progenitor compartment. •Colonocytes transformed by ncNRFR are highly invasive and metastatic. •ncNRFR has a region similar to the miRNA, let-7 family. •ncNRFR expression alters let-7 activity as measured by reporter construct. •ncNRFR expression upregulates let-7b targets. -- Abstract: Recent progress has been made in the identification of protein-coding genes and miRNAs that are expressed in and alter the behavior of colonic epithelia. However, the role of long non-coding RNAs (lncRNAs) in colonic homeostasis is just beginning to be explored. By gene expression profiling of post-mitotic, differentiated tops and proliferative, progenitor-compartment bottoms of microdissected adult mouse colonic crypts, we identified several lncRNAs more highly expressed in crypt bottoms. One identified lncRNA, designated non-coding Nras functional RNA (ncNRFR), resides within the Nras locus but appears to be independent of the Nras coding transcript. Stable overexpression of ncNRFR in non-transformed, conditionally immortalized mouse colonocytes results in malignant transformation, as determined by growth in soft agar and formation of highly invasive tumors in nude mice. Moreover, ncNRFR appears to inhibit the function of the tumor suppressor let-7. These results suggest precise regulation of ncNRFR is necessary for proper cell growth in the colonic crypt, and its misregulation results in neoplastic transformation.

  3. 5-aza-2'-deoxycytidine (DAC) treatment downregulates the HPV E6 and E7 oncogene expression and blocks neoplastic growth of HPV-associated cancer cells.

    PubMed

    Stich, Maximilian; Ganss, Lennard; Puschhof, Jens; Prigge, Elena-Sophie; Reuschenbach, Miriam; Guiterrez, Ana; Vinokurova, Svetlana; von Knebel Doeberitz, Magnus

    2016-07-16

    High-risk human papillomaviruses (hr HPVs) may cause various human cancers and associated premalignant lesions. Transformation of the host cells is triggered by overexpression of the viral oncogenes E6 and E7 that deregulate the cell cycle and induce chromosomal instability. This process is accompanied by hypermethylation of distinct CpG sites resulting in silencing of tumor suppressor genes, inhibition of the viral E2 mediated control of E6 and E7 transcription as well as deregulated expression of host cell microRNAs. Therefore, we hypothesized that treatment with demethylating agents might restore those regulatory mechanisms. Here we show that treatment with 5-aza-2'-deoxycytidine (DAC) strongly decreases the expression of E6 and E7 in a panel of HPV-transformed cervical cancer and head and neck squamous cell carcinoma cell lines. Reduction of E6 and E7 further resulted in increased target protein levels including p53 and p21 reducing the proliferation rates and colony formation abilities of the treated cell lines. Moreover, DAC treatment led to enhanced expression of tumor the suppressive miRNA-375 that targets and degrades E6 and E7 transcripts. Therefore, we suggest that DAC treatment of HPV-associated cancers and respective precursor lesions may constitute a targeted approach to subvert HPV oncogene functions that deserves testing in clinical trials.

  4. Mantle cell lymphoma with skin invasion characterized by the common variant in the subcutis and blastoid transformation in the overlying dermis.

    PubMed

    Ishibashi, Masafumi; Yamamoto, Kyoko; Kudo, Saori; Chen, Ko-Ron

    2010-04-01

    We report a case of common mantle cell lymphoma (MCL) with subcutis infiltration and transformation to blastoid MCL in the overlying dermis. The patient was initially diagnosed as having chronic lymphocytic leukemia and treated with chemotherapy. Eight months after the diagnosis of MCL with bone marrow involvement, subcutaneous nodules developed on the patient's left thigh and forearm. A skin biopsy showed a massive infiltration of neoplastic lymphocytes throughout the dermis and subcutaneous tissue. In the upper dermis, there was a perivascular mixed infiltrate of atypical large lymphoid cells and small-sized cells. In the mid to lower dermis, the infiltrate was dense with a nodular growth pattern and was composed of atypical large lymphoblast-like cells with large nuclei, dispersed chromatin, and numerous mitoses. In the subcutaneous tissue, there was a diffuse infiltration of neoplastic cells with common MCL cytologic features characterized by small- to medium-sized lymphoid cells. Cells in the common and blastoid variants of MCL were immunohistochemically positive for CD20 and cyclin D1 but negative for CD5. Neoplastic lymphocytes from the patient's bone marrow had the typical morphologic features and the immunophenotype of MCL (ie, CD5, CD20, cyclin D1, CD10, and CD23). Other case reports in the medical literature indicate that an MCL with skin invasion tends to have a poor prognosis. Our patient died 3 months after the appearance of skin invasion.

  5. Metabolomic profiling of neoplastic lesions in mice.

    PubMed

    Lu, Xiaojie; Ji, Li-Juan; Chen, Jin-Lian

    2014-01-01

    Most cancers develop upon the accumulation of genetic alterations that provoke and sustain the transformed phenotype. Several metabolomic approaches now allow for the global assessment of intermediate metabolites, generating profound insights into the metabolic rewiring associated with malignant transformation. The metabolomic profiling of neoplastic lesions growing in mice, irrespective of their origin, can provide invaluable information on the mechanisms underlying oncogenesis, tumor progression, and response to therapy. Moreover, the metabolomic profiling of tumors growing in mice may result in the identification of novel diagnostic or prognostic biomarkers, which is of great clinical significance. Several methods can be applied to the metabolomic profiling of neoplastic lesions in mice, including mass spectrometry-based techniques (e.g., gas chromatography-, capillary electrophoresis-, or liquid chromatography-coupled mass spectrometry) as well as nuclear magnetic resonance. Here, we compare and discuss the advantages and disadvantages of all these techniques to provide a concise and reliable guide for readers interested in this active area of investigation. © 2014 Elsevier Inc. All rights reserved.

  6. Analyzing Myc in Cell Transformation and Evolution

    PubMed Central

    Hartl, Markus; Bister, Klaus

    2017-01-01

    The myc oncogene was originally identified as a transduced allele (v-myc) in the genome of a highly oncogenic avian retrovirus. The protein product (Myc) of the cellular c-myc protooncogene represents the key component of a transcription factor network controlling the expression of a large fraction of all human genes. Myc regulates fundamental cellular processes like growth control, metabolism, proliferation, differentiation, and apoptosis. Mutational deregulation of c-myc leading to increased levels of the Myc protein is a frequent event in the etiology of human cancers. In this chapter, we describe cell systems and experimental strategies to monitor and quantify the oncogenic potential of myc alleles, and to isolate and characterize transcriptional targets of Myc that are relevant for the cell transformation process. We also describe experimental procedures to study the evolutionary origin of myc and to analyze structure and function of the ancestral myc protooncogenes. PMID:24006056

  7. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  8. Cells transformed by murine herpesvirus 68 (MHV-68) release compounds with transforming and transformed phenotype suppressing activity resembling growth factors.

    PubMed

    Šupolíková, M; Staňová, A Vojs; Kúdelová, M; Marák, J; Zelník, V; Golais, F

    2015-12-01

    In this study, we investigated the medium of three cell lines transformed with murine herpesvirus 68 (MHV-68) in vitro and in vivo, 68/HDF, 68/NIH3T3, and S11E, for the presence of compounds resembling growth factors of some herpesviruses which have displayed transforming and transformed phenotype suppressing activity in normal and tumor cells. When any of spent medium was added to cell culture we observed the onset of transformed phenotype in baby hamster kidney cells (BHK-21) cells and transformed phenotype suppressing activity in tumor human epithelial cells (HeLa). In media tested, we have identified the presence of putative growth factor related to MHV-68 (MHGF-68). Its bivalent properties have been blocked entirely by antisera against MHV-68 and two monoclonal antibodies against glycoprotein B (gB) of MHV-68 suggesting viral origin of MHGF-68. The results of initial efforts to separate MHGF-68 on FPLC Sephadex G15 column in the absence of salts revealed the loss of its transforming activity but transformed phenotype suppressing activity retained. On the other hand, the use of methanol-water mobile phase on RP-HPLC C18 column allowed separation of MHGF-68 to two compounds. Both separated fractions, had only the transforming activity to normal cells. Further experiments exploring the nature and the structure of hitherto unknown MHGF-68 are now in the progress to characterize its molecular and biological properties.

  9. Altered iron homeostasis involvement in arsenite-mediated cell transformation

    PubMed Central

    Wu, Jing; Eckard, Jonathan; Chen, Haobin; Costa, Max; Frenkel, Krystyna; Huang, Xi

    2010-01-01

    Chronic exposure to low doses of arsenite causes transformation of human osteogenic sarcoma (HOS) cells. Although oxidative stress is considered important in arsenite-induced cell transformation, the molecular and cellular mechanisms by which arsenite transforms human cells are still unknown. In the present study, we investigated whether altered iron homeostasis, known to affect cellular oxidative stress, can contribute to the arsenite-mediated cell transformation. Using arsenite-induced HOS cell transformation as a model, it was found that total iron levels are significantly higher in transformed HOS cells in comparison to parental control HOS cells. Under normal iron metabolism conditions, iron homeostasis is tightly controlled by inverse regulation of ferritin and transferrin receptor (TfR) through iron regulatory proteins (IRP). Increased iron levels in arsenite transformed cells should theoretically lead to higher ferritin and lower TfR in these cells than in controls. However, the results showed that both ferritin and TfR are decreased, apparently through two different mechanisms. A lower ferritin level in cytoplasm was due to the decreased mRNA in the arsenite-transformed HOS cells, while the decline in TfR was due to a lowered IRP-binding activity. By challenging cells with iron, it was further established that arsenite-transformed HOS cells are less responsive to iron treatment than control HOS cells, which allows accumulation of iron in the transformed cells, as exemplified by significantly lower ferritin induction. On the other hand, caffeic acid phenethyl ester (CAPE), an antioxidant previously shown to suppress As-mediated cell transformation, prevents As-mediated ferritin depletion. In conclusion, our results suggest that altered iron homeostasis contributes to arsenite-induced oxidative stress and, thus, may be involved in arsenite-mediated cell transformation. PMID:16443159

  10. The Mitochondrial Chaperone TRAP1 Promotes Neoplastic Growth by Inhibiting Succinate Dehydrogenase

    PubMed Central

    Sciacovelli, Marco; Guzzo, Giulia; Morello, Virginia; Frezza, Christian; Zheng, Liang; Nannini, Nazarena; Calabrese, Fiorella; Laudiero, Gabriella; Esposito, Franca; Landriscina, Matteo; Defilippi, Paola; Bernardi, Paolo; Rasola, Andrea

    2013-01-01

    Summary We report that the mitochondrial chaperone TRAP1, which is induced in most tumor types, is required for neoplastic growth and confers transforming potential to noncancerous cells. TRAP1 binds to and inhibits succinate dehydrogenase (SDH), the complex II of the respiratory chain. The respiratory downregulation elicited by TRAP1 interaction with SDH promotes tumorigenesis by priming the succinate-dependent stabilization of the proneoplastic transcription factor HIF1α independently of hypoxic conditions. These findings provide a mechanistic clue to explain the switch to aerobic glycolysis of tumors and identify TRAP1 as a promising antineoplastic target. PMID:23747254

  11. Recommended protocol for the Syrian hamster embryo (SHE) cell transformation assay.

    PubMed

    Maire, Marie-Aline; Pant, Kamala; Phrakonkham, Pascal; Poth, Albrecht; Schwind, Karl-Rainer; Rast, Claudine; Bruce, Shannon Wilson; Sly, Jamie E; Bohnenberger, Susanne; Kunkelmann, Thorsten; Schulz, Markus; Vasseur, Paule

    2012-04-11

    The Syrian hamster embryo (SHE) cell transformation assay (CTA) is a short-term in vitro assay recommended as an alternative method for testing the carcinogenic potential of chemicals. SHE cells are "normal" cells since they are diploid, genetically stable, non-tumourigenic, and have metabolic capabilities for the activation of some classes of carcinogens. The CTA, first developed in the 1960s by Berwald and Sachs (1963,1964) [3,4], is based on the change of the phenotypic feature of cell colonies expressing the first steps of the conversion of normal to neoplastic-like cells with oncogenic properties. Pienta et al. (1977) [22] developed a protocol using cryopreserved cells to enhance practicality of the assay and limit sources of variability. Several variants of the assay are currently in use, which mainly differ by the pH at which the assay is performed. We present here the common version of the SHE pH 6.7 CTA and SHE pH 7.0 CTA protocols used in the ECVAM (European Centre for the Validation of Alternative Methods) prevalidation study on CTA reported in this issue. It is recommended that this protocol, in combination with the photo catalogues presented in this issue, should be used in the future and serve as a basis for the development of the OECD test guideline.

  12. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  13. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  14. BAFF activates Erk1/2 promoting cell proliferation and survival by Ca2+-CaMKII-dependent inhibition of PP2A in normal and neoplastic B-lymphoid cells.

    PubMed

    Liang, Dingfang; Zeng, Qingyu; Xu, Zhigang; Zhang, Hai; Gui, Lin; Xu, Chong; Chen, Sujuan; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2014-01-15

    B-cell activating factor (BAFF) is involved in not only the physiology of normal B cells, but also the pathophysiology of aggressive B cells related to malignant and autoimmune diseases. However, how excessive BAFF promotes aggressive B-cell proliferation and survival is not well understood. Here we show that excessive human soluble BAFF (hsBAFF) enhanced cell proliferation and survival in normal and B-lymphoid (Raji) cells, which was associated with suppression of PP2A, resulting in activation of Erk1/2. This is supported by the findings that pretreatment with U0126 or PD98059, expression of dominant negative MKK1, or overexpression of PP2A prevented hsBAFF-induced activation of Erk1/2 and cell proliferation/viability in the cells. It appears that hsBAFF-mediated PP2A-Erk1/2 pathway and B-cell proliferation/viability was Ca(2+)-dependent, as pretreatment with BAPTA/AM, EGTA or 2-APB significantly attenuated these events. Furthermore, we found that inhibiting CaMKII with KN93 or silencing CaMKII also attenuated hsBAFF-mediated PP2A-Erk1/2 signaling and B-cell proliferation/viability. The results indicate that BAFF activates Erk1/2, in part through Ca(2+)-CaMKII-dependent inhibition of PP2A, increasing cell proliferation/viability in normal and neoplastic B-lymphoid cells. Our data suggest that inhibitors of CaMKII and Erk1/2, activator of PP2A or manipulation of intracellular Ca(2+) may be exploited for prevention of excessive BAFF-induced aggressive B-cell malignancies and autoimmune diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The latex sap of the 'Old World Plant' Lagenaria siceraria with potent lectin activity mitigates neoplastic malignancy targeting neovasculature and cell death.

    PubMed

    Vigneshwaran, V; Thirusangu, Prabhu; Madhusudana, S; Krishna, V; Pramod, Siddanakoppalu N; Prabhakar, B T

    2016-10-01

    Lifestyle and dietary modifications have contributed much to somatic genetic alteration which has concomitantly led to increase in malignant diseases. Henceforth, plant based and dietary interventions to mitigate and impede oncogenic transformation are in great demand. We investigated the latex sap (LSL) of the dietary Lagenaria siceraria vegetable, the first domesticated plant species with the potent lectin activity for its functional role against the tumor progression and its mechanism. LSL has markedly stimulated proliferation of lymphocytes and displayed strong cytotoxic activity against cancer both in-vitro and in-vivo. The tumor regression was paralleled with drastic reduction in tumoral neovasculature as evidenced from angiogenic parameters and abrogated related gene expressions. LSL has also triggered apoptotic signaling cascade in cancer cells through activation of caspase-3 mediated activation of endonuclease and inducing apoptotic cellular events. Collectively our study provides tangible evidences that latex sap from L. siceraria with immunopotentiating ability significantly regresses the tumor progression by targeting angiogenesis and inducing cell death.

  16. Photoexcited calphostin C selectively destroys nuclear lamin B1 in neoplastic human and rat cells - a novel mechanism of action of a photodynamic tumor therapy agent.

    PubMed

    Chiarini, Anna; Whitfield, James F; Pacchiana, Raffaella; Armato, Ubaldo; Dal Pra, Ilaria

    2008-09-01

    Lamin B1, a major component of the nuclear lamina, anchors the nucleus to the cytoskeletal cage, and controls nuclear orientation, chromosome positioning and, alongside several enzymes, fundamental nuclear functions. Exposing polyomavirus-transformed rat pyF111 fibroblasts and human cervical carcinoma (HCC) C4-I cells for 30 min to photoexcited perylenequinone calphostin C, i.e. Cal C(phiE), an established reactive oxygen species (ROS)-generator and protein kinase C (PKC) inhibitor, caused the cells to selectively oxidize and then totally destroy their nuclear lamin B1 by only 60 min after starting the treatment, i.e. when apoptotic caspases' activities had not yet increased. However, while the oxidized lamin B1 was being destroyed, lamins A/C, the lamin A-associated nuclear envelope protein emerin, and the nucleoplasmic protein cyclin E were neither oxidized nor destroyed. The oxidized lamin B was ubiquitinated and demolished in the proteasome probably by an enhanced peptidyl-glutaminase-like activity. Hence, the Cal C(phiE)-induced rapid and selective lamin B1 oxidation and proteasomal destruction ahead of the activation of apoptotic caspases was by itself a most severe molecular lesion impairing vital nuclear functions. Conversely, Cal C directly added to the cells kept in the dark damaged neither nuclear lamin B1 nor cell viability. Thus, our findings reveal a novel cell-damaging mechanism of a photodynamic tumor therapeutic agent.

  17. Rapamycin inhibits BAFF-stimulated cell proliferation and survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells.

    PubMed

    Zeng, Qingyu; Zhang, Hai; Qin, Jiamin; Xu, Zhigang; Gui, Lin; Liu, Beibei; Liu, Chunxiao; Xu, Chong; Liu, Wen; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2015-12-01

    B-cell activating factor (BAFF) is involved in not only physiology of normal B cells, but also pathophysiology of aggressive B cells related to malignant and autoimmune diseases. Rapamycin, a lipophilic macrolide antibiotic, has recently shown to be effective in the treatment of human lupus erythematosus. However, how rapamycin inhibits BAFF-stimulated B-cell proliferation and survival has not been fully elucidated. Here, we show that rapamycin inhibited human soluble BAFF (hsBAFF)-induced cell proliferation and survival in normal and B-lymphoid (Raji and Daudi) cells by activation of PP2A and inactivation of Erk1/2. Pretreatment with PD98059, down-regulation of Erk1/2, expression of dominant negative MKK1, or overexpression of wild-type PP2A potentiated rapamycin's suppression of hsBAFF-activated Erk1/2 and B-cell proliferation/viability, whereas expression of constitutively active MKK1, inhibition of PP2A by okadaic acid, or expression of dominant negative PP2A attenuated the inhibitory effects of rapamycin. Furthermore, expression of a rapamycin-resistant and kinase-active mTOR (mTOR-T), but not a rapamycin-resistant and kinase-dead mTOR-T (mTOR-TE), conferred resistance to rapamycin's effects on PP2A, Erk1/2 and B-cell proliferation/viability, implying mTOR-dependent mechanism involved. The findings indicate that rapamycin inhibits BAFF-stimulated cell proliferation/survival by targeting mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. Our data highlight that rapamycin may be exploited for preventing excessive BAFF-induced aggressive B-cell malignancies and autoimmune diseases.

  18. Reversion in Hamster Cells Transformed by Rous Sarcoma Virus.

    PubMed

    Macpherson, I

    1965-06-25

    Hamster cells of the BHK-21 line are transformable by Rous sarcoma virus (Schmidt-Ruppin strain). The transformed cells form colonies in agar suspension culture, grow on glass in disarray, and initiate tumors in hamsters and chickens, but extracts do not induce tumors in chickens. Chickens bearing tumors develop neutralizing antibody against the virus. Transformed cell clones give rise to "revertants" which form colonies on glass with cells oriented parallel to each other like the original uninfected cells. These revertants do not grow in agar or initiate chicken tumors, and they regain the original low transplantability of untransformed cells in hamsters.

  19. Persistence of sister chromatid exchanges and in vitro morphological transformation of Syrian hamster fetal cells by chemical and physical carcinogens

    SciTech Connect

    Popescu, N.C.; Amsbaugh, S.C.; DiPaolo, J.A.

    1985-11-01

    The induction of neoplastic cell transformation is closely associated with DNA alterations which occur shortly after carcinogen exposure. Sister chromatid exchange (SCE) formation is a sensitive indicator of carcinogen-DNA interaction and correlates with the induction of morphological cell transformation. The persistence of lesions generating SCE produced by chemical and physical carcinogens and its relevance to the induction of morphologic transformation was evaluated in coordinated experiments with cultured Syrian hamster fetal cells (HFC). Exponentially growing HFC were exposed for 1 h to benzo(a)pyrene (BP), methyl-methanesulfonate (MMS), cis-platinum (II) diaminedichloride (cis Pt II), N-methyl-N'-nitrosourea (MNU), mitomycin C (MMC), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-acetoxy-2-fluorenyl-acetamide (AcAAF) or u.v. light irradiated. SCE analysis demonstrates that for a period of 48 h after carcinogen exposure, during which time the cells undergo at least four replicative cycles, DNA damage generating SCE induced by all chemical carcinogens either persisted or was partially removed, whereas u.v.-induced lesions were completely removed. An elevated SCE frequency persisted after two additional cell cycles after treatment with BP, AcAAF or MMC without increased cell lethality as compared to other carcinogens whose lesions were completely eliminated during the same period.

  20. PAX-2 expression in non-neoplastic, primary neoplastic, and metastatic neoplastic tissue: A comprehensive immunohistochemical study.

    PubMed

    Zhai, Qihui Jim; Ozcan, Ayhan; Hamilton, Candice; Shen, Steven S; Coffey, Donna; Krishnan, Bhuvaneswari; Truong, Luan D

    2010-07-01

    PAX-2 is a transcription factor that controls the development of the kidney, organs deriving from the mesonephric (Wolffian) duct, and those related to the Müllerian duct. Although PAX-2 is shown to be a sensitive marker for tumors derived from these organs, but whether it is specific, that is, whether other tumor types also express PAX-2, has not been systematically evaluated in either primary or metastatic tumors. Tissue sections from 937 normal or reactive tissue samples, 759 primary neoplasms, and 332 metastatic neoplasms were submitted to PAX-2 immunostain. Among the non-neoplastic tissue, PAX-2 was expressed in glomerular parietal epithelial cells, renal collecting duct cells, atrophic renal tubular cells, epithelial cells of ovarian surface, fallopian tube, endocervix, endometrium, seminal vesicle, and lymphocytes. Among the primary neoplasms, PAX-2 was noted in 104/122 (85%) of renal cell carcinoma, 31/95 carcinomas of Müllerian origin, 17/17 (100%) lymphomas, 4/4 (100%) nephrogenic adenomas, and 1/16 (6%) benign parathyroid tumors, but was negative in 477 other tumors. Among the metastatic tumors, PAX-2 was noted in 70/95 (74%) metastatic renal cell carcinomas, 14/20 (70%) metastatic tumors of Müllerian origin, 1/20 (5%) metastatic colon carcinoma of lymph nodes, 1/62 (2%) metastatic breast carcinoma of lymph nodes, but was not seen in the remaining 247 metastatic tumors. PAX-2 expression in non-neoplastic mature tissue is limited to the organs whose embryonic development depends on this transcription factor. PAX-2 is a sensitive and specific marker for tumors of renal or Müllerian origin in both primary and metastatic contexts.

  1. Cytogenetic damage, oncogenic transformation and p53 induction in human epithelial cells in response to irradiation

    NASA Astrophysics Data System (ADS)

    Armitage, Mark

    Ionizing radiation can have several different effects on cells, some are almost instantaneous such as the generation of DNA damage, other cellular responses take a matter of minutes or hours - DNA repair protein induction/activation, and others may take months or even years to be manifested - carcinogenesis. Human epithelial cell lines derived from both normal, non-neoplastic tissues and from a malignant source were cultured in order to examine several effects of ionizing radiation on such cell types. Cells not from a malignant source were previously immortalized by viral infection or by transfection with viral sequences. Simian virus 40 immortalised uroepithelial cells (SV-HUC) were found to be approximately a factor of two fold more radioresistant than cells of malignant origin (T24) in terms of unrepaired clastogenic damage i.e. assessment of micronuclei levels following irradiation. SV-HUC lines unlike T24 cells are non-tumourigenic when inoculated into nude athymic mice. SV-HUC lines proved very resistant to full oncogenic transformation using radiation and chemical carcinogens. However, morphological alterations and decreased anchorage dependant growth was observed in post carcinogen treated cells after appropriate cell culture conditions were utilized. The progression from this phenotype to a fully tumourigenic one was not recorded in this study. The ability of ionizing radiation to induce increased levels of the nuclear phosphoprotein p53 was also assessed using several different cell lines. SV- HUC and T24 cell lines failed to exhibit any increased p53 stabilization following irradiation. One cell line, a human papilloma virus transformed line (HPV) did show an approximate two fold increase of the wild type p53 protein after treatment with radiation. Only the cell line HPV showed any cell cycle delay, resulting in accumulation of cells in the G2/M compartment in post irradiation cell cycle analysis. The status of p53 was also assessed i.e. wild type or

  2. Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis

    PubMed Central

    Bueso-Ramos, Carlos E.; Newberry, Kate J.; Knez, Liza; Post, Sean M.; Ahn, Jihae; Levine, Ross L.; Kantarjian, Hagop M.

    2016-01-01

    Primary myelofibrosis (PMF) is a fatal neoplastic disease characterized by clonal myeloproliferation and progressive bone marrow (BM) fibrosis thought to be induced by mesenchymal stromal cells stimulated by overproduced growth factors. However, tissue fibrosis in other diseases is associated with monocyte-derived fibrocytes. Therefore, we sought to determine whether fibrocytes play a role in the induction of BM fibrosis in PMF. In this study, we show that BM from patients with PMF harbors an abundance of clonal, neoplastic collagen- and fibronectin-producing fibrocytes. Immunodeficient mice transplanted with myelofibrosis patients’ BM cells developed a lethal myelofibrosis-like phenotype. Treatment of the xenograft mice with the fibrocyte inhibitor serum amyloid P (SAP; pentraxin-2) significantly prolonged survival and slowed the development of BM fibrosis. Collectively, our data suggest that neoplastic fibrocytes contribute to the induction of BM fibrosis in PMF, and inhibiting fibrocyte differentiation with SAP may interfere with this process. PMID:27481130

  3. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting.

    PubMed

    Fromm, Jonathan R; Thomas, Anju; Wood, Brent L

    2017-02-01

    We report the flow cytometric (FC) identification and characterization of lymphocyte predominant (LP) cells from tissues involved by nodular lymphocyte predominant Hodgkin lymphoma (NLPHL). First, we immunophenotyped the NLPHL cell line (DEV) confirming a germinal center immunophenotype, lack of expression of CD32 and CD58, and expression of CD54. Nineteen of 26 lymph nodes involved by NLPHL demonstrated a population with an LP immunophenotype (73%), which included expression of germinal center markers (CD75/Bcl-6-positive, CD32-weak/negative without CD10), a B-cell immunophenotype (CD19/CD20/CD40(+)), IgD and/or IgM expression (67%), and lack of programmed death-ligand 1/ligand 2. The LP cells demonstrated an adhesion macromolecule expression pattern distinct from Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma (CHL) (uniform CD50 and variable CD58 for NLPHL; minimal CD50, bright CD58 expression for CHL). A two-tube consensus assay identified LP cells in all seven NLPHL cases examined and only one non-NLPHL case (94 cases evaluated). Finally, FC cell sorting studies confirm that FC-defined populations have an LP cytomorphology. Taken together, these findings demonstrate a two-tube consensus assay can be used to immunophenotype NLHPL with high specificity and sensitivity and rapidly purify LP cells for genetic studies. This study also confirms aneuploidy in LP cells, provides antigens that may be helpful in distinguishing NLPHL from CHL, and suggests that T cells interact less avidly with LP cells than with Hodgkin and Reed-Sternberg cells. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. 4-Hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression

    PubMed Central

    Park, Sin-Aye; Lee, Mee-Hyun; Na, Hye-Kyung; Surh, Young-Joon

    2017-01-01

    Estrogen (17β-estradiol, E2) undergoes oxidative metabolism by CYP1B1 to form 4-hydroxyestradiol (4-OHE2), a putative carcinogenic metabolite of estrogen. Our previous study showed that 4-OHE2-induced production of reactive oxygen species contributed to neoplastic transformation of human breast epithelial (MCF-10A) cells. In this study, 4-OHE2, but not E2, increased the expression of heme oxygenase-1 (HO-1), a sensor and regulator of oxidative stress, in MCF-10A cells. Silencing the HO-1 gene in MCF-10A cells suppressed 4-OHE2-induced cell proliferation and transformation. In addition, subcutaneous administration of 4-OHE2 markedly enhanced the growth of the MDA-MB-231 human breast cancer xenografts, which was retarded by zinc protoporphyrin, a pharmacological inhibitor of HO-1. 4-OHE2-induced HO-1 expression was mediated by NF-E2-related factor 2 (Nrf2). We speculate that an electrophilic quinone formed as a consequence of oxidation of 4-OHE2 binds directly to Kelch-like ECH-associated protein 1 (Keap1), an inhibitory protein that sequesters Nrf2 in the cytoplasm. This will diminish association between Nrf2 and Keap1. 4-OHE2 failed to interrupt the interaction between Keap1 and Nrf2 and to induce HO-1 expression in Keap1-C273S or C288S mutant cells. Lano-LC-ESI-MS/MS analysis in MCF-10A-Keap1-WT cells which were treated with 4-OHE2 revealed that the peptide fragment containing Cys288 gained a molecular mass of 287.15 Da, equivalent to the addition of a single molecule of 4-OHE2-derived ortho-quinones. PMID:27438141

  5. Characterization of Spontaneous and TGF-β-Induced Cell Motility of Primary Human Normal and Neoplastic Mammary Cells In Vitro Using Novel Real-Time Technology

    PubMed Central

    Mandel, Katharina; Seidl, Daniel; Rades, Dirk; Lehnert, Hendrik; Gieseler, Frank; Hass, Ralf; Ungefroren, Hendrik

    2013-01-01

    The clinical complications derived from metastatic disease are responsible for the majority of all breast cancer related deaths. Since cell migration and invasion are a prerequisite for metastasis their assessment in patient cancer cells in vitro may have prognostic value for the tumor's metastatic capacity. We employed real-time cell analysis (RTCA) on the xCELLigence DP system to determine in vitro motility of patient-derived primary human breast cancer epithelial cells (HBCEC). Initially, the RTCA assay was validated using established human breast cancer cell lines with either an invasive (MDA-MB-231, MDA-MB-435s) or a non-invasive phenotype (MCF-7, MDA-MB-468), and primary NSCLC cells (Tu459). Previous standard assays of cell migration/invasion revealed that only MDA-MB-231, −435s, and Tu459 cells exhibited spontaneous and TGF-β1-stimulated migration and invasion through a Matrigel barrier. In the present study, the TGF-β1-stimulated activities could be blocked by SB431542, a potent kinase inhibitor of the TGF-β type I receptor ALK5. Application of the RTCA assay to patient-derived tumor cells showed that 4/4 primary HBCEC and primary NSCLC cells, but not normal human mammary epithelial cells (HMEC), displayed high spontaneous migratory and invasive activity which correlated with higher MMP-2 expression and uPA protein levels in HBCEC compared to HMEC. Upon treatment with TGF-β1, HBCEC exhibited morphologic and gene regulatory alterations indicative of epithelial-to-mesenchymal transition. However, exclusively the invasive but not the migratory activity of HBCEC was further enhanced by TGF-β1. This indicates the requirement for molecular, e.g. integrin interactions with Matrigel components in HBCEC in order to become responsive to pro-invasive TGF-β effects. Together, these results show for the first time that tumorigenic HBCEC but not normal HMEC possess a strong basal migratory as well as a basal and TGF-β1-inducible invasive potential. These

  6. Genetic changes in mammalian cells transformed by helium ions

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G.; Yang, T. C.; Roots, R.

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9-10 keV/μm). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells.

  7. Membrane and cytoplasmic marker exchange between malignant neoplastic cells and fibroblasts via intermittent contact: increased tumour cell diversity independent of genetic change.

    PubMed

    David, Manu S; Huynh, Minh D; Kelly, Elizabeth; Rizos, Helen; Coleman, Hedley; Rogers, Glynn; Zoellner, Hans

    2012-12-01

    We previously demonstrated that human osteosarcoma cells (SAOS-2) induce contact-dependent apoptosis in endothelium, and expected similar apoptosis in human gingival fibroblasts (h-GF) using SAOS-2 alkaline phosphatase (AP) to identify cells. However, h-GF apoptosis did not occur, despite reduction in AP-negative h-GF number (p < 0.01) and enhancement of this by h-GF TNFα pretreatment (p < 0.01). We suggest that TNFα-enhanced transfer of membrane AP from SAOS-2 to h-GF would explain these data. This idea was investigated using fluorescence prelabelled cells and confocal laser scanning microscopy. Co-cultures of membrane-labelled h-GF (marker-DiO) and SAOS-2 (marker-DiD) generated dual-labelled cells, primarily at the expense of single labelled h-GF (p < 0.001), suggesting predominant membrane transfer from SAOS-2 to h-GF. However, opposite directional transfer predominated when membrane labels were reversed; SAOS-2 further expressed green fluorescent protein (GFP) in cytoplasm and nuclei, and h-GF additionally bore nuclear label (Syto59) (p < 0.001). Cytoplasmic exchange was investigated using h-GF prelabelled with cytoplasmic DDAO-SE and nuclear Syto59, co-cultured with SAOS-2 expressing GFP in cytoplasm and nuclei, and predominant cytoplasmic marker transferred from h-GF to SAOS-2 (p < 0.05). Pretreating h-GF with TNFα increased exchange of membrane markers (p < 0.04) but did not affect either cell surface area profile or circularity. Dual-labelled cells had a morphological phenotype differing from SAOS-2 and h-GF (p < 0.001). Time-lapse microscopy revealed extensive migration of SAOS-2 and cell process contact with h-GF, with the appearance of SAOS-2 indulging in 'cellular sipping' from h-GF. Similar exchange of membrane was seen between h-GF and with other cell lines (melanoma MeIRMu, NM39, WMM175, MM200-B12; osteosarcoma U20S; ovarian carcinoma cells PE01, PE04 and COLO316), while cytoplasmic sharing was also seen in all cell lines other than U20S. We

  8. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells.

    PubMed

    Hu, Kejin; Yu, Junying; Suknuntha, Kran; Tian, Shulan; Montgomery, Karen; Choi, Kyung-Dal; Stewart, Ron; Thomson, James A; Slukvin, Igor I

    2011-04-07

    Reprogramming blood cells to induced pluripotent stem cells (iPSCs) provides a novel tool for modeling blood diseases in vitro. However, the well-known limitations of current reprogramming technologies include low efficiency, slow kinetics, and transgene integration and residual expression. In the present study, we have demonstrated that iPSCs free of transgene and vector sequences could be generated from human BM and CB mononuclear cells using non-integrating episomal vectors. The reprogramming described here is up to 100 times more efficient, occurs 1-3 weeks faster compared with the reprogramming of fibroblasts, and does not require isolation of progenitors or multiple rounds of transfection. Blood-derived iPSC lines lacked rearrangements of IGH and TCR, indicating that their origin is non-B- or non-T-lymphoid cells. When cocultured on OP9, blood-derived iPSCs could be differentiated back to the blood cells, albeit with lower efficiency compared to fibroblast-derived iPSCs. We also generated transgene-free iPSCs from the BM of a patient with chronic myeloid leukemia (CML). CML iPSCs showed a unique complex chromosomal translocation identified in marrow sample while displaying typical embryonic stem cell phenotype and pluripotent differentiation potential. This approach provides an opportunity to explore banked normal and diseased CB and BM samples without the limitations associated with virus-based methods.

  9. Regulation of growth by a nerve growth factor-like protein which modulates paracrine interactions between a neoplastic epithelial cell line and stromal cells of the human prostate.

    PubMed

    Djakiew, D; Delsite, R; Pflug, B; Wrathall, J; Lynch, J H; Onoda, M

    1991-06-15

    Nerve growth factor-like substance(s) were identified in both conditioned media of a human prostatic tumor epithelial cell line (TSU-pr1) and a human prostatic stromal cell line (HPS) by Western blot analysis and bioassay of neurite outgrowth of PC12 cells. Nerve growth factor-beta (NGF) immunofluorescence was also localized to secretory vesicles in the cytoplasm of both the TSU-pr1 and HPS cells. Western blot of the TSU-pr1 and HPS cell-secreted protein identified an Mr 65,000 major protein which immunoreacted with murine NGF antibody. NGF Western blot of HPS cell-secreted protein also identified an Mr 42,000 minor band under reduced and nonreduced conditions and an Mr 61,000 minor band under reduced conditions. The secreted protein from the TSU-pr1 cells (50 micrograms/ml) and HPS (50 micrograms/ml), as well as murine NGF (50 ng/ml) or human recombinant NGF (50 ng/ml), stimulated neurite outgrowth from PC12 cells. This neurite outgrowth activity was partially inhibited by treatment with NGF antibody. Neither the serum containing growth medium nor bovine serum albumin (50 micrograms/ml) stimulated neurite outgrowth. The NGF-like secretory protein appeared to play a role in the paracrine regulation of prostatic growth between TSU-pr1 cells and HPS cells. The relative growth of TSU-pr1 cells, as indicated by [3H]thymidine incorporation, in response to HPS secretory protein was stimulated 2.8-fold in a dose-dependent manner. In the converse interaction, the relative growth of HPS cells in response to TSU-pr1 secretory protein was stimulated 1.8-fold in a dose-dependent manner. Immunoneutralization of TSU-pr1 and HPS secretory protein was performed with antibody against NGF, acidic fibroblast growth factor, and basic fibroblast growth factor. Removal of the NGF-like protein from the maximal stimulatory dose of TSU-pr1 secretory protein (100 micrograms/ml) with NGF antibody reduced HPS proliferation to 52% of maximal levels, and immunoneutralization of the NGF

  10. Synchronous occurrence of squamous-cell carcinoma "transformation" and EGFR exon 20 S768I mutation as a novel mechanism of resistance in EGFR-mutated lung adenocarcinoma.

    PubMed

    Longo, Lucia; Mengoli, Maria Cecilia; Bertolini, Federica; Bettelli, Stefania; Manfredini, Samantha; Rossi, Giulio

    2017-01-01

    The occurrence of secondary EGFR mutation T790M in exon 20 and histologic "transformation" are common mechanisms underlying resistance to EGFR first- or second-generation tyrosine kinase inhibitors (TKI). We describe here on a hitherto unreported mechanism of EGFR TKI resistance synchronously combining squamous-cell carcinoma change and occurrence of the EGFR exon 20 S768I secondary mutation in a 43 year-old woman with stage IV adenocarcinoma harbouring EGFR exon 21 L858R mutation. After 8 months of response to gefitinib, the patient experienced EGFR TKI resistance and died of leptomeningeal neoplastic dissemination.

  11. Lovastatin, a cholesterol biosynthesis inhibitor, inhibits the growth of human H-ras oncogene transformed cells in nude mice.

    PubMed

    Sebti, S M; Tkalcevic, G T; Jani, J P

    1991-05-01

    Post-translational modification of oncogenic p21ras proteins with farnesyl, a lipid intermediate in cholesterol biosynthesis, is required for p21ras membrane association and for the ability of p21ras to transform cultured cells. We have tested the ability of lovastatin, a specific inhibitor of cholesterol biosynthesis, to inhibit the growth of ras oncogene-transformed cells in vivo. Balb/c mouse 3T3 cells, transfected with H-ras oncogene from human EJ bladder carcinoma, were highly tumorigenic in nude mice. Immunoprecipitation studies with transformed EJ cells showed that lovastatin (1-100 microM) inhibited p21ras membrane association in a concentration-dependent manner and that a 10 microM concentration reduced the amount of p21ras bound to the membrane by 50%. Lovastatin also inhibited EJ cell growth in a concentration range that closely paralleled that required for inhibition of p21ras membrane association. Treatment of nude mice bearing subcutaneous (s.c.) EJ tumors with lovastatin (50 mg/kg) significantly inhibited the abilities of these tumors to grow as early as four days and, by day 12, the lovastatin treated group of animals had tumors with an average size that was 3-fold smaller than those in the saline treated group. Western blotting studies showed that lovastatin (50 mg/kg) was also able to inhibit p21ras membrane association in EJ tumors implanted s.c. in nude mice. These results demonstrate that lovastatin, an inhibitor of cholesterol biosynthesis, inhibited in vivo tumor growth of H-ras oncogene transformed cells. The results also suggest that inhibition of p21ras membrane association, an essential step in ras oncogene neoplastic transformation, is one mechanism by which lovastatin may express its antitumor activity.

  12. [Neoplastic polyps of the colon].

    PubMed

    Gallo Reynoso, S; Candelaria Hernández, M G

    1992-01-01

    We report all patients with neoplastic polyps endoscopically excised during 10 years, performed in different hospitals in Mexico City. All ages, both sexes and socio-economic levels were seen in several endoscopy services both, public and private. We find 190 patients (100 females) with 268 polyps and a mean age of 54.5 (range 18-86). Tubulo-villous adenomas have the less frequency (8%). Villous adenomas were the largest and had a 11% frequency, almost all were confined to recto-sigmoid region its mean age was 6 years. Villous adenomas were the most frequent (69%) distributed in all colonic segments, its mean age was 54.5 years with the widest range (18-80 years); they have highest dysplasia rate (8.1%). Carcinomas arising in polyps were all located in recto-sigmoid region, with female predominance (2.3:1) and oldest mean age of presentation (66.3 years). Neoplastic polyps in Mexico City general population has a low frequency; endoscopic polypectomy is safe and had a low morbi-mortality rate.

  13. Transformation of vegetative cells of Bacillus thuringiensis by plasmid DNA.

    PubMed

    Heierson, A; Landén, R; Lövgren, A; Dalhammar, G; Boman, H G

    1987-03-01

    Plasmid DNA-mediated transformation of vegetative cells of Bacillus thuringiensis was studied with the following two plasmids: pBC16 coding for tetracycline resistance and pC194 expressing chloramphenicol resistance. A key step was the induction of competence by treatment of the bacteria with 50 mM Tris hydrochloride buffer (pH 8.9) containing 30% sucrose. Transformation frequency was strongly influenced by culture density during the uptake of DNA and required the presence of polyethylene glycol. Growth in a minimal medium supplemented with Casamino Acids gave 35 times more transformants than growth in a rich medium. The highest frequencies were obtained with covalently closed circular DNA. With all parameters optimized, the frequency was 10(-3) transformants per viable cell or 10(4) transformants per microgram of DNA. Cells previously frozen were also used as recipients in transformation experiments; such cells gave frequencies similar to those obtained with freshly grown cells. The procedure was optimized for B. thuringiensis subsp. gelechiae, but B. thuringiensis subsp. kurstaki, B. thuringiensis subsp. galleriae, B. thuringiensis subsp. thuringiensis, and B. thuringiensis subsp. israelensis were also transformed. Compared with protoplast transformation, our method is much faster and 3 orders of magnitude more efficient per microgram of added DNA.

  14. Concurrent Presentation of Erythrodermic Lichen Planus and Squamous Cell Carcinoma: Coincidence or Malignant Transformation?

    PubMed

    Ali, Neema M; Bhat, Ramesh; Rao, Shwetha B

    2015-01-01

    Lichen planus is a common papulosquamous disorder affecting about 1-2% of the population, neoplastic transformation of cutaneous lichen planus lesions occurs very rarely. A 40 year old female patient presented with a 1 year history of developing multiple, itchy, pigmented lesions over both lower legs which gradually spread to involve the whole body. A few tense bullae were seen on the extremities. An erythematous fleshy lesion was seen on the upper aspect of the left buttock. Skin biopsy from a plaque on the right forearm showed features suggestive of lichen planus. Skin biopsy of a bullae showed a sub epidermal bulla filled with a mixed inflammatory infiltrate. Direct immunofluorescence revealed no immunoreactants along the basement membrane zone. A diagnosis of erythrodermic lichen planus with bullous lichen planus was made. Biopsy of fleshy lesion of left buttock revealed a moderately differentiated squamous cell carcinoma. Erythrodermic lichen planus with bullous lesions and secondary squamous cell carcinoma; these occurences in a single patient is extremely rare and has not been previously reported to the best of our knowledge.

  15. Concurrent Presentation of Erythrodermic Lichen Planus and Squamous Cell Carcinoma: Coincidence or Malignant Transformation?

    PubMed Central

    Ali, Neema M; Bhat, Ramesh; Rao, Shwetha B

    2015-01-01

    Lichen planus is a common papulosquamous disorder affecting about 1-2% of the population, neoplastic transformation of cutaneous lichen planus lesions occurs very rarely. A 40 year old female patient presented with a 1 year history of developing multiple, itchy, pigmented lesions over both lower legs which gradually spread to involve the whole body. A few tense bullae were seen on the extremities. An erythematous fleshy lesion was seen on the upper aspect of the left buttock. Skin biopsy from a plaque on the right forearm showed features suggestive of lichen planus. Skin biopsy of a bullae showed a sub epidermal bulla filled with a mixed inflammatory infiltrate. Direct immunofluorescence revealed no immunoreactants along the basement membrane zone. A diagnosis of erythrodermic lichen planus with bullous lichen planus was made. Biopsy of fleshy lesion of left buttock revealed a moderately differentiated squamous cell carcinoma. Erythrodermic lichen planus with bullous lesions and secondary squamous cell carcinoma; these occurences in a single patient is extremely rare and has not been previously reported to the best of our knowledge. PMID:26538691

  16. A novel method to transform prokaryotic cells using shock waves

    NASA Astrophysics Data System (ADS)

    Nataraja, K. N.; Udayakumar, M.; Jagadeesh, G.

    The transgenic approach that is being used to study gene function or to improve the efficiency of crop plants/organisms involves transformation of a wide range of cells, tissues, and organisms with nucleic acid. In this study we report a new micro- shock assisted prokaryotic cell transformation technique. An underwater electric discharge based shock wave generator (25 kV; 150 m A; high voltage capacitor) has been designed and fabricated to carry out the prokaryotic cell transformation experiments. Test tubes with bacterial cell suspension with appropriate plasmid DNA, immersed in water are exposed to shock wave loading (typical overpressure 130 bar). The transformation efficiency of samples of the prokaryotic cells exposed to shock waves is very high compared to conventional methods.

  17. Secondary malignant giant cell tumor of bone due to malignant transformation 40 years after surgery without radiation therapy, presenting as fever of unknown origin: a case report.

    PubMed

    Takesako, Hisataka; Osaka, Eiji; Yoshida, Yukihiro; Sugitani, Masahiko; Tokuhashi, Yasuaki

    2016-03-08

    Malignant transformation of giant cell tumors of bones, that is, secondary malignant giant cell tumor of bone, is rare. The most common symptoms are local pain and swelling. There are no prior reports of giant cell tumor of bone with fever of unknown origin at the onset. Here we present a case of a secondary malignant giant cell tumor of bone due to malignant transformation 40 years after surgery without radiation therapy, presenting as fever of unknown origin. A 75-year-old Asian man presented with a 3-week history of continuous pyrexia and left knee pain and swelling. He had been diagnosed at age 35 years with a giant cell tumor of bone of his left distal femur and underwent bone curettage and avascular fibula grafting at that time. Postoperative radiation therapy was not performed. He remained recurrence-free for 40 years after surgery. At age 75, histopathological findings suggested a secondary malignant giant cell tumor of bone. The tumor specimen expressed tumor necrosis factor-α. Neoplastic fever was suspected, and a naproxen test was conducted. His pyrexia showed immediate resolution. Surgery was performed under a diagnosis of a secondary malignant giant cell tumor of bone with neoplastic fever. His pyrexia and inflammatory activities diminished postoperatively. This is the first reported case, to the best of our knowledge, of the detection of a secondary malignant giant cell tumor of bone based on fever of unknown origin after long-term (40 years) follow-up. After curettage and bone grafting, giant cell tumor of bone may transform to malignancies within a few years or even decades after surgery. Therefore, meticulous follow-up is essential. The fever might be attributable to the tumor releasing inflammatory cytokines. Not only pain and swelling but also continuous pyrexia may suggest the diagnosis of a secondary malignant giant cell tumor of bone.

  18. Mitochondrial STAT3 contributes to transformation of Barrett's epithelial cells that express oncogenic Ras in a p53-independent fashion.

    PubMed

    Yu, Chunhua; Huo, Xiaofang; Agoston, Agoston T; Zhang, Xi; Theiss, Arianne L; Cheng, Edaire; Zhang, Qiuyang; Zaika, Alexander; Pham, Thai H; Wang, David H; Lobie, Peter E; Odze, Robert D; Spechler, Stuart J; Souza, Rhonda F

    2015-08-01

    Metaplastic epithelial cells of Barrett's esophagus transformed by the combination of p53-knockdown and oncogenic Ras expression are known to activate signal transducer and activator of transcription 3 (STAT3). When phosphorylated at tyrosine 705 (Tyr705), STAT3 functions as a nuclear transcription factor that can contribute to oncogenesis. STAT3 phosphorylated at serine 727 (Ser727) localizes in mitochondria, but little is known about mitochondrial STAT3's contribution to carcinogenesis in Barrett's esophagus, which is the focus of this study. We introduced a constitutively active variant of human STAT3 (STAT3CA) into the following: 1) non-neoplastic Barrett's (BAR-T) cells; 2) BAR-T cells with p53 knockdown; and 3) BAR-T cells that express oncogenic H-Ras(G12V). STAT3CA transformed only the H-Ras(G12V)-expressing BAR-T cells (evidenced by loss of contact inhibition, formation of colonies in soft agar, and generation of tumors in immunodeficient mice), and did so in a p53-independent fashion. The transformed cells had elevated levels of both mitochondrial (Ser727) and nuclear (Tyr705) phospho-STAT3. Introduction of a STAT3CA construct with a mutated tyrosine phosphorylation site into H-Ras(G12V)-expressing Barrett's cells resulted in high levels of mitochondrial phospho-STAT3 (Ser727) with little or no nuclear phospho-STAT3 (Tyr705), and the cells still formed tumors in immunodeficient mice. Thus tyrosine phosphorylation of STAT3 is not required for tumor formation in Ras-expressing Barrett's cells. We conclude that mitochondrial STAT3 (Ser727) can contribute to oncogenesis in Barrett's cells that express oncogenic Ras. These findings suggest that agents targeting STAT3 might be useful for chemoprevention in patients with Barrett's esophagus.

  19. Cell phones and CHWs: a transformational marriage?

    PubMed

    2014-02-01

    Mobile phones can be transformative for community health workers (CHWs) in enhancing their influence and status and helping to solve practical problems. While formal intervention research can help advance mHealth application, most progress will come through a "diffusion of innovation" process.

  20. Biolistic transformation of cotton embryogenic cell suspension cultures

    USDA-ARS?s Scientific Manuscript database

    Genetic transformation of cotton is highly dependent on the ability to regenerate fertile plants from transgenic cells through somatic embryogenesis. Induction of embryogenic cell cultures is genotype-dependant. However, once embryogenic cell cultures are available, they can be effectively used fo...

  1. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition.

    PubMed

    Andarawewa, Kumari L; Erickson, Anna C; Chou, William S; Costes, Sylvain V; Gascard, Philippe; Mott, Joni D; Bissell, Mina J; Barcellos-Hoff, Mary Helen

    2007-09-15

    Transforming growth factor beta1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT). Nonmalignant HMEC (MCF10A, HMT3522 S1, and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture or treated with a low concentration of TGFbeta (0.4 ng/mL) or double treated. All double-treated (IR + TGFbeta) HMEC underwent a morphologic shift from cuboidal to spindle shaped. This phenotype was accompanied by a decreased expression of epithelial markers E-cadherin, beta-catenin, and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin, and vimentin. Furthermore, double treatment increased cell motility, promoted invasion, and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGFbeta alone elicited EMT, although IR increased chronic TGFbeta signaling and activity. Gene expression profiling revealed that double-treated cells exhibit a specific 10-gene signature associated with Erk/mitogen-activated protein kinase (MAPK) signaling. We hypothesized that IR-induced MAPK activation primes nonmalignant HMEC to undergo TGFbeta-mediated EMT. Consistent with this, Erk phosphorylation was transiently induced by irradiation and persisted in irradiated cells treated with TGFbeta, and treatment with U0126, a MAP/Erk kinase (MEK) inhibitor, blocked the EMT phenotype. Together, these data show that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  2. Battery Cell Voltage Sensing and Balancing Using Addressable Transformers

    NASA Technical Reports Server (NTRS)

    Davies, Francis

    2009-01-01

    A document discusses the use of saturating transformers in a matrix arrangement to address individual cells in a high voltage battery. This arrangement is able to monitor and charge individual cells while limiting the complexity of circuitry in the battery. The arrangement has inherent galvanic isolation, low cell leakage currents, and allows a single bad cell in a battery of several hundred cells to be easily spotted.

  3. Differences in modifications of cytoplasmic free Ca2+ concentration and 86Rb+ influx in human neoplastic B cells by antibodies to mu- relative to delta-Ig heavy chains.

    PubMed Central

    Heikkilä, R; Ruud, E; Funderud, S; Godal, T

    1985-01-01

    Cytoplasmic free Ca2+ concentration and influx of 86Rb+ (K+ analogue) were determined during the first minutes after stimulation of neoplastic human B cells and B cell lines by antibodies to surface Ig. The Ca2+ concentration increased in the great majority of samples (41 of 48). All of four B cell lines also responded, providing formal evidence that accessory cells are not required for this early, surface Ig-mediated event. Antibodies to delta as well as mu, heavy chains (anti-delta and anti-mu) could induce both Ca2+ and 86Rb+ responses. 86Rb+ responders were found within the group of Ca2+ responders, but no quantitative relation was observed between the two responses. In cells expressing both sIgM and sIgD, antibodies to delta heavy chains were more potent than those to mu heavy chains in inducing Ca2+ responses, whereas the opposite pattern was seen with regard to 86Rb+ responses. These results demonstrate that sIgM and sIgD can deliver different biochemical signals to the cell. PMID:3921300

  4. Epigenetic remodelling of gene expression profiles of neoplastic and normal tissues: immunotherapeutic implications

    PubMed Central

    Coral, S; Covre, A; JMG Nicolay, H; Parisi, G; Rizzo, A; Colizzi, F; Dalla Santa, S; Fonsatti, E; Fratta, E; Sigalotti, L; Maio, M

    2012-01-01

    Background: Epigenetic remodelling of cancer cells is an attractive therapeutic strategy and distinct DNA hypomethylating agents (DHA) are being actively evaluated in patients with hemopoietic or solid tumours. However, no studies have investigated the modulation of gene expression profiles (GEP) induced by DHA in transformed and benign tissues. Such information is mandatory to clarify the fine molecular mechanism(s) underlying the clinical efficacy of DHA, to identify appropriate therapeutic combinations, and to address safety issues related to their demethylating potential in normal tissues. Thus, utilising a syngeneic mouse model, we investigated the remodelling of GEP of neoplastic and normal tissues induced by systemic administration of DHA. Methods: The murine mammary carcinoma cells TS/A were injected s.c. into female BALB/c mice that were treated i.p. with four cycles of the DHA 5-aza-2′-deoxycytidine (5-AZA-CdR) at a fractioned daily dose of 0.75 mg kg−1 (q8 h × 3 days, every week). Whole mouse transcriptomes were analysed by microarrays in neoplastic and normal tissues from control and treated mice. Results were processed by bioinformatic analyses. Results: In all, 332 genes were significantly (P⩽0.05; FC⩾4) modulated (294 up and 38 downregulated) in neoplastic tissues from 5-AZA-CdR-treated mice compared with controls. In decreasing order of magnitude, changes in GEP significantly (P⩽0.05) affected immunologic, transport, signal transduction, spermatogenesis, and G–protein–coupled receptor protein signalling pathways. Epigenetic remodelling was essentially restricted to tumour tissues, leaving substantially unaltered normal ones. Conclusion: The ability of 5-AZA-CdR to selectively target tumour GEP and its major impact on immune-related genes, strongly support the clinical use of DHA alone or combined with immunotherapeutic agents. PMID:22910318

  5. Radiation injury of the normal and neoplastic prostate

    SciTech Connect

    Bostwick, D.G.; Egbert, B.M.; Fajardo, L.F.

    1982-09-01

    Tissue samples from 40 patients with prostatic adenocarcinoma treated by radiation therapy were evaluated simultaneously by three observers to establish criteria for distinguishing residual tumor from radiation-induced atypia. Sections from 10 patients irradiated for nonprostatic pelvic neoplasms served as controls in addition to pretreatment biopsies from the determinate group. Patients had been treated by external x-irradiation, the majority receiving 6200-7400 rad to the prostate and pelvis over 7 to 8 weeks. Positive (tumor) biopsy incidence in the determinate group was 80% at 18 months, 40% at 36 months, and 43% in later samples. The following features were characteristic of radiation injury in the prostate: decreased ratio of the number of tumor glands to stroma, atrophy and squamous-like metaplasia of non-neoplastic glands with or without atypia, stromal fibrosis, arterial lumenal narrowing due to myointimal proliferation, foam cells within vessel walls, and fibrosis and atrophy of seminal vesicles. Criteria not useful for diagnosing radiation injury included architectural pattern or differentiation of tumor, cytologic features of tumor cells, inflammatory infiltrate, and ratio of normal glands to stroma. Ionizing radiation produced characteristic lesions in neoplastic and non-neoplastic prostatic glands, stroma, and blood vessels, and the sum of these changes was a reliable indicator of prior radiotherapy. An understanding of the morphologic effects of radiation injury of the prostate allowed distinction between residual prostatic adenocarcinoma and radiation-induced atypia of non-neoplastic glands.

  6. Mechanisms of Radiation Toxicity in Transformed and Non-Transformed Cells

    PubMed Central

    Panganiban, Ronald-Allan M.; Snow, Andrew L.; Day, Regina M.

    2013-01-01

    Radiation damage to biological systems is determined by the type of radiation, the total dosage of exposure, the dose rate, and the region of the body exposed. Three modes of cell death—necrosis, apoptosis, and autophagy—as well as accelerated senescence have been demonstrated to occur in vitro and in vivo in response to radiation in cancer cells as well as in normal cells. The basis for cellular selection for each mode depends on various factors including the specific cell type involved, the dose of radiation absorbed by the cell, and whether it is proliferating and/or transformed. Here we review the signaling mechanisms activated by radiation for the induction of toxicity in transformed and normal cells. Understanding the molecular mechanisms of radiation toxicity is critical for the development of radiation countermeasures as well as for the improvement of clinical radiation in cancer treatment. PMID:23912235

  7. Cerebral neoplastic angioendotheleosis complicated by hypercalcaemia.

    PubMed Central

    Wierzbicki, A. S.; Gibbs, J. M.; Lidov, H. G.; Lolin, Y.; Thomas, P. K.

    1991-01-01

    This is a case report of a 67 year old man who presented with a fluctuating level of consciousness and myoclonic jerks caused in part by hypercalcaemia. The diagnosis of cerebral neoplastic angioendotheleosis was only made later on brain biopsy and is the first report of the occurrence of hypercalcaemia in neoplastic angioendotheleosis. Images Figure 1 Figure 2 PMID:1924030

  8. Genetic Transformation of Maize Cells by Particle Bombardment

    PubMed Central

    Klein, Theodore M.; Kornstein, Laura; Sanford, John C.; Fromm, Michael E.

    1989-01-01

    Intact maize cells were bombarded with microprojectiles bearing plasmid DNA coding for selectable (neomycin phosphotransferase [NPT II]) and screenable (β-glucuronidase [GUS]) marker genes. Kanamycin-resistant calli were selected from bombarded cells, and these calli carried copies of the NPT II and GUS genes as determined by Southern blot analysis. All such calli expressed GUS although the level of expression varied greatly between transformed cell lines. These results show that intact cells of important monocot species can be stably transformed by microprojectiles. Images Figure 2 Figure 3 PMID:16667039

  9. [Non-neoplastic hypercalcitoninemia. Pathological anatomy].

    PubMed

    Saint-André, J P; Guyétant, S

    1996-01-01

    Normal C-cells are classically concentrated between the upper and middle thirds of each thyroid lobe and account for less than 1% of the thyroid gland volume. C-cell hyperplasia (CCH), defined as the presence of at least 3 low-power magnification (x100) microscopic fields containing more than 50 C-cells and at least 40 cells/cm2 was first described in a familial context of MEN2. It was then observed in many other conditions, especially in association with chronic lymphocytic thyroiditis or with thyroid tumors other than medullary thyroid carcinoma (MTC). In members of a MEN2 family, carrying a RET mutation, CCH is constant and associated with micro-MTC. At least 20% of patients with chronic lymphocytic thyroiditis or with a thyroid tumor other than MTC have CCH that, in a few cases, is associated with hypercalcitoninemia. 20 % normal subjects meet quantitative criteria of CCH. Patients belonging to a MEN2 family, without a RET mutation but presenting hypercalcitoninemia, could belong to this group. HCC appears to be a pre-neoplastic condition only in patients carrying a RET mutation. Under other circumstances, HCC may be either a reactive or even a normal condition.

  10. Epigenetic Regulation of Normal and Transformed Breast Epithelial Cell Phenotype

    DTIC Science & Technology

    2009-06-01

    of nine cell lines corresponding to two different normal breast cell types isolated from three different individuals ( BPE 2, HME2, BPE3, HME3, BPE4...normal breast cell subtypes a ( BPE and HME) and their transformed derivatives (BPLER and HMLER) The results in Figure 1 indicate that the...process. 5 Table1 Karyotype analysis of two different normal breast cell subtypes a ( BPE and HME) and their

  11. Cell Phones Transform a Science Methods Course

    ERIC Educational Resources Information Center

    Madden, Lauren

    2012-01-01

    A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…

  12. Cell Phones Transform a Science Methods Course

    ERIC Educational Resources Information Center

    Madden, Lauren

    2012-01-01

    A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…

  13. A case of T cell prolymphocytic leukemia involving blast transformation.

    PubMed

    Ichikawa, Kunimoto; Noguchi, Masaaki; Imai, Hidenori; Sekiguchi, Yasunobu; Wakabayashi, Mutsumi; Sawada, Tomohiro; Komatsu, Norio

    2011-05-01

    We report a case of T cell prolymphocytic leukemia (T-PLL) involving blast transformation. At the initial diagnosis, most peripheral blood cells demonstrated proliferation of indolent T cell small cell variants, i.e., small to medium prolymphocytes with inconspicuous nucleoli and a normal karyotype. These cells were positive for surface CD4, CD5, and CD7, and cytoplasmic CD3, but negative for surface CD3 and CD8 and cytoplasmic terminal deoxynucleotidyl transferase (TdT). The T cell receptor (TCR) Cβ1 gene was rearranged in the cells. Large prolymphocytes with prominent nucleoli, irregular nuclei, and cytoplasmic vacuoles that exhibited chromosome 8 trisomy were observed about 1.5 years later. The CD4+CD8- single positive effector memory T cells transformed into surface CD4+CD8+ double positive precursor T cells. The clonal TCR gene rearrangement patterns of these cells were identical throughout the clinical course, suggesting clonal blast transformation. The CD4+CD8+ cells demonstrated increased chromosome 8 trisomy combined with complex chromosome abnormalities with t(14;14)(q11.2;q32) containing a 14q32 chromosome after transformation. T cell leukemia 1a (TCL1a) (14q32.1) may be implicated in this case. The TCL1a oncoprotein is expressed in approximately 70% of T-PLL cases. The disease gradually developed resistance to chemotherapy, and the patient died of the disease. It is known that indolent T-PLL can become aggressive. Therefore, similar transformations may occur in other aggressive T-PLL cases, particularly those involving trisomy 8 and TCL1a.

  14. Molecular Characterization of Spontaneous Mesenchymal Stem Cell Transformation

    PubMed Central

    Rubio, Daniel; Garcia, Silvia; Paz, Maria F.; De la Cueva, Teresa; Lopez-Fernandez, Luis A.; Lloyd, Alison C.; Garcia-Castro, Javier; Bernad, Antonio

    2008-01-01

    Background We previously reported the in vitro spontaneous transformation of human mesenchymal stem cells (MSC) generating a population with tumorigenic potential, that we termed transformed mesenchymal cells (TMC). Methodology/Principal Findings Here we have characterized the molecular changes associated with TMC generation. Using microarrays techniques we identified a set of altered pathways and a greater number of downregulated than upregulated genes during MSC transformation, in part due to the expression of many untranslated RNAs in MSC. Microarray results were validated by qRT-PCR and protein detection. Conclusions/Significance In our model, the transformation process takes place through two sequential steps; first MSC bypass senescence by upregulating c-myc and repressing p16 levels. The cells then bypass cell crisis with acquisition of telomerase activity, Ink4a/Arf locus deletion and Rb hyperphosphorylation. Other transformation-associated changes include modulation of mitochondrial metabolism, DNA damage-repair proteins and cell cycle regulators. In this work we have characterized the molecular mechanisms implicated in TMC generation and we propose a two-stage model by which a human MSC becomes a tumor cell. PMID:18167557

  15. Distribution and heterogeneity of cells detected by HNK-1 monoclonal antibody in blood and tissues in normal, reactive and neoplastic conditions.

    PubMed Central

    Pizzolo, G; Semenzato, G; Chilosi, M; Morittu, L; Ambrosetti, A; Warner, N; Bofill, M; Janossy, G

    1984-01-01

    When studied with double staining techniques HNK-1+ cells include subsets not expressing T cell antigens (A), expressing T8 antigens (B) and expressing T4 antigens (C). Cells with phenotype A are observed as the dominant HNK-1+ population (greater than 50% of all HNK-1+ cells) in the blood from controls and from patients with solid tumours, infectious mononucleosis and sarcoidosis. Cells with phenotype B are always a substantial subset (35% of HNK-1+ cells) in the peripheral blood but in patients with B chronic lymphocytic leukaemia and angioimmunoblastic lymphadenopathy these cells are present in an even higher percentage (greater than 50% of all HNK-1+ cells). This cell subset is the only HNK-1+ population found in the few tumour samples where HNK-1+ cells are identifiable. Apart from these few cases of malignancies, the type A and B subsets are rare in the tissues. In these samples Leu 11+ cells seem to be absent. In contrast, cells with phenotype C are a minor population in the blood but represent most HNK-1+ cells in the germinal centres of lymph nodes and their malignant counterparts in follicular centre cell lymphoma. These HNK-1+, T4+ cells are Leu 11-. These phenotypic characteristics indicate that the most efficient NK cells may represent a circulating and not a tissue seeking population. Images Fig. 2 Fig. 2 PMID:6744669

  16. Neoplastic diseases in Aleppo, Syria.

    PubMed

    Mzayek, F; Asfar, T; Rastam, S; Maziak, W

    2002-10-01

    The objective of this study was to determine the pattern of occurrence and distribution of different types of neoplastic diseases in Aleppo, Syria, during one year. The study was set in Aleppo Governorate, Syria with a population of 2.7 million. Information about newly diagnosed cases of cancer was obtained from pathology labs ( =12) and general hospitals ( =5) in the city between August 1998 and August 1999. Pre-piloted charts were distributed to the labs and one of the labs staff was instructed on how to fill them. Information about benign tumours was also gathered. Between August 1998 and August 1999, 1802 new cases of cancer were diagnosed in Aleppo Governorate (970 in men and 832 in women), giving an overall crude incidence rate of 72.8 per 100 000 person-years for this population. The mean age of patients diagnosed with malignant tumours was 51.2 +/- 21.3 and 47.6 +/- 18.5 for males and females, respectively. In males, age-adjusted incidence rates were higher for bladder, leukaemia and lung cancers, in that order. In females age-adjusted incidence rates were higher for breast, uterus (+ cervix) and leukaemia. In conclusion, the presented data represent the first attempt to use standardized methodology to arrive at approximate estimates of the rate of occurrence of different cancers in Aleppo, Syria, and to characterize their patterns and distribution within the population. It calls for the importance of establishing a reliable cancer registry in Syria.

  17. Natural Escherichia coli strains undergo cell-to-cell plasmid transformation.

    PubMed

    Matsumoto, Akiko; Sekoguchi, Ayuka; Imai, Junko; Kondo, Kumiko; Shibata, Yuka; Maeda, Sumio

    2016-12-02

    Horizontal gene transfer is a strong tool that allows bacteria to adapt to various environments. Although three conventional mechanisms of horizontal gene transfer (transformation, transduction, and conjugation) are well known, new variations of these mechanisms have also been observed. We recently reported that DNase-sensitive cell-to-cell transfer of nonconjugative plasmids occurs between laboratory strains of Escherichia coli in co-culture. We termed this phenomenon "cell-to-cell transformation." In this report, we found that several combinations of Escherichia coli collection of reference (ECOR) strains, which were co-cultured in liquid media, resulted in DNase-sensitive cell-to-cell transfer of antibiotic resistance genes. Plasmid isolation of these new transformants demonstrated cell-to-cell plasmid transfer between the ECOR strains. Natural transformation experiments, using a combination of purified plasmid DNA and the same ECOR strains, revealed that cell-to-cell transformation occurs much more frequently than natural transformation under the same culture conditions. Thus, cell-to-cell transformation is both unique and effective. In conclusion, this study is the first to demonstrate cell-to-cell plasmid transformation in natural E. coli strains.

  18. Inhibition of potentially lethal radiation damage repair in normal and neoplastic human cells by 3-aminobenzamide: an inhibitor of poly(ADP-ribosylation)

    SciTech Connect

    Thraves, P.J.; Mossman, K.L.; Frazier, D.T.; Dritschilo, A.

    1986-08-01

    The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase, on potentially lethal damage repair (PLDR) was investigated in normal human fibroblasts and four human tumor cell lines from tumors with varying degrees of radiocurability. The tumor lines selected were: Ewing's sarcoma, a bone tumor considered radiocurable and, human lung adenocarcinoma, osteosarcoma, and melanoma, three tumors considered nonradiocurable. PLDR was measured by comparing cell survival when cells were irradiated in a density-inhibited state and replated at appropriate cell numbers at specified times following irradiation to cell survival when cells were replated immediately following irradiation. 3AB was added to cultures 2 hr prior to irradiation and removed at the time of replating. Different test radiation doses were used for the various cell lines to obtain equivalent levels of cell survival. In the absence of inhibitor, PLDR was similar in all cell lines tested. In the presence of 8 mM 3AB, differential inhibition of PLDR was observed. PLDR was almost completely inhibited in Ewing's sarcoma cells and partially inhibited in normal fibroblast cells and osteosarcoma cells. No inhibition of PLDR was observed in the lung adenocarcinoma or melanoma cells. Except for the osteosarcoma cells, inhibition of PLDR by 3AB correlated well with radiocurability.

  19. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells

    PubMed Central

    Shibayama, Haruna; Yoshimori, Mayumi; Wang, Ludan; Saitoh, Yasunori; Uota, Shin; Yamaoka, Shoji; Koyama, Takatoshi; Shimizu, Norio; Yamamoto, Kouhei; Fujiwara, Shigeyoshi; Miura, Osamu

    2017-01-01

    Epstein–Barr virus (EBV) has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV). However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells. PMID:28346502

  20. Cadmium-transformed cells in the in vitro cell transformation assay reveal different proliferative behaviours and activated pathways.

    PubMed

    Forcella, M; Callegaro, G; Melchioretto, P; Gribaldo, L; Frattini, M; Stefanini, F M; Fusi, P; Urani, C

    2016-10-01

    The in vitro Cell Transformation Assay (CTA) is a powerful tool for mechanistic studies of carcinogenesis. The endpoint is the classification of transformed colonies (foci) by means of standard morphological features. To increase throughput and reliability of CTAs, one of the suggested follow-up activities is to exploit the comprehension of the mechanisms underlying cell transformation. To this end, we have performed CTAs testing CdCl2, a widespread environmental contaminant classified as a human carcinogen with the underlying mechanisms of action not completely understood. We have isolated and re-seeded the cells at the end (6weeks) of in vitro CTAs to further identify the biochemical pathways underlying the transformed phenotype of foci. Morphological evaluations and proliferative assays confirmed the loss of contact-inhibition and the higher proliferative rate of transformed clones. The biochemical analysis of EGFR pathway revealed that, despite the same initial carcinogenic stimulus (1μM CdCl2 for 24h), transformed clones are characterized by the activation of two different molecular pathways: proliferation (Erk activation) or survival (Akt activation). Our preliminary results on molecular characterization of cell clones from different foci could be exploited for CTAs improvement, supporting the comprehension of the in vivo process and complementing the morphological evaluation of foci.

  1. Method for Producing Non-Neoplastic, Three Dimensional, Mammalian Tissue and Cell Aggregates Under Microgravity Culture Conditions and the Products Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)

    1996-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  2. Rectal epithelial cell mitosis and expression of macrophage migration inhibitory factor are increased 3 years after Roux-en-Y gastric bypass (RYGB) for morbid obesity: implications for long-term neoplastic risk following RYGB.

    PubMed

    Kant, Prashant; Sainsbury, Anita; Reed, Karen R; Pollard, Stephen G; Scott, Nigel; Clarke, Alan R; Coletta, P Louise; Hull, Mark A

    2011-07-01

    Rectal epithelial cell mitosis and crypt size, as well as expression of proinflammatory genes including macrophage migration inhibitory factor (MIF), are increased 6 months after Roux-en-Y gastric bypass (RYGB) in morbidly obese patients. Tests were carried out to determine whether these putative colorectal cancer risk biomarkers remained elevated long term after RYGB, and the mechanistic basis, as well as the functional consequences, of Mif upregulation in intestinal epithelial cells was investigated. Rectal mucosa and blood were obtained a median of 3 years after RYGB from the original cohort of patients with RYGB (n = 19) for crypt microdissection, real-time PCR, immunohistochemistry for MIF and immunoassay of proinflammatory markers. Immunohistochemistry for Mif and bromodeoxyuridine labelling were performed on AhCre⁺ mouse and Apc(Min/⁺) mouse (with and without functional Mif alleles) intestine, respectively. Rectal epithelial cell mitosis and crypt size remained elevated 3 years after RYGB compared with preoperative values (1.7- and 1.5-fold, respectively; p < 0.05). There was a 40-fold (95% CI 13 to 125) increase in mucosal MIF transcript levels at 3 years associated with increased epithelial cell MIF protein levels. Conditional Apc loss in AhCre⁺ mice led to increased epithelial cell Mif content. Mif deficiency in Apc(Min/⁺) mice was associated with a combined defect in intestinal epithelial cell proliferation and migration, which was reflected by the longitudinal clinical data. Mucosal abnormalities persist 3 years after RYGB and include elevation of the protumorigenic cytokine MIF, which is upregulated following Apc loss and which contributes to intestinal epithelial cell homeostasis. These observations should prompt clinical studies of colorectal neoplastic risk after RYGB.

  3. Dasatinib, a small molecule inhibitor of the Src kinase, reduces the growth and activates apoptosis in pre-neoplastic Barrett's esophagus cell lines: evidence for a noninvasive treatment of high-grade dysplasia.

    PubMed

    Inge, Landon J; Fowler, Aaron J; Paquette, Kimberly M; Richer, Amanda L; Tran, Nhan; Bremner, Ross M

    2013-02-01

    Only local ablation (radiofrequency ablation, cryotherapy) or esophagectomy currently is available to treat high-grade dysplasia in Barrett's esophagus. Alternative treatments, specifically chemopreventive strategies, are lacking. Our understanding of the molecular changes of high-grade dysplasia in Barrett's esophagus offers an opportunity to inhibit neoplastic progression of high-grade dysplasia in Barrett's esophagus. Increased activity of the Src kinase and deregulation of the tumor suppressor p27 are features of malignant cells and high-grade dysplasia in Barrett's esophagus. Src phosphorylates p27, inhibiting its regulatory function and increasing cell growth and proliferation. We hypothesized that a small molecule inhibitor of Src might reduce the growth and reverse Src-mediated deregulation of p27 in Barrett's esophagus cells. Immortalized Barrett's esophagus cell lines established from patient biopsies were treated with the Src kinase inhibitor dasatinib and evaluated for p27 localization and protein levels, as well as for effects on the cell cycle and apoptosis using flow cytometry, viability assays, and protein and RNA markers. Dasatinib reduced both Src activation and p27 phosphorylation and increased p27 protein levels and nuclear localization. These effects correlated with decreased proliferation, cell-cycle arrest, and activation of apoptosis. Analysis of biopsies of patients with Barrett's esophagus revealed the presence of phosphorylated p27 in high-grade dysplasia, consistent with in vitro findings. Dasatinib has considerable antineoplastic effects on Barrett's esophagus cell lines carrying genetic markers associated with dysplasia, which correlates with the reversal of p27 deregulation. These findings suggest that dasatinib has potential as a treatment for patients with high-grade dysplasia and Barrett's esophagus and that p27 holds promise as a biomarker in the clinical use of dasatinib in patients with high-grade dysplasia and Barrett

  4. Physical methods for the transformation of plant cells.

    PubMed

    Oard, J H

    1991-01-01

    Transfer and expression of foreign genes in adult plants and their progeny has been achieved by acceleration of DNA-coated particles or microinjection techniques. Cultured cells or embryoids served as targets for the introduction of marker genes that were stably expressed in the nucleus or the chloroplast. Cloned genes from the maize anthocyanin pathway were regulated in a tissue-specific manner when transferred into maize by particle acceleration. In spite of these successes, stable transformation efficiency was low due to uneven particle distribution and cell death after bombardment. Transferred genes did not always segregate in a Mendelian fashion in the succeeding generation, and additional efforts of embryo rescue or shoot grafts were needed to obtain viable progeny from original transformants. New technical advances such as the helium-driven particle gun may improve transformation rates in the future, but some problems of cell manipulation remain.

  5. PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: a comprehensive immunohistochemical study.

    PubMed

    Ozcan, Ayhan; Shen, Steven S; Hamilton, Candice; Anjana, Kundu; Coffey, Donna; Krishnan, Bhuvaneswari; Truong, Luan D

    2011-06-01

    PAX 8 is a transcription factor that is essential for embryonic development of the kidney, Müllerian organs, and thyroid. It may also have a role in tumor development in these organs. The diagnostic utility of PAX 8 has not been comprehensively studied. Formalin-fixed, paraffin-embedded tissue samples for non-neoplastic tissues (n=1601), primary neoplasms (n=933), and metastatic neoplasms (n=496) were subjected to PAX 8 immunostain. In non-neoplastic tissues, PAX 8 was consistently noted in glomerular parietal epithelial cells, renal collecting ductal cells, atrophic renal tubular epithelial cells regardless of nephronic segments, and epithelial cells of the endocervix, endometrium, fallopian tube, seminal vesicle, epidydimis, thyroid, pancreatic islet cells, and lymphoid cells. PAX 8 was not seen in the rest of the tissue samples. In primary neoplasms, PAX 8 was expressed by 194 of 240 (89%) renal cell neoplasms, by 238 of 267 (89%) Müllerian-type neoplasms, by 65 of 65 (100%) thyroid follicular cell neoplasms, by 8 of 8 (100%) nephrogenic adenomas, and by 17 of 17 (100%) lymphomas. Weak focal staining was noted in 5 of 12 (42%) cases of parathyroid hyperplasia/adenoma and in 6 of 17 (35%) well-differentiated neuroendocrine tumors of the pancreas. PAX 8 was not seen in other neoplasms. In metastatic neoplasms, PAX 8 was expressed by 90 of 102 (88%) metastatic renal cell carcinomas, by 57 of 63 metastatic Müllerian tumors (90%), and by 6 of 6 metastatic papillary thyroid carcinomas (100%). There was also weak focal staining for 1 of 15 metastatic small cell carcinomas and for 1 of 9 metastatic well-differentiated neuroendocrine carcinomas. PAX 8 was not seen in other metastatic neoplasms. It can be successfully identified in routinely processed tissue samples, and its expression is mostly nuclear. PAX 8 expression in non-neoplastic mature tissues is limited to the organs, the embryonic development of which depends on this transcription factor. This tissue/cell

  6. Capsule endoscopy in neoplastic diseases.

    PubMed

    Pennazio, Marco; Rondonotti, Emanuele; de Franchis, Roberto

    2008-09-14

    Until recently, diagnosis and management of small-bowel tumors were delayed by the difficulty of access to the small bowel and the poor diagnostic capabilities of the available diagnostic techniques. An array of new methods has recently been developed, increasing the possibility of detecting these tumors at an earlier stage. Capsule endoscopy (CE) appears to be an ideal tool to recognize the presence of neoplastic lesions along this organ, since it is non-invasive and enables the entire small bowel to be visualized. High-quality images of the small-bowel mucosa may be captured and small and flat lesions recognized, without exposure to radiation. Recent studies on a large population of patients undergoing CE have reported small-bowel tumor frequency only slightly above that reported in previous surgical series (range, 1.6%-2.4%) and have also confirmed that the main clinical indication to CE in patients with small-bowel tumors is obscure gastrointestinal (GI) bleeding. The majority of tumors identified by CE are malignant; many were unsuspected and not found by other methods. However, it remains difficult to identify pathology and tumor type based on the lesion's endoscopic appearance. Despite its limitations, CE provides crucial information leading in most cases to changes in subsequent patient management. Whether the use of CE in combination with other new diagnostic (MRI or multidetector CT enterography) and therapeutic (Push-and-pull enteroscopy) techniques will lead to earlier diagnosis and treatment of these neoplasms, ultimately resulting in a survival advantage and in cost savings, remains to be determined through carefully-designed studies.

  7. Fuel Transformer Solid Oxide Fuel Cell

    SciTech Connect

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-08-01

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from January of 2005 through June 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  8. FUEL TRANSFORMER SOLID OXIDE FUEL CELL

    SciTech Connect

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-03-24

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2004 through January 2004. Work was focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the lay out plans for further progress in next budget period.

  9. Fuel Transformer Solid Oxide Fuel Cell

    SciTech Connect

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Rhys Foster; Anthony Litka

    2006-07-27

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from January of 2006 through June 2006. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  10. Fuel Transformer Solid Oxide Fuel Cell

    SciTech Connect

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Rhys Foster; Anthony Litka

    2007-01-27

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2005 through December 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  11. Whole-cell fungal transformation of precursors into dyes.

    PubMed

    Polak, Jolanta; Jarosz-Wilkołazka, Anna

    2010-07-05

    Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25). Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid) into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other commercially important products. The use of immobilized

  12. Honeybee combs: how the circular cells transform into rounded hexagons

    PubMed Central

    Karihaloo, B. L.; Zhang, K.; Wang, J.

    2013-01-01

    We report that the cells in a natural honeybee comb have a circular shape at ‘birth’ but quickly transform into the familiar rounded hexagonal shape, while the comb is being built. The mechanism for this transformation is the flow of molten visco-elastic wax near the triple junction between the neighbouring circular cells. The flow may be unconstrained or constrained by the unmolten wax away from the junction. The heat for melting the wax is provided by the ‘hot’ worker bees. PMID:23864500

  13. Diagnostic Tests in Neoplastic Meningitis: Lessons Learnt from Three Patients.

    PubMed

    Khadilkar, Satish V; Visana, Devshi R; Bharucha, Nadir E

    2014-09-01

    Neoplastic meningitis (NM) poses diagnostic challenges and investigations need to be chosen carefully. We present three cases of NM with distinct learning points. In case 1, MRI was diagnostic of melanosis; in case 2, ventricular CSF showed malignant cells when lumbar CSF repeatedly failed to show them; and in the third, whole body PET scan diagnosed the tumour when other tests were negative. A comparative evaluation of various diagnostic modalities used in suspected NM is provided.

  14. Regulation of Cell Transformation by Rb-Controlled Redox Homeostasis

    PubMed Central

    Wang, Wenwen; Zhang, Huamei; Li, Binghui; Ying, Guoguang

    2014-01-01

    Rb is a tumor suppressor, and regulates various biological progresses, such as cell proliferation, development, metabolism and cell death. In the current study, we show that Rb knockout in 3T3 cells leads to oxidative redox state and low mitochondrial membrane potential by regulating mitochondrial activity. Our results indicate that Rb plays an important role in controlling redox homeostasis. More importantly, the functions of Rb in modulating cell proliferation, death and transformation are, at least in part, mediated by its controlling cellular redox state. In addition, our results also suggest that the cellular redox state possibly determines various biological activities, including cell survival, death and transformation, where Rb is functioning as a regulator of redox homeostasis. PMID:25019272

  15. Neoplastic growth: the consequence of evolutionary malignant resistance to chronic damage for survival of cells (review of a new theory of the origin of cancer).

    PubMed

    Monceviciūte-Eringiene, E

    2005-01-01

    In the present review, a new theory that the mechanisms of general evolutionary persistent resistance to damaging factors are closely related to the development of tumour cells is introduced. Evolutionary resistance and its variability have an immense power to drive and control the process of carcinogenesis and the success of microbial and antitumour chemotherapy. First, this phenomenon of adaptation is characteristic of microbial cells whose resistance to antibiotics and other chemotherapeutic drugs is manifested through ATP-dependent transmembrane transporters. The structure and function of some multidrug transporters of resistance are conserved from microorganisms to mammals. When somatic cells are exposed to carcinogens and develop into tumour cells, they also acquire resistance to the toxic effects of carcinogens through these same transmembrane transporters (P-glycoprotein, glutathione S-transferases and other products of evolutionary resistance-related genes arisen for detoxification and exportation of cytotoxic xenobiotics and drugs). Cancerous cells acquire a persistent evolutionary resistance to chemotherapy drugs or irradiation through the same ATP-dependent transporters encountered in prokaryotic and eukaryotic cells. The mechanism of acquired resistance of cells to damaging factors, which becomes manifested during tumorigenic process formation, is a general biological law of primary significance in carcinogenesis. This resistance can be called malignant as, once formed, it does not disappear, as does also a clone of malignant cells. In tumorous cells, the mutagenic processes, morphological and functional modifications are a mechanism of secondary significance in carcinogenesis, contributing to formation of damage-resistant cells. This mechanism characterizes the processes of simplification arising in damage-resistant cells. Such cells acquire parasitic features. To survive under unfavourable conditions, they get adapted as if returning down the

  16. Monomethylarsonous acid induces transformation of human bladder cells

    SciTech Connect

    Bredfeldt, Tiffany G.; Jagadish, Bhumasamudram; Eblin, Kylee E.; Mash, Eugene A.; Gandolfi, A. Jay . E-mail: gandolfi@pharmacy.arizona.edu

    2006-10-01

    Arsenic is a human bladder carcinogen. Arsenic is methylated to both monomethyl and dimethyl metabolites which have been detected in human urine. The trivalent methylated arsenicals are more toxic than inorganic arsenic. It is unknown if these trivalent methylated metabolites can directly cause malignant transformation in human cells. The goal of this study is determine if monomethylarsonous acid (MMA{sup III}) can induce malignant transformation in a human bladder urothelial cell line. To address this goal, a non-tumorigenic human urothelial cell line (UROtsa) was continuously exposed to 0.05 {mu}M MMA{sup III} for 52 weeks. Hyperproliferation was the first phenotypic change observed in exposed UROtsa (URO-MSC). After 12 weeks of exposure, doubling time had decreased from 42 h in unexposed control cells to 27 h in URO-MSC. Hyperproliferation continued to be a quality possessed by the URO-MSC cells after both 24 and 52 weeks of exposure to MMA{sup III}, which had a 40-50% reduction in doubling time. Throughout the 52-week exposure, URO-MSC cells retained an epithelial morphology with subtle morphological differences from control cells. 24 weeks of MMA{sup III} exposure was required to induce anchorage-independent growth as detected by colony formation in soft agar, a characteristic not found in UROtsa cells. To further substantiate that malignant transformation had occurred, URO-MSC cells were tested after 24 and 52 weeks of exposure to MMA{sup III} for the ability to form tumors in SCID mice. Enhanced tumorigenicity in SCID mouse xenografts was observed after 52 weeks of treatment with MMA{sup III}. These observations are the first demonstration of MMA{sup III}-induced malignant transformation in a human bladder urothelial cell line and provide important evidence that MMA{sup III} may be carcinogenic in human tissues.

  17. Differential transformation of mammary epithelial cells by Wnt genes.

    PubMed Central

    Wong, G T; Gavin, B J; McMahon, A P

    1994-01-01

    The mouse Wnt family includes at least 10 genes that encode structurally related secreted glycoproteins. Wnt-1 and Wnt-3 were originally identified as oncogenes activated by the insertion of mouse mammary tumor virus in virus-induced mammary adenocarcinomas, although they are not expressed in the normal mammary gland. However, five other Wnt genes are differentially expressed during development of adult mammary tissue, suggesting that they may play distinct roles in various phases of mammary gland growth and development. Induction of transformation by Wnt-1 and Wnt-3 may be due to interference with these normal regulatory events; however, there is no direct evidence for this hypothesis. We have tested Wnt family members for the ability to induce transformation of cultured mammary cells. The results demonstrate that the Wnt gene family can be divided into three groups depending on their ability to induce morphological transformation and altered growth characteristics of the C57MG mammary epithelial cell line. Wnt-1, Wnt-3A, and Wnt-7A were highly transforming and induced colonies which formed and shed balls of cells. Wnt-2, Wnt-5B, and Wnt-7B also induced transformation but with a lower frequency and an apparent decrease in saturation density. In contrast, Wnt-6 and two other family members which are normally expressed in C57MG cells, Wnt-4 and Wnt-5A, failed to induce transformation. These data demonstrate that the Wnt genes have distinct effects on cell growth and should not be regarded as functionally equivalent. Images PMID:8065359

  18. Chondrocytes Directly Transform into Bone Cells in Mandibular Condyle Growth

    PubMed Central

    Jing, Y.; Zhou, X.; Han, X.; Jing, J.; von der Mark, K.; Wang, J.; de Crombrugghe, B.; Hinton, R.J.; Feng, J.Q.

    2015-01-01

    For decades, it has been widely accepted that hypertrophic chondrocytes undergo apoptosis prior to endochondral bone formation. However, very recent studies in long bone suggest that chondrocytes can directly transform into bone cells. Our initial in vivo characterization of condylar hypertrophic chondrocytes revealed modest numbers of apoptotic cells but high levels of antiapoptotic Bcl-2 expression, some dividing cells, and clear alkaline phosphatase activity (early bone marker). Ex vivo culture of newborn condylar cartilage on a chick chorioallantoic membrane showed that after 5 d the cells on the periphery of the explants had begun to express Col1 (bone marker). The cartilage-specific cell lineage–tracing approach in triple mice containing Rosa 26tdTomato (tracing marker), 2.3 Col1GFP (bone cell marker), and aggrecan CreERT2 (onetime tamoxifen induced) or Col10-Cre (activated from E14.5 throughout adult stage) demonstrated the direct transformation of chondrocytes into bone cells in vivo. This transformation was initiated at the inferior portion of the condylar cartilage, in contrast to the initial ossification site in long bone, which is in the center. Quantitative data from the Col10-Cre compound mice showed that hypertrophic chondrocytes contributed to ~80% of bone cells in subchondral bone, ~70% in a somewhat more inferior region, and ~40% in the most inferior part of the condylar neck (n = 4, P < 0.01 for differences among regions). This multipronged approach clearly demonstrates that a majority of chondrocytes in the fibrocartilaginous condylar cartilage, similar to hyaline cartilage in long bones, directly transform into bone cells during endochondral bone formation. Moreover, ossification is initiated from the inferior portion of mandibular condylar cartilage with expansion in one direction. PMID:26341973

  19. Clear-Cell (Reticulated) Transformation of Eyelid Eccrine Sweat Glands.

    PubMed

    Jakobiec, Frederick A; Stagner, Anna M; Lee, Nahyoung Grace

    2016-07-21

    A 24-year-old man with a painful, recurrent left upper eyelid nodule underwent an excision. Histopathologic evaluation disclosed a granulomatous process, most likely in response to a ruptured epidermoid cyst. In the vicinity of the nodule were multiple eccrine sweat glands displaying a curious clear-cell appearance in the adlumenal cells, the first example of such a phenomenon in the eyelids. Alcian blue, periodic acid Schiff, and documented staining failed to disclose, respectively, any cytoplasmic mucosubstances, glycogen accumulation, or lipid in the adlumenal secretory cells. Cytokeratin 7 immunostained the adlumenal cells of the eccrine secretory coil, while cytokeratin 5/6 stained the ablumenal myoepithelial and ductular cells. Gross cystic disease fluid protein 15, normally demonstrable in the eccrine secretory cells, was not detectable. Clear-cell transformation should not be confused with syringoma of the lower eyelids, in which glycogen is responsible for the ablumenal clear-cell change.

  20. Spliceosomal protein E regulates neoplastic cell growth by modulating expression of Cyclin E/CDK2 and G2/M checkpoint proteins

    PubMed Central

    Li, Z; Pützer, B M

    2008-01-01

    Small nuclear ribonucleoproteins are essential splicing factors. We previously identified the spliceosomal protein E (SmE) as a downstream effector of E2F1 in p53-deficient human carcinoma cells. Here, we investigated the biological relevance of SmE in determining the fate of cancer and non-tumourigenic cells. Adenovirus-mediated expression of SmE selectively reduces growth of cancerous cells due to decreased cell proliferation but not apoptosis. A similar growth inhibitory effect for SmD1 suggests that this is a general function of Sm-family members. Deletion of Sm-motifs reveals the importance of the Sm-1 domain for growth suppression. Consistently, SmE overexpression leads to inhibition of DNA synthesis and G2 arrest as shown by BrdU-incorporation and MPM2-staining. Real-time RT-PCR and immunoblotting showed that growth arrest by SmE directly correlates with the reduction of cyclin E, CDK2, CDC25C and CDC2 expression, and up-regulation of p27Kip. Importantly, SmE activity was not associated with enhanced expression of other spliceosome components such as U1 SnRNP70, suggesting that the growth inhibitory effect of SmE is distinct from its pre-mRNA splicing function. Furthermore, specific inactivation of SmE by shRNA significantly increased the percentage of cells in S phase, whereas the amount of G2/M arrested cells was reduced. Our data provide evidence that Sm proteins function as suppressors of tumour cell growth and may have major implications as cancer therapeutics. PMID:18208561

  1. D-type Cyclins are important downstream effectors of cytokine signaling that regulate the proliferation of normal and neoplastic mammary epithelial cells

    PubMed Central

    Zhang, Qian; Sakamoto, Kazuhito; Wagner, Kay-Uwe

    2013-01-01

    In response to the ligand-mediated activation of cytokine receptors, cells decide whether to proliferate or to undergo differentiation. D-type Cyclins (Cyclin D1, D2, or D3) and their associated Cyclin-dependent Kinases (CDK4, CDK6) connect signals from cytokines to the cell cycle machinery, and they propel cells through the G1 restriction point and into the S phase, after which growth factor stimulation is no longer essential to complete cell division. D-type Cyclins are upregulated in many human malignancies including breast cancer to promote an uncontrolled proliferation of cancer cells. After summarizing important aspects of the cytokine-mediated transcriptional regulation and the posttranslational modification of D-type Cyclins, this review will highlight the physiological significance of these cell cycle regulators during normal mammary gland development as well as the initiation and promotion of breast cancer. Although the vast majority of published reports focus almost exclusively on the role of Cyclin D1 in breast cancer, we summarize here previous and recent findings that demonstrate an important contribution of the remaining two members of this Cyclin family, in particular Cyclin D3, for the growth of ErbB2-associated breast cancer cells in humans and in mouse models. New data from genetically engineered models as well as the pharmacological inhibition of CDK4/6 suggest that targeting the combined functions of D-type Cyclins could be a suitable strategy for the treatment of ErbB2-positive and potentially other types of breast cancer. PMID:23562856

  2. D-type Cyclins are important downstream effectors of cytokine signaling that regulate the proliferation of normal and neoplastic mammary epithelial cells.

    PubMed

    Zhang, Qian; Sakamoto, Kazuhito; Wagner, Kay-Uwe

    2014-01-25

    In response to the ligand-mediated activation of cytokine receptors, cells decide whether to proliferate or to undergo differentiation. D-type Cyclins (Cyclin D1, D2, or D3) and their associated Cyclin-dependent kinases (CDK4, CDK6) connect signals from cytokines to the cell cycle machinery, and they propel cells through the G1 restriction point and into the S phase, after which growth factor stimulation is no longer essential to complete cell division. D-type Cyclins are upregulated in many human malignancies including breast cancer to promote an uncontrolled proliferation of cancer cells. After summarizing important aspects of the cytokine-mediated transcriptional regulation and the posttranslational modification of D-type Cyclins, this review will highlight the physiological significance of these cell cycle regulators during normal mammary gland development as well as the initiation and promotion of breast cancer. Although the vast majority of published reports focus almost exclusively on the role of Cyclin D1 in breast cancer, we summarize here previous and recent findings that demonstrate an important contribution of the remaining two members of this Cyclin family, in particular Cyclin D3, for the growth of ErbB2-associated breast cancer cells in humans and in mouse models. New data from genetically engineered models as well as the pharmacological inhibition of CDK4/6 suggest that targeting the combined functions of D-type Cyclins could be a suitable strategy for the treatment of ErbB2-positive and potentially other types of breast cancer.

  3. Spliceosomal protein E regulates neoplastic cell growth by modulating expression of cyclin E/CDK2 and G2/M checkpoint proteins.

    PubMed

    Li, Z; Pützer, B M

    2008-12-01

    Small nuclear ribonucleoproteins are essential splicing factors. We previously identified the spliceosomal protein E (SmE) as a downstream effector of E2F1 in p53-deficient human carcinoma cells. Here, we investigated the biological relevance of SmE in determining the fate of cancer and non-tumourigenic cells. Adenovirus-mediated expression of SmE selectively reduces growth of cancerous cells due to decreased cell proliferation but not apoptosis. A similar growth inhibitory effect for SmD1 suggests that this is a general function of Sm-family members. Deletion of Sm-motifs reveals the importance of the Sm-1 domain for growth suppression. Consistently, SmE overexpression leads to inhibition of DNA synthesis and G2 arrest as shown by BrdU-incorporation and MPM2-staining. Real-time RT-PCR and immunoblotting showed that growth arrest by SmE directly correlates with the reduction of cyclin E, CDK2, CDC25C and CDC2 expression, and up-regulation of p27Kip. Importantly, SmE activity was not associated with enhanced expression of other spliceosome components such as U1 SnRNP70, suggesting that the growth inhibitory effect of SmE is distinct from its pre-mRNA splicing function. Furthermore, specific inactivation of SmE by shRNA significantly increased the percentage of cells in S phase, whereas the amount of G2/M arrested cells was reduced. Our data provide evidence that Sm proteins function as suppressors of tumour cell growth and may have major implications as cancer therapeutics.

  4. MicroRNAs 221 and 222 target p27Kip1 in Marek's disease virus-transformed tumour cell line MSB-1.

    PubMed

    Lambeth, Luke S; Yao, Yongxiu; Smith, Lorraine P; Zhao, Yuguang; Nair, Venugopal

    2009-05-01

    MicroRNAs (miRNAs) are a class of short RNAs that function as post-transcriptional suppressors of protein expression and are involved in a variety of biological processes, including oncogenesis. Several recent studies have implicated the involvement of miR-221 and miR-222 in tumorigenesis as these miRNAs are upregulated in a number of cancers and affect the expression of cell cycle regulatory proteins such as the cyclin-dependent kinase (cdk) inhibitor p27(Kip1). Marek's disease virus (MDV) is a highly oncogenic herpesvirus that affects poultry, causing acute neoplastic disease with lymphomatous lesions in several organs. MDV-encoded oncogenes such as Meq are directly implicated in the neoplastic transformation of T cells and have been well studied. More recently, however, the involvement of both host and virus-encoded miRNAs in the induction of MD lymphomas is being increasingly recognized. We analysed the miRNA expression profiles in the MDV-transformed lymphoblastoid cell line MSB-1 and found that endogenous miRNAs miR-221 and miR-222 were significantly upregulated. Demonstration of the conserved binding sites for these miRNAs in the chicken p27(Kip1) 3'-untranslated region sequence and the repression of luciferase activity of reporter constructs indicated that miR-221 and miR-222 target p27(Kip1) in these cells. We also found that overexpression of miR-221 and miR-222 decreased p27(Kip1) levels and that treatment with retrovirally expressed antagomiRs partially alleviated this suppression. These data show that an oncogenic herpesvirus, as in the case of many cancers, can exploit the miRNA machinery for suppressing cell cycle regulatory molecules such as p27(Kip1) in the induction and progression of T-cell lymphomas.

  5. Adenosine deaminase in cell transformation. Biophysical manifestation of membrane dynamics.

    PubMed

    Porat, N; Gill, D; Parola, A H

    1988-10-15

    Cell transformation is associated with a dramatic collapse of a graphic fingerprint characteristic of normal cells, as measured by phase fluorimetry. This is demonstrated on adenosine deaminase (ADA, EC 3.5.4.4), an established malignancy marker. ADA activity is known to decrease markedly in chick embryo fibroblasts (CEF) transformed by Rous sarcoma virus. The high affinity between the catalytic small subunit ADA (SS-ADA) and its membranal complexing protein (ADCP) (which abounds on the plasma membrane of CEF) allowed the hybridization of fluorescent labeled SS-ADA with native ADCP on CEF. Multifrequency differential phase fluorimetry responded remarkably to the state of this hybrid membrane protein. The transformation process is shown to have led to increased membrane fluidity and rotational mobility of ADCP as well as to its reduced availability to SS-ADA binding. The hypothesis of protein vertical sinking into the lipid core of the membrane is now given support by our spectroscopic data. Additional models are considered. A regulatory role is thus suggested for the complexing protein, which may also account for (a) reduced ADA activity in transformed cells and (b) detachment, exclusive to normal cells, upon addition of SS-ADA in excess.

  6. Modeling Herriott cells using the linear canonical transform.

    PubMed

    Dahlen, Dar; Wilcox, Russell; Leemans, Wim

    2017-01-10

    We demonstrate a new way to analyze stable, multipass optical cavities (Herriott cells), using the linear canonical transform formalism, showing that re-entrant designs reproduce an arbitrary input field at the output, resulting in useful symmetries. We use this analysis to predict the stability of cavities used in interferometric delay lines for temporal pulse addition.

  7. GBM secretome induces transient transformation of human neural precursor cells.

    PubMed

    Venugopal, Chitra; Wang, X Simon; Manoranjan, Branavan; McFarlane, Nicole; Nolte, Sara; Li, Meredith; Murty, Naresh; Siu, K W Michael; Singh, Sheila K

    2012-09-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor in humans, with a uniformly poor prognosis. The tumor microenvironment is composed of both supportive cellular substrates and exogenous factors. We hypothesize that exogenous factors secreted by brain tumor initiating cells (BTICs) could predispose normal neural precursor cells (NPCs) to transformation. When NPCs are grown in GBM-conditioned media, and designated as "tumor-conditioned NPCs" (tcNPCs), they become highly proliferative and exhibit increased stem cell self-renewal, or the unique ability of stem cells to asymmetrically generate another stem cell and a daughter cell. tcNPCs also show an increased transcript level of stem cell markers such as CD133 and ALDH and growth factor receptors such as VEGFR1, VEGFR2, EGFR and PDGFRα. Media analysis by ELISA of GBM-conditioned media reveals an elevated secretion of growth factors such as EGF, VEGF and PDGF-AA when compared to normal neural stem cell-conditioned media. We also demonstrate that tcNPCs require prolonged or continuous exposure to the GBM secretome in vitro to retain GBM BTIC characteristics. Our in vivo studies reveal that tcNPCs are unable to form tumors, confirming that irreversible transformation events may require sustained or prolonged presence of the GBM secretome. Analysis of GBM-conditioned media by mass spectrometry reveals the presence of secreted proteins Chitinase-3-like 1 (CHI3L1) and H2A histone family member H2AX. Collectively, our data suggest that GBM-secreted factors are capable of transiently altering normal NPCs, although for retention of the transformed phenotype, sustained or prolonged secretome exposure or additional transformation events are likely necessary.

  8. Differential Diagnostics of Neoplastic and Inflammatory Processes in the Brain by Modifications NMDA Receptor Activity in Blood Cells with Verapamil and Ketamine.

    PubMed

    Syatkin, S P; Frolov, V A; Gridina, N Ya; Draguntseva, N G; Skorik, A S

    2016-09-01

    For the development of methods of additional differential diagnostics of gliomas of various grades of malignancy and gliomas and local inflammatory processes in the CNS we studied the intensity of aggregation of peripheral blood cells under the influence of channel blockers ketamine and verapamil. In in vitro experiments, verapamil and ketamine in various dilutions (from 10 to 100,000 times) were added to blood samples and the effects of these dilutions on the intensity of blood aggregation in patients with gliomas of different degree of malignancy, traumatic brain injuries, and other types of neurosurgical pathologies were studied. A correlation was revealed between the decrease in surface charge of blood cells and the type of neurosurgical pathology. The use of functional properties of potential-dependent inotropic NMDA receptors and calcium channels allowed indirect estimation of their activity via parameters of blood cell aggregation induced by channel blockers ketamine and verapamil.

  9. Zeolite scaffolds for cultures of human breast cancer cells. Part II: Effect of pure and hybrid zeolite membranes on neoplastic and metastatic activity control.

    PubMed

    Tavolaro, Palmira; Martino, Guglielmo; Andò, Sebastiano; Tavolaro, Adalgisa

    2016-11-01

    This work is focused on the response of two invasive phenotypes of human breast cancer cells, MCF-7 and MDA-MB-231, grown on synthesized zeolite scaffolds in order to study the influence of those biomaterials in controlled conditions with and without anti-tumoral drug treatments. Our research was directed to the use of doxorubicin (DOX) and bergapten (5-MOP). The former is broadly considered the most active single agent available for the treatment of breast cancer, the second is a natural psoralen with an apoptotic effect. The results indicate that both drugs inhibit the cell viability of all cell lines grown on all zeolite scaffolds and that all Pure Zeolite Membranes are more responsive with respect to all Mixed Matrix Membranes. Moreover, the results after treatment with DOX at a concentration of 7.4μM for 24h, show that the expression of the matrix metalloproteinases (MMP-2 and MMP-9) is greatly reduced in both cell lines, especially in those adherent on Pure Zeolite Scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells.

    PubMed

    Puttini, Miriam; Coluccia, Addolorata Maria Luce; Boschelli, Frank; Cleris, Loredana; Marchesi, Edoardo; Donella-Deana, Arianna; Ahmed, Shaheen; Redaelli, Sara; Piazza, Rocco; Magistroni, Vera; Andreoni, Federica; Scapozza, Leonardo; Formelli, Franca; Gambacorti-Passerini, Carlo

    2006-12-01

    Resistance to imatinib represents an important scientific and clinical issue in chronic myelogenous leukemia. In the present study, the effects of the novel inhibitor SKI-606 on various models of resistance to imatinib were studied. SKI-606 proved to be an active inhibitor of Bcr-Abl in several chronic myelogenous leukemia cell lines and transfectants, with IC(50) values in the low nanomolar range, 1 to 2 logs lower than those obtained with imatinib. Cells expressing activated forms of KIT or platelet-derived growth factor receptor (PDGFR), two additional targets of imatinib, were unaffected by SKI-606, whereas activity was found against PIM2. SKI-606 retained activity in cells where resistance to imatinib was caused by BCR-ABL gene amplification and in three of four Bcr-Abl point mutants tested. In vivo experiments confirmed SKI-606 activity in models where resistance was not caused by mutations as well as in cells carrying the Y253F, E255K, and D276G mutations. Modeling considerations attribute the superior activity of SKI-606 to its ability to bind a conformation of Bcr-Abl different from imatinib.

  11. Spectral dependencies of killing, mutation, and transformation in mammalian cells and their relevance to hazards caused by solar ultraviolet radiation.

    PubMed

    Suzuki, F; Han, A; Lankas, G R; Utsumi, H; Elkind, M M

    1981-12-01

    Using germicidal lamps and Westinghouse sunlamps with and without filtration, the effectiveness of ultraviolet and near-ultraviolet light in inducing molecular and cellular changes was measured. Cell survival and the induction of resistance to 6-thioguanine or to ouabain were measured with V79 Chinese hamster cells, cell survival and neoplastic transformation were measured with C3H mouse 10 T 1/2 cells, and the induction of pyrimidine dimers containing thymine was measured in both cell lines. The short-wavelength cutoff of the sunlamp emission was shifted from approximately 290 nm (unfiltered) to approximately 300 and approximately 310 nm by appropriate filters. Although it was found that the efficiency with which all end points were induced progressively decreased as the short-wavelength cutoff was shifted to longer wavelengths, the rates of decrease differed appreciably. For example, doses of near-ultraviolet light longer than approximately 300 nm that were effective in mutating or in transforming cells were ineffective in killing them. In respect to pyrimidine dimer induction, several but not all cellular end points were induced by dose ratios of sunlamp light (short-wavelength cutoff, approximately 290 nm) to germicidal lamp light (254 nm) in fairly close accord with the doses required to produce equivalent proportions of dimers. However, for near-ultraviolet light having cutoffs at longer wavelengths, the biological action observed was appreciably greater than what would be predicted from the proportion of dimers induced. From the latter observation, it is inferred that increasing intensities of short-wavelength ultraviolet light, as would be expected from reductions in stratospheric ozone around the earth, would result in smaller increases in biological action, e.g., skin cancer, compared to current levels of action than would be predicted from an action spectrum completely corresponding to that of a pyrimidine dimer induction spectrum in DNA.

  12. Spectral dependencies of killing, mutation, and transformation in mammalian cells and their relevance to hazards caused by solar ultraviolet radiation

    SciTech Connect

    Suzuki, F.; Han, A.; Lankas, G.R.; Utsumi, H.; Elkind, M.M.

    1981-12-01

    Using germicidal lamps and Westinghouse sunlamps with and without filtration, the effectiveness of ultraviolet and near-ultraviolet light in inducing molecular and cellular changes was measured. Cell survival and the induction of resistance to 6-thioguanine or to ouabain were measured with V79 Chinese hamster cells, cell survival and neoplastic transformation were measured with C3H mouse 10 T 1/2 cells, and the induction of pyrimidine dimers containing thymine was measured in both cell lines. The short-wavelength cutoff of the sunlamp emission was shifted from approximately 290 nm (unfiltered) to approximately 300 and approximately 310 nm by appropriate filters. Although it was found that the efficiency with which all end points were induced progressively decreased as the short-wavelength cutoff was shifted to longer wavelengths, the rates of decrease differed appreciably. For example, doses of near-ultraviolet light longer than approximately 300 nm that were effective in mutating or in transforming cells were ineffective in killing them. In respect to pyrimidine dimer induction, several but not all cellular end points were induced by dose ratios of sunlamp light (short-wavelength cutoff, approximately 290 nm) to germicidal lamp light (254 nm) in fairly close accord with the doses required to produce equivalent proportions of dimers. However, for near-ultraviolet light having cutoffs at longer wavelengths, the biological action observed was appreciably greater than what would be predicted from the proportion of dimers induced. From the latter observation, it is inferred that increasing intensities of short-wavelength ultraviolet light, as would be expected from reductions in stratospheric ozone around the earth, would result in smaller increases in biological action, e.g., skin cancer, compared to current levels of action than would be predicted from an action spectrum completely corresponding to that of a pyrimidine dimer induction spectrum in DNA.

  13. Establishing Fascin over-expression as a strategic regulator of neoplastic aggression and lymph node metastasis in oral squamous cell carcinoma tumor microenvironment.

    PubMed

    Routray, Samapika; Kheur, Supriya; Chougule, Hemlata M; Mohanty, Neeta; Dash, Rupesh

    2017-10-01

    Oral squamous cell carcinoma (OSCC) has an aggressive behaviour with high incidence of nodal metastasis, even in the early stages, leading to poor prognosis. For progression and metastasis of cancers, the dominant element considered is cell motility. Fascin, an actin-binding protein has emerged as a protein of general importance for a diverse set of cell protrusions with functions in cell adhesion, cell interactions, and cell migration. The role of Fascin in various carcinomas, including aggressive behaviour in OSCC has been documented, but its role as a key regulator in lymph nodes metastasis is yet to be validated. This study was piloted to evaluate and correlate Fascin expression in OSCC lymph nodes and understand the role of Fascin in contemptuous Lesional tissue, as a predictor of survival. A retrospective study designed with 40 archival OSCC cases was included as sample, 20 each of both lymph node metastasis +ve (Group 1) and -ve (Group 2) groups. All the participants were smokeless tobacco user and had tumor located at gingivo-buccal complex. We established that Fascin over-expression in lymph nodes were significantly associated with clinico-histopathological parameters like staging (p=0.01), tumor size (cT) (p=0.03) and differentiation; and furthermore it was highly significant in correlation to nodal status (cN) (*p≤0.001). Fascin over-expression in lymph node metastasis positive cases correlated with that of Fascin expression in contemptuous Lesional tissue signifying its role in promoting aggressive progression and metastasis. This association was found to be statistically significant (p value=0.05). Overall Survival Analysis of both lymph node metastasis +ve and -ve groups assessed by Kaplan-Meier analysis (taking death and recurrence into consideration) showed patients with high Fascin expression (in lymph node and Lesional tissue) had shorter overall survival than patients who had no to weak Fascin expression. Our findings thereby establish Fascin

  14. 2-[(Carboxymethyl)sulfanyl]-4-oxo-4-arylbutanoic acids selectively suppressed proliferation of neoplastic human HeLa cells. A SAR/QSAR study.

    PubMed

    Drakulić, Branko J; Juranić, Zorica D; Stanojković, Tatjana P; Juranić, Ivan O

    2005-08-25

    A series of twenty alkyl-, halo-, and methoxy-aryl-substituted 2-[(carboxymethyl)sulfanyl]-4-oxo-4-arylbutanoic acids were synthesized. The new compounds, called CSAB, suppressed proliferation of human cervix carcinoma, HeLa cells, in vitro in a concentration range of 0.644 to 29.48 microM/L. Two compounds exhibit antiproliferative activity in sub-micromolar concentrations. Five compounds act in low micromolar concentrations (<2 microM/L). The most active compounds exert lower cytotoxicity toward healthy human peripheral blood mononuclear cells (PBMC and PBMC+PHA) (selectivity indexes > 10). A strong structure-activity relationship, using estimated log P values and BCUT descriptors, was observed.

  15. Aging is associated with an expansion of CD49fhi mammary stem cells that show a decline in function and increased transformation potential

    PubMed Central

    Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Zhang, Fuchuang; Gu, Xiang; Wu, Anqi; Wang, Danhan; Chen, Yuanhong; Bandyopadhyay, Abhik; Yeh, I-Tien; Daniel, Benjamin J.; Chen, Yidong; Zou, Yi; Rebel, Vivienne L.; Walter, Christi A.; Lu, Jianxin; Huang, Changjiang; Sun, Lu-Zhe

    2016-01-01

    Breast cancer incidence increases during aging, yet the mechanism of age-associated mammary tumorigenesis is unclear. Mammary stem cells are believed to play an important role in breast tumorigenesis, but how their function changes with age is unknown. We compared mammary epithelial cells isolated from young and old mammary glands of different cohorts of C57BL6/J and BALB/c mice, and our findings revealed that old mammary glands were characterized by increased basal cell pool comprised of mostly CD49fhi cells, altered luminal-to-basal cell ratio, and irregular ductal morphology. More interestingly, basal stem cells in old mice were increased in frequency, but showed a functional decline of differentiation and increased neoplastic transformation potential. Gene signature enrichment analysis revealed a significant enrichment of a luminal cell gene expression signature in the basal stem cell-enriched population from old mice, suggesting some luminal cells were expressing basal markers. Immunofluorescence staining confirmed the presence of luminal cells with high CD49f expression in hyperplastic lesions implicating these cells as undergoing luminal to basal phenotypic changes during aging. Whole transcriptome analysis showed elevated immune and inflammatory responses in old basal stem cells and stromal cells, which may be the underlying cause for increased CD49fhi basal-like cells in aged glands. PMID:27852980

  16. UV stimulation of DNA-mediated transformation of human cells

    SciTech Connect

    van Duin, M.; Westerveld, A.; Hoeijmakers, J.H.

    1985-04-01

    Irradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenom